
UC San Diego
UC San Diego Previously Published Works

Title
Unique metabolite preferences of the drug transporters OAT1 and OAT3 analyzed by 
machine learning

Permalink
https://escholarship.org/uc/item/3rs1h857

Journal
Journal of Biological Chemistry, 295(7)

ISSN
0021-9258

Authors
Nigam, Anisha K
Li, Julia G
Lall, Kaustubh
et al.

Publication Date
2020-02-01

DOI
10.1074/jbc.ra119.010729

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rs1h857
https://escholarship.org/uc/item/3rs1h857#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Unique metabolite preferences of the drug transporters
OAT1 and OAT3 analyzed by machine learning
Received for publication, August 20, 2019, and in revised form, December 30, 2019 Published, Papers in Press, January 2, 2020, DOI 10.1074/jbc.RA119.010729

Anisha K. Nigam‡, Julia G. Li§, Kaustubh Lall¶, X Da Shi‡, Kevin T. Bush�, Vibha Bhatnagar**, Ruben Abagyan‡1,
and Sanjay K. Nigam�‡‡2

From the ‡Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of §Biology, ¶Computer Engineering, �Pediatrics,
**Family and Preventative Medicine, and ‡‡Medicine, University of California San Diego, La Jolla, California 92093-0693

Edited by Jeffrey E. Pessin

The multispecific organic anion transporters, OAT1 (SLC22A6)
and OAT3 (SLC22A8), the main kidney elimination pathways
for many common drugs, are often considered to have largely-
redundant roles. However, whereas examination of metabolomics
data from Oat-knockout mice (Oat1 and Oat3KO) revealed consid-
erable overlap, over a hundred metabolites were increased in the
plasma of one or the other of these knockout mice. Many of these
relatively unique metabolites are components of distinct biochem-
ical and signaling pathways, including those involving amino acids,
lipids, bile acids, and uremic toxins. Cheminformatics, together
with a “logical” statistical and machine learning-based approach,
identified a number of molecular features distinguishing these
unique endogenous substrates. Compared with OAT1, OAT3
tends to interact with more complex substrates possessing more
rings and chiral centers. An independent “brute force” approach,
analyzing all possible combinations of molecular features, sup-
ported the logical approach. Together, the results suggest the
potential molecular basis by which OAT1 and OAT3 modulate dis-
tinct metabolic and signaling pathways in vivo. As suggested by the
Remote Sensing and Signaling Theory, the analysis provides a
potential mechanism by which “multispecific” kidney proximal
tubule transporters exert distinct physiological effects. Further-
more, a strong metabolite-based machine-learning classifier was
able to successfully predict unique OAT1 versus OAT3 drugs; this
suggests the feasibility of drug design based on knockout metabo-
lomics of drug transporters. The approach can be applied to other
SLC and ATP-binding cassette drug transporters to define their
nonredundant physiological roles and for analyzing the potential
impact of drug–metabolite interactions.

Organic anion transporter 1 (OAT1,3 SLC22A6 (solute car-
rier family 22 member 6) originally described as NKT (1)) and

OAT3 (SLC22A8 (solute carrier family 22 member 8), also
known as Roct (2)) are multispecific members of the solute
carrier 22 (SLC22) family (3–7). SLC22 transporters are highly
conserved across organisms (including humans) and, along
with other multi-, oligo-, and mono-specific SLC and ATP-
binding cassette (ABC) transporters, function collectively as an
integrated network of influx and efflux transporters involved
in metabolism, signaling, and other aspects of physiological
homeostasis (8 –12). Consistent with this notion, SLC22 trans-
porters are expressed in many tissues and have the ability to
interact with a diverse range of endogenous and exogenous
molecules (13–16).

OAT1 and OAT3, which are both expressed on the basolat-
eral aspect of renal proximal tubule epithelial cells, represent
the key rate-limiting step for the transport and removal of pro-
tein-bound organic anion molecules from the blood and, as
such, are essential for the elimination of a wide array of small
organic molecule drugs, toxins, metabolites, signaling mole-
cules, uremic toxins, and natural products (5, 17). Although
OAT1 and OAT3 are generally considered the main organic
anion “drug” transporters in the kidney, as well as other tissues
(6, 7, 18 –20), their physiological role in transporting endoge-
nous metabolites (21–25) and in mediating inter-organ cross-
talk (the “Remote Sensing and Signaling Theory”) is rapidly
becoming apparent (5, 9, 26 –31).

Nevertheless, much remains to be elucidated about the
mechanisms driving the interaction of SLC22 transporters, like
OAT1 and OAT3, with their endogenous (nonxenobiotic) sub-
strates or ligands, particularly with regard to the specificity of
the transporters. With respect to pharmaceutical drugs, it is
often assumed, based on overlapping lists of drug ligands (3, 4,
6, 7), that OAT1 and OAT3 have similar substrate specificity. In
the absence of protein crystal structures in multiple functional
states, much research has been performed using ligand-based
analyses of the substrates (13, 32–36). However, it has generally
not been easy, using earlier data and methods, to clearly distin-
guish drugs that bind OAT1 from those that bind OAT3—with
the caveat that some OAT3 ligands appear to have a cationic
character (33, 37).
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The drug–transporter interaction datasets, apart from being
based on in vitro assays done by different labs (6, 7), are
unavoidably limited in scope. For instance, certain classes of
FDA-approved drugs transported by OATs (e.g. �-lactam anti-
biotics and NSAIDs) are over-represented. In addition, the
drug-interaction dataset relies heavily on data derived from
transport inhibition assays rather than actual substrate trans-
port data, which tend to be more limited (33, 38). Thus, the
usefulness of the drug dataset is likely to be less than ideal if one
is interested in identifying the molecular properties that might
uniquely target a ligand for interaction with a particular trans-
porter (e.g. OAT1 or OAT3). An experimental evaluation of an
unbiased selection of transporter substrates is a preferred input
for a training set.

