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Modeling Variability and Uncertainty of
Photovoltaic Generation: A Hidden State

Spatial Statistical Approach
Michaelangelo D. Tabone, Member, IEEE, and Duncan S. Callaway, Member, IEEE

Abstract—In this paper, we construct, fit, and validate a hidden
Markov model for predicting variability and uncertainty in gener-
ation from distributed (PV) systems. Themodel is unique in that it:
1) predicts metrics that are directly related to operational reserves,
2) accounts for the effects of stochastic volatility and geographic
autocorrelation, and 3) conditions on latent variables referred to as
“volatility states.” We fit and validate the model using 1-min reso-
lution generation data from approximately 100 PV systems in the
California Central Valley or the Los Angeles coastal area, and con-
dition the volatility state of each system at each time on 15-min res-
olution generation data from nearby PV systems (which are avail-
able from over 6000 PV systems in our data set). We find that PV
variability distributions are roughly Gaussian after conditioning
on hidden states. We also propose a method for simulating hidden
states that results in a very good upper bound for the probability
of extreme events. Therefore, the model can be used as a tool for
planning additional reserve capacity requirements to balance solar
variability over large and small spatial areas.

Index Terms—Power system planning, solar energy, statistics.

I. INTRODUCTION

I N 2013, U.S. grid-connected solar photovoltaic (PV) ca-
pacity increased by almost 40% (4.7 GW), and solar gener-

ation accounted for 29% of all newly installed electricity gen-
eration by nameplate capacity. This growth is taking place in
a diverse setting of locations and sectors [1]. Of 2000 MW in-
stalled under California’s Solar Initiative, over 99% of systems
(82% of nameplate capacity) are less than 1 MW in size [2].
PV generation (along with all solar and wind generation) is

different than traditional generation in two important ways: is it
variable, meaning that it varies uncontrollably as the sun rises
and sets, and as clouds pass over PV systems, and it is uncer-
tain, meaning that it cannot be perfectly predicted in advance.
These properties make PV generation more like electricity de-
mand, which has always been variable and uncertain. Power
systems maintain consistent balance of supply and demand as
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short time-scales by employing reserves, which are readily con-
trollable generators (or loads) placed on stand-by to quickly in-
crease or decrease generation.
These reserves will have to manage increasing amounts of

variability and uncertainty as more solar and wind generators
are connected. Predicting the amount of variability and uncer-
tainty from PV generation within a balancing area (or an inter-
connection) is important for predicting future needs for reserves
[3]–[6]. Because of the geographic auto-correlation of meteo-
rological phenomena, the locational arrangement of PV panels
(i.e., centralized or distributed)will have an effect on the amount
of variability and uncertainty exhibited [7], [8].

A. Renewable Generation and Operational Reserves

In this paper, we define variability and uncertainty to relate
directly to the reserve needs of power systems. We examine
two classes of operational reserves as they are defined in [9]:
“load following reserves” account for the difference between a
long time-scale market (typically 1 or 2-h intervals) and a faster
market (anywhere between 30-min and 5-min intervals); “reg-
ulation reserves” account for the difference between the sched-
uled generation in the faster market and actual net load.
Most renewable integration studies use the “n-sigma”method

to quantify the required amount of reserves following increases
in wind and solar generation—see those cited within [9], [10].
The n-sigma method plans for variability or uncertainty that
is “n” standard deviations away from a mean. This method
implicitly assumes the net load variability and uncertainty are
Gaussian, although the true distributions often have heavier
tails [3], [8]–[11]. To account for this error many renewable
integration studies use an artificially large “n” to compute
confidence intervals [10]. A second existing approach, known
as the “convolution method,” computes the distribution of the
sum of two random variables with any distribution shapes.
However, historical data are needed to compute the original
distribution shapes, making this method obsolete for studies
that attempt to predict the effects of variable generators that
have yet to be built [10].

