
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Learning Environment and Dynamics Representations for Autonomous Robot Navigation

Permalink
https://escholarship.org/uc/item/3rs2d4m2

Author
Duong, Thai Phu

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rs2d4m2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Learning Environment and Dynamics Representations for Autonomous Robot Navigation

A dissertation submitted in partial satisfaction of the requirements
for the degree Doctor of Philosophy

in

Electrical Engineering (Intelligent Systems, Robotics, and Control)

by

Thai Phu Duong

Committee in charge:

Professor Nikolay Atanasov, Chair
Professor Henrik Christensen
Professor Melvin Leok
Professor Michael Yip

2024

Copyright

Thai Phu Duong, 2024

All rights reserved.

The Dissertation of Thai Phu Duong is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2024

iii

DEDICATION

To my family,

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Vita . xiv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Autonomous Robot Navigation Problem . 2
1.3 Related Work . 5
1.4 Overview and Contributions . 8

Chapter 2 Background . 12
2.1 Matrix Lie Groups . 12

2.1.1 Example: SE(3) Manifold . 15
2.2 Hamiltonian Dynamics . 18

2.2.1 Hamiltonian Dynamics on Vector Space . 18
2.2.2 Hamiltonian Dynamics on Matrix Lie Groups . 19
2.2.3 Port-Hamiltonian Dynamics . 21
2.2.4 Example: Hamiltonian Dynamics on the SE(3) Manifold 22

2.3 Neural Ordinary Differential Equation Networks . 24
2.4 Machine Learning Classifiers . 26

2.4.1 Kernel Perceptron . 26
2.4.2 Relevance Vector Machine . 26

Chapter 3 Learning Sparse Occupancy Map Representations . 31
3.1 Sparse Probabilistic Occupancy Mapping Problem . 33
3.2 Sparse Binary Kernel-based Occupancy Mapping . 34
3.3 Sparse Bayesian Kernel-based Occupancy Mapping . 35

3.3.1 Sequential Relevance Vector Machine Training . 36
3.3.2 Online Mapping using Streaming Data . 36

3.4 Online Mapping . 39
3.5 Efficient Relevance Vector Machine Inference . 40

v

3.6 Computational and Storage Improvements . 43
3.6.1 Computational Improvements . 43
3.6.2 Storage Improvements . 44

3.7 Evaluation . 45
3.7.1 Comparison with Binary Map Representations . 46
3.7.2 Comparison with Probabilistic Map Representations 49
3.7.3 Decision Boundary’s Conservativeness . 53

3.8 Summary . 54

Chapter 4 Learning Hamiltonian Dynamics on Lie Groups . 55
4.1 Dynamics Learning Problem . 59
4.2 Learning Hamiltonian Dynamics on Matrix Lie Groups . 60

4.2.1 Data Collection . 60
4.2.2 Model Architecture . 60
4.2.3 Training Process . 62
4.2.4 Application to SE(3) Hamiltonian Dynamics Learning 62

4.3 Disturbance Model Learning Problem . 64
4.4 Hamiltonian-based Disturbance Feature Learning . 66
4.5 Evaluation . 67

4.5.1 Pendulum . 67
4.5.2 Crazyflie Quadrotor . 70
4.5.3 Comparison to Unstructured Neural ODE Models 71

4.6 Summary . 74

Chapter 5 Autonomous Navigation with Learned Robot Dynamics and Sparse Map
Representations . 76

5.1 Motion Planning With Sparse Occupancy Maps . 76
5.1.1 Checking Line Segments . 78
5.1.2 Checking Curves . 80
5.1.3 Integration with Motion Planning Algorithms . 82

5.2 Trajectory Tracking with Learned Hamiltonian Dynamics 82
5.2.1 Control Design for Hamiltonian Dynamics on Lie Groups 84
5.2.2 Control Design for Hamiltonian Dynamics on the SE(3) Manifold 86
5.2.3 Adaptive Control with Learned Disturbance Model on the SE(3) Mani-

fold . 91
5.3 Autonomous Navigation . 93
5.4 Evaluation . 94

5.4.1 Effectiveness of Collision Checking Algorithms . 94
5.4.2 Effectiveness of Trajectory Tracking Control Design 96
5.4.3 Effectiveness of Adaptive Control Design . 100
5.4.4 Real Experiments with Ground Robots . 106
5.4.5 Real Experiments with Quadrotors . 108
5.4.6 Active Mapping . 112

5.5 Summary . 115

vi

Chapter 6 Conclusions and Future Work . 116

Appendix A Software and Supplementary Material . 121
A.1 Sparse Bayesian Occupancy Maps and Collision Checking 121
A.2 Hamiltonian Dynamics Learning and Control . 121

Appendix B Proofs of Propositions in Chapter 3 . 122
B.1 Proof of Proposition 1 . 122
B.2 Proof of Proposition 2 . 123
B.3 Proof of Proposition 3 . 123
B.4 Proof of Proposition 4 . 125

Appendix C Implementation Details for Chapter 4 . 126

Appendix D Proof of Theorem 2 in Chapter 5 . 128

Bibliography . 131

vii

LIST OF FIGURES

Figure 1.1. Autonomous navigation task in mobile robots. 2

Figure 3.1. A ground robot equipped with a lidar (red) and our map representation as
a sparse set of occupied (light red) and free (green) relevance vectors. 32

Figure 3.2. Example of our mapping method for a ground robot in an unknown envi-
ronment. 37

Figure 3.3. Sparse map representation (with η = 1,Γ =
√

γI,γ = 3.0) built from local
streaming laser scans along the robot trajectory. 45

Figure 3.4. Comparison among sparse Bayesian kernel-based map (SBKM), LARD-
HM [56], and SBHM [148] on the Intel Research Lab dataset [70]. 49

Figure 3.5. Occupied area versus the bias b and the threshold e (a) and versus noise
level (b). 53

Figure 4.1. A quadrotor tracking a trajectory using our learned model and avoid ob-
stacles. 56

Figure 4.2. Architecture of port-Hamiltonian neural ODE network on a Lie group.
The trainable terms are shown in green. 61

Figure 4.3. Evaluation of our SO(3) Hamiltonian neural ODE network on a pendulum
system with scale factor β = 1.33. 68

Figure 4.4. Evaluation of the SE(3) Hamiltonian neural ODE network on an under-
actuated Crazyflie quadrotor in the PyBullet simulator [129]. 70

Figure 4.5. Comparison of different network architectures to learn pendulum dynam-
ics: 1) black-box; 2) unstructured Hamiltonian; 3) structured Hamiltonian. 72

Figure 4.6. Comparison of different network architecture to learn quadrotor dynam-
ics: 1) black-box; 2) unstructured Hamiltonian; 3) structured Hamiltonian. 73

Figure 5.1. Illustration of our classification algorithms for the trained RVM model in
Figure 3.2 with b =−0.05,e =−0.01, and n1 = n2 = 1. 78

Figure 5.2. Comparison between sampling-based (SB) method and ours with different
sampling intervals ∆. 94

Figure 5.3. Comparison between sampling-based (SB) method with baseline maps
and ours with sampling interval ∆ = 0.005. 95

viii

Figure 5.4. Evaluation of our energy-based controller on a pendulum system. 96

Figure 5.5. Crazyflie quadrotor trajectory (blue) tracking a desired diamond-shaped
trajectory (orange) shown in Figure 5.6. 97

Figure 5.6. Trajectory tracking experiment with a Crazyflie quadrotor in the PyBullet
simulator [129]. 98

Figure 5.7. Comparison of our learned adaptive controller and a disturbance observer
method on a pendulum. 101

Figure 5.8. Tracking performance under an external wind dw = [0.075 0.075 0]
and two defective rotors from the beginning (scenario 1) and after 8s (sce-
nario 2) both with (δ1,δ2) = (80%,80%). 103

Figure 5.9. Tracking visualization with and without our adaptation law. 104

Figure 5.10. Real experiment with an autonomous Racecar robot navigating in an un-
known hallway environment. 106

Figure 5.11. Our customized quadrotors with different frames, computers, sensors, and
payload. 108

Figure 5.12. Trajectory tracking experiments with our real quadrotors and different tra-
jectories using our learned model and controller. 109

Figure 5.13. Tracking performance using our learned model and controller and using a
nominal model and a geometric controller [88]. 110

Figure 5.14. Trajectory tracking experiments with extra payload using our controller
with previously learned model and updated model. 111

Figure 5.15. Tracking performance with extra payload using our previously learned and
updated models. 112

Figure 5.16. Illustration of an active mapping task over time. The red, green and cyan
dots are the initial and current robot positions, and the chosen goal. 114

ix

LIST OF TABLES

Table 3.1. Comparison among our sparse Bayesian kernel-based map (SBKM), our
sparse kernel-based map (SKM) [37], OctoMap (OM) [68], and sequential
Bayesian Hilbert map (SBHM) [148]. 46

Table 3.2. Comparison among our sparse SBKM map, SBHM map [148], LARD-HM
map [56] and OctoMap [68] on the Intel Research Lab dataset [70]. 50

Table 5.1. Comparison of sampling-based (SB) method with baseline maps and ours
with sampling interval ∆ = 0.005. 95

Table 5.2. Angle tracking performance of a pendulum with our adaptive controller,
with disturbance observer (DOB), and without adaptation. 102

Table 5.3. Tracking error of a quadrotor with and without our adaptation. 104

Table 5.4. Position errors of our real quadrotor using our nominal and learned models
with and without payload . 113

x

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Nikolay Atanasov, for

his unwavering support and guidance throughout the years. He gave me an opportunity to join

his lab, taught me how to be an independent researcher, and more importantly showed me how

to find joy and stay resilient through the ups and downs of my PhD journey. He also offered

me the freedom to pursue my research passion and motivated me to excite other people with

my ideas. He provided constant support day and night for many projects that we worked on

together, leading to several interesting ideas, papers and experiments. His relentless patience

and encouragement have been the driving force behind my research throughout the years.

I thank my PhD committee members, Dr. Henrik Christensen, Dr. Melvin Leok, and

Dr. Michael Yip, for accommodating my qualifying exam and final defense schedule, showing

interest in my research, reviewing and providing insightful comments on my work. I thank

Dr. Michael Yip for working with me on learning sparse environment representations for nav-

igation, and giving me valuable advice during my PhD. I thank Dr. Eduardo Montijano, Dr.

Carlos Sagues, Dr. George Pappas, and Dr. Quan Nguyen for collaborating with me in various

projects, ranging from learning distributed controllers and planning with large language models

to learning dynamics for quadruped jumping. I thank my former advisors, Dr. Thinh Nguyen

and Dr. Thang Hoang, for introducing me to research and inspiring me to pursue my passion.

I thank my co-authors, Nikhil Das, Zhichao Li, Eduardo Sebastian, Valentin Duruis-

seaux, Abdullah Altawaitan, Jason Stanley, Sambaran Ghosal, Zhirui Dai, Arash Asghari-

vaskasi, and Chuong Nguyen for brainstorming ideas and solutions, performing experiments,

and especially sharing both tough and joyful moments while working on our papers. I thank my

ERL labmates for interesting discussions on various research topics and challenges of graduate

school. Special thanks go to Zhichao Li, Abdullah Altawaitan, Jason Stanley, and Minh Pham

for their relentless help with real experiments on the ground and aerial robots through several

days and nights. I thank Qiaojun Feng, Tianyu Wang, and Eduardo Sebastian for midnight dis-

cussions on random problems in our life. I thank Ahmed Qureshi and Carlos Nieto-Granda for

xi

guiding me through the difficult times at the beginning of my PhD.

I would like to express my appreciation to our Racecar and Jackal ground robots, and

our quadrotors, Penguin and Kiwi, for always staying strong through several crashes and putting

their life at risk for the success of our demonstrations. My dissertation would not have been

possible without them working their batteries out.

I also had great pleasure of having many friends at UC San Diego, Ninh Tran, Loan

Le, Duc Tran, Tan Trinh, Phuong Nguyen, Trung Tran, Chi Nguyen, Uyen Mai, Bao Lam,

Ha Pham, Ly Tran, Duong Hoang, Duong Nguyen, Vy Nguyen, Hoa Phan, Son Nguyen, Thu

Phan, Son Le, Nam Vu, Hieu Pham, Huong Hoang, Tri Hoang, and others. I thank them for the

never-ending support and encouragement they have brought to my life. I thank my old friends,

Thuan Duong-Ba, Duong Nguyen-Huu, Tram Hoang and Nam Pham, for always rooting for

my career. I thank Nate, Will, Catherine, Maria, Vivek, Mi, Duy and Mohammad for sharing

the great pleasure and challenges of our student-parent life.

Finally, I would like to express my deepest appreciation to my family for supporting my

research career. I thank my wife, Huong Luong, and my children, Chi Duong and Minh Duong,

for their understanding, love and unconditioned support. I thank my parents and parents-in-law

for believing in me and for their immeasurable help with our kids. I thank my grandparents for

giving me my first lessons of algebra and passing their interests in academics on to me.

Chapters 1, 2 and 5, in part, are reprints of the material as it appears in T. Duong, M.

Yip, N. Atanasov, “Autonomous Navigation in Unknown Environments with Sparse Bayesian

Kernel-based Occupancy Mapping”, IEEE Transactions on Robotics (T-RO), vol. 38, no. 6,

pp. 3694-3712, 2022, in T. Duong, N. Das, M. Yip, N. Atanasov, “Autonomous Navigation in

Unknown Environments using Sparse Kernel-based Occupancy Mapping”, International Con-

ference on Robotics and Automation (ICRA), pp. 9666-9672, 2020, in T. Duong, N. Atanasov,

“Hamiltonian-based Neural ODE Networks on the SE(3) Manifold For Dynamics Learning and

Control”, Robotics: Science and Systems (RSS), 2021, in T. Duong, N. Atanasov, “Physics-

guided Learning-based Adaptive Control on the SE(3) Manifold”, Physical Reasoning and In-

xii

ductive Biases for the Real World Workshop, 2021, and in T. Duong, N. Atanasov, “Adaptive

Control of SE(3) Hamiltonian Dynamics with Learned Disturbance Features”, IEEE Control

Systems Letters (L-CSS), vol. 6, pp. 2773-2778, 2022. Chapters 1, 2 and 5, in part, have been

submitted for publication of the material as it may appear in T. Duong, A. Altawaitan, J. Stan-

ley, N. Atanasov, “Port-Hamiltonian-based Neural ODE Networks on Lie Groups For Robot

Dynamics Learning and Control”, Transactions on Robotics, 2024. The dissertation author was

the primary investigator and author of these papers.

Chapter 3, in part, is a reprint of the material as it appears in T. Duong, M. Yip, N.

Atanasov, “Autonomous Navigation in Unknown Environments with Sparse Bayesian Kernel-

based Occupancy Mapping”, IEEE Transactions on Robotics (T-RO), vol. 38, no. 6, pp. 3694-

3712, 2022, in T. Duong, N. Das, M. Yip, N. Atanasov, “Autonomous Navigation in Unknown

Environments using Sparse Kernel-based Occupancy Mapping”, International Conference on

Robotics and Automation (ICRA), pp. 9666-9672, 2020. The dissertation author was the pri-

mary investigator and author of these papers.

Chapter 4, in part, is a reprint of the material as it appears in T. Duong, N. Atanasov,

“Hamiltonian-based Neural ODE Networks on the SE(3) Manifold For Dynamics Learning and

Control”, Robotics: Science and Systems (RSS), 2021, in T. Duong, N. Atanasov, “Physics-

guided Learning-based Adaptive Control on the SE(3) Manifold”, Physical Reasoning and In-

ductive Biases for the Real World Workshop, 2021, and in T. Duong, N. Atanasov, “Adaptive

Control of SE(3) Hamiltonian Dynamics with Learned Disturbance Features”, IEEE Control

Systems Letters (L-CSS), vol. 6, pp. 2773-2778, 2022. Chapter 4, in part, has been submit-

ted for publication of the material as it may appear in T. Duong, A. Altawaitan, J. Stanley, N.

Atanasov, “Port-Hamiltonian-based Neural ODE Networks on Lie Groups For Robot Dynam-

ics Learning and Control”, Transactions on Robotics, 2024. The dissertation author was the

primary investigator and author of these papers.

xiii

VITA

2011 Bachelor of Science, Hanoi University of Science and Technology, Vietnam

2015 Master of Science, Oregon State University

2015–2018 Software Engineer, Microsoft Corporation

2018–2024 Graduate Student Researcher, University of California San Diego

2024 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

T. Duong, A. Altawaitan, J. Stanley, N. Atanasov, “Port-Hamiltonian-based Neural ODE Net-
works on Lie Groups For Robot Dynamics Learning and Control”, under review, 2024.

E. Sebastian, T. Duong, N. Atanasov, E. Montijano and C. Sagues, “Physics-Informed Multi-
Agent Reinforcement Learning for Distributed Multi-Robot Problems”, under review, 2024.

T. Duong, M. Yip, N. Atanasov, “Autonomous Navigation in Unknown Environments with
Sparse Bayesian Kernel-based Occupancy Mapping”, IEEE Transactions on Robotics (T-RO),
vol. 38, no. 6, pp. 3694-3712, 2022.

T. Duong, N. Atanasov, “Adaptive Control of SE(3) Hamiltonian Dynamics with Learned Dis-
turbance Features”, IEEE Control Systems Letters (L-CSS), vol. 6, pp. 2773-2778, 2022.

Z. Li, T. Duong, N. Atanasov, “Robust and Safe Autonomous Navigation for Systems with
Learned SE(3) Hamiltonian Dynamics”, IEEE Open Journal of Control System (OJ-CSYS),
vol. 1, pp. 164-179, 2022.

Z. Dai, A. Asgharivaskasi, T. Duong, S. Lin, M. Tzes, G. Pappas, N. Atanasov, “ Optimal
Scene Graph Planning with Large Language Model Guidance”, IEEE International Conference
on Robotics and Automation (ICRA), 2024.

A. Altawaitan, J. Stanley, S. Ghosal, T. Duong, N. Atanasov, “ Hamiltonian Dynamics Learning
from Point Cloud Observations for Nonholonomic Mobile Robot Control”, IEEE International
Conference on Robotics and Automation (ICRA), 2024.

E. Sebastian, T. Duong, N. Atanasov, E. Montijano and C. Sagues, “Learning to Identify Graphs
from Node Trajectories in Multi-Robot Networks”, International Symposium on Multi-Robot
and Multi-Agent Systems (MRS), 2023.

xiv

V. Duruisseaux, T. Duong, N. Atanasov, M. Leok, “Lie Group Forced Variational Integrator
Networks for Learning and Control of Robot Systems”, Learning for Dynamics & Control
Conference (L4DC), pp. 731-744, 2023.

E. Sebastian, T. Duong, N. Atanasov, E. Montijano and C. Sagues, “LEMURS: Learning Dis-
tributed Multi-robot Interactions”, IEEE International Conference on Robotics and Automation
(ICRA), pp. 7713-7719, 2023.

Z. Li∗, T. Duong∗, N. Atanasov, “Safe Autonomous Navigation for Systems with Learned SE(3)
Hamiltonian Dynamics”, Learning for Dynamics & Control Conference (L4DC), pp. 981-993,
2022. ∗Equal contribution.

T. Duong, N. Atanasov, “Hamiltonian-based Neural ODE Networks on the SE(3) Manifold For
Dynamics Learning and Control”, Robotics: Science and Systems (RSS), 2021.

T. Duong, N. Das, M. Yip, N. Atanasov, “Autonomous Navigation in Unknown Environments
using Sparse Kernel-based Occupancy Mapping”, International Conference on Robotics and
Automation (ICRA), pp. 9666-9672, 2020.

T. Duong, N. Atanasov, “Physics-guided Learning-based Adaptive Control on the SE(3) Mani-
fold”, Physical Reasoning and Inductive Biases for the Real World Workshop at NeurIPS, 2021.

FIELDS OF STUDY

Major Field: Electrical and Computer Engineering

Studies in Intelligent Systems, Robotics & Control
Professor Nikolay Atanasov

xv

ABSTRACT OF THE DISSERTATION

Learning Environment and Dynamics Representations for Autonomous Robot Navigation

by

Thai Phu Duong

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, and Control)

University of California San Diego, 2024

Professor Nikolay Atanasov, Chair

Robot systems have become prevalent and transformative in many areas, such as en-

vironment surveillance and reconnaissance, search and rescue, industrial manufacturing, and

transportation. In these applications, it is critical for robots to navigate autonomously and reli-

ably in the environment in order to execute their tasks. This requires efficient maintenance of an

environment model, offering minimal storage footprint and fast inference time, and an accurate

robot dynamics model, enabling stable and robust control policies in novel operating conditions.

This dissertation proposes a novel autonomous navigation approach that utilizes machine learn-

ing techniques to develop sparse probabilistic occupancy maps of the environment and learn

robot dynamics efficiently from data by preserving prior knowledge in the dynamics model.

xvi

The first part of the dissertation develops a compact machine learning model, trained

online from streaming sensory data, to represent the occupancy of the environment. While

common occupancy maps might have high storage requirements for large environments, we

propose a novel approach that models the obstacle boundary as the decision boundary of a ma-

chine learning classifier, and thus, scales with the complexity of the boundary instead of the en-

vironment size. We develop online training algorithms of kernel perceptron and relevance vec-

tor machine classifiers to incrementally build sparse binary and probabilistic occupancy maps,

respectively, from local observations.

The second part of the dissertation proposes a machine learning model for learning ac-

curate robot dynamics from state-control trajectories. While hand-designed models might over-

simplify the dynamical system, black-box models recently have become increasingly popular

but require a large amount of data for training. We develop a data-efficient hybrid approach by

encoding prior knowledge such as universal laws of physics and the kinematic structure of the

state manifold in the dynamics model. The encoded prior knowledge is guaranteed by design

instead of being inferred from data. In novel operating conditions, this approach is extended to

learn a disturbance model to handle dynamics changes.

The dissertation finally develops efficient collision checking algorithms for motion plan-

ning with the learned sparse map representations and trajectory-tracking control policies based

on the learned robot dynamics and disturbance models, offering a fast, reliable, and long-term

solution for autonomous navigation. The autonomous navigation approach is verified exten-

sively with datasets, simulated and real robot experiments.

xvii

Chapter 1

Introduction

1.1 Motivation

Autonomous navigation in an unstructured and unknown environment is a fundamental

problem in many robotics applications such as warehouse automation, transportation, surveil-

lance, and environment monitoring. It depends on the availability of an accurate system dy-

namics model and a scalable environment representation for motion planning and control. Tra-

ditionally, autonomous navigation relies on hand-designed robot dynamics from system iden-

tification and occupancy maps that label each point in the environment as free or occupied.

However, hand-designed robot dynamics may be insufficiently accurate even after careful pa-

rameter tuning while common occupancy representations for navigation may have high storage

requirements for large environments.

Recently, the abundance of data from onboard sensors offers an incredible opportunity

to learn accurate, yet efficient, representations for environments and robot dynamics, enabling

safe, scalable and reliable autonomous robot navigation (Figure 1.1). Therefore, the goal of

this dissertation is to develop a novel and effective solution for autonomous navigation that:

1) encodes prior knowledge and constraints in machine learning models to efficiently learn

robot dynamics and control from data; and 2) builds large-scale, yet compact, environment

representations by modeling obstacle boundaries using a machine learning classifier. In the next

chapters, we study both how to learn efficient representations for environment understanding

1

(a) A ground robot observes the environment via a Lidar
(courtesy of Altawaitan et al. [2]).

(b) The robot builds a map of the environ-
ment.

(c) Using the map and robot dynamics, the robot
plans and follows a trajectory to finish their tasks.

Figure 1.1. Autonomous navigation task in mobile robots.

(Chapter 3) and robot dynamics (Chapter 4), and develop planning and control algorithms with

the proposed representations to complete the autonomous navigation task (Chapter 5).

1.2 Autonomous Robot Navigation Problem

In this section, we describe the main problems in autonomous robot navigation that we

consider in this dissertation, including mapping, dynamics learning, planning and control.

Consider a robot with state s∈S , consisting of the robot’s position p∈ [0,1]d and other

variables such as orientation, velocity, etc., navigating in an unknown environment. Let O ⊂

[0,1]d be a closed set representing occupied space and let F be its complement, representing

free space. Assume that the robot can be enclosed by a sphere of radius r∈R>0 centered at p. In

configuration space (C-space), the robot’s body becomes a point p, while the obstacle space and

free space are transformed as Ō = ∪x∈OB(x,r), where B(x,r) = {x′ ∈ [0,1]d : ∥x−x′∥2 ≤ r},

2

and F̄ = [0,1]d \ Ō . Let S̄ be the subset of the robot state space that corresponds to the

collision-free robot positions F̄ . The robot is equipped with a sensor, such as a Lidar or depth

camera, that provides distance measurements zk at time tk to the obstacle space O within its

field of view. An important task in autonomous navigation is to construct an occupancy map

mk : [0,1]d →{−1,1} of the C-space based on accumulated observations z0:k, where “−1” and

“1” mean “free” and “occupied”, respectively. As the robot is navigating, new sensor data is

used to update the map via a function, mk+1 = g(mk,zk), of the previous estimate mk and a

newly received range observation zk.

Problem 1 (Mapping). Given a previous occupancy map mk and a local range observation zk of

the environment, find a function g that updates the map of the environment based on the current

measurements zk: mk+1 = g(mk,zk).

Let ṡ = f(s,u) characterize the continuous-time robot dynamics with control input tra-

jectory u ∈ U . We consider constant control inputs (zero-order hold) applied at discrete time

steps tk for k = 0,1, . . . ,N so that u(t)≡ uk for [tk, tk+1). We assume that the state s is known or

estimated by a localization algorithm and let sk := s(tk) at time tk.

As the dynamics function f is often unknown, an accurate approximated dynamics

function f̄θ with parameters θ is critical for the robot to navigate in the environment. Let

D = {t(i)0:N ,s
(i)
0:N ,u

(i)}D
i=1 consist of D state sequences s(i)0:N , obtained by applying a constant

control input u(i) to the system with initial condition s(i)0 at time t(i)0 and sampling its state

s(i)(t(i)n) =: s(i)n at times t(i)0 < t(i)1 < .. . < t(i)N . Using the dataset D , we aim to find a function

f̄θ with parameters θ that approximates the true dynamics f well. To optimize θ , we roll out

the approximate dynamics f̄θ with initial state s(i)0 and constant control u(i) and minimize the

discrepancy between the computed state sequence s̄(i)1:N and the true state sequence s(i)1:N in D .

Problem 2 (Dynamics Learning). Given a dataset D = {t(i)0:N ,s
(i)
0:N ,u

(i)}D
i=1 and a function f̄θ ,

3

find the parameters θ that minimize:

min
θ

D

∑
i=1

N

∑
n=1

ℓ(s(i)n , s̄(i)n)

s.t. ˙̄s(i)(t) = f̄θ (s̄(i)(t),u(i)), s̄(i)(t0) = s(i)0 ,

s̄(i)n = s̄(i)(tn), ∀n = 1, . . . ,N, ∀i = 1, . . . ,D,

(1.1)

where ℓ is a distance metric on the state space.

Assuming unobserved regions are free, we rely on the current map mk to plan a robot

trajectory to a goal region G ⊆ S̄ . Applying control action a at s incurs a motion cost c(s,a),

e.g., based on traveled distance or energy expenditure. To be able to navigate in the environment,

we aim to solve: 1) a planning problem where we find a sequence of desired control inputs

that minimizes the cumulative cost of navigating safely to the goal G (Problem 3); and 2) a

control problem where we find a feedback control policy that tracks the desired robot trajectory,

generated from the desired control sequence (Problem 4).

Problem 3 (Planning). Given a start state s0 ∈ S̄ and a goal region G ⊆ S̄ , find a sequence of

control inputs that leads the robot to the goal region G safely, while minimizing the cost:

min
N,u0,...,uN

N−1

∑
k=0

c(sk,uk) (1.2)

s.t. ṡ = f̄θ (s,u),u(t) = uk for t ∈ [tk, tk+1),s(t0) = s0, sN ∈ G ,

mk(s(t)) =−1 for t ∈ [tk, tk+1),k = 0, . . . ,N.

Let {u∗i }N
i=0 be the optimal sequence of open-loop control inputs that solves Problem

3 and generates a desired trajectory s∗(t) for the robot to follow. However, due to imprecise

dynamics model or disturbance in reality, the robot will not be able to accurately track the

desired trajectory s∗(t) using the open-loop control sequence {u∗i }N
i=0. Therefore, we aim to

design a feedback controller capable of tracking a desired state trajectory s∗(t), t ≥ t0 for the

4

learned robot dynamics function fθ .

Problem 4 (Control). Given an initial condition s0 at time t0, a desired state trajectory s∗(t),

t ≥ t0, and robot dynamics f̄θ , design a feedback control policy u = π(s,θ ,s∗(t)) such that the

tracking error limsupt→∞ ℓ(s(t),s∗(t)) is bounded, where ℓ(s(t),s∗(t)) measures the discrepancy

between the desired state s∗(t) and the actual state s(t).

In the remainder of the dissertation, we aim to:

• solve Problem 1 in Chapter 3 by developing a sparse Bayesian kernel-based occupancy

map representation with efficient storage requirements while providing map uncertainty

for other downstream tasks,

• solve Problem 2 in Chapter 4 by learning the robot dynamics fθ from data while preserv-

ing Hamiltonian structure and the kinematic constraints of Lie groups for generalization,

data efficiency, and long-term predictions,

• solve Problem 3 by developing collision checking algorithms for common motion plan-

ning methods to generate desired robot trajectories, and solve Problem 4 by designing

an energy-based trajectory tracking control policy for the learned dynamics, handling

dynamics changes in new operating conditions in Chapter 5.

1.3 Related Work

In this section, we provide an overview of the related work on mapping, collision check-

ing for planning, dynamics and control designs for autonomous navigation.

While perceiving the environment, a robot often builds an environment representa-

tion from streaming data from onboard sensors [76]. The environment representation can

model the obstacle surfaces explicitly [171, 8, 79, 14, 150, 133, 139] or implicitly via occu-

pancy [41, 68, 179, 169] or signed distance [125, 61]. This dissertation focuses on occupancy

maps, which are commonly used for modeling the free and occupied space of an environment.

5

The space is discretized into a collection of cells, whose occupancy probabilities are estimated

online using the robot’s sensory data. While early work [161, 54] assumes that the cells are

independent, Gaussian process (GP) occupancy mapping [124, 170, 75] uses a kernel function

to capture the correlation among grid cells and predict the occupancy of unobserved cells. On-

line training of a Gaussian process model, however, does not scale well as its computational

complexity grows cubically with the number of data points. Ramos et al. [135] improve on

this by projecting the data points into Hilbert space and training a logistic regression model.

Senanayake and Ramos [148] propose a Bayesian treatment of Hilbert maps, called Sequen-

tial Bayesian Hilbert Map (SBHM), that updates the map from sequential observations of the

environment. They achieve sparseness by calculating feature vectors based on a sparse set of

hinged points, e.g., on a coarse grid. Instead of a fixed set of hinged points, localized automatic

relevance determination Hilbert maps (LARD-HM) [56] and efficient Hilbert maps (EHM) [57]

find the hinged points by clustering the training data points using k-means algorithms and cal-

culate their kernel parameters using automatic relevance determination. Meanwhile, Relevance

Vector Machine (RVM) [162, 163, 164] learns a sparse set of relevance vectors from the train-

ing dataset. The original RVM work [162] initially assumes that all data points are relevance

vectors and prunes them down, incurring high computation cost. Tipping and Faul [164] derive

a fast training algorithm that starts from an empty set of relevance vectors and adds points to

the set gradually. Meanwhile, Lopez and How [101] propose an efficient deterministic alterna-

tive, which builds a k-d tree from point clouds and queries the nearest obstacles for collision

checking. Using spatial partitioning similar to a k-d tree, octree-based maps [68, 17] offer effi-

cient map storage by performing octree compression, while AtomMap [47] stores a collection

of spheres in a k-d tree as a way to avoid grid cell discretization of the map. Instead of storing

occupancy information, Voxblox [125] stores distance to obstacles in each cell and builds an

Euclidean Signed Distance Field, as a map representation, online from streaming sensor data.

Given a map of the environment, navigation tasks requires planning a safe robot tra-

jectory, e.g., using RRT ∗ [82] or A∗ [96], which in turns, needs to evaluate a large amount of

6

collision checks for motion primitives, e.g., points, line segments or polynomials [10, 105, 64].

Common sampling-based collision checking methods are potentially time-consuming as a fi-

nite set of points are sampled on each motion primitive and checked for collision separately.

Bialkowski et al. [10] improve the checking time by using the distance to the closest obsta-

cle to choose the next sampling point to check. Recently, learning-based collision checking

methods [28, 128, 71] train a machine learning model of the obstacle boundaries and show that

collision checking time for a point outperforms geometry-based methods such as the Flexible

Collision Library (FCL) [127].

Dynamics models obtained from first principles via system identification [100] are com-

monly used in robotics, but may over-simplify the dynamical system, leading to bias and mod-

eling errors. Meanwhile, data-driven techniques [157, 142, 145, 102, 72] have emerged as a

powerful approach to approximate system dynamics with an over-parameterized machine learn-

ing model, e.g. neural networks, but typically require large amounts of data and computation

time. Recent works [108, 58, 25, 53, 21, 138, 104, 121] have considered a hybrid approach,

where prior knowledge of the physics, governing the system dynamics, is integrated into a ma-

chine learning model to represent robot dynamics. The encoded prior knowledge ranges from

kinematic structure [143], symmetry in rotation, scaling, and uniform motion [172], to the law

of energy conservation via Lagrangian formulation [138, 109, 58, 25, 107, 108, 104] or Hamil-

tonian formulation [53, 9, 21, 44, 182, 175, 121, 183, 177]. Given a robot dynamics model,

a control policy is often designed for stabilization and trajectory tracking using well-studied

control theory techniques [84], such as feedback linearization, control Lyapunov functions,

or passivity-based control. For Hamiltonian systems, which are based on the notion of en-

ergy, energy-shaping control techniques add additional energy via the control input so that the

closed-loop system’s total energy is minimized at the the desired state [168, 168, 126, 1, 23].

The dynamics can also be discretized to be used with model predictive control (MPC) [13, 55].

When disturbances and system changes during online operation bring about new out-

of-distribution data, it is often too slow to re-train the nominal dynamics model to support

7

real-time adaptation to environment changes. Instead, adaptive control [87, 73] offers effi-

cient tools to estimate and compensate for disturbances and parameter variations online. A

key technical challenge in adaptive control is the design of an adaptation law that estimates the

disturbance online [87]. The disturbance can be non-parametric [69, 49, 62, 20, 92] or paramet-

ric [154, 153, 33, 144], e.g. a linear combinations of known nonlinear features, and is updated

based on the state errors with stability obtained by sliding-mode theory [154, 153, 33], assum-

ing zero-state detectability [144, 33] or L1-adaptation [69, 49, 62]. If the system evolves on a

manifold (e.g., when the state contains orientation), an adaptation law is designed based on ge-

ometric errors, derived from the manifold constraints [51, 11]. A disturbance observer [20, 92]

use the state errors introduced by the disturbances to design an asymptotically stable observer

system that estimates the disturbance online. A disturbance adaptation law is paired with a

nominal controller, derived using Lagrangian dynamics with feedback linearization [154, 155],

Hamiltonian dynamics with energy shaping [119, 33], or model predictive control [131, 62].

