
UC Irvine
ICS Technical Reports

Title
A denial of service attack on the Java bytecode verifier

Permalink
https://escholarship.org/uc/item/3rt0n0q2

Authors
Gal, Andreas
Probst, Christian W.
Franz, Michael

Publication Date
2003-11-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rt0n0q2
https://escholarship.org
http://www.cdlib.org/

A Denial of Service Attack on the Java Bytecode Verifier

Andreas Gal Christian W. Probst

Technical Report 03-23
School of Information and Computer Science

University of California, Irvine, CA 92697-3425

November 17, 2003

Notice: This Material.
may be protected
by Copyright Law
(Title 17 U.S.C.)

Abstract

Michael Franz

Java Bytecode Verification was so far mostly approached from a correctness perspective.
Security vulnerabilities have been found repeatedly and were corrected shortly thereafter.
However, correctness is not the only potential point of failure in the verifier idea. In this paper we
construct Java code, which is correct, but requires an excessive amount of time to prove safety.
In contrast to previous flaws in the bytecode verifier, the enabling property for this exploit lies
in the verification algorithm itself and not in the implementation and is thus not easily fixable.
We explain how this architectural weakness could be exploited for denial-of-service attacks on
JVM-based services and devices.

A Denial of Service Attack on the Java Bytecode
Verifier*

Andreas Gal Christian W. Probst Michael Franz
gal@uci.edu cprobst@uci.edu franz@uci.edu

Department of Computer Science
University of California, Irvine

Irvine, CA 92697-3425

October 17, 2003

Abstract

Java Bytecode Verification was so far mostly approached from a correctness
perspective. Security vulnerabilities have been found repeatedly and were cor
rected shortly thereafter. However, correctness is not the only potential point of
failure in the verifier idea. In this paper we construct Java code, which is correct,
but requires an excessive amount of time to prove safety. In contrast to previous
flaws in the bytecode verifier, the enabling property for this exploit lies in the
verification algorithm itself and not in the implementation and is thus not easily
fixable. We explain how this architectural weakness could be exploited for denial
of-service attacks on JVM-based services and devices.

1 Motivation

The bytecode verifier is an integral component of the Java Virtual Machine (JVM) [7].
Java bytecode verification is based on the idea of data flow analysis (DFA). The abstrac
tions of values and their types are tracked along the edges of the control flow graph and
the verifier checks that no rules of the type system are violated. Most JVM vendors use
the verifier implementation provided by Sun Microsystems, because the verifier is a key
factor in terms of security. Even minor engineering mistakes can compromise safety.
Instead of having to worry about such engineering mistakes, most JVM implementors
prefer to trust the original Sun code. However, even those JVMs that do not use the
code from Sun verbatim, e.g. [1, 5], use in principle the same data flow algorithm to
perform the verification.

*Parts of this effort are sponsored by the Office of Naval Research under grant N00014-01-1-0854. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors
and should not be interpreted as necessarily representing the official views, policies or endorsements, either
expressed or implied, of the Office of Naval Research (ONR) or any other agency of the U.S. Government.

1

n cO

2 JAVA BYTECODE VERIFICATION 2

1: to do ~ true
2: while todo = true do
3: todo ~false
4: for all i in all instructions of a method do
5: if i was changed then
6: todo ~ true
7: check whether stack and local variable types match definition of i
8: calculate new state after i
9: for alls in all successor instructions of i do

10: if current state for s =f. new state derived from i then
11: assume state after i as new entry state for s
12: mark s as changed
13: end if
14: end for
15: end if
16: end for
17: end while

Figure 1: The standard verification algorithm found in Sun Microsystem' s JVM
implementations.

B ytecode verification by data flow analysis is an established and widely deployed
approach. For average Java programs, verification seems to be a minor factor in
terms of CPU time. For shorter programs it seems to be somewhat quicker; for larger
programs it seems to take somewhat longer. Java developers and users just take for
granted that the verifier scales in some acceptable fashion with the program size. This
assumption, as we will show in the course of this paper, is completely unsubstantiated.
We will demonstrate that the perception of linear scaling of the JVM verifier is not only
wrong, but malicious programs can be constructed which can keep the verifier busy for
so long as to constitute a denial-of-service attack. This has grave consequences when
using Java in mobile code environments like applets and agent-based systems. The
effect may be even worse if a server virtual machine is attacked, where there is no user
who may kill and restart the VM.

