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Abstract

Introduction: Intrauterine growth restriction has been associated with exposure to air pollution, 

but there is a need to clarify which sources and components are most likely responsible. This study 

investigated the associations between low birth weight (LBW, <2500 g) in term born infants (≥37 

gestational weeks) and air pollution by source and composition in California, over the period 

2001–2008.

Methods: Complementary exposure models were used: an empirical Bayesian kriging model for 

the interpolation of ambient pollutant measurements, a source-oriented chemical transport model 

(using California emission inventories) that estimated fine and ultrafine particulate matter (PM2.5 

and PM0.1, respectively) mass concentrations (4 km × 4 km) by source and composition, a line-

source roadway dispersion model at fine resolution, and traffic index estimates. Birth weight was 

obtained from California birth certificate records. A case-cohort design was used. Five controls per 

term LBW case were randomly selected (without covariate matching or stratification) from among 

term births. The resulting datasets were analyzed by logistic regression with a random effect by 

hospital, using generalized additive mixed models adjusted for race/ethnicity, education, maternal 

age and household income.
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Results: In total 72,632 singleton term LBW cases were included. Term LBW was positively and 

significantly associated with interpolated measurements of ozone but not total fine PM or nitrogen 

dioxide. No significant association was observed between term LBW and primary PM from all 

sources grouped together. A positive significant association was observed for secondary organic 

aerosols. Exposure to elemental carbon (EC), nitrates and ammonium were also positively and 

significantly associated with term LBW, but only for exposure during the third trimester of 

pregnancy. Significant positive associations were observed between term LBW risk and primary 

PM emitted by on-road gasoline and diesel or by commercial meat cooking sources. Primary PM 

from wood burning was inversely associated with term LBW. Significant positive associations 

were also observed between term LBW and ultrafine particle numbers modeled with the line-

source roadway dispersion model, traffic density and proximity to roadways.

Discussion: This large study based on complementary exposure metrics suggests that not only 

primary pollution sources (traffic and commercial meat cooking) but also EC and secondary 

pollutants are risk factors for term LBW.

Keywords

Intrauterine growth restriction; Birth weight; Air pollution; Particles; Chemical species; Pollution 
sources

1. Introduction

Intrauterine growth restriction has been associated with both short and long term adverse 

health effects, including increased risk of metabolic syndrome, systolic hypertension, 

obesity, type 2 diabetes mellitus and cardiovascular diseases (Chernausek, 2012; Salam et 

al., 2014). Results from several epidemiological studies suggest that exposure of pregnant 

women to air pollution results in higher risks of low birth weight (LBW, <2500 g) in term 

born infants, which is a marker for intrauterine growth restriction (Dadvand et al., 2013; 

Pedersen et al., 2013; Stieb et al., 2012, 2015). However, the sources and components of air 

pollution most likely to be responsible for the observed associations still need to be clearly 

identified.

Recent publications have suggested a possible influence of primary emissions from traffic on 

birth weight (e.g.: Lakshmanan et al., 2015; Laurent et al., 2013a, 2014; Malmqvist et al., 

2011; Padula et al., 2012). The combustion of coal and biomass in the home where the 

pregnant women lived during pregnancy was also found to be positively associated with 

term LBW (Amegah et al., 2014). However, the influence of other sources of air pollution 

has seldom been investigated (Laurent et al., 2014; Wilhelm et al., 2012).

Only a few studies investigated the relation between PM composition and birth weight (e.g.: 

Basu et al., 2014; Bell et al., 2010, 2012; Darrow et al., 2011; Ebisu and Bell, 2012; Laurent 

et al., 2014). In these studies, the PM components most frequently associated with term 

LBW were elemental carbon (EC) (Basu et al., 2014; Bell et al., 2010; Darrow et al., 2011; 

Ebisu and Bell, 2012; Laurent et al., 2014; Pedersen et al., 2013; Slama et al., 2007; 

Wilhelm et al., 2012), iron (Basu et al., 2014; Bell et al., 2010; Laurent et al., 2014), 

titanium (Bell et al., 2012; Ebisu and Bell, 2012; Laurent et al., 2014) and nickel (Basu et 
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al., 2014; Bell et al., 2010; Ebisu and Bell, 2012). All the aforementioned studies except one 

(Laurent et al., 2014) attributed measurements from nearby monitors to subjects (within 

buffers up to a few kilometers) as a proxy for exposure. However, such exposure assessment 

methods may generate exposure misclassification (Laurent et al., 2013a; Schlesinger et al., 

2006). In addition, restricting study populations to subjects living nearby monitors may 

result in selection bias and leave only a limited number of health outcomes for analyses, 

notably for relatively rare events such as LBW in term born infants. This issue is especially 

critical for the study of PM components, since monitors allowing for the assessment of PM 

composition remain very sparse (Basu et al., 2014).