B. Statistical Models of Variability in PV

A number of studies have shown that PV production is geo-
graphically autocorrelated [8], [12], which is an important factor
for predicting reserve requirements. Murata et al. [7] demon-
strate that a geographic autocorrelation function relating the
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variability of PV generation from each pair of panels in a net-
work1 can be used to find the standard deviation of the aggre-
gate generation from all panels in the network. Generation from
arrangements of PV systems that are closely located are more
correlated and the sum of generation from all of these systems
exhibits a greater standard deviation than if the systems were
more dispersed. Murata et al. predict the mean and standard de-
viation of variability or uncertainty, but these parameters are in-
sufficient on their own to describe the full complexity of distri-
butions of PV variability.
Distributions of PV production at individual sites have high

kurtosis [8]. Cloud regimes are one explanation for this distri-
bution shape, i.e., PV generation signals will have high standard
deviation in partly cloudy times with fast wind speeds (resulting
in fat distribution tails) and a much lower standard deviation
during sunny times or fully overcast times (resulting in a high
peak).
Recent studies have attempted to identify different cloud

regimes and fit separate models for each of them. Lave and
Kleissl condition their geographic auto-correlation parameters
on cloud size and speed predictions from numerical atmospheric
models [12], [13]. Perez et al. condition their variability and ge-
ographic auto-correlation parameters on the spatial variability
of satellite predicted solar insolation [14]. Hummon et al. use
“variability classes” to simulate the effects of different cloud
regimes on PV generation for simulation purposes [11]. Reno
and Stein use a “variability index” that classifies days using the
standard deviation of the cloud cover ratio [15]. Wegener et al.
use a hidden Markov model on wavelet coefficients to predict
the standard deviation of 1-s variability from observations of
5-min variability at a single system [16]. However there is little
to no evidence that conditioning the standard deviation and
auto-correlation of PV variability on observations leads to an
accurate distribution shape.

C. Contributions of This Work

In this paper, we present, fit, and validate a model that pre-
dicts probability distributions of variability or uncertainty in dis-
tributed PV generation from networks of systems with any spa-
tial arrangement. Our objective is to bridge a gap between statis-
tical analysis of variability in PV generation, and power system
planning models by
• Using high temporal and spatial resolution data from a
set of closely located distributed PV systems.

• Predicting distribution shapes and geographic autocor-
relation of variability and uncertainty between PV systems
which allow us to estimate extreme events.

• Defining variability and uncertainty in a PV generation
signal to be directly related to operational reserves.

We note that this paper has a methodological focus. We delay
application of the method to future efforts; our immediate ob-
jective is to apply the method for long term forecasts of power
system reserve requirements for future high renewable penetra-
tion scenarios. However, as we will discuss later, the method
could also be used for short time scale (e.g., day ahead) fore-
casts for reserve requirements.

1We define a “network” as a spatial arrangement of PV systems, but not the
electrical network connecting them.

The model presented here resembles hidden Markov models
(HMM) for stochastic volatility, which have been used in the
financial literature for some time [17], and have already been
used to downscale 15-min resolution PV generation data to 1-s
resolution data at a single system [16]. Hidden Markov models
have also been used in the prior literature to forecast mean clear-
ness index of PV insolation [18]–[20].
For this work, we focused exclusively on uncertainty and

variability attributable to PV generation. We note that load
following and regulation reserve requirements are ultimately
a function of net load, which also includes wind and load.
Existing work on reserve requirements assumes these time
series are uncorrelated at the time scales on which reserves
are deployed, and can be aggregated post-simulation [10]. We
will discuss strategies for dealing with any known correlation
between PV generation and wind or load in the conclusions.

D. Model Overview and Structure of the Paper

We define data inputs and key metrics of interest in Section II,
describe the model itself in Section III, and fit and validate the
model in Section IV. Though the description of the data and
model requires an extended discussion the model itself is rela-
tively straightforward.
The model predicts metrics of variability or uncertainty,

which are denoted and are explained in Section II-C. Our
primary innovation is that we condition the standard deviation
of on an endogenously estimated latent state, referred to as
a “volatility state,” , defined in (4)–(6) and fully explained
in Section III. The volatility state for each PV system allows
for rapid transitions between periods of high standard deviation
and low standard deviation. The transition probabilities of
depend on a set of input variables , which can be any set
of discrete observations from the geographic areas and time
periods modeled. In this paper, we derive from widely
available 15-min resolution PV generation data, fully explained
in Section II-B.
Model parameters are fit using observations of both and
; values of are latent, meaning that they are never ob-

served and instead are endogenously estimated during the fitting
process. For simulation purposes, only observations of and
the parameters are required; distributions of and are
produced by the simulation; as explained in Section IV-B. The
use of latent states is shown to greatly benefit the prediction of
extreme events, shown in Section IV-C.

