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Abstract 

Recent studies show both adults and young children possess 
powerful statistical learning capabilities to solve the word-to-
world mapping problem. However, it is still unclear what are 
the underlying mechanisms supporting seemingly powerful 
statistical cross-situational learning. To answer this question, 
the paper uses an eye tracker to record moment-by-moment 
eye movement data of 14-month-old babies in statistical 
learning tasks. A simple associative statistical learning is 
applied to the fine-grained eye movement data. The results 
are compared with empirical results from those young 
learners. A strong correlation between these two shows that a 
simple associative learning mechanism can account for both 
behavioural data as a group and individual differences, 
suggesting that the associative learning mechanism with 
selective attention can provide a cognitively plausible model 
of statistical learning. The work represents the first steps to 
use eye movement data to infer underlying learning processes 
in statistical learning. 

Keywords: word learning, language development, eye 
tracking, computational modeling 

Introduction 

There is growing interest in the idea of language learning 

as a form of data mining. Structure that is not obvious in 

individual experiences or small bits of data is derivable from 

statistical analyses of large data sets (Landauer & Dumais, 

1997; Li, Burgess & Lund, 2000; Steyvers & Tenenbaum, 

2005; see a review by Chater & Manning, 2006). These 

techniques have been shown to be powerful in capturing 

syntactic categories (Mintz, Newport, & Bever, 2002; 

Monaghan, Chater, & Christiansen, 2005), syntactic 

structures (Solan, Horn, Ruppin, & Edelman, 2005) and 

word boundaries (Christiansen, Allen, & Seidenberg, 1998).  

Also growing are suggestions (as well as relevant evidence) 

that infants and young children are powerful statistical 

learners who make what seem to be sophisticated statistical 

inferences from even limited data (Newport & Aslin, 2004; 

Tennebaum & Xu, 2000; etc).   

  What is not so clear, however, is the nature of underlying 

statistical learning mechanisms. The working assumption 

seems to be that learners more or less passively accumulate 

data and then apply special statistical computations to that 

data.  In this paper, we consider an alternative, that at least 

one form of statistical learning shown by infants, is the 

product of moment-by-moment attention, itself inherently 

selective, dynamic, and via simple associative mechanisms, 

dependent on and indicative of learning.  We make this case 

in the context of infants’ cross-situational learning of names 

and referents; the approach is to use eye-tracking measures 

of attention during individually ambiguous training trials 

and a simple associative model to predict individual 

differences in learning.  

  Cross-situational word learning has been proposed as a 

solution to the uncertainty inherent in trying to learn words 

from their co-occurrences with scenes (Siskind, 1996; Yu & 

Smith; 2007). Scenes typically contain many possible 

referents, with speakers talking about and shifting their 

attention rapidly among the potential referents.  This 

uncertainty is still considerable even if one assumes a 

learner biased to link names to whole objects (e.g., 

Markman, 1990). For example, as illustrated in Figure 1, a 

young learner may hear the words "bat" and "ball" in the 

ambiguous context of seeing both a BAT and BALL 

without any information as to which word refers to which 

scene element.  However, although the learner may have no 

way of knowing from any such single learning situation 

which word goes with which referent, the learner could 

nonetheless determine the right mappings if  the learner kept 

track of co-occurrences and non-occurrences across 

situations, and evaluated the cross-situational evidence for 

word-referent pairings in the proper way. Using the example 

in Figure 1, if the learner viewed a second scene while 

hearing the words "ball" and "dog" and if the learner could 

remember and combine the conditional probabilities of co-

occurrences from across the two situations, the learner could 

correctly infer that  "ball" maps to BALL.   

     In a recent study, Smith and Yu (2008) showed that 12- 

and 14-month old babies do this. They presented the infants 

with learning trials on which there were always two seen 

objects and two heard names but no information as to which 

name went with which object. From such individually 

ambiguous learning trials, the infants learned the mappings 

of 6 names to 6 objects and did so in a learning experience 

that lasted in total less than 4 minutes.  The cross-trial word-

referent statistics were the only information available to 

disambiguate those word-referent pairings.  Thus the infants 

Figure 1: The conditional association probabilities between words 

and referents can be calculated across trials.  