Recently, there has been growing interest in applying machine learning techniques to

design adaptive controllers. As the nonlinear disturbance features are actually unknown in prac-

tice, they can be estimated using Gaussian processes [49, 52] or neural networks [78, 137].

The features can be learned online in the control loop [49, 78], which is potentially slow for

real-time operation, or offline via meta-learning from past state-control trajectories [63] or sys-

tem dynamics simulation [137]. Given the learned disturbance features, an adaptation law is

designed to estimate the disturbances online, e.g. using L1-adaptation [49] or by updating the

last layer of the feature neural network [78, 137, 151].

1.4 Overview and Contributions

This dissertation develops an effective autonomous navigation approach that learns ef-

ficient environment and dynamics representations from data. We focus on developing the fol-

lowing components in autonomous navigation:

8

• sparse probabilistic occupancy map representations for continuous-space large-scale en-

vironments, built online from streaming sensor measurements while providing map un-

certainty for other downstream tasks such as exploration (Chapter 3),

• a Hamiltonian-based neural ODE model on Lie groups that efficiently learns robot dy-

namics and disturbance models from state-control trajectories by embedding the law of

energy conservation and Lie group constraints for generalization, data efficiency, and

long-term state predictions (Chapter 4),

• efficient collision checking (without sampling) for trajectory planning based on the sparse

probabilistic occupancy maps, and stable and adaptive energy-based trajectory-tracking

control design based on the learned map and dynamics, leading to fast, reliable and large-

scale autonomous navigation (Chapter 5).

The organization of the dissertation and the contributions for each chapter are as follows.

Chapter 2 provides the necessary background to develop our techniques in the follow-

ing chapters, such as matrix Lie groups, Hamiltonian dynamics, neural ODE networks, and

machine learning classifiers.

Chapter 3 focuses on online occupancy mapping onboard an autonomous robot navi-

gating in a large unknown environment. Commonly used voxel and octree map representations

can be easily maintained in a small environment but have increasing memory requirements as

the environment grows. We propose a fundamentally different occupancy mapping approach,

where the obstacle boundary is modeled as the decision boundary of a machine learning clas-

sifier. This chapter generalizes a kernel perceptron model which maintains a very sparse set

of support vectors to represent the environment boundaries efficiently. We develop a proba-

bilistic formulation based on Relevance Vector Machines, handling measurement noise, and

probabilistic occupancy classification, supporting autonomous navigation. In this chapter, we

provide an online training algorithm, updating the sparse Bayesian map incrementally from

9

streaming range data. The effectiveness of our mapping algorithms is evaluated with various

real and simulated dataset of sequential laser scans in different environments.

Chapter 4 considers the problem of learning accurate robot dynamics from data, which

are critical for safe and stable control and generalization to novel operational conditions. While

hand-designed models may be insufficiently accurate, machine learning techniques have re-

cently become a common choice to approximate the robot dynamics over a training set of state-

control trajectories. The dynamics of many robots are described in terms of their generalized

coordinates on a matrix Lie group, e.g. on the SE(3) manifold for ground, aerial, and under-

water vehicles, and generalized velocity, and satisfy conservation of energy principles. This

chapter proposes a Hamiltonian formulation over a Lie group of the structure of a neural ordi-

nary differential equation (ODE) network [19] to approximate the robot dynamics. In contrast

to a black-box ODE network, our formulation preserves energy conservation principle and Lie

group’s constraints by construction and explicitly accounts for energy-dissipation effects such

as friction and drag forces in the dynamics model. While the learned dynamics model can be

fine-tuned quickly to handle dynamics changes, it might still be too slow for real-time adapta-

tion. In the second part of this chapter, we learn a parametric model of the dynamics changes or

disturbances, described as a linear combination of disturbance features, e.g., neural networks.

We train the disturbance feature networks using our Hamiltonian-structured neural ODE net-

works from a dataset of state-control trajectories under different disturbance realizations. Our

Hamiltonian-based neural ODE networks for dynamics learning are verified with various mo-

bile robot platforms.

Chapter 5 describes how we integrate our sparse probabilistic occupancy maps and our

learned Hamiltonian dynamics into autonomous navigation tasks. We first propose efficient

collision-checking methods associated with our proposed map representations in Chapter 3 for

line segments and general curves, representing robot trajectories. We develop energy shaping

and damping injection control for the learned, potentially under-actuated Hamiltonian dynamics

to enable a unified approach for stabilization and trajectory tracking with various platforms. In

10

the presence of disturbance or dynamics changes, we develop an adaptation law to estimate the

disturbances online based on the geometric tracking errors and the learned disturbance features

in Chapter 4, and compensate for them by the energy-based tracking controller. We finally

verify the effectiveness of our collision checking methods with our map representations, and

our control design with our learned dynamics in autonomous navigation tasks with ground and

aerial robot platforms.

The dissertation closes with conclusions and potential future directions in Chapter 6.

Acknowledgements

Chapter 1, in part, is a reprint of the material as it appears in T. Duong, M. Yip, N.

Atanasov, “Autonomous Navigation in Unknown Environments with Sparse Bayesian Kernel-

based Occupancy Mapping”, IEEE Transactions on Robotics (T-RO), vol. 38, no. 6, pp. 3694-

3712, 2022, in T. Duong, N. Das, M. Yip, N. Atanasov, “Autonomous Navigation in Un-

known Environments using Sparse Kernel-based Occupancy Mapping”, International Confer-

ence on Robotics and Automation (ICRA), pp. 9666-9672, 2020, in T. Duong, N. Atanasov,

“Hamiltonian-based Neural ODE Networks on the SE(3) Manifold For Dynamics Learning and

Control”, Robotics: Science and Systems (RSS), 2021, in T. Duong, N. Atanasov, “Physics-

guided Learning-based Adaptive Control on the SE(3) Manifold”, Physical Reasoning and In-

ductive Biases for the Real World Workshop, 2021, and in T. Duong, N. Atanasov, “Adaptive

Control of SE(3) Hamiltonian Dynamics with Learned Disturbance Features”, IEEE Control

Systems Letters (L-CSS), vol. 6, pp. 2773-2778, 2022. Chapter 1, in part, has been submit-

ted for publication of the material as it may appear in T. Duong, A. Altawaitan, J. Stanley, N.

Atanasov, “Port-Hamiltonian-based Neural ODE Networks on Lie Groups For Robot Dynam-

ics Learning and Control”, Transactions on Robotics, 2024. The dissertation author was the

primary investigator and author of these papers.

11

Chapter 2

Background

This chapter presents the background for further derivation of our work in the next chap-

ters, including matrix Lie groups, Hamiltonian formulation of robot dynamics, and machine

learning techniques such as neural ODE networks, kernel perceptron, and relevance vector ma-

chine classifiers.

2.1 Matrix Lie Groups

In this section, we cover the background needed to define Hamiltonian dynamics on a

Lie group. Please refer to [60, 89, 114] for a more detailed overview of matrix Lie groups.

Definition 1 (Dot Product). The dot product ⟨·, ·⟩ between two matrices ξ and ψ in Rn×m is

defined as:

⟨ξ ,ψ⟩= tr(ξ⊤ψ). (2.1)

Definition 2 (General Linear Group [60]). The general linear group GL(n,R) is the group of

n×n invertible real matrices.

Definition 3 (Matrix Lie Group [60]). A matrix Lie group G is a subgroup of GL(n,R) with

identity element e such that if any sequence of matrices {An}∞
n=0 in G converges to a matrix

A, then either A is in G or A is not invertible. A matrix Lie group is also a smooth embedded

submanifold on Rn×n.

12

Definition 4 (Tangent Space and Bundle). The tangent space TqG is the set of all tangent vectors

ξ to the manifold G at q. The tangent bundle TG is the set of all the pairs (q,ξ) with q ∈ G and

ξ ∈ TqG.

Definition 5 (Lie Algebra and Lie Bracket). A Lie algebra is a vector space g, equipped with a

Lie bracket operator [·, ·] : g×g→ g that satisfies:

bilinearity: [aξ 1 +bξ 2,ξ 3] = a[ξ 1,ξ 3]+b[ξ 2,ξ 3],

[ξ 3,aξ 1 +bξ 2] = a[ξ 3,ξ 1]+b[ξ 3,ξ 2],

skew-symmetry: [ξ 1,ξ 2] =−[ξ 2,ξ 1],

Jacobi identity:

[ξ 1, [ξ 2,ξ 3]]+ [ξ 2, [ξ 3,ξ 1]]+ [ξ 3, [ξ 1,ξ 2]] = 0.

Every matrix Lie group G is associated with a Lie algebra g, which is the tangent space at

the identity element TeG. An element q∈ G is linked with an element ξ ∈ g via the exponential

map expG : g→ G and the logarithm map logG : G→ g [60]. Since tangent spaces of G, and in

particular the Lie algebra g, are isomorphic to Euclidean space, we can define a linear mapping

(·)∧ : Rn→ g and its inverse (·)∨ : g→ Rn, where n is the dimension of G. Thus, we can map

between G and Rn using the compositions:

exp∧G = expG ◦ ∧, log∨G = ∨ ◦ logG . (2.2)

Definition 6 (Left Translation and Invariant Vectors). The left translation Lq :G→G with q∈G

is defined as:

Lq(h) = qh. (2.3)

The left-invariant vector TeLq(ξ) is defined as the derivative of the left translation Lq at h = e

in the direction of ξ . This vector describes the kinematics of the Lie group, which relates the

13

velocity ξ ∈ g to the change q̇ ∈ TqG of coordinates q:

q̇= TeLq(ξ) = qξ . (2.4)

The dual map T∗eLq of TeLq satisfies

⟨ξ ,T∗eLq(η)⟩= ⟨TeLq(ξ),η⟩, (2.5)

for any η ∈ g∗ and ξ ∈ g.

Definition 7 (Adjoint Operator). The adjoint Adq : g→ g is defined as:

Adq(ψ) = qψq−1. (2.6)

The algebra adjoint adξ : g→ g is the directional derivative of Adq at q= e in the direction of

ξ ∈ g:

adξ (ψ) =
d
dt
AdexpG(tξ)(ψ)

∣∣∣∣
t=0

= [ξ ,ψ]. (2.7)

Definition 8 (Cotangent Space and Bundle). The dual space of the tangent space TqG, i.e., the

space of all linear functionals from TqG to R, is called the cotangent space T∗qG. At the identity

e, the cotangent space of the Lie algebra g= TeG is denoted g∗. The cotangent bundle T∗G is

the set of all the pairs (q,p) with q ∈ G and p ∈ T∗qG.

Definition 9 (Coadjoint Operator). The coadjoint Ad∗q : g∗→ g∗ is defined as: ⟨Ad∗q(ϕ),ψ⟩=

⟨ϕ,Adq(ψ)⟩. The algebra coadjoint ad∗
ξ

: g∗→ g∗ is the dual map of adξ , satisfying:

⟨ad∗
ξ
(ϕ),ψ⟩= ⟨ϕ,adξ (ψ)⟩.

The next section describes the SE(3) Lie group to illustrate the definitions above. The

SE(3) Lie group is used to represent the position and orientation of a rigid body.

14

2.1.1 Example: SE(3) Manifold

Consider a fixed world inertial frame of reference and a rigid body with a body-fixed

frame attached to its center of mass. The pose of the body-fixed frame in the world frame is

determined by the position p = [x,y,z]⊤ ∈ R3 of the center of mass and the orientation of the

body-fixed frame’s coordinate axes:

R =

[
r1 r2 r3

]⊤
∈ SO(3), (2.8)

where r1,r2,r3 ∈ R3 are the rows of the rotation matrix R. A rotation matrix is an element of

the special orthogonal group:

SO(3) =
{

R ∈ R3×3 : R⊤R = I,det(R) = 1
}
. (2.9)

The rigid-body position and orientation can be combined in a single pose matrix q ∈ SE(3),

which is an element of the special Euclidean group:

SE(3) =

q=

R p

0⊤ 1

 ∈ R4×4 : R ∈ SO(3),p ∈ R3

 . (2.10)

The kinematic equations of motion of the rigid body are determined by the linear velocity v∈R3

and angular velocity ω ∈R3 of the body-fixed frame with respect to the world frame, expressed

in body-frame coordinates. The generalized velocity ζ = [v⊤, ω⊤]⊤ ∈ R6 determines the rate

of change of the rigid-body pose according to the SE(3) kinematics:

q̇= TeLq(ξ) = qξ = qζ̂ =

 Ṙ ṗ

0⊤ 0

=

Rω̂ Rv

0⊤ 0

 , (2.11)

15

where we overload ·̂ to denote the mapping from a vector ζ ∈ R6 to a 4×4 twist matrix:

ξ = ζ̂ =

 ω̂ v

0⊤ 0

 , (2.12)

in the Lie algebra se(3) of SE(3) and from a vector ω ∈ R3 to a 3×3 skew-symmetric matrix

ω̂ in the Lie algebra so(3) of SO(3):

ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.13)

From Eq. (2.11), we have Ṙ =

[
ṙ1 ṙ2 ṙ3

]⊤
= Rω̂ or ṙi = ri×ω = r̂iω for i = 1,2,3.

On the Lie algebra se(3), the algebra adjoint adξ (ψ) is defined as:

adξ (ψ) = [ξ ,ψ] = ξ ψ−ψξ . (2.14)

The dual map of adξ satisfies:

⟨ad∗
ξ
(ϕ),ψ⟩= ⟨ϕ,adξ (ψ)⟩

= ⟨ϕ, [ξ ,ψ]⟩

= ⟨ϕ,ξ ψ−ψξ ⟩

= ⟨ϕ,ξ ψ⟩−⟨ϕ,ψξ ⟩

= ⟨ξ⊤ϕ,ψ⟩−⟨ϕξ
⊤,ψ⟩

= ⟨ξ⊤ϕ−ϕξ
⊤,ψ⟩.

(2.15)

Therefore, we have:

ad∗
ξ
(ϕ) = ξ

⊤
ϕ−ϕξ

⊤. (2.16)

16

The dual map T∗eLq(η) is defined as ⟨ξ ,T∗eLq(η)⟩= ⟨TeLq(ξ),η⟩, where η =

ηR ηp

0⊤ 0

, and

ηR =

[
ηr1

ηr2
ηr3

]⊤
. We have:

⟨TeLq(ξ),η⟩=
〈 Ṙ ṗ

0⊤ 0

 ,
ηR ηp

0⊤ 0

〉

=
3

∑
i=1

ṙ⊤i ηri
+ ⟨ṗ,ηp⟩

=
3

∑
i=1

(r̂iω)⊤ηri
+ ⟨Rv,ηp⟩

= v⊤R⊤ηp−
3

∑
i=1

ω
⊤r̂iηri

= ⟨v,R⊤ηp⟩−
3

∑
i=1

ω
⊤(ri×ηri

)

= ⟨ω,−
3

∑
i=1

ri×ηri
⟩+ ⟨v,R⊤ηp⟩.

(2.17)

Letting T∗eLq(η) =

 â b

0⊤ 0

, we have:

⟨ξ ,T∗eLq(η)⟩=
〈 ω̂ v

0⊤ 0

 ,
 â b

0⊤ 0

〉 ,

= ⟨ω̂, â⟩+ ⟨v,b⟩

= 2⟨ω,a⟩+ ⟨v,b⟩

(2.18)

17

Comparing Eq. (2.17) and Eq. (2.18), we derive the closed-form solution of T∗eLq(η):

T∗eLq(η) =

−1
2

(
∑

3
i=1 ri×ηri

)∧ R⊤ηp

0⊤ 0

 (2.19)

Please refer to [5] for an excellent introduction to the use of SE(3) in robot state estimation

problems.

2.2 Hamiltonian Dynamics

There are three predominant formulations of classical mechanics [67] for describing the

motion of macroscopic objects: Newtonian, Lagrangian, and Hamiltonian. Newtonian mechan-

ics models the dynamics of mobile objects using forces and Cartesian coordinates according to

Newton’s laws of motion. Lagrangian and Hamiltonian mechanics use generalized coordinates

and energy in their formulations, which simplifies the equations of motion and reveals con-

served quantities and symmetries. In this section, we present a brief summary on Hamiltonian

dynamics on a state space, from a simple vector space Rn to a Lie group. A more general port-

Hamiltonian formulation is described as well, with an example of (port-)Hamiltonian dynamics

on the SE(3) manifolds.

2.2.1 Hamiltonian Dynamics on Vector Space

Both Lagrangian and Hamiltonian mechanics consider generalized coordinates q ∈ Rn

and velocity q̇ ∈ Rn, and defines a Lagrangian function L (q, q̇) as the difference between

kinetic energy 1
2 q̇
⊤M(q)q̇ and the potential energy V (q):

L (q, q̇) =
1
2
q̇⊤M(q)q̇−V (q), (2.20)

where the symmetric positive-definite matrix M(q) ∈ Sn×n
≻0 represents the generalized mass of

the system. Starting from the Lagrangian formulation, Hamiltonian mechanics expresses the

18

system dynamics in terms of the generalized coordinates q ∈ Rn and generalized momenta

p ∈ Rn, defined as:

p=
∂L (q, q̇)

∂ q̇
= M(q)q̇. (2.21)

Instead of the Lagrangian function, a Hamiltonian function H (q,p), representing the total

energy of the dynamical system, is obtained by the Legendre transform of L (q, q̇):

H (q,p) = p⊤q̇−L (q, q̇) =
1
2
p⊤M(q)−1p+V (q). (2.22)

The Hamiltonian characterizes the system dynamics according to the equations:

q̇=
∂H

∂p
, ṗ=−∂H

∂q
+B(q)u, (2.23)

where u ∈ Rn is an external affine control input with coefficient matrix B(q) ∈ Rn×n. With-

out external input, i.e., u = 0, (2.23) ensures that the total energy of the system is conserved,

d
dt H (q,p) = ∂H

∂q q̇+ ∂H
∂p ṗ= 0.

2.2.2 Hamiltonian Dynamics on Matrix Lie Groups

In this section, we describe Hamilton’s equations of motion on a matrix Lie group

[114, 89]. Our neural network architecture design in Section 4.2 is based on Lie group Hamilto-

nian dynamics, which enables guarantees for both kinematic constraint satisfaction and energy

conservation. Consider a system with generalized coordinates q in a matrix Lie group G and

generalized velocity q̇ ∈ TqG. The dynamics of the state s = (q, q̇) ∈ TG satisfy:

q̇= TeLq(ξ) = qξ , (2.24)

where ξ is a element in the Lie algebra g.

The Lagrangian on a Lie group L : G×g→ R is defined as the difference between the

19

kinetic energy T : G×g→ R and the potential energy V : G→ R:

L (q,ξ) = T (q,ξ)−V (q). (2.25)

The Hamiltonian is obtained using a Legendre transformation:

H (q,p) = p ·ξ −L (q,ξ), (2.26)

where the momentum p is defined as:

p=
∂L (q,ξ)

∂ξ
. (2.27)

The state (q,p) ∈ T∗G evolves according to the Hamiltonian dynamics [89] as:

q̇= TeLq

(
∂H (q,p)

∂p

)
, (2.28a)

ṗ= ad∗
ξ
(p)−T∗eLq

(
∂H (q,p)

∂q

)
+B(q)u. (2.28b)

By comparing Eq. (2.24) and Eq. (2.28), we have:

ξ =
∂H (q,p)

∂p
. (2.29)

Let η = ∂H (q,p)
∂q . When there is no control input, i.e., u = 0, the conservation of energy is

guaranteed as:

dH (q,p)

dt
= ⟨η , q̇⟩+ ⟨ξ , ṗ⟩= ⟨η ,TeLq (ξ)⟩−⟨ξ ,T∗eLq (η)⟩+ ⟨ξ ,ad∗

ξ
(p)⟩= 0, (2.30)

20

because of Eq. (2.5) and, by definition,

⟨ξ ,ad∗
ξ
(p)⟩= ⟨adξ (ξ),p⟩= ⟨[ξ ,ξ],p⟩= 0. (2.31)

2.2.3 Port-Hamiltonian Dynamics

The notion of energy in dynamical systems is shared across multiple domains, including

mechanical, electrical, and thermal. A port-Hamiltonian generalization [168] of Hamiltonian

mechanics is used to model systems with energy-storing elements (e.g., kinetic and potential

energy), energy-dissipating elements (e.g., friction or resistance), and external energy sources

(e.g., control inputs), connected via energy ports. An input-state-output port-Hamiltonian sys-

tem has the form: q̇
ṗ

= (J (q,p)−R(q,p))

∂H
∂q

∂H
∂p

+G (q,p)u, (2.32)

where J (q,p) is a skew-symmetric interconnection matrix, representing the energy-storing

elements, R(q,p) ⪰ 0 is a positive semi-definite dissipation matrix, representing the energy-

dissipating elements, and G (q,p) is an input matrix such that G (q,p)u represents the external

energy sources. In the absence of energy-dissipating elements and external energy sources, the

skew-symmetry of J (q,p) guarantees the energy conservation of the system.

To model energy dissipating elements such as friction or drag forces, we reformulate

the Hamiltonian dynamics on a matrix Lie group (2.28) in Port-Hamiltonian form (2.32). Such

elements are often modeled [42] as a linear transformation D(q,p) ⪰ 0 of the velocity ξ and

only affect the generalized momenta p, i.e.,

R(q,p) =

0 0

0 D(q,p)

 . (2.33)

21

The Hamiltonian dynamics on Lie groups (2.28) is a special case of (2.32), where the dissipation

matrix is D(q,p) = 0, the input matrix is G (q,p) =

[
0⊤ B(q)⊤

]⊤
and the interconnection

matrix J (q,p) can be obtained by rearranging (2.28) with u = 0 and is guaranteed to be skew-

symmetric due to the energy conservation (2.30). The Hamiltonian dynamics on Rn (2.23) are

also a special case of port-Hamiltonian dynamics (2.32) with:

J (q,p) =

 0 I

−I 0

 , G (q,p) =

 0

B(q)

 . (2.34)

2.2.4 Example: Hamiltonian Dynamics on the SE(3) Manifold

In this section, we consider the generalized coordinate q of a mobile robot consisting of

its position p ∈ R3 and orientation R ∈ SO(3). Let q = (p,R) be the generalized coordinates

and ζ = (v,ω) ∈ R6 be the generalized velocity, consisting of the body-frame linear velocity

v∈R3 and the body-frame angular velocity ω ∈R3. The coordinate q evolves on the Lie group

SE(3) while the generalized velocity satisfies q̇ = qξ , where ξ = ζ̂ is a twist matrix in se(3),

as shown in Eq. (2.11).

The isomorphism between se(3) and R6 via (2.11) simplifies the Hamiltonian (2.28)

and its port-Hamiltonian formulation (2.32) as follows. The Lagrangian function on SE(3) can

be expressed in terms of q and ζ , instead of q and ξ :

L (q,ζ) =
1
2

ζ
⊤M(q)ζ −V (q). (2.35)

The generalized mass matrix has a block-diagonal form when the body frame is attached to the

center of mass [89]:

M(q) =

Mv(q) 0

0 Mω(q)

 ∈ S6×6
≻0 , (2.36)

where Mv(q),Mω(q) ∈ S3×3
≻0 . The generalized momenta are defined, as before, via the partial

22

derivative of the Lagrangian with respect to the twist:

p=

pv

pω

=
∂L (q,ζ)

∂ζ
= M(q)ζ ∈ R6. (2.37)

The Hamiltonian function of the system becomes:

H (q,p) = p ·ζ −L (q,ζ) =
1
2
p⊤M−1(q)p+V (q). (2.38)

By vectorizing the generalized coordinates q = [p⊤ r⊤1 r⊤2 r⊤3]
⊤, the Hamiltonian

dynamics on SE(3) can be described in port-Hamiltonian form (2.32) [89, 45, 136] with inter-

connection matrix:

J (q,p) =

 0 q×

−q×⊤ p×

 , p× =

 0 p̂v

p̂v p̂ω

 , (2.39)

and input matrix G (q,p) =

[
0⊤ B(q)⊤

]⊤
, where q× =

R⊤ 0 0 0

0 r̂⊤1 r̂⊤2 r̂⊤3


⊤

. The port-

Hamiltonian formulation allows us to model dissipation elements in the dynamics by the dissi-

pation matrix:

D(q,p) =

Dv(q,p) 0

0 Dω(q,p)

 ∈ S6×6
≻0 , (2.40)

where the components Dv(q,p) and Dω(q,p) correspond to pv and pω , respectively. The

23

equations of motions on the SE(3) manifold are written in port-Hamiltonian form as:

ṗ = R
∂H (q,p)

∂pv
, (2.41a)

ṙi = ri×
∂H (q,p)

∂pω

, i = 1,2,3 (2.41b)

ṗv = pv×
∂H (q,p)

∂pω

−R⊤
∂H (q,p)

∂p
(2.41c)

− Dv(q,p)
∂H (q,p)

∂pv
+bv(q)u,

ṗω = pω ×
∂H (q,p)

∂pω

+pv×
∂H (q,p)

∂pv
+ (2.41d)

3

∑
i=1

ri×
∂H (q,p)

∂ri
−Dω(q,p)

∂H (q,p)

∂pω

+bω(q)u,

where the input matrix is B(q) =
[

bv(q)
⊤ bω(q)

⊤
]⊤

.

2.3 Neural Ordinary Differential Equation Networks

In this section, we briefly describe neural ordinary differential equation (ODE) networks

[19], which approximate the continuous-time closed-loop dynamics ṡ = f(s,π(s)) of a system

for some unknown control policy u = π(s) by a neural network f̄θ (s). The parameters of f̄θ (s)

are trained using a dataset D = {t(i)0:N ,s
(i)
0:N}i of state trajectory samples x(i)n = s(i)(t(i)n) via for-

ward and backward passes through a differentiable ODE solver, where the backward passes

provide the gradient of the loss function. Given an initial state x(i)0 at time t(i)0 , a forward pass

returns predicted states at times t(i)1 , . . . , t(i)N :

{s̄(i)1 , . . . , s̄(i)N }= ODESolver(x(i)0 , f̄θ , t
(i)
1 , . . . , t(i)N). (2.42)

The gradient of a loss function, ∑
D
i=1 ∑

N
j=1 ℓ(x

(i)
j , s̄(i)j), is back-propagated by solving another

ODE with adjoint states. Specifically, let a = ∂L
∂ s̄ be the adjoint state and α = (s̄,a, ∂L

∂θ
) be the

24

augmented state. The augmented state dynamics are [19]:

α̇ = f̄s = (f̄θ ,−a⊤
∂ f̄θ

∂ s̄
,−a⊤

∂ f̄θ

∂θ
). (2.43)

The predicted state s̄, the adjoint state a, and the derivatives ∂L
∂θ

can be obtained by a single call

to a reverse-time ODE solver starting from αN = α(tN):

α0 =

(
s̄0,a0,

∂L

∂θ

)
= ODESolver(αN , f̄s, tN), (2.44)

where at each time tk,k = 1, . . . ,N, the adjoint state ak at time tk is reset to ∂L
∂ s̄k

. The resulting

derivative ∂L
∂θ

is used to update the parameters θ using gradient descent.

For physical systems, Zhong et al. [182] extends the neural ODE by integrating the

Hamiltonian dynamics on Rn into the neural network model f̄θ (s), and consider zero-order hold

control input u, leading to a neural ODE network with the following approximated dynamics:

 ṡ

u̇

=

f̄θ (s,u)

0

 . (2.45)

In Chapter 4, we impose the Hamiltonian dynamics on Lie groups on the architecture of f̄θ , and

learn the parameters θ in Eq. (2.45) from data using neural ODE networks.

Recently, neural ODE networks have been extended from the vector space Rn to mani-

folds such as Lie groups [43, 40, 103, 177]. While it is possible to encode Hamiltonian dynamics

in such Lie group neural ODE networks, we leave this for future work due to the lack of publicly

open-sourced software.

25

2.4 Machine Learning Classifiers

2.4.1 Kernel Perceptron

In this section, we provide a summary on kernel perceptron [12] and Fastron [28, 29]

which is useful for our derivations in the next sections. The kernel perceptron model is used to

classify a set of N labeled data points. For l = 1, . . . ,N, a data point xl with label yl ∈ {−1,1}

is assigned a weight αl ∈ R. Training determines a set of M+ positive support vectors and

their weights Λ+ = {(xi,αi)} and a set of M− negative support vectors and their weights Λ− =

{(x−j ,α−j)}. The decision boundary is represented by a score function,

F(x) =
M+

∑
i=1

α
+
i k(x+i ,x)−

M−

∑
j=1

α
−
j k(x−j ,x), (2.46)

where k(·, ·) is a kernel function and α
−
j ,α

+
i > 0. The sign of F(x) is used to predict the class

of a test point x.

Fastron [28, 29] is an efficient training algorithm for the kernel perceptron model. It

prioritizes updating misclassified points based on their margins instead of random selection

as in the original kernel perceptron training. Our previous work [28, 29] shows that if αl =

ξ yl−(∑i̸=l α
+
i k(x+i ,xl)−∑ j ̸=l α

−
j k(x−j ,xl)) for some ξ > 0, then xl is correctly classified with

label yl . Based on this fact, Fastron utilizes one-step weight correction

∆α = ξ yl− (∑α
+
i k(x+i ,xl)−∑α

−
j k(x−j ,xl)),

where ξ = ξ+ if yl = 1 and ξ = ξ− if yl =−1.

2.4.2 Relevance Vector Machine

A relevance vector machine [164] is a sparse Bayesian approach for classification. Given

a training dataset of N binary-labeled samples D = (X,y) = {(xl,yl)}l , where yl ∈ {−1,1}, an

26

RVM model maintains a sparse set of relevance vectors xm for m = 1, . . . ,M. The relevance

vectors map a point x to a feature vector Φx = [k1(x),k2(x), . . . ,kM(x)]⊤ ∈ RM via a kernel

function km(x) := k(x,xm). The likelihood of label y at point x is modeled by squashing a linear

feature function:

F(x) := Φ
⊤
x w+b, (2.47)

with weights w ∈ RM and bias b ∈ R through a function σ : R 7→ [0,1]:

P(y = 1|x,w) = σ(F(x)),P(y =−1|x,w) = 1−σ(F(x)).

Note that Eq. (2.46) is a special case of (2.47) with b = 0. Examples of σ are the logis-

tic function σ(f) := 1
1+exp(− f) and the probit function σ(f) :=

∫ f
−∞ ϕ(z)dz, where ϕ(z) :=

1√
2π

exp(−z2/2) is the standard normal probability density. The data likelihood of the whole

training set is:

p(y|X,w) =
N

∏
l=1

σ(F(xl))
1+yl

2 (1−σ(F(xl)))
1−yl

2 . (2.48)

An RVM model imposes a Gaussian prior on each weight wm with zero mean and pre-

cision ξm (i.e., variance 1/ξm):

p(w|ξ) = (2π)M/2
M

∏
m=1

ξ
1/2
m exp

(
−ξmw2

m
2

)
. (2.49)

The weight posterior is obtained via Bayes’ rule:

p(w|y,X,ξ) =
p(y|X,w)p(w|ξ)

p(y|X,ξ)
. (2.50)

The precision ξ is determined via type-II maximum likelihood estimation, i.e., by maximizing

the marginal likelihood:

L (ξ) = log p(y|X,ξ) = log
∫

p(y|X,w)p(w|ξ)dw. (2.51)

27

Given a maximizer ξ , the posterior p(w|y,X,ξ) is generally intractable and approximated by a

Gaussian distribution p(w|y,X,µ,Σ) with mean µ and covariance Σ using Laplace approxima-

tion [112]. Training consists in determining ξ , µ , Σ.

Approximation of the weight posterior p(w|y,X,ξ) is performed by fitting a Gaussian

density function around its mode µ , the maximizer of

L(w) := log(p(y|X,w)p(w|ξ)). (2.52)

Substituting (2.48) and (2.49) in (2.52), we can obtain the gradient and Hessian of L(w) for the

probit function σ :

∇L(w) = Φ
⊤

δ −Aw, ∇
2L(w) =−Φ

⊤BΦ−A, (2.53)

where Φ ∈ RN×M is the feature matrix with entries Φi, j := k j(xi), δ ∈ RN is a vector with

entries δl := ϕ(ylF(xl))
σ(ylF(xl))

yl , A := diag(ξ) ∈ RM×M, B := diag(DΦ
⊤w+ bδ +Dδ) ∈ RN×N , and

D := diag(δ) ∈ RN×N . The Hessian is negative semi-definite and, hence, L(w) is concave.

Setting L(w) = 0, we obtain a Gaussian approximation p(w|y,X,µ,Σ) with:

Σ = (Φ⊤BΦ+A)−1, (2.54)

µ = ΣΦ
⊤B
(
Φµ +B−1

δ
)
, (2.55)

where µ is defined implicitly and is obtained via first- or second-order ascent in practice [118].

Laplace approximation provides a closed-form approximated posterior, which enables efficient

classifications of points, line segments and curves, as shown in Section 5.1. When the true

posterior is multi-modal, Laplace approximation might not provide sufficient accuracy because

it captures only one of the modes.

At test time, due to the Laplace approximation, the predictive distribution of a query

28

point x becomes:

p(y|x,ξ)≈
∫

p(y|x,w)p(w|y,X,µ,Σ)dw. (2.56)

The usual formulation of RVM [164] uses a logistic function for σ , requiring additional approx-

imations to the integral in (2.56). We emphasize that using a probit function, instead, enables a

closed-form for the predictive distribution:

p(y|x,ξ)≈
∫

σ(y(Φ⊤x w+b))p(w|y,X,µ,Σ)dw

= σ

(
y(Φ⊤x µ +b)√

1+Φ⊤x ΣΦx

)
. (2.57)

This expression enables our later results on closed-form classification of curves in Section 5.1.

Acknowledgments

Chapter 2, in part, is a reprint of the material as it appears in T. Duong, M. Yip, N.

Atanasov, “Autonomous Navigation in Unknown Environments with Sparse Bayesian Kernel-

based Occupancy Mapping”, IEEE Transactions on Robotics (T-RO), vol. 38, no. 6, pp. 3694-

3712, 2022, in T. Duong, N. Das, M. Yip, N. Atanasov, “Autonomous Navigation in Un-

known Environments using Sparse Kernel-based Occupancy Mapping”, International Confer-

ence on Robotics and Automation (ICRA), pp. 9666-9672, 2020, in T. Duong, N. Atanasov,

“Hamiltonian-based Neural ODE Networks on the SE(3) Manifold For Dynamics Learning and

Control”, Robotics: Science and Systems (RSS), 2021, in T. Duong, N. Atanasov, “Physics-

guided Learning-based Adaptive Control on the SE(3) Manifold”, Physical Reasoning and In-

ductive Biases for the Real World Workshop, 2021, and in T. Duong, N. Atanasov, “Adaptive

Control of SE(3) Hamiltonian Dynamics with Learned Disturbance Features”, IEEE Control

Systems Letters (L-CSS), vol. 6, pp. 2773-2778, 2022. Chapter 2, in part, has been submit-

ted for publication of the material as it may appear in T. Duong, A. Altawaitan, J. Stanley, N.

Atanasov, “Port-Hamiltonian-based Neural ODE Networks on Lie Groups For Robot Dynam-

29

ics Learning and Control”, Transactions on Robotics, 2024. The dissertation author was the

primary investigator and author of these papers.