II. DATA AND PROCESSING

The data we used for this study comprised instantaneous
voltage and current measurements taken from residential and
commercial PV installations provided to us by by photovoltaic
integrator SolarCity. SolarCity provided 15-min resolution data
for over 6000 systems from January 2011 to late September
2012. These data also included metadata on geometry and
capacity for each PV system. To study variability at faster
timescales SolarCity increased the sampling rate to once per
minute at a small subset of systems.
Fig. 1 shows locations for sources of 1-min resolution gener-

ation data in the final dataset. We chose these systems to be in
one of two 256 areas, each representative of different types
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Fig. 1. Locations of systems with 15-min and 1-min resolution data.

of weather in California: the central valley (CV), and the Los
Angeles coast (LA). We sampled 100 systems in each area from
about 500 available using an algorithm that combined 1) quota
sampling for distances between pairs of locations and 2) geo-
graphically random sampling of site pairs. Systems were mon-
itored from mid-June to the end of August 2012. We used only
systems for which there we no gaps in data over a period of 30
days, leaving us with data from 39 system inverters in LA and
55 in CV. The data in our sample cover a number of extreme
events; half of the systems experience a 1-min duration ramp
rate of more than 58% of their nameplate capacity, and half of
the systems experience a 5-min average ramp of more than 34%
of their nameplate capacity.
The remainder of this section describes the data we used to

fit and validate the model. Sections II-A and II-B describe two
variables on which we condition the model. Sections II-C de-
scribes our metrics for variability and uncertainty.

A. Empirical Correction of Clear Sky Signal

The statistical model relies on a “clear sky signal,” which
represents generation that would have occurred in the absence of
cloud cover. Solar-earth geometry—which is predictable given
time of year, and location, tilt, azimuth, and effective capacity of
a PV system—determines the clear sky signal. However, using
the solar-earth model described in [21] with system metadata
and a derate factor of 0.77, we found that the modeled clear sky
signals were poor estimates of production on sunny days. This is
likely due to errors in the system metadata and periodic shading
from buildings and trees.
Fig. 2 shows 1-min resolution generation for one day along

with a clear sky signal based on metadata along with a cor-
rected clear sky signal. To implement the correction we first
found the difference between actual 15-min production and the
clear sky production predicted using only solar-earth geometry.
Second, we identified a “clear sky deviation” as the 95th per-
centile those differences for each observed time of day, during
a centered four-week moving window. Using this percentile
excluded many low observations (which removed the effects
of cloud-cover) as well as a small number of high observa-
tions (which removed the effects of occasional cloud reflection).
Third, we smoothed the “clear sky deviation” signal using a
2-h moving average. After linearly interpolating between the
15-min intervals, we finally added the deviations back onto the
clear sky signal predicted by solar-earth geometry.

Fig. 2. 1-min resolution generation and clear sky signals calculated for one day
in Los Angeles. is found using solar-earth geometry and system geometry
from metadata, is the empirically corrected clear sky signal.

B. Model Inputs From 15-Min Resolution Data

As we explain in Section III, we condition the model’s
volatility states on discrete input data that are specific to the
modeled times and locations. This facilitates simulation for lo-
cations and times external to this study. Fig. 1 shows locations
for our sources of input data: PV systems that continuously
recorded generation at 15-min intervals. To choose systems,
we subdivide the study regions into 2-km grids. For each grid
cell, we chose the system that was closest to the cell’s centroid
and not part of the 1-min dataset.
To compute conditioning inputs, we used a heuristic to es-

timate slow time scale volatility. We first calculated a moving
standard deviation as follows:

(1)

where is the solar generation from system at time ,
is the clear-sky signal for system at time , and is the

number of intervals for the moving window ( to account
for four 15-min intervals in an hour). We placed each standard
deviation reading into one of 5 bins, resulting in the vector of
data inputs for the model:

(2)

which contains one element for each of grid cells. Binning
the data was necessary because the model is conditioned on dis-
crete (not continuous) inputs, as explained in Section III. We
defined the bin edges using equally spaced exponential inter-
vals: 0, , , , and .
Panel A of Fig. 3 shows one day of generation at 15-min res-

olution along with the moving standard deviation of this signal;
panel B shows and the resulting volatility heuristics (condi-
tioning inputs) for this day.