1023



must have combined the information across trials.  The 

present question is the nature of the processes that underlie 

this learning.  

   One possible learning process is Hebbian-like associative 

learning, a form of learning known to be fundamental to 

many perceptual and cognitive capabilities. In the present 

case, the learner could simply store all associations between 

words and references.  For example, with respect to Figure 

1, if the system stored only associations between words and 

whole objects, there would be four associations formed on 

trial one (bat to BAT, bat to BALL, ball to BAT, ball to 

BALL). On the second experience shown in the figure, one 

of these (ball to BALL) would be strengthened more than 

the others. Across trials, the relative strengths of 

associations between words and their potential referents 

would come to reflect the correct word referent mappings.  

Simple associative models such as this have been criticized 

on the grounds (see Keil, 1989) that there are just  too many 

possible associations across situations to store and to keep 

track of.  

   This raises the key question for the present study, whether 

learners do not actually store all co-occurrences, but only 

some of them.  Further, we ask whether infants’ attention to 

and thus selective storage of word-referent pairs might be 

guided by their previous experience.  And if this is so, could 

a simple associative model explain not only infants’ success 

in learning in this task but also individual differences in that 

learning?  The issue of individual differences is particularly 

critical if infants are not simply passive accumulators of 

data but instead select among the available data.  If infants 

select some pairings over others to notice and store – and if 

these pairings guide later selections – then individual 

learners may distort the regularities in the input both in 

ways that enhance learning of the right word-referent pairs 

and in ways that hinder it.  

     To answer this question in computational modeling, a 

model needs to be fed with the same input that individual 

learners receive – that is, the information that individual 

learners attend to in cross-situational learning with multiple 

words and multiple referents. Our proposed solution is to 

continuously track eye-gaze direction throughout learning. 

The assumption here is when a learner associates a word 

with a referent among other simultaneously presented 

referents, the learner is likely to look at that referent (this is 

what it means to register the association). In this way, 

different learners may attend to different referents in a 

visual scene when hearing the same word, which leads to 

different learning results. Recent psycholinguistic studies 

already suggest that speech and eye movement are closely 

linked in both language comprehension and production (e.g. 

Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995).  

     In brief, we apply this eye-tracking paradigm in language 

learning and use eye movement, and the synchrony of those 

movements with respect to the heard object names as a 

measure of moment-by-moment learning and as a clue to the 

internal state of the learner.  

 

Method 
Participants 
The final sample consisted of 12 14-month-olds (7 boys, 5 

girls), with a mean age of 14.3 (SD = 0.6) months. An 

additional 12 infants were tested but not included in the 

sample due to fussiness (n = 2), persistent inattention to the 

display n=2), and mostly occasional excessive movement 

that prohibited the complete collection of continuous eye 

movement data with the eye tracker (n = 8). 

Stimuli 

The 6 ‘‘words’’ bosa, gasser, manu, colat, kaki and regli,  

were designed to follow the phonotactic probabilities of 

American English and were recorded by a female speaker in 

isolation. They were presented to infants over loudspeakers. 

The 6 ‘‘objects’’ were drawings of novel shapes, each was a 

unique bright color. There were 30 training slides. Each 

slide simultaneously presented two objects on the screen for 

4 s; the onset of the slide was followed 500 ms later by the 

two words – each said once with a 500 ms pause between. 