30

Chapter 3

Learning Sparse Occupancy Map Repre-
sentations

Autonomous navigation in robotics involves online localization, mapping, motion plan-

ning, and control in partially known environments perceived through streaming data from on-

board sensors [59, 76]. This chapter focuses on the occupancy mapping problem and, specif-

ically, on enabling large-scale, yet compact, representations for autonomous navigation. Oc-

cupancy mapping is a well established and widely studied problem in robotics and a variety of

explicit and implicit map representations have been proposed. Explicit maps model the obstacle

surfaces directly, e.g., via surfels [66, 85, 174, 171, 8], geometric primitives [79, 14, 122, 178,

150], or polygonal meshes [160, 133, 139]. Implicit maps model the obstacle surfaces as the

level set of an occupancy [41, 80, 117, 68, 179, 169] or signed distance [26, 83, 74, 125, 61]

or spatial function encoded via voxels [123, 125, 61] or octrees [68, 179, 169]. The goal of

this chapter is to generate sparse probabilistic occupancy maps online, enabling large-scale

environment modeling, map uncertainty quantification.

We first develop a kernel perceptron model for online occupancy mapping [37] in Sec-

tion 3.2. The model uses support vectors and a kernel function to represent obstacle boundaries

in configuration space. The number of support vectors scales with the complexity of the ob-

stacle boundaries rather than the environment size. We develop an online training algorithm to

update the support vectors incrementally as new range observations of the local surroundings

31

Figure 3.1. A ground robot equipped with a lidar (red) and our map representation as a sparse
set of occupied (light red) and free (green) relevance vectors.

are provided by the robot’s sensors. Our kernel perceptron model, however, provides occu-

pancy labels without a probability distribution, making the classification accuracy susceptible

to measurement noise. Since unknown regions are frequently assumed free for motion planning

purposes, the lack of probabilistic information also does not allow us to distinguish between

well-observed and unseen regions. This is especially important in active exploration problems,

where the robot autonomously chooses the unknown regions to explore.

To handle noisy measurements and probabilistically model well-observed and unknown

regions, we introduce a sparse Bayesian formulation of the occupancy mapping problem based

on relevance vector machine (RVM) inference that enables online sparse Bayesian kernel-based

occupancy mapping [38]. Inspired by GP mapping techniques, we utilize a kernel function to

capture occupancy correlations but focus on a compact representation of obstacle boundaries

by building an RVM model, i.e. a sparse set of relevance vectors, incrementally from streaming

local sensor data. Specifically, only a local subset of the relevance vectors is updated each time

using our incremental RVM training algorithm.

Contributions. In this chapter, we introduce a sparse Bayesian kernel-based mapping

method that:

32

• represents continuous-space probabilistic occupancy using a sparse set of relevance vectors

stored in an R∗-tree data structure,

• allows online map updates from streaming partial observations using an incremental Rel-

evance Vector Machine training algorithm with the predictive distribution modeled by a

probit function.

3.1 Sparse Probabilistic Occupancy Mapping Problem

We restate the mapping problem formulated in Problem 1 for readability. Consider a

robot with state s ∈S , consisting of the robot’s position p ∈ [0,1]d and other variables such as

orientation, velocity, etc., navigating in an unknown environment (Figure 3.1). Let O ⊂ [0,1]d

be a closed set representing occupied space and let F be its complement, representing free

space. Assume that the robot can be enclosed by a sphere of radius r ∈ R>0 centered at p. In

configuration space (C-space), the robot body becomes a point p, while the obstacle space and

free space are transformed as Ō = ∪x∈OB(x,r), where B(x,r) = {x′ ∈ [0,1]d : ∥x−x′∥2 ≤ r},

and F̄ = [0,1]d \ Ō . Let S̄ be the subset of the robot state space that corresponds to the

collision-free robot positions F̄ .

The robot is equipped with a sensor, such as a Lidar or depth camera, that provides dis-

tance measurements zk at time tk to the obstacle space O within its field of view. Our objective

is to construct an occupancy map mk : [0,1]d → {−1,1} of the C-space based on accumulated

observations z0:k, where “−1” and “1” mean “free” and “occupied”, respectively. As the robot

is navigating, new sensor data are used to update the map as a function , mk+1 = g(mk,zk), of the

previous estimate mk and a newly received range observation zk. Assuming unobserved regions

are free, we rely on mk to plan a robot trajectory to a goal region G ⊆ S̄ . In this chapter, we

develop a sparse Bayesian kernel-based map representation mk, whose map updates g(mk,zk)

are developed based on relevance vector machine incremental training.

33

3.2 Sparse Binary Kernel-based Occupancy Mapping

In this section, we present our sparse binary Kernel-based map (SKM) [37], which de-

velops a sparse kernel perceptron model for online classification of occupied and free space in

the environment. The model uses a set of support vectors and a kernel function to represent

the obstacle boundaries in configuration space. The number of support vectors necessary for

accurate classification scales with the complexity of the obstacle boundaries rather than the en-

vironment size. Our approach extends the Fastron algorithm [28, 128], which efficiently trains

a kernel perceptron model using a training dataset collected globally from the environment. We

develop an online training procedure (Algorithm 1) that updates the support vectors incremen-

tally as new range observations zk of the local surroundings arrive. Given a training dataset

D = {(xl,yl)} generated from zk, Algorithm 1 prioritizes updating misclassified points’ weight

based on their margins (lines 6 and 7) and remove the redundant support vectors (line 8) without

affecting the model. When the next local dataset arrives, it looks for new misclassified points

and incrementally adds them to the set of support vectors. Algorithm 1 returns a set of M+

positive support vectors and their weight Λ+ = {(x+i ,α+
i)}i and a set of M− negative support

vectors and their weight Λ− = {(x−j ,α−j)} j. The classifier decision boundary is characterized

by a score function:

F(x) =
M+

∑
i=1

α
+
i k(x+i ,x)−

M−

∑
j=1

α
−
j k(x−j ,x), (3.1)

where k(·, ·) is a kernel function and α
−
j ,α

+
i > 0. The occupancy of a query point x can be

checked by evaluating the score function F(x) in Eq. (3.1). Specifically, mk(x) =−1 if F(x)<

0 and mk(x) = 1 if F(x) ≥ 0. The score calculation becomes slower when the number of

support vectors increases. We improve on this by storing the support vectors in an R∗-tree data

structure and efficiently query K+ and K− nearest positive and negative support vectors (line 1

in Algorithm 1) from the R∗-tree to approximate F(x).

The sparse kernel-based model [37] is accurate, updates efficiently from streaming range

34

Algorithm 1. Incremental Kernel Perceptron Training [37]

Input: Support vectors Λ+ = {(x+i ,α+
i)}i and Λ− = {(x−j ,α−j)} j stored in an R∗-tree; Local

dataset D = {(xl,yl)}; ξ+,ξ− > 0; Nmax.
Output: Updated Λ+,Λ−.

1: Query K+,K− nearest negative and positive support vectors from an R∗-tree data structure.
2: for (xl,yl) in D do
3: Calculate Fl = ∑

K+

i=1 α
+
i k(x+i ,xl)−∑

K−
j=1 α

−
j k(x−j ,xl)

4: for t = 1 to Nmax do
5: if ylFl > 0 ∀l then return Λ+,Λ−

6: m = argminlylFl
7: WEIGHT CORRECTION(Fm,ym,Λ

+,Λ−,ξ+,ξ−)
8: REDUNDANCY REMOVAL(Λ+,Λ−,D)
9: return Λ+,Λ−

10: function WEIGHT CORRECTION(Fm,ym,Λ
+,Λ−,ξ+,ξ−)

11: ξ = ξ+ if ym > 0; and ξ = ξ−, otherwise.
12: Calculate ∆α = ξ ym−Fm.
13: if ∃(xm,αm) ∈ Λ+∪Λ− then
14: Update weights: αm+=ym∆α , Fl+=k(xl,xm)ym∆α,∀l
15: else
16: Calculate αm = ym∆α

17: Add (xm,αm) to Λ+ if ym > 0 and Λ−, otherwise.
18: function REDUNDANCY REMOVAL(Λ+,Λ−,D)
19: for (xl,yl) ∈D do
20: if ∃(xl,αl) ∈ Λ+∪Λ− and yl(Fl−α

+
l)> 0 then

21: Remove (xl,αl) from Λ+ or Λ−

22: Update Fn-= k(xl,xn)α
+
l ,∀(xn, ·) ∈D

data, and evaluates curves p(t) for collisions without sampling. However, the model does not

provide occupancy probability, which is desirable in autonomous navigation applications for

distinguishing between unknown and well-observed free regions and for identifying map areas

with large uncertainty. This observation motivates us to develop a sparse probabilistic model

for online occupancy classification and efficient collision checking.

3.3 Sparse Bayesian Kernel-based Occupancy Mapping

In this section, we develop an online probit relevance vector machine (RVM) training

algorithm that builds a sparse probabilistic model for online occupancy mapping from streaming

35

range observations.

3.3.1 Sequential Relevance Vector Machine Training

To the determine the precision ξ of the weight prior in (2.49), Tipping and Faul [164]

proposed a sequential training algorithm that starts from an empty set of relevance vectors, i.e.,

ξl =∞, and incrementally introduces new vectors to maximize the marginal likelihood in (2.51):

L (ξ)≈−1
2

(
N log2π + logdetC+ t̂⊤C−1t̂

)
(3.2)

where t̂ := Φµ +B−1δ and C := B+ΦA−1Φ
⊤. For each (xl,yl) in the training set D , define

θl = q2
l − sl as follows:

sl :=


ξlSl

ξl−Sl
, if ξl < ∞

Sl, else
ql :=


ξlQl

ξl−Sl
, if ξl < ∞

Ql, else
(3.3)

where Sl = Φ
⊤
l C−1Φl , Ql = Φ

⊤
l C−1t̂, and Φl is the l-th row of Φ. If θl > 0, the point xl is

updated (if ξl < ∞) or added (if ξl = ∞) as a relevance vector with ξl =
s2

l
q2

l−sl
. If θl ≤ 0 and

ξl < ∞, the point xl is removed from the RVM model. These steps are shown in lines 8-12 of

Algorithm 2.

3.3.2 Online Mapping using Streaming Data

Existing techniques for RVM training assume that all data is available a priori. In this

section, we develop an online RVM training algorithm (Algorithm 2) that updates the set of

relevance vectors Λk = {x(k)i ,y(k)i ,ξ
(k)
i)}i incrementally using streaming data. Suppose that Λk

has been obtained based on prior data D0, . . . ,Dk. At time k + 1, a new training set Dk+1 is

received. The training set generation depends on the application. We construct Dk+1 using a

lidar scan zk+1 of an unknown environment as detailed in Section 3.4. Relevance vectors are

added or removed from Λk to correctly classify the latest changes, e.g., new or disappearing

36

(a) Robot in an unknown envi-
ronment with a laser scan.

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12

free

occupied

(b) Work-space samples from
laser scans.

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12

occupied

free

(c) Configuration-space sam-
ples.

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

pos. relevant vec.

neg. relevant vec.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) Decision boundary with
bias b = −0.05 and threshold
e =−0.01, ē = 0.494.

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
pos. vec.

neg. vec.

G1(x) = 0

G2(x) = 0

G3(x) = 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e) Inflated boundaries gen-
erated by G1(x),G2(x),G3(x)
with n1 = n2 = 1.

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
pos. vec.

neg. vec.

G1(x) = 0, true boundary

G3(x) = 0, n1 = 5, n2 = 1

G3(x) = 0, n1 = 1, n2 = 1

G3(x) = 0, n1 = 1, n2 = 1.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(f) Inflated boundary G3(x) = 0
with various n1,n2.

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

10

12

occupied

free

(g) Configuration-space sam-
ples from a second laser scan

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

pos. relevant vec.

neg. relevant vec.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(h) Our updated RVM model
reflecting the latest changes.

Figure 3.2. Example of our mapping method for a ground robot in an unknown environment.

obstacles, in training set Dk+1 without affecting the accuracy of the classification on the prior

data and maintaining the sparsity of the model.

Algorithm 2 presents our online probit RVM training approach. The algorithm starts

with the existing set of relevance vectors Λk and adds new relevance vectors based on the sam-

ples in Dk+1 using the sequential training approach in Section 3.3.1. Instead of using the feature

matrix Φ (line 4) associated with all prior relevance vectors, we use a feature matrix approxi-

mation based on a local set Λlocal of K nearest relevance vectors (line 2). Section 3.6 provides a

discussion on the computational improvements and assumptions of the score function approx-

37

Algorithm 2. Online Probit RVM Training.

Input: Relevance vectors Λk = {(x(k)i ,y(k)i ,ξ
(k)
i)}; training set Dk+1 = {(xl,yl)}l; number of

nearest relevance vectors to use K (optional)
Output: Relevance vectors Λk+1 = {(x(k+1)

i ,y(k+1)
i ,ξ

(k+1)
i)}; weight posterior mean µ and

covariance Σ

1: Initialize Λk+1 = Λk.
2: if K is defined then Λlocal = K nearest relevance vectors from Λk
3: else Λlocal = Λk.
4: Φ = FEATUREMATRIX(Λlocal,Dk+1)
5: ξl = ∞ for each (xl,yl) in Dk+1
6: Σ,µ = LAPLACEAPPROXIMATION(Λlocal,Dk+1).
7: while not converged and max number iterations not reached do
8: Pick a candidate (xm,ym) from Dk+1.
9: Calculate Sm,Qm,sm,qm,θm.

10: If θm > 0 and ξm = ∞, add (xm,ym,ξm) to Λlocal .
11: If θm ≤ 0 and ξm < ∞, remove (xm,ym,ξm) from Λlocal .
12: If θm > 0 and ξm < ∞, re-estimate ξm =

s2
m

q2
m−sm

in Λlocal .
13: Σ,µ = LAPLACEAPPROXIMATION(Λlocal,Dk+1).
14: Λk+1 = Λk+1∪Λlocal .
15: Σ,µ = GLOBALPOSTERIORAPPROXIMATION(Λk+1)
16: return Λk+1, Σ, µ

17:
18: function FEATUREMATRIX (Λ,D)
19: Calculate Φi, j = k(xi,x j) for all x j ∈ Λ and all xi ∈D
20: return Φ

21: function LAPLACEAPPROXIMATION(Λ,D)
22: Calculate Σ, µ for relevance vectors Λ using D (Eq. (2.54) and (2.55)).
23: return Σ,µ .
24: function GLOBALPOSTERIORAPPROXIMATION(Λ)
25: return LAPLACEAPPROXIMATION(Λ,Λ).

38

imation resulting from using Λlocal instead of Λk. For test time classification, we compute the

mean µ and covariance Σ of the Laplace approximation to the weight posterior according to Eq.

(2.55) and (2.54). Laplace approximation requires all data D = ∪k+1
i=1 Di, used for training up to

time k+1 but only the local dataset Dk+1 is available. Interestingly, the set Λk+1 of relevance

vectors itself globally and sparsely represents all the data used for training and, therefore, can be

used for Laplace approximation (line 15). If additional computation for Laplace approximation

is not feasible, one might directly store the weight mean µ and covariance Σ (line 15) over time.

The memory requirements for either case are discussed in Section 3.6.

Figure 3.2a depicts a ground robot equipped with a lidar scanner whose goal is to build

an occupancy map of the environment. Figure 3.2c plots the training set D1 generated from the

first lidar scan z1, assuming the current set of relevance vectors Λk is empty. Figure 3.2d shows

the trained RVM model as a sparse set of relevance vectors, serving as a sparse probabilistic

occupancy map of the environment, incrementally updated via the streaming lidar scans. To il-

lustrate map updates based on the latest depth measurements, we consider a second scan where

part of the obstacles in the first scan disappears and a new obstacle appears in the second scan

(Figure 3.2g). The RVM model, trained with the first laser scan, is updated with the second

scan using our online RVM training algorithm (Algorithm 2), reflecting the obstacle changes in

the environment as plotted in Figure 3.2h. A map representation is useful for autonomous nav-

igation (Problem 3) only if it allows checking potential robot trajectories s(t), e.g. by sampling

and checking points for collision described in the next section.

3.4 Online Mapping

We consider a robot placed in an unknown environment at time tk as illustrated in Fig-

ure 3.1. It is equipped with a lidar scanner measuring distances to nearby obstacles. Samples

generated from the lidar range scan zk are shown in Figure 3.2b. Since the robot body is bounded

by a sphere of radius r, each laser ray end point in configuration space becomes a ball-shaped

39

obstacle, while the robot body becomes a point. To generate local training data, the occupied

and free C-space areas observed by the lidar are sampled (e.g., on a regular grid). As shown in

Figure 3.2c, this generates a set D̄k of points with label “1” (occupied) in the ball-shaped oc-

cupied areas and with label “-1” (free) between the robot position and each laser end point. To

accelerate training, only the difference between two consecutive local datasets Dk = D̄k \ D̄k−1

is used in our online RVM training algorithm (Algorithm 2). Storing the sets of relevance vec-

tors Λk over time requires significantly less memory than storing the training data ∪kDk. The

occupancy of a query point x can be estimated from the relevance vectors by evaluating the

function G1(x) in Eq. (3.5). Specifically, mk(x) =−1 if G1(x)≤ 0 and mk(x) = 1 if G1(x)> 0.

Figure 3.2d illustrates the boundaries generated by Algorithm 2.

3.5 Efficient Relevance Vector Machine Inference

This section discusses classification using the predictive distribution in Eq. (2.57). This

can be use for classification of general curves in robot motion planning by successively checking

a dense set of points, sampled along the curve.

Consider a set Λ of M relevance vectors with prior weight precision ξ and mean µ and

covariance Σ of the approximate weight posterior p(w|y,X,µ,Σ). To classify a query point x

using the RVM model, we place a threshold ē = σ(e) on the probability P(y = 1|x,ξ) (Def. 10).

Figure 3.2d illustrates the decision boundary defined by Def. 10 with threshold ē = σ(e) =

0.494, i.e., e =−0.01.

Definition 10. Let ē ∈ [0,1] and e := σ−1(ē). A point x is classified as “-1” (free) if

P(y = 1|x,ξ) = σ

(
Φ⊤x µ +b√
1+Φ⊤x ΣΦx

)
≤ ē, (3.4)

or, equivalently, if

G1(x) := Φ
⊤
x µ +b− e

√
1+Φ

⊤
x ΣΦx ≤ 0. (3.5)

40

The condition in Eq. (3.5) can be verified for a given point but it is challenging to obtain

an explicit expression in terms of x. If, instead of a point x, we consider a time-parameterized

curve p(t), then Eq. (3.5) becomes a nonlinear programming feasibility problem in t. To avoid

nonlinear programming, we develop a series of upper bounds for G1(x) that make the condition

for classifying a point as free more conservative but with a simpler dependence on x.

Proposition 1. For a non-negative kernel function km(x) := k(x,xm), a point x is classified as

“-1” if

G2(x) :=
M

∑
m=1

(µm− e1{e≤0}
√

λmax)km(x)+b− e≤ 0, (3.6)

where λmax ≥ 0 is the largest eigenvalue of the covariance Σ, µm is the mth element of the mean

µ , and 1{e≤0} is an indicator function which equals 1 if e≤ 0 and 0, otherwise.

Proof. Please refer to Appendix B.1.

The relaxed condition in Eq. (3.6) adjusts the weights of the relevance vectors by an

amount of δ µ =−e1{e≤0}λmax≥ 0. Intuitively, this increases the effect of the positive relevance

vectors, leading to a more conservative condition than Def. 10. Prop. 1 also allows us to use

only the largest eigenvalue λmax of Σ for point classification, which is easier to obtain and store

than the whole covariance matrix Σ. Methods for computing λmax are discussed in Section 3.6.1.

To simplify the notation, let νm := µm− e1{e≤0}λmax be the corrected relevance vector

weights and split Λ into M+ positive relevance vectors Λ+ = {(x+m,ν+
m)} and M− negative

relevance vectors Λ− = {(x−m,ν−m)}, where ν+
m = νm if νm > 0 and ν−m =−νm if νm < 0. Now,

Eq. (3.6) can be re-written as:

G2(x) =
M+

∑
i=1

ν
+
i k(x,x+i)−

M−

∑
j=1

ν
−
j k(x,x−j)+b− e≤ 0. (3.7)

Hence, Prop. 1 allows us to make an important connection between sparse kernel classifica-

tion with a ‘hard’ decision threshold (Section 3.2) and its Bayesian counterpart (Section 3.3.2).

Specifically, after the relevance vector weight correction, Eq. (3.6) is equivalent to the kernel

41

perceptron score in Eq. (2.46) except for the bias term b− e. Therefore, model inference re-

sults in this section and in Section 5.1 also hold for our sparse binary map representation in

Section 3.2.

One of the motivations for developing a Bayesian map representation is to distinguish

between observed and unobserved regions in the environment. Intuitively, as a query point

x is chosen further away from “observed” regions, where training data has been obtained, its

correlation with existing relevance vectors, measured by k(x,xm), decreases. To capture and

exploit this property, we assume that the kernel has a common radial basis function structure

that depends only on a quadratic norm ∥Γ(x−xm)∥.

Assumption 1. Let k(x,xm) := η exp
(
−∥Γ(x−xm)∥2) with parameters η > 0 and Γ ∈ Rd×d .

In our application, the kernel parameters η and Γ may be optimized offline via automatic

relevance determination [120] using training data from known occupancy maps. Under this

assumption, the feature vector Φx tends to 0 as x goes towards unobserved regions and the

occupancy probability P(y = 1|x,ξ) tends to σ(b) in Eq. (3.4). Therefore, the value of σ(b)

represents the occupancy probability of points in the unknown regions. In other words, σ(b)

specifies how much we trust that unknown regions are occupied and should be a constant. For

this reason, the bias b is fixed in our online RVM training algorithm. If we are optimistic about

the unknown regions, the parameter b can be set to a large negative number, i.e. σ(b)≈ 0, and

the decision boundary shrinks towards the occupied regions. If we want the robot to be cautious

about the unknown regions, the parameter b can be set to a large positive number, i.e. σ(b)≈ 1,

and the decision boundary expands towards the unknown regions. A common assumption in

motion planning [86] is to treat unknown regions as free in order to allow trajectory planning to

goals in the unknown space. In the context of this dissertation, this means that the occupancy

probability of points in unknown regions, σ(b), should be lower than or equal to the decision

threshold ē = σ(e) in Def. 10.

Assumption 2. Assume that e≥ b and, hence, ē≥ σ(b).

42

For a general decision threshold, e≥ b, and a kernel function km(x) satisfying Assump-

tion 1, we develop an explicit condition for classifying a point x as free.

Proposition 2. For integers n1,n2 ≥ 1, define ρ(a,b) := (n1+n2)
(

a
n1

) n1
n1+n2

(
b
n2

) n2
n1+n2 . A point

x is classified as “-1” if

G3(x) :=
(M+

∑
i=1

ν
+
i

)
k(x,x+∗)−ρ(e−b,ν−j k(x,x−j))≤ 0, (3.8)

where x+∗ is the closest positive relevance vector to x and x−j is any negative relevance vector.

Proof. Please refer to Appendix B.2.

Figure 3.2e illustrates the exact RVM decision boundary from Eq. (3.5), G1(x) = 0,

and the boundaries G2(x) = 0 and G3(x) = 0 resulting from the upper bounds in Prop. 1 and

Prop. 2. Note that the boundary generated by G2(x) is very close to the true boundary from

G1(x), empirically showing that the bound G2(x) is tight. The upper bound G3(x) provides a

conservative “inflated boundary”, whose accuracy can be controlled via the integers n1,n2 in

Prop. 2. Note that G3(x) is inaccurate mainly in the unknown regions because the Arithmetic

Mean-Geometric Mean inequality used in Prop. 2’s proof (Appendix B.2) effectively replaces

the kernel function k(x,x−j) by a slower decaying one k(x,x−j)
n2

n1+n2 . This suits the intuition

that unknown regions should be categorized as free more cautiously. Figure 3.2f shows that

increasing the ratio n2/n1 makes the “inflated boundary” closer to the true decision boundary in

the unknown regions but slightly looser in the well-observed regions and vice versa.

3.6 Computational and Storage Improvements

3.6.1 Computational Improvements

In the context of autonomous navigation, as a robot explores new regions of its environ-

ment, the number of relevance vectors required to represent the obstacle boundaries increases.

43

Since the score function in Eq. (2.47) depends on all relevance vectors, the training time (Algo-

rithm 2) and the classification time (Def. 10 for points, Algorithm 3 for lines, and Algorithm 4

for curves) increase as well. We propose an approximation to the score function F(x) for the

radial basis kernel in Assumption 1. Since k(x,xm) approaches zero rapidly as the distance

between x and xm increases, the value of F(x) is not affected significantly by relevance vectors

far from x. We use R∗-tree data structures constructed from the relevance vectors Λ+, Λ− to

allow efficient lookup of the nearest K+ and K− positive and negative relevance vectors. Ap-

proximating the score function F(x) using the nearest K+ and K− relevance vectors improves

its computational complexity from O(M) to O(logM). Similarly, to classify a point x, the

M-dimensional feature vector Φx, may be approximated by a K-dimensional one using the K

relevance vectors closest to x. Classification of a line segment or a curve in Prop. 3 and 4 can

be approximated by using the K+ and K− nearest positive and negative relevance vectors. The

computational complexities of Eq. (5.4), (5.5), (5.6), and (5.7) improve from O(M) and O(M2)

to O(logM).

The line and curve classification algorithms depend on Prop. 1 which requires the largest

eigenvalue λmax of the weight posterior covariance matrix Σ. Obtaining λmax from Σ can be

expensive as the number of relevance vectors grows. Under Assumption 1, the entries in the

feature matrix Φ for relevance vectors that are far from each other go to 0 quickly and can

be set to zero, e.g., using a cut-off threshold for the kernel values or only keeping the kernel

values for the K nearest relevance vectors. This leads to a sparse matrix Φ and, in turn, the

inverse covariance matrix Σ
−1 in Eq. (2.54) is sparse and its smallest eigenvalue 1/λmax can be

approximated efficiently (e.g. [90]).

3.6.2 Storage Improvements

Algorithm 2 returns a set of M relevance vectors xm with labels ym and weight prior

precision ξm. This set represents the RVM model parameters and its memory requirements

are linear in M. However, the predictive distribution in Eq. (2.57) needs to be obtained via

44

−10 0 10 20 30 40 50 60
−5

0

5

10

15

20

25

(a) Ground truth map and robot trajectory.

−20 −10 0 10 20 30 40 50 60
−5

0

5

10

15

20

25

(b) Set of 2141 relevance vectors.

−10 0 10 20 30 40 50 60
−5

0

5

10

15

20

25

0.08

0.24

0.40

0.56

0.72

0.88

(c) The final SBKM map.

Figure 3.3. Sparse map representation (with η = 1,Γ=
√

γI,γ = 3.0) built from local streaming
laser scans along the robot trajectory.

Laplace approximation (Eq. (2.55) and (2.54)) when the RVM model is used for classification.

If additional computation for Laplace approximation is not feasible during test time, the weight

posterior mean µ and covariance Σ may be stored also but Σ requires O(M2) storage. Fortu-

nately, the approximate decision boundary G2(x) = 0 in Prop. 1 used for point, line, and curve

classification only requires the largest eigenvalue λmax of Σ. Hence, only the value of λmax needs

to be stored in addition to the relevance vectors xm, labels ym, and weight mean µm. In this case,

line 15 in Algorithm 2 should return the weight posterior mean µ and λmax instead of µ and Σ.

3.7 Evaluation

This section presents an evaluation of our autonomous mapping and navigation method

using a fully actuated robot (e.g., Eq. (5.1)) in a simulated warehouse environment (Sec-

tion 3.7.1) and the Intel Research Lab dataset [70] (Section 3.7.2). We examined the obstacle

boundary with respect to the bias parameter b and the threshold e in Section 3.7.3. We used a

radial basis function (RBF) kernel with parameters η = 1 and Γ =
√

γI. The bias parameter b

45

Table 3.1. Comparison among our sparse Bayesian kernel-based map (SBKM), our sparse
kernel-based map (SKM) [37], OctoMap (OM) [68], and sequential Bayesian Hilbert map
(SBHM) [148].

Methods
Kernel

param. γ
Threshold ē Accuracy Recall Vectors/Nodes Storage

SBKM 1.0 0.5 97.8% 97.9% 1115 9 kB†

SBKM 2.0 0.5 99.0% 99.3% 1642 13 kB†

SBKM 3.0 0.45 99.2% 99.7% 2141 17 kB†

SBKM 3.0 0.5 99.3% 99.4% 2141 17 kB†

SBKM 3.0 0.55 99.5% 98.7% 2141 17 kB†

SKM 3.0 - 99.9% 99.0% 2463 20 kB
SKM 2.0 - 99.8% 98.3% 2613 21 kB
SKM 1.0 - 99.8% 98.5% 3064 25 kB

OM - 0.5 99.9% 99.7%
12432 non-leafs

34756 leafs
25 kB (bin.)
236 kB (full)

SBHM 1.0 0.5 97.0% 98.0% 1156 9 kB‡

SBHM 2.0 0.5 99.0% 99.4% 1676 13 kB‡

SBHM 3.0 0.45 98.6% 99.0% 2205 17 kB‡

SBHM 3.0 0.5 99.0% 98.6% 2205 17 kB‡

SBHM 3.0 0.55 99.5% 98.2% 2205 17 kB‡

is set to −0.05 in Section 3.7.1, and 0.0 in Section 3.7.2. Timing results are reported from an

Intel i9 3.1 GHz CPU with 32GB RAM.

3.7.1 Comparison with Binary Map Representations

In this section, we compared the accuracy, the recall and storage requirements of our

sparse Bayesian kernel-based map (SBKM) with those of the non-Bayesian sparse kernel-based

map (SKM) from our preliminary work [37], the popular occupancy mapping algorithm Oc-

toMap [68], and the sequential Bayesian Hilbert map (SBHM) [148]. Since SKM only provides

binary maps, binary maps are used to calculate accuracy and recall. As the ground-truth map

(Figure 3.3a) represents the work space instead of C-space, a point robot (r = 0) was used for

an accurate comparison. Lidar scans were simulated along the robot trajectory shown in Fig-

ure 3.3a and used to build our sparse Bayesian kernel-based map (SBKM), the non-Bayesian

sparse kernel-based map (SKM) [37], OctoMap, and sequential Bayesian Hilbert map (SBHM).

46

An R∗-tree approximation of the score F(x) was used with K++K− = 200 nearest support

vectors around the robot location pk for map updating and with K++K− = 10 nearest support

vectors for collision checking. OctoMap’s resolution was set to 0.25 m to match that of the grid

used to sample our training data from. As SBHM depends on a grid of hinge points to generate

feature vectors, we chose the grid’s resolution so that the number of hinge points is similar to

our SBKM’s number of relevance vectors for a fair comparison.

Table 3.1 compares the accuracy, the recall and the storage requirements of our SBKM

maps, our SKM maps, SBHM maps [148] and OctoMap’s binary and probabilistic maps. The

SBKM map and its sparse set of relevance vectors are shown in Figure 3.3. To calculate map

accuracy, we used different thresholds ē to generate binary versions of our map and compare

with the ground truth. The ground truth map was sampled on a grid with the same resolution

0.25 m and the accuracy was calculated as the number of correct predictions divided by the

total number of samples. Note that the interior (gray regions in the ground-truth map) of the

obstacles were considered occupied for our map - since it was surrounded by positive relevance

vectors - but were considered free in SKM and OctoMap maps.

Table 3.1 shows that SBKM (with threshold ē= 0.5), SKM, OctoMap’s binary map, and

SBHM (with threshold ē = 0.5) led to a similar accuracy of ∼ 99% (γ = 2.0 & 3.0) and ∼ 97%

(γ = 1.0) and a similar recall of ∼ 99% (γ = 2.0&3.0) and ∼ 98% (γ = 1.0). SKM has ∼ 0.5%

higher accuracy than SBKM since the support vectors lie around the obstacle boundary, leading

to sharper decision boundaries. As the decision threshold ē decreases, the accuracy decreases,

because more free cells are classified as “occupied”, and the recall increases, because more

occupied cells are classified as “occupied”. When the parameter γ decreases, the support of the

kernel expanded, leading to fewer relevance vectors, i.e., less storage but lower accuracy and

recalls. This illustrates the trade-off between storage gains and accuracy when the details of the

obstacles’ boundaries can be reduced via a lower value of γ to achieve higher compression rate.

We compared the storage requirements for our SBKM and SKM representations and Oc-

toMap. OctoMap’s binary map required a compressed octree with 12432 non-leaf nodes with 2

47

bytes per node, leading to a storage requirement of∼ 25 kB. Its fully probabilistic map required

to store 47188 leaf and non-leaf nodes with 5 bytes per node, leading to a storage requirement

of ∼ 236 kB. As the space consumption depends on the computer architecture and how the

relevance vector information is compressed, we provide only a rough estimate of storage re-

quirements for our maps. For the SKM map, each support vector required 8 bytes, including an

integer for the support vector’s location on the underlying grid and a float for its weight. As a

result,∼ 20 kB were needed to store the 2463 resulting support vectors for γ = 3.0. As discussed

in Section 3.6.2, the SBKM map could be stored in two ways: 1) the relevance vectors’ location,

their label and their weight prior precision if Laplace approximation was allowed at test time; 2)

the relevance vectors’ location, their label, their weight mean and the largest eigenvalue λmax of

the covariance matrix Σ if Laplace approximation was not allowed at test time and our collision

checking methods were used. The former stored an integer representing a relevance vector’s

location on the underlying grid and a float representing its weight prior’s precision and its label

(using the float sign). This required 8 bytes on a 32-bit architecture per relevance vector. Our

SBKM map with Γ =
√

3.0I contained 2141 relevance vectors, leading to storage requirements

of ∼ 17 kB. The latter also needed 17 kB to store the relevance vectors’ location, their weight’s

mean and label. Besides, an extra float (4 bytes) is needed to store λmax leading to a similar

total storage requirement of 17 kB. These requirements were 32% and 15% better than those of

OctoMap and our (non-Bayesian) SKM, respectively. To achieve a sparse Bayesian map rep-

resentation, more computation is needed, leading to slower map update for SBKM compared

to SKM and OctoMap. Since SBHM and SBKM are both Bayesian online mapping methods

and share similar settings, we compared their map update time in Section 3.7.2. As γ decreases,

the number of relevance vectors of SBKM decreases while the number of support vectors of

SKM increases. This is because the relevance vectors spread out in the environment while the

support vectors are placed on both sides of the obstacle boundaries. Therefore, as γ decreases, a

relevance vector represents more space leading to fewer relevance vectors in the SBKM models

and more support vectors, maintaining a sharp decision boundary, for the SKM models.

48

(a) Laser scans from the Intel Re-
search Lab dataset.

−20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

0.0

0.2

0.4

0.6

0.8

1.0

(b) SBHM map with η = 1, Γ =√
6.71I.

−20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

0.0

0.2

0.4

0.6

0.8

1.0

(c) LARD-HM map with 7280
clusters.

−20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

0.0

0.2

0.4

0.6

0.8

1.0

(d) Our SBKM map with η = 1,
Γ =
√

6.71I.

−20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

0.00

0.05

0.10

0.15

0.20

0.25

(e) Our SBKM variance with η =
1, Γ =

√
6.71I.

(f) Comparison of map update
time per scan.

