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FOLATE ACTION IN NERVOUS SYSTEM DEVELOPMENT AND 
DISEASE

Olga A. Balashova, Olesya Visina, and Laura N. Borodinsky
Department of Physiology & Membrane Biology and Institute for Pediatric Regenerative Medicine, 
Shriners Hospital for Children, University of California Davis School of Medicine, Sacramento, CA 
95817

Abstract

The vitamin folic acid has been recognized as a crucial environmental factor for nervous system 

development. From the early fetal stages of the formation of the presumptive spinal cord and brain 

to the maturation and maintenance of the nervous system during infancy and childhood, folate 

levels and its supplementation have been considered influential in the clinical outcome of infants 

and children affected by neurological diseases. Despite the vast epidemiological information 

recorded on folate function and neural tube defects, neural development and neurodegenerative 

diseases, the mechanisms of folate action in the developing neural tissue have remained elusive. 

Here we compiled studies that argue for a unique role for folate in nervous system development 

and function and its consequences to neural disease and repair.
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INTRODUCTION

For more than 50 years epidemiological studies have demonstrated that periconceptional 

folate supplementation reduces the occurrence of one of the most common serious birth 

defects, called neural tube defects (NTDs). These defects manifest when the neural tube fails 

to close and form properly during the first four weeks of pregnancy (Wallingford et al., 

2013). It is believed that neural tissue exposed to the amniotic fluid eventually degenerates 

(Meuli and Moehrlen, 2014), leading to severe neurological deficits that are lethal in anterior 

NTDs (anencephaly), or result in paralysis or motor disability when they occur at the spinal 

cord (spina bifida).

Strikingly, detailed understanding of the mechanisms of folate action during neural tube 

formation has remained elusive. Folate belongs to the vitamin B family and it participates in 

methylation reactions such as those necessary for nucleotide synthesis. Hence, folate 

supports rapid growth by enabling DNA synthesis in proliferating cells. It has been shown 
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that one of the cellular processes involved in normal formation of the neural tube in some 

vertebrates is oriented cell division (Schoenwolf and Alvarez, 1989; Schoenwolf and Yuan, 

1995; Sausedo et al., 1997). This allows the developing neural tissue to acquire critical mass, 

and provides the preferred rostrocaudal orientation so that these divisions contribute to the 

elongation of the developing neural tube in chick and mouse embryos (Schoenwolf and 

Alvarez, 1989; Schoenwolf and Yuan, 1995; Sausedo et al., 1997; Keller, 2006). On the 

other hand, in other vertebrates like Xenopus laevis, the necessity for cell divisions during 

neural tube formation has been ruled out by demonstrating that blocking DNA synthesis 

does not interfere with neurulation (Harris and Hartenstein, 1991). Nevertheless, folate 

action is necessary during Xenopus laevis neural tube formation, as recently demonstrated 

by our study (Balashova et al., 2017), suggesting that folate might play additional functions 

during neural tube formation besides its role as a vitamin for DNA synthesis. Moreover, 

many knockout mice for enzymes directly involved in folate metabolism did not exhibit 

increases in NTD incidence (Watanabe et al., 1995; Chen et al., 2001; Swanson et al., 2001). 

In contrast, knocking out one of the folate uptake systems, folate receptor 1 (Folr1/folate 

binding protein 1/folate receptor α) leads to severe NTDs in mice (Piedrahita et al., 1999; 

Finnell et al., 2002; Spiegelstein et al., 2004; Wallingford et al., 2013). Similarly, mutations 

in folate uptake systems have been reported in families with higher incidence of NTDs than 

the general population, including 2 SNPs in FOLR1 (O’Byrne et al., 2010). These studies 

strongly indicate that folate acts as an essential regulator of neural tube morphogenesis, 

probably independent of nucleotide synthesis.

Here, we review the findings that address the role of folate in the development of the 

nervous system and folate’s effects on neural function and repair. These studies argue for 

specialized functions of folate in neural tissue and propose new questions that require further 

investigation to be answered on the mechanisms of folate action in nervous system 

development, disease and regeneration.