Recent metabolomics analyses of the plasma of OAT1 and
OAT3 knockout mice (Oat1KO and Oat3KO) have consider-
ably expanded the list of potential endogenous OAT ligands to
over 200 (28, 34, 36, 39). Such studies are based on the idea that
the absence (deletion) of an uptake/influx transporter, such as
OAT1 or OAT3, from the basolateral membrane of the proxi-
mal tubule cell in the knockout kidney should result in the
inability to remove endogenous substrates that are exclusively
dependent upon the absent transporter for clearance from the
blood. Consequently, this should lead to the accumulation of
endogenous metabolite ligands of the deleted transporter in the
plasma of each knockout animal (28, 34, 36, 39). Comparison of
such metabolomics data between the two knockout animals
should theoretically allow for the elucidation of potentially
unique endogenous ligands for each of these two SLC trans-
porters. This is, in fact, the case with almost 100 endogenous
metabolites being found that “uniquely” accumulate in the
plasma of the Oat1KO (but not in the Oat3KO), whereas
another nearly 50 metabolites uniquely accumulate in the
plasma of the Oat3KO mice (but not the Oat1KO) (28, 34, 36,
39).

Although some comparisons of the physicochemical features
of endogenous metabolites interacting with these two multi-
specific transporters have been performed (28) and identified a
few general features, a thorough computational and systematic
analysis based on specific molecular properties/features that
predispose endogenous metabolites to interact with OAT1 or
OAT3 has yet to be carried out. This is important from both a
physiological as well as a pharmaceutical perspective. Physio-
logically, OAT1 and OAT3 are major pathways through which
the proximal tubule of the kidney interfaces with the rest of the
body through the transport of numerous small organic mol-
ecules that function in normal metabolism, signaling, regu-
lation of redox state, and the uremic metabolism of chronic
kidney disease. If OAT1 and OAT3 have different structural
preferences for metabolites and signaling molecules, this
implies different effects on systemic metabolism, which has
been implied by genome-scale metabolic reconstructions
(36, 40, 41). Moreover, the possibility of differentially regu-
lating OATs and other multispecific transporters that trans-
port different sets of metabolites in various organs would
also suggest, as described in the Remote Sensing and Signal-
ing Theory, a mechanism for a relatively small number of

transporters to exert major effects on metabolism in normal
and disease settings (42).

In this study, cheminformatics and machine-learning tech-
niques were combined to analyze the quantitative molecular
properties of unique metabolites accumulating in vivo in the
Oat1KO mice versus unique metabolites in the Oat3KO, with
the goal of identifying a set of molecular properties (features)
that enables clear and concise distinction of the physiologically-
relevant molecules resulting from loss of either of the two
transporters.

The analyses performed here provide a deeper under-
standing of the important physicochemical features driving
endogenous ligand selectivity for OAT1 or OAT3 in vivo.
Importantly, this analysis also connects OAT1 versus OAT3
unique endogenous metabolite physicochemical features to
unique pathways fundamental to fatty acid, bile acid, amino
acid, and peptide metabolism and signaling. The approaches
employed here, combining multispecific drug transporter
knockout metabolomics, cheminformatics, and machine
learning to define molecular properties of endogenous
ligands, can be applied to many other SLC and ABC drug
transporters. This will not only help define the physiological
roles of drug transporters but should also provide a new basis
for metabolite-based drug design, tissue targeting of drugs,
and analyzing drug–metabolite interactions. This is sup-
ported by our evaluation of the ability of the metabolite-
based machine-learning model to predict OAT1- or OAT3-
selective drugs.

Results

Overview of strategy (Fig. 1)

The goal of this study was to identify the molecular features/
characteristics determining ligand–substrate interaction with
either OAT1 or OAT3; thus, we focused our attention on those
metabolites that accumulate in the plasma of one of the knock-
outs but not the other (i.e. increased in the plasma of the
Oat1KO but not the Oat3KO, or vice versa). In this way, 138
metabolites that appear to be unique for the Oat1KO (90
metabolites) or unique for the Oat3KO (48 metabolites) were
identified (Figs. 1 and 2; Table S1). Although some overlap
exists, OAT1-unique and OAT3-unique metabolites were
unexpectedly found to have relatively unique effects on some
biochemical pathways (Fig. S1). For example, �8% of the
unique OAT1 metabolites were found to be components of the
pathway involved in the metabolism of �-glutamyl amino acids
(although none of the unique OAT3 metabolites were involved
in this pathway), whereas the metabolism of the primary and
secondary bile acids comprises a substantial fraction of the
OAT3-unique metabolites (although none of the unique OAT1
metabolites were involved in primary or secondary bile acid
metabolism) (Fig. S1). Other OAT1-unique pathways included
those for the degradation of valine, leucine, and isoleucine, as
well as the metabolism of acylcarnitine and acylglycine fatty
acids, which were found to be exclusive to OAT1-unique
metabolites (Fig. S1). Other OAT3-unique pathways included
the metabolism of arginine and proline (Fig. S1).
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Cheminformatics approach to defining molecular properties
of Oat1KO-unique metabolites and Oat3KO-unique
metabolites

To define the molecular properties of the metabolites that
would help distinguish unique metabolites of Oat1KO from
those of Oat3KO, more than 60 physicochemical molecular
properties (Fig. 1; Table S2) were collected or calculated and
then analyzed with a focus on their potential utility in interpret-
ing the results from a biochemical and physiological perspec-
tive, for example, in developing a biologically interpretable

Decision Tree or other type of classification of the relevant
molecular properties.

