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RESEARCH ARTICLE Open Access

Applying machine learning to predict
future adherence to physical activity
programs
Mo Zhou1* , Yoshimi Fukuoka2, Ken Goldberg3, Eric Vittinghoff4 and Anil Aswani5

Abstract

Background: Identifying individuals who are unlikely to adhere to a physical exercise regime has potential to
improve physical activity interventions. The aim of this paper is to develop and test adherence prediction models
using objectively measured physical activity data in the Mobile Phone-Based Physical Activity Education program
(mPED) trial. To the best of our knowledge, this is the first to apply Machine Learning methods to predict exercise
relapse using accelerometer-recorded physical activity data.

Methods: We use logistic regression and support vector machine methods to design two versions of a
Discontinuation Prediction Score (DiPS), which uses objectively measured past data (e.g., steps and goal
achievement) to provide a numerical quantity indicating the likelihood of exercise relapse in the upcoming week.
The respective prediction accuracy of these two versions of DiPS are compared, and then numerical simulation is
performed to explore the potential of using DiPS to selectively allocate financial incentives to participants to
encourage them to increase physical activity.

Results: we had access to a physical activity trial data that were continuously collected every 60 sec every day for
9 months in 210 participants. By using the first 15 weeks of data as training and test on weeks 16–30, we show that
both versions of DiPS have a test AUC of 0.9 with high sensitivity and specificity in predicting the probability of
exercise adherence. Simulation results assuming different intervention regimes suggest the potential benefit of
using DiPS as a score to allocate resources in physical activity intervention programs in reducing costs over other
allocation schemes.

Conclusions: DiPS is capable of making accurate and robust predictions for future weeks. The most predictive
features are steps and physical activity intensity. Furthermore, the use of DiPS scores can be a promising approach
to determine when or if to provide just-in-time messages and step goal adjustments to improve compliance.
Further studies on the use of DiPS in the design of physical activity promotion programs are warranted.

Trial registration: ClinicalTrials.gov NCT01280812 Registered on January 21, 2011.
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Background
Despite the health benefits of physical activity, adherence to
physical activity programs can be challenging. Low adher-
ence to a prescribed physical activity regime can signifi-
cantly diminish the short- and long-term benefits of such
programs. Factors that are associated with adherence are
barriers for activity, self-efficacy, exercise history, health
condition, stress, social support, physical environment, and
cognitive activities [1–4]. Early prediction of individuals
who are likely to relapse can significantly improve adher-
ence to physical activity interventions. However, continu-
ously measured objective physical activity data are rarely
available to researchers to develop such prediction models.
For example, the NHANES 2003–2004 and 2005–2006
studies include only 7 consecutive days of accelerometer-
measured data in 9601 adults and 5030 children [5, 6]. For-
tunately, we had an opportunity to access to the physical
activity trial data that were continuously collected every 60
sec every day for 9months in 210 participants [7].
Adherence can vary on a day-to-day basis with even

usually-adherent individuals having temporary relapses
[8]. Inadequate skills and knowledge for high-risk situa-
tions are a leading factor in temporary relapse. Such re-
lapse often results in an “abstinence violation effect” that
leads to a perceived loss of control and eventually total re-
lapse [9–11]. Much work on predicting adherence has fo-
cused on the use of sociodemographics and self-reported
questionnaire data [12–14]. However, real-time data col-
lection such as from electronic health records (EHR),
wearable devices, or mobile phones can potentially in-
crease the prediction accuracy of adherence. One ap-
proach [15] used EHR data to construct a Markov chain
model to predict medication adherence, where the model
states were frequency of taking medication. Unfortunately,
this kind of model is not applicable to personalized inter-
ventions where adherence is measured relative to a base-
line that varies for each individual. Another approach [16]
used mobile data to construct a utility-function model of
behavior in weight loss programs. Though the model is
personalized to the baseline physical activity of each indi-
vidual, this model predicts future physical activity and not
adherence. Given the potential value of predicting adher-
ence to medical treatments using EHR and mobile data,
there is a need for the development and validation of new
models that can make such predictions.

Review of Mobile technologies and physical activity
Physical activity promotion programs can benefit from ad-
herence predictions. The 2018 National Physical Activity
Guidelines for American recommend that adults engage in
at least 150min to 300min a week of moderate-intensity,
or 75min to 150min a week of vigorous-intensity aerobic
physical activity, or an equivalent combination of moderate-
and vigorous-intensity aerobic activity [17]. However,

objectively measured physical activity data indicated that
only a small proportion of American adults met the guide-
lines [18]. Furthermore, physical activity programs suffer
from exercise relapses and low adherence, which hinders
individuals from meeting the guidelines. Despite the poten-
tial of leveraging mobile technologies with activity trackers
and wearable devices to provide accurate real-time mea-
surements of physical activity and deliver interventions to
encourage adherence, [19–22] the capacity of these tech-
nologies in automating and personalizing physical activity
promotion programs is only beginning to be explored. Re-
cent studies have found that mobile-based lifestyle modifi-
cation programs with a reduced number of coaching
sessions can achieve statistically significant increases in
physical activity [23–34]. Encouraged by this success, a
more recent question is whether it is feasible to use mobile
technologies to deliver fully-automated or nearly-fully-auto-
mated physical activity promotion programs. One study
[23] sent personalized messages based on self-reported as-
sessments, but did not use objectively measured data for
personalization. Our prior study, a fully-automated physical
activity intervention with a personalized goal setting feature,
validated the feasibility of adopting additional levels of auto-
mation to improve the efficacy of such programs in a cost-
effective way [35]. Full automation can enable further scal-
ing of these programs to larger populations and accurate
prediction of adherence is important.