Figure 3.4. Comparison among sparse Bayesian kernel-based map (SBKM), LARD-HM [56],
and SBHM [148] on the Intel Research Lab dataset [70].

3.7.2 Comparison with Probabilistic Map Representations

In this section, we compared our sparse Bayesian kernel-based map (SBKM) approach

with other probabilistic occupancy mapping techniques: OctoMap [68], localized automatic

relevance determination Hilbert map (LARD-HM) [56], and sequential Bayesian Hilbert map

(SBHM) [148]. The Intel Research Lab dataset [70] was used with the four methods to build

the map of the environment in an online manner. Both SBKM and SBHM are kernel-based

Bayesian probabilistic mapping methods from streaming local observations. While SBHM

achieves sparseness by calculating feature vectors based on a sparse set of hinged points, e.g.,

on a coarse grid, our SBKM method learns the hinged points, i.e. the relevance vectors, from

data. We tried our best to match the parameters for a fair comparison, e.g. using the same

kernel parameter Γ =
√

γI with γ = 6.71 as provided by SBHM code [148]. Our online training

49

Ta
bl

e
3.

2.
C

om
pa

ri
so

n
am

on
g

ou
r

sp
ar

se
SB

K
M

m
ap

,
SB

H
M

m
ap

[1
48

],
L

A
R

D
-H

M
m

ap
[5

6]
an

d
O

ct
oM

ap
[6

8]
on

th
e

In
te

l
R

es
ea

rc
h

L
ab

da
ta

se
t[

70
].

Te
st

da
ta

M
et

ri
cs

SB
H

M
SB

H
M

L
A

R
D

-H
M

L
A

R
D

-H
M

L
A

R
D

-H
M

SB
K

M
SB

K
M

O
M

-
γ

6.
71

6.
71

-
-

-
6.

71
6.

71
-

-
Σ

fu
ll

di
ag

.
-

-
-

fu
ll

λ
m

ax
on

ly
-

-
Fe

at
ur

e
di

m
.

56
00

56
00

36
40

54
60

72
80

34
92

34
92

-
U

ni
fo

rm
ly

sa
m

pl
ed

A
U

C
0.

98
0.

98
0.

90
0.

96
0.

97
0.

96
0.

95
0.

95

U
ni

fo
rm

ly
sa

m
pl

ed
N

L
L

0.
24

0.
24

0.
41

0.
30

0.
24

0.
36

0.
52

0.
27

N
ea

r
bo

un
da

ry
A

U
C

0.
82

0.
77

0.
57

0.
55

0.
56

0.
62

0.
61

0.
75

N
ea

r
bo

un
da

ry
N

L
L

0.
54

0.
60

0.
83

0.
83

0.
78

0.
73

0.
84

0.
67

-
U

pd
at

e
tim

e/
sc

an
11

.8
s

0.
03

s
0.

03
s

0.
03

s
0.

03
s

0.
76

s
0.

43
s

0.
01

s

50

data (Section 3.3.2) were generated from a grid with resolution 0.2 m. Meanwhile, the LARD-

HM method determines the hinged points by clustering the training data points using k-means

algorithms and calculates their kernel parameters by automatic relevance determination. To

build a LARD-HM map from streaming depth measurements, we used the publicly available

LARD-HM code in [56] to incrementally add the centroids of the clusters and their kernel pa-

rameters to the maps. OctoMap code [68] was used with its default parameters. Since we only

considered probabilistic occupancy maps in this section, the metrics for comparison were the

area under the receiver operating characteristic curve (AUC) and the negative log-likelihood

loss (NLL) of a point x, defined as NLL(y|x,ξ) =− log p(y|x,ξ), where y ∈ {−1,1} is the true

label and p(y|x,ξ) is the predictive distribution in Eq. (2.57). The AUC score and NLL loss

were calculated over two test sets: one sampled uniformly from the whole dataset to capture

overall reconstruction accuracy and one sampled near the room area boundaries to capture detail

reconstruction accuracy.

Table 3.2 presents the metrics for the four mapping methods. SBHM used a fixed grid

of 5600 hinged points with resolution 0.5 m for feature vector calculation. Meanwhile, our

approach incrementally learned a sparse set of 3492 relevance vectors from the training dataset,

not requiring a set of fixed hinged points. Similarly, LARD-HM determined the hinged points

from the data by incrementally adding the centroids of k f free and ko occupied clusters and

their kernel parameters from each laser scan, where k f = ko = 2,3,4 leading to 3640 (similar

to the SBKM’s feature dimension), 5460 (similar to the SBHM’s feature dimension) and 7280

hinged points in Table 3.2, respectively. Figure 3.4b, 3.4c and 3.4d show the final maps from

the SBHM, LARD-HM approaches and our SBKM method, respectively. Figure 3.4e plots the

our SBKM map’s variance, distinguishing between known (low variance) and unknown (high

variance) regions.

Our final map’s AUC score and NLL loss were slightly worse than those of SBHM

with full covariance matrix while maintaining∼ 35% fewer points to represent the environment

and having faster map updates with less than 1 s per scan, on average, as shown in Table 3.2

51

and Figure 3.4f. Our training algorithm incrementally built the set of relevance vectors and

only updated the weights of the local vectors due to the use of K nearest relevance vectors in

Algorithm 2. Consequently, it did not have a fixed global set of points to optimize over as

done by SBHM, leading to suboptimality in trade-off for sparseness. Note that both our map

and the SBHM map estimated the mean µ and the full covariance matrix Σ of the weights’

posterior for test time. If our collision checking algorithms are used for planning, only the

largest eigenvalue λmax of Σ is needed and can be calculated efficiently using the sparsified

inverse covariance matrix as shown in Section 3.6.2. In this case, Table 3.2 shows that our map

update time was reduced by half to about ∼ 0.43 s per scan (Table 3.2 and Figure 3.4f) while

offering similar AUC score to that of our SBKM map with full covariance matrix. The higher

NLL loss was due to the upper bound used in Prop. 1 for point classification instead of the

true occupancy probability. A variant of SBHM that uses diagonal covariance matrix updated

the map 25 times faster than our SBKM method with full covariance matrix. While our SBKM

time can be improved further using a diagonal covariance matrix, we leave this investigation for

future work.

Our map’s AUC score and NLL loss, calculated using test data sampled uniformly from

the dataset, were better than those of LARD-HM with 3640 features (similar to our map’s

feature size 3492), comparable to those of LARD-HM with 5460 features, and worse than those

of LARD-HM with 7280 features, shown in Figure 3.4c. Our map update time was 14 times

(with λmax only) and 25 times (with full covariance matrix) slower. The main reason for the

slower speed is that our method uses Bayesian updates with a full posterior covariance matrix

while LARD-HM is not Bayesian. The speed of our method can be accelerated by using a

diagonal-only covariance matrix formulation or learning different kernel parameters from data

using the key ideas in LARD-HM. With similar number of features, LARD-HM tended to

preserve less details of the obstacle boundary compared to our method in the room areas of the

Intel Lab dataset, as shown in Figure 3.4c and in Table 3.2 by the better AUC score and NLL

loss of our map when the test set was sampled in the rooms near the boundary. This reflects

52

(a) The occupied area (with different values of e)
versus the bias b.

(b) The occupied area (with b = −0.01,e = 0.0)
versus the noise’s standard deviation.

Figure 3.5. Occupied area versus the bias b and the threshold e (a) and versus noise level (b).

the difference that our SBKM approach adds relevance vectors, which can be very close to the

boundary, while LARD-HM maps chooses cluster centroids, which intuitively are farther from

the boundary.

Octomap’s AUC score, calculated from test points sampled uniformly from the complete

dataset, was lower than ours as the default maximum (0.97) and minimum (0.12) values of the

occupancy probability were used. Meanwhile, OctoMap’s performance was better than ours in

preserving boundary details in the room areas. A feature dimension is not reported for OctoMap

since it is not a kernel-based method like SBHM, SBKM, and LARD-HM.

3.7.3 Decision Boundary’s Conservativeness

As the decision boundary between free and occupied spaces affects the area for robot

navigation, we examined its conservativeness with respect to the bias b, threshold e, and mea-

surement noise variance l2 parameters. Figure 3.5a plots the occupied area in our map, i.e.,

the area with occupancy probability greater than the threshold e = 0, built from the Intel Lab

dataset [70] for different values of the bias b and threshold e. As expected, the occupied area

increases, i.e., smaller navigable area, if e decreases and/or b increases. Note that our previous

SKM model [37] does not offer similar tuning for the decision boundary because it does not

provide parameters such as b and e.

53

The decision boundary’s conservativeness should also be affected by the measurement

noise since a robot should proceed carefully around the obstacle boundary if the depth measure-

ments are noisy. To illustrate the conservativeness of the boundary generated by our approach

against measurement noise, we added Gaussian noise with zero mean and variance l2 to the

laser endpoints in the dataset and trained our model. The occupied area versus the noise’s stan-

dard deviation l is plotted in Figure 3.5b. As the noise level l increases, the occupied area

increases, i.e., the navigable area decreases, making the robot more cautious around obstacles

in the environment.

3.8 Summary

This chapter proposes a sparse Bayesian kernel-based mapping method for efficient on-

line generation of large occupancy maps, supporting autonomous robot navigation in unknown

environments. Our map representation, as a sparse set of relevance vectors learned from stream-

ing range observations of the environment, is efficient to store. Our experiments demonstrate the

potential of this model at generating compressed, yet accurate, probabilistic environment mod-

els. Our results offer a promising venue for quantifying safety and uncertainty and enabling

real-time long-term autonomous navigation in unpredictable environments.

Acknowledgements

Chapter 3, in part, is a reprint of the material as it appears in T. Duong, M. Yip, N.

Atanasov, “Autonomous Navigation in Unknown Environments with Sparse Bayesian Kernel-

based Occupancy Mapping”, IEEE Transactions on Robotics (T-RO), vol. 38, no. 6, pp. 3694-

3712, 2022, in T. Duong, N. Das, M. Yip, N. Atanasov, “Autonomous Navigation in Unknown

Environments using Sparse Kernel-based Occupancy Mapping”, International Conference on

Robotics and Automation (ICRA), pp. 9666-9672, 2020. The dissertation author was the pri-

mary investigator and author of these papers.

54

Chapter 4

Learning Hamiltonian Dynamics on Lie
Groups

Motion planning and optimal control algorithms are important components of any au-

tonomous navigation framework and depend on the availability of accurate system dynamics

models. Models obtained from first principles and calibrated over a small set of parameters via

system identification [100] are widely used for unmanned ground vehicles (UGVs), unmanned

aerial vehicles (UAVs), and unmanned underwater vehicles (UUVs). Such models may over-

simplify or even incorrectly describe the underlying structure of the dynamical system, leading

to bias and modeling errors that cannot be corrected by adjusting a few parameters. Data-

driven techniques [176, 134, 22, 157, 142, 145, 102, 72] have emerged as a powerful approach

to approximate system dynamics with an over-parameterized machine learning model, trained

over a dataset of system state and control trajectories. Neural networks are expressive func-

tion approximation models, capable of identifying and generalizing interaction patterns from

the training data. Training neural network models, however, typically requires large amounts

of data and computation time, which may be impractical in mobile robotics applications. Re-

cent works [108, 58, 25, 53, 21, 138, 104, 121] have considered a hybrid approach, where prior

knowledge of the physics, governing the system dynamics, is used to assist the learning pro-

cess. The dynamics of physical systems obey kinematic constraints and energy conservation

laws. These laws are known to be universally true but a black-box machine learning model

55

Figure 4.1. A quadrotor tracking a trajectory using our learned model and avoid obstacles.

might struggle to infer them from the training data, causing poor generalization. Instead, prior

knowledge may be encoded into the learning model, e.g., using a prior distribution [31], a

graph-network forward kinematic model [143], symmetry [141, 172], Lagrangian mechanics

[138, 109, 58, 25, 107, 108, 104] or Hamiltonian mechanics [53, 9, 21, 44, 182, 175, 121, 7, 6]

guarantee that the laws of physics are satisfied by construction, regardless of the training data.

Sanchez-Gonzalez et al. [143] design graph neural networks to represent the kine-

matic structure of complex dynamical systems and demonstrate forward model learning and

online planning via gradient-based trajectory optimization. Ruthotto et al. [141] propose a par-

tial differential equation (PDE) interpretation of convolutional neural networks and derive new

parabolic and hyperbolic ResNet architectures guided by PDE theory. Wang et al. [172] design

symmetry equivariant neural network models, encoding rotation, scaling, and uniform motion,

to learn physical dynamics that are robust to symmetry group distributional shifts.

Lagrangian-based methods [138, 109, 58, 25, 107, 108, 104] design neural network

models for physical systems based on the Euler-Lagrange differential equations of motion [106,

67], in terms of generalized coordinates q, their velocity q̇ and a Lagrangian function L (q, q̇),

defined as the difference between the kinetic and potential energies. The energy terms are

modeled by neural networks, either separately [109, 107, 108] or together [25].

56

Hamiltonian-based methods [53, 9, 21, 44, 182, 175, 121] use a Hamiltonian formula-

tion [106, 67] of the system dynamics, instead, in terms of generalized coordinates q, gener-

alized momenta p, and a Hamiltonian function, H (q,p), representing the total energy of the

system. Greydanus et al. [53] model the Hamiltonian as a neural network and update its param-

eters by minimizing the discrepancy between its symplectic gradients and the time derivatives

of the states (q,p). This approach, however, requires that the state time derivatives are avail-

able in the training data set. Chen et al. [21], Zhong et al. [182] relax this assumption by

using differentiable leapfrog integrators [91] and differentiable ODE solvers [19], respectively.

The need for time derivatives of the states is eliminated by back-propagating a loss function

measuring state discrepancy through the ODE solvers via the adjoint method. Our work ex-

tends the approach in [182, 183] by formulating the Hamiltonian dynamics over a matrix Lie

group, which enforces kinematic constraints in the neural ODE network used to learn the dy-

namics. Toth et al. [166] and Mason et al. [115] show that, instead of from state trajectories,

the Hamiltonian function can be learned from high-dimensional image observations. Finzi et al.

[44] show that using Cartesian coordinates with explicit constraints improves both the accuracy

and data efficiency for the Lagrangian- and Hamiltonian-based approaches. In a closely related

work, Zhong et al. [183] showed that dissipating elements, such as friction or air drag, can be

incorporated in a Hamiltonian-based neural ODE network by reformulating the system dynam-

ics in port-Hamiltonian form [168]. The continuous-time equations of motions in Lagrangian

or Hamiltonian dynamics can also be discretized using variational integrators [113] to learn

discrete-time Lagrangian and Hamiltonian systems [65, 39, 18, 156] and provide long-term

prediction for control methods such as model predictive control [13]. This approach eliminates

the need to use an ODE solver to roll out the dynamics but its prediction accuracy depends on

the discretization time step.

Lagrangian and Hamiltonian mechanics [106, 67] provide physical system descriptions

that can be integrated into the structure of a neural network [53, 9, 21, 44, 182, 183, 175, 109,

107]. Meanwhile, many physical robot platforms are composed of rigid-body interconnections

57

and their state evolution respects the structure of a Lie group [60], e.g., the position and orienta-

tion kinematics of a rigid body evolve on the SE(3) Lie group [110]. Prior work, however, has

only considered vector-valued states, when designing Lagrangian- or Hamiltonian-structured

neural networks. This limits the applicability of these techniques as many common robot sys-

tems have states on a Lie group. For example, Hamiltonian equations of motion are available for

orientation but existing formulations rely predominantly on 3 dimensional vector parametriza-

tions, such as Euler angles [111, 152], which suffer from singularities. The goal of this chapter

is to incorporate both the kinematic structure and the energy conservation properties of physical

systems with Lie group states into the structure of a dynamics learning model.

In our preliminary work [35], we design a neural ordinary differential equation (ODE)

network [19], whose structure captures Hamiltonian dynamics over the SE(3) manifold [89].

Our model guarantees by construction that long-term trajectory predictions satisfy SE(3) con-

straints and conserve total energy. Inspired by [182, 183], we model kinetic energy and potential

energy by separate neural networks, each governed by a set of Hamiltonian equations on SE(3).

The Hamiltonian formulation can be generalized to a Port-Hamiltonian one [168], enabling

us to design an energy-based controller for trajectory tracking. Our preliminary work [35] is

developed specifically for the SE(3) manifold and does not consider dissipation elements that

drain energy from the system, such as friction or drag forces. In this chapter, we generalize

our port-Hamiltonian neural ODE network to embed general matrix Lie group constraints and

introduce an energy dissipation term, represented by another neural network, to model friction

and air drag in physical systems [34]. We verify our approach extensively with simulated robot

systems. In summary, this chapter makes the following contributions.

• We design a neural ODE model that respects port-Hamiltonian dynamics over a matrix

Lie group to enable data-driven learning of rigid-body system dynamics.

• We demonstrate our dynamics learning approach with various robot systems (a pendulum

and a quadrotor).

58

4.1 Dynamics Learning Problem

In this section, we restate the problem of learning robot dynamics from data (Problem

2) but for robot states on a Lie group manifold. Consider a robot with state s consisting of

generalized coordinates q evolving on a Lie group G and generalized velocity ξ on the Lie

algebra g of G. Let ṡ = f(s,u) characterize the robot dynamics with control input u ∈ Rm. For

example, the state of rigid-body mobile robot, such as a UGV or UAV, may be modeled by its

pose on the SE(3) group, consisting of position and orientation, and its twist on the se(3) Lie

algebra, consisting of linear and angular velocity. The control input of an Ackermann-drive

UGV may include its linear acceleration and steering angle rate, and that of a quadrotor UAV

may include the total thrust and moment generated by the propellers.

We assume that the function f specifying the robot dynamics is unknown and aim

to approximate it using a dataset D of state and control trajectories. Specifically, let D =

{t(i)0:N ,s
(i)
0:N ,u

(i)}D
i=1 consist of D state sequences s(i)0:N , obtained by applying a constant control in-

put u(i) to the system with initial condition s(i)0 at time t(i)0 and sampling its state s(i)(t(i)n) =: s(i)n

at times t(i)0 < t(i)1 < .. . < t(i)N . Using the dataset D , we aim to find a function f̄θ with parameters

θ that approximates the true dynamics f well. To optimize θ , we roll out the approximate dy-

namics f̄θ with initial state s(i)0 and constant control u(i) and minimize the discrepancy between

the computed state sequence s̄(i)1:N and the true state sequence s(i)1:N in D .

Problem 5. Given a dataset D = {t(i)0:N ,s
(i)
0:N ,u

(i)}D
i=1 and a function f̄θ , find the parameters θ

that minimize:

min
θ

D

∑
i=1

N

∑
n=1

ℓ(s(i)n , s̄(i)n)

s.t. ˙̄s(i)(t) = f̄θ (s̄(i)(t),u(i)), s̄(i)(t0) = s(i)0 ,

s̄(i)n = s̄(i)(tn), ∀n = 1, . . . ,N, ∀i = 1, . . . ,D,

(4.1)

where ℓ is a distance metric on the state space.

We consider robot kinematics on the Lie group G such that when there is no control

59

input, u = 0, the dynamics f(s,u) respect the law of energy conservation. We embed these

constraints in the structure of the parametric function f̄θ .

4.2 Learning Hamiltonian Dynamics on Matrix Lie Groups

We consider a Hamiltonian system with unknown kinetic energy T (q), potential en-

ergy V (q), input matrix B(q), dissipation matrix D(q,p), and design a structured neural ODE

network to learn these terms from state-control trajectories.

4.2.1 Data Collection

We collect a data set D = {t(i)0:N ,s
(i)
0:N ,u

(i)}D
i=1 consisting of state sequences s(i)0:N , where

x(i)n = [q
(i)⊤
n ξ

(i)⊤
n]⊤ for n = 0, . . . ,N. Such data are generated by applying a constant control

input u(i) to the system and sampling the state s(i)n = s(i)(t(i)n) at times t(i)n for n = 0, . . . ,N. The

generalized coordinates q and velocity ξ may be obtained from a state estimation algorithm,

such as odometry algorithm for mobile robots [32, 116], or from a motion capture system. In

physics-based simulation the data can be generated by applying random control inputs u(i). In

real-world applications, where safety is a concern, data may be collected by a human operator

manually controlling the robot.

4.2.2 Model Architecture

Since robots are physical systems, their dynamics f(s,u) satisfy the Hamiltonian for-

mulation (Section 2.2.2). To learn the dynamics f(s,u) from a trajectory dataset D , we design

a neural ODE network (Section 2.3), approximating the dynamics via a parametric function

f̄θ (s,u) based on Eq. (2.28).

To integrate the Hamiltonian equations into the structure of f̄θ (s,u), we use four neural

networks with parameters θ =(θT ,θV ,θ D,θ B) to approximate the kinetic energy by Tθ (q,ξ),

the potential energy by Vθ (q), the dissipation matrix by Dθ (q,p), and the input matrix by

Bθ (q), respectively. Since the generalized momenta p are not directly available in D , the

60

𝐮

ො𝐱t
𝒯𝜽

𝒱𝜽

𝐁𝜽

𝖖

𝛏

ሶ𝖖 ሶ𝛏 ሶො𝐱tሶ𝐮 = 𝟎

𝐃𝜽

Hamilton’s equations of motion = ҧ𝐟𝛉

ℒ𝜽 𝖖, 𝛏 = 𝒯𝜽 𝖖, 𝛏 − 𝒱𝜽 𝖖

ሶ𝖖
ሶ𝖕
=

T𝐞L𝖖
𝜕ℋ𝜽

𝜕𝖕

−T𝐞
∗L𝖖

𝜕ℋ𝜽

𝜕𝖖
+ ad𝛏

∗ 𝖕 − 𝐃𝜽(𝖖, 𝖕)
𝜕ℋ

𝜕𝖕

+ 𝐁𝜽 𝖖 𝐮

𝖕 =
𝜕ℒ𝜽
𝜕𝛏

ℋ𝜽 𝖖, 𝖕 = 𝖕 ⋅ 𝛏 − ℒ𝜽 𝖖, 𝛏ሶ𝛏 =
d

dt

𝜕ℋ𝜽

𝜕𝖕

Neural ODE Networks

𝜽 𝐱𝟎, 𝐮 𝒕𝟏, 𝒕𝟐, … , 𝒕𝑵 ො𝐱𝟏, ො𝐱𝟐, …, ො𝐱𝐍

Figure 4.2. Architecture of port-Hamiltonian neural ODE network on a Lie group. The train-
able terms are shown in green.

time derivative of the generalized velocity ξ is obtained from Eq. (2.29). The approximated

dynamics function f̄θ (s,u) is described with an internal state p as follows:

q̇= TeLq

(
∂Hθ (q,p)

∂p

)
, (4.2a)

ṗ= ad∗
ξ
(p)−Dθ (q,p)

∂Hθ (q,p)

∂p
−T∗eLq

(
∂Hθ (q,p)

∂q

)
+Bθ (q)u, (4.2b)

ξ̇ =
d
dt

∂Hθ (q,p)

∂p
, (4.2c)

where the Hamiltonian is Hθ (q,p) = p · ξ −Lθ (q,ξ), and the Lagrangian is Lθ (q,ξ) =

Tθ (q,ξ)−Vθ (q). The time derivative d
dt

∂Hθ (q,p)
∂p is calculated using automatic differentiation,

e.g. by Pytorch [130]. The approximated dynamics function f̄θ (s,u) is implemented in a neural

ODE network architecture for training, shown in Figure 4.2.

61

4.2.3 Training Process

Let s̄(i)(t) denote the state trajectory predicted with control input u(i) by the approximate

dynamics f̄θ initialized at s̄(i)(t(i)0) = s(i)0 . For sequence i, forward passes through the ODE

solver in (2.42) return the predicted states s̄(i)0:N at times t(i)0:N , where s̄(i)n = [q̄
(i)⊤
n ξ̄

(i)⊤
n]⊤, for

n = 1, . . . ,N. The predicted coordinates q̄(i)
n and the ground-truth ones q(i)

n are used to calculate

a loss on the Lie group manifold:

Lq(θ) =
D

∑
i=1

N

∑
n=1

∥∥∥∥log∨G

(
q̄
(i)
n

(
q
(i)
n

)−1
)∥∥∥∥2

2
. (4.3)

We use the squared Euclidean norm to calculate losses for the generalized velocity terms:

Lξ (θ) =
D

∑
i=1

N

∑
n=1
∥ξ (i)

n − ξ̄
(i)
n ∥2

2. (4.4)

The total loss L (θ) is defined as:

L (θ) = Lq(θ)+Lξ (θ). (4.5)

The gradient of the total loss function L (θ) is back-propagated by solving an ODE with adjoint

states [19], described in Section 2.3.

4.2.4 Application to SE(3) Hamiltonian Dynamics Learning

This section applies our Lie group Hamiltonian dynamics learning approach to estimate

mobile robot dynamics on the SE(3) manifold (Section 2.2.4).

Neural ODE model architecture: When the Hamiltonian dynamics in (2.28) are de-

fined on the SE(3) manifold, the equations of motion become (2.41). The neural ODE net-

work architecture in (4.2) is simplified as follows. We use five neural networks with pa-

rameters θ = (θ v,θ ω ,θV ,θ D,θ B) to approximate the blocks M−1
v;θ (q), M−1

ω;θ (q) of the in-

62

verse generalized mass in (2.36), the potential energy Vθ (q), the dissipation matrix Dθ (q,p),

and the input matrix Bθ (q), respectively. The approximated kinetic energy is calculated as

Tθ (q,p) =
1
2p
⊤M−1

θ
(q)p, where Mθ (q) = diag(Mv;θ (q),Mω;θ (q)).

Neural network design: In many applications, nominal information is available about

the generalized mass matrices M−1
v;θ (q), M−1

ω;θ (q), the potential energy Vθ (q), the dissipation

matrix Dθ (q,p), and the input matrix Bθ (q), and can be included in the neural network design.

Let M−1
v0 (q), M−1

ω0(q), and D0(q,p) be the nominal values of the generalized mass ma-

trices M−1
v;θ (q), M−1

ω;θ (q) and the dissipation matrix Dθ (q,p) with Cholesky decomposition:

M−1
v0 (q) = Lv0(q)L⊤v0(q),

M−1
ω0(q) = Lω0(q)L⊤ω0(q),

D0(q) = LD0(q)L⊤D0(q).

(4.6)

The learned terms M−1
v;θ (q), M−1

ω;θ (q), and Dθ (q,p) are obtained using Cholesky decomposi-

tion:
M−1

v;θ (q) = (Lv0(q)+Lv(q))(Lv0(q)+Lv(q))
⊤+ εvI,

M−1
ω;θ (q) = (Lω0(q)+Lω(q))(Lω0(q)+Lω(q))

⊤+ εωI,

Dθ (q,p) = (LD0(q,p)+LD(q,p))(LD0(q,p)+LD(q,p))
⊤

(4.7)

where Lv(q), Lω(q), and LD(q,p) are lower-triangular matrices implemented as three neural

networks with parameters θ v, θ ω , and θ D respectively, and εv,εω > 0.

The potential energy V (q) and the input matrix B(q) are implemented with nominal

values V0(q) and B0(q) as follows:

Vθ (q) = V0(q)+LV (q),

Bθ (q) = B0(q)+LB(q),

(4.8)

where LV (q) and LB(q) are two neural networks with parameters θV and θ B, respectively.

63

Loss function: The orientation loss is calculated as:

LR(θ) =
D

∑
i=1

N

∑
n=1

∥∥∥log∨SO(3)(R̄
(i)
n R(i)⊤

n)
∥∥∥2

2
, (4.9)

We use the squared Euclidean norm to calculate losses for the position and generalized velocity

terms:

Lp(θ) =
D

∑
i=1

N

∑
n=1
∥p(i)

n − p̄(i)
n ∥2

2,

Lζ (θ) =
D

∑
i=1

N

∑
n=1
∥ζ (i)

n − ζ̄
(i)
n ∥2

2.

(4.10)

The total loss L (θ) is defined as:

L (θ) = LR(θ)+Lp(θ)+Lζ (θ). (4.11)

4.3 Disturbance Model Learning Problem

When disturbances and system changes generate new out-of-distribution data, it is of-

ten too slow to re-train the dynamics model in Section 4.1 to support real-time adaptation to

environment changes. In this section, we consider the problem of learning disturbance features

from state-control trajectories that can be used to estimate the disturbance online in an adaptive

control paradigm [36]. Let the system state s be defined as s = (q,p), where q ∈ Q, and its

evolution is governed by the system dynamics:

ṡ = f(s,u,d), (4.12)

where u is the control input and d is a disturbance signal. The disturbance d is modeled as a

linear combination of nonlinear features W(s) ∈ R6×p:

d(t) = W(s(t))a∗, (4.13)

64

where a∗ ∈ Rp are unknown feature weights.

A mechanical system obeys Hamilton’s equations of motion [89], as shown in Eq.

(2.32). The Hamiltonian, H (q,p) = T (q,p)+V (q), captures the total energy of the sys-

tem as the sum of the kinetic energy T (q,p) and the potential energy V (q). The dynamics in

(4.12) are determined by the Hamiltonian formulation [35, 45]:

q̇= TeLq

(
∂H (q,p)

∂p

)
, (4.14a)

ṗ= ad∗
ξ
(p)−T∗eLq

(
∂H (q,p)

∂q

)
+B(q)u+d, (4.14b)

where the disturbance d appears as an external force applied to the system.

Consider a collection D = {D1,D2, . . . ,DM} of system state transitions D j, each ob-

tained under a different unknown disturbance realization a∗j , for j = 1, . . . ,M. Each D j =

{s(i j)
0 ,u(i j),s(i j)

f ,τ(i j)}D j
i=1 consists of D j state transitions, each obtained by applying a con-

stant control input u(i j) to the system with initial condition s(i j)
0 and sampling the state s(i j)

f :=

s(i j)(τ(i j)) at time τ(i j). Our objective is to approximate the disturbance model in (4.13) by

d̄θ (t) = Wθ (s(t))a j, where θ parameterizes the shared disturbance features and the parameters

{a j}M
j=1 model each disturbance realization. To optimize θ , {a j}, we predict the dynamics evo-

lution starting from state s(i j)
0 with control u(i j) and minimize the distance between the predicted

state s̄(i j)
f and the true state s(i j)

f from D j, for j = 1, . . . ,M. Since the approximated disturbance

d̄θ does not change if the features Wθ and the coefficients a j are scaled by constants γ and 1/γ ,

respectively, we add the norms of the neural network outputs, Wθ (s
(i j)
0) and {a j}M

j=1, to the

objective function as regularization terms.

Problem 6. Given D =
{
{s(i j)

0 ,u(i j),s(i j)
f ,τ(i j)}D j

i=1

}M

j=1
, find disturbance feature parameters θ ,

65

and coefficients {a j}M
j=1 that minimize:

min
θ ,{a j}

M

∑
j=1

D j

∑
i=1

ℓ(s(i j)
f , s̄(i j)

f)+λθ

M

∑
j=1

D j

∑
i=1
∥Wθ (s

(i j)
0)∥2 +λa

M

∑
j=1
∥a j∥2

s.t. ˙̄s(i j)(t) = f(s̄(i j)(t),u(i j), d̄(i j)
θ

(t)), (4.15)

d̄(i j)
θ

(t) = Wθ (s̄(i j)(t))a j,

s̄(i j)(0) = s(i j)
0 , s̄(i j)

f = s̄(i j)(τ(i j)),

∀i = 1, . . . ,D j, ∀ j = 1, . . . ,M,

where ℓ is a distance metric on the state space.

After the offline disturbance feature identification in Problem 6, we design an adaptive

controller u = π(s,s∗,a;θ) in Chapter 5 that tracks a desired state trajectory s∗(t), compen-

sating for the disturbance, estimated online using the learned disturbance model Wθ (s) via an

adaptation law ȧ = ρ(s,s∗,a;θ).

4.4 Hamiltonian-based Disturbance Feature Learning

To address Problem 6, we use a neural ODE network [19] whose structure respects

Hamilton’s equations in (2.28) with known generalized mass M(q), potential energy V (q) and

the input gain g(q). As the energy-dissipating components D(q,p) can be considered as a part

of the disturbance sources, we omit the energy dissipation D(q,p) for simplicity. We introduce

a disturbance model, d = Wθ (q,p)a, where Wθ (q,p) is a neural network, and estimate its

parameters θ from disturbance-corrupted data. The training data D j = {s(i j)
0 ,u(i j),s(i j)

f ,τ(i j)}D j
i=1

may be obtained using an odometry algorithm [116] or a motion capture system. The data

collection can be performed using an existing baseline controller or a human operator manually

controlling the system under different disturbance conditions (e.g., wind, ground effect, etc. for

an aerial robot).

66

We define the geometric distance metric ℓ in Problem 5 as a sum of position, orientation,

and momentum errors:

ℓ(s, s̄) = ℓq(s, s̄)+ ℓp(s, s̄), (4.16)

where the loss function ℓq(s, s̄) =
∥∥∥∥log∨G

(
q̄
(i)
n

(
q
(i)
n

)−1
)∥∥∥∥2

2
, ℓp(s, s̄) = ∥p − p̄∥2

2.

Let L (θ ,{a j};D) be the total loss in Problem 6. To calculate the loss, for each dataset

D j with disturbance d̄(i j)
θ

(t) = Wθ (s̄(i j)(t))a j, we solve an ODE:

˙̄s(i j) = f(s̄(i j),u(i j), d̄(i j)
θ

), s̄(i j)(0) = s(i j)
0 , (4.17)

using an ODE solver. This generates a predicted state s̄(i j)
f at time τ(i j) for each i = 1, . . . ,D j

and j = 1, . . . ,M:

s̄(i j)
f = ODESolver

(
s(i j)

0 , f,τ(i j);θ

)
, (4.18)

sufficient to compute L (θ ,{a j};D). The parameters θ and {a j} are updated using gradient

descent by back-propagating the loss through the neural ODE solver using adjoint methods [19],

as described in Section 2.3.

4.5 Evaluation

We verify the effectiveness of our port-Hamiltonian neural ODE network for dynamics

learning and control on matrix Lie groups using a simulated pendulum and a simulated Crazyflie

quadrotor platform, whose states evolve on the SE(3) manifold. The implementation details for

the experiments are provided in Appendix C.

4.5.1 Pendulum

We consider a pendulum with the following dynamics:

ϕ̈ =−15sinϕ +3u−0.2ϕ̇, (4.19)

67

−4 −2 0 2 4
pendulum angle

0

1

2

3

4

5

6
Ground Truth

M−1(q)[3, 3]/β

Other M−1(q)[i, j]/β

(a) M−1(q)/β versus ϕ .

−4 −2 0 2 4
pendulum angle

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Ground Truth

βV (q)

(b) βV (q) versus ϕ .

−4 −2 0 2 4
pendulum angle

0.0

0.2

0.4

0.6

0.8

1.0

Ground Truth

βg(q)[1]

βg(q)[2]

βg(q)[3]

(c) βg(q) versus ϕ .

−4 −2 0 2 4
pendulum angle

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
Ground Truth

Dω(q)[3, 3]/β

Other Dω(q)[i, j]/β

(d) Dω(q)/β versus ϕ .