The goal of these initial analyses was to narrow down this
extensive list of molecular properties to a more manageable
number that could be: 1) readily understood in the context of
metabolite structures, and 2) interpreted in the context of
known transporter biology, and which were, individually or
in combination, capable of helping to distinguish Oat1KO
unique metabolites from those unique to the Oat3KO.
Molecular properties that seemed of particular interest from
this viewpoint were visualized in multiple ways (e.g. scatter-
plot, histograms, distribution plots, and violin plots) (Fig. 3).
For example, the distribution plot for the number of rings
indicated that the Oat3KO-specific metabolites were greatly
over-represented among the molecules with more than two
rings (Fig. 3 and Table 1). Although taurocholate is one
of the classical transported substrates of OAT3 (43), and bile
acids had among the greatest fold-changes among all metab-
olites in the Oat3KO, it is possible they may be overempha-
sized here due to over-representation on the targeted
metabolomics platform and also due to the criteria
used to identify unique metabolites (see “Experimental
procedures”).

Importance of a subset of molecular properties based on
statistical and information metrics

Molecular properties were ranked according to information
gain and contribution to model performance. The results indi-
cated the likely high importance of such molecular properties
as the number of rings (nof_Rings), the number of chiral centers
(nof_Chirals), and the complexity in separating Oat1KO
unique metabolites from Oat3KO unique metabolites present
in this dataset (Fig. 4). Nevertheless, in different measures (e.g.
FreeViz) (44), other molecular properties such as polar surface
area (PSA) over the molecular area (PSA/area) appeared impor-
tant (Fig. 4). The inclusion of such features turned out to be
important for machine-learning methods like random forests
and decision trees (see below).

Although in the iterative machine-learning process that fol-
lowed (described below), the relative importance changed, at
this point in the analyses the key molecular properties included
the following: 1) the number of chirals (nof_Chirals); 2) the
number of rings (nof_Rings); 3) the polar surface area relative to
the total area (PSA/area); 4) an index of molecular complexity
(Complexity); 5) a measure of molecular size (e.g. molArea,
molVolume); 6) a measure of charge; and 7) the number of
carbons with sp3 hybridization (c_sp3) (which is sometimes
considered indicative of a molecule’s three-dimensionality). By
principal components analysis, three principal components
were found to contribute 80% or more of the variance (Fig. 4).
Later, other molecular properties not included in this original
set of seven features, many of which are associated with modi-
fications catalyzed by drug-metabolizing enzymes, were also
found to be important for classification and substituted for sev-
eral of the aforementioned molecular properties. These are dis-
cussed below.

Figure 1. Schematic of workflow for “logical” identification of molecular
properties for discrimination of unique OAT1 and OAT3 metabolites. A,
OAs ultimately excreted by the kidney are cleared from the blood by the SLC
transporters, OAT1 and OAT3, located in the basolateral membranes of prox-
imal tubule cells of the kidney. Deletion of either of these transporters results
in the plasma accumulation of OAs. Serum, obtained from WT and OatKOs,
was subjected to untargeted, global LC-MS metabolomics analyses. B, result-
ing metabolomics data were used to identify Oat1 and Oat3 metabolites
uniquely accumulating in each knockout mouse. Cheminformatics methods
were used to identify over 60 molecular properties/features of the metabo-
lites. C, data visualization and statistical analysis in Orange and Python librar-
ies (Pandas, Matplotlib, Seaborn, and SQLAlchemy) of over 60 molecular
properties for Oat1 and Oat3 unique metabolites were used to logically nar-
row down to a set of seven molecular properties to be used for machine-
learning approaches to identify a set of features that classifies metabolites as
uniquely Oat1 or uniquely Oat3.

Unique metabolic preferences of OAT1 and OAT3
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Figure 2. Unique metabolites for the Oat1KO and Oat3KO. Volcano plots displaying metabolomics data derived from the analysis of the serum
obtained from Oat1KO (KO versus WT) (A) and Oat3KO (KO versus WT) (B). The negative logarithm of the p value for each metabolite is plotted against the
logarithm to the base 2 of the fold-change (KO versus WT). Each point in the plot represents a metabolite; the red triangles indicate those metabolites
accumulating in the serum of the Oat1KO (p �0.05; dotted horizontal line), but not the Oat3KO; the green circles indicate metabolites accumulating in the
Oat3KO (generally p �0.1 (dotted horizontal line) and see under “Experimental procedures”), but not the Oat1KO; the gray crosses indicate those
metabolites either unchanged or that show similar changes in both knockout animals. The bar graphs in each volcano plot show the fold-change for the
indicated metabolites in either the Oat1KO (red bars) or Oat3KO (green bars).
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Machine-learning analysis

Supervised machine-learning methods can be used to iden-
tify features that are important for classification. In this case,
the cheminformatics analysis of metabolites uniquely accumu-
lating in the Oat1KO and the Oat3KO initially resulted in �60
molecular properties (features) for each metabolite. Through
the various visualizations and metrics already described, this set

of features was “logically” narrowed down to �10 features, sets
of which were then analyzed using the machine-learning meth-
ods described below to arrive at a set of seven features that were
capable of classifying a metabolite as either OAT1 or OAT3
with about 75– 80% accuracy.

Within the Orange environment, a number of machine
learning approaches were applied, including Decision Tree,
Random Forest, nearest neighbor classifiers, Naive Bayes, as
well as Logistic Regression and Neural Network models (Fig. 5;
Table 2). Confusion Matrices were created (Fig. S2), and mis-
categorized instances were evaluated. Some of the machine-
learning results were also “double-checked” by direct coding
using the Python Machine Learning Library SciKit-Learn
(44 –48).

In Table 2, the various Orange machine-learning classifica-
tion accuracy, area under the curve (AUC) and other scores
(leave-one out method) are shown for one of the highest-scor-
ing sets of seven molecular properties: nof_Rings; nof_Chirals;
PSA/Area; nof_Sulfates; nof_OH; C_RO; and Complexity.
Among the 11 metabolites misclassified by one Random Forest
classification run (using the seven final features), two had been
flagged in exploratory data analysis with the larger set of fea-
tures as outliers by the Orange SVM-based Outlier widgets
(Table S3). The confusion matrices for several machine-learn-
ing models also revealed different sets of misclassified metabo-
lites, despite often having similar scores on classification met-
rics, and those misclassified sets of metabolites had a somewhat
different overlap with outliers. Thus, although we have mainly
focused on Random Forest classification in what follows, these
considerations emphasize the need to examine the Confusion
Matrix for each model.