C. Variability and Uncertainty of PV Generation

Operational reserves are used to manage both uncertainty and
variability in net load. Uncertainty arises from forecast error on
the time scale of dispatch. For example, if hour-ahead markets
dispatch generators in one hour blocks, there will be error be-
tween forecasted hourly average demand and actual hourly av-
erage demand. Variability arises because dispatch instructions
for an interval must be further adjusted within the interval to
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Fig. 3. A: 15-min generation, clear sky signal, and moving standard deviation
for one system. B: Volatility heuristic based on the moving standard deviation.

Fig. 4. Decomposition of 1 min PV generation. Panel A: Generation, hourly
persistence forecast and hourly perfect forecast. Panel B (inset): 5-min persis-
tence forecast and 5-min perfect forecast between 11 am and 12:30 pm (boxed).
Panels C through E show each of the metrics we use to build models.

maintain supply-demand balance. We calculated metrics repre-
senting forecast errors (uncertainty) and deviations from perfect
forecasts (variability) corresponding to the markets used by the
CAISO [22], defined as:
• Hourly forecast errors: the difference between an hour-
ahead forecast of hourly average demand and a perfect
forecast of hourly average of demand.

• 5 min deviations, : the difference between a
5-min resolution forecast (i.e., the forecast used for the load
following market) and the perfect forecast of hourly av-
erage of demand. See Fig. 4(c).

• 5 min forecast errors, : errors in a 5-min ahead
persistence forecast of 5-min intervals. See Fig. 4(d).

• 1 min deviations, : deviation of observed gener-
ation from a perfect 5-min forecast. See Fig. 4(e).

The total generation required from load following reserves
is the sum of coincident hourly forecast errors and 5-min
deviations; the generation required from regulation reserves
is the coincident 5-min forecast error and 1-min deviations.
Because the model we present in this paper is designed to
describe sub-hourly variability and uncertainty, and because

Fig. 5. Hidden Markov model represented as a directed acyclic graph.

numerical weather methods would likely provide a much better
hour-ahead forecast than the persistence method, we will not
model hourly forecast errors.
Fig. 4 shows the decomposition process for each metric using

one day of PV generation from one system. To forecast PV gen-
eration on short time scales, we used the persistence of a clear-
ness index as suggested in [23]. Panel A of Fig. 4 shows the
hour-ahead forecast and a “perfect” hourly forecast. The hourly
profiles are as described in [22] where generators provide con-
tracted energy during the middle 40 min of an hour and ramp
to the next hour’s contract during the following 20 min. Panel
B of Fig. 4 shows the perfect and persistence forecast at 5-min
intervals, where generators may use the entire 5-min interval to
ramp.

III. VOLATILITY STATE MODEL

The model we develop in this section is an adaptation of
a hidden Markov model (HMM) for stochastic volatility [17].
HMMs for stochastic volatility endogenously estimate the oc-
currence of sharp changes in the standard deviation of a signal
such as those in Figs. 2 and 4. For each system and each time,
the HMM classifies a reading as being in one of M possible la-
tent states (referred to as “volatility states”), where the latent
state defines the standard deviation of the signal.
Fig. 5 depicts the model as a directed acyclic graph, where

shaded nodes represent observed variables and unshaded
nodes represent unobserved, latent variables. We will estimate
a separate model for each variability or uncertainty metric.

, represents normalized variability or uncer-
tainty, , , or , it is defined over PV systems.

represents the inputs to the model, which
in our case are volatility heuristics for each of grid cells,
discussed in Section II-B. is a vector of
unobserved volatility states, i.e., each system at each time is in
one of volatility states. In what follows we describe these
variables in further detail.
Define as the normalization of a given variability or un-

certainty metric for the th PV system. For example, normalized
regulation variability is

(3)

where is the original PV generation time series and is
the clear sky time series. Subtracting and dividing
by the clear sky trend removes non-stationary variability
resulting from the solar diurnal cycle. Equations for , or
follow the same form.We assume each vector of metrics is mean
zero multivariate Gaussian:
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(4)

where the covariance matrix is dependent on the volatility
states, , and on an exponential geographic autocorrelation
function, as defined in (5) and (6):

(5)

(6)