Figure 4.3. Evaluation of our SO(3) Hamiltonian neural ODE network on a pendulum system
with scale factor β = 1.33.

where ϕ is the angle of the pendulum with respect to its vertically downward position and u

is a scalar control input. The ground-truth mass, potential energy, friction coefficient and the

input gain are: m = 1/3,V (ϕ) = 5(1− cosϕ),D(ϕ) = 0.2/3, and g(ϕ) = 1, respectively. We

collected data of the form {(cosϕ,sinϕ, ϕ̇)} from an OpenAI Gym environment, provided by

[182], with the dynamics in (4.19). To illustrate our manifold-constrained neural ODE learning,

we viewed ϕ as a yaw angle and convert (cosϕ,sinϕ) into a rotation matrix:

R =


cosϕ −sinϕ 0

sinϕ cosϕ 0

0 0 1

 . (4.20)

68

We used ω = [0,0, ϕ̇] for angular velocity and remove position p and linear velocity v from the

Hamiltonian dynamics in (2.41), restricting the system to the SO(3) manifold with generalized

coordinates q= [r⊤1 r⊤2 r⊤3]
⊤ ∈ R9.

As described in Section 4.2.4, control inputs u(i) were sampled randomly and applied to

the pendulum for five time intervals of 0.05s, forming a dataset D =
{

t(i)0:N ,q
(i)
0:N ,ω

(i)
0:N ,u

(i))
}D

i=1

with N = 5 and D = 5120. We trained the SO(3) Hamiltonian neural ODE network as described

in Section 4.2.4 for 5000 iterations without any nominal model, i.e., M−1
ω0(q) = 0, Dω0(q,p) =

0, V0(q) = 0 and g0(q) = 0.

As noted in [182], since the generalized momenta p are not available in the dataset, the

dynamics of q in (4.19) do not change if p is scaled by a factor β > 0. This is also true in our

formulation as scaling p leaves the dynamics of q in (2.41) unchanged. To emphasize this scale

invariance, let Mβ (q) = βM(q), Vβ (q) = βV (q), Dβ (q,p) = βD(q,p) gβ (q) = βg(q), and:

pβ = Mβ (q)ω = βp,

ṗβ = β ṗ,

Hβ (q,p) =
1
2
p⊤

β
M−1

β
(q)pβ +Vβ (q) = βH (q,p),

∂Hβ (q,p)

∂pβ

= M−1
β
(q)pβ =

∂H (q,p)

∂p
,

(4.21)

guaranteeing that the equations of motions (2.41) still hold.

Figure 4.3 shows the training and testing behavior of our SO(3) Hamiltonian ODE net-

work. Figure 4.3a and 4.3c show that the
[
M(q)−1]

3,3 entry of the mass inverse and the [g(q)]3

entry of the input matrix are close to their correct values of 3 and 1, respectively, while the

other entries are close to zero. Figure 4.3b indicates a constant gap between the learned and the

ground-truth potential energy, which can be explained by the relativity of potential energy.

69

0 100 200 300 400 500
iterations

10−6

10−5

10−4

10−3

train loss

test loss

(a) Loss (log scale)

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
t(s)

0

5

10

15

20

25

M−1
v (q)[0, 0]

M−1
v (q)[1, 1]

M−1
v (q)[2, 2]

Other M−1
v (q)[i, j]

(b) M−1
v (q)

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
t(s)

0

50

100

150

200

250

300

350

M−1
ω (q)[0, 0]

M−1
ω (q)[1, 1]

M−1
ω (q)[2, 2]

Other M−1
ω (q)[i, j]

(c) M−1
ω (q)

0.25204 0.25206 0.25208 0.25210 0.25212
z

0.087055

0.087060

0.087065

0.087070

0.087075

0.087080

0.087085

0.087090
V (q)

(d) V (q)

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
t(s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Other gv(q)

gv(q)[2, 0]

(e) gv(q)

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
t(s)

0

20

40

60

80

gω(q)[0, 1]

gω(q)[1, 2]

gω(q)[2, 3]

Other gω(q)

(f) gω(q)

0 1 2 3 4 5
t(s)

10−7

10−6

|det(R)− 1|
‖RR> − I‖

(g) SO(3) constraints.

0 1 2 3 4 5
t

0.44360

0.44365

0.44370

0.44375

0.44380

0.44385

0.44390

0.44395

(h) Total energy.

Figure 4.4. Evaluation of the SE(3) Hamiltonian neural ODE network on an under-actuated
Crazyflie quadrotor in the PyBullet simulator [129].

4.5.2 Crazyflie Quadrotor

In this section, we demonstrate that our SE(3) dynamics learning and control approach

can achieve trajectory tracking for an under-actuated system. We consider a Crazyflie quadro-

tor, shown in Figure 5.6a, simulated in the physics-based simulator PyBullet [129]. The con-

trol input u = [f ,τ] includes a thrust f ∈ R≥0 and a torque vector τ ∈ R3 generated by the 4

rotors. The generalized coordinates and velocity are q = [p⊤ r⊤1 r⊤2 r⊤3]
⊤ ∈ SE(3) and

ζ = [v⊤ ω⊤]⊤ ∈ R6 as before. As we do not consider energy dissipation such as drag ef-

fects in the Pybullet simulator, we omit the dissipation matrix D(q,p) in the model design in

Section 4.2.4.

70

The quadrotor was controlled from a random starting point to 18 different desired poses

using a PID controller provided by [129], providing 18 2.5-second trajectories. The trajectories

were used to generate a dataset D = {t(i)0:N ,q
(i)
0:N ,ζ

(i)
0:N ,u

(i))}D
i=1 with N = 5 and D = 1080. The

SE(3) Hamiltonian ODE network was trained, as described in Section 4.2.4, for 500 iterations

without any nominal model, i.e., M−1
v0 (q) = 0, M−1

ω0(q) = 0, Dv0(q,p) = 0, Dω0(q,p) = 0,

V0(q) = 0 and g0(q) = 0. As the data from the Pybullet simulator was not affected by drag

effect, we skip the dissipation matrix in the dynamics model. Meanwhile, the trained model for

the real experiments in Chapter 5.4.5 includes energy dissipation to account for the drag forces

on the real systems.

Our training and test results are shown in Figure 4.4. The learned generalized mass and

inertia converged to constant diagonal matrices:

M−1
1 (q)≈ 27.5I, M−1

2 (q)≈ diag([351,340,181]).

The input matrix gv(q) converged to a constant matrix whose entry
[

gv(q)

]
2,0
≈ 1.33 while

other entries were closed to 0, consistent with the fact that the thrust only affects the linear

velocity along the z axis in the body-fixed frame. The input matrix gω(q) converged to ∼ 76I

as the torques affects all components of the angular velocity ω . The potential energy V (q) was

linear in the height z, agreed with the gravitational potential.

4.5.3 Comparison to Unstructured Neural ODE Models

In this section, we show the benefits of our neural ODE architecture by comparing 1)

our structured Hamiltonian model, 2) a black-box model, i.e., the approximated dynamics f̄θ is

represented by a multilayer perceptron network, and 3) an unstructured Hamiltonian model, i.e.,

the Hamiltonian function is represented by a multilayer perceptron network instead of using the

structure in Eq. (2.38), in terms of training convergence rates, guarantees of energy conservation

principle, and Lie group constraint satisfaction. To verify energy conservation, we rolled out

71

0 1000 2000 3000 4000 5000
iterations

10−7

10−5

10−3

10−1

101 black-box

unstructured Hamiltonian

structured Hamiltonian

(a) Training loss.

−2 −1 0 1 2 3
pendulum angle

−6

−4

−2

0

2

4

6

8

an
gu

la
r

ve
lo

ci
ty

Ground truth

black-box

unstructured Hamiltonian

structured Hamiltonian

(b) Phase portraits.

0 10 20 30 40 50
t(s)

10−5

10−3

10−1

101

103

105

|det(R)− 1| - black-box

‖RR> − I‖ - black-box

|det(R)− 1| - unstructured Hamiltonian

‖RR> − I‖ - unstructured Hamiltonian

|det(R)− 1| - structured Hamiltonian

‖RR> − I‖ - structured Hamiltonian

(c) SO(3) constraints.

0 10 20 30 40 50
t

4

5

6

7

8

9

10

ground truth

black-box

unstructured Hamiltonian

structured Hamiltonian

(d) Total energy.

Figure 4.5. Comparison of different network architectures to learn pendulum dynamics: 1)
black-box; 2) unstructured Hamiltonian; 3) structured Hamiltonian.

the learned dynamics and calculated the Hamiltonian via (2.38) along the predicted trajectories

for (1) the black-box model using ground-truth mass and potential energy with the predicted

states; (2) the unstructured Hamiltonian model using the output of the multilayer perceptron

Hamiltonian network; and (3) the structured Hamiltonian model using the learned mass and

potential energy networks. We check the SO(3) constraints by verifying that two quantities

|detR−1| and ∥RR⊤− I∥ remain small along the predicted trajectories.

We first use a pendulum as described in Section 4.5.1 without energy dissipation. The

models are trained for 5000 iterations from 512 0.2-second state-control trajectories and rolled

out for a significantly longer horizon of 50 seconds. Figure 4.5 plots the training loss, the

phase portraits, the SO(3) constraints and the total energy (Hamiltonian) of the learned models

for a pendulum system. As the Hamiltonian structure is imposed in the neural ODE network

architecture, our model is able to converge faster with lower loss (Figure 4.5a) and preserves the

72

0 100 200 300 400 500
iterations

10−5

10−4

10−3

black-box

unstructured Hamiltonian

structured Hamiltonian

(a) Training loss.

0 1 2 3 4 5
t(s)

10−7

10−5

10−3

10−1

101

103

105

|det(R)− 1| - black-box

‖RR> − I‖ - black-box

|det(R)− 1| - unstructured Hamiltonian

‖RR> − I‖ - unstructured Hamiltonian

|det(R)− 1| - structured Hamiltonian

‖RR> − I‖ - structured Hamiltonian

(b) SO(3) constraints.

0 1 2 3 4 5
t

100

101

black-box

unstructured Hamiltonian

structured Hamiltonian

(c) Total energy.

x (m)

−2.4

−2.2

−2.0

−1.8

−1.6
−1.4

y (m
)

1.0

1.2

1.4

1.6

1.8

2.0

z
(m

)

0.4

0.6

0.8

1.0

1.2

ground truth

structured Hamiltonian

unstructured Hamiltonian

black-box

(d) Predicted trajectories.

Figure 4.6. Comparison of different network architecture to learn quadrotor dynamics: 1)
black-box; 2) unstructured Hamiltonian; 3) structured Hamiltonian.

phase portraits for state predictions (Figure 4.5b). Figure 4.5c shows that the SO(3) constraints

are satisfied by our structured and unstructured Hamiltonian models as their values of |detR−1|

and ∥RR⊤− I∥ remain small along a 50-second trajectory rollout initialized at φ = π/2. The

constant Hamiltonian in Figure 4.5d of our structured Hamiltonian verifies that our model obeys

the energy conservation law with no control input and no energy dissipation. The Hamiltonian

of the black-box model increases along the trajectory while that of the unstructured Hamiltonian

model fluctuates and slightly decreases over time.

We also tested the models using the simulated Crazyflie quadrotor with the same dataset

D of 18 trajectories as described in Section 4.5.2. The SE(3) port-Hamiltonian ODE network

was trained, as described in Section 4.2.4, for 500 iterations. Our structured Hamiltonian model

73

converges faster with significantly lower loss as seen in Figure 4.6a. We verified that the pre-

dicted orientation trajectories from our learned models satisfy the SO(3) constraints. Figure

4.6b shows two near-zero quantities |detR− 1| and ∥RR⊤− I∥, obtained by rolling out our

learned dynamics for 5 seconds, while the learned black-box model violates the constraints af-

ter a very short time. Figure 4.6c shows a constant total energy along the predicted trajectory

from our structured Hamiltonian model without control input and dissipation networks, ver-

ifying that the learned model obeys the law of energy conservation. Figure 4.6d shows that

our structured Hamiltonian model provides better trajectory predictions compared to the other

methods.

4.6 Summary

This chapter proposes a neural ODE network design for robot dynamics learning that

captures Lie group kinematics, e.g. the SE(3) manifold, and Hamiltonian dynamics constraints

by construction. The learning design is not system-specific and thus can be applied to differ-

ent types of robots, such as mobile robots whose state evolves on the SE(3) manifold. This

technique has the potential to enable robots to quickly adapt their models online, in response

to changing operational conditions or structural damage, and, yet, maintain stability and au-

tonomous operation. Future work will focus on extending our formulation to allow learning the

kinematic and dynamic structure of multi-rigid body systems, contact dynamics and provide

safe and stable adaptive control in the presence of noise and disturbances.

Acknowledgements

Chapter 4, in part, is a reprint of the material as it appears in T. Duong, N. Atanasov,

“Hamiltonian-based Neural ODE Networks on the SE(3) Manifold For Dynamics Learning and

Control”, Robotics: Science and Systems (RSS), 2021, in T. Duong, N. Atanasov, “Physics-

guided Learning-based Adaptive Control on the SE(3) Manifold”, Physical Reasoning and In-

ductive Biases for the Real World Workshop, 2021, and in T. Duong, N. Atanasov, “Adaptive

74

Control of SE(3) Hamiltonian Dynamics with Learned Disturbance Features”, IEEE Control

Systems Letters (L-CSS), vol. 6, pp. 2773-2778, 2022. Chapter 4, in part, has been submit-

ted for publication of the material as it may appear in T. Duong, A. Altawaitan, J. Stanley, N.

Atanasov, “Port-Hamiltonian-based Neural ODE Networks on Lie Groups For Robot Dynam-

ics Learning and Control”, Transactions on Robotics, 2024. The dissertation author was the

primary investigator and author of these papers.

75

Chapter 5

Autonomous Navigation with Learned
Robot Dynamics and Sparse Map Rep-
resentations

Finally, this chapter presents a complete online mapping, planning, and control for au-

tonomous navigation tasks, using our sparse occupancy maps described in Chapter 3 and our

learned dynamics model in Chapter 4. The robot starts by observing the environment via depth

measurements from its sensors such as lidars. It runs our sequential mapping algorithm (Algo-

rithm 1 or Algorithm 2 in Chapter 3) on the depth measurements to build a sparse (binary or

probabilistic, respectively) occupancy map. The sparse kernel-based structure of the occupancy

maps allows us to derive efficient collision checking algorithms for robot trajectories such as

line segments or general curves in Section 5.1. The collision checking algorithms can be easily

integrated into motion planner such as A∗ [140] or RRT ∗ [81], which returns a desired trajectory

for the robot to follow. In Section 5.2, we develop control policies to track the trajectory, with

and without the presence of disturbance and dynamics changes, for the learned Hamiltonian

dynamics in Chapter 4. The autonomous navigation algorithm is summarized in Section 5.3.

5.1 Motion Planning With Sparse Occupancy Maps

In this section, motivated by the collision checking approach in [10], we derive our own

efficient collision checking algorithms for our map representations in Chapter 3. We develop an

76

“inflated boundary” of the obstacle boundary that enables closed-form conditions for checking

line segments and ellipsoids for collision. These key conditions allow us to check potential

robot trajectories for motion planning purposes, e.g., using common motion planners such as

A∗ [140] or RRT ∗ [81].

For example, if we use a first-order fully actuated robot, ṗ = v, where the state s is the

robot position p ∈ [0,1]3, with piecewise-constant velocity v(t)≡ vk ∈ V for t ∈ [tk, tk+1), the

robot trajectories are piecewise-linear:

p(t) = pk +(t− tk)vk, t ∈ [tk, tk+1), (5.1)

where pk := p(tk). In this case, the classification algorithm for line segments (Algorithm 3) in

Section 5.1.1 is used during motion planning.

In the real experiments with ground robots in Section 5.4.4, we consider a ground

wheeled Ackermann-drive robot with dynamics model:

ṗ = v

cos(θ)

sin(θ)

 , θ̇ =
v
ℓ

tanφ , (5.2)

where the state s consists of the position p ∈R2 and orientation θ ∈R, the control input u con-

sists of the linear velocity v ∈R and the steering angle φ ∈R, and ℓ is the distance between the

front and back wheels. The nonlinear car dynamics can be transformed into a 2nd-order fully

actuated system p̈ = a via feedback linearization [30, 46]. Using piecewise-constant accelera-

tion a(t)≡ ak ∈A for t ∈ [tk, tk+1) leads to piecewise-polynomial trajectories:

p(t) = pk +(t− tk)vk

cos(θk)

sin(θk)

+ (t− tk)2

2
ak, (5.3)

where pk := p(tk), θk := θ(tk), vk := v(tk). For the simulated and real quadrotor platforms in

77

−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
G1(x) = 0

G3(x) = 0

line segments

intersection

(a) Checking line segments.
−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
G1(x) = 0

G2(x) = 0

G3(x) = 0

colliding curve

(b) Checking a colliding curve.
−10 −5 0 5 10

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
G1(x) = 0

G2(x) = 0

G3(x) = 0

free curve

(c) Checking a free curve.

Figure 5.1. Illustration of our classification algorithms for the trained RVM model in Figure
3.2 with b =−0.05,e =−0.01, and n1 = n2 = 1.

Section 5.4.2, 5.4.3, and 5.4.5, the robot trajectories can be modeled as piecewise-polynomials

due to their differential flatness [97]. For these robot platforms, the classification algorithm

for curves (Algorithm 4) can used to get successor nodes in an A∗ or RRT ∗ motion planning

algorithm.

5.1.1 Checking Line Segments

Consider a linear trajectory described by a ray p(t) = p0 + tv, t ≥ 0 such that p0 is

obstacle-free according to Prop. 2, i.e., G3(p0)≤ 0, and v is a constant. To check if p(t) collides

with the inflated boundary G3(x) = 0, we find a time tu such that any point p(t) is classified free

for t ∈ [0, tu).

Proposition 3. Consider a ray p(t) = p0 + tv, t ≥ 0. Let x+i and x−j be arbitrary positive and

negative relevance vectors. Then, any point p(t) with t ∈ [0, tu)⊆ [0, t∗u) is free for:

tu := min
i=1,...,M+

τ(p0,x+i ,x
−
j) (5.4)

t∗u := min
i=1,...,M+

max
j=1,...,M−

τ(p0,x+i ,x
−
j), (5.5)

78

Algorithm 3. Collision Checking for Line Segments

Input: Line segment (pA,pB); relevance vectors Λ = {(xi,yi,ξ i)}; weight posterior mean µ

and max covariance eigenvalue λmax
1: vA = pB−pA, vB = pA−pB
2: Calculate tuA and tuB using Eq. (5.4) or Eq. (5.5).
3: if tuA + tuB > 1 then return True (Free)
4: else return False (Colliding)

where τ(p0,x+i ,x
−
j)

=



+∞, if V (t,x+i ,x
−
j) has less than 2 roots

+∞, if V (t,x+i ,x
−
j) has 2 roots t1 < t2 ≤ 0

t1 if V (t,x+i ,x
−
j) has 2 roots 0≤ t1 < t2

0 if V (t,x+i ,x
−
j) has 2 roots t1 ≤ 0≤ t2

.

and V (t,x+i ,x
−
j) = at2 +b(x+i ,x

−
j)t + c(x+i ,x

−
j) with

a := −n1∥Γv∥2,

b(x+i ,x
−
j) := −2v⊤Γ

⊤
Γ(n1p0− (n1 +n2)x+i +n2x−j),

c(x+i ,x
−
j) := −(n1+n2)∥Γ(p0−x+i)∥2+n2∥Γ(p0−x−j)∥2

−(n1 +n2) log
ρ(e−b,ν−j)

η

n1
n1+n2 ∑

M+

i=1 ν
+
i

.

Proof. Please refer to Appendix B.3.

For a line segment (pA,pB), all points on the segment can be expressed as p(tA) = pA +

tAvA, vA = pB−pA, 0≤ tA ≤ 1 or p(tB) = pB+ tBvB, vB = pA−pB, 0≤ tB ≤ 1. Using the upper

bound tuA on tA provided by Eq. (5.4) or Eq. (5.5), we find the free region on (pA,pB) starting

from pA. Likewise, we calculate tuB which specifies the free region from pB. If tuA + tuB > 1,

the entire line segment is free, otherwise the segment is considered colliding. The proposed

approach is summarized in Algorithm 3 and illustrated in Figure 5.1a.

79

5.1.2 Checking Curves

Instead of a constant velocity v representing the direction of motion, we can define a

general curve p(t) by considering a time-varying term v(t). We extend the collision checking

conditions in Prop. 3 by finding an ellipsoid E (p0,r) := {x : ∥Γ(x−p0)∥ ≤ r} around p0 whose

interior is free of obstacles, where Γ is the kernel parameter defined in Assumption 1. This

specific form of the ellipsoid leads a closed-conditions as shown in the Prop. 4.

Proposition 4. Let p0 be such that G3(p0) < 0 and let x+i and x−j be arbitrary positive and

negative support vectors. The interior of the ellipsoids E (p0,ru)⊆ E (p0,r∗u) is free for:

ru = min
i=1,...,M+

r(p0,x+i ,x
−
j) (5.6)

r∗u = min
i=1,...,M+

max
j=1,...,M−

r(p0,x+i ,x
−
j). (5.7)

where r(p0,x+i ,x
−
j)

=



+∞, if V̄ (t,x+i ,x
−
j) has less than 2 roots

+∞, if V̄ (t,x+i ,x
−
j) has 2 roots t1 < t2 ≤ 0

t1 if V̄ (t,x+i ,x
−
j) has 2 roots 0≤ t1 < t2

0 if V̄ (t,x+i ,x
−
j) has 2 roots t1 ≤ 0≤ t2

,

and V̄ (t,x+i ,x
−
j) = āt2 + b̄(x+i ,x

−
j)t + c̄(x+i ,x

−
j) with

ā := −n1,

b̄(x+i ,x
−
j) := 2∥Γ(n1p0− (n1 +n2)x+i +n2x−j)∥,

c̄(x+i ,x
−
j) := c(x+i ,x

−
j).

Proof. Please refer to Appendix B.4.

80

Algorithm 4. Collision Checking for Curves

Input: Curve p(t), t ∈ [0, t f]; threshold ε; relevance vectors Λ = {(xi,yi,ξ i)}; weight posterior
mean µ and max covariance eigenvalue λmax
while True do

Calculate rk using Eq. (5.6) or Eq. (5.7).
if rk < ε then return False (Colliding)
Solve ∥Γ(p(t)−p(tk))∥= rk for tk+1 ≥ tk
if tk+1 ≥ t f then return True (Free)

Consider a general time-parameterized curve p(t), t ∈ [0, t f] from p0 := p(0) to p f :=

p(t f). Prop. 4 shows that all points inside the ellipsoid E (p0,r) are free for r = ru ≤ r∗u. If we

can find the smallest positive t1 such that

∥Γ(p(t1)−p0)∥= r, (5.8)

then all points on the curve p(t) for t ∈ [0, t1) are free. This is equivalent to finding the small-

est positive solution of Eq. (5.8). We perform curve classification by iteratively covering the

curve by free ellipsoids. If the value of r is smaller than a threshold ε , the curve is considered

colliding. Otherwise, it is considered free. The classification process for curves is shown in

Algorithm 4 and illustrated in Figure 5.1b and 5.1c for the trained RVM model in Figure 3.2 for

a colliding curve and a free curve, respectively.

In Prop. 3 and 4, calculating tu and ru takes O(M) time, while the computational com-

plexity of calculating t∗u and r∗u are O(M2), where M = M++M−. If the line segments or curves

are limited to the neighborhood of the starting point p0, the bound tu and ru can reasonably

approximate t∗u and r∗u, respectively, if x−j is chosen as the negative support vector, closest to p0.

Calculation of tu and ru in Prop. 3 and 4 is efficient in the sense that it has the same complex-

ity as classifying a point, yet it can classify an entire line segment for t ∈ [0, tu) and an entire

ellipsoid E (p0,ru), respectively.

In the next section, we will describe how to integrate the proposed collision checking

algorithms for line segments (Algorithm 3) and curves (Algorithm 4) into motion planners.

81

5.1.3 Integration with Motion Planning Algorithms

Our collision checking algorithms for line segments (Algorithm 3) and curves (Algo-

rithm 4) are compatible with common motion planning algorithms such as A∗ [140] or RRT ∗

[81] to generate robot trajectories in the free space, e.g. in GETSUCCESSORS subroutine for A∗

and OBSTACLEFREE subroutine for RRT ∗, as shown in Algorithm 5.

Algorithm 5. GETSUCCESSORS and OBSTACLEFREE subroutines in A∗[140] and RRT ∗ [81],
respectively

Input: Current position pk; set of relevance vectors Λ = {(xi,yi,ξ i)} with posterior weight
mean µ and covariance Σ; set N (pk) of potential reference trajectories p(t− tk) with p(tk) =
pk.

Output: Set of collision-free trajectories S.
S← /0;.
for p′ in N (pk) do

if p′ is a line and CHECKLINE(pk,p′,Λ) then ▷ Algorithm 3
S← S∪{p′}

if p′ is a curve and CHECKCURVE(pk,p′,Λ) then ▷ Algorithm 4
S← S∪{p′}

return S

The use of the “inflated boundary” G3(x) = 0 from Prop. 2 for collision checking might

block the motion planning task if it is not tight enough in certain regions of the environment

(e.g., unobserved regions as discussed in Section 3.5). For such regions, a different ratio of

n2/n1 can be used in Prop. 2 to achieve a tighter bound G3(x). Increasing the decision threshold

ē (Def. 10) can also improve the accuracy of G3(x) if a trade-off with robot safety is allowed.

Another resort is to use sampling-based collision checking, selecting points along the curve p(t)

and using Def. 10.

5.2 Trajectory Tracking with Learned Hamiltonian Dynam-
ics

In this section, we aim to design a control approach that achieves stabilization or trajec-

tory tracking for different rigid-body robots, such as UGVs, UAVs, or UUVs, using the learned

82

models in Chapter 4 without requiring prior knowledge of its parameters.

The Hamiltonian formulation and its port-Hamiltonian generalization [168], presented

in Chapter 4, are built around the notion of system energy and, hence, are naturally related

to control techniques for stabilization aiming to minimize the total energy. Since the mini-

mum point of the Hamiltonian might not correspond to a desired regulation point, the con-

trol design needs to inject additional energy to ensure that the minimum of the total energy

is at the desired equilibrium. For fully-actuated (port-)Hamiltonian systems, it is sufficient to

shape the potential energy only using an energy-shaping and damping-injection (ES-DI) con-

troller [168]. For underactuated systems, both the kinetic and potential energies needs to be

shaped, e.g., via interconnection and damping assignment passivity-based control (IDA-PBC)

[168, 126, 1, 23]. Wang and Goldsmith [173] extend the IDA-PBC controller from stabilization

to trajectory tracking. Closely related to our controller design, Souza et. al. [158] apply this

technique to design a controller for an underactuated quadrotor robot but use Euler angles as

the orientation representation. Port-Hamiltonian structure and energy-based control design are

also used to learn distributed control policies from state-control trajectories [48, 50, 146]. We

connect Hamiltonian-dynamics learning in Chapter 4 with the idea of IDA-PBC control to al-

low stabilization of any rigid-body robot without relying on its model parameters a priori. We

design a trajectory-tracking controller for underactuated systems, e.g., quadrotor robots, based

on the IDA-PBC approach and show how to construct desired pose and momentum trajectories

given only desired position and yaw. We demonstrate the tight integration of dynamics learning

and control to achieve closed-loop trajectory tracking with underactuated quadrotor robots.

To handle dynamics changes and disturbances, we develop data-driven adaptive control

for rigid-body systems, such as unmanned ground vehicles (UGVs), unmanned aerial vehicles

(UAVs), or unmanned underwater vehicles (UUVs), that satisfy Hamilton’s equations of mo-

tion on position and orientation manifold SE(3). While adaptation laws have been developed to

work with non-parametric uncertainties in the related work, we consider linearly parameterized

disturbances, i.e. linear combinations of unknown nonlinear features. While recent techniques

83

for disturbance feature learning and data-driven adaptive control are restricted to systems whose

states evolve in Euclidean space, a unique aspect of our adaptive control design is the consider-

ation of geometric tracking errors on the SE(3) manifold. Compared to existing SE(3) geomet-

ric adaptive controllers specifically designed for quadrotors with a known disturbance model

[51, 11], we develop a general adaptation law that can be used for any rigid-body robot, such as

a UGV, UAV, or UUV, and learn disturbance features from trajectory data instead of assuming

a known model. Specifically, given the learned nonlinear disturbance features in Chapter 4, we

develop a geometric adaptation law to estimate the disturbances online and compensate them

by a nonlinear energy-shaping tracking controller.

In summary, this section provides control designs to solve Problem 4 using the learned

dynamics with and without the presence of disturbances or dynamics changes from new opera-

tional conditions:

• a unified energy-based control policy for learned port-Hamiltonian dynamics on a Lie

group that achieves trajectory tracking if permissible by the system’s degree of underac-

tuation.

• an adaptive control policy with disturbance compensation online based on the learned

disturbance features and the geometric tracking errors.

5.2.1 Control Design for Hamiltonian Dynamics on Lie Groups

Consider a desired regulation point (q∗,p∗) ∈ T∗G that the system should be stabilized

to. The Hamiltonian function H (q,p), representing the total energy of the system, generally

does not have a minimum at (q∗,p∗). An IDA-PBC controller [168, 126, 173] is designed to

inject additional energy Ha(q,p) such that the desired total energy:

Hd(q,p) = H (q,p)+Ha(q,p) (5.9)

84

achieves its minimum at (q∗,p∗). In other words, the closed-loop system obtained by applying

the controller to the port-Hamiltonian dynamics in (2.32) should have the form:

q̇
ṗ

= (Jd(q,p)−Rd(q,p))

∂Hd
∂q

∂Hd
∂p

 . (5.10)

to ensure that (q∗,p∗) is an equilibrium. The control input u should be chosen so that (2.32) and

(5.10) are equal. This matching equation design does not directly apply to trajectory tracking,

especially for underactuated systems [158, 173].

Consider a desired trajectory (q∗(t),p∗(t)) that the system should track, where q∗(t)

is the desired generalized coordinate and p∗(t) is the desired generalized momentum. Let

(qe(t),pe(t)) denote the error in the generalized coordinates and momentum, respectively,

where the coordinate error qe = (q∗)−1q ∈ G and the momentum pe = p−p∗ ∈ T∗qe
G. For

trajectory tracking, the desired total energy Hd(qe,pe) is defined in terms of the error state,

with desired closed-loop dynamics:

q̇e

ṗe

= (Jd(qe,pe)−Rd(qe,pe))

∂Hd
∂qe

∂Hd
∂pe

 . (5.11)

Matching (5.11) with (2.32) leads to the following requirement for the control input:

G (q,p)u =(Jd(qe,pe)−Rd(qe,pe))

∂Hd
∂qe

∂Hd
∂pe

 (5.12)

− (J (q,p)−R(q,p))

∂H
∂q

∂H
∂p

+
q̇
ṗ

−
q̇e

ṗe

 .
The control input can be obtained from (5.12) as the sum u = uES +uDI of an energy-shaping

85

component uES and a damping-injection component uDI:

uES = G †(q,p)

(Jd(qe,pe))

∂Hd
∂qe

∂Hd
∂pe

−
q̇e

ṗe

− (J (q,p)−R(q,p))

∂H
∂q

∂H
∂p

+
q̇
ṗ


 ,

(5.13a)

uDI =−G †(q,p)Rd(qe,pe)

∂Hd
∂qe

∂Hd
∂pe

 , (5.13b)

where G †(q,p) =
(
G⊤(q,p)G (q,p)

)−1
G⊤(q,p) is the pseudo-inverse of G (q,p). The con-

trol input uES exists as long as the desired interconnection matrix Jd , dissipation matrix

Rd , and total energy Hd satisfy the following matching condition for all (q,p) ∈ T∗G and

(qe,pe) ∈ T∗G:

G †(q,p)

Jd(qe,pe)−Rd(qe,pe))

∂Hd
∂qe

∂Hd
∂pe

 (5.14)

− (J (q,p)−R(q,p))

∂H
∂q

∂H
∂p

+
q̇
ṗ

−
q̇e

ṗe


= 0.

where G⊥(q,p) is a maximal-rank left annihilator of G (q,p), i.e., G⊥(q,p)G (q,p) = 0.

5.2.2 Control Design for Hamiltonian Dynamics on the SE(3) Manifold

Consider a desired state trajectory s∗(t) = (q∗(t),ζ ∗(t)) that the system should track

where q∗(t) ∈ SE(3) is the desired pose and ζ
∗(t) =

[
v∗(t)⊤ ω∗(t)⊤

]⊤
is the desired gen-

eralized velocity expressed in the desired frame. Let p∗ = M

R⊤R∗v∗

R⊤R∗ω∗

 denote the desired

momentum, defined based on (2.37) with the desired velocity expressed in the body frame. Let

pe = p−p∗ and Re =R∗⊤R=

[
re1 re2 re3

]⊤
be the position error and rotation error between

86

the current orientation R and the desired one R∗, respectively. The vectorized error qe in the

generalized coordinates is:

qe =

[
p∗⊤e r⊤e1 r⊤e2 r⊤e3

]⊤
. (5.15)

The error in the generalized momenta is pe = p−p∗, described in the body frame. The desired

total energy is defined in terms of the error state as:

Hd(qe,pe) =
1
2
p⊤e M−1

d (qe)pe +Vd(qe), (5.16)

where Md(qe) and Vd(qe) are the desired generalized mass and potential energy. Choosing the

following desired inter-connection matrix and dissipation matrix:

Jd(qe,pe) =

 0 J1

−J⊤1 J2

 , Rd(qe,pe) =

0 0

0 Kd

 , (5.17)

and plugging J (q,p) and R(q,p) from (2.39) into the matching equations in (5.12), leads to:

0 = J1
∂Hd

∂pe
−q×

∂H

∂p
+ q̇− q̇e, (5.18)

B(q)u = q×⊤
∂H

∂q
−J⊤1

∂Hd

∂qe
+J2

∂Hd

∂pe
−p×

∂H

∂p

−Kd
∂Hd

∂pe
+D(q,p)

∂H

∂p
+ ṗ− ṗe. (5.19)

Assuming Md(qe)=M(q), (5.18) is satisfied if we choose J1 =

R⊤ 0 0 0

0 r̂⊤e1 r̂⊤e2 r̂⊤e3


⊤

. Indeed,

we have q̇= q× ∂H
∂p (from (11) and (19)) and

∂Hd

∂pe
= M−1

d pe =

ve

ωe

=

 v−R⊤R∗v∗

ω−R⊤R∗ω∗

 .

87

The error dynamics becomes:

q̇e =



ṗ− ṗ∗

ṙe1

ṙe2

ṙe3


=

R⊤ 0 0 0

0 r̂⊤e1 r̂⊤e2 r̂⊤e3


⊤ve

ωe

= J1
∂Hd

∂pe
, (5.20)

since Ṙe =
d
dt (Re) = Reω̂e as shown in [88, Section III-A] and ṗ− ṗ∗ = Rv−R∗v∗ = Rve.