Although Random Forest classification generally gave the
best score (�0.8 classification accuracy), Decision Tree classi-

Figure 3. Comparison of unique Oat1 and unique Oat3 molecular properties. A, distribution plot of a number of chirals (OAT1, blue; OAT3, red). B,
distribution plot of a number of rings (OAT1, blue; OAT3, red). C, violin plot of complexity. D, violin plot of polar surface area over molecular area. From these
plots, one can see that OAT1-unique metabolites are generally smaller molecules with less complexity and fewer chiral centers and less ringed structures,
whereas the OAT3-unique metabolites generally are larger and more complex molecules with more chiral centers and more ringed structures. See Table S1 for
the full list of metabolites and Table S2 for the full list of molecular properties.

Table 1
List of metabolites with 3 or more rings (indicating a preponderance of
unique Oat3 metabolites)
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fication often came close (Table 2; Fig. S3), and it was generally
the easiest to interpret in terms of those molecular properties
favoring classification of unique Oat1KO metabolites versus
unique Oat3KO metabolites. As expected, with sampling (i.e.
different sets of 48 out 90 OAT1 instances) different trees
were generated, some of which were complicated. One of the
more straight-forward yet representative trees is shown in
Fig. 6.

Importance of including phase I and phase II modifications by
drug-metabolizing enzymes as molecular properties

Many of the metabolites accumulating in the two knockouts
included presumptive modifications by phase I and phase II
drug-metabolizing enzymes (DMEs), as well as other enzymes
involved in sulfation, hydroxylation, acetylation, GSH conjuga-
tion, and phosphorylation (49, 50). Phase I DMEs, which
include members of the cytochrome P450 family, are important
for redox modifications and hydroxylation. Phase II DMEs
include acetyltransferases, glucuronosyltransferases, sulfo-
transferases, and other enzymes. Although these phase I and
phase II DMEs are generally viewed as important in drug inac-
tivation and/or making drugs more soluble (by adding polar
groups) and thus more easily eliminated into the bile or urine,
they also create many active endogenous metabolites and sig-

naling molecules (49, 50). For example, the phase II sulfation of
indoxyl creates indoxyl sulfate, which can bind nuclear recep-
tors and modulate kinases as well as functioning as an endoge-
nous toxin (9, 29, 51). Hence, evaluating these DME modifica-
tions has the potential to yield additional biological relevance to
the analysis. Although considering these molecular properties
only slightly improved the classification accuracy over what is
described above, the numbers of hydroxyl groups (nof_OH)
and sulfates (nof_SO3H) were important for some models; this
was consistent with their importance in measures of informa-
tion gain and in FreeViz analysis (Fig. 7). Other modifications
appeared less important based on data visualizations, as well as
statistical and information metrics, and were not considered
further.

Comparison with a “brute force” Random Forest approach to
identifying key molecular properties (features) for OAT1
versus OAT3 classification

Using the Python machine-learning package SciKit-Learn
(Fig. 5) (47), a brute force approach was used to identify seven
molecular properties that, as features in the machine-learning
analysis for classification by Random Forests, gave the highest
classification accuracies (Fig. 8). As with the more “logical
approach” using measures of feature importance and other

Figure 4. Ranking of molecular properties according to information gain and other metrics indicate their likely high importance. A, bar graph of the
ranking of molecular properties according to information gain in order to tease out importance of some molecular properties. The information gain for each
molecular feature was normalized to the feature displaying the greatest gain (nof_Rings). B, principal component analysis reveals that first three components
account for �90% of the variance. C, FreeViz visualization of various molecular properties and their importance in separating out OAT1 versus OAT3. In the
FreeViz graphical representation, the magnitude of each vector indicates the relative importance of each molecular feature as determined by the FreeViz
algorithm, whereas the direction of each vector indicates the relative preference of that feature for OAT1 (blue background) or OAT3 (red background). In the
representation, the blue circles depict the OAT1-unique metabolites, and the red crosses depict the OAT3-unique metabolites. The size of each symbol
corresponds to the number of rings. For example, the large red crosses in the upper right-hand portion of the representation are OAT3-unique metabolites that
have a large number of rings.
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techniques already described, multiple combinations of seven
features gave comparably high classification accuracies (Fig. 8).
(Using the Decision Tree algorithm in SciKit-Learn, the classi-
fication accuracy was generally slightly lower than Random
Forests for the same features (data not shown).)

Based on this brute force analysis, two points are to be
emphasized. 1) Nearly all the features chosen using the afore-
mentioned logical approach (nof_Rings, nof_Chirals, PSA/
Area, nof_SO3H, nof_OH, C_R0, and Complexity) could be
found consistently, with Complexity appearing least often in
the brute-force approach. 2) The aforementioned set of
logically-chosen features (nof_Rings, nof_Chirals, PSA/Area,
nof_SO3H, nof_OH, C_R0, and Complexity) scored nearly as
well (within �2% classification accuracy) as the highest-scoring
random combinations of seven features (Fig. 8). This lends high
confidence that the set of seven features finally settled on
logically–and that captures multiple molecular properties
known to be functionally important for OAT1 versus OAT3
interaction in experimental in vivo and in vitro biological sys-
tems and is thus more biologically interpretable–are about as
good in terms of classification accuracy as the best-scoring set
of seven features when a very large number of combinations are
tested.

High-performing OAT1 versus OAT3 Random Forest
classification model predicts OAT1- versus OAT3-interacting
drugs with high accuracy

There has been much discussion in the literature about the
relationship of small organic molecule drugs and metabolites
(9, 32, 52, 53). Thus, we sought to determine the effectiveness
of the Random Forest model (using the set of seven molecu-
lar properties chosen using the logical approach), which
classified unique OAT1 versus OAT3 metabolites with
�80% accuracy, for the classification of drugs known to pref-
erentially interact with OAT1 or OAT3 (Fig. 9). We there-
fore initially analyzed a set of 55 such drugs, 21 of which are
known to preferentially interact by �2-fold with OAT1 in
cell-based in vitro assays and 34 of which are known to inter-
act with OAT3.

