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MM ALGORITHMS FOR VARIANCE COMPONENT ESTIMATION 
AND SELECTION IN LOGISTIC LINEAR MIXED MODEL

Liuyi Hu1, Wenbin Lu1, Jin Zhou2, Hua Zhou3

1North Carolina State University

2University of Arizona

3University of California

Abstract

Logistic linear mixed models are widely used in experimental designs and genetic analyses of 

binary traits. Motivated by modern applications, we consider the case of many groups of random 

effects, where each group corresponds to a variance component. When the number of variance 

components is large, fitting a logistic linear mixed model is challenging. Thus, we develop two 

efficient and stable minorization–maximization (MM) algorithms for estimating variance 

components based on a Laplace approximation of the logistic model. One of these leads to a 

simple iterative soft-thresholding algorithm for variance component selection using the maximum 

penalized approximated likelihood. We demonstrate the variance component estimation and 

selection performance of our algorithms by means of simulation studies and an analysis of real 

data.

Key words and phrases

Generalized linear mixed model (GLMM); Laplace approximation; MM algorithm; variance 
components selection

1. Introduction

The generalized linear mixed model (GLMM) is an extension of the generalized linear 

model, incorporating random effects that account for heterogeneity among responses 

(McCulloch and Neuhaus (2001); Stroup (2012)). The GLMM is widely used in clustered, 

longitudinal, and panel data analyses (Zeger and Karim (1991); Breslow and Clayton 

(1993)). The logistic linear mixed model is a GLMM used for binary responses, and 
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yj ηj Bernoulli μj

μj = 1
1 + exp −ηj

,
(1.1)

for j = 1, …, n. Here, η = (η1, …, ηn)T takes the form

η = Xβ + Z1u1 + ⋯ + Zmum,

where X and Z = (Z1, …, Zm) are known predictor matrices, β is the coefficient vector for 

fixed effects, and ui N(0qi, σi2Iqi) are independent random effects. Because

η N Xβ, σ1
2Z1Z1

T + ⋯ + σm2 ZmZmT ,

we call σ1
2, …, σm2  variance components.

The logistic linear mixed model has been applied in agriculture, econometrics, biology, and 

genetics. Here, examples include using an analysis of variance (ANOVA) for dichotomous 

responses (Anderson and Aitkin (1985); Quené and Van den Bergh (2008)) and quantitative 

trait loci (QTL) mappings of binary traits (Yi and Xu (1999); Che and Xu (2012)). In the 

ANOVA, Zi denotes each factor or their interactions. In modern applications, the number of 

factors can be large, and the number of interaction terms increases quadratically with the 

number of factors. In QTL mapping, Zi corresponds to a gene region. The number of genes 

m is of order 102 ~ 103 in a typical genetic study. In Section 4 and 5, we discuss these two 

applications in further detail, as well as presenting an associated analysis using our proposed 

algorithms.

In general, direct maximization of the GLMM likelihood function is computationally 

intractable because it involves potentially high-dimensional integrals. Thus, existing 

methods involve various forms of approximations. The first class of methods uses numerical 

integration, such as Gaussian quadrature (Davidian and Gallant (1992)) and adaptive 

Gaussian quadrature (AGQ) (Pinheiro and Bates (1995)). These methods apply only to low-

dimensional integrals, and thus are limited to problems in which data form very small 

independent clusters. The second type of method employs Laplace approximation 

(Wolfinger (1993); Shun and McCullagh (1995)) or its variants, such as the penalized quasi-

likelihood (Breslow and Clayton (1993)) and the integrated nested Laplace approximation 

(Rue, Martino and Chopin (2009)). The third class of methods uses Monte Carlo methods to 

approximate either the original integral (Sung and Geyer (2007)) or the E step of the EM 

algorithm (Booth and Hobert (1999)). Pinheiro and Bates (1995) compare and discuss the 

penalized quasi-likelihood, the Laplace approximation, importance sampling, Gaussian 

quadrature, and AGQ. They conclude that the Laplace approximation and AGQ give the 

“best mix of efficiency and accuracy.” Thus, we propose algorithms based on the Laplace 

approximation of the log-likelihood function because AGQ is numerically infeasible for the 

ANOVA and genetic applications we consider here.
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Our primary interest is the estimation and selection of variance components. Several studies 

have proposed ways of selecting fixed effects in GLMMs (Groll and Tutz (2014); 

Schelldorfer, Meier and Bühlmann (2014)). However, for the selection of random effects, 

most procedures are developed in the framework of linear mixed models (Bondell, Krishna 

and Ghosh (2010); Ahn, Zhang and Lu (2012)) for quantitative responses. In contrast, few 

works discuss random effects selection in GLMMs. Ibrahim et al. (2011) develop a 

simultaneous fixed and random effects selection procedure based on the smoothly clipped 

absolute deviation (SCAD) and adaptive LASSO penalties using a Monte Carlo EM for 

general mixed models. Cai and Dunson (2006) propose a method for random effect selection 

in GLMMs within a Bayesian framework using a stochastic search MCMC algorithm. Pan 

and Huang (2014) propose using a backfitting algorithm to select effective random effects 

based on a penalized quasi-likelihood function. However, the above-mentioned studies all 

examine clustered data with repeated measurements on the subjects. They assume n 
independent subjects with observations (y1, X1, Z1), …, (yn, Xn, Zn) and