Diagonal elements of the covariance matrix, , contain the
variances of each individual system such that if the th system
is in the th volatility state . The off diagonals of
represent covariance between systems, defined by the exponen-
tial geographic autocorrelation functions defined in (6), where
and are the volatility states of systems and , respectively,
is the distance between systems and , and is a set of

parameters . is a range parameter representing the
distance over which correlation decreases by 63%. repre-
sents the correlation when . Due to heterogeneous cloud
cover for adjacent systems, can be less than one.
We assume that the probability of being in a volatility state is

conditionally dependent on the volatility state at the previous
time step and on the input heuristic from the grid cell con-
taining the system, where indexes the grid cell. Equa-
tion (7) shows a set of Markov chain transition matrices that
govern the progression of the volatility state for each system;

, indexes the input heuristic. Equation (8) de-
scribes each matrix element:

(7)

(8)

A. Estimating the Model

We tested the performance of model fits with ,4,5,6,7
or 8 total volatility states. We cross validated the model fits by
withholding 25% of the data during fitting (referred to as the
“test data”) and using it for validation. Data used for fitting are
referred to as the “model data.” We estimated parameters in two
stages: the first stage estimates the entire model assuming no
geographic autocorrelation, the second stage estimates autocor-
relation parameters for each pair of volatility states given the
output from stage 1.
Stage 1: , , and are estimated via expectation-max-

imization (EM): First, EM chooses parameters that maximize
likelihood given an expected value of the volatility states.
Second, it recalculates the expected value of the volatility
states given the updated model parameters. This gradient ascent
process repeats to convergence; it is not guaranteed to find the
global maximum but will reach a local maximum.
The “expectation” step of EM provides expected values of

volatility states given the model parameters, defined in (9),
where is the expected value of an indicator for whether
system is in volatility state at time , i.e., it is the probability
of finding a given system in a particular state:

Fig. 6. Percent log-likelihood increase from increasing the number of states.

(9)

Stage 2: Equation (10) describes a weighted correlation coef-
ficient for each variability or uncertainty metric when
system is in state and system is in state :

(10)
The autocorrelation parameters, and , are fit using

weighted least squares from the correlation for each pair of
sites. Equation (11) shows the weighted objective function for
fitting the autocorrelation parameters:

(11)

IV. RESULTS

A. Parameter Estimation

Fig. 6 displays the log-likelihood of the model data (data used
to fit the model) and the test data (reserved data for testing) fit
to each metric. When for and and for
, improvements in log likelihood are small and added states

are encountered less than 0.5% of the time. Therefore for the
remainder of the analysis we use models with 5 states for
and , and 7 states for .
Tables I and II show estimates of the autocorrelation param-

eters, and , for 1-min and 5-min deviations, where
higher volatility state index corresponds to higher standard de-
viation. For 5-min deviations, (correlation at a distance of 0
m) generally increases with volatility state standard deviation.
Trends in suggest a non-monotonic relationship with volatility
state, where the decay range is short for high and low variance
states, and long for moderate variance.

B. Validation by Simulation

To validate the model we compare observations to simulated
distributions, which require estimates of the volatility states. We
simulate volatility states with the following methods:
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Fig. 7. Panel A: Observed, demeaned, aggregate 5-min variability from the entire network of observed systems. Light grey boundaries represent the 95%
confidence interval from method 1; points exceeding this interval are highlighted by red stars. Panels B and C: Example volatility states of systems.

TABLE I
PARAMETERS FOR AUTOCORRELATION FUNCTIONS FIT TO

TABLE II
PARAMETERS FOR AUTOCORRELATION FUNCTIONS FIT TO

• Simulation Method 1: Set equal to the most
likely state as estimated during model fitting. This requires
that we restrict simulations to times and locations for which
we have one min data. Because we ultimately want to use
the model to estimate reserves in the absence of 1-min data,
this method is only a baseline.

• Simulation Method 2: For each system at each
time, simulate samples of volatility states using the
stationary probabilities of the transition matrices in .
In this paper, we use samples. We model the
distribution for each system at each time as a Gaussian
mixture with equally likely components, one for each
sampled covariance matrix. This method neglects correla-
tion between volatility states.

• Simulation Method 3: Simulate volatility states
per site as in method 2, then independently sort the
volatility states for each system at each time from highest
to lowest variance, such that and contain
the highest and lowest standard deviations, respectively;
this maximizes correlation of volatility states.

• No latent states: We also construct, fit and test a sepa-
rate benchmarkmodel without latent states by conditioning
standard deviation and the geographic autocorrelation pa-
rameters directly on the 15-min volatility heuristics, in-
stead of on a latent state.