Chemical transport models (CTMs) can help overcome many of the aforementioned 

limitations. CTMs can predict the chemical composition of primary and secondary PM with 

reasonable temporal and spatial resolution, while keeping track of source information. This 

approach can apply to pollutants for which direct measurement data are sparse. CTMs 

allows covering large domains where monitoring stations are not available, therefore 

avoiding study population restrictions, related selection bias and loss of statistical power 

(Laurent et al., 2016). Although CTMs have seldom been used to investigate the association 

between term LBW and air pollution by source and composition (Laurent et al., 2014), a 

recent major modeling effort conducted in California over a vast domain and a long duration 

now make it possible (Hu et al., 2014a, 2014b, 2015).

This work aimed at studying the relationships between LBW in term born infants and air 

pollution by source and composition in California. For that purpose, it builds not only on 

recent efforts of spatiotemporal chemical transport modeling of both primary and secondary 

particles by source and composition, but also on more commonly used air pollution metrics 

such as interpolated measurement data, local traffic dispersion modeling, and traffic indices.

2. Methods

2.1. Air pollution metrics

The air pollution indicators used in this study have been extensively described in other 

papers (Benson, 1989; Hu et al., 2014a, 2014b, 2015; Laurent et al., 2013a, 2014; Wu et al., 

2009) and recently summarized in an open access publication (Laurent et al., 2016). These 

indicators are briefly presented below.

2.1.1. Empirical Bayesian kriging of monitoring station measurements—
Measurements from monitoring stations throughout the state for years 2000–2008 were 

obtained from the California Air Resources Board for total PM2.5, nitrogen dioxide (NO2) 

and ozone (O3). Hourly gaseous pollutant measurements were converted to daily means 

using a criterion of 75% data completeness at a 24-hour basis. Only data for the 10 am–6 pm 

time windows were used to calculate eight-hour daily means for O3. Monthly averages for 

pollutants were then calculated for stations with >75% days of valid data in a month. These 

monthly averaged concentrations were spatially interpolated between stations using an 

empirical Bayesian kriging (EBK) model (Pilz and Spöck, 2007) implemented in ArcGIS 

10.1 (ESRI, Redlands, CA). Pollutant surface predictions were generated for 200 m * 200 m 

grids.
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2.1.2. Chemical transport modeling—The daily mass concentration of primary PM 

(PM emitted directly into the atmosphere) and of secondary PM (formed in the atmosphere 

from gas-phase precursors) were estimated at 4 km × 4 km spatial resolution across two 

domains covering 92% of the California population for the period of 2000–2008, using the 

University of California-Davis/California Institute of Technology (UCD/CIT) chemical 

transport model (Hu et al., 2015). In the present study, the simulated PM concentrations 

were calculated for two particle size fractions (PM2.5 and PM0.1). The UCD/CIT model 

includes a complete description of atmospheric transport, deposition, chemical reaction, and 

gas-particle transfer. This model provided mass concentration estimates for primary PM total 

mass and for several chemical species in PM (OC, EC, nitrates, sulfates, ammonium and 

secondary organic aerosols (SOA)).

In addition, the University of California Davis/CIT_Primary (UCD_P) chemical transport 

model was used across the same geographical domain for the period of 2000–2006 to predict 

the daily mass concentrations for further chemical species and for the total mass of primary 

PM broken down by source (Hu et al., 2014a, 2014b). The model simulated daily primary 

PM mass concentrations, also at a 4 km × 4 km grid resolution, from ~900 sources. 

Composition profiles were applied combined with the primary PM mass concentration 

results from the UCD_P model to estimate the concentrations of chemical species in primary 

PM. The mass, source, and composition of size-resolved PM were tracked during model 

calculations. We decided a priori to include in our analyses UCD_P estimates of sources and 

components of primary PM for which detailed validation results were available: onroad 

gasoline, onroad diesel, commercial meat cooking and wood burning (Hu et al., 2014a). 

Nine species of PM (potassium, chromium, iron, titanium, magnesium, strontium, arsenic, 

calcium and zinc) were selected, all with the correlation above 0.8 between modeled and 

measured monthly average concentrations (Hu et al., 2014b).

2.1.3. CALINE4 dispersion modeling for road sources—A modified version of 

CAlifornia LINE Source Dispersion Model Version 4 (CALINE4) (Benson, 1989; Wu et al., 

2009) was used to predict ambient concentrations from local traffic emissions of CO, NOx, 

and ultrafine particle number (UFP) up to 3 km from maternal residences. Model inputs 

included roadway geometry and traffic counts, emission factors, and meteorological 

parameters (wind direction, wind speed, temperature stability class, and mixing heights). 

CALINE4 predictions in this study did not incorporate background levels of pollutants, thus 

solely represents the contribution from local traffic emissions.

2.1.4. Traffic and distance to roadways—Traffic densities within circular buffers of 

different sizes centered on maternal homes were calculated based on 2002 annual average 

daily traffic counts (AADT) data from the California Department of Transportation 

(CALTRANS, 2012). To estimate traffic density, AADT on each road segment was weighted 

by the length of this same road segment within the buffer. These traffic densities for year 

2002 were then scaled to other years by multiplying them by the ratio of total vehicle miles 

traveled in California for the given year to the total vehicle miles traveled in California for 

year 2002 (CALTRANS, 2013). U.S. major roads data based on TeleAtlas streets (ESRI, 

2010) were used to calculate the distance from each maternal home to the nearest major 
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roadway (which could be a freeway, a highway or a major arterial, as defined by categories 

of Functional Road Classes (FRC) A0-A5).