We hypothesized that the Random Forest model, trained
using the unique metabolite dataset, would predict OAT1-
versus OAT3-interacting drugs significantly better than ran-
dom. The ability of the (metabolite-based) model to cor-
rectly classify OAT1 drugs was only around 55– 60%,
whereas the ability of the model to correctly classify OAT3
drugs as such was �70%.

However, when we examined which drugs were misclassi-
fied, we found that they were mainly ones that had a �2-fold
but less than 5-fold preferential affinity for either OAT1 or
OAT3 (Table S4). When we considered only drugs with a
�5-fold preferential affinity for either OAT1 or OAT3, the data
set was reduced to 33 instances, but importantly, the predic-
tions of the unique metabolite-based Random Forest or Deci-
sion Tree models improved considerably; they were 75% accu-
rate for unique OAT1 drugs and �80% accurate for unique
OAT3 drugs (Fig. 9).

Discussion

Our results are of both physiological and pharmaceutical
interest. OAT1 and OAT3 are well-established as in vitro drug
and toxin transporters (5, 42). Some of these in vitro findings
have been supported in vivo in the Oat1KO and the Oat3KO
mice or in ex vivo assays utilizing knockout tissues. For exam-
ple, the role of one or both of the OATs has been demonstrated
in the handling of diuretics, �-lactam antibiotics, and antivirals,
as well as environmental toxins such as organic mercury con-
jugates and aristolochic acid (23, 54 –62). In addition, a growing
number of studies have pointed to the physiological roles of
OAT1 and OAT3, including urate homeostasis, creatinine,
endogenous signaling, and metabolism, uremic toxin, and ure-
mic solute handling, and blood pressure regulation (14, 27, 28,
34, 36, 39 –41, 54, 58, 63–69).

It is often held that OAT1 and OAT3 have largely overlap-
ping substrates, and thus the two transporters have been some-
times suggested to be “redundant” when expressed in the same
cell type, such as the kidney proximal tubule cell or the choroid
plexus cell (5, 9). This idea is mostly based on in vitro assays of
binding or transport in cells overexpressing OAT1 and OAT3;
furthermore, most of the substrates tested have been drugs (7).
However, our extensive metabolomics analysis of the Oat1KO
and Oat3KO mice have revealed very different sets of metabo-

Figure 5. Schematic of workflow for machine-learning analyses of molec-
ular properties to classify unique OAT1 versus OAT3 metabolites. A,
machine learning in Orange and Python SciKit-Learn library using seven cho-
sen molecular properties (features) ultimately focusing on random forests
and decision trees. Analysis of accuracy score, AUC, confusion matrix, misclas-
sified instances, and outliers was performed. B, brute force approach was
used in parallel to identify seven molecular properties using Python SciKit-
Learn library.

Table 2
Output classification metrics of classification accuracy, AUC of the
receiver operating curve, precision, and recall for the various machine-
learning approaches

Method AUC CA F1 Precision Recall

Random Forest 0.927 0.875 0.875 0.878 0.875
k-Nearest Neighbor 0.914 0.812 0.812 0.813 0.812
Decision Tree 0.886 0.812 0.812 0.815 0.812
Neural Network 0.798 0.76 0.757 0.775 0.76
Naive Bayes 0.756 0.667 0.659 0.682 0.667
Logistic regression 0.778 0.656 0.652 0.665 0.656
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lites, i.e. aerobic metabolism intermediates, signaling mole-
cules, vitamins, gut microbiome products, fatty acids, bile acids,
and odorants, accumulating in the plasma of the two knockout
mice due to the lack of renal OAT-mediated transport from the
blood to the urine (28, 34, 36, 39, 41, 43, 63).

In our study of metabolites uniquely accumulating in vivo
due to the inability to produce functional OAT1 or OAT3
transporter, differences were initially analyzed by statistical and
informational metrics and then using machine-learning tools.
A previous study that included a few of the approaches used
here (although with machine-learning algorithms not based in
the Python SciKit-Learn package) compared the unique FDA-
approved drug substrates of OAT1 and OAT3 (33). Consistent
with prevailing “textbook” views, this previous study revealed
considerable similarity in the molecular features (properties) of

pharmaceutical drugs interacting with OAT1 and OAT3,
although one molecular property was found to separate OAT1
from OAT3-interacting drugs–a greater propensity for OAT3
to interact with cationic drugs over OAT1, a fact supported by
in vitro analysis of certain drugs (33).

However, it is possible that in vitro studies do not fully reflect
in vivo reality. It is currently not feasible to analyze the behav-
iors of hundreds of drugs in the Oat1KO and Oat3KO animals,
and in many cases, the behavior of FDA-approved drugs may not
reflect the in vivo behaviors of metabolites, signaling molecules,
antioxidants, and other known endogenous ligands of OAT1 and
OAT3. Moreover, the OAT-transported FDA-approved drug
dataset may over-represent certain classes of medically-effective
molecules (e.g. NSAIDs) and/or be nonrepresentative of the rele-
vant chemical space because of factors related to drug design and
patenting, the approval process, and commercial issues.

In contrast, the use of metabolomics data offers a compara-
tively-efficient approach to the problem without the aforemen-
tioned biases that might accompany drug datasets. Because
analysis of the endogenous substrates/ligands should allow one
to identify the “true” molecular features driving ligand interac-
tion for OAT1 or OAT3, and metabolites that accumulate in
the plasma of mice bearing deletions in either OAT1 or OAT3
likely represent endogenous substrates/ligands of the trans-
porters (unlike molecules in common drug datasets), the utili-
zation and analysis of in vivo metabolomics data appear to be a
reasonable approach to characterize the unique molecular
properties/features driving in vivo interaction of the metabo-
lites with the two transporters. Nevertheless, to obtain a large
number of relatively unique metabolites to perform a machine-
learning analysis, we had to combine results from several stud-
ies; these targeted and untargeted studies were done at different

Figure 6. Example of a decision tree using the seven chosen molecular properties to classify unique OAT1 versus unique OAT3 metabolites. An
example of a decision tree generated using the seven molecular features used to classify the metabolites.