While it may be possible to estimate correlation between
discrete volatility states, the problem is non-trivial; most geo-
graphic autocorrelation models use continuous distributions.
We use the simulated input states to calculate the standard

deviation of aggregate variability or uncertainty from the entire
network of monitored systems at each time. First, we calculate
the normalized covariance matrix with (5). Second, we trans-
form the covariance matrix to represent the de-normalization of
the variability or uncertainty, i.e., the inverse of (3). For this
transformation we multiply each element of the normalized co-
variance matrix by the hourly maximum of the clear sky signal
for each system. Finally, we sum all elements of the covariance
matrix to represent the summation of variability or uncertainty
from all systems.
Fig. 7 shows the output of the method 1 simulation for

. The 95% confidence interval is defined as twice
the simulated standard deviation, and the volatility states are
ordered such that state 1 has the lowest standard deviation and
state 5 has the greatest. The confidence interval is wider when
simulated volatility states have a greater standard deviation.
Fig. 8 shows quantile-quantile (QQ) plots that compare stan-

dardized quantiles of the observed data to quantiles of a stan-
dard normal. We standardize the quantiles by first computing
the position of the observed data within the simulated model’s
cumulative density function for all observations in the study pe-
riod, and then taking the standard normal inverse CDF of the
result. If the model and its parameterization predict the empir-
ical distribution, the standardized quantiles should be normally
distributed, and points in the QQ plot will lie along the
line.
Row 1 of Fig. 8 shows results for the no latent statemodel. For

1-min and 5-min deviations, the tails of the observed data are
“heavy” compared to the standard normal, meaning that the sim-
ulated distribution will under-predict extreme events. For 5-min
forecast errors, the tails of the observed data are “light” com-
pared to the standard normal, meaning that the model over-pre-
dicts extreme events. In contrast, Row 2 of Fig. 8 shows that
the volatility state model more accurately estimates distribu-
tions in the baseline scenario (method 1); distributions tails are
only slightly light for deviations and slightly heavy for persis-
tence forecast errors. This result indicates that if the volatility
state distribution across sites is well characterized, the model
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Fig. 8. QQ plots of test data pseudo-residuals using each volatility states sim-
ulation method and for each metric.

will work well in times and periods for which one min data are
unavailable.
Row 3 of Fig. 8 show that method 2 results are worse than

method 1 and comparable to the model without hidden states.
Because method 2 does not model volatility state correlation
across systems, the probability that multiple systems will be in a
high volatility state simultaneously is relatively low, and we ex-
pect this simulations to under-predict extreme events—i.e., the
observed data tails will be heavy. For 1- and 5-min deviations
the observed tails are heavy, as expected. For 5-min persistence
forecast errors the tails are light, though trend toward crossing
the line back to heavy.
The bottom row of Fig. 8 shows results frommethod 3, which

maximizes volatility state correlation across systems; the effect
is evident if one compares the tails of the QQ plots between
methods 2 and 3. For 1-min and 5-min deviations, method 3 per-
forms similarly in the tails to method 1, suggesting that volatility
states are in fact highly correlated. For 5-min forecast errors the
simulated distribution has heavy tails.

C. Predicting Maximum Events

Power system planners are concerned with high impact, low
probability events, i.e., the maximum regulation or load fol-
lowing reserve required within a given time period. Equation
(12) shows a method for finding the probability that all obser-
vations within a time period fall below some threshold, , as-
suming independent observations; where is a specified

hour of day. The 95% confidence interval for the maximum re-
quirement corresponds to probabilities of 0.975, and 0.025:

(12)
Fig. 9 shows 95% confidence intervals for the maximum re-

serve requirement estimated for the test data, stratified by each
hour of day. The left-hand column shows predictions from the
volatility state model and the right-hand column shows pre-
dictions using the model without latent states. The dark grey
boundaries are those calculated with known volatility states.
The light grey (dotted line) boundary is 97.5% bound (i.e., the
upper bound of a 95% confidence interval) of the predicted dis-
tribution using method 3, the worst-case assumption for geo-
graphic autocorrelation of volatility states. In expectation, ob-
served maxima should fall above the 97.5% confidence bound
between 0 and 1 times for 27 observations. For method 3 there
are 3 observations above the bound, whereas the no latent state
model has 7 above the bound. We note that the reserved test
data—though randomly chosen—have slightly more extreme
events than the data use to estimate the model. For 1-min and
5-min deviations, the method 3 upper bound dips below the
upper bound for method 1 for a few hours; this results from
small differences between stationary hidden state probabilities
from method 3 versus the most likely volatility states predicted
in method 1.