2.2. Study population

Birth certificate records for all births occurring from January 1, 2001 to December 31, 2008 

in California (n=4,385,997) were obtained from the California Department of Public Health. 

Maternal addresses of residence recorded on birth certificates were geocoded using the 

University of Southern California GIS Research Laboratory geocoding engine (Goldberg et 

al., 2008), which geocoded births at the centroid of tax parcels whenever feasible. The 

parcel-level geocoding generally has higher spatial precision than the zip code or city level 

geocoding, and is important in studying the associations between term LBW and air 

pollution indicators showing important variation at small geographic scale (e.g.: within a few 

hundred meters such as primary emissions from traffic estimated with CALINE4, traffic 

density and distance to roads). In total, we had 54.02% of addresses geocoded within a 

parcel, in which 14.14% of all births were geocoded to the exact centroid of a parcel. The 

main reason for not matching to a parcel was the lack of underlying parcel data (for 

example, some counties do not make parcel data available for free, as a result these are not 

available in most geocoders). However, 95% of addresses which could not be matched to a 

parcel could be matched to a street segment (i.e. the block on which the residence occurs). In 

total, 1361 births had no usable coordinates at all and 7512 infants were born to women 

residing outside of California. After excluding these births and those who had State File 

Number information missing (n=8119, partially overlapping with births lacking usable 

coordinates or which occurred outside of California), we obtained 4,370,371 births.

Multiple births (n=132,369) were excluded as well as infants with recorded birth defects or 

unknown birth defects status (n=18,811 and n = 675 respectively). Birth with missing 

information for gestational age (n=196,247), estimated gestational age shorter than 121 or 

longer than 319 days (n= 2051 and n= 41,017 respectively), or implausible combinations of 

birth weight and gestational age (n = 17,026) (Alexander et al., 1996) were excluded from 

the main analyses. Further, infants born to mothers older than 60 (n=43) were excluded. 

Several exclusion criteria overlapped for certain births, leaving 3,972,594 births from the 

source population. Infants born preterm (n = 394,683) were excluded from the source 

population of 3,972,594 birth records and infants born after 308 days of gestation (44 weeks, 

n=43,203) were further excluded for consistency with other recent studies (Bell et al., 2010, 

2012; Darrow et al., 2011; Ebisu and Bell, 2012). From the remaining source population of 

3,534,708 term births records in the entire California (period 2001–2008), 72,632 LBW 

cases were identified and included in the study. Five controls (term born children weighting 

≥2500 g at birth) per case were randomly selected from the source population of potential 

term birth controls.

2.3. Statistical methods

A case-cohort approach was employed to analyze the association between each air pollutant 

and term LBW. As part of the primary analyses, the resulting datasets were analyzed by 

logistic regression with random effect per hospital using generalized additive mixed models 

(GAMMs) in the ‘mgcv’ package of the R environment (version 3.0.1.). The hospital 
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resolution was chosen so that it would help minimize the potential for bias that might be due 

to various quality of variable recording between hospitals. We first explored the shapes of 

the relationships between air pollution indicators and term LBW using smoothing splines. 

We then examined air pollution indicators as linear terms in the models instead. Random 

effects were introduced for the slope measuring the effect of air pollution on term LBW risk, 

as well as for the intercept of the model. For air pollution indicators that represent ambient 

concentration of air pollutants (either modeled or measured), we reported related odds ratios 

(ORs) and 95% confidence intervals (95% CI) for term LBW for an inter-quartile range 

increase air pollutant concentrations (IQR), based on the fixed effect. Scaling to the IQR 

allowed for a more straightforward comparison of effect sizes between air pollution 

indicators of different natures. To facilitate the quantitative comparison of associations 

between term LBW and traffic density across buffers of different sizes, we scaled ORs for 

this indicator to an increase of 100,000 vehicles per day per meter. Distance to roadway was 

analyzed using dichotomous indicators for living or not living within certain distances from 

roads.

Risk factors for term LBW other than air pollution were identified from the literature and a 

causal diagram was drawn (see Appendix Fig. A) to identify the minimal set of potential 

confounders for adjustment (Greenland et al., 1999). Based on this causal diagram, our 

primary analyses we adjusted for maternal race/ethnicity and educational level, using 

categorical variables, and maternal age and median household income by Census Block 

Group (U.S. Census Bureau, 2004), using smoothing splines. As part of sensitivity analyses, 

we also examined the influence of adjusting for additional risk factors: temperature, time of 

conception or population density (all adjusted for smoothing splines), diabetes (pre-

pregnancy and gestational combined), chronic hypertension, preeclampsia, parity and the 

trimester of pregnancy during which primary care began. We examined the effects of further 

adjustment for body mass index (BMI) at the beginning of pregnancy and smoking during 

pregnancy in the subset of infants born in 2007 and 2008, since these variables were not 

recorded on birth certificate during the previous years.