The remainder of this paper is organized as follows. In Section 2 we will analyze
the Java bytecode verification algorithm and attempt to construct worst-case scenarios
as far as completion time and resource consumption is concerned. Section 3 contains
verification time benchmarks for the code examples constructed in the previous sec
tion, and in Section 4 we discuss existing and possible future countermeasures to the
described denial-of-service attack scenario. Section 5 contains our conclusions and
Section 6 outlines our plans for future work in this area.

2 Java Bytecode Verification

This section gives an overview of the Java bytecode verification algorithm. As
already pointed out, the whole security concept of the JVM is centered around verifi-

2 JAVA BYTECODE VERIFICATION 3

cation. The bytecode verifier [11, 4] checks a piece of code for type consistency and
some other properties. Leroy [6] lists the least conditions for bytecode to be accepted
by the verifier:

• Type correctness. Bytecode instructions are typed and must receive arguments
of corresponding types.

• No stack overflow or underflow. A method must never pop a value from the
empty stack or push a value onto the maximal stack specified for that method.

• Code containment. The program counter must always stay within the code limits
of the currently active method and must always point to the beginning of a valid
instruction.

• Local variable initialization. No variable may be loaded that has not been initial
ized first.

• Object initialization. Whenever an object of a class C is created, one of the class'
constructors must be called.

One possibility to ensure that bytecode obeys to all these restrictions is to check
them dynamically at runtime [3]. However, this is expensive and is not advisable since
it slows down execution significantly.

In order to eliminate runtime checks, Gosling and Yellin introduced bytecode verifi
cation [13, 7], where properties are checked statically before execution. The verifier is
actually a data flow analyzer that verifies that the code satisfies the requirements listed
above.

In order to check type correctness, the bytecode verifier contains an abstract inter
preter, which executes the instructions on types instead of values. Therefore, all actual
values in the program are abstracted by their type. Usually, the program's class types
are presented as a graph, where the nodes are types and the edges represent sub-typing
relations. Figure 2 and Figure 3 show an example program and the associated type
graph.

The data flow algorithm used in Sun's implementation of bytecode verification is
shown in Figure 1. This algorithm can be found, among others, in the CVM [9] and the
Hotspot virtual machine [8]. The algorithm is performed separately for every method in
the Java program. For each method, it iterates over all instructions of that method until
no more operand type changes.are observed. For each instruction i, the verifier checks
whetper the abstract data associated with i has changed. If so, it checks whether the
current abstract local variable and stack content allows the execution of i and computes
the new local variable and stack content. Finally, this new abstract state is propagated
to all successors of i.

The analysis of straight-line code is inexpensive, since the abstract interpreter only
needs to propagate type information through the instructions and to compute the ab
stract stack state after each instruction. Figure 4 shows the computed stack and local
variable states for method main in the example program after 7 selected instructions.
The first part of the example code in Figure 2 is simple to verify. From (1) to (4} the
code is simply executed at the symbolic level using types instead of values.

2 JAVA BYTECODE VERIFICATION

class A {
void m() {

}
}
class B extends A {

void m() {

}
}
class C extends A {

void m() {

}
}

class App {
void main () {

/*l*/ iconst 1
/*2*/ istore 1

iload 1
iconst 1
iadd

/*3*/ istore 2
iload 2

/*4*/ iconst 2
iLicmple goto L1
new B
dup
invokespecial BIB()

/*5*/ astore 3
goto L2

Ll:
new C
dup ·
invokespecial CIC()

/*6*/ astore 3
L2:

aload 3
/*7*/ invokevirtual Alm()

}
}

4

Figure 2: Example Java program in bytecode form. The main method first stores some
integer values into local variables and then instantiates one object of type B and one
object of type C. In two different control flow paths, B and C are stored in the same
local variable location.