V. CONCLUDING REMARKS

In this paper, we presented, fit, and validated a hiddenMarkov
statistical model for variability and uncertainty in PV genera-
tion that parametrically estimates both geographic autocorrela-
tion and stochastic volatility. The model differs from others in
the literature by conditioning on latent “volatility states,” which
account for discontinuous changes in the standard deviation of
variability or uncertainty from PV generation. We fit the model
to metrics of PV generation that are useful for the planning of
load following and regulation reserves: 1) 5-min persistence
forecast errors made 5 min ahead, 2) 1-min deviations from a
perfect 5-min interval forecast, and 3) 5-min deviations from a
perfect hour ahead forecast. These metrics relate to the use of
load following and regulation reserves by power system opera-
tors.
Given knowledge of the latent states (only possible for

locations or times for which we have 1-min resolution data),
the model predicts distributions well, even in the tails. For
regions that lack 1-min data we built a method to simulate
latent states in a way that maximizes their correlation (see
method 3 in Section IV-B). This latent state simulation method
produces comparable results to those when latent states are
known (though the method is overly conservative for uncer-
tainty). We also presented results for a model similar to existing
models in that it conditions on observations instead of latent
variables; this model under-predicts extreme events associated
with variability and over-predicts extreme events associated
with uncertainty relative to the model we developed in this
paper. We expect that, by increasing the number of extreme
events available to fit the model, additional data would increase
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Fig. 9. Predicted distributions of maxima observed during each hour ending in
the test data. Rows represent each metric ( , , ). Columns
represent predictions by the volatility state model (left), and the no latent state
model (right). The dark grey boundaries signify a 95% confidence interval found
using the baseline scenario where the most likely volatility states predicted by
EM is used, the light grey boundary signifies the 97.5th percentile of the pre-
dicted distribution of maxima using the sorting based worst case assumption.
Red stars signify observed maxima.

the performance of the latent state model relative to the model
without latent states.
Though earlier research [3], [8]–[11] and the results in this

paper suggest that unconditioned Gaussian distributions do not
characterize PV variability well, it is possible that as larger data
sets become available, future research will show that a single
Gaussian describes aggregate PV variability well across large
spatial scales, for reasons related to the central limit theorem
(CLT).We conjecture that unconditioned Gaussian distributions
will work well for an aggregation of small systems distributed
across hundreds to thousands of kilometers, but not for a small
number of very large utility-scale systems, even if they are rel-
atively far apart.
Our intended application of the model is to predict the amount

of reserves required to integrate PV generation into power sys-
tems. Because the model accounts for spatial auto-correlation
and is conditioned on spatial inputs, it is uniquely situated to
compare the additional reserve requirements from centralized
versus distributed PV systems. Any model that predicts reserve
requirements must also account for variability from non-PV
sources, namely load variability and wind variability. For future
work, we plan to identify increases in operational reserve needs
in California as centralized and distributed arrangements of PV

are added. To identify these requirements, we will combine this
model’s simulated distributions of PV variability with similar
metrics for wind and load predicted by the CAISO for the same
time periods (as simulated for [24]). Combining wind, load, and
solar variability is achieved by summing coincident forecast er-
rors or deviations for each; i.e., the same method used in the
n-sigma method or the convolution method [10]. We note that
if there is known positive or negative correlation between solar
and wind or load, the model we have developed can be com-
binedwith wind and load variability models in a number of ways
that preserve this correlation. For example, one could condition
wind and net load models on the same inputs as the PV model,
which will induce some correlation due to the common predic-
tors. Alternately, one may include variables representing wind
and load directly within the model presented and estimate cor-
relations endogenously—using the same mathematical frame-
work developed in this paper.
One could also use this model’s estimates for reserve require-

ments in unit commitment optimal dispatch models for different
renewable energy penetration scenarios. Recent work from the
National Renewable Energy Laboratory (NREL) uses a unit
commitment optimal dispatch model that accounts for time-
varying reserve needs, but in a way that would be improved by
this model [5], [6]. This model, or a variation of it, may also be
used by system operators to predict the required amount of re-
serves to procure.
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