E yi Xi, Zi, bi = g ηi = g Xiβ + Zibi , (1.2)

where g(·) is some known link function, Xi and Zi are known matrices, and bi ~ Nq (0, D) is 

the random effect. Here, D is the unknown covariance matrix shared by the subjects that is to 

be estimated by maximizing some penalized likelihood. For example, Ibrahim et al. (2011) 

perform the penalization on the Cholesky decomposition of D, denoted as Γ, such that each 

row of Γ is either all not zero or all zero, and Pan and Huang (2014) penalize on positive 

elements proportional to the standard deviation of the random effects bi. We propose an 

algorithm for selecting random effects in which we shrink the variances of ineffective 

random effects toward zero based on the penalized likelihood defined in Section 3.3. There 

are two key differences between our variance component selection and those of previous 

works. First, model (1.2) is not the same as model (1.1) that we address in this study, even 

though they can both deal with clustered data and non-clustered data. Model (1.1) assumes 

that the random effects ui N(0qi, σi2Iqi) are independent. If we write model (1.1) in the 

framework of model (1.2), then the covariance in model (1.1) is diagonal with some equality 

constraints on the random effect variances, whereas the covarariance in model (1.2) can be 

any covariance matrix. Second, model (1.2) selects individual random effects, whereas 

model (1.1) is used to select groups of random effects, that is, the random effects in each ui 

are either all selected or none are selected. To the best of our knowledge, no studies 

investigate variance component selection using model (1.1).

Based on the minorization–maximization (MM) principle (Lange, Hunter and Yang (2000)), 

we propose two novel algorithms for variance component estimation under two different 

parameterizations of logistic linear mixed models. Then, we extend the algorithms to 

variance component selection by incorporating penalization. The first parameterization is 

efficient for estimating parameters without penalty, whereas the second easily generalizes to 

penalized estimation. Both algorithms are simple to implement and numerically stable. Our 

simulation studies and real-data analysis demonstrate that the proposed algorithms 

outperform the commonly used tools and are scalable to high-dimensional problems.
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2. Preliminaries

Throughout, we reserve Greek letters for parameters and indicate the current iteration 

number by a superscript t.

2.1. The MM principle

The MM principle (Lange, Hunter and Yang (2000); Hunter and Lange (2004)) for 

maximizing an objective function f(θ) involves two M-steps. The first M-step minorizes the 

objective function f(θ) by a surrogate function g(θ | θ(t)) at the current iterate θ(t). 

Minorization is a combination of a tangent condition f(θ(t)) = g(θ(t) | θ(t)) and a domination 

condition f(θ) ≥ g(θ | θ(t)), for θ ≠ θ(t). The second M-step is defined by the iterates:

θ(t + 1) = argmax
θ

g θ θ(t) . (2.1)

Because

f θ(t + 1) ≥ g θ(t + 1) θ(t) ≥ g θ(t) θ(t) = f θ(t) , (2.2)

the MM iterates satisfy the ascent property, which drives the objective function uphill and 

makes the MM algorithm remarkably stable.

Our derivation of the MM algorithms for variance component estimation and selection 

hinges on two minorizations.

2.2. Supporting hyperplane minorization

If f(θ) is convex and differentiable, then the supporting hyperplane

g(θ) = f θ(t) + ∇f θ(t) T θ − θ(t) (2.3)

is a minorization function of f(θ) at θ(t) (Hunter and Lange (2004)).

For symmetric matrices, we write A ⪯ B when B−A is positive semidefinite. A matrix-

valued function f is said to be (matrix) convex if

f λA + (1 − λ)B ≼ λf(A) + (1 − λ)f(B),

for all A, B, and λ ∈ [0, 1]. Because the negative log determinant function f(B) = − log det 

B is convex on the set of positive definite matrices (Boyd and Vandenberghe (2004)) and the 

supporting hyperplane of f(B) is

g(B) = f B(t) + ∇f B(t) T B − B(t)

= − logdetB(t) − tr B(t) −1 B − B(t) ,

the supporting hyperplane minorization described above yields the following inequality:
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−logdetB ≥ − logdetB(t) − tr B(t) −1 B − B(t) . (2.4)

2.3. Quadratic minorization

If a convex function f(θ) is twice differentiable and there exists a matrix M such that M ⪯ 
∇2f(θ) for all θ, then

g(θ) = f θ(t) + ∇f θ(t) T θ − θ(t) + 1
2 θ − θ(t) TM θ − θ(t)

(2.5)

is a minorization function of f(θ) at θ(t) Hunter and Lange (2004).