2 JAVA BYTECODE VERIFICATION 5

Figure 3: The example type graph

The runtime of such a data flow analysis is significantly increased if the code
contains jumps, exception handlers, and subroutines, which introduce forks and joins in
the control-flow graph. When separate control flows are merged together, an instruction
may have several predecessors with different abstract stack or variable types. In the
example in Figure 2, the call to the method m based on local variable 3 may be called
on either a B or a c object. The verifier adapts the abstract type of the variable slot
containing either B or c to be the smallest common ancestor of the two classes in the
type graph (A). After merging the state information, the data flow analysis has to be
repeated for all instructions which are reachable from this point in the control flow of
the method. For simplicity, the Java verifier repeats the entire data flow analysis for
every instruction of a method every time there is a change.

For average Java programs, the verifier algorithm quickly reaches a fixed point after
only a few iterations. It is obvious, that-in theory-, the Java verifier could need up ton
iterations over the method, with n being the number of instructions in the method. As
for each iteratio~ all instructions have to be visited, the overall complexity is O(n2).

However, such quadratic runtime behavior does not only exist in theory. We will
show in the remainder of this section, how simple Java programs can be constructed
which expose the worst case scenario in practice.

Studying the pseudo code of the verifier algorithm in Figure I reveals that newly
learned type information is immediately available for downstream instructions, but can
be propagated upstream only during the next iteration of the DFA. This property is
given by the order in which the algorithm iterates over the instructions in each method.
Once an instruction was visited for a particular iteration, it will not be visited again,
even if new information about the operand types of that instruction was learned.

Thus, if we manage to order N instructions in such a way that each depends on
the completion of the verification of the successor instruction, we effectively force the
verifier to repeat the data flow analysis N times.

Consider the Java bytecode in Figure 5. The right hand part of Figure 5 shows
several stages during verification. Column S depicts the computed type for the topmost
stack cell, column S shows the computed type for the local variable with index I

2 JAVA BYTECODE VERIFICATION

Stack Abstractions

r ·~'ti f:C}'I ~ c1)

lt;~-~;,;I l>I\;··tl ~ c2)

(3)

(4)

(5)

(6)

(7)

Variable Abstractions

1 2 3

Figure 4: The stack and variable states for method main

(LVI).

6

At the entry point of the method, an integer constant is loaded into (LVI) and the
control is transfered to LO. The vei:ifier will actually not follow the branch instruction
to the target, but continue to check instructions in sequence. Once reaching LO, the ver
ifier remembers that LO was already the target of a jump instruction with type (L VI) =
integer. The first two instruction after LO constitute a conditional branch. While the
branch is actually statically predictable in this example, the verifier does not perform
value folding and thus considers the ifeq instruction as conditional. The verifier records
that this ifeq could transfer the control flow to LI with type(LVI) = integer. The
aconstnull instruction following the unconditional branch loads a null value onto the
stack, which is then stored in LVl. Thus, LVI holds a value of type reference. The
unconditional goto at the end of this code block transfers control back to LO.

During the next iteration the verifier will verify LI assuming type(LVI) = integer.
As the verifier hits LO again, it will invalidate the previous assumption type(L VI) =
integer, because it now knows that LO can be reached from two points in the program.
LO is actually a merge point for control flows. It can be reached from the unconditional
goto at the method entry with type(LVI) = integer, but also from the end of the LO
basic block with type(LVI) =reference. Thus, the correct type for LVI is nil, which
indicates that the value is not accessible at this point because its type depends on which
path was taken to get to LO.

This discovery also affects the LI basic block, which was previously assumed to be
entered with type(LVI) =integer only. Now it can be entered with LV =nil as well.
The verifier has thus to iterate over the code again to correct the wrong assumptions
previously made for Ll. This process is repeated until all basic blocks are verified and
the fixed point is reached. ·

3 BENCHMARKS

iconst_O
istore_l
goto_wLO

(

1:
iconst_O
ifeqL
aconst_null
astore_l.
gotoLl

(

0:
iconst_O
ifeq L1
aconst_null
astore_l
goto LO

SV SV SY SV

m. ~.T• I µ+J.r I ~ D±1 Lili [ttj 0±1
EIJ ITJ ED

11 .. · I .. ; .. I 1········.I···. A

· I . : A

A I A A
: A ···A

A .A

IIA IIA :·A ···.A

.
· .. A .. · A .··"··A.~ A , .. A •A

·.··A ·A

7

Figure 5: Java bytecode program, which takes n iterations to be verified using the
standard DFA verifier approach. The entry state for each basic block depends on the
successor basic block. To the right the stack and local variable states are displayed for
each iteration of the DFA.