FOLATE AND FOLATE UPTAKE SYSTEMS

Folic acid/folate (pteroyl-L-glutamic acid and pteroyl-L-glutamate, respectively) belongs to 

the B9 family of vitamins. Chemically, folic acid is a protonated form of folate anion present 

in solution; therefore the terms are used interchangeably. However, in the field of nutrition 

the term “folates” is frequently used to refer to the chemically diverse mixture of naturally 

occurring folic acid derivatives - pteroylglutamates. Pteroylglutamates may vary in one-

carbon donor groups, degree of pteridine ring reduction and number of glutamate residues 

(O’Broin et al., 1975; Lewis et al., 1999).

In animals, folate cannot be synthesized de novo. Dietary folate is obtained in the form of 

dihydrofolate, tetrahydrofolate or 5-methyltetrahydrofolate, which are naturally present in a 

variety of foods, or as synthetic folic or folinic acid added to fortified food (O’Broin et al., 

1975; Eitenmiller and Landen, 1999; Lewis et al., 1999). Folate is needed to carry one-

carbon groups for methylation reactions and nucleotide base synthesis, and is therefore 

indispensable for DNA replication and repair, as well as RNA synthesis (Figueiredo et al., 

2009). Folate is also involved in histone and DNA methylation, methionine production and 

homocysteine remethylation reactions (Stover, 2009). Thus, folates are especially important 
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during early embryogenesis, which is characterized by rapid cell divisions. In addition, 

folate is necessary for aminoacid metabolism, neurotransmitter and phospholipid 

biosynthesis (Desai et al., 2016; Mentch and Locasale, 2016). Numerous clinical studies 

have established a correlation between low folate levels and increased risk of NTDs 

(Milunsky et al., 1989, 1991a; 1991b; Simpson et al., 1991), cardiovascular disorders 

(Bazzano et al., 2006; Wang et al., 2006; Wang et al., 2007), cognitive malfunction (Mitchell 

et al., 2014) and certain types of cancer (Kim, 1999; Sanjoaquin et al., 2005; Cole et al., 

2007; Johansson et al., 2008) highlighting the importance of understanding the mechanisms 

of folate action.

Folates are hydrophilic molecules whose cellular uptake employs three transport systems: 

the proton-coupled folate transporter (PCFT), reduced-folate carrier 1 (RFC1), and folate 

receptors (FOLRs, also called folate binding proteins) (Matherly and Goldman, 2003; 

Kamen and Smith, 2004; Zhao and Goldman, 2007) (Table 1). PCFT is the main transporter 

for intestinal absorption of folate and plays a major role in folate homeostasis in humans 

(Zhao et al., 2009a; Zhao et al., 2009b). RFC1 is a typical anion antiporter that utilizes the 

gradient of organic phosphate across the cell membrane to transport folate into the cells at 

neutral pH (Goldman, 1971; Sirotnak and Tolner, 1999). FOLRs are high affinity folate 

binding proteins. In mammals, there are four known genes for FOLR. FOLR1, 2 and 4 are 

linked to the plasma membrane by a carboxy terminus - glycosylphosphatidylinositol (GPI) 

anchor (Kamen and Caston, 1986; Ratnam et al., 1989; Wang et al., 1992; Shen et al., 1994). 

FOLR1 is expressed in a wide variety of cell types and tissues including epithelial tissues 

(Weitman et al., 1992; Antony, 1996; Smith et al., 1999; Chancy et al., 2000). FOLR2 

expression is restricted to hematopoietic tissues (Reddy et al., 1999). FOLR4 (also known as 

Juno) is found in the membrane of egg cells, where it facilitates fertilization via recognition 

of complementary sperm protein (Bianchi et al., 2014). FOLR3 is a secreted protein (Shen et 

al., 1995).

The field of cancer research has elucidated some aspects of the biochemistry and molecular 

function of folate transporters, since these transporters are often overexpressed in tumors and 

cancer cells, and have been used as conduits for anticancer drug therapeutics. From these 

studies we have learned that folate uptake by FOLRs and FOLR recycling in cancer-derived 

and immortalized mammalian cell lines occurs through endocytosis. The exact mechanisms 

of FOLR endocytosis vary depending on the experimental model used (Rothberg et al., 

1990; Rijnboutt et al., 1996; Mayor et al., 1998; Kamen and Smith, 2004; Bhagatji et al., 

2009; Elnakat et al., 2009). Acidification of the endosome interior to a pH of 6.5, as occurs 

in early endosomes, is required for dissociation of folate from FOLRs (Yang et al., 2007). 