The desired control input can be obtained from (5.19) as u = uES +uDI with:

uES = B†(q)

(
q×⊤

∂H

∂q
−J⊤1

∂Hd

∂qe
+J2

∂Hd

∂pe
−p×

∂H

∂p
+D(q,p)

∂H

∂p
+ ṗ− ṗe

)
, (5.21a)

uDI =−B†(q)Kd
∂Hd

∂pe
, (5.21b)

where B†(q) =
(
B⊤(q)B(q)

)−1 B⊤(q) is the pseudo-inverse of B(q). The matching condition

(5.14) becomes:

B⊥(q)
(
q×⊤

∂H

∂q
−J⊤1

∂Hd

∂qe
+J2

∂Hd

∂pe
−p×

∂H

∂p
+ ṗ− ṗe

)
= 0. (5.22)

In this chapter, we reshape the open-loop Hamiltonian H (q,p) into the following desired total

energy Hd(qe,pe), minimized along the desired trajectory:

Hd(qe,pe) =
1
2
(p−p∗)⊤Kp(p−p∗)+

1
2

tr(KR(I−R∗⊤R))+
1
2
(p−p∗)⊤M−1(q)(p−p∗),

(5.23)

where Kp,KR ≻ 0 are positive-definite matrices.

For an SE(3) rigid-body system with constant generalized mass matrix Md = M and

J2 = 0, which is a common choice, the energy-shaping term in (5.21a) and the damping-

88

injection term in (5.21b) simplify as:

uES(q,p) = B†(q)

(
q×⊤

∂V
∂q
−
(
p×−D(q,p)

)
M−1p− e(q,q∗)+ ṗ∗

)
,

uDI(q,p) =−B†(q)KdM−1(p−p∗), (5.24)

where the generalized coordinate error between q and q∗ is:

e(q,q∗) := J⊤1
∂Vd

∂qe
=

 R⊤Kp(p−p∗)
1
2

(
KRR∗⊤R−R⊤R∗K⊤R

)∨
 , (5.25)

and the derivative of the desired momentum is:

ṗ∗ = M

 R⊤p̈∗− ω̂R⊤ṗ∗

R⊤R∗ω̇∗− ω̂eR⊤R∗ω∗

 . (5.26)

By expanding the terms in (5.24), we have:

p×M−1p= p×ζ =

 p̂vω

p̂ωω + p̂vv

 , (5.27)

M−1(p−p∗) =

 v−R⊤ṗ∗

ω−R⊤R∗ω∗

 , (5.28)

q×⊤
∂V

∂q
=

 R⊤ ∂V (q)
∂p

∑
3
i=1 r̂i

∂V (q)
∂ri

 . (5.29)

Theorem 1. Consider a port-Hamiltonian system on the SE(3) manifold with dynamics (2.41).

Assume that the matching condition (5.22) is satisfied, the desired momentum’s derivative ṗ∗

is bounded, and the matrices Kp, KR, and Kd are positive-definite. The control policy in

89

(5.21) leads to closed-loop error dynamics in (5.11), (5.17). The tracking error (qe,pe) =

((pe,Re),pe) asymptotically stabilizes to ((0,I),0) with Lyapunov function given by the desired

Hamiltonian Hd(qe,pe) in (5.23).

Proof. Since the matching condition is satisfied and the desired momentum’s derivative ṗ∗ is

bounded, the control policy in (5.21), (5.21b) exists and achieves the desired closed-loop error

dynamics: q̇e

ṗe

=

 0 J1

−J⊤1 J2−Kd


∂Hd

∂qe

∂Hd
∂pe

 . (5.30)

We have tr
(
I−R∗⊤R

)
≥ 0, as all entries in Re ∈ SO(3) are less than 1. Since M, Kp and

KR are positive-definite matrices, the desired Hamiltonian Hd is positive-definite, and achieves

minimum value 0 only at qe = (0,I) and pe = 0, i.e., no position, rotation and momentum

errors. The time derivative of Hd(qe,pe) can be computed as:

Ḣd(qe,pe) =
∂Hd

∂qe

⊤
q̇e +

∂Hd

∂pe

⊤
ṗe

=−p⊤e M−1(q)KdM−1(q)pe.

(5.31)

As Kd and M(q) are positive-definite, we have Ḣd(qe,pe) ≤ 0 for all (qe,pe) and equality

holds at ((0,I),0). By LaSalle’s invariance principle [84], the tracking errors (qe,pe) asymp-

totically converge to ((0,I),0).

Without requiring a priori knowledge of the system parameters, the control design in

(5.21) offers a unified control approach for SE(3) Hamiltonian systems that achieves trajectory

tracking, if permissible by the system’s degree of underactuation. Thus, our control design

solves Problem 4 for rigid-body robot systems, such as UGVs, UAVs, and UUVs, with tracking

performance guaranteed by Theorem 1.

90

5.2.3 Adaptive Control with Learned Disturbance Model on the SE(3)
Manifold

Given the learned disturbance model Wθ (s) in Chapter 4 and a desired trajectory s∗(t),

we develop a trajectory tracking controller u = π(s,s∗,a;θ) that compensates for disturbances

and an adaptation law ȧ = ρ(s,s∗,a;θ) that estimates the disturbance realization online. Our

tracking controller for the Hamiltonian dynamics on SE(3) in (2.41) is developed using inter-

connection and damping assignment passivity-based control (IDA-PBC) [168]. Consider a de-

sired pose-velocity trajectory (q∗(t),ζ ∗(t)). We extend the trajectory tracking controller (5.24)

in Section 5.2.2 to compensate for the disturbance forces, and arrive at a tracking controller

u = π(s,s∗,a;θ), consisting of an energy-shaping term uES, a damping-injection term uDI , and

a disturbance compensation term uDC:

uES(q,p) = B†(q)

(
q×⊤

∂V
∂q
−
(
p×−D(q,p)

)
M−1p− e(q,q∗)+ ṗ∗

)
,

uDI(q,p) =−B†(q)KdM−1(p−p∗), (5.32)

where B†(q) =
(
B⊤(q)B(q)

)−1 B⊤(q) is the pseudo-inverse of B(q) and Kd = diag(kvI,kωI)

is a damping gain with positive terms kv, kω . Note that in this section, as energy dissipation can

be considered as source of disturbance, we ignore the dissipation matrix D(q,p) for simplicity.

The controller utilizes a generalized coordinate error between q and q∗:

e(q,q∗) =

ep(q,q
∗)

eR(q,q
∗)

=

 kpR⊤(p−p∗)
1
2kR

(
R∗⊤R−R⊤R∗

)∨
 (5.33)

and a generalized momentum error pe = p−p∗:

pe = M(q)

ev(s,s∗)

eω(s,s∗)

= M(q)

 v−R⊤R∗v∗

ω−R⊤R∗ω∗

 . (5.34)

91

Please refer to [35] for a detailed derivation of uES and uDI .

The disturbance compensation term uDC in (5.32) requires online estimation of the dis-

turbance feature weights a. Inspired by [51], we design an adaptation law which utilizes the

geometric errors (5.33), (5.34) to update the weights a:

ȧ = ρ(s,s∗,a;θ) = W⊤θ (q,p)

 cpep(q,q
∗)+ cvev(s,s∗)

cReR(q,q
∗)+ cωeω(s,s∗)

 , (5.35)

where cp, cv, cR, cω are positive coefficients. The stability of our adaptive controller (π,ρ) is

shown in Theorem 2, under the assumption that the learned disturbance features Wθ converge

to the true ones W(q,p) after the training process.

Theorem 2. Consider the Hamiltonian dynamics in (2.41) with disturbance model in (4.13).

Suppose that the parameters B(q), M(q), V (q) and W(q,p) are known but the disturbance

feature weights a∗ are unknown. Let s∗(t) be a desired state trajectory with bounded an-

gular velocity, ∥ω∗(t)∥ ≤ γ . Assume that the initial system state lies in the domain T =

{s ∈ T ∗SE(3) |Ψ(R,R∗)< α < 2,∥eω(s,s∗)∥< β} for some positive constants α and β , with

Ψ(R,R∗) = 1
2 tr(I−R∗⊤R). Consider the tracking controller in (5.32) with adaptation law in

(5.35). Then, there exist positive constants kp, kR, kv, kω , cp = cR = c1, cv = cω = c2 such

that the tracking errors e(q,q∗) and pe defined in (5.33) and (5.34) converge to zero. Also,

the estimation error ea = a−a∗ is stable in the sense of Lyapunov and uniformly bounded. An

estimate of the region of attraction is R = {s ∈T | V (s)≤ δ}, where:

V (q,p) = Hd(q,p)+
c1

c2
e⊤pe +

1
2c2
∥ea∥2

2 (5.36)

92

and δ < λmin(Q1)min(α(2−α)k2
R,β

2λ 2
min(M(q)))/2 for

Q1 =

min
{

k−1
p ,k−1

R
}

−c1/c2

−c1/c2 λmin(M−1(q))

 . (5.37)

Proof. Please refer to Appendix D.

5.3 Autonomous Navigation

This section presents our complete online mapping and navigation approach that solves

the autonomous navigation problem defined in Section 1.2. Given the sparse Bayesian kernel-

based map mk (Algorithm 2) proposed in Chapter 3, a motion planning algorithm such as

A∗ [140] or RRT ∗ [81] may be used with our collision-checking algorithms in Section 5.1 to

generate a path that solves the autonomous navigation problem (Algorithm 5). The robot fol-

lows the path for some time using the tracking controllers in Section 5.2 and updates the map

estimate mk+1 with new observations. Using the updated map, the robot re-plans the path and

follows the new path instead. This process is repeated until the goal is reached or a time limit is

exceeded (Algorithm 6).

Algorithm 6. Autonomous Mapping and Navigation with a Sparse Bayesian Kernel-based Map

Input: Initial state s0 ∈ S̄ ; goal region G ; prior relevance vectors Λ0.
1: for k = 0,1, . . . do
2: if sk ∈ G then break
3: zk← new range sensor observation
4: Dk← Training Data Generation(zk,sk) ▷ Section 3.4
5: Λk+1← Online Map Update(Λk,Dk) ▷ Algorithm 2, Chapter 3
6: Path Planning(Λk+1,sk,G) ▷ Algorithm 5, Section 5.1
7: Follow the path using a trajectory tracking controller

(with learned dynamics). ▷ Section 5.2 and 4.2

93

0 2 4 6 8 10
Trajectory time length tf

0

5

10

15

20

C
ol

lis
io

n
ch

ec
ki

ng
ti

m
e

(µ
s) SB,∆ = 0.002s

SB,∆ = 0.003s

SB,∆ = 0.005s

SB,∆ = 0.01s

SB,∆ = 0.05s

SB,∆ = 0.1s

Ours

(a) Checking line segments p(t) = p0 +vt for t ∈
[0, t f] with various t f values.

0 2 4 6 8 10
Trajectory time length tf

0

20

40

60

80

C
ol

lis
io

n
ch

ec
ki

ng
ti

m
e

(µ
s) SB,∆ = 0.002s

SB,∆ = 0.003s

SB,∆ = 0.005s

SB,∆ = 0.01s

SB,∆ = 0.05s

SB,∆ = 0.1s

Ours

(b) Checking 2nd-order polynomial curves p(t) =
p0 +vt +at2 for t ∈ [0, t f] with various t f values.

Figure 5.2. Comparison between sampling-based (SB) method and ours with different sampling
intervals ∆.

5.4 Evaluation

In this section, we verify the effectiveness of our collision checking algorithms (Section

5.4.1) and control designs (Section 5.4.2 and 5.4.3) with simulated ground and aerial robots. We

also demonstrate our autonomous navigation approach on real ground and quadrotor platforms

(Section 5.4.4 and 5.4.5). Finally, we illustrate the benefits of the uncertainty from our sparse

probabilistic occupancy map in an active mapping task (Section 5.4.6).

5.4.1 Effectiveness of Collision Checking Algorithms

We compared the average collision checking time over one million random line seg-

ments p(t) = p0+vt and one million random second order polynomial curves p(t) = p0+vt +

at2 for t ∈ [0, t f] using our complete method (Algorithm 3 with Eq. (5.5) for line segments,

Algorithm 4 with Eq. (5.7) for curves, K++K− = 10 for score approximation, and e =−0.01

for occupancy threshold) and sampling-based methods with different sampling resolutions us-

ing the ground truth map. Figure 5.2a and 5.2b show that the time for sampling-based collision

checking increased as the time length t f increased or the sampling resolution decreased. Mean-

94

Table 5.1. Comparison of sampling-based (SB) method with baseline maps and ours with
sampling interval ∆ = 0.005.

Map Feature Dimension Covariance matrix Method Lines Curves
SBHM 5600 full SB 380 ms 384 ms
SBHM 5600 diag. SB 38 ms 37 ms

LARD-HM 3640 - SB 5.6 ms 6.3 ms
LARD-HM 5460 - SB 6.2 ms 6.7 ms
LARD-HM 7280 - SB 6.2 ms 6.5 ms

SBKM 3492 full ours 7 µs 18 µs
SBKM 3492 λmax ours 7 µs 18 µs

OM - full SB 21 µs 23 µs

0 2 4 6 8 10
Trajectory time length tf

10−5

10−3

10−1

C
ol

lis
io

n
ch

ec
ki

ng
ti

m
e

(s
)

LARD-HM

SBHM diag.

SBHM

OctoMap

Ours

(a) Checking line segments p(t) = p0 +vt for t ∈
[0, t f] with various t f values.

0 2 4 6 8 10
Trajectory time length tf

10−5

10−3

10−1

C
ol

lis
io

n
ch

ec
ki

ng
ti

m
e

(s
)

LARD-HM

SBHM diag.

SBHM

OctoMap

Ours

(b) Checking 2nd-order polynomial curves p(t) =
p0 +vt +at2 for t ∈ [0, t f] with various t f values.

Figure 5.3. Comparison between sampling-based (SB) method with baseline maps and ours
with sampling interval ∆ = 0.005.

while, our method’s time was stable at ∼ 3 µs for checking line segments and at ∼ 11 µs for

checking second-order polynomial curves suggesting our collision checking algorithms’ suit-

ability for real-time applications.

An advantage of our SBKM map representation is that it can utilize the collision-

checking techniques for lines and curves developed in Section 5.1. We checked 1000 random

line segments p(t) = p0+vt and 1000 second-order polynomial curves p(t) = p0+vt +at2 for

t ∈ [0, t f] for collisions using our method (Algorithm 3 with Eq. (5.5) for line segments, Algo-

rithm 4 with Eq. (5.7) for curves, K++K− = 20 for score approximation, and e = −0.01 for

occupancy threshold) and sampling-based methods with sampling resolution ∆ = 0.005s using

the OctoMap, SBHM, and LARD-HM maps. Figure 5.3a and 5.3b show that the collision-

95

0 2 4 6 8 10 12 14
t(s)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
ϕ

ϕ̇

(a) Angle ϕ and velocity ϕ̇ .

0 2 4 6 8 10 12 14
t(s)

−2

−1

0

1

2

3

4

5
u

(b) Control input u.

Figure 5.4. Evaluation of our energy-based controller on a pendulum system.

checking time for sampling-based methods increased as the time length t f increased. Mean-

while, our method’s time was stable at ∼ 7 µs for checking line segments and at ∼ 20 µs for

checking second-order polynomial curves, as shown in Table 5.1.

5.4.2 Effectiveness of Trajectory Tracking Control Design

We evaluate our trajectory-tracking control policy on a fully-actuated pendulum and an

under-actuated quadrotor.

Pendulum

We tested stabilization of the pendulum based on the learned dynamics to the stable

equilibrium at the downward position ϕ = 0 and to the unstable equilibrium at the upward

position ϕ = π . Since the pendulum is a fully-actuated system and the desired state has zero

velocity, potential energy shaping is enough to drive the system to the desired state (q∗,0).

Our energy-based controller in (5.24) achieves the task with the additional energy Ha(q,p)

simplified by removing the position error:

Ha(q,p) =−V (q)+
1
2

tr(KR(I−R∗⊤R))+
1
2
p⊤ω M−1(q)pω . (5.38)

96

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

0.5

1.0

x
(m

)

Position/Yaw

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−1

0

1

y
(m

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1

2

z
(m

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

0.0

0.2

0.4

ya
w

(r
ad

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0

0.2

0.4

x
(m

/s
)

Velocity

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−0.5

0.0

0.5

y
(m

/s
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−0.5

0.0

0.5

z
(m

/s
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

−2.5

0.0

2.5

ω
(r

ad
/s

)

learned reference

Figure 5.5. Crazyflie quadrotor trajectory (blue) tracking a desired diamond-shaped trajectory
(orange) shown in Figure 5.6.

The controlled angle ϕ and angular velocity ϕ̇ as well as the control inputs u with gains KR = 2I

and Kd = I are shown over time in Figure 5.4a and 5.4b. We can see that the controller was able

to smoothly drive the pendulum from φ = 0 to φ = π , relying only on the learned dynamics.

Crazyflie quadrotors

Finally, we verified our energy-based controller for under-actuated systems in Section

5.2.2 by driving the drone to track a pre-defined trajectory. We are given the desired position

p∗ and the desired heading ψ∗ by the trajectory and construct an appropriate choice of R∗, p∗

to be used with the energy-based controller in (5.24). The desired momenta are constructed as

97

(a) Crazyflie simulator

x (m
)

−1.0

−0.5

0.0

0.5

1.0y (m)

−1.5−1.0−0.5
0.0

0.5
1.0

1.5

z
(m

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

learned reference

(b) Trajectory tracking

Figure 5.6. Trajectory tracking experiment with a Crazyflie quadrotor in the PyBullet simulator
[129].

follows:

p∗ = M

 R⊤ṗ∗

R⊤R∗ω∗

= M

R⊤R∗v∗

R⊤R∗ω∗

 ,
ṗ∗ = M

 R⊤p̈∗− ω̂R⊤ṗ∗

R⊤R∗ω̇∗− ω̂R⊤R∗ω∗

 .
(5.39)

The control input (5.24) becomes:

u = g†(q)

(
q×⊤

∂V (q)

∂q
−p×M−1p− e(q,q∗)

−KdM−1(p−p∗)+ ṗ∗
)
. (5.40)

98

By expanding the terms in (5.40), we have:

p×M−1p = p×ζ =

 p̂vω

p̂ωω + p̂vv

 , (5.41)

M−1(p−p∗) =

 v−R⊤ṗ∗

ω−R⊤R∗ω∗

 , (5.42)

q×⊤
∂V (q)

∂q
=

 R⊤ ∂V (q)
∂p

∑
3
i=1 r̂i

∂V (q)
∂ri

 . (5.43)

Choosing the control gain Kd of the form Kd =

Kv 0

0 Kω

, the control input can be written

explicitly as

u = g†(q)

bv

bω

 , (5.44)

where

bv = R⊤
∂V (q)

∂p
− p̂vω−R⊤Kp(p−p∗)

−Kv(v−R⊤ṗ∗)+M1(R⊤p̈∗− ω̂R⊤ṗ∗), (5.45)

bω =
3

∑
i=1

r̂i
∂V (q)

∂ri
−Kω(ω−R⊤R∗ω∗)

−(p̂ωω + p̂vv)− 1
2

(
KRR∗⊤R−R⊤R∗K⊤R

)∨
+M2(R⊤R∗ω̇∗− ω̂R⊤R∗ω∗). (5.46)

Note that bv ∈R3 is the desired thrust in the body frame that depend only on the desired position

p∗ and the current pose. It is transformed to the world frame as Rbv, representing the thrust in

the world frame. Inspired by [88], the vector Rbv should be the z axis of the body frame, i.e.,

the third column b∗3 of the desired rotation matrix R∗. The second column b∗2 of the desired

99

rotation matrix R∗ can be chosen so that it has the desired yaw angle ψ∗ and is perpendicular

to b∗3. This can be done by projecting the second column of the yaw’s rotation matrix bψ

2 =

[−sinψ,cosψ,0] onto the plane perpendicular to b∗3. We have R∗ = [b∗1 b∗2 b∗3] where:

b∗3 =
Rbv
∥Rbv∥

,b∗1 =
bψ

2 ×b∗3
∥bψ

2 ×b∗3∥
,b∗2 = b∗3×b∗1, (5.47)

and ω̂
∗ = R∗⊤Ṙ∗. The derivative Ṙ∗ is calculated as follows.

ḃ∗3 = b∗3×
˙Rbv

∥Rbv∥
×b∗3, (5.48)

ḃ∗1 = b∗1×
ḃψ

2 ×b∗3 +bψ

2 × ḃ∗3
∥bψ

2 ×b∗3∥
×b∗1, (5.49)

ḃ∗2 = ḃ∗3×b∗1 +b∗3× ḃ∗1. (5.50)

By plugging R∗ and ω∗ back in bω , we obtain the complete control input u in (5.44).

Figure 5.6b qualitatively shows that the drone controlled by our energy-based controller

successfully finished the task. Since the learned generalized mass M1 and inertia M2 converged

to constant diagonal matrices, the control gains were chosen as follows in our experiments:

Kp = diag([0.8,0.8,3.9]), Kv = 0.23I, KR = diag([3.6,3.6,6.9]), Kω = diag([0.3,0.3,0.6]).

Figure 4.4 quantitatively plots the tracking errors for position, yaw angles, linear and angular

velocity. Our controller’s computation time in Python was 2.5ms per control input, including

forward passes of the learned neural networks, showing that it is suitable for fast real-time

applications.

5.4.3 Effectiveness of Adaptive Control Design

We evaluate our data-driven geometric adaptive controller on a fully-actuated pendulum

and an under-actuated quadrotor.

100

0 2 4 6 8 10
t(s)

−0.8

−0.6

−0.4

−0.2

0.0

zero

ϕ− ϕ∗ (no adaptation)

ϕ− ϕ∗ (our adaptation)

ϕ− ϕ∗ (disturbance observer)

(a) The angle error ϕ−ϕ∗.

0 2 4 6 8 10
t(s)

−0.6

−0.4

−0.2

0.0

0.2

zero

ϕ̇− ϕ̇∗ (no adaptation)

ϕ̇− ϕ̇∗ (our adaptation)

ϕ̇− ϕ̇∗ (disturbance observer)

(b) Velocity error ϕ̇− ϕ̇∗.

0 2 4 6 8 10
t(s)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
d− dgt (our adaptation)

d− dgt (disturbance observer)

zero

(c) The disturbance error d − dgt with the
ground-truth disturbance dgt =−2.5ϕ̇ .

Figure 5.7. Comparison of our learned adaptive controller and a disturbance observer method
on a pendulum.

Pendulum

Consider a pendulum with angle ϕ , scalar control input u, and dynamics function:

mϕ̈ =−5sinϕ +u+d,

where the mass is m= 1/3, the potential energy is V (ϕ) = 5(1−cosϕ), the input gain is g(ϕ) =

1, and the disturbance d =−µϕ̇ models a friction force with unknown friction coefficient µ . To

illustrate our geometric adaptive control approach, we consider ϕ as a yaw angle specifying a

rotation R around the z axis, with angular velocity ω = [0,0, ϕ̇]. We remove the position p and

linear velocity v terms from Hamilton’s equations in (2.41) to obtain the pendulum dynamics.

To learn the disturbance features, we consider M = 11 realizations of the disturbance

d j =−µ jϕ̇ with friction coefficient µ j = 0.05(j−1) ∈ [0,0.5] for j = 1, . . . ,M. For each value

µ j, we collect transitions D j = {x(i j)
0 ,u(i j),x(i j)

f ,τ(i j)}1024
i=1 by applying 1024 random control

101

Table 5.2. Angle tracking performance of a pendulum with our adaptive controller, with distur-
bance observer (DOB), and without adaptation.

Approach No adaptation Our adaptation DOB
Angle error/time step 0.35±0.14 0.04±0.02 0.08±0.02
Disturbance error/time step 0.67±0.27 0.06±0.03 0.10±0.04

inputs to the pendulum for a time interval of τ(i j) = 0.01 s. We train the disturbance model

(Section 4.4) for 4000 iterations with learning rate 10−4.

We verify our adaptive controller (π,ρ) in Section 4.4 with the task of tracking a desired

angle ϕ∗(t) = πt/5+πt2/50. We simplify the controller π in (5.32) and the adaptation law ρ

in (5.35) by removing the position and linear velocity components. The controller gains are:

kR = 1, kd = 2, cR = 75, cω = 10. We compare our approach with a disturbance observer

method [20, 92] for the pendulum. As the disturbance features in (4.13) are unknown, we design

an observer to estimate d online. Let z be the observer state with dynamics mż = −l(ϕ̇)z−

l(ϕ̇)(r(ϕ̇)−5sin(ϕ)+u), where l(ϕ̇) = ∂ r(ϕ̇)
∂ ϕ̇

for some function r(ϕ̇). The disturbance d is

estimated as d̂ = z+ r(ϕ̇). The disturbance estimation error is ed = d̂− d satisfying ėd = ż+

∂ r(ϕ̇)
∂ ϕ̇

ϕ̈ =−l(ϕ̇)ed/m. We choose r(ϕ̇) = ϕ̇ so that the disturbance estimation errors converges

to 0 asymptotically. While it is hard to provide a fair comparison between controllers, e.g.

different control gain tuning, we try our best to match the experiment settings. For example, we

use the same tracking controller π in (5.32) to compensate the estimated disturbance.

We run the experiments 100 times with a friction coefficient µ uniformly sampled from

the range [0.5,3]. Table 5.2 shows the angle tracking errors and the disturbance estimation errors

with our adaptive controller, with the disturbance observer (DOB), and without adaptation.

Our adaptive controller achieves better tracking error and disturbance estimation error than

the DOB approach. Figure 5.7 plots the tracking errors and disturbance estimation error with

µ = 2.5, showing that we achieve the desired angle ϕ∗(t) and are able to converge to the state-

dependent ground-truth disturbance dgt = −2.5ϕ̇ . Without knowing the disturbance features,

the DOB method lags behind the changes in ground-truth disturbances caused by the velocity

102

0 5 10 15 20
0

2

x
(m

)
Position/Yaw

0 5 10 15 20

0

2

y
(m

)

0 5 10 15 20
0

2

z
(m

)

0 5 10 15 20
Time (s)

0

2

ya
w

(r
ad

)

0 5 10 15 20
−1

0

1

x
(m

/s
)

Velocity

0 5 10 15 20

−1

0

1

y
(m

/s
)

0 5 10 15 20
−0.5

0.0

0.5

z
(m

/s
)

0 5 10 15 20
Time (s)

−10

0

ω
y
a
w

(r
ad

/s
)

no adaptation

adaptation

desired

(a) Robot states (scenario 1).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1

p
os

it
io

n
er

ro
r

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

1

ve
lo

ci
ty

er
ro

r

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0

2

ya
w

er
ro

r

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0

10

ya
w

ra
te

er
ro

r

adaptation

no adaptation

(b) Tracking errors (scenario 1).

0 5 10 15 20

0

2

x
(m

)

Position/Yaw

0 5 10 15 20

0

2

y
(m

)

0 5 10 15 20
0

2

z
(m

)

0 5 10 15 20
Time (s)

0

2

ya
w

(r
ad

)

0 5 10 15 20
−0.5

0.0

0.5

x
(m

/s
)

Velocity

0 5 10 15 20

0

1

y
(m

/s
)

0 5 10 15 20

−1

0

z
(m

/s
)

0 5 10 15 20
Time (s)

−10

0

ω
y
a
w

(r
ad

/s
)

no adaptation

adaptation

desired

(c) Robot states (scenario 2).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1

p
os

it
io

n
er

ro
r

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1

ve
lo

ci
ty

er
ro

r

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0

2

ya
w

er
ro

r

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0

10

ya
w

ra
te

er
ro

r

adaptation

no adaptation

(d) Tracking errors (scenario 2).

Figure 5.8. Tracking performance under an external wind dw = [0.075 0.075 0] and two
defective rotors from the beginning (scenario 1) and after 8s (scenario 2) both with (δ1,δ2) =
(80%,80%).

ϕ̇ . This illustrates the benefit of our approach – the learned disturbance features improve the

performance of the adaptive controller.

Crazyflie Quadrotor

Next, we consider a Crazyflie quadrotor, simulated using the PyBullet physics engine

[129], with control input u = [f ,τ] including the thrust f ∈ R≥0 and torque τ ∈ R3 gener-

ated by the 4 rotors. The mass of the quadrotor is m = 0.027 kg and the inertia matrix is

J = 10−5 diag([1.4,1.4,2.2]), leading to the generalized mass matrix M(q) = diag(mI,J). The

103

x (m
)

0
1

2y (m)

−1
0

1

z
(m

)

0

1

2

3

adaptation

no adaptation

desired

(a) Scenario 1.

x (m
)

0
1y (m)

−1
0

1

z
(m

)

0

1

2

adaptation

no adaptation

desired

(b) Scenario 2.

Figure 5.9. Tracking visualization with and without our adaptation law.

Table 5.3. Tracking error of a quadrotor with and without our adaptation.

Experiments Diamond-shaped Spiral
Scenario 1 (without adaptation) 0.71±0.15 (m) 0.55±0.13 (m)
Scenario 1 (with adaptation) 0.12±0.02 (m) 0.13±0.01 (m)
Scenario 2 (without adaptation) 0.62±0.13 (m) 0.64±0.10 (m)
Scenario 2 (with adaptation) 0.12±0.02 (m) 0.16±0.02 (m)

potential energy is V (q) = mg
[

0 0 1

]
p with g ≈ 9.8 ms−2, where p is the position of the

quadrotor. We consider disturbances from three sources: 1) horizontal wind, simulated as an

external force dw =

[
wx wy 0

]⊤
∈ R3 in the world frame, i.e., R⊤dw in the body frame; 2)

two defective rotors 1 and 2, generating δ1 and δ2 percents of the nominal thrust, respectively;

and 3) near-ground, drag, and downwash effects in the PyBullet simulated quadrotor.

As described in Section 4.4, we learn the disturbance features Wθ (q,p) from a dataset

D of transitions using a Hamiltonian-based neural ODE network. We collect a dataset D =

{D j}M
j=1 with M = 8 realizations of the disturbances dw j, δ1 j, and δ2 j. Specifically, the wind

components wx j,wy j are chosen from the set {±0.025,±0.05}, while the values of δ1 j and

δ2 j are sampled from the range [94%,98%]. For each disturbance realization, a PID controller

provided by [129] is used to drive the quadrotor from a random starting point to 9 different

104

desired poses, providing transitions D j = {x(i j)
0 ,u(i j),x(i j)

f ,τ(i j)}1080
i=1 with τ(i j) = 1/240 s.

We verify our geometric adaptive controller with learned disturbance features by having

the quadrotor track pre-defined trajectories in the presence of the aforementioned disturbances.

The desired trajectory is specified by the desired position p∗(t) and the desired heading ψ∗(t).

We construct an appropriate choice of R∗ and ω∗ from ψ∗(t), as described in [35, 51], to be

used with the adaptive controller. The tracking controller in (5.32) with gains kp = 0.135,kv =

0.0675,kR = 1.0, and kω = 0.08, is used to obtain the control input u that compensates for the

disturbances. The disturbances d are estimated by updating the weights a using the adaptation

law (5.35) with gains cp = cR = 0.08,cv = cω = 0.04.

We test the controller with wind dw, rotors 1 and 2 that become defective from the begin-

ning (scenario 1) or during flight at t = 8 s (scenario 2), and near-ground, drag, and downwash

effects enabled in PyBullet. We track diamond-shaped and spiral trajectories 100 times with

wx and wy uniformly sampled from [0,0.075] and δ1 and δ2 drawn uniformly from [80%,99%].

Table 5.3 shows the mean and standard deviation of the tracking errors with and without adap-

tation from the 100 flights. The errors with adaptation are ∼ 5 times lower than without adap-

tation, illustrating the benefit of our adaptive control design. For dw =

[
0.075 0.075 0

]
and

(δ1,δ2) = (80%,80%), the quadrotor in scenario 1 without adaptation drifts while our adaptive

controller estimates the disturbances online after a few seconds and successfully tracks the tra-

jectory as seen in Figure 5.8a, 5.8b and 5.9 (left). For the same wind, the quadrotor in scenario

2 with our controller starts to track the trajectory, then drops down at t = 8 s, due to the rotors

becoming defective, but recovers as our adaptation law updates the disturbances accordingly, as

seen in Figure 5.8d and 5.9 (right). The velocity error spikes in Figure 5.8d are caused by sharp

turns in the diamond-shaped trajectory and the defective rotors at t = 8 s. Without adaptation,

the quadrotor drops to the ground at t ≈ 12.5 s, shown in Figure 5.9 (right). In Figure 5.8 and

5.9, the tracking errors with adaptation stabilize close to but not exactly 0 because of the model

error between Wθ (q,p) and W(q,p), and the control input discretization in time.

105

−20 −15 −10 −5 0 5 10 15 20

−10

−5

0

5

10

15

20
pos. relevance vectors

neg. relevance vectors

(a) The final relevance vectors.

−20 −10 0 10 20

−10

−5

0

5

10

15

20

25

robot trajectory

start

goal 1

goal 2

0.0

0.2

0.4

0.6

0.8

1.0

(b) The final probabilistic map.

0 10 20 30 40 50 60

time(s)

0.0

0.5

1.0

1.5

ti
m

e(
s)

Map update time

(c) Map update time.

0 10 20 30 40 50 60

time(s)

10

20

30

ti
m

e(
µ
s)

A* time per motion primitive

(d) Planning time per motion primitive.

(e) At t = 0s. (f) At t = 23s. (g) At t = 44s. (h) At t = 60s.

Figure 5.10. Real experiment with an autonomous Racecar robot navigating in an unknown
hallway environment.

5.4.4 Real Experiments with Ground Robots

Real experiments were carried out on an 1/10th scale Racecar robot equipped with a

Hokuyo UST-10LX Lidar and Nvidia TX2 computer. The robot body was modeled by a ball

of radius r = 0.25 m. The online training data (Section 3.3.2) were generated from a grid with

resolution 0.25 m. We used an RBF kernel parameter Γ =
√

γI with γ = 3.0 and an R∗-tree

approximation of the score F(x) with K++K− = 20 nearest support vectors around the robot

location pk for map updating. For motion planning, second-order polynomial motion primitives

were generated with time discretization of τ = 1 s as described in Section 5.3. The motion

106

cost was defined as c(s,a) := (∥a∥2 + 2)τ to encourage both smooth and fast motion [98].

Algorithm 4 with Eq. (5.7), ε = 0.1, score approximation with K+ = K− = 2, and threshold

e = −0.01 was used for collision checking in Algorithm 5. The trajectory generated by an

A∗ motion planner was tracked using a closed-loop controller [3]. The robot navigated in an

unknown hallway to two destinations consequently chosen by a human operator. Figure 5.10a

shows the learned relevance vectors representing the environment. Figure 5.10b shows the

probabilistic map recovered from the relevance vectors together with the robot trajectory and

the two chosen destinations.

The time taken by Algorithm 2 to update the relevance vectors from one lidar scan

and the A∗ replanning time per motion primitive are shown in Figure 5.10c and 5.10d. Map

updates implemented in Python took 0.4 s on average. It took a longer time (∼ 1 s) to update

the map when the robot observed new large parts of the environment, e.g., at the beginning and

toward the end of our experiment. To evaluate collision checking time, the A∗ replanning time

was normalized by the number of motion primitives being checked to account for differences

in planning to nearby and far goals. The planning time per motion primitive was ∼ 15 µs

on average and ∼ 30 µs at most, suggesting our collision checking algorithms’ suitability for

real-time applications.

In both the simulations and the real experiment, the free area contains multiple blobs of

points with low occupancy probability, caused by the sparse map representation and the fixed

kernel parameters of SBKM. To improve this, kernel parameter learning, e.g. using variational

inference [149], clustering and automatic relevance determination [56, 57], or kernel parameter

dictionaries, e.g., pre-trained in small and simple environments [165], can be used to to adap-

tively update the kernel parameters at different location based on the depth measurements. This

extension is a promising avenue for future research.