The number of basic blocks arranged in this fashion determines how often the
verifier has to iterate over the code. For N basic blocks the verifier will have to iterate
at least N times over the code, because the length of the longest path information has
to flow along backwards is N.

To achieve an even greater slowdown, the loading of the null constant into L Vl
can be performed in a subroutine which is called from every basic block using the
j sr instruction (Figure 6). While not increasing .the theoretical complexity of the
verification, the practical verification time is indeed significantly higher as we will see
in the benchmarks in the following section.

To evaluate the worst case efficiency of the Java bytecode verifier, in the following
section we will run the verifier on Java methods containing code constructed using the
control flow pattern presented in this section.

3 Benchmarks

We have benchmarked the verification time for the two example programs presented
in the previous section using the Sun Microsystems Java 2 HotSpot Client VM1• As
we have mentioned above, not all JVM implementors are using exactly the verifier
implementation offered by Sun. We have repeated our tests with a number of JVMs
from other vendors. While slight performance advantages or disadvantages can be

1 Java 2 SE Runtime Environment (build l.4.L02-b06), Java HotSpot Client VM (build l.4. l.02-b06,
mixed mode), running on a Dell Dimension 8250, 2.53GHz P4, 512MB RAM, RedHat Linux 9.

3 BENCHMARKS

iconst_O
istore_l
goto_w LO

R:
astore_2
aconst_null
astore_l
ret 2

8

Figure 6: To increase the amount of work the verifier has to perform in each iteration,
the access to the local variable is outsourced into a subroutine. Each basic block calls
the subroutine using the j s r instruction.

observed, ·we are not aware of any verifier implementation which does not expose
quadratic runtime behavior for the discussed test cases.

Figure 7 shows the verification time for a single method containing bytecode with
increasing maximum data flow path length N. This time includes only the time it
takes the verifier to prove safety. The code is never actually executed or compiled to
executable code. The first curve shows the for verification time for the basic example
shown in Figure 5. The second curve in the graph shows the maximum flow path
problem with an added subroutine call in each code block. Both curves clearly show
quadratic growth. The second curve grows much faster than· the basic example due
to the poor implementation of the verifier. The increased steepness is not caused by
a symptomatic problem. We have merely included this second curve to make the
quadratic behavior more visible.

All measurements were taken on a 2.53 GHz P4 running Linux and the Sun HotSpot
VM 1.41. The maximum verification time we observed on this machine for a single
method was approximately 40 seconds. The maximum basic block count N we could
reach was N = 7280 for the simplified scenario and N = 5460 for the test case with
subroutine calls. This stems from the 65,536 bytes limit for method code in the NM.
To achieve even longer verification times, an attacker could hide more than just one
of these methods in the code. Just including 20 methods instead of one would already
increase the verification time to approximately 15 minutes on a 2.54 GHz P4.

The standard JAR archive format used by Java can be used to drastically reduce
the apparent size of the malicious code. But not only method repetitions can be
compressed well using this approach. The code patterns used in the presented scenarios

3 BENCHMARKS 9

X worst case data flow
30 * wofst case data flow with subroutine calls

$ --a.x+bx .. .
-c 25LLl L............................. ·······+·······

i 20 L L 11 '. ;

I :: : E::3~~r~;~,~--l---:-_-1:-1:::••F
0

0 10000 20000 30000 40000 50000 60000
method size (bytes)

Figure 7: Verification time for verifying a single method containing a worst-case data
flow scenario. The x-axis indicates the length of the method bytecode in bytes, which
is proportional to the number of basic blocks N used to construct the code. The second
curve .shows the verification time for the worse-case data flow scenario with one added
subroutine call per control flow merge. The arrows indicate for comparison purposes
the code size for the maximum path length N = 3000 for each of the examples.

lend themselves for compression due to their very regular structure. Figure 8 indicates
the compressed size for different problem lengths N for each of the two approaches.
The basic scenario can be compressed much denser using the standard JAR algorithm,
because each block consists at the bytecode level of exactly the same instructions. This
is guaranteed because Java uses relative addressing for jump instructions. The branch
instructions in each block thus use the same relative offset over and over again.