For time varying variables (i.e.: measurements interpolated with EBK, predictions from the 

UCD_P, UCD/CIT and CALINE4 models), we conducted our primary analyses for “average 

pregnancy exposures”. We also explored the association between term LBW and exposure to 

air pollution during different trimesters of pregnancy. We explored the influence of 

geocoding accuracy by a separate analysis of the subgroup of births geocoded to a parcel or 

the exact centroid of a parcel (the highest quality geocoding). Last, we conducted sensitivity 

analyses by using generalized estimating equations (GEEs) in order to estimate marginal 

effects. For that purpose we used the ‘geepack’ package of the R environment (version 

3.0.1.). For all models, inferences were based on statistical significance at the 5% level.

This study has been approved by the Institutional Review Board of the University of 

California, Irvine.
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3. Results

In our study population, the risk of term LBW varied by maternal characteristics, diseases 

and neighborhood income level, consistent with previous studies (Table 1). Descriptive 

statistics for air pollution metrics are presented in Appendix Table A. The distributions of 

traffic density and distance to roads among study subjects are presented in more details in 

Appendix Tables B and C, respectively.

By using random effects, GAMMs allowed the associations between air pollution metrics 

and term LBW to vary across hospitals. The ORs for term LBW presented in Table 2 reflect 

the median associations between air pollution metrics and term LBW, which would be 

observed in a typical hospital of the study setting.

When exposure averaged on the entire pregnancy was considered, a significant positive 

association was observed between term LBW and EBK-interpolated measurements of O3 

(after adjustment for primary confounders) [OR per IQR in exposure: 1.035 (95% CI: 

1.017–1.054)] but not total PM2.5 or NO2 (Table 2). No significant association was observed 

between term LBW and primary PM2.5 or PM0.1 from all sources grouped together, modeled 

by UCD_P at a 4 km * 4 km resolution. Still at the 4 km * 4 km modeling resolution, a 

significant positive association was observed for only one chemical component, namely for 

SOA in PM0.1. However, model convergence could not be reached for iron and potassium. 

Positive and close to significance associations were observed for SOA and nitrates in PM2.5.

When primary PM exposure modeled with UCD_P was broken down by sources, term LBW 

risk was positively and significantly associated with primary PM2.5 and PM0.1 emitted by 

onroad gasoline [OR per IQR in exposure for PM0.1: 1.051 (95% CI: 1.015–1.089)], onroad 

diesel [OR per IQR in exposure for PM0.1: 1.030 (95% CI: 1.000–1.060)] and commercial 

meat cooking sources [OR per IQR in exposure for PM0.1: 1.032 (95% CI: 1.008–1.056)]. 

Associations per IQR were slightly weaker for the PM2.5 than for the PM0.1 fraction but still 

statistically significant. When primary PM from several sources were included in a same 

statistical model, the positive association between term LBW and PM from gasoline was the 

most robust to the adjustment for other sources (Appendix Table D). Although this 

association was not statistically significant anymore after adjusting for PM from commercial 

meat cooking, the effect size [OR per IQR in exposure for PM0.1: 1.043 (95% CI: 0.995; 

1.094)] remained similar to that observed in the single source analysis. Primary PM from 

wood burning (both in the PM0.1 and the PM2.5 fractions) was inversely and significantly 

associated with term LBW risk (Table 2), even after adjusting for PM from other sources 

(Appendix Table D). We acknowledge that since the correlations between primary PM from 

gasoline, diesel and meat cooking sources were high (between 0.70 and 0.95), the results of 

models including PM from several of these sources must be considered with caution. For the 

same reason, it was not attempted to put both primary PM0.1 and the PM2.5 from the same 

source in the same model.

When primary emissions from local traffic were modeled at a fine geographical resolution 

using CALINE4, no statistically significant association was observed between term LBW 

and UFP number, CO or NOx in the entire population (Table 2). However, when analyses 
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were restricted to the population in which maternal addresses could be geocoded with the 

best accuracy (i.e. at the exact centroid of a parcel), all three pollutants were positively 

associated with term LBW (Appendix Table E). The association was significant for UFP 

number [OR per IQR in exposure: 1.031 (95% CI: 1.006–1.056)] and close to significance 

for NOx [OR per IQR in exposure: 1.024 (95% CI: 0.999–1.050)].

When simpler indicators of traffic exposure were considered, term LBW was significantly 

associated with traffic density [OR per 100,000 vehicles per day per meter: 1.124 (95% CI: 

1.040; 1.214)] within 50 m from maternal homes (Table 2). Consistently, term LBW risk 

was significantly increased in women living within 50 m (OR: 1.044; 95% CI: 1.022; 1.068) 

and even 100 m (OR: 1.023; 95% CI: 1.004; 1.042) of a major roadway (defined as 

freeways, highways and major arterials). Odds ratios regularly decreased from 50 m to 250 

m, although none was statistically significant beyond 100 m.

Adjusting for potential confounders other than maternal age, race, education and 

neighborhood socioeconomic status as part of sensitivity analyses generally had negligible 

impacts on results. However, adjusting for the time of conception had a noticeable impact on 

effect sizes, and sometimes on their direction (e.g.: for total PM2.5 and NO2). Nevertheless, 

adjustment for time of conception would not change the conclusions of the study, except that 

the association with diesel was not significant anymore whereas the positive association with 

nitrates in PM2.5 became statistically significant (Appendix Table F). Adjusting for 

temperature cancelled out the significant associations between term LBW and ozone, SOA 

in PM2.5 or primary PM from wood burning but not the other pollutants (see Appendix Table 

G). After this additional adjustment, the positive association between nitrates in PM2.5 and 

term LBW became statistically significant (Appendix Table G).