3. Algorithms for Estimation

3.1. Model formulation 1

The likelihood for model (1.1) is

L(β, σ) = ∫ exp ℎ u β, σ2 du, (3.1)

where σ = (σ1, …, σm)T, with σi ≥ 0 for i = 1, …, m, σ2 = σ1
2, …, σm2

T
, and the complete 

log-likelihood is

ℎ u β, σ2 = ∑
j

yjηj − ln 1 + eηj − 1
2 ∑

i = 1

m
qilnσi2 +

ui 2
2

σi2

= ∑
j

yjηj − ln 1 + eηj − 1
2 ∑

i = 1

m ui 2
2

σi2
+ termswithoutui .

Direct optimization of the likelihood defined in (3.1) is computationally challenging because 

of the integral. The Laplace approximation to the likelihood L(β, σ) is obtained by replacing 

h(u | β, σ2) by its second-order Taylor expansion at the conditional maximum. Given the 

current iterate (β, σ), let u* be the maximizer of h and η* = Xβ + Zu*, where Z = (Z1, Z2, 

…, Zm). Then, the approximated log-likelihood is
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LLA(β, σ) = ℎ u* β, σ2 − 1
2lndet∇2 −ℎ u* β, σ2

= ∑
j

yjηj* − ln 1 + eηj* − 1
2 ∑

i = 1

m
qilnσi2 − 1

2 ∑
i = 1

m ui* 2
2

σi2

− 1
2lndet ZTW *Z + blkdiag σ1

−2Iq1, …, σm−2Iqm

= ∑
j

yjηj* − ln 1 + eηj* − 1
2 ∑

i = 1

m ui* 2
2

σi2

− 1
2lndet W * − 1 + ∑

i
σi2ZiZi

T − 1
2lndetW *

+ termswithoutβ, σ2,

(3.2)

where W* = diag(w*) is a diagonal matrix with entries

wj* = pj* 1 − pj* = eηj*

1 + eηj* 2 and pj* = eηj*

1 + eηj*
.

Detailed derivations of the approximated log-likelihood (3.2) are provided in the 

Supplementary Material S1. The MM algorithm cycles through updates of u, β and σ2, as 

follows:

1. To maximize h(u | β, σ2), the gradient and Hessian are

∇uℎ = ZT (y − p) −
σ1

−2u1
⋮

σm−2um
∇u2ℎ = − ZTW Z +  blkdiag (σ1

−2Iq1, …, σm−2Iqm) ,

respectively, where p = (p1, … ,pn)T with pj = eηj/ 1 + eηj , and W = diag(w1, … , 

wn) with wj = pj(1 − pj). Because each wj is upper-bounded by 0.25, it follows 

that

∇u2ℎ ≽ − 0.25ZTZ +  blkdiag (σ1
−2Iq1, …, σm−2Iqm) .

Thus, we can construct a quadratic minorization function at u(l) using (2.5), and 

maximizing the quadratic surrogate gives the MM update

u(l + 1) = 0.25ZTZ +  blkdiag (σ1
−2Iq1, …, σm−2Iqm) −1∇uℎ u(l) + u(l) . (3.3)

To find the maximizer u* given β and σ2, we iterate the MM update (3.3) until 

convergence. Note that the indicated matrix inverse in (3.3) only needs to be 

performed once and remains constant through the iterations.
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2. Updating β given σ2 and u* is a regular logistic regression with o set Zu*. We 

invoke a similar MM update to that described above

β(t + 1) = β(t) + 0.25XTX −1XT y − p* . (3.4)

Again, the matrix inverse (0:25XTX)−1 only needs to be performed once.

3. To update σ2 given β and u*, the minorization (2.4) leads to the surrogate 

function

g σ2 σ2(t) = c(t) − 1
2 ∑

i = 1

m ui* 2
2

σi2

− 1
2 ∑

i = 1

m
σi2tr ∑

i
σi

2(t)ZiZi
T + W * − 1

−1
ZiZi

T ,
(3.5)

where c(t) is a constant irrelevant to the optimization. The maximization of g(σ2 | 

σ2(t)) with respect to σ2 yields the explicit MM update

σi
2(t + 1) =

ui* 2
2

tr ZiT ∑iσi
2(t)ZiZiT + W * − 1 −1Zi

1/2

.

When q ≪ n, the Woodbury formula facilitates the inversion

∑
i

σi
(t)2ZiZiT + W * − 1

−1

= W * − W *Z(σ) Iq + Z(σ)TW *Z(σ) −1Z σ TW *,

where Z(σ) = (σ1Z1, …, σmZm). Because the iterate is derived based on the MM 

principle, it possesses the ascent property

LLA σ(t + 1) β, u* ≥ LLA σ(t) β, u* . (3.6)

A detailed proof is presented in the Supplementary Material S3.

As in the penalized iteratively reweighted least squares (PIRLS) algorithm described in 

Bates et al. (2015), parameter estimates are determined for a fixed-weights matrix W*, and 

then the weights are updated to the current estimates and the process is repeated. The 

resulting algorithm is extremely simple to implement. Algorithm 1 summarizes the MM 

algorithm for the parameter estimation of the logistic linear mixed model (1.1). Each 

iteration involves a one-step update of β and σ2. Several additional steps updating β and σ2 

give similar results, in practice.
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3.2. Model formulation 2

In the Laplace-approximated log-likelihood (3.2), we have σi in the denominator. Thus, it 

cannot be combined with the penalized estimation, which will shrink some of the σis to zero. 