Some studies support a model for FOLR1 internalization upon ligand binding through a 

Cdc42-regulated actin-dependent pathway, which is shared by the majority of GPI-anchored 

proteins (GPI-APs). Others have shown that FOLR1 is endocytosed in cholesterol and 

sphingolipid-enriched cell surface invaginations (Kamen et al., 1988) and once incorporated 

into vesicles, proceeds into GPI-AP-enriched early endosomal compartment (Mayor et al., 

1998; Sabharanjak et al., 2002). This is followed by microtubular delivery to the recycling 

endosomal compartment via Rab7/dynein and Rab 4/kinesin I-dependent trafficking as 

demonstrated in KB and HeLa cells (Chen et al., 2008).
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FOLRs subcellular localization also varies based on the cell type. FOLR1 is found in the 

apical cell surfaces of choroid plexus, placenta, brush-border membrane of proximal renal 

tubular cells and superficial neural plate cells (Weitman et al., 1992; Antony, 1996; Parker et 

al., 2005; Balashova et al., 2017) and basolateral membrane of retinal pigment epithelium 

(Smith et al., 1999; Chancy et al., 2000). Its GPI post-translational modification is found in 

organisms ranging from protozoans to mammals and serves to anchor a great variety of 

functionally different proteins to the outer leaflet of membranes (Lakhan et al., 2009). The 

polarized nature of FOLR1 subcellular localization is a characteristic of GPI-APs (Paladino 

et al., 2006), which are also known to be recruited to lipid rafts and to elicit downstream 

signaling triggered by GPI-AP endocytosis (Watanabe et al., 2007; Watanabe et al., 2009; 

Tassew et al., 2012). In addition, a number of GPI-APs have been shown to interact with 

transmembrane signaling molecules, including those involved in cell-cell and cell-matrix 

adhesion (Davy et al., 1999; Monnier et al., 2002; Paratcha et al., 2003; Matsunaga et al., 

2004; Tassew et al., 2012). These properties of GPI-APs predict that FOLRs might play 

additional roles besides folate uptake.

FOLATE ACTION DURING NEURAL TUBE FORMATION AND IN NEURAL 

TUBE DEFECTS

The prevailing model for folate action during neural tube formation is centered on folate 

metabolism enabling nucleic acid biosynthesis, cell proliferation and growth. Knockout mice 

on some enzymes participating in folate metabolism support this model. For instance, mice 

lacking the mitochondrial monofunctional 10-formyl-tetrahydrofolate synthetase (Mthfd1l) 

exhibit developmental delay and aberrant neural tube closure (Momb et al., 2013). The NTD 

phenotype is partially rescued by formate supplementation, suggesting that formate derived 

from mitochondria is necessary for adequate development and formation of the neural tube 

(Momb et al., 2013). Supporting the metabolic function of folate in neural tube defects, the 

incidence of NTDs is elevated in cases where either the infant or the mother are homozygous 

for methylenetetrahydrofolate reductase (van der Put et al., 1995; van der Put et al., 1996; 

Blom et al., 2006), although not every ethnic group studied exhibited this association 

(Papapetrou et al., 1996; Wilcken and Wang, 1996; Mornet et al., 1997; Speer et al., 1997; 

Koch et al., 1998). However, this model is thrown into question by mice in which several 

enzymes involved in folate metabolism are disrupted but do not show NTDs (Watanabe et 

al., 1995; Chen et al., 2001; Swanson et al., 2001), as well as screenings in humans that 

found cases with innate errors in folate metabolism which are not associated with increased 

incidence of NTDs (Blom et al., 2006).

One of the first folate-related mouse models of neural tube defects was the Folbp1 (mouse 

FOLR1) knockout, which is embryonic lethal and associated with NTDs (Piedrahita et al., 

1999; Tang et al., 2005), indicating that FOLR1 is necessary for neurulation. Although 

FOLR1 is able to bind folate with high affinity, transport through an endocytotic mechanism 

is less efficient for providing adequate levels of folate to the cell compared to the reduced 

folate carrier, as shown in leukemia cells (Sierra et al., 1995; Spinella et al., 1995). This 

suggests that folate transport may not be the primary function of FOLR1. At present the 

physiological role of FOLR1 in normal tissues is unclear, although disruption of Folbp1 
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gene results in misexpression of a number of essential signaling molecules, including 

upregulation of the ventralizing signal sonic hedgehog in abnormally expanded midbrain 

floor plate (Tang et al., 2005). Endocytosis of FOLR1 in the neuroepithelium appears to be 

dependent on the multifunctional endocytic receptor complex formed, among others, by 

Megalin, also known as LRP2. When LRP2 is knocked out, the neuroepithelium is deficient 

in folate and mice exhibit rostral neural tube closure defects (Kur et al., 2014).