When exposures were averaged on each trimester of pregnancy, positive association were 

observed between term LBW and exposure to elemental carbon (EC), nitrates, as well as 

ammonium during the third trimester of pregnancy. For SOA, the associations were positive 

and significant only for the second trimester of pregnancy, whereas they were for the first 

and second trimester for O3 (Appendix Table H). For primary PM broken down by sources, 

the strongest positive associations were observed between term LBW and exposure to 

primary PM from onroad gasoline, onroad and commercial meat cooking sources during the 

third trimester of pregnancy. No marked difference across trimesters was observed for 

CALINE4 estimates.

When sensitivity analyses were conducted by using GEEs (without random effects), the 

results overall were similar to those obtained by using GAMMs (e.g.: comparing results for 

exposure averaged on the entire pregnancy in Appendix Table I to those in Table 2). 

However, statistically significant positive associations were observed for more pollutants 

using GEE models than using GAMMs, including primary PM0.1, primary PM2.5, organic 

and elemental carbon in both fractions, ammonium, nitrates and sulfates in PM2.5. The 

positive associations observed for primary PM from diesel, gasoline and commercial meat 

cooking were stronger from GEE models than those estimated using GAMMs (Appendix 

Table I). Estimates obtained for distance to roads using GEEs were unrealistically high or 

low, depending on the distance considered (data not shown). However our interpretations 
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have been focused on the results of GAMMs because these models allowed accounting for 

between-hospital variation in background risk and pollutant effects.

4. Discussion

This was a very large case-cohort study covering the entire California for a period of 8 years. 

Based on a wealth of air pollution metrics including modeled PM by source and 

composition, we observed consistent positive and significant associations between the risk of 

term LBW and indicators of primary traffic-related pollution. A significant positive 

association was also observed with primary PM from meat cooking, but this was less robust 

to alternative covariate adjustment strategies. Positive and significant associations with EC 

and with some secondary pollutants (nitrates, ammonium and SOA) were also observed. 

Depending on the pollutant, associations were strongest for exposures occurring during the 

second or third trimester of pregnancy.

A main strength of this study is the comprehensive air pollution exposure measures, 

especially as it benefits from an advanced chemical transport modeling effort (Hu et al., 

2014a, 2014b, 2015). The strengths and limitations of these air pollution indicators and the 

discussion of their uses in air pollution and birth outcome studies have already been 

described in other papers (Benson, 1989; Hu et al., 2014a, 2014b, 2015; Laurent et al., 

2013a, 2014, 2016; Wu et al., 2009).

The EBK-interpolated surface of measured ambient PM2.5, NO2 and O3 was expected to 

minimize biases from assigning data from one single monitor to populations living farther 

away (Laurent et al., 2014) and allowed for the inclusion of almost all term births in 

California in our study. EBK has major advantages for large studies covering long time 

periods, such as minimal need for interactive modeling (Pilz and Spock, 2007). The main 

limitations of this technique include its inability to take into account additional information 

from covariates, contrarily to other methods such as land use regression or cokriging, and its 

impossibility to perform anisotropic corrections. We acknowledge that exploring other 

methods such as land use regression, cokriging and Bayesian maximum entropy would be of 

interest in the future (Adam-Poupart et al., 2014). However, satisfactory results were 

obtained for the EBK-interpolated monthly concentrations using the leave-one-out cross 

validation, with correlation coefficients of 0.74, 0.72 and 0.65 for O3, NO2 and total PM2.5, 

respectively. Nevertheless, since the EBK method relied solely on measurement data from 

only 75–182 monitoring stations unevenly and sparsely distributed over the entire California, 

it was not capable to capture the small-scale spatial variations of ambient pollutant 

concentrations. In the present study, sensitivity analyses showed that using either an EBK or 

a nearest station approach to estimate air pollutant concentrations yielded similar estimates 

of associations between term LBW and ambient pollutant concentrations (see Appendix 

Table J).

Compared to the spatial interpolation approach, the chemical transport models were superior 

in capturing spatial variability in ambient concentrations, but inferior in capturing temporal 

variability. However, they cover pollutants for which measurement data are very scarce such 

as ultrafine PM mass (Hu et al., 2014a), chemical species in PM (Hu et al., 2014b, 2015), 
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and source-specific primary PM (Hu et al., 2014a). We decided to include the particles size 

fractions, chemical components, and sources in this study based on the validation results for 

UCD_P (Hu et al., 2014a, 2014b) and UCD_CIT (Hu et al., 2015), respectively. In this 

study, we only included four major sources of primary PM that passed validation checks (Hu 

et al., 2014b), which represent some of the most ubiquitous sources in the environment of 

urban and/or rural populations. Because of the significant underestimation in secondary PM 

mass, we did not use source information for secondary PM.