For the scenario using subroutine calls, this feature of the JVM is less favorable.
The subroutine invocation has to reference the same subroutine location from different
program counter locations, creating a different offset for each subroutine call instruc
tion.

To demonstrate the practical impact of the shortcoming of the JVM verification
discussed in this paper, we have set up a website containing a Java applet, which is
automatically .executed when the browser displays the website:

http://nil.ics.uci.edu/-gal/usenixvm

The applet (time. class) loads a second class file (paralyse. class) using
the Java Class. forName () API call and measures the time it takes the JVM to load
the requested class. Both class files reside in a JAR archive. The size of the JAR archive
is less than 3kB. On our test machines the execution time for the applet ranged from
minutes to hours, depending on the machine and JVM used. Readers are welcome to
try this experiment on their own machine.

Short of disabling Java applets, the user cannot prevent or interrupt the loading
of this applet. In fact, many browser do· not even allow the user to interrupt the
verification, because the browser implementor never considered the verification time

4 COUNTERMEASURES

en
(!)

>.
B
(!)
N
"iii
(!)
> :c
f2
«!

a:
<(
-:i

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0
0 10000 20000 30000 40000 50000 60000

method size (bytes)

10

Figure 8: Compression of constructed code examples using the standard JAR archive
format. The basic scenario is extremely well compressible as it basically repeats
identical code patterns. The example code including a subroutine call per block suffers
from the relative addressing used for the subroutine call instruction.

to be long enough for the user to ask for termination of it. Other browsers, including
some versions of the Microsoft Internet Explorer, allow the verifier to continue the
verification silently and continue to hog the CPU in the background if the user leaves a
website containing an applet which takes an excessive amount of time to verify.

4 Countermeasures

In contrast to security flaws previously discovered in the NM [2], the enabling property
for this vulnerability of the NM verifier is an inherent property of the algorithm used
and not merely some faulty code, that. could be exchanged.

Rewriting the verifier algorithm to iterate over the code in some other order, or the
introduction of a work list algorithm, would not significantly improve the situation.
Each of these algorithms would still expose quadratic runtime behavior for some worst
case code scenarios.

However, a number of mitigating factors exist. First, current NMs limit the code
size per method to 65 ,536 bytes. On high-end desktop systems this limits the maximum
verification time we were able to achieve using a single method to approximately 40s.
This (probably accidental) ceiling prevents the construction of worst case scenarios
with near-infinite verification time.

Further shortening the maximum method length of Java methods is not an option,
since long Java methods are not uncommon. Some compilers emitting Java bytecode
generate even very long methods. This includes some XML transformation tools and
parser generators. In contrary, it would be not surprising if Sun decides to remove the
current code size limitation in future versions of the Java Virtual Machine.

It seems unlikely that one could establish a clear set of rules to detect this class

5 CONCLUSIONS 11

of malicious programs. Just rejecting a program because it takes more than a certain
number of iterations to verify would be arbitrary. On the other hand, trying to detect
patterns such as described in this paper would not eliminate the problem as more
complex and less obvious example can be easily constructed.

The verification time can be increased by shipping a large number of malicious
methods to the verifier. While this increases the verification time only by a linear factor,
in conjunction with compressed archives (JAR) verification times in the magnitude of
minutes and hours are achievable. The corresponding JAR archive would still be only
a few kilobytes in size. Detecting this exploit is easier than the single method approach
exploit. For agent-based systems or applets restricting the overall code volume is
probably acceptable. With such code size restrictions the verification time could be
limited as well.