Therefore, we consider another reparameterization of model (1.1) by assuming that η takes 

the form

η = Xβ + σ1Z1u1 + ⋯ + σmZmum, (3.7)

where ui ~ N(0qi, Iqi) are independent. Let u = u1
T , …, umT

T ∈ ℛq be the concatenated random 

effects and Z = Z1, …, Zm ∈ ℛn × q, q = ∑i = 1
m qi. Then, η = Xβ + ZDu, where D = blkdiag 

(σ1Iq1, …, σmIqm) and the complete log- likelihood is

ℎ(u |β, σ) = ∑
j

yiηj − ln 1 + eηj − 1
2‖u‖2

2 +  terms without u .

Given the current iterate (β, σ), let u* be the maximizer of h and η* = Xβ + ZDu*. Then the 

approximated log-likelihood is

LLA(β, σ)
= ℎ u* β, σ − 1

2lndet ∇2 −ℎ u* β, σ

= ∑
j

yjηj* − ln 1 + eηj* − 1
2 u* 2

2 − 1
2lndet DTZTW *ZD + Iq

= ∑
j

yjηj* − ln 1 + eηj* − 1
2 u* 2

2 − 1
2lndet W * − 1 + ∑

i
σi2ZiZi

T

− 1
2lndetW * +  terms without β, σ2 .

(3.8)

Detailed derivations of the above approximated log-likelihood can be found in the 

Supplementary Material S2. Maximizing h(u | β, σ) follows similar MM updates to those in 

(3.3). Given σ2 and β, u* can be found through the MM iterates

u(l + 1) = u(l) + 0.25(ZD)TZD + Iq
−1∇uℎ u(l) β, σ2

until convergence, where ∇uh(u(l) | β, σ2) = DT ZT (y − p) − u(l). Updating β given u* and σ2 

is the same as the update in (3.4).
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Updating σ2 given β and u* depends on three minorizations, which differ from the first 

reparameterization. Quadratic minorization implies that

−1T ln 1 + eη * ≥ − p(t)T η* − η * (t) − 1
8 η* − η * (t) 2

2 + c(t)

= − p(t)TZDu* − 1
8 Z D − D(t) u* 2

2 + c(t),
(3.9)

where c(t) is an irrelevant constant, p(t) is a vector with the jth element equal to 

eηj
* (t)

1 + eηj
* (t)

, and ηj
* (t) is the jth element of η * (t) = Xβ + ZD(t)u*. The Cauchy 

inequality implies that

− Z D − D(t) u* 2
2 = − ∑

i = 1

m
Ziui* σi − σi

(t)

2

2

≥ − ∑
j = 1

n
∑
i = 1

m
Ziui* j

2 ∑
i = 1

m
σi − σi

(t) 2,
(3.10)

where Ziui* j is the jth element of vector Ziui*. Combining (3.9), (3.10), and (2.4) gives the 

overall minorization function

g σ σ(t) = ∑
i = 1

m
σi y − p(t) TZiui* − 1

8 ∑
j = 1

n
∑
i = 1

m
Ziui* j

2 ∑
i = 1

m
σi − σi

(t) 2

− 1
2 ∑

i = 1

m
σi2tr ∑

i
σi

2(t)ZiZi
T + W * − 1

−1
ZiZi

T + c(t),
(3.11)

where σi are nicely separated and only involve quadratic terms. The maximization of g(σ | 

σ(t)) results in the following update:

σi
(t + 1) =

y − p(t) TZiui* + 1/4 ∑j = 1
n ∑i = 1

m Ziui* j
2 σi

(t)

tr ∑i σi
2(t)ZiZi

T + W * − 1 −1ZiZi
T + 1/4 ∑j = 1

n ∑i = 1
m Ziui* j

2 . (3.12)
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To account for the non-negative constraint of σ, at each iteration, we set 

σi
(t + 1) = max 0, σi

(t + 1) . Algorithm 2 summarizes the MM algorithm for model formulation 

2 defined in (3.7).

3.3. MM algorithm for maximizing the penalized approximated like lihood

For the variance component selection, we consider the penalization approach using a lasso 

penalty.

Because the minorization function of σ derived in the second model formulation is a 

quadratic function of σ, it meshes well with the penalized estimation. Other penalties such as 

the adaptive lasso (Zou (2006)) and SCAD (Fan and Li (2001)) lead to similar algorithms.