Across trials, the temporal order of the words and spatial 

order of the objects were varied such that there was no 

relation between temporal order of the words and the spatial 

position of the referents. Each correct word-object pair 

occurred 10 times. The two words and two objects 

appearing together on a slide (and creating the within trial 

ambiguities and possible spurious correlations) were 

randomly determined such that each object and each word 

co-occurred with every other word and every other object at 

least once across the 30 training trials. The first four training 

trials each began with the centered presentation of a Sesame 

Street character (3 s) to orient attention to the screen. After 

these first four trials, this attention grabbing slide was 

interspersed every 2–4 trials to maintain attention. The 

entire training – an effort to teach six word-referent pairs – 

lasted less than 4 min (30 training slides and 19 interspersed 

Sesame Street character slides). There were 12 test trials 

each lasting 8 seconds. Each test trial presented one word, 

repeated 4 times with 2 objects – the target and a distracter – 

in view. The distracter was drawn from the training set. 

Each of the 6 words was tested twice. The distracter for 

each trial was randomly determined such that each object 

occurred twice as a distracter over the 12 test trials. This 

duration and structure of training and test trials was the 

same as in Smith and Yu (2008). 

Apparatus  

A learner’s eye gaze was measured by a Tobii 1750 eye 

tracker with an infant add-on (www.tobii.se). The principle 

of this corneal reflection tracking technique is that an 

infrared light source is directed at the eye and the reflection 

of the light on the corneal relative to the center of the pupil 

is measured and used to estimate where the gaze is fixated. 

The eye tracking system recorded gaze data at 50Hz 

(accuracy = 0.5°, and spatial resolution = 0.25°) as a learner 

watches an integrated 17 inch monitor with a resolution of 

1280 x 1024 pixels.    
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Procedure  

Infants sat in a parent’s lap 60 cm from the 17’’ computer 

monitor used to present the stimuli. Before the experiment a 

calibration procedure was carried out. In preparation for the 

calibration the experimenter adjusted the eye tracker to 

make sure that the reflections of both eyes were centered in 

the camera’s field of view. We used a procedure including 

nine calibration points. The total duration of calibration 

procedure was about 3 minutes before the training trials 

start. Parents were instructed to look to the middle of the 

screen and not to interact with the child during the 

experiment. 

Data 

The eye tracker outputs (x,y) coordinates on the computer 

display of the visual presentation at the sampling rate of 

50Hz. There are in total 120 sec (4 sec/per trial x 30 trials) 

during training and 96 sec (8 sec/per trial x 12 trials) during 

testing. Therefore, there are 6,000 data points in training and 

4,800 data points in testing, if the eye tracker works 

perfectly. In practice, the tracking system occasionally 

failed to detect the subject’s eye gaze either because the 

subject’s head and gaze moved outside of the tracking 

plane, or the eye tracker could not correctly infer the 

subject’s eye movements for some other reasons.  For the 12 

infants with good tracking results, the average tracking 

success is 76% in training and 71% in testing. Thus, on 

average, we collected 4,560 data points in training and 

3,408 data points in testing per subject, which are used in 

the following data analysis and modeling.  

Behavioral Results 
Infants were presented with 30 training trials (two words 

and two objects) and then 12 test trials in which one target 

word was played and two objects (the correct referent and 

the distractor) were displayed.  Infants’ preferential looking 

on such test trials is used as a common measure of language 

comprehension in that infants systematically look at the 

portion of the display that corresponds to what they are 

hearing and this was the behavioral measure of learning 

used by Smith & Yu (2008).  Accordingly, the first question 

we addressed was whether this study replicated the previous 

result: did infants during the test trials look longer at the 

correct referent for the heard word than the distractor?  The 

answer is “yes,” t(11) = 3.28, p < .01; thus, this study 

replicates the earlier finding that very young word learners 

can learn word-referent pairings from individually 

ambiguous learning experiences by combining the 

information across those experiences. The main purpose of 

this study, however, is to examine the relation between 

looking on the training trials and learning on the test trials. 

To this end, we first present a simple associative model that 

takes the micro-structure of the eye-tracking data during 

training as input and predicts individual performance on the 

test trials. 

 
Figure 2: A 6 x 6 association matrix built based on the synchrony 

between a subject’s eye movements and spoken words during 

training. Each cell represents the association probability of a word-

object pair. The diagonal items are correct associations and other 

non-diagonal items are spurious correlation. Dark means low 

probabilities and white means high probabilities.  