Similarly, we decided a priori to include only primary PM components for which 

correlations between modeled and measured monthly concentrations (both in PM2.5, since 

measurements for most components were available only for that fraction) were >0.8 at ≥ 5 

sites. Total PM0.1 mass prediction also agreed well with measurements (R = 0.81)(Hu et al., 

2014b), and thus was included in the analysis. For secondary species, we included organic 

carbon, nitrate, and ammonium; the modeled concentration of these species agreed 

reasonably well with measurements based on average concentrations over several months. 

Although the predicted sulfate concentrations were not satisfactory because of missing 

emission sources (Hu et al., 2015), sulfates were also included because they contribute 

considerably to total PM mass (Bell et al., 2007). We could not validate secondary organic 

aerosols (SOA) predictions due to the difficulty to differentiate the SOA fraction from total 

organic aerosol in the measurements. Therefore, results for sulfate and SOA must be 

interpreted with caution in our study.

Compared to EBK and chemical transport models, the line source dispersion model 

CALINE4 was the most capable to capture small-scale variations in primary traffic 

emissions (Benson, 1989; Laurent et al., 2013a; Wu et al., 2009). However, this simple 

Gaussian dispersion model did not consider complex atmospheric mechanisms of transport, 

deposition, chemical reaction, and gas-particle transformation. In addition, model inputs had 

limited temporal resolution (e.g. annual average traffic counts, estimated mixing height by 

season and time of day). As a result, the dispersion model had limited capability in 

predicting temporal variability. Nevertheless, the model performed reasonably well with an 

overall correlation of 0.75 between modeled concentration and daily average particle 

number concentrations (N=357 days) measured from another study at four monitoring sites 

in southern California (three in Los Angeles County and one in Riverside County) (Laurent 

et al. 2016). Compared to the CALINE4 predictions, traffic density and distance to roads are 

cruder indicators of local traffic emissions, but they were used to check for consistency of 

our study with numerous other studies that used similar indicators.

One of the main limitations of this study is that we relied on ambient rather than personal 

exposure of mothers during pregnancy due to the lack of time activity information in this 

large population. In addition, since residential history and work addresses were not available 

in birth certificate data, our air pollution exposure assessment solely relied on maternal 

home address at the time of delivery. These sources of non-differential exposure 

measurement error likely decrease the precision of the epidemiologic associations and 

induce bias towards the null hypothesis.
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We observed a positive association between term LBW and O3, which is consistent with 

previous studies conducted in California (Laurent et al., 2013a; Morello-Frosch et al., 2010; 

Salam et al., 2005). It may seem surprising that we did not observe any association between 

total PM2.5 and low birth weight, since a recent meta-analysis (Dadvand et al., 2013) as well 

as a major pooled analysis of European cohorts (Pedersen et al., 2013), an analysis of a large 

World Health Organization database (Fleischer, 2014), and a recent large-scale Canadian 

study (Stieb et al., 2015) all reported positive associations for this pollutant. However, the 

composition of PM2.5 is highly variable across time and space (Bell et al., 2007), which 

might explain some of heterogeneity of effects across settings.

Regarding PM components, we only observed significant positive associations with SOA, 

EC nitrates and ammonium (only for exposure during the last trimester of pregnancy for the 

last three components). The positive association with EC is consistent with most previous 

literature (Basu et al., 2014; Bell et al., 2010; Darrow et al., 2011; Ebisu and Bell, 2012; 

Laurent et al., 2014; Pedersen et al., 2013; Slama et al., 2007; Wilhelm et al., 2012). Only 

one of the two previous studies which investigated the association between term LBW and 

ammonium (Basu et al., 2014; Ebisu and Bell, 2012) reported a positive association (Basu et 

al., 2014) but in this study the association was not significant anymore after adjusting for 

potential confounders. No positive association with nitrates was observed in previous studies 

(Basu et al., 2014; Ebisu and Bell, 2012).

We did not observe any significant associations with metals, contrarily to other studies (Basu 

et al., 2014; Bell et al., 2010; Ebisu and Bell, 2012). All these other studies attributed 

measurement from speciation monitors to subjects living within certain distances from them 

as surrogates for exposures, whereas we used a chemical transport model. Despite obvious 

advantages of the chemical transport model approach to better capture the spatial variability 

in pollutant concentrations, it might have led to a less optimal capture of temporal variation 

in species concentrations because of the lack of temporal resolution of emission inventories 

or source profiles. This might be a partial explanation for the lack of associations observed 

between term LBW and metals in PM in our study. Unfortunately, our mixed models did not 

converge for a few pollutants including iron and potassium, and the possibility that these 

species are positively associated with term LBW in California cannot be excluded. 

Potassium was actually found to be associated with term LBW in one other study (Bell et 

al., 2012), and iron in three other studies (Basu et al., 2014; Bell et al., 2010; Laurent et al., 

2014).