The lasso-penalized approximated log-likelihood is

−LLA(β, σ) + λ ∑
i = 1

m
σi . (3.13)

Finding u* to maximize h(u | β, σ) and updating β follow the same steps described in 

algorithm 2. The only difference lies in the update of σ given u* and β in (3.12), which now 

becomes

σi
(t + 1) = argmin

σi
σi2

1
2tr ∑

i
σi

2(t)ZiZi
T + W * − 1

−1
ZiZi

T

+ 1
8 ∑

j = 1

n
∑
i = 1

m
Ziui* j

2

− σi y − p(t) TZiui* + 1
4 ∑

j = 1

n
∑
i = 1

m
Ziui* j

2 σi
(t) + λ σi

= ST zi, γi ,

(3.14)

where

ST (z, γ) = argmin
x

1
2(x − z)2 + γ |x | = sng(z)( |z | − γ)+ (3.15)

is the soft-thresholding operator, and

zi =
y − p(t) TZiui* + 1/4 ∑j = 1

n ∑i = 1
m Ziui* j

2 σi
(t)

tr ∑iσi
2(t)ZiZiT + W * − 1 −1ZiZiT + 1/4 ∑j = 1

n ∑i = 1
m Ziui* j

2
,

γi = λ

tr ∑iσi
2(t)ZiZiT + W * − 1 −1ZiZiT + 1/4 ∑j = 1

n ∑i = 1
m Ziui* j

2
.
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3.4. Choice of regularization parameter

The best λ can be selected over a grid using the Akaike information criterion (AIC), the 

Bayesian information criterion (BIC), or cross-validation. Here, we consider the AIC and 

BIC. Because it is difficult to evaluate the log-likelihood function, we replace it by its 

Laplace approximation. Specifically, we use

BIC(λ) = − 2LLA β , σ2 + log(n) × df(λ)

AIC(λ) = − 2LLA β , σ2 + 2 × df(λ),

where df(λ) is the number of non-zeros in σ2(λ). In the following simulation studies, we 

compare the AIC and BIC on variance component selection.

4. Simulation Studies

4.1. Random effects ANOVA

In this section, we compare the estimation error and runtime of the MM algorithms 

(MMLA1 and MMLA2) to three different implementations: (1) the glmer() function in the 

popular lme4 package in R (Bates et al. (2015)); (2) the glmm() function in the glmm 

package in R (Knudson (2016)); and (3) the stan_glmer() function in the rstanarm package 

in R (Stan Development Team (2016)). glmer() fits a generalized linear mixed-effects model 

and the default (nAGQ=1) uses a Laplace approximation to approximate the original log-

likelihood. glmm() calculates and maximizes the Monte Carlo likelihood approximation 

(MCLA) (Geyer (1990)) to find Monte Carlo maximum likelihood estimates (MCMLEs) 

(Sung and Geyer (2007)) for the fixed effects and the variance components. The rstanarm 

package is an R interface to the Stan C++ library for Bayesian estimations. stan_glmer() 

adds independent prior distributions to the regression coefficients, as well as priors on the 

covariance matrices of the group-specific parameters. Then, it performs a Bayesian inference 

via MCMC.

We simulate data from the following two-way ANOVA model with crossed random effects:

P yijk = 1 = 1
exp −ηijk

ηijk = x1β1 + x2β2 + x3β3 + αi + γj + αγ ij,
i = 1, …, 5, j = 1, …, 5, k = 1, …c,

where αi N 0, σα2 , γj N 0, σγ2  and (αγ)ij N 0, σαγ2  are jointly independent. Here i indexes the 

levels in factor 1, j indexes the levels in factor 2, and k indexes observations in the (i, j)-
combination. This corresponds to m = 3 variance components. Table 1 displays the results 

when there are a = b = 5 levels for each factor, the number of observations c in each 

combination of factor levels varies from 2 to 200, and the true parameter values are 

β1, β2, β3, σα2, σγ2, σαγ2 = (0.6, 1.0, − 1.0, 0.5, 0.9, 0.3). For each scenario, we simulate 50 

replicates. The sample size is n = abc for each replicate. Therefore, the largest model in 

Table 1 involves a covariance matrix of size 5,000 × 5,000. For c = 100 and 200, we omit the 
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results of glmm and rstanarm because they take too much time when the sample size 

increases (the simulation takes more than a week to complete).

We observe the following. The results of the two MM algorithms (MMLA1 and MMLA2) 

are very similar, but MMLA2 takes longer to converge than MMLA1 does, especially when 

the number of groups c is large. This is expected because the surrogate function derived in 

MMLA2 involves two additional layers of minorizations, which result in slower 

convergence. The glmer() function failed to converge in many replicates when c = 2 and 

produced much worse estimates than those of the MM algorithms. For other values of c, 

glmer() delivered estimates comparable to those of the MM algorithm, but was three to four 

times slower than MMLA1. glmm() and stan_glmer() are much slower because they involve 

sampling and their estimation performance is not good. The core algorithm in glmer() is 

coded in C and extensively utilizes sparse linear algebra. Our MM algorithms are 

implemented in the high-level Julia language and ignore sparsity structures. Although it is 

difficult to draw conclusions based on implementations in different languages, this example 

clearly demonstrates the efficiency and scalability of the MM algorithms for GLMM 

estimation.