 

The Model 
The model is conceptually very simple. An associative 

learning mechanism strengthens the link between a word 

and a referent if these two co-occur regularly across 

multiple trials and weakens the link if the word and the 

referent do not co-occur. In the current experiment, infants 

were exposed to 6 words and 6 pictures in total. Therefore, a 

6 by 6 association matrix shown in Figure 2 is used in 

modeling as a representation of all the possible associations 

that a learner may keep track of. In such an association 

matrix, each cell corresponds to a particular word-referent 

association. The diagonal cells are the 6 correct pairings 

while non-diagonal cells represent spurious correlations due 

to the ambiguity inherent in training trials. The association 

probability of each cell is updated trial by trial in real-time 

learning. Given such an association matrix built through 

training, the learner can make a decision during testing 

simply by looking at the referent more strongly associated 

referent with a tested word. In this way, a successful learner 

would be one who built a matrix in which most diagonal 

items were assigned with higher probabilities than those in 

non-diagonal cells. In contrast, an unsuccessful learner 

would be one who accumulated strong but wrong 

associations between words and referents, those not on the 

diagonal.  Thus the critical issue for learning is the specific 

associations that are accumulated over trials.  A 

nonselective (ideal) learner would just keep track of 

everything.  However, the more psychologically correct 

model may be one based on more selective attention and on 

attention that reflects current knowledge.  Indeed, the very 

method of preferential looking to sights that correspond to 

heard words assumes that attention is so guided by 

knowledge.   

To examine these possibilities, we suggest that the 

association matrix can be accumulated trial by trial as 

follows: 

������ �
� � 1
� ����� � 1� 


1
�
����������
∑ �����������

 

t is the trial number, and ������ refers to the association 

probability of the object i and the word j at the tth trial. 

Thus, ������ corresponds to one cell in the association 
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matrix which is composed of two weighted parts. The first 

part ����� � 1� reflects the accumulated association 

probability so far until the (t-1)th trial that is carried over to 

the current trial. The second part (with two variables ������ 
and ����) updates the previous association probability based 

on a learner’s eye movement in the current trial. More 

specially, we suggest that the dynamics of a learner’s eye 

movements may reflect in two ways the learner’s internal 

state during the current trial. First, rapid shifts of visual 

attention between possible objects after hearing a word may 

reflect the learner’s uncertainty (that is, the lack of one 

stronger and one weaker association).  In brief, we expect 

that the learner is more likely to consistently fixate on the 

corresponding referent to the degree that it is strongly 

associated with the target word; this is, again, the very basis 

of using preferential looking to measure word knowledge. 

This principle is encoded by ���� that measures the overall 

degree of uncertainty in the tth learning trial from individual 

learners’ perspective. Second, the multimodal synchrony 

between eye movements and spoken words may indicate the 

strength of the registration of a certain word-referent 

pairing, and the duration of such synchronized behaviours 

may indicate how strong that word-referent association is in 

the learner’s association matrix. This observation is 

captured by ������ that measures the possible association 

between a word i and an object j at the current trial based on 

eye movements. In the following, we explain exactly how to 

estimate ���� and ������.  
We first computed eye fixations from raw eye movement 

data and converted the continuous gaze data stream into a 

set of eye fixations marked by the onset and ending 

timestamps of each fixation. Next, we segmented the whole 

set of eye fixations into individual trials by aligning eye 

fixations with the timing of training trials. Within each 

learning trial, there are multiple eye fixations on the two 

objects on the computer screen that occur as the two words 

are sequentially presented. Assume that there are L fixations 

���,��,��,… , ��� in the tth learning trial. For a fixation ��, 
����� is the object that was fixated on, ����� is the spoken 

word that the subject heard right before or during the 

fixation, and ����� is the fixation time. As shown in Figure 

3, all of the eye fixations generated between the 200 ms 

after the onset of a spoken word and the onset of the next 

spoken word (or the end of the current trial) are assigned to 

be associated with that spoken word.  