Analyses of PM by source revealed positive associations between term LBW and PM from 

diesel, gasoline and commercial meat cooking. These findings are supported by other studies 

for gasoline (Wilhelm et al., 2012), diesel (Slama et al., 2007; Wilhelm et al., 2012), traffic 

related PM2.5 overall (Bell et al., 2010) and meat cooking (Choi and Perera, 2012; Laurent et 

al., 2014; Wilhelm et al., 2012). Positive associations were observed between term LBW and 

traffic-related primary pollutants or traffic sources characterized at a fine geographical 

resolution, although the associations with CALINE4 estimates were significant only when 

the highest geocoding accuracy was considered. Our findings are consistent with previous 

studies, both for traffic density and proximity to major roads (Laurent et al., 2013a; 

Malmqvist et al., 2011; Padula et al., 2012; Pedersen et al., 2013; Wilhelm and Ritz, 2003; 
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Zeka et al., 2008). Overall, the consistency of results both across air pollution indicators in 

our study and across different studies for similar indicators, provides convincing evidence 

for the influence of primary traffic related pollution on intrauterine growth restriction. 

Regarding commercial meat cooking, since the observed association was less robust to 

alternative adjustment strategies, more research is warranted to help clarify the possible 

influence of this source on term low birth weight.

We have no straightforward explanation to the inverse association we observed with wood 

burning, which is contrasted with findings from other studies (Boy et al., 2002; Thompson et 

al., 2011). This association was not significant anymore after adjusting for temperature, 

which might provide a partial explanation (see Appendix Table G). Other potential 

explanations might be specific factors contributing to a more beneficial environment in 

places where wood is widely used as a heating source. A sensitivity analysis adjusting for 

population density still found a statistically significant inverse association between term 

LBW and PM from wood burning (see Appendix Table K), which does not suggest a major 

role of living in a rural versus urban place in explaining this association. Alternatively, 

exposure to greenness which is only partly related to population density and rural/urban 

status and has been positively correlated with birth weight in recent publications (Dadvand 

et al., 2012), notably in Southern California (Laurent et al., 2013b), might be another 

potential source of explanation. Further studies are warranted to investigate jointly the 

impacts of greenness and PM from different sources on term LBW.

5. Conclusion

This large study based on complementary exposure metrics points to primary pollution 

sources such as traffic and possibly commercial meat cooking as risk factors for term LBW, 

although evidence is more limited for the latter source. This study also points to EC and to 

secondary pollutants (ozone, nitrates, ammonium and SOA) as risk factors for term LBW.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Risk of term low birth weight by maternal characteristics.

Population characteristic Number of
subjects

Odds ratio
(95% confidence
interval)

Maternal race/ethnicity

 African American 25,004 2.829 (2.740; 2.922)

 Asian 53,525 1.866 (1.817; 1.917)

 Hispanic 221,177 1.361 (1.333; 1.389)

 Multiple/other 10,021 1.384 (1.309; 1.462)

 Caucasian 121,174 1.00 (reference)

 Missing 4891

Maternal education

 Lower than 8th grade 44,475 1.268 (1.230; 1.307)

 9th grade to High School 193,557 1.380 (1.351; 1.409)

 College (<4 years) 86,203 1.163 (1.134; 1.193)

 College (≥4 years) 100,717 1.00 (reference)

 Missing 10,840

Median annual income by census block group

 ≤$30,933 108,408 1.386 (1.355; 1.418)

 $30,938–$42,483 108,547 1.224 (1.196; 1.253)

 $42,500–$60,179 108,645 1.123 (1.097; 1.150)

 ≥$60,185 108,742 1.00 (reference)

 Missing 1450

Maternal age

 <15 568 2.142 (1.778; 2.581)

 15 to 19 42,297 1.651 (1.605; 1.699)

 20 to 24 100,201 1.263 (1.234; 1.293)

 25 to 29 114,540 1.070 (1.045; 1.095)

 30 to 34 105,483 1.00 (reference)

 35 to 39 58,065 1.076 (1.047; 1.107)

 40 to 44 13,856 1.391 (1.329; 1.456)

 45 to 49 716 1.823 (1.534; 2.167)

 50 and over 66 2.016 (1.161; 3.501)

Chronic hypertension

 Yes 1746 2.618 (2.371; 2.891)

 No 434,035 1.00 (reference)

 Missing 11

Diabetes

 Yes 12,340 1.055 (1.006; 1.106)

 No 423,441 1.00 (reference)

 Missing 11

Preeclampsia
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Population characteristic Number of
subjects

Odds ratio
(95% confidence
interval)

 Yes 9875 4.258 (4.089; 4.434)

 No 425,913 1.00 (reference)

 Missing 4

Primary care

 None 1817 3.277 (2.980; 3.603)

 After first trimester 59,744 1.264 (1.237; 1.293)

 First trimester 371,231 1.00 (reference)

 Missing 3000

Parity

 Primiparous 179,829 1.533 (1.508; 1.557)

 Multiparous 255,768 1.00 (reference)

 Missing 195

Smoking during pregnancy (2007–2008 data only)

 Yes 3022 1.899 (1.75; 2.062)

 No 110,353 1.00 (reference)

Pre-pregnancy body mass index (2007–2008 data only)

 ≤19.9 13,452 1.917 (1.795; 2.048)

 20–24.9 43,415 1.203 (1.135; 1.275)

 25–29.9 25,656 1.062 (0.997; 1.131)

 30–34.9 11,809 1.00 (reference)

 >35 7311 1.074 (0.988; 1.167)

 Missing 11,732
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Table 2

Associations between term low birth weight and air pollution in California
a
.