4.2. Genetic example

In this section, we use a genetic example to demonstrate the performance of the variable 

selection using our algorithm derived in Section 3.3. Consider the QTL mapping example 

introduced in Section 1:

g(μ) = Xβ + Gγ,

where G is an n × k genotype matrix for k variants of interest, g(μ) = logit (μ), β are fixed 

effects, and γ are random genetic effects with γ ~ Normal (0, σ2Ik). The response y is an n × 

1 vector of binary trait measurements with mean μ. One way to identify important genes is 

to test the null hypothesis σ2 = 0 for each region separately, and then to adjust for multiple 

testing (Lee et al. (2014)). Here, we consider the joint model for all regions rather than using 

marginal tests:

g(μ) = Xβ + s1
−1/2G1γ1 + ⋯ + sm−1/2Gmγm, (4.1)

where γi N 0, σi2I  and we select the variance components σi2 via the penalization (3.13). 

Here, si is the number of variants in region i, and the weights si−1/2 put all variance 

components on the same scale.

In this simulation study, we use the genetic data from the COPDGene exome sequencing 

study (Regan et al. (2011)), which has 399 subjects and genotype information of 16,610 

genes. The covariate matrix X contains intercept, age, sex, and the top three principal 

components in the mean effects. We consider four experimental settings for sparse random 

effects. In all of the examples, we set β = (0.1, −1.0, 0.8, −0.3, −1.2, 1.5) and randomly 

select m genes Gi, i = 1, … , m, from the COPD data.
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• Setting 1: σ2 = 5.0, 7.5, 10.0, 0m − 3
T T

, with m varying from 5, 10, 20, 100

• Setting 2: σ2 = 10, 15, 20, 0m − 3
T T

, with m varying from 5, 10, 20, 100

• Setting 3: σ2 = 5, 6, 7, 8, 9, 10, 0m − 6
T T

, with m varying from 10, 20, 40, 100

• Setting 4: σ2 = 10, 12, 14, 16, 18, 20, 0m − 6
T T

, with m varying from 10, 20, 40, 100

We use the mean squared error (MSE) = ‖β − β‖2 to evaluate the performance of the fixed 

effect estimation. Four measures are used to assess the variable selection performance: the 

number of truly non-zero variance components that are selected as non-zero variance 

components (denoted as “True Positive”), the number of truly zero variance components that 

are selected as non-zero variance components (denoted as “False Positive”), the frequency of 

exactly selecting the correct variance components (denoted by “Exact”), and the frequency 

of over-selecting variance components (denoted by “Over”). In each experimental setting, 

100 data sets are simulated from the model, and we report the average performance over the 

100 runs for both the AIC and the BIC. Tables 2, 3, 4, and 5 summarize the results for the 

above four settings. We can see that our proposed method for variable selection does a good 

job in identifying the significant random effects. For example, under Setting 1 and Setting 2 

for different m, our method based on both the AIC and the BIC can identify the truly 

significant random effects 97% – 99% of the time, with the AIC more prone to over-

selection than is the BIC. Setting 3 and Setting 4 are more challenging because they involve 

a larger number of random effects. However, our method can still identify the non-zero 

random effect 96% of the time under m = 10 when using the AIC.

5. Real-Data Analysis

In this real-data analysis, we again use the data from the COPDGene exome sequencing 

study described in the previous simulated genetic example. The binary trait indicates 

whether or not an individual smokes (denoted as smoke). There are 399 individuals with 

646,125 genetic variants in 16,610 genes. The covariates include age, sex, and the top three 

principal components. Because the number of genes is too large, we first screen the 16,610 

genes down to 200 genes according to their marginal p-values from the Sequence Kernel 

Association Test (SKAT). Then, we perform a penalized estimation of the 200 variance 

components in the joint model (4.1). This is similar to the sure independence screening 

strategy for selecting mean effects (Fan and Lv (2008)). The AIC selects 16 genes, whereas 

the BIC selects only one gene “AFAP1L2”. Table 6 lists the top five genes selected using the 

AIC (PLVC-AIC) and SKAT. We find that the top three genes selected using the two 

methods are the same, but in a different order. To compare the selection performance 

between SKAT and PLVC-AIC, we evaluate the log-likelihood of model (4.1) using the top 

five genes listed in Table 6, inputted to the model individually. To evaluate the log-

likelihood, we use the R package bernor, which implements the Monte Carlo approximation 

method described in Sung and Geyer (2007). From Figure 1, we find that the log-likelihood 

with genes selected by PLVC-AIC is above that of SKAT, indicating that genes selected by 

PLVC-AIC explain more variability in the model.
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In addition, we compare the prediction performance between the top five genes selected by 

PLVC-AIC and SKAT. We evaluate the prediction performance using model (4.1) by 

including the genotype matrix Gi of the corresponding selected genes, similarly to the 

approach adopted in Wu et al. (2011). For example, if the genotype matrix of the top k genes 

selected is Gℎ1, Gℎ2, …, Gℎk, then the predictive model becomes

g(μ) = Xβ + sℎ1
−1/2Gℎ1γ1 + ⋯ + sℎk

−1/2Gℎkγk = X*β*,

where X* = X, sℎ1
−1/2Gℎ1, …, sℎk

−1/2Gℎk  and β* = βT , γ1
T , …, γk

T .This is the ordinary logistic 

regression model that can be used for predictions. Table 7 summarizes the prediction 

performance using five-fold cross validation as the top five genes selected by both methods 

are inputted to model (4.1), one by one. We find that, on average, the model with genes 

selected by PLVC-AIC performs slightly better than SKAT in terms of prediction. The 

penalization approach for selecting variance components warrants further theoretical study. 