 ����, as an indicator of the learner’s uncertainty in the 

current trial, can be encoded as how frequently the learner 

moves his eyes between those objects after hearing a word. 

Therefore, we use the entropy of a sequence of eye fixations  

within the trial as a metric to characterize this factor: 

���� � � �����
∑����� ���

1
�����/∑�����

�

� �
 

where L is the total number of eye fixations within the tth 

trial.  

Moreover, the second variable ������ measures the 

possible association between a word and an object, which is 

composed of two parts. The first part estimates the 

probability of associating an object to a particular word 

based on the amount of time of looking at that object 

(compared with other objects) after hearing that word. 

Given multiple candidate objects, how likely is a heard 

word associated with each object. The second part estimates 

the probability based on comparing the looking time to the 

same object cross several spoken words. Given multiple 

candidate words, how likely is an object associated with 

each word. Formally, ������ can be represented as follows:  

������ �
∑ !"#, �����$�����!"%, �����$�� �

∑ !"#, �����$������� �


 ∑ !"#, �����$�����!"%, �����$�� �
∑ !"%, �����$������� �

 

where ! is the Kronecker delta function, equal to one when 

both of its arguments are the same and equal to zero 

otherwise. Thus, the denominator of the two parts is the 

same that accumulates the amount of fixations ( T(fm), etc.) 

on a certain object j (v(fm) == i) after hearing a certain word 

j (w(fm) == j).  The numerator in each part just normalizes 

the above denominator either cross all the words or cross all 

the objects respectively. Thus, a learner’s visual attention in 

statistical learning is directly encoded in the association 

matrix the model built. Since individual infants generated 

different eye fixation sequences, the model builds different 

association matrices accordingly based on different inputs.  

Results  

Figure 2 shows an example of an association matrix built 

based on a learner’s eye movements. In this example, some 

strong associations are correct (e.g., the word manu with the 

Figure 3: we measure where the learner is fixating on after 

hearing a spoken word. For example, after hearing the word 

“bosa”, there are 4 eye fixations on both left and right objects. 

Those fixations (and corresponding fixed objects) are associated 

with the word “bosa”. The strength of the association between 

an object (left or right) and the word “bosa” is determined by the 

overall duration of fixations on that particular object. 
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object manu) and others are not (e.g., the word colat with 

the object regli). Two measurements are used to evaluate 

whether the associative model based on eye movements can 

predict individual differences in statistical learning. First, 

we correlate the prediction of the number of learned words 

from the model with the number of learned words for each  

individual learner. There is a strong correlation between 

these two (p=0.71). Second, we also found the correlation 

between the proportion of diagonal cells (the strength of 

correct word-referent associations) in an association matrix 

with the proportion of looking time (the degree of the 

preference to look) at the correct referents during testing 

(p=0.65).  Figure 4 shows the correlation between the 

model’s prediction and the results from the empirical study. 

The four example association matrices built based on young 

learners’ eye movements are quite different. Most diagonal 

items (correct word-referent associations) in the top 

association matrix are highlighted while the association 

probabilities between words and referents are more 

distributed in the bottom matrix. Critically, those matrices 

are built based on the same associative learning mechanism 

but with different eye movement data generated by subjects 

in real-time training. Thus, individual differences in this 

statistical learning task may be due to what infants attend to 

moment by moment while they all apply the same learning 

strategy.  

General Discussion  
For any learning mechanism to acquire knowledge from 

multiples instances separated in time, it needs to possess at 

least the following two components.  

   The first is information selection.  The mechanism needs 

to accumulate data over multiple learning experiences. One 

option is to store nonselectively.  If a learner did this, even 

if the learner randomly sampled the available co-

occurrences, they would in the long run converge on an 

accurate representation of the regularities in the world.  