Figure 7. Importance of phase I and phase II modifications by drug-me-
tabolizing enzymes as molecular properties. Bar graph showing various
DME modifications ranked according to information gain (normalized to the
DME modification displaying the greatest information gain (nof_OH)). The
number of hydroxyls (nof_OH) and number of sulfates (nof_SO3H) are clearly
the two highest-ranked attributes contributing to the classification.
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times, using different platforms or methods, and calls were
sometimes made based on different criteria. Although this is
not ideal, some of these issues are unavoidable with drug trans-
port data as well, where the pooled data come from multiple
labs using somewhat different methods.

Nevertheless, we note that among the Oat1KO and Oat3KO
unique metabolites, many molecules of similar structure to these
in vivo molecules have been tested in in vitro binding assays or
transport assays (7, 42). For example, taurocholate is considered a
prototypical in vitro–transported substrate of OAT3.

Machine-learning considerations and potential
pharmaceutical relevance of findings

As we have shown, our combined cheminformatics and
machine-learning approach gave very good classification accu-

racy for unique Oat1KO metabolites versus unique Oat3KO
metabolites. We were able to ultimately identify a limited set of
seven critical molecular properties/features that proved quite
useful in classifying in vivo endogenous metabolites as sub-
strates/ligands of OAT1 or OAT3 with high accuracy.

Statistical and informational metrics, as well as data visual-
izations, allowed us to reduce the �60 molecular properties to
�10 molecular properties that seem to be key in determining
the transporter specificity of the ligand. For example, it was
possible to reduce the number of molecular properties
because of high correlations (e.g. r �0.9) with other molec-
ular properties. Our goal was to reduce the set of features to
10% or less of the number of total instances. Thus, from a set
of several highly-correlated molecular properties, generally
only one was chosen.

Figure 8. Brute force random forest analysis. Bar graph shows the CA for a random forest classification using a brute-force approach. The CA is shown for
each of the top 10 instances for each combination of seven molecular features in the brute-force approach. The bottom bar (red) shows the CA for the set of
logically identified seven molecular features used in the machine-learning approach described in the text. These seven molecular features are also highlighted
in each of the 10 sets (red text) to indicate their presence in the various combinations of molecular features showing the greatest classification accuracy.

Figure 9. Prediction of unique OAT1 and OAT3 drugs. A, ability of a strong machine-learning model for classification of unique Oat1 and unique Oat3
metabolites to predict unique Oat1 and unique Oat3 small molecule drugs was analyzed. B–D, seven molecular features that were found to perform well in the
classification of metabolites as either OAT1-unique or OAT3-unique were tested for their ability to correctly classify drugs known to interact with either OAT1
or OAT3 with reasonable specificity in random forest and decision tree approaches. Random forest (B) and decision tree (C) classification models were used to
predict OAT1 and OAT3 drugs with �5-fold (B and C) or �2-fold (D) preferential affinities for OAT1 or OAT3. Consideration of drugs with a �5-fold preferential
affinity for either OAT1 or OAT3 resulted in predictions of the unique metabolite-based random forest or decision tree models with �75% accuracy for unique
OAT1 and OAT3 drugs, whereas �2-fold preferential affinity had around 50% accuracy.
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In the process of defining the key features, we also found that
simple feature engineering—such as the use of PSA/molecular
area instead of PSA, often led to improved classification accu-
racy using the machine-learning tools. Database queries were
sometimes helpful for examining the biochemical nature of
metabolites that were being captured by one or more molecular
properties. For example, a search for molecules with higher
numbers of rings yielded primarily Oat3KO metabolites;
among these were flavonoids, bile acids, or conjugated sex ste-
roids (Table 1).

The combined data analysis indicated that Oat3KO metabo-
lites had more rings, more chiral centers, and greater complex-
ity than Oat1KO metabolites (Fig. 3; Table 1). Similar analysis
of the Oat1KO metabolites supports the view that Oat1 sub-
strates have a higher PSA/area and more carbons outside of ring
structures. Furthermore, by evaluating the importance of phase
I and phase II DME modifications of metabolites as separate
features (e.g. hydroxyl groups and sulfate groups) for machine-
learning classification and finding that, at least in certain
machine-learning models, one or both of these molecular prop-
erties affect classification accuracy, we provide additional bio-
logical context. Thus, at least for Oat1 and Oat3, the endoge-
nous substrates should not be considered only from the
viewpoint of their interaction with transporters but also in the
context of modifications by DMEs.

Decision Tree classification and k-nearest neighbor classifi-
cation were often nearly as good as Random Forest classifica-
tion. Moreover, an independent brute-force approach was also
used to randomly identify sets of seven molecular properties
that could be used to classify the metabolites according to their
preferred transporter. The classification accuracies of the best
sets (out of �10∧5 analyzed) was similar to that obtained with
the logically selected molecular properties as described above.
Together, the results support the view that metabolites
uniquely accumulating in vivo in the Oat1 and Oat3 knockouts
can, indeed, be separated using a limited set of relatively inde-
pendent molecular properties that seems to capture the diver-
sity of unique metabolites accumulating in the two Oat knock-
outs in vivo.