Air pollution indicator Number of
cases IQR

b
Odds ratio
(95% confidence

interval)
c

p
value

Measured pollutant concentrations interpolated by empirical Bayesian kriging

PM2.5 68,887 6.47 0.982 (0.956; 1.009) 0.20

O3 68,952 10.80 1.035 (1.017; 1.054) <0.01

NO2 68,574 10.25 0.991 (0.960; 1.022) 0.56

UCD_CIT modeled concentrations at the 4 km * 4 km resolution, by fraction and species

Primary PM0.1 65,391 1.359 0.996 (0.981; 1.011) 0.58

OC in PM0.1 65,391 0.958 0.995 (0.981; 1.009) 0.49

EC in PM0.1 65,391 0.131 1.015 (0.994; 1.037) 0.16

SOA in PM0.1 65,391 0.060 1.053 (1.020; 1.088) <0.01

Primary PM2.5 65,391 8.225 0.986 (0.968; 1.004) 0.13

OC in PM2.5 65,391 3.630 0.986 (0.969; 1.004) 0.12

EC in PM2.5 65,391 1.265 1.013 (0.991; 1.034) 0.24

SOA in PM2.5 65,391 0.228 1.025 (0.999; 1.051) 0.06

Ammonium in PM2.5 65,391 1.189 1.019 (0.993; 1.046) 0.16

Nitrates in PM2.5 65,391 2.916 1.025 (0.998; 1.053) 0.07

Sulfates in PM2.5 65,391 0.535 0.998 (0.986; 1.009) 0.69

UCD_P modeled concentrations at the 4 km * 4 km resolution, by species. in PM2.5

K in PM2.5 48,541 No convergence

Cr in PM2.5 48,541 0.002 0.995 (0.988; 1.003) 0.20

Fe in PM2.5 48,541 No convergence

Ti in PM2.5 48,541 0.008 0.991 (0.974; 1.009) 0.34

Mn in PM2.5 48,541 0.004 1.001 (0.985; 1.017) 0.91

Sr in PM2.5 48,541 0.001 0.991 (0.970; 1.012) 0.38

As in PM2.5 48,541 0.001 1.000 (0.996; 1.004) 0.97

Ca in PM2.5 48,541 0.048 0.994 (0.973; 1.015) 0.56

Zn in PM2.5 48,541 0.002 0.997 (0.985; 1.008) 0.58

UCD_P modeled concentrations at the 4 km * 4 km resolution, by fraction and sources

Onroad gasoline PM0.1 48,541 0.083 1.051 (1.015; 1.089) 0.01

Onroad diesel PM0.1 48,541 0.070 1.030 (1.000; 1.060) 0.05

Commercial meat cooking PM0.1 48,541 0.124 1.032 (1.008; 1.056) 0.01

Wood burning PM0.1 48,541 0.260 0.986 (0.974; 0.999) 0.03

Onroad gasoline PM2.5 48,541 0.385 1.045 (1.011; 1.079) 0.01

Onroad diesel PM2.5 48,541 0.397 1.024 (0.999; 1.049) 0.06

Commercial meat cooking PM2.5 48,541 1.094 1.011 (0.990; 1.032) 0.32

Wood burning PM2.5 48,541 1.736 0.982 (0.968; 0.996) 0.01
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Air pollution indicator Number of
cases IQR

b
Odds ratio
(95% confidence

interval)
c

p
value

CALINE4 modeled concentrations

Ultrafine particle number 66,120 6444 1.001 (0.989; 1.014) 0.85

CO 66,120 60.63 0.999 (0.985; 1.012) 0.83

NOx 66,120 6.10 1.003 (0.991; 1.015) 0.62

Traffic density (odds ratios per 100,000 vehicles per day per meter, within buffers of different sizes)

50 m buffer 69,575 1.124 (1.040; 1.214) <0.01

150 m buffer 69,575 1.006 (0.967; 1.046) 0.77

250 m buffer 69,575 0.994 (0.960; 1.029) 0.73

350 m buffer 69,575 1.009 (0.974; 1.046) 0.61

Distance to major roadways (freeways, highways and major arterials)

<50 m 70,003 1.044 (1.022; 1.068) <0.01

<100 m 70,003 1.023 (1.004; 1.042) 0.02

<150 m 70,003 1.008 (0.990; 1.027) 0.37

<200 m 70,003 1.007 (0.988; 1.026) 0.47

<250 m 70,003 1.006 (0.985; 1.027) 0.58

<300 m 70,003 1.013 (0.989; 1.037) 0.29

a
Odds ratios were estimated using generalized additive mixed models with random effects per hospital. Models were adjusted for race/ethnicity and 

educational level as categorical variables, and for maternal age and median household income at Census block group level using smoothing splines.

b
IQR: inter-quartile range increase in exposure; units are micrograms per cubic meter for all particulate mass and elements and part per billion for 

gaseous pollutants. Ultrafine particle number is expressed in number per cm3.

c
For estimated pollutant concentration; odds ratios are expressed per IQR.
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