This real-data analysis demonstrates that the proposed simple MM algorithm scales to high-

dimensional problems.

6. Discussion

This paper discusses two MM algorithms for variance component estimation and selection 

using the logistic linear mixed model. The algorithms are simple to implement and scale to 

models with a large number of variance components. Other extensions are possible. Here, 

we only consider binary responses. Extending the algorithm MMLA1 to Poisson count data 

is straightforward, with an almost identical derivation. Several studies have examined the 

selection of fixed effects using GLMMs. Here, we focus only on the selection of random 

effects. Our algorithms can be extended easily to select fixed and random effects 

simultaneously. We leave these topics to future research.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Log-likelihood evaluation with the top five genes selected by PLVC-AIC and SKAT added 

to the model in an association study of 200 genes and the complex trait smoke.
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Table 1.

Comparison of the MM algorithms with two different parameterizations (MMLA1 and MMLA2) and the 

glmer() function (with nAGQ=1) in the lme4 package, rstanarm package, and glmm package. Standard errors 

are given in parentheses. The results for rstanarm and glmm with c = 100, 200 are not reported because the 

simulation takes more than a week to complete.

c Method runtime β1(0.6) β2(1.0) β3(−1.0) σα2(0.5) σγ2(0.9) σαγ2 (0.3)

2 MMLA1 0.19 (0.55) 0.68(0.51) 1.08(0.43) −0.92(0.51) 0.52(0.91) 1.03 (1.55) 0.22 (0.37)

MMLA2 0.14 (0.12) 0.68(0.51) 1.08(0.43) −0.92(0.51) 0.52(0.91) 1.04 (1.56) 0.22 (0.37)

lme4 0.46 (0.37) 2.83(7.22) 3.52(7.39) −2.42(4.04) 187(753) 108 (580) 558 (2,049)

rstanarm 8.15 (0.49) 0.91(0.69) 1.42(0.45) −1.20(0.58) 1.38(1.32) 2.14 (2.23) 2.60 (1.86)

glmm 23.95 (45.66) 0.64(0.53) 0.91(0.55) −0.76(0.59) 1.54(3.13) 0.03 (0.07) 0.06 (0.14)

8 MMLA1 0.10 (0.03) 0.55(0.21) 0.96(0.24) −0.98(0.20) 0.36(0.33) 0.96 (0.94) 0.34 (0.34)

MMLA2 0.17 (0.08) 0.55(0.21) 0.96(0.24) −0.98(0.20) 0.36(0.33) 0.96 (0.94) 0.34 (0.34)

lme4 0.37 (0.10) 0.60(0.23) 1.04(0.27) −1.07(0.22) 0.42(0.38) 1.15 (1.13) 0.47 (0.48)

rstanarm 21.85 (1.15) 0.61(0.24) 1.05(0.27) −1.09(0.22) 0.68(0.44) 1.48 (1.20) 0.72 (0.53)

glmm 224.53 (492.52) 0.46(0.17) 0.82(0.24) −0.85(0.17) 0.78(1.50) 0.02 (0.03) 0.04 (0.08)

50 MMLA1 0.19 (0.10) 0.58(0.07) 1.01(0.08) −1.00(0.08) 0.52(0.43) 0.96 (0.81) 0.31 (0.16)

MMLA2 1.65 (0.52) 0.58(0.07) 1.01(0.08) −1.00(0.08) 0.52(0.43) 0.94 (0.72) 0.31 (0.16)

lme4 0.92 (0.12) 0.59(0.07) 1.03(0.08) −1.02(0.09) 0.54(0.45) 1.01 (0.86) 0.32 (0.17)

rstanarm 198.38 (26.88) 0.59(0.07) 1.04(0.08) −1.02(0.09) 0.82(0.58) 1.37 (0.92) 0.42 (0.21)

glmm 3,613.26 (2,272.85) 0.48(0.09) 0.86(0.12) −0.84(0.12) 0.88(1.39) 0.04 (0.06) 0.04 (0.07)

100 MMLA1 0.58 (0.18) 0.61(0.06) 1.01(0.06) −1.00(0.06) 0.65(0.46) 0.94 (0.61) 0.30 (0.11)

MMLA2 4.28 (0.78) 0.61(0.06) 1.01(0.06) −1.00(0.06) 0.67(0.44) 0.91 (0.54) 0.30 (0.11)

lme4 1.49 (0.18) 0.62(0.06) 1.02(0.06) −1.01(0.06) 0.67(0.47) 0.97 (0.63) 0.31 (0.12)

rstanarm — — — — — — —

glmm — — — — — — —

200 MMLA1 0.98 (0.16) 0.60(0.04) 0.99(0.04) −0.99(0.04) 0.45(0.33) 0.92 (0.62) 0.29 (0.12)

MMLA2 13.49 (3.42) 0.60(0.04) 0.99(0.04) −0.99(0.04) 0.50(0.33) 0.91 (0.51) 0.29 (0.12)

lme4 2.76 (0.33) 0.60(0.04) 1.00(0.04) −1.00(0.04) 0.46(0.33) 0.94 (0.63) 0.30 (0.13)

rstanarm — — — — — — —

glmm — — — — — — —
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Table 2.