The aforementioned studies strongly argue for a role of folate and FOLR1 in neural tube 

formation. Our recently published study was aimed at identifying the specificity of their 

function in terms of cellular processes regulated by folate action and the identity of targeted 

tissues dependent on FOLR1 role during neurulation (Balashova et al., 2017). We found that 

from the early stages of neural plate folding in Xenopus laevis, FOLR1 is expressed in 

superficial neural plate cells, where it localizes to the apical membrane. Similarly, in mouse 

embryos FOLR1 colocalizes with LRP2 in the dorsal neuroepithelial midline, which 

corresponds to the site where Closure 2 is initiated, and in the ventral midline of the 

midbrain neuroepithelium (Kur et al., 2014). Interestingly, knocking down FOLR1 in 

Xenopus neural plate cells only, elicits NTDs, while FOLR1 knockdown from non-neural 

ectoderm or mesoderm does not (Balashova et al., 2017), suggesting a specific requirement 

for FOLR1 in neural plate cells, essential for the formation of the neural tube.

We demonstrated that FOLR1 interacts with apically enriched components of adherens 

junctions like C-cadherin, the most abundant cadherin in the neural plate (Nandadasa et al., 

2009), and β-catenin (Balashova et al., 2017), suggesting potential roles for FOLR1 in cell 

adhesion and cytoskeletal organization. One of the early and crucial cellular processes 

during neural plate bending is the apical constriction of neural plate cells, which occurs in 

frog, chick and mouse embryos, although at varying mediolateral and anteroposterior 

regions of the neuroepithelium. The Agarwala lab has demonstrated that the spatiotemporal 

regulation of apicobasal polarity in the folding neural plate by bone morphogenetic protein 

and transforming growth factor beta signaling drives the apical constriction of neural plate 

cells in the middle hinge point of neurulating chick embryos (Eom et al., 2011; Eom et al., 

2012; Amarnath and Agarwala, 2017). Similarly, in frog embryos the medial and anterior 

localizations of planar cell polarity molecules at the neural plate midline are required for the 

changes in cell shape and movement necessary for neural plate folding and neural tube 

formation (Ossipova et al., 2014; Ossipova et al., 2015). In turn, neural cell apical 

constriction is postulated to be driven by the contraction of the actomyosin network 

anchored at the apical adherens junctions (Haigo et al., 2003; Nishimura and Takeichi, 2008; 

Martin et al., 2009). The precise dynamics of the proteins that form the adherens junctions 

during this process remain to be determined. Nevertheless, studies from the Sokol lab have 

demonstrated that Rab11-containing recycling endosomes accumulate in the apical adherens 

junctions of medial neural plate cells through a planar cell polarity- and Rho family GTPase 

GEF-H1-dependent mechanism, and this apical Rab11 localization is necessary and 

sufficient for apical constriction (Itoh et al., 2014; Ossipova et al., 2014). We discovered that 

FOLR1 is necessary for apical constriction of neural plate cells and C-cadherin endocytosis, 

which is apparent in constricting neural cells (Balashova et al., 2017); the necessity of this 

process becomes obvious when considering the dramatic reduction in cell apical surface 

occurring during apical constriction, which has to be accompanied by removal of the excess 
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of apical membrane and transmembrane proteins, including those mediating cell-cell 

adhesion (Fig. 1). Indeed, it has been shown that endocytosis is involved in apical membrane 

removal during contraction of cell apical surface in a number of model systems (Lee and 

Harland, 2010; Mateus et al., 2011). We propose that endocytosis of adhesion proteins 

facilitated by FOLR1 may be needed to enable reduction of apical cell circumference and 

redistribution of adhesion molecules from cell apexes to lateral intercellular contacts to 

accommodate for dynamic cell shape changes during neurulation (Fig. 1). Interestingly, a 

model of neurulation named “cortical tractor” has been proposed in which recycling of cell 

adhesion proteins from the apical circumference to the cell basolateral surface is required for 

cell shape changes (Jacobson et al., 1986; Jacobson, 1994). More recently it has been 

demonstrated that collectively migrating astrocytes utilize a mechanism similar to the 

cortical tractor to recycle N-cadherin molecules (Peglion et al., 2014).