107

(a) Our RaspberryPi drone. (b) Our Intel NUC drone.

(c) Our Intel NUC drone with a payload.

Figure 5.11. Our customized quadrotors with different frames, computers, sensors, and pay-
load.

5.4.5 Real Experiments with Quadrotors

In this section, we verify our approach with a customized PX4 quadrotor shown in

Figure 5.11b, equipped with an onboard i7 Intel NUC computer and a PX4 flight controller.

The quadrotor’s pose and twist are provided by a motion capture system.

Learning robot dynamics after quadrotor upgrade

We consider a scenario that our quadrotor is upgraded with a new frame and a new on-

board computer, leading to changes in the robot dynamics that we aim to learn from data. The

estimated mass and inertia matrix of a previous quadrotor model (Figure 5.11a with a Raspber-

ryPi computer and an F450 frame) is used as the nominal mass Mv0 = 1.3I and inertia matrix

Mω0 = diag([0.12,0.12,0.2]) for the upgraded quadrotor (Figure 5.11b). The other nominal

matrices are set to zero: Dv0(q,p) = 0, Dω0(q,p) = 0, V0(q) = 0 and g0(q) = 0. We collect 12

state-control trajectories by modifying the PX4 firmware to expose the normalized thrust and

108

x (m) −1.0
−0.5

0.0
0.5

1.0

y (m)

−1.0−0.5
0.0

0.5
1.0

z
(m

)

1.5

2.0

2.5

3.0

3.5

learned reference nominal

(a) Vertical circle

x (m) −2
−1

0
1

2

y (m)

−2
−1

0
1

2

z
(m

)

1

2

3

4

learned reference nominal

(b) Vertical lemniscate

x (m)−3 −2 −1 0 1 2 3

y (m) −2
−1

0
1

2
3

z
(m

)
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

learned reference nominal

(c) Piecewise linear

Figure 5.12. Trajectory tracking experiments with our real quadrotors and different trajectories
using our learned model and controller.

normalized torque being sent to the motors and flying the quadrotor from a starting pose to 12

different poses using a PID controller provided by the PX4 flight controller. The trajectories

were used to generate a dataset D = {t(i)0:N ,q
(i)
0:N ,ζ

(i)
0:N ,u

(i))}D
i=1 with N = 1 and D = 10000. We

train our model as described in Section 4.2.4 for 5000 steps.

The trained model is used with the control policy in Section 4.5.2 to track different tra-

jectories: a vertical circle, a vertical lemniscate, and a 3D piecewise-linear trajectories. Figure

5.12 and 5.13 show that we achieve better tracking performance using our learned dynamics

109

0 10 20 30 40 50 60

−0.1

0.0

0.1

x
(m

)
Position/Yaw

0 10 20 30 40 50 60

−1

0

1

y
(m

)

0 10 20 30 40 50 60

2

3

4

z
(m

)

0 10 20 30 40 50 60

Time (s)

−0.05

0.00

0.05

ya
w

(r
ad

)

0 10 20 30 40 50 60

−0.2

0.0

0.2

x
(m

/s
)

Velocity

0 10 20 30 40 50 60

−1

0

1

y
(m

/s
)

0 10 20 30 40 50 60

−1

0

1

z
(m

/s
)

0 10 20 30 40 50 60

Time (s)

−50

−25

0

25

50
ω

(r
ad

/s
)

learned reference nominal

(a) Vertical circle trajectory

0 10 20 30 40 50 60

0.00

0.05

0.10

x
(m

)

Position/Yaw

0 10 20 30 40 50 60

−2

0

2

y
(m

)

0 10 20 30 40 50 60
1

2

3

z
(m

)

0 10 20 30 40 50 60

Time (s)

−0.05

0.00

0.05

ya
w

(r
ad

)

0 10 20 30 40 50 60
−0.2

0.0

0.2

x
(m

/s
)

Velocity

0 10 20 30 40 50 60

−1

0

1

y
(m

/s
)

0 10 20 30 40 50 60

0

2

z
(m

/s
)

0 10 20 30 40 50 60

Time (s)

−50

−25

0

25

50

ω
(r

ad
/s

)

learned reference nominal

(b) Vertical lemniscate trajectory

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−2.5

0.0

2.5

x
(m

)

Position/Yaw

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−1

0

1

y
(m

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.5

1.0

1.5

z
(m

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

−0.1

0.0

0.1

ya
w

(r
ad

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1

x
(m

/s
)

Velocity

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−1

0

1

y
(m

/s
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1

2

z
(m

/s
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

−50

−25

0

25

50

ω
(r

ad
/s

)

learned reference nominal

(c) Piecewise-linear trajectory

(d) Tracking at t = 0s (e) Tracking at t = 3s

(f) Tracking at t = 9s (g) Tracking at t = 12s

Figure 5.13. Tracking performance using our learned model and controller and using a nominal
model and a geometric controller [88].

and control design compared to the nominal model and the geometric controller in [88]. The

tracking errors of our learned model improve by 2−4 times compared to those of the nominal

model, as shown in Table 5.4.

Learning robot dynamics with extra payload

In this section, we demonstrate that after the our dynamics model is trained, if there is a

change in the dynamics, e.g. extra payload, we are able to update the dynamics quickly starting

from the previously trained model. We attach a coffee can to the quadrotor frame (Figure 5.11c)

110

x (m) −1.0
−0.5

0.0
0.5

1.0

y (m)

−1.0−0.5
0.0

0.5
1.0

z
(m

)

2.0

2.5

3.0

3.5

updated reference previously learned

(a) Vertical circle trajectory

x (m)
−2

−1
0

1
2

y (m)

−1
0

1
2

z
(m

)

1

2

3

4

updated reference previously learned

(b) Vertical lemniscate trajectory

x (m)
−3 −2 −1 0 1y (m) −1

0
1

2

z
(m

)
0.0

0.5

1.0

1.5

2.0

updated reference previously learned

(c) Piecewise linear trajectory

Figure 5.14. Trajectory tracking experiments with extra payload using our controller with
previously learned model and updated model.

to change the mass and inertia matrix of the robot. We then recollect the dataset also by driving

the quadrotor to 12 different poses, and train our dynamics model only in 100 steps, initialized

with the trained model in Section 5.4.5.

With the coffee can, the tracking performance of the controller with the previously

learned model degrades as shown in Figure 5.14 and 5.15. Meanwhile, after a quick model

update, we were able to track the trajectories accurately again. Table 5.4 shows that our up-

dated model improves the tracking errors by 1.5−4 times compared to the previous one.

111

0 5 10 15 20 25 30

0.00

0.05

x
(m

)
Position/Yaw

0 5 10 15 20 25 30

−1

0

1

y
(m

)

0 5 10 15 20 25 30

2

3

4

z
(m

)

0 5 10 15 20 25 30

Time (s)

−0.02

0.00

0.02

0.04

ya
w

(r
ad

)

0 5 10 15 20 25 30

−0.1

0.0

0.1

x
(m

/s
)

Velocity

0 5 10 15 20 25 30
−2

−1

0

1

y
(m

/s
)

0 5 10 15 20 25 30

−1

0

1

z
(m

/s
)

0 5 10 15 20 25 30

Time (s)

−50

−25

0

25

50
ω

(r
ad

/s
)

updated reference previously learned

(a) Vertical circle

0 5 10 15 20 25 30

0.0

0.1

x
(m

)

Position/Yaw

0 5 10 15 20 25 30

−2

0

2

y
(m

)

0 5 10 15 20 25 30

1

2

3

z
(m

)

0 5 10 15 20 25 30

Time (s)

−0.05

0.00

0.05

ya
w

(r
ad

)

0 5 10 15 20 25 30
−0.2

0.0

0.2

x
(m

/s
)

Velocity

0 5 10 15 20 25 30

−2

0

y
(m

/s
)

0 5 10 15 20 25 30

0

2

z
(m

/s
)

0 5 10 15 20 25 30

Time (s)

−50

−25

0

25

50

ω
(r

ad
/s

)

updated reference previously learned

(b) Vertical lemniscate

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−4

−2

0

2

x
(m

)

Position/Yaw

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

2

y
(m

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.5

1.0

1.5

z
(m

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

−0.050

−0.025

0.000

0.025

ya
w

(r
ad

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−1

0

1

x
(m

/s
)

Velocity

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

−1

0

1

y
(m

/s
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

1

z
(m

/s
)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

−50

−25

0

25

50

ω
(r

ad
/s

)

updated reference previously learned

(c) Piecewise-linear

Figure 5.15. Tracking performance with extra payload using our previously learned and up-
dated models.

5.4.6 Active Mapping

Our SBKM representation enables uncertainty quantification which besides for collision

checking can be used for active mapping. This ability is not offered by non-Bayesian map-

ping methods, such as SKM. In this section, we demonstrate active mapping of an unknown

simulated environment using SBKM. Our approach estimates the map uncertainty in different

regions and chooses the region with the highest uncertainty as the goal region. Specifically, we

maintain a frontier, defined as a list of L candidate poses Pl , l = 1,2, . . . ,L. For each pose Pl ,

we calculate the map uncertainty H(Sl) of the field of view Sl of the depth sensor. The map

112

Table 5.4. Position errors of our real quadrotor using our nominal and learned models with and
without payload

Model Train Test Circle Lemniscate Piecewise-
with with linear

payload payload
Nominal - No 0.26 (m) 0.52 (m) 0.62 (m)
Learned No No 0.13(m) 0.14(m) 0.22(m)
Learned No Yes 0.20 (m) 0.40 (m) 0.30 (m)
Learned Yes Yes 0.13 (m) 0.12 (m) 0.21 (m)

uncertainty of a region S is measured as the average marginal entropy over the region:

H(S) =
1
|S |

∫
S

h(x)dx, (5.51)

where h(x) is the marginal entropy of a point x in the region, calculated using the predictive

distribution in Def 10 as

h(x) = −P(y = 1|x,ξ) log2 P(y = 1|x,ξ)

−P(y = 0|x,ξ) log2 P(y = 0|xi,ξ),

(5.52)

y ∈ {−1,1} is the predictive label of the point x, and |S | denotes the area of the region S . We

choose the region Sl∗ with the largest average marginal entropy to explore:

l∗ = argmax
l=1,2,...,L

H(Sl). (5.53)

In our active mapping experiment, the candidate poses P1,P2, . . . ,PL in the frontier

were sampled from the laser endpoints up to the current time t with 4 different yaw angles:

0, π

4 ,
π

2 ,
3π

4 . Since the laser scans could not see through obstacles, we gained little information

of the environment by placing the robot near the occupied regions. Therefore, only the end-

points with maximum lidar range, i.e. the laser ray did not hit an obstacle, and at least 2 m

away from the positive relevance vectors were considered. A hypothetical lidar field of view

113

0 10 20 30

0

5

10

15

20

25

30

0.2

0.4

0.6

0.8

(a) t = 76s

0 10 20 30

0

5

10

15

20

25

30

0.0

0.2

0.4

0.6

0.8

1.0

(b) t = 209s

0 10 20 30

0

5

10

15

20

25

30

0.0

0.2

0.4

0.6

0.8

1.0

(c) t = 301s

0 10 20 30

0

5

10

15

20

25

30

0.0

0.2

0.4

0.6

0.8

1.0

(d) t = 414s

0 100 200 300 400

Time (s)

0.86

0.90

0.94

0.98
A

vg
.

m
ar

gi
na

l
en

tr
op

y
(b

it
s)

(e) Average marginal entropy of a point in the map over time.

Figure 5.16. Illustration of an active mapping task over time. The red, green and cyan dots are
the initial and current robot positions, and the chosen goal.

Sl (similar to Figure 3.2b without the obstacles) simulating a Hokuyo UST-10LX lidar, was

placed at each candidate pose Pl . We sampled N = 100 points xi, i = 1, . . . ,N, from Sl and

computed the marginal entropy H(xi). The average marginal entropy (5.51) of the region Sl

was approximated as

H(Sl)≈
1
N

N

∑
i=1

h(xi). (5.54)

The robot picked the goal region Sl∗ with the highest map uncertainty from the set {Si}L
i=1

every 0.5 s and planned a trajectory to reach the goal using our collision checking methods

and the same A∗ planner used in Section 5.4.4. Figure 5.16 shows the SBKM map, the robot

trajectory and the candidate pose associated with the goal region at different times as the robot

successfully explored and actively built the map of the environment. The average marginal

entropy H(Sl), estimated using Eq. (5.54) with N = 20736 points sampled on a regular grid of

resolution 0.25 m, shows our active mapping approach reduced the map uncertainty over time.

114

5.5 Summary

This chapter presents a complete solution for autonomous navigation with our learned

robot dynamics and sparse map representations. Given the current estimate of the map in Chap-

ter 3, we derived efficient collision checking algorithms, that can be integrated into common

motion planners, to generate a desired trajectory. We propose trajectory tracking controllers,

with and without the presence of disturbances, for the learned Hamiltonian dynamics on Lie

groups in Chapter 4. The effectiveness of our proposed approach is verified with both ground

and aerial robot platforms.

Acknowledgments

Chapter 5, in part, is a reprint of the material as it appears in T. Duong, M. Yip, N.

Atanasov, “Autonomous Navigation in Unknown Environments with Sparse Bayesian Kernel-

based Occupancy Mapping”, IEEE Transactions on Robotics (T-RO), vol. 38, no. 6, pp. 3694-

3712, 2022, in T. Duong, N. Das, M. Yip, N. Atanasov, “Autonomous Navigation in Un-

known Environments using Sparse Kernel-based Occupancy Mapping”, International Confer-

ence on Robotics and Automation (ICRA), pp. 9666-9672, 2020, in T. Duong, N. Atanasov,

“Hamiltonian-based Neural ODE Networks on the SE(3) Manifold For Dynamics Learning and

Control”, Robotics: Science and Systems (RSS), 2021, in T. Duong, N. Atanasov, “Physics-

guided Learning-based Adaptive Control on the SE(3) Manifold”, Physical Reasoning and In-

ductive Biases for the Real World Workshop, 2021, and in T. Duong, N. Atanasov, “Adaptive

Control of SE(3) Hamiltonian Dynamics with Learned Disturbance Features”, IEEE Control

Systems Letters (L-CSS), vol. 6, pp. 2773-2778, 2022. Chapter 5, in part, has been submit-

ted for publication of the material as it may appear in T. Duong, A. Altawaitan, J. Stanley, N.

Atanasov, “Port-Hamiltonian-based Neural ODE Networks on Lie Groups For Robot Dynam-

ics Learning and Control”, Transactions on Robotics, 2024. The dissertation author was the

primary investigator and author of these papers.

115

Chapter 6

Conclusions and Future Work

Autonomous navigation has undoubted potential to impact various applications such as

surveillance and reconnaissance, search and rescue, transportation and agriculture. It depends

on onboard sensors to perceive the world and build a model of the environment, which in turns,

can be used for other downstream tasks such as path planning, safe control, localization and

exploration. It also relies on the availability of an accurate dynamics model and control policy

to safely and reliably follow a path to execute a task. Having an effective autonomous nav-

igation framework that efficiently integrates environment representations, planning, dynamics

models and control designs into one solution is a great technical challenge that we aim to ad-

dress. As data generated from sensors such as Lidars, cameras, and inertial measurement units

has recently become prevalent on robots, this dissertation tackles this challenge by develop-

ing novel machine learning techniques to learn large-scale, yet compact, representations of the

environment and accurate robot dynamics, equipped with a trajectory tracking control design,

efficiently from data for autonomous navigation purposes.

Chapter 2 provides the necessary background for the following chapters. It describes

kernel perceptron and relevance vector machine (RVM) classifiers, which are used to develop

our online mapping algorithms in Chapter 3. It provides definitions of kinematic constraints

on matrix Lie groups, equations of motions for robot dynamics in Hamiltonian formulation and

neural ODE networks, needed to design the proposed dynamics model in Chapter 4.

116

In Chapter 3, we propose sparse binary and probabilistic occupancy map representations

that model the obstacle boundary as a decision boundary of a classifier, trained incrementally

based on the depth measurements from onboard sensors. We develop online training algorithms

that choose a sparse set of critical data points, e.g. support vectors in our kernel perceptron-

based maps and relevance vectors in our RVM-based maps, to represent the environments. We

verify the benefit of our map sparseness in terms of storage requirements and update time com-

pared to various baseline binary and probabilistic map representations. The map uncertainty

from our probabilistic occupancy map representations can be used in other downstream tasks

such as active mapping and exploration.

Chapter 4 presents our approach to learn accurate continuous-time robot dynamics from

data while preserving the law of energy conservation and Lie group constraints via Hamiltonian

formulation. The Hamiltonian-based model is trained to fit state-control trajectories using a

neural ODE network. The approach is applied to learn dynamics of rigid-body robots such as

pendulum, ground and aerial robots, whose state evolves on the Lie groups SE(3). To handle

dynamics changes and disturbances arising from new operational conditions, we learn a para-

metric disturbance model from data, which can be used to design an adaptive controller with

better tracking performance. We verify that the proposed dynamics and disturbance model can

be learned efficiently from just a few robot trajectories.

Chapter 5 combines the novel environment and dynamics representations in the previ-

ous chapters into a complete solution for autonomous navigation. Given a sparse occupancy

map from Chapter 3, we develop efficient collision checking algorithms for line segments and

general curves, representing potential robot trajectories. These algorithms are compatible with

common planners, such as A∗ or RRT ∗, which return a desired path or trajectories for the robot

to finish its navigation task. To be able to follow the trajectory, we develop an energy-based

trajectory tracking controller based on the learned Hamiltonian dynamics. To handle dynamics

changes described by our learned parametric disturbance model, we derive an adaptive con-

troller that estimates and compensates for the disturbance online. Finally, we integrate our

117

online sparse mapping, efficient collision checking and planning, accurate dynamics model and

stable and adaptive control design in an autonomous navigation framework with demonstrations

on ground and aerial robot platforms.

In summary, this dissertation offers an efficient autonomous navigation approach that

builds scalable and compact map representations and learns accurate and data-efficient dynam-

ics models from data. Several promising potential directions, rising from the current results to

improve long-term robot operations with more complicated tasks, are summarized below.

Contact dynamics. When robots, e.g. legged robots and manipulators, have contact

with objects in the environment, their dynamics become non-smooth and thus, are challenging

to learn. Imposing prior knowledge of the dynamics discontinuity on the dynamics model

to improve its accuracy and data efficiency is a promising direction, e.g. via differentiable

linear complementarity systems (LCSs) [132, 77]. The learned contact model is beneficial for

improving control performance and simulating realistic robot interaction with the environment

to reduce the sim-to-real gaps.

Efficient task and motion planning. The learned dynamics can be used to form accu-

rate dynamics constraints in a trajectory optimization problem [159], leading to better trajec-

tory for the robot to follow. Moreover, guidance from previous experiments or a generative AI

model, e.g., based on semantic information, can be used to assist the task planner or to synthe-

size new robot skills. Semantic information and guidance from a language model can also be

used to steer the task and motion planner towards the optimal solution. For example, Dai et al.

[27] formulate guidance from a large language model as a heuristic function in a multi-heuristic

A∗ motion planner, while still providing optimality of the motion plan.

Learning with sensor models. Our approach can be extended to learn sensor mod-

els, e.g. biases in inertial measurement unit (IMU) [180, 99, 24, 15], that in turns, potentially

improve state estimation, e.g. odometry, or (continuous-time) simultaneous localization and

mapping (SLAM) problems. Another interesting direction is to learn robot dynamics and con-

trol by observing the environment, e.g., via Lidars [2] or cameras, where the features with

118

data association detected from point clouds or images can be used to train the dynamics model

directly using cycle consistency loss function [2].

Active and online learning. Instead of collecting data manually or from previous ex-

periments for dynamics learning, it is promising to plan a trajectory for the robot to reduce

the dynamics uncertainty, e.g., via Gaussian process regression model of the robot dynam-

ics [167]. It is also compelling to plan a trajectory to explore an unknown environment us-

ing the map uncertainty from our learned map representations, e.g., using mutual information

[4, 181, 16]. Learning robot dynamics online is another interesting direction where the robot

can adapt quickly to dynamics changes.

Safe and robust control with learned dynamics. Analyzing the model error of the

learned dynamics for robot safety and robust control is necessary to be able to reliably deploy

the learned dynamics model in a robotics system. For example, we can consider the model

error as a bounded disturbance applied to the learned system and develop a robust safe tracking

controller that takes the disturbance into account via a reference governor design [94, 95, 93].

Given a desired reference path, the governor state serves as a regulation point that moves along

the reference path adaptively, balancing the system energy level (Hamiltonian function), model

uncertainty bounds, and distance to safety violation to guarantee robustness and safety.

Learning distributed control. Preserving prior knowledge in distributed control policy

for multi-robot settings will potentially improve data efficiency in learning from demonstrations

and reinforcement learning. For example, an energy-based multi-robot control policy, which

models robot interactions by energy exchange and dissipation, can be used to form a physics-

informed neural distributed control policy. The policy can be trained from demonstrations of

a small team [146] or by maximizing rewards in a reinforcement learning setting [147] and

deployed in larger robot teams.

Learning discrete-time dynamics. In many applications such as model predictive con-

trol (MPC), robot dynamics are discretized to predict future robot states, e.g. using Euler or

Runge-Kutta methods. While our learned continuous-time dynamics preserve Lie group con-

119

straints and energy conservation, common integrators do not preserve these laws, leading to

high accumulated errors and poor long-term predictions. Preserving Hamiltonian or Lagrangian

structure in an integrator to efficiently learn discrete-time dynamics for long-term predictions

is a promising direction. For example, Lie group forced variational integrator networks [39]

preserve both Lie group constraints and Hamiltonian structure, by discretizing the Lagrange-

d’Alembert principle [113] directly instead of the Euler-Lagrange equations of motions.

120

Chapter A

Software and Supplementary Material

A.1 Sparse Bayesian Occupancy Maps and Collision Check-
ing

Software and videos supplementing our sparse occupancy map representations in Chap-

ters 3 and 5:

https://thaipduong.github.io/sbkm.

A.2 Hamiltonian Dynamics Learning and Control

Software and videos supplementing our Hamiltonian dynamics learning approach and

trajectory tracking control design in Chapters 4 and 5:

https://thaipduong.github.io/LieGroupHamDL.

121

https://thaipduong.github.io/sbkm
https://thaipduong.github.io/LieGroupHamDL

Chapter B

Proofs of Propositions in Chapter 3

B.1 Proof of Proposition 1

Proof. A point x is considered free if:

Φ
⊤
x µ +b < e

√
1+Φ

⊤
x ΣΦx, (B.1)

where Φx is the feature vector Φx = [k1(x),k2(x), . . . ,kM(x)]⊤. We use the following lower

bound and upper bound on Φ
⊤
x ΣΦx: 0 ≤ Φ

⊤
x ΣΦx ≤ λmax ∑

M
m=1(km(x))2 where λmax ≥ 0 is the

largest eigenvalue of the covariance matrix Σ. Since km(x)> 0 for all m, we have:

1≤
√

1+Φ
⊤
x ΣΦx ≤ 1+

√
λmax

M

∑
m=1

(km(x)). (B.2)

Therefore, the point x is still free if

Φ
⊤
x µ +b≤ e(1+1{e≤0}

√
λmax

M

∑
m=1

(km(x))), (B.3)

or in other words, we have: ∑
M
m=1(µm− e1{e≤0}

√
λmax)km(x)+b− e≤ 0.

122

B.2 Proof of Proposition 2

Proof. A point x is free if Eq. (3.7) holds. Let x+∗ be the closest positive relevance vector to x

and x−j be any negative relevance vector. We have:

M+

∑
i=1

ν
+
i k(x,x+i)−

M−

∑
j=1

ν
−
j k(x,x−j)+b− e≤

≤ (
M+

∑
i=1

ν
+
i)k(x,x+∗)−ν

−
j k(x,x−j)+b− e

Under Assumptions 1 and 2, both terms ν
−
j k j(x) and e−b are non-negative. By the arithmetic

mean- geometric mean inequality, we have:

ν
−
j k(x,x−j)+ e−b = n2

ν
−
j k(x,x−j)

n2
+n1

e−b
n1

≥ (n1 +n2)

(
ν
−
j k(x,x−j)

n2

) n2
n1+n2

(
e−b

n1

) n1
n1+n2

= ρ(e−b,ν−j k(x,x−j)).

Therefore, a point x is free if

(
M+

∑
i=1

ν
+
i)k(x,x+∗)−ρ(e−b,ν−j k(x,x−j))≤ 0. (B.4)

B.3 Proof of Proposition 3

Proof. By plugging k(x,x+∗) = ηe−∥Γ(x−x+∗)∥2
, and k(x,x−j) = ηe−γ∥Γ(x−x−j)∥2

into Eq. (B.4), a

point x is free if

e−∥Γ(x−x+∗)∥2+
n2

n1+n2
∥Γ(x−x−j)∥2

≤
ρ(e−b,ν−j)

η

n1
n1+n2 ∑

M+

i=1 ν
+
i

(B.5)

123

Substituting the test point x by p(t) = p0 + tv in Eq. (B.5), the point p(t) is free if:

V (t,x+∗ ,x
−
j) = −(n1 +n2)∥Γ(p0 + tv−x+∗)∥2

+n2∥Γ(p0 + tv−x−j)∥2− (n1 +n2)β ≤ 0,

where β = log
ρ(e−b,ν−j)

η

n1
n1+n2 ∑

M+
i=1 ν

+
i

. By expanding the quadratic norms in V (t,x+∗ ,x
−
j), the point p(t)

is free if:

V (t,x+∗ ,x
−
j) = at2 +b(x+∗ ,x

−
j)t + c(x+∗ ,x

−
j)≤ 0 (B.6)

where a = −n1∥Γv∥2,

b(x+∗ ,x
−
j) = −2v⊤Γ

⊤
Γ(n1p0− (n1 +n2)x+∗ +n2x−j),

c(x+∗ ,x
−
j) = −(n1 +n2)∥Γ(p0−x+∗)∥2

+n2∥Γ(p0−x−j)∥2− (n1 +n2)β .

Note that V (t,x+∗ ,x
−
j) is a quadratic polynomial in t and the point p(t) is free if V (t,x+∗ ,x

−
j)≤ 0.

1. If it has less than 2 roots, Eq. (B.6) is satisfied for all t.

2. If it has 2 roots t1 < t2, then V (t,x+∗ ,x
−
j)≤ 0 for t ≥ t2 or t ≤ t1. There are three cases:

(a) t1 < t2 ≤ 0: V (t,x+∗ ,x
−
j)≤ 0 for all t ≥ 0 or the entire ray s(t) is free;

(b) 0≤ t1 < t2: V (t,x+∗ ,x
−
j)≤ 0 for t ∈ [0, t1] or the ray s(t) is free for t ∈ [0, t1].

(c) t1 ≤ 0≤ t2: V (0,x+∗ ,x
−
j)≥ 0 or the ray s(t) is colliding.

124

Let τ(p0,x+∗ ,x
−
j)

=



+∞, if V (t,x+∗ ,x
−
j) has less than 2 roots

+∞, if V (t,x+∗ ,x
−
j) has 2 roots t1 < t2 ≤ 0

t1 if V (t,x+∗ ,x
−
j) has 2 roots 0≤ t1 < t2

0 if V (t,x+∗ ,x
−
j) has 2 roots t1 ≤ 0≤ t2

.

Note that x+∗ varies with t but belongs to a finite set, we can calculate τ(p0,x+i ,x
−
j) for all

positive relevance vectors x+i and take the minimum value. Therefore, p(t) is free as long as:

t ≤ tu = min
i=1,...,M+

τ(p0,x+,x−j) (B.7)

Note that Eq. (B.7) holds for any negative relevance vector x−j . Therefore, the point p(t) is free

as long as t ≤ t∗u = max j=1,...,M−mini=1,...,M+ τ(p0,x+,x−j).

B.4 Proof of Proposition 4

Proof. Consider an arbitrary ray p′(t) = p0 + tv′,0 ≤ t < ∞. If we scale the velocity v′ by a

positive constant λ , i.e. v = λv′, the ray p(t) = p0 + tv,0 ≤ t < ∞ represents the same ray as

p′(t). If we scale the vector v′ by λ = 1
∥Γv′∥ , the velocity vector v satisfies ∥Γv∥= 1. Using the

Cauchy-Schwarz inequality in Eq. (B.6) in Appendix B.3, we have:

−2tv⊤Γ
⊤

Γ(n1p0− (n1 +n2)x+∗ +n2x−j)

≤ 2t∥Γ(n1p0− (n1 +n2)x+∗ +n2x−j)∥

Therefore, the point p(t) is free if V̄ (t,x+∗ ,x
−
j) ≤ 0. Following the same reasoning as Prop. 3,

the point p(t) is free for 0 < t < ru or 0 < t < r∗u. In other words, the interior of the ellipsoids

E (p0,ru)⊆ E (p0,r∗u) is free.

125

Chapter C

Implementation Details for Chapter 4

We used fully-connected neural networks whose architecture is shown below. The first

number is the input dimension while the last number is the output dimension. The numbers in

between are the hidden layers’ dimensions and activation functions. The value of εv and εω in

(4.7) is set to 0.01.

1. Pendulum:

• Input dimension: 9. Action dimension: 1.

• L(q):

9 - 300 Tanh - 300 Tanh - 300 Tanh - 300 Linear - 6.

• V (q): 9 - 50 Tanh - 50 Tanh - 50 Linear - 1.

• g(q): 9 - 300 Tanh - 300 Tanh - 300 Linear - 3.

2. Pybullet quadrotor:

• Input dimension: 12. Action dimension: 4.

• L1(q) only takes the position p ∈ R3 as input:

3 - 400 Tanh - 400 Tanh - 400 Tanh - 400 Linear - 6.

• L2(q) only takes the rotation matrix R ∈ R3×3 as input:

9 - 400 Tanh - 400 Tanh - 400 Tanh - 400 Linear - 6.

126

• V (q): 12 - 400 Tanh - 400 Tanh - 400 Linear - 1.

• g(q): 12 - 400 Tanh - 400 Tanh - 400 Linear - 24.

3. Real PX4 quadrotor:

• Input dimension: 12. Action dimension: 4.

• Lv(q) only takes the position p ∈ R3 as input:

3 - 20 Tanh - 20 Tanh - 20 Tanh - 20 Linear - 6.

• Lω(q) only takes the rotation matrix R ∈ R3×3 as input:

9 - 20 Tanh - 20 Tanh - 20 Tanh - 20 Linear - 6.

• Dv(q) only takes the position p ∈ R3 as input:

3 - 20 Tanh - 20 Tanh - 20 Tanh - 20 Linear - 6.

• Dω(q) only takes the rotation matrix R ∈ R3×3 as input:

9 - 20 Tanh - 20 Tanh - 20 Tanh - 20 Linear - 6.

• V (q): 12 - 20 Tanh - 20 Tanh - 20 Linear - 1.

• g(q): 12 - 20 Tanh - 20 Tanh - 20 Linear - 24.

127

Chapter D

Proof of Theorem 2 in Chapter 5

Proof. We drop function parameters to simplify the notation. The derivative of the generalized

coordinate error satisfies:

ė =

ėp

ėR

=

 −ω̂ep + kpev

kRE(R,R∗)eω


=−

ω̂ 0

0 0

e+

kpI 0

0 kRE(R,R∗)

M−1pe,

(D.1)

where E(R,R∗) = 1
2

(
tr(R⊤R∗)I−R⊤R∗

)
satisfies ∥E(R,R∗)∥ ≤ 1. By construction of the

IDA-PBC controller [35]:

ṗe =−e−KdM−1pe−Wea. (D.2)

Consider the adaptation law ȧ = c1W⊤e+ c2W⊤M−1pe in (5.35) with c1 = cp = cR and c2 =

cv = cω . In the domain T , Ψ(R,R∗)< α < 2 and k−2
R
2 ∥eR∥2

2 ≤Ψ(R,R∗)≤ k−2
R

2−α
∥eR∥2

2 by [51,

Prop. 1]. For z := [∥e∥ ∥pe∥]⊤ ∈ R2, the Lyapunov function candidate V in (5.36) is bounded

as:
1
2

z⊤Q1z+
1

2c2
∥ea∥2

2 ≤ V ≤ 1
2

z⊤Q2z+
1

2c2
∥ea∥2

2, (D.3)

128

where the matrix Q1 is specified in (5.37) and Q2 is:

Q2 =

max
{

k−1
p ,

2k−1
R

2−α

}
c1/c2

c1/c2 λmax(M−1)

 . (D.4)

The time derivative of the Lyapunov candidate satisfies:

V̇ = p⊤e M−1ṗe + e⊤M−1pe +
c1e⊤ṗe

c2
+

c1ė⊤pe

c2
+

e⊤a ȧ
c2

=−p⊤e M−1KdM−1pe−
c1

c2
e⊤e

− c1

c2
e⊤KdM−1pe +

c1

c2
e⊤

êω 0

0 0

pe

+
c1

c2
e⊤

R⊤R∗ω̂∗R∗⊤R 0

0 0

pe

+
c1

c2
p⊤e M−1

kpI 0

0 kRE(R,R∗)

pe,

where we use (D.1), (D.2), and that ω = eω +R⊤R∗ω∗ by definition of eω . Hence, in the

domain T , we have:

d
dt

V ≤−z⊤Q3z =−z⊤

q1 q2

q2 q3

z, (D.5)

where

q1 =
c1

c2
,

q2 =−
c1

c2

(
λmax(KdM−1)+β + γ

)
, and

q3 = λmin(M−1KdM−1)− c1

c2
max

{
kp,kR

}
λmax(M−1).

Since Kd = diag(kvI,kωI) can be chosen arbitrarily large and c1/c2 can be chosen ar-

129

bitrarily small, there exists a choice of constants that ensures that the matrices Q1, Q2, and Q3

are positive definite. Consider the sub-level set of the Lyapunov function R = {x ∈T |V (x)≤

δ} where δ < λmin(Q1)min(α(2−α)k2
R,β

2λ 2
min(M))/2. For x0 ∈ R, we have Ψ(R,R∗) ≤

k−2
R ∥eR∥2

2
(2−α) ≤

2δk−2
R

(2−α)λmin(Q1)
< α , and ∥eω(x,x∗)∥2 ≤ 2δ

λmin(Q1)λ
2
min(M)

≤ β 2 for all x(t), t > 0, i.e.,

dV /dt ≤ 0 for all t > 0 and R is a positively invariant set. Therefore, for any system trajectory

starting in R, the tracking errors e, pe are asymptotically stable, while the estimation error ea

is stable and uniformly bounded, by the LaSalle-Yoshizawa theorem [87, Thm. A.8].

130

Bibliography

[1] José Ángel Acosta, MI Sanchez, and Anı́bal Ollero. Robust Control of Underactuated
Aerial Manipulators via IDA-PBC. In IEEE Conference on Decision and Control, 2014.

[2] Abdullah Altawaitan, Jason Stanley, Sambaran Ghosal, Thai Duong, and Nikolay
Atanasov. Hamiltonian Dynamics Learning from Point Cloud Observations for Non-
holonomic Mobile Robot Control. In IEEE International Conference on Robotics and
Automation, 2024.

[3] Omur Arslan and Daniel Koditschek. Exact Robot Navigation Using Power Diagrams.
In IEEE International Conference on Robotics and Automation, 2016.