Estimation and selection results for Setting 1.

m Criteria MSE (β)

Variance components selection

True Positive (3) False Positive (0) Exact Over

5 AIC 0.31(0.20) 2.98 0.33 66% 32%

BIC 0.31(0.20) 2.98 0.15 84% 14%

10 AIC 0.27(0.17) 2.96 1.14 26% 70%

BIC 0.29(0.18) 2.93 0.61 50% 44%

20 AIC 0.26(0.16) 2.96 2.01 11% 86%

BIC 0.29(0.17) 2.87 1.25 17% 72%

100 AIC 0.30(0.18) 2.74 2.95 4% 71%

BIC 0.38(0.21) 2.50 0.57 27% 24%
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Table 3.

Estimation and selection results for Setting 2.

m Criteria MSE (β)

Variance components selection

True Positive (3) False Positive (0) Exact Over

5 AIC 0.37(0.22) 2.99 0.40 63% 36%

BIC 0.38(0.22) 2.99 0.22 79% 20%

10 AIC 0.33(0.20) 2.98 1.17 28% 70%

BIC 0.36(0.21) 2.98 0.68 44% 54%

20 AIC 0.34(0.22) 2.98 1.60 25% 74%

BIC 0.38(0.24) 2.95 0.85 39% 58%

100 AIC 0.37(0.19) 2.83 3.31 3% 80%

BIC 0.48(0.22) 2.68 0.61 38% 30%
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Table 4.

Estimation and selection results for Setting 3.

m Criteria MSE (β)

Variance components selection

True Positive (6) False Positive (0) Exact Over

10 AIC 0.78(0.30) 5.96 0.84 34% 62%

BIC 0.83(0.32) 5.66 0.33 54% 25%

20 AIC 0.73(0.27) 5.88 1.49 15% 73%

BIC 0.82(0.32) 5.56 0.48 41% 32%

40 AIC 1.04(0.33) 5.68 1.96 15% 57%

BIC 1.17(0.37) 4.96 0.74 29% 27%

100 AIC 0.85(0.34) 5.40 2.54 2% 48%

BIC 0.98(0.38) 4.82 0.63 12% 14%
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Table 5.

Estimation and selection results for Setting 4.

m Criteria MSE (β)

Variance components selection

True Positive (6) False Positive (0) Exact Over

10 AIC 1.06(0.32) 5.97 0.85 32% 65%

BIC 1.09(0.32) 5.91 0.56 45% 47%

20 AIC 1.02(0.34) 5.96 1.36 15% 81%

BIC 1.07(0.34) 5.92 0.70 38% 54%

40 AIC 1.44(0.39) 5.74 1.82 13% 62%

BIC 1.51(0.40) 5.54 0.85 29% 39%

100 AIC 1.18(0.42) 5.72 2.10 6% 68%

BIC 1.29(0.43) 5.29 0.71 21% 22%
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Table 6.

Top five genes selected by (1) the lasso penalized variance component model (3.13) with the AIC (PLVC-AIC) 

and (2) SKAT in an association study of 200 genes and the binary trait smoke.

PLVC-AIC SKAT

No. Gene Marginal p-value # Variants Gene Marginal p-value # Variants

1 AFAP1L2 6.0 × 10−4 18 KIAA1377 5.7 × 10−4 14

2 RREB1 6.0 × 10−4 18 RREB1 6.0 × 10−4 18

3 KIAA1377 5.7 × 10−4 14 AFAP1L2 6.0 × 10−4 18

4 PSG5 3.7 × 10−3 11 KARS 6.1 × 10−4 15

5 TDRD1 1.2 × 10−3 14 PZP 1.0 × 10−3 21

Stat Sin. Author manuscript; available in PMC 2020 June 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hu et al. Page 24

Table 7.

Five-fold cross-validation performance on prediction accuracy with the top five genes selected by PLVC-AIC 

and SKAT added to the model in an association study of 200 genes and the complex trait smoke.

No. of genes entered into model

Prediction accuracy

PLVC-AIC SKAT

1 79.4%(6.2%) 78.2%(4.6%)

2 79.9%(6.0%) 77.9%(2.9%)

3 80.7%(4.1%) 80.7%(4.1%)

4 81.7%(2.3%) 80.7%(5.4%)

5 81.4%(3.4%) 78.7%(5.8%)
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