Our study (Balashova et al., 2017) suggests that the role of folate and FOLR1 during neural 

tube formation may not be related to its metabolic function as a vitamin (Fig. 2). 

Intriguingly, folate is a chemoattractant for the model unicellular organism Dictyostelium 
discoideum, in which it elicits changes in the cytoskeleton that enable the amoeba to crawl 

towards the food source (McRobbie and Newell, 1983; Yumura, 1994). The mechanisms of 

the chemoattraction involve the amoeba’s folate receptor, which is a G-protein coupled 

receptor (Wang et al., 1988; Pan et al., 2016) that elicits calcium transients, which in turn 

modify cytoskeletal protein dynamics (Europe-Finner and Newell, 1985; Nebl and Fisher, 

1997). The identification of the signaling mechanisms that link folate/FOLR1 with 

regulators of the cytoskeleton and cell adhesion remodeling during neural tube formation in 

vertebrates demands further investigation.

FOLATE AND NEURAL FUNCTION

The involvement of folate in nervous system development and function transcends the early 

stages of formation of the neural tube. For instance, a dietary folic acid deficiency that 

results in increased homocysteine blood levels due to the deficient conversion of 

homocysteine into methionine, leads to a decrease in the number of proliferating neural 

progenitors in the dentate gyrus, affecting the neurogenesis necessary for learning and 

memory tasks (Kruman et al., 2005). Similarly, in vitro studies have shown that folate-

depleted culture media results in decreased cell proliferation, differentiation and survival in 

the rat H19-7 hippocampal cell line (Akchiche et al., 2012). These studies argue for a 

mechanism whereby folate deficiency leads to an excess of homocysteine (Kruman et al., 

2005; Akchiche et al., 2012), which in turn leads to aberrant homocysteinylation of neural 

proteins, interfering with normal neuronal development and survival (Akchiche et al., 2012).

Despite the fact that most studies have focused on the metabolism and nucleic acid 

synthesis-dependent mechanisms for folate action in the nervous system, other studies have 

found that folate also engages acute signaling in neurons. Folate induces epileptiform 

activity when applied in the brain of mice and rats (Spector, 1972; Baxter et al., 1973; Hill 

and Miller, 1974), and enhances neuronal excitability in the cat cerebral cortex (Davies and 

Watkins, 1973). Acute application of folate in rat hippocampal slices inhibits GABAergic 

transmission, enhancing excitation by blocking the postsynaptic response to GABA (Otis et 
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al., 1985) as well as by inhibiting presynaptic GABA receptors in the rat cuneate nucleus 

(Hill and Miller, 1974).

These effects on neuronal excitability argue for a specific action of folate in neural tissue 

and acute folate-triggered signaling independent of gene expression. Altogether these 

findings support a model in which folate triggers a specific signaling pathway in the neural 

tissues that is necessary for neural tube formation, and later may result in modulation of 

synaptic activity (Fig. 2).

FOLATE ACTION IN NEURODEGENERATIVE DISEASE AND NERVOUS 

SYSTEM REPAIR

Neural tube defects are not the only neurodevelopmental pathology associated with folate 

levels and function. The inherited disorder of brain-specific folate deficiency is a result of 

mutations in FOLR1 that manifests in late infancy and leads to developmental regression, 

motor dysfunction and epilepsy (Steinfeld et al., 2009; Perez-Duenas et al., 2010; Perez-

Duenas et al., 2011). These FOLR1 mutants are defective in their binding to folate, and lead 

to inositol and choline insufficiencies, which in turn result in perturbed myelination 

(Steinfeld et al., 2009). This phenotype is similar to the disturbed myelination in 6-week-old 

rats fed with a folate-deficient diet (Hirono and Wada, 1978). Mutant forms of FOLR1 result 

in mislocalization of the protein and loss of FOLR1 from the cell membrane. However, the 

clinical severity of affected patients did not show a straightforward correlation with the 

altered folate binding and transport properties of FOLR1 mutants, suggesting that other 

factors might contribute to the clinical outcome of cerebral folate transport deficiency 

(Grapp et al., 2012).