[4] Arash Asgharivaskasi and Nikolay Atanasov. Semantic Octree Mapping and Shan-
non Mutual Information Computation for Robot Exploration. IEEE Transactions on
Robotics, 2023.

[5] Timothy Barfoot. State Estimation for Robotics. Cambridge University Press, 2017.

[6] Thomas Beckers. Data-driven Bayesian Control of Port-Hamiltonian Systems. In IEEE
Conference on Decision and Control, 2023.

[7] Thomas Beckers, Jacob Seidman, Paris Perdikaris, and George Pappas. Gaussian Process
Port-Hamiltonian Systems: Bayesian Learning with Physics Prior. In IEEE Conference
on Decision and Control, 2022.

[8] Jens Behley and Cyrill Stachniss. Efficient Surfel-based SLAM Using 3D Laser Range
Data in Urban Environments. In Robotics: Science and Systems, 2018.

[9] Tom Bertalan, Felix Dietrich, Igor Mezić, and Ioannis Kevrekidis. On Learning Hamil-
tonian Systems from Data. Chaos: An Interdisciplinary Journal of Nonlinear Science,
2019.

[10] Joshua Bialkowski, Michael Otte, Sertac Karaman, and Emilio Frazzoli. Efficient Colli-
sion Checking in Sampling-based Motion Planning via Safety Certificates. International
Journal of Robotics Research, 2016.

[11] Mahdis Bisheban and Taeyoung Lee. Geometric Adaptive Control with Neural Networks
for a Quadrotor in Wind Fields. IEEE Transactions on Control Systems Technology,
2020.

131

[12] Antoine Bordes, Seyda Ertekin, Jason Weston, Léon Botton, and Nello Cristianini. Fast
Kernel Classifiers with Online and Active Learning. Journal of Machine Learning Re-
search, 2005.

[13] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive Control for Lin-
ear and Hybrid Systems. Cambridge University Press, 2017.

[14] Sean Bowman, Nikolay Atanasov, Kostas Daniilidis, and George Pappas. Probabilistic
Data Association for Semantic SLAM. In IEEE International Conference on Robotics
and Automation, 2017.

[15] Russell Buchanan, Varun Agrawal, Marco Camurri, Frank Dellaert, and Maurice Fallon.
Deep IMU Bias Inference for Robust Visual-Inertial Odometry with Factor Graphs. IEEE
Robotics and Automation Letters, 2022.

[16] Benjamin Charrow, Sikang Liu, Vijay Kumar, and Nathan Michael. Information-
theoretic Mapping using Cauchy-Schwarz Quadratic Mutual Information. In IEEE Inter-
national Conference on Robotics and Automation, 2015.

[17] Jing Chen and Shaojie Shen. Improving Octree-based Occupancy Maps Using Envi-
ronment Sparsity with Application to Aerial Robot Navigation. In IEEE International
Conference on Robotics and Automation, 2017.

[18] Renyi Chen and Molei Tao. Data-driven Prediction of General Hamiltonian Dynamics
via Learning Exactly-symplectic Maps. In International Conference on Machine Learn-
ing, 2021.

[19] Ricky Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary
Differential Equations. In Advances in Neural Information Processing Systems, 2018.

[20] Wen-Hua Chen, Donald J Ballance, Peter J Gawthrop, and John O’Reilly. A Nonlin-
ear Disturbance Observer for Robotic Manipulators. IEEE Transactions on industrial
Electronics, 2000.

[21] Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bottou. Symplectic Recurrent
Neural Networks. International Conference on Learning Representations, 2020.

[22] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep Rein-
forcement Learning in a Handful of Trials Using Probabilistic Dynamics Models. In
Advances in Neural Information Processing Systems, 2018.

[23] Oscar Cieza and Johann Reger. IDA-PBC for Underactuated Mechanical Systems in
Implicit Port-Hamiltonian Representation. In European Control Conference, 2019.

[24] Giovanni Cioffi, Leonard Bauersfeld, Elia Kaufmann, and Davide Scaramuzza. Learned
Inertial Odometry for Autonomous Drone Racing. In IEEE Robotics and Automation
Letters, 2023.

132

[25] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and
Shirley Ho. Lagrangian Neural Networks. In ICLR Workshop on Integration of Deep
Neural Models and Differential Equations, 2020.

[26] Brian Curless and Marc Levoy. A Volumetric Method for Building Complex Models
from Range Images. In Conference on Computer Graphics and Interactive Techniques,
pages 303–312, 1996.

[27] Zhirui Dai, Arash Asgharivaskasi, Thai Duong, Shusen Lin, Maria-Elizabeth Tzes,
George Pappas, and Nikolay Atanasov. Optimal scene graph planning with large lan-
guage model guidance. In IEEE International Conference on Robotics and Automation,
2024.

[28] Nikhil Das, Naman Gupta, and Michael Yip. Fastron: An Online Learning-based Model
and Active Learning Strategy for Proxy Collision Detection. In Conference on Robot
Learning, 2017.

[29] Nikhil Das and Michael Yip. Learning-based Proxy Collision Detection for Robot Mo-
tion Planning Applications. IEEE Transactions on Robotics, 2020.

[30] Alessandro De Luca, Giuseppe Oriolo, and Marilena Vendittelli. Stabilization of the
Unicycle via Dynamic Feedback Linearization. IFAC Proceedings Volumes, 2000.

[31] Marc Deisenroth and Carl Rasmussen. PILCO: A Model-based and Data-efficient Ap-
proach to Policy Search. In International Conference on Machine Learning, 2011.

[32] J. Delmerico and D. Scaramuzza. A Benchmark Comparison of Monocular Visual-
Inertial Odometry Algorithms for Flying Robots. In IEEE International Conference on
Robotics and Automation, 2018.

[33] Daniel Dirksz and Jacquelien Scherpen. Structure Preserving Adaptive Control of Port-
Hamiltonian Systems. IEEE Transactions on Automatic Control, 2012.

[34] Thai Duong, Abdullah Altawaitan, Jason Stanley, and Nikolay Atanasov. Port-
Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and
Control. arXiv preprint arXiv:2401.09520, 2024.

[35] Thai Duong and Nikolay Atanasov. Hamiltonian-based Neural ODE Networks on the
SE(3) Manifold For Dynamics Learning and Control. In Robotics: Science and Systems,
2021.

[36] Thai Duong and Nikolay Atanasov. Adaptive Control of SE(3) Hamiltonian Dynamics
With Learned Disturbance Features. IEEE Control Systems Letters, 2022.

[37] Thai Duong, Nikhil Das, Michael Yip, and Nikolay Atanasov. Autonomous Navigation
in Unknown Environments Using Sparse Kernel-based Occupancy Mapping. In IEEE
International Conference on Robotics and Automation, 2020.

133

[38] Thai Duong, Michael Yip, and Nikolay Atanasov. Autonomous Navigation in Unknown
Environments With Sparse Bayesian Kernel-Based Occupancy Mapping. IEEE Transac-
tions on Robotics, 2022.

[39] Valentin Duruisseaux, Thai P Duong, Melvin Leok, and Nikolay Atanasov. Lie Group
Forced Variational Integrator Networks for Learning and Control of Robot Systems. In
Learning for Dynamics and Control Conference, 2023.

[40] Karthik Elamvazhuthi, Xuechen Zhang, Samet Oymak, and Fabio Pasqualetti. Learn-
ing on Manifolds: Universal Approximations Properties using Geometric Controllability
Conditions for Neural ODEs. In Learning for Dynamics and Control Conference, 2023.

[41] Alberto Elfes. Using Occupancy Grids for Mobile Robot Perception and Navigation.
Computer, 1989.

[42] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. Differential Flatness of
Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-speed Trajec-
tories. IEEE Robotics and Automation Letters, 2017.

[43] Luca Falorsi and Patrick Forré. Neural Ordinary Differential Equations on Manifolds.
arXiv preprint arXiv:2006.06663, 2020.

[44] Marc Finzi, Ke Alexander Wang, and Andrew Wilson. Simplifying Hamiltonian and
Lagrangian Neural Networks via Explicit Constraints. In Advances in Neural Information
Processing Systems, 2020.

[45] Paolo Forni, Dimitri Jeltsema, and Gabriel Lopes. Port-Hamiltonian Formulation of
Rigid-body Attitude Control. IFAC-PapersOnLine, 2015.

[46] Jaume Franch and Jose-Manuel Rodriguez-Fortun. Control and Trajectory Generation
of an Ackerman Vehicle by Dynamic Linearization. In European Control Conference,
2009.

[47] David Fridovich-Keil, Erik Nelson, and Avideh Zakhor. AtomMap: A Probabilistic
Amorphous 3D Map Representation for Robotics and Surface Reconstruction. In IEEE
International Conference on Robotics and Automation, 2017.

[48] Luca Furieri, Clara Lucı́a Galimberti, Muhammad Zakwan, and Giancarlo Ferrari-
Trecate. Distributed Neural Network Control with Dependability Guarantees: A Compo-
sitional Port-Hamiltonian Approach. In Learning for Dynamics and Control Conference,
2022.

[49] Aditya Gahlawat, Pan Zhao, Andrew Patterson, Naira Hovakimyan, and Evangelos
Theodorou. L1-GP: L1 Adaptive Control with Bayesian Learning. In Conference on
Learning for Dynamics and Control, 2020.

134

[50] Clara Lucı́a Galimberti, Luca Furieri, Liang Xu, and Giancarlo Ferrari-Trecate. Hamil-
tonian Deep Neural Networks Guaranteeing Nonvanishing Gradients by Design. IEEE
Transactions on Automatic Control, 2023.

[51] Farhad Goodarzi, Daewon Lee, and Taeyoung Lee. Geometric Adaptive Tracking Con-
trol of a Quadrotor Unmanned Aerial Vehicle on SE(3) for Agile Maneuvers. Journal of
Dynamic Systems, Measurement, and Control, 2015.

[52] Robert Grande, Girish Chowdhary, and Jonathan How. Nonparametric Adaptive Control
Using Gaussian Processes with Online Hyperparameter Estimation. In IEEE Conference
on Decision and Control, 2013.

[53] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian Neural Networks.
In Advances in Neural Information Processing Systems, 2019.

[54] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved Techniques for Grid
Mapping with Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics, 2007.

[55] Lars Grüne and Jürgen Pannek. Nonlinear Model Predictive Control. Springer, 2017.

[56] Vitor Guizilini and Fabio Ramos. Large-scale 3D Scene Reconstruction with Hilbert
Maps. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2016.

[57] Vitor Guizilini and Fabio Ramos. Towards Real-time 3D Continuous Occupancy Map-
ping Using Hilbert Maps. International Journal of Robotics Research, 2018.

[58] Jayesh Gupta, Kunal Menda, Zachary Manchester, and Mykel Kochenderfer. A
General Framework for Structured Learning of Mechanical Systems. arXiv preprint
arXiv:1902.08705, 2019.

[59] Jerome Guzzi, Alessandro Giusti, Luca Gambardella, Guy Theraulaz, and Gianni
Di Caro. Human-friendly Robot Navigation in Dynamic Environments. In IEEE In-
ternational Conference on Robotics and Automation, 2013.

[60] Brian Hall. Lie Groups, Lie Algebras, and Representations. Springer, 2013.

[61] Luxin Han, Fei Gao, Boyu Zhou, and Shaojie Shen. FIESTA: A Fast Incremental Eu-
clidean Distance Fields for Online Quadrotor Motion Planning. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2019.

[62] Drew Hanover, Philipp Foehn, Sihao Sun, Elia Kaufmann, and Davide Scaramuzza. Per-
formance, Precision, and Payloads: Adaptive Nonlinear MPC for Quadrotors. arXiv
preprint arXiv:2109.04210, 2021.

[63] James Harrison, Apoorva Sharma, and Marco Pavone. Meta-learning Priors for Efficient
Online Bayesian Regression. In Workshop on the Algorithmic Foundations of Robotics,
2020.

135

[64] Kris Hauser. Lazy Collision Checking in Asymptotically-Optimal Motion Planning. In
IEEE International Conference on Robotics and Automation, 2015.

[65] Aaron Havens and Girish Chowdhary. Forced Variational Integrator Networks for Pre-
diction and Control of Mechanical Systems. In Learning for Dynamics and Control,
2021.

[66] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. RGB-D
Mapping: Using Kinect-style Depth Cameras for Dense 3D Modeling of Indoor Envi-
ronments. International Journal of Robotics Research, 2012.

[67] Darryl Holm. Geometric Mechanics. World Scientific Publishing Company, 2008.

[68] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram Bur-
gard. OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees.
Autonomous Robots, 2013.

[69] Naira Hovakimyan and Chengyu Cao. L1 Adaptive Control Theory: Guaranteed Ro-
bustness with Fast Adaptation. SIAM, 2010.

[70] Andrew Howard and Nicholas Roy. The Robotics Dataset Repository (Radish), 2003.

[71] Jinwook Huh and Daniel Lee. Learning High-dimensional Mixture Models for Fast Col-
lision Detection in Rapidly-exploring Random Trees. In IEEE International Conference
on Robotics and Automation, 2016.

[72] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey
Levine. How to Train Your Robot with Deep Reinforcement Learning: Lessons We
Have Learned. International Journal of Robotics Research, 2021.

[73] Petros Ioannou and Jing Sun. Robust Adaptive Control. Prentice Hall, 1996.

[74] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, and
Andrew Fitzgibbon. KinectFusion: Real-time 3D Reconstruction and Interaction Us-
ing a Moving Depth Camera. In ACM Sym. on User Interface Software and Technology
(UIST), 2011.

[75] Maani Ghaffari Jadidi, Jaime Valls Miro, and Gamini Dissanayake. Warped Gaussian
Processes Occupancy Mapping with Uncertain Inputs. IEEE Robotics and Automation
Letters, 2017.

[76] Lucas Janson, Tommy Hu, and Marco Pavone. Safe Motion Planning in Unknown En-
vironments: Optimality Benchmarks and Tractable Policies. In Robotics: Science and
Systems, 2018.

[77] Wanxin Jin, Alp Aydinoglu, Mathew Halm, and Michael Posa. Learning Linear Com-
plementarity Systems. In Learning for Dynamics and Control Conference, 2022.

136

[78] Girish Joshi, Jasvir Virdi, and Girish Chowdhary. Asynchronous Deep Model Reference
Adaptive Control. In Conference on Robot Learning, 2020.

[79] Michael Kaess. Simultaneous Localization and Mapping with Infinite Planes. In IEEE
International Conference on Robotics and Automation, 2015.

[80] Olaf Kähler, Victor Prisacariu, and David Murray. Real-time Large-scale Dense 3D
Reconstruction with Loop Closure. In European Conference on Computer Vision, 2016.

[81] Sertac Karaman and Emilio Frazzoli. Incremental Sampling-based Algorithms for Opti-
mal Motion Planning. Robotics: Science and Systems, 2010.

[82] Sertac Karaman and Emilio Frazzoli. Sampling-based Algorithms for Optimal Motion
Planning. International Journal of Robotics Research, 2011.

[83] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson Surface Reconstruc-
tion. In Eurographics Symposium on Geometry Processing, 2006.

[84] Hassan K Khalil. Nonlinear Systems. Prentice hall, 2002.

[85] Matthew Klingensmith, Ivan Dryanovski, Siddhartha Srinivasa, and Jizhong Xiao.
Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device. In
Robotics: Science and Systems, 2015.

[86] Sven Koenig and Yury Smirnov. Sensor-based Planning with the Free Space Assumption.
In IEEE International Conference on Robotics and Automation, 1997.

[87] Miroslav Krstic, Petar Kokotovic, and Ioannis Kanellakopoulos. Nonlinear and Adaptive
Control Design. John Wiley & Sons, Inc., 1995.

[88] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Geometric tracking control of
a quadrotor UAV on SE(3). In IEEE Conference on Decision and Control, 2010.

[89] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Global Formulations of La-
grangian and Hamiltonian Dynamics on Manifolds. Springer, 2017.

[90] Richard Lehoucq, Danny Sorensen, and Chao Yang. ARPACK Users’ Guide: Solution
of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM,
1998.

[91] Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian Dynamics. Cam-
bridge University Press, 2004.

[92] Shihua Li, Jun Yang, Wen-Hua Chen, and Xisong Chen. Disturbance Observer-based
Control: Methods and Applications. CRC press, 2014.

[93] Zhichao Li, Thai Duong, and Nikolay Atanasov. Safe Robot Navigation in Cluttered
Environments Using Invariant Ellipsoids and a Reference Governor. arXiv preprint
arXiv:2005.06694, 2020.

137

[94] Zhichao Li, Thai Duong, and Nikolay Atanasov. Robust and Safe Autonomous Navi-
gation for Systems with Learned SE(3) Hamiltonian Dynamics. IEEE Open Journal of
Control Systems, 2022.

[95] Zhichao Li, Thai Duong, and Nikolay Atanasov. Safe Autonomous Navigation for Sys-
tems with Learned SE(3) Hamiltonian Dynamics. In Learning for Dynamics and Control
Conference. PMLR, 2022.

[96] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian Thrun.
Anytime Search in Dynamic Graphs. Artificial Intelligence, 2008.

[97] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. Search-based Motion
Planning for Quadrotors using Linear Quadratic Minimum Time Control. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2017.

[98] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. Search-based Motion
Planning for Quadrotors Using Linear Quadratic Minimum Time Control. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2017.

[99] Wenxin Liu, David Caruso, Eddy Ilg, Jing Dong, Anastasios Mourikis, Kostas Daniilidis,
Vijay Kumar, and Jakob Engel. TLIO: Tight Learned Inertial Odometry. IEEE Robotics
and Automation Letters, 2020.

[100] Lennart Ljung. System Identification. Wiley Encyclopedia of Electrical and Electronics
Engineering, 1999.

[101] Brett Lopez and Jonathan How. Aggressive 3-D Collision Avoidance for High-speed
Navigation. In IEEE International Conference on Robotics and Automation, 2017.

[102] Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Learning High-speed Flight in the Wild. Science Robotics, 2021.

[103] Aaron Lou, Derek Lim, Isay Katsman, Leo Huang, Qingxuan Jiang, Ser Nam Lim, and
Christopher De Sa. Neural Manifold Ordinary Differential Equations. In Advances in
Neural Information Processing Systems, 2020.

[104] Yupu Lu, Shijie Lin, Guanqi Chen, and Jia Pan. ModLaNets: Learning Generalisable
Dynamics via Modularity and Physical Inductive Bias. In International Conference on
Machine Learning, 2022.

[105] Jingru Luo and Kris Hauser. An Empirical Study of Optimal Motion Planning. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014.

[106] Anatolii Isakovich Lurie. Analytical Mechanics. Springer Science & Business Media,
2013.

[107] Michael Lutter, Kim Listmann, and Jan Peters. Deep Lagrangian Networks for End-
to-end Learning of Energy-based Control for Under-actuated Systems. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2019.

138

[108] Michael Lutter and Jan Peters. Combining Physics and Deep Learning to Learn
Continuous-time Dynamics Models. International Journal of Robotics Research, 2023.

[109] Michael Lutter, Christian Ritter, and Jan Peters. Deep Lagrangian Networks: Using
Physics as Model Prior for Deep Learning. In International Conference on Learning
Representations, 2018.

[110] Kevin Lynch and Frank Park. Modern Robotics: Mechanics, Planning, and Control.
Cambridge University Press, 2017.

[111] Andrzej Maciejewski. Hamiltonian Formalism for Euler Parameters. Celestial Mechan-
ics, 1985.

[112] David MacKay. The Evidence Framework Applied to Classification Networks. Neural
Computation, 1992.

[113] J. E. Marsden and M. West. Discrete Mechanics and Variational Integrators. Acta Nu-
merica, 2001.

[114] Jerrold Marsden and Tudor Ratiu. Introduction to Mechanics and Symmetry: A Basic
Exposition of Classical Mechanical Systems. Springer Science & Business Media, 2013.

[115] Justice Mason, Christine Allen-Blanchette, Nicholas Zolman, Elizabeth Davison, and
Naomi Leonard. Learning Interpretable Dynamics from Images of a Freely Rotating 3D
Rigid Body. arXiv preprint arXiv:2209.11355, 2022.

[116] S. A. S. Mohamed, M. Haghbayan, T. Westerlund, J. Heikkonen, H. Tenhunen, and
J. Plosila. A Survey on Odometry for Autonomous Navigation Systems. IEEE Access,
2019.

[117] Manasi Muglikar, Zichao Zhang, and Davide Scaramuzza. Voxel Map for Visual SLAM.
In IEEE International Conference on Robotics and Automation, 2020.

[118] Ian Nabney. Efficient Training of RBF Networks for Classification. International Journal
of Neural Systems, 2004.

[119] Subramanya Nageshrao, Gabriel Lopes, Dimitri Jeltsema, and Robert Babuška. Port-
Hamiltonian Systems in Adaptive and Learning Control: A Survey. IEEE Transactions
on Automatic Control, 2015.

[120] Radford Neal. Bayesian Learning for Neural Networks. Springer Science & Business
Media, 2012.

[121] Cyrus Neary and Ufuk Topcu. Compositional Learning of Dynamical System Models
Using Port-Hamiltonian Neural Networks. In Learning for Dynamics and Control Con-
ference, 2023.

139

[122] Lachlan Nicholson, Michael Milford, and Niko Sünderhauf. QuadricSLAM: Dual
Quadrics from Object Detections as Landmarks in Object-Oriented SLAM. IEEE
Robotics and Automation Letters, 2019.

[123] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. Real-time
3D Reconstruction at Scale Using Voxel Hashing. ACM Transactions on Graphics, 32(6),
2013.

[124] Simon O’Callaghan and Fabio Ramos. Gaussian Process Occupancy Maps. International
Journal of Robotics Research, 2012.

[125] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto.
Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-board MAV Plan-
ning. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017.

[126] Romeo Ortega, Mark Spong, Fabio Gómez-Estern, and Guido Blankenstein. Stabiliza-
tion of a Class of Underactuated Mechanical Systems via Interconnection and Damping
Assignment. IEEE Transactions on Automatic Control, 47(8), 2002.

[127] Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL: A General Purpose Library for Colli-
sion and Proximity Queries. In IEEE International Conference on Robotics and Automa-
tion, 2012.

[128] Jia Pan and Dinesh Manocha. Efficient Configuration Space Construction and Optimiza-
tion for Motion Planning. Engineering, 2015.

[129] Jacopo Panerati, Hehui Zheng, SiQi Zhou, James Xu, Amanda Prorok, and Angela
Schöllig. Learning to Fly: a PyBullet Gym Environment to Learn the Control of Multiple
Nano-quadcopters. https://github.com/utiasDSL/gym-pybullet-drones, 2020.

[130] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. In Advances in
Neural Information Processing Systems 32, 2019.

[131] Karime Pereida and Angela Schoellig. Adaptive Model Predictive Control for High-
accuracy Trajectory Tracking in Changing Conditions. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2018.

[132] Samuel Pfrommer, Mathew Halm, and Michael Posa. Contactnets: Learning Discontin-
uous Contact Dynamics with Smooth, Implicit Representations. In Conference on Robot
Learning, 2021.

[133] Enrico Piazza, Andrea Romanoni, and Matteo Matteucci. Real-time CPU-based Large-
scale Three-dimensional Mesh Reconstruction. IEEE Robotics and Automation Letters,
2018.

140

https://github.com/utiasDSL/gym-pybullet-drones

[134] Maziar Raissi, Paris Perdikaris, and George Karniadakis. Multistep Neural Net-
works for Data-driven Discovery of Nonlinear Dynamical Systems. arXiv preprint
arXiv:1801.01236, 2018.

[135] Fabio Ramos and Lionel Ott. Hilbert Maps: Scalable Continuous Occupancy Mapping
with Stochastic Gradient Descent. International Journal of Robotics Research, 2016.

[136] Ramy Rashad, Federico Califano, and Stefano Stramigioli. Port-Hamiltonian Passivity-
based Control on SE(3) of a Fully Actuated UAV for Aerial Physical Interaction Near-
hovering. IEEE Robotics and Automation Letters, 2019.

[137] Spencer Richards, Navid Azizan, Jean-Jacques Slotine, and Marco Pavone. Adaptive-
Control-Oriented Meta-Learning for Nonlinear Systems. In Robotics: Science and Sys-
tems, 2021.

[138] Manuel Roehrl, Thomas Runkler, Veronika Brandtstetter, Michel Tokic, and Stefan Ober-
mayer. Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics. IFAC-PapersOnLine, 2020.

[139] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. Kimera: An Open-source
Library for Real-time Metric-semantic Localization and Mapping. In IEEE International
Conference on Robotics and Automation, 2020.

[140] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Press, 2009.

[141] Lars Ruthotto and Eldad Haber. Deep Neural Networks Motivated by Partial Differential
Equations. Journal of Mathematical Imaging and Vision, 2019.

[142] Tim Salzmann, Elia Kaufmann, Jon Arrizabalaga, Marco Pavone, Davide Scaramuzza,
and Markus Ryll. Real-time Neural MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms. IEEE Robotics and Automation Letters, 2023.

[143] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin
Riedmiller, Raia Hadsell, and Peter Battaglia. Graph Networks as Learnable Physics
Engines for Inference and Control. In International Conference on Machine Learning,
2018.

[144] Sosale Shankara Sastry and Alberto Isidori. Adaptive Control of Linearizable Systems.
IEEE Transactions on Automatic Control, 1989.

[145] Davide Scaramuzza and Elia Kaufmann. Learning Agile, Vision-Based Drone Flight:
From Simulation to Reality. In The International Symposium of Robotics Research, 2022.

[146] Eduardo Sebastián, Thai Duong, Nikolay Atanasov, Eduardo Montijano, and Carlos
Sagüés. LEMURS: Learning Distributed Multi-robot Interactions. In IEEE International
Conference on Robotics and Automation, 2023.

141

[147] Eduardo Sebastian, Thai Duong, Nikolay Atanasov, Eduardo Montijano, and Carlos
Sagues. Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-
Robot Problems. arXiv preprint arXiv:2401.00212, 2023.

[148] Ransalu Senanayake and Fabio Ramos. Bayesian Hilbert Maps for Dynamic Continuous
Occupancy Mapping. In Conference on Robot Learning, 2017.

[149] Ransalu Senanayake, Anthony Tompkins, and Fabio Ramos. Automorphing Kernels
for Nonstationarity in Mapping Unstructured Environments. In Conference on Robot
Learning, 2018.

[150] Mo Shan, Qiaojun Feng, and Nikolay Atanasov. OrcVIO: Object Residual Constrained
Visual-Inertial Odometry. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2020.

[151] Guanya Shi, Kamyar Azizzadenesheli, Soon-Jo Chung, and Yisong Yue. Meta-Adaptive
Nonlinear Control: Theory and Algorithms. In Advances in Neural Information Process-
ing Systems, 2021.

[152] Ravishankar Shivarama and Eric Fahrenthold. Hamilton’s Equations with Euler Param-
eters for Rigid Body Dynamics Modeling. Journal of Dynamic Systems, Measurement,
and Control, 2004.

[153] Jean-Jacques Slotine and MD Di Benedetto. Hamiltonian Adaptive Control of Space-
craft. IEEE Transactions on Automatic Control, 1990.

[154] Jean-Jacques Slotine and Weiping Li. On the Adaptive Control of Robot Manipulators.
The International Journal of Robotics Research, 1987.

[155] Jean-Jacques Slotine and Weiping Li. Applied Nonlinear Control. Prentice Hall, 1991.

[156] Oswin So, Gongjie Li, Evangelos Theodorou, and Molei Tao. Data-driven Discovery
of Non-Newtonian Astronomy via Learning Non-Euclidean Hamiltonian. In ICML Ma-
chine Learning and the Physical Sciences Workshop, 2022.

[157] Yunlong Song, Angel Romero, Matthias Müller, Vladlen Koltun, and Davide Scara-
muzza. Reaching the Limit in Autonomous Racing: Optimal Control Versus Reinforce-
ment Learning. Science Robotics, 2023.

[158] Cristian Souza, Vianna Raffo, and Eugenio Castelan. Passivity-based Control of a
Quadrotor UAV. IFAC Proceedings Volumes, 2014.

[159] Bhavya Sukhija, Nathanael Köhler, Miguel Zamora, Simon Zimmermann, Sebastian
Curi, Andreas Krause, and Stelian Coros. Gradient-based Trajectory Optimization with
Learned Dynamics. In IEEE International Conference on Robotics and Automation,
2023.

142

[160] Lucas Teixeira and Margarita Chli. Real-time Mesh-based Scene Estimation for Aerial
Inspection. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2016.

[161] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT press,
2005.

[162] Michael Tipping. The Relevance Vector Machine. In Advances in Neural Information
Processing Systems, 2000.

[163] Michael Tipping. Sparse Bayesian Learning and the Relevance Vector Machine. Journal
of Machine Learning Research, 2001.

[164] Michael Tipping, Anita Faul, et al. Fast Marginal Likelihood Maximisation for Sparse
Bayesian Models. In International Conference on Artificial Intelligence and Statistics,
2003.

[165] Anthony Tompkins, Ransalu Senanayake, and Fabio Ramos. Online Domain Adaptation
for Occupancy Mapping. In Robotics: Science and Systems, 2020.

[166] Peter Toth, Danilo J Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev,
and Irina Higgins. Hamiltonian Generative Networks. In International Conference on
Learning Representations, 2019.

[167] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe Exploration for Inter-
active Machine Learning. In Advances in Neural Information Processing Systems, 2019.

[168] Arjan Van Der Schaft and Dimitri Jeltsema. Port-Hamiltonian Systems Theory: An
Introductory Overview. Foundations and Trends in Systems and Control, 2014.

[169] Emanuele Vespa, Nikolay Nikolov, Marius Grimm, Luigi Nardi, Paul Kelly, and Stefan
Leutenegger. Efficient Octree-based Volumetric SLAM Supporting Signed-distance and
Occupancy Mapping. IEEE Robotics and Automation Letters, 2018.

[170] Jinkun Wang and Brendan Englot. Fast, Accurate Gaussian Process Occupancy Maps
via Test-data Octrees and Nested Bayesian Fusion. In IEEE International Conference on
Robotics and Automation, 2016.

[171] Kaixuan Wang, Fei Gao, and Shaojie Shen. Real-time Scalable Dense Surfel Mapping.
In IEEE International Conference on Robotics and Automation, 2019.

[172] Rui Wang, Robin Walters, and Rose Yu. Incorporating Symmetry into Deep Dynamics
Models for Improved Generalization. In International Conference on Learning Repre-
sentations, 2021.

[173] Z Wang and P Goldsmith. Modified Energy-balancing-based Control for the Tracking
Problem. IET Control Theory & Applications, 2008.

143

[174] Thomas Whelan, Renato Salas-Moreno, Ben Glocker, Andrew Davison, and Stefan
Leutenegger. ElasticFusion: Real-time Dense SLAM and Light Source Estimation. In-
ternational Journal of Robotics Research, 2016.

[175] Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. In-
tegrating Physics-based Modeling with Machine Learning: A Survey. arXiv preprint
arXiv:2003.04919, 2020.

[176] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James Rehg, Byron Boots,
and Evangelos Theodorou. Information Theoretic MPC for Model-based Reinforcement
Learning. In IEEE International Conference on Robotics and Automation, 2017.

[177] Yannik Wotte, Federico Califano, and Stefano Stramigioli. Optimal Potential Shaping on
SE(3) via Neural ODEs on Lie Groups. arXiv preprint arXiv:2401.15107, 2024.

[178] Shichao Yang and Sebastian Scherer. CubeSLAM: Monocular 3-D Object SLAM. IEEE
Transactions on Robotics, 2019.

[179] Ming Zeng, Fukai Zhao, Jiaxiang Zheng, and Xinguo Liu. Octree-based Fusion for
Realtime 3D Reconstruction. Graphical Models, 2013.

[180] Kunyi Zhang, Chenxing Jiang, Jinghang Li, Sheng Yang, Teng Ma, Chao Xu, and Fei
Gao. DIDO: Deep Inertial Quadrotor Dynamical Odometry. IEEE Robotics and Automa-
tion Letters, 2022.

[181] Zhengdong Zhang, Theia Henderson, Sertac Karaman, and Vivienne Sze. FSMI: Fast
Computation of Shannon Mutual Information for Information-Theoretic Mapping. Inter-
national Journal of Robotics Research, 2020.

[182] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ODE-Net:
Learning Hamiltonian Dynamics with Control. In International Conference on Learning
Representations, 2019.

[183] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Dissipative
SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep
Learning. In ICLR Workshop on Integration of Deep Neural Models and Differential
Equations, 2020.

144

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation
	Autonomous Robot Navigation Problem
	Related Work
	Overview and Contributions

	Background
	Matrix Lie Groups
	Example: SE(3) Manifold

	Hamiltonian Dynamics
	Hamiltonian Dynamics on Vector Space
	Hamiltonian Dynamics on Matrix Lie Groups
	Port-Hamiltonian Dynamics
	Example: Hamiltonian Dynamics on the SE(3) Manifold

	Neural Ordinary Differential Equation Networks
	Machine Learning Classifiers
	Kernel Perceptron
	Relevance Vector Machine

	Learning Sparse Occupancy Map Representations
	Sparse Probabilistic Occupancy Mapping Problem
	Sparse Binary Kernel-based Occupancy Mapping
	Sparse Bayesian Kernel-based Occupancy Mapping
	Sequential Relevance Vector Machine Training
	Online Mapping using Streaming Data

	Online Mapping
	Efficient Relevance Vector Machine Inference
	Computational and Storage Improvements
	Computational Improvements
	Storage Improvements

	Evaluation
	Comparison with Binary Map Representations
	Comparison with Probabilistic Map Representations
	Decision Boundary's Conservativeness

	Summary

	Learning Hamiltonian Dynamics on Lie Groups
	Dynamics Learning Problem
	Learning Hamiltonian Dynamics on Matrix Lie Groups
	Data Collection
	Model Architecture
	Training Process
	Application to SE(3) Hamiltonian Dynamics Learning

	Disturbance Model Learning Problem
	Hamiltonian-based Disturbance Feature Learning
	Evaluation
	Pendulum
	Crazyflie Quadrotor
	Comparison to Unstructured Neural ODE Models

	Summary

	Autonomous Navigation with Learned Robot Dynamics and Sparse Map Representations
	Motion Planning With Sparse Occupancy Maps
	Checking Line Segments
	Checking Curves
	Integration with Motion Planning Algorithms

	Trajectory Tracking with Learned Hamiltonian Dynamics
	Control Design for Hamiltonian Dynamics on Lie Groups
	Control Design for Hamiltonian Dynamics on the SE(3) Manifold
	Adaptive Control with Learned Disturbance Model on the SE(3) Manifold

	Autonomous Navigation
	Evaluation
	Effectiveness of Collision Checking Algorithms
	Effectiveness of Trajectory Tracking Control Design
	Effectiveness of Adaptive Control Design
	Real Experiments with Ground Robots
	Real Experiments with Quadrotors
	Active Mapping

	Summary

	Conclusions and Future Work
	Software and Supplementary Material
	Sparse Bayesian Occupancy Maps and Collision Checking
	Hamiltonian Dynamics Learning and Control

	Proofs of Propositions in Chapter 3
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

	Implementation Details for Chapter 4
	Proof of Theorem 2 in Chapter 5
	Bibliography