However, human learners’ attention is unlikely to be 

random and, as shown here in infants, is guided by what 

they already know.  This means that statistical learning will 

dynamically build on itself with each co-occurrence 

attended to influencing the probability (if it should occur 

again) that it will be attended to again. This kind of a system 

may both protect old learning and smartly direct attention to 

nonspurious co-occurrences. This first step of statistical 

learning from ambiguous contexts can play an important 

role in the following learning by selecting the right 

information and filter irrelevant data.  However, not 

attending to the right co-occurrences could – at least 

temporarily – distort learning, sending it down the wrong 

path.   

        The second component of statistical learning is the 

learning mechanism itself.  What kind of “computation” is 

used to evaluate the accrued data? The learning mechanism 

– as demonstrated here – could be as simple as associative 

learning that memorizes and keeps track of word-referent 

co-occurrences, or it could be as complicated as Bayesian 

graphical models using probabilistic inferences (Tenebaum 

& Xu, 2000). Moreover, the representation of learning 

results can be as straightforward as an association matrix or 

as complicated as relational hierarchical structures.  

          The present results suggest that infant cross-trial 

learning of word-referent correspondences can be explained 

by a simple learning mechanism coupled to selective 

attention. This contrasts with the more common approach to 

statistical learning which assumes sophisticated and 

powerful learning algorithms operating on messy data and 

most often running in a batch mode (e.g. Tenenbaum, etc.). 

Although these two accounts may be formally treated as 

variants of the same learning framework (Yu, Smith, Klein, 

& Shiffrin, 2007), a closer look also reveals the differences 

between two. An associative learning mechanism with real-

time attention treats the learning process as a dynamical 

system and focuses on how the learning system may 

actively select the input based on real-time feedbacks from 

the current learning states and by doing so remove a 

significant amount of uncertainty from the data to facilitate 

the following processing. In contrast, the batch mode 

learning most often assumes that the learners perceive 

unprocessed ambiguous data to start with and then rely on 

the powerful learning machinery to infer meaningful 

knowledge. The first approach offers a potentially deeper 

and useful understanding of how learning progresses, how 

to promote, and how and why some learners are more 

effective than others.  

  In the long run, we need models and theories of learning 

that explain both information selection (as it dynamically 

happens in real-time learning) and also the learning 

mechanism itself.  The present work is built upon the recent 

work in statistical word learning (Smith & Yu, 2008). 

Nonetheless, we go beyond demonstrating behavorial results 

and instead provide new insights into the underlying 

learning mechanisms. We do this by studying infants’ 

attention during the course of learning, attention that is itself 

guided by learning.  To achieve this goal, the current work 

Figure 4: the comparison of predicted results from the 

associative model and the actual results of human 

learners indicates a strong correlation between these two.  
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is motivated by and takes advantage of three recent 

advances in cognitive science and psychology: (1) 

developmental psychology: using eye tracking techniques to 

measure moment-by-moment eye movement data from 

infants (Aslin & McMurray, 2006); (2) psycholinguistics: 

measuring the synchrony between visual attention and 

speech -- what are visually attended and what are heard 

(Tenanhaus, et al., 1999); and (3) computer science: 

modeling the learning mechanisms using computational 

techniques (Yu, Ballard, & Aslin, 2005).  The work 

represents the first attempts to use momentary eye 

movement data as input to a computational model and by 

doing so to understand word learning processes. Indeed, our 

present results already suggest two important aspects in 

cross-situational learning. First, the results show that a 

simple associative learning mechanism can indeed work 

effectively and efficiently if the learner selectively registers 

the right statistical information at every moment. Second, 

different results from different learners may simply due to 

the fact that they attend to and select different statistical 

information encoded in the same training trials. Both 

observations are critical to understanding statistical learning 

processes. Here we show that eye movements can be used a 

window to infer the statistical learner’s internal state, which 

allows us to ask in the future work how selective attention 

works in real-time learning. More specially, a generative 

dynamic model of selection attention can be integrated with 

the associative learning model here to provide a more 

complete picture of the underlying mechanisms.  
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