Folate deficiency and an excess of homocysteine have also been associated with 

neurodegenerative diseases like Alzheimer’s and Parkinson’s disease in the adult and aging 

brain (Mattson and Shea, 2003; Miranda-Morales et al., 2017). High homocysteine and low 

folate levels in hippocampal cultures result in neuronal cell death correlated with uracil 

misincorporation and increased susceptibility to oxidative cell damage. Similarly, in vivo, 

mice on a folate-deficient diet exhibit increased DNA damage and hippocampal 

neurodegeneration (Kruman et al., 2002). Moreover, a folate-deficient diet for 3 months in 

uracil DNA glycosylase knockout mice leads to higher susceptibility to neurodegeneration 

of hippocampal pyramidal neurons, along with disturbances in neurotrophin and 

neurotransmitter metabolism that contribute to impaired spatial learning (Kronenberg et al., 

2008).

The counterpoint of folate deficiency and neurodegeneration is evidence supporting a role 

for folate in the repair and regeneration of injured neural tissue (Fig. 2). Folate enhances 

regrowth of sensory spinal axons in vivo after bilateral lesion of rat dorsal root ganglia 

(Iskandar et al., 2004). Intraperitoneal injections with folic acid in injured rats result in 

enhanced axon regeneration of damaged spinal cord and optic nerves as well as functional 

recovery following spinal cord contusion (Iskandar et al., 2004; Miranpuri et al., 2017). The 

mechanism underlying folate action in axon regeneration depends on FOLR1, and is 

correlated with changes in DNA methylation (Iskandar et al., 2010). Matrix 
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metalloproteinases, such as matrix metalloproteinase-2 (MMP2), are upregulated upon 

spinal cord injury, and not only interfere with functional recovery but also contribute to the 

associated neuropathic pain (Kawasaki et al., 2008; Miranpuri et al., 2016). Folate treatment 

managed to reduce MMP2 expression through methylating its promoter, reducing 

neuropathic pain and increasing functional recovery after spinal cord contusion (Miranpuri 

et al., 2017).

FUTURE DIRECTIONS

Folates are pivotal molecules for the development and maintenance of all tissues. However, 

the nervous system seems particularly sensitive to folate action throughout development, as 

well as in the adult and aging brain. This argues for a potentially specific need for folate 

action that is different than its ubiquitous role in DNA synthesis and cell proliferation. The 

GPI-AP folate receptor is molecularly equipped to elicit signaling upon folate binding by 

partnering with transmembrane proteins and/or intracellular proteins once it has been 

endocytosed. Hence, the spatiotemporal profile of folate receptor expression and its 

interactions with distinct proteins might contribute to provide specificity to folate action in 

the nervous system (Fig. 2). Future studies will be needed to determine the signaling 

mechanisms mediated by folate and folate receptors, and the relevance of these pathways to 

nervous system development, maturation and disease.
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Figure 1. 
Model of the role of folate receptor 1 in neural plate folding. (A) Two layers (grey – 

superficial, black – deep) of Xenopus laevis neural plate cells at the beginning of folding 

show a cuboidal and non-polarized morphology. Speckled regions represent non-neural 

ectoderm. (B) In superficial neural plate cells folate receptor 1 (red) and cadherins (green) 

localize to the apical membrane. Cadherins are also enriched in the cell lateral border (blue). 

Circles inside the cell represent early endosomes containing apical cadherin. (C) Folate 

receptor 1-dependent cadherin endocytosis results in redistribution of adhesion molecules 

and membrane from the cell apex to the lateral cell border, facilitating constriction of the 

apical pole and elongation of the neural plate cell. (D) Apical constriction along with other 

morphogenic behaviors such as cell elongation and intercalation lead to folding of the neural 

plate. Model derived from Balashova et al., 2017.
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Figure 2. 
Mechanisms of folate action in the developing and mature nervous system. Folate is taken 

into neural cells through folate receptor 1 (FOLR1) or reduced folate carrier (RFC) to be 

used in DNA and RNA biosynthesis, DNA repair and one-carbon metabolic reactions. These 

roles of folate as a vitamin are needed for neural cell division during periods of rapid growth 

and neural tissue repair. Alternatively, folate interacts with its receptor, triggering specific 

signaling mechanisms that enable the shaping of the neural plate during neural tube 

formation and modulation of synaptic activity to facilitate neural function.
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