We also asked whether the Random Forest classification
model predicting unique OAT1 and OAT3 metabolites would
be useful for classification of drugs known to preferentially
interact with OAT1 and OAT3. There is a body of literature
supporting the view that drugs might act like metabolites with
similar structural features during transport (9, 32–34, 52, 53).
In the case of the OATs, which, to our knowledge, are the drug
transporters for which the most in vivo metabolite data are
currently available, this appears to be the case, at least for rela-
tively unique drugs known to interact with either OAT1 or
OAT3 with a 5-fold or greater difference in affinity measures.
For this set of drugs, �75% were correctly classified as either
OAT1 or OAT3. Nevertheless, the number of drugs that ful-
filled this criterion was only 33, or roughly one-third the size of
the unique metabolite data set used to generate the Random
Forest classification model. Thus, although the ratio of features
to instances in the unique metabolite-based model was 1:14, the
ratio of features to instances for the drug predictions was 1:5.
Thus, it is possible that the predictions are somewhat overde-

termined by the seven feature-based metabolite model. That
said, with a set of drugs that had a less than 2-fold difference in
affinity between OAT1 and OAT3, indicating a similar selectiv-
ity for OAT1 and OAT3, the model was unable to classify them,
essentially making random calls. These results are what would
be expected for a good model. Additional confidence comes
from the fact that the Random Forest classification model that
was successful in making drug calls was built from unique in
vivo metabolites accumulating in knockout mice while the
unique OAT1 or unique OAT3 drugs were identified based on
in vitro transport assays. Of course, the metabolites are endog-
enous molecules, whereas the drugs are generally FDA-ap-
proved chemical compounds produced by pharmaceutical
companies. So, the metabolite and drug datasets are indepen-
dent from more than one viewpoint.

Identification of the similarities and differences in molecular
properties between unique Oat1KO metabolites and Oat3KO
metabolites can be helpful, particularly in light of tissue expres-
sion patterns, for predicting the likely route of distribution or
elimination for a new compound, especially if it is similar in
structure to metabolites. Furthermore, phase I and/or phase II
DME modifications (i.e. hydroxylation and sulfation) appeared
important in determining whether a particular endogenous
molecule is handled by OAT1 or OAT3; this kind of informa-
tion may be helpful in determining the fate of drugs (OAT1
versus OAT3 elimination) that undergo DME modifications. It
follows that this type of analysis should help with the design of
drugs that, because they have similar properties to particular
sets of endogenous metabolites, can be targeted to various tis-
sues through the drug transporters expressed and/or targeting
drugs for elimination via a specific transporter.

Physiological relevance

Although more optimal drug design, tissue targeting of
drugs, and a better understanding of drug–metabolite interac-
tions are obvious practical applications of our results, the pre-
ceding extensive discussion on the machine-learning approach
and the pharmaceutical relevance of the results does not take
away from the potential physiological importance of our work.

The most significant biological result of our study, in the
context of previously published knockout metabolomics and
metabolic reconstructions of OAT1- or OAT3-regulated bio-
chemical pathways (9, 42), is the general debunking of the view
that OAT1 and OAT3 are redundant when expressed in the
same tissue. This is clearly not true from a physiological stand-
point and suggests that differential expression of OAT1 and
OAT3 in tissues like the pancreas, retina, blood– brain barrier,
and also during kidney development and regeneration means
different regulation of local and/or systemic metabolism and
signaling. Our results connect physiochemical features of
endogenous metabolites uniquely changed in vivo in the OAT1
versus OAT3 knockouts to unique metabolic and signaling
pathways regulating specific sets of fatty acids, bile acids, amino
acids, and peptides.

The data presented here, based on in vivo metabolomics data,
provide clear evidence to support the view that while there is
overlap in the types of (bio)chemical structures interacting with
OAT1 and OAT3, that overlap is not as great as believed previ-
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ously; OAT1 and OAT3 handle distinct sets of metabolites
involved in different biochemical and signaling pathways.
These results, taken together with the other aforementioned
studies, challenge existing summaries of the roles of OAT1 and
OAT3 presented in numerous pharmacology and toxicology
textbooks and review articles. We have been able to leverage the
fact that hundreds of metabolites have been found to accumu-
late in the two Oat knockouts, presumably reflecting both
unique, as well as common, physiological roles of OAT1 and
OAT3. Assuming similar evidence regarding the true endoge-
nous physiological substrates is found for other multispecific
ABC and SLC transporters still generally thought to primarily
function as transporters of drugs, it could cumulatively call into
question the very notion of drug transporters (9).

Experimental procedures

Animals

All experimental protocols were approved by the University
of California San Diego Institutional Animal Care and Use
Committee (IACUC), and the animals were handled in accord-
ance with the Institutional Guidelines on the Use of Live Ani-
mals for Research. Adult (n � 5) WT, Oat1KO male mice were
housed separately under a 12-h light/dark cycle and were pro-
vided access to food (standard diet) and water ad libitum.

Metabolomic analysis, compound identification,
quantification, data curation, and statistics for the Oat1KO

Individual, unpooled serum samples obtained from adult
male wildtype (WT; control) and Oat1KO mice were stored at
�80 °C and shipped on dry-ice to Metabolon (Durham, NC) for
preparation and metabolomic profiling analysis as described
previously (28, 63).

In this analysis of the Oat1KO, a total of 731 metabolites of
known identity were detected and identified utilizing a refer-
ence library of chemical standard entries using software devel-
oped at Metabolon, as described previously. Quantification and
statistical analyses were performed by Metabolon as described
previously (36, 63).

Data collection from previous metabolomics analyses

Considerable targeted and untargeted metabolomics data
from the Oat1KO and Oat3KO mice have been previously pub-
lished by us (28, 34, 36, 39, 54, 63, 70). Although these older
previous studies utilized different platforms, different reference
libraries, and slightly different protocols (e.g. the Oat3KO
metabolomics analyses included data from both male and
female knockout mice), for the machine-learning analyses per-
formed here, the available data from previous and the current
metabolomics studies were combined to enable relative quan-
tification of over 500 metabolites with known identities (28, 36,
63, 71).