Adding resource monitoring to the verification process could be used to counter this
attack. However, bytecode verification is deeply embedded into the JVM. Introducing
the possibility to abort a running verification from the outside would require invasive
changes to JVM implementations. As all approaches previously suggested in this
section, resource monitoring introduces arbitrary abort conditions for the verifier and
might prevent an important and desirable Java applet or agent to run just because it
takes longer than expected to verify the code.

Instead of performing the expensive DFA on the code consumer side, it has been
proposed to supply the code consumer already with the fixed point of the DFA. The
consumer has then only to check whether the supplied fixed point indeed suffices
the data flow equations, which can be done in linear time. The K Virtual Machine
(KVM) (12] annotates the JVM code with stack maps for every point reached by a
branch or exception to achieve this effect. This annotation can be understood as a
very specific case of the more generic proof carrying code (10] approach, where a
proof generator performs the computational intensive generation of proof which is
transmitted in form a of certificate to the proof checker. The proof checker in tum
is able to verify the validity of the code using the certificate in linear time. It is unclear
whether Sun will adopt the mechanisms found in the KVM into the general purpose
Java VMs. Adding such annotations would break backward compatibility. If not at the
class file format level, at least because class files without such an annotation could be
rejected in some instances, for example it takes an excessive amount of work to verify
them. On the other hand, any such annotation also takes up additional space in the class
file, which is not always desirable.

Finally, one could attempt to find a middle course between proof carrying code
and the DFA-based Java verifier by changing the Java bytecode representation or the
verification algorithm. We outline some of our plans for future work in this area in
Section 6.

5 Conclusions

In this paper we have shown that the perceived average case verification times of the
Java bytecode verifier do not translate automatically to all correct Java programs. By
carefully analyzing the data flow algorithm underlying the Java verification approach,

6 FUTURE WORK 12

in Section 2 we successfully constructed a correct Java program, which is very hard
to prove correct. Even on high-end desktop systems the verification of a such Java
methods can require seconds, minutes, or even hours (Section 3). We have discussed
how this vulnerability of the JVM can be exploited for denial-of-service attacks. In Sec
tion 4 we addressed some possible countermeasures to such denial-of-service attacks
and argued that this exploit is hard to counter without accepting the randomrejection of
non-malicious programs. From a more general perspective, this vulnerability demon
strates the need for not only correct but also efficient algorithms when dealing with
mobile code. This is not necessarily restricted to the verification problem. If inefficient
algorithms are used during dynamic code generation or optimization, similar exploits
could be constructed.

6 Future Work

The proof carrying code approach has proven itself to be very useful in many domains.
However, it requires to ship a certificate with the code, which would enlarge the class
files. We are currently exploring a middle course between proof carrying code and the
established Java bytecode verification algorithm. We call this approach well-forming.
Well-forming is based on the observation that certain safety requirements in the Java
bytecode language are hard to verify. For example, the verifier has to make sure that
local variables containing integer values are never read back as references. For this, the
verifier has to perform the expensive data flow analysis outlined in previous sections.
Instead, our approach introduces multiple local variable planes. Each type has its own
set of local variables, numbered from O .. n. Thus, an integer load instruction could
never reference a reference value and vice versa. Our observation is, that Java programs
can easily be transformed into safe programs using this and similar approaches. How
ever, this also means that our verifier accepts a class of Java programs whicli are unsafe.
Instead of rejecting them, they are transformed into safe programs. It can be argued
whether such a relaxation of the verification algorithm is acceptable or not. While it
would still. guarantee that only safe programs are executed, some programs might get
executed which would be rejected without execution by other JVM implementations.

References

[1] B. Alpern, C. R. Attansio, J. J. Baron, M. G. Burke, P. Cheng, J.-D. Choi,
A. Cocci, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. F. Mergen, T. Ngo, J. R. Russel, V. Sarkar, M. J. Serrano, J.C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapefio Virtual
Machine. IBM System Journal, 39(1), Feb. 2000.

[2] CERT Coordination Center, Carnegie Mellon University, http://www.cert.org.

[3] R. M. Cohen. The defensive Java Virtual Machine specification version 0.5.
Technical report, Computational Logic, Inc., May 1997.