In this case, each metabolite was compared across the vari-
ous platforms employed, and only those metabolites present on
all of the various platforms were considered. From this list of
common metabolites, those unique to a particular Oat knock-
out were initially defined as those displaying significant (p �
0.05) increases in plasma concentration in one or the other of

the knockout mice (e.g. significantly increased in the plasma of
the Oat1KO, but not in the Oat3KO). In this way, a much larger
number of unique metabolites (�90) were present in the
Oat1KO at a significance of p � 0.05, whereas a lower number
were uniquely present in the Oat3KO at this level of signifi-
cance. Therefore, to augment the number of unique Oat3KO-
interacting metabolites, those compounds displaying accumu-
lation in the serum of the Oat3KO (compared with the WT),
but not the Oat1KO, with a significance of 0.05 � p � 0.1
(trending toward significance) or a particularly high fold-
change with the inability to meet significance criteria appar-
ently due to an anomalous value were included; this resulted in
a set of 48 unique OAT3-interacting metabolites.

Although there were an unequal number of these unique
metabolites between the two knockouts, the numbers of unique
Oat1KO metabolites and Oat3KO metabolites were kept bal-
anced in training sets for machine-learning application. The
Data Sampler widget in Orange (44) was used for randomly
sampling 48 metabolites from the 90 total Oat1KO metabolites;
thus, the total number of metabolites used in the machine-
learning classification analyses was 96 (48 unique Oat1KO and
48 unique Oat3KO).

Generation of molecular properties

A set of 67 structural and physiochemical properties of iden-
tified OAT1 and OAT3 metabolites were calculated with tools
found in the computational environment of the commercially
available computational chemistry software, ICM (version
3.8 – 6) (Molsoft LLC, San Diego, CA). Complexity values were
obtained from PubChem, which describes “complexity” as fol-
lows. “The complexity rating of a compound is a rough estimate
of how complicated a structure is, seen from both the point
of view of the elements contained and the displayed struc-
tural features, including symmetry. This complexity rating is
computed using the Bertz/Hendrickson/Ihlenfeldt formula
(58).”

Elimination of highly-correlated molecular properties to
reduce a number of features for machine-learning analyses

An initial evaluation of the molecular properties revealed
highly-correlated descriptors. For example, a number of molec-
ular properties, such as molWeight, molVolume, molArea, and
number of atoms, are highly correlated with each other, essen-
tially providing different but related measures of correlated
properties. Pairwise correlation coefficients for the molecular
features were determined, and a number of highly cross-corre-
lated features were eliminated. In this way, the list of more than
60 molecular properties was reduced to a smaller number
(�25) for the size of the number of molecules in the training set
and from the viewpoint of visualization and data analysis.

Machine learning

Orange, versions 3.13 and 3.16, was used. The Orange soft-
ware package uses Python libraries, including Scikit-Learn,
numpy, and scipy (45). A series of analyses, including PCA,
ranking based on information gain, FreeViz (44), outlier analy-
sis, and machine-learning analyses, i.e. k-means classification,
decision trees, random forests, neural networks, Naive Bayes,
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and logistic regression, were performed. Other, mostly con-
firmatory and complementary, machine-learning analyses was
performed using the Python-based package SciKit-Learn (47).
Default parameters were generally kept.

Data visualization and SQL queries

Data visualizations were mostly done in Orange (distribu-
tions, scatterplots, and FreeViz). Additional data visualizations
were done in Python using a Jupyter notebook with the pandas,
matplolib, and seaborn libraries imported. For SQL queries,
Excel or csv files were imported into SQL Studio for data
analysis, or the queries were coded in Python using
SQLAlchemy.

Identification of optimal seven properties with highest
random forest classification accuracies by a systematic
enumeration of property combinations

First, the set of 138 metabolites was divided into a training set
of 48 each (OAT1, OAT3) and resampled test set of 42 each. All
possible combinations of features were run, and the top 2500
AUC were recorded. Then, we took each set in this 2500 and
used k-fold cross-validation as our metric for accuracy from the
SciKit-Learn library. We could not simply run k-fold on the
entire set of combinations due to computational limitations. To
find the ten best sets of seven features, the classification accu-
racy along with its standard deviation was found by re-sampling
k-fold-cross-validation 200 times to address variance from the
random sampling. (By testing over 50 to 2000 iterations, the
standard deviation remained at about 1.5%, thus providing con-
fidence that these were consistent scores.) The highest average
Random Forest scores were then chosen as the best feature sets.

Brute-force approach with SciKit-learn Random Forest
classifier

Of the many numeric molecular properties previously
described (Table S2), 25 properties were selected by selecting
single representatives from several highly correlated properties.
These 25 were then used as the “pool” of features from which
sets of seven features were randomly chosen for a brute force
analysis. In this way, all possible combinations of seven features
from the list of 25 attributes (out of 480,700 possible combina-
tions) were tested using the Random Forest classification algo-
rithm in SciKit-Learn, and the classification accuracies were
determined.

Predictions of unique OAT1 and unique OAT3 drugs by the
unique OAT1 versus unique in vivo metabolite-based
classification model

The metabolite-based Random Forest classifier model built,
using the seven features described in the text that were able to
correctly classify unique OAT1 versus unique OAT3 metabo-
lites �80% of the time, was used to test whether unique OAT1
and unique OAT3 drugs could be predicted. The model was
applied using the Predictions widget in Orange. As described
under “Results,” the final drug dataset used consisted of drugs
known to have �5-fold differences in affinity for OAT1 versus
OAT3 when analyzed in vitro by cell-based assays. As a control,

we used a drug dataset where there was no difference or mini-
mal (�2-fold) difference in affinity between OAT1 and OAT3.

Author contributions— R. A. and S. K. N. conceptualization; G. L.,
D. S., and K. T. B. data curation; V. B., R. A., and S. K. N. supervision.
A. K. N., K. L., and S. K. N. investigation; A. K. N., and S. K. N. writ-
ing-original draft; A. K. N., J. G. L., D. S., K. T. B., V. B., R. A., and
S. K. N. writing-review and editing.
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