Review of warning scoring in healthcare
Several warning scores have been developed in healthcare
for the purpose of predicting adverse medical events at an
early stage so that medical interventions can be delivered
before significant patient state deterioration occurs. Early
Warning Scoring (EWS) is a popular system for bedside
patient assessment [36–38]. It is based on the physiologic
assessment of multiple vital signs (e.g., respiration, heart
rate, body temperature, etc.) and abnormal observations,
which trigger immediate notifications that lead to early in-
terventions to prevent critical events from happening. Val-
idated EWS algorithms are also used to provide guidance
for optimizing patient management and guiding resource
allocation within healthcare organizations [39, 40].
Despite the wide adoption of EWS systems in critical

care medicine, similar types of warning scores have not
been developed for or applied to physical activity inter-
ventions. Since exercise relapse tends to hinder further
participation in physical activity, an early warning scor-
ing system with accurate predictions on exercise relapse
can be used to guide the provision of immediate inter-
ventions and has the potential to increase adherence.

Aims
In this paper, we use logistic regression (LR) and support
vector machine (SVM) methods to design two versions
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of a Discontinuation Prediction Score (DiPS), which uses
each individual’s past data (e.g., physical activity dur-
ation, physical activity intensity and goal achievement)
to assign a numeric value that quantifies their likelihood
of discontinuing physical activity in the upcoming week.
The potential utility of DiPS is to provide guidance for
provision of just-in-time interventions for individuals
who are more likely to have an exercise relapse. We con-
ducted a simulation to compare the cost-effectiveness of
a DiPS-based policy in promoting adherence. To the
best of our knowledge, this is the first to apply Machine
Learning methods to predict exercise relapse using ac-
celerometer-recorded physical activity data.
This paper is organized as follows: We first describe

the dataset of the Mobile Phone-Based Physical Activity
Education program (mPED). Then we describe our fea-
ture engineering procedure, where the raw data for each
individual is converted into a set of summary statistics
for each individual. Next, we define two versions of DiPS
using logistic regression and SVM, and quantify the pre-
diction accuracy of DiPS using an out-of-sample evalu-
ation methodology. Lastly, we discuss how DiPS can be
integrated into physical activity promotion programs
and present a simulation to explore the potential benefit
of using DiPS-based interventions to increase adherence
in a cost-effective way.

Methods
Study design and data description
This is a secondary data analysis of the mPED study
which is a randomized controlled trial (RCT). The main
results of the trial were published in [7]. The study
protocol was approved by the University of California,
San Francisco Committee on Human Research (CHR)
and the mPED Data and Safety Monitoring Board.

The mPED dataset
In this paper, we used the data of 210 community dwell-
ing physically inactive women, age 25 to 69 years. In
brief, this mPED trial was an unblinded, parallel ran-
domized controlled trial (RCT) conducted with three
groups (CONTROL, REGULA, and PLUS groups). The
trial consisted of a 3-week run-in period, a 3-month
intervention period using the app, accelerometer, and
brief counseling to increase physical activity, and a 6-
month maintenance period using accelerometer (and the
app) to maintain activity. The run-in period was con-
ducted to collect average baseline physical activity (daily
steps and MVPA). The CONTROL group was asked to
use an accelerometer for the entire 9-month (36-week)
study period, but did not receive any physical activity
intervention. In contrast, the REGULAR and PLUS
groups received the identical physical activity interven-
tion, consisting of accelerometer, brief in-person

counseling sessions, and mPED trial app for the first 3
months (12 weeks). Once registering each participant’s
average baseline daily steps onto the mPED trial app, the
app started displaying her weekly daily step goals which
were set to increase at a 20% rate from her average base-
line daily steps. Once her daily step goals reached 10,000
steps, she was asked to maintain at least 10,000 steps per
day, 7 days a week during the remaining study period.
Personalized automated feedback was provided daily via
the mPED trial app. In the 6-month (24-weeks) mainten-
ance period, the PLUS group kept both the mPED trial
app and accelerometer, while the REGULAR group kept
using only the accelerometer. The overall participant re-
tention rate was 97.6% at 9 months (36 weeks)[7]. In the
mPED trial, physical activity was measured using a tri-
axial accelerometer (HJA-350IT, Active style Pro,
Omron Healthcare Co., Ltd.). This accelerometer has
been previously validated [41, 42]. The accelerometer
automatically reset the count each midnight,and allowed
participants to view their counts for the past 7 days dur-
ing the 3-month intervention and 6-month maintenance
period. They were instructed to place the accelerometer
on the waist in line with the middle of the thigh of their
dominant leg and wear it from the time they got up in
the morning until they went to bed at night every day
except when showering, bathing, swimming, or sleeping
at night. Activity data from the most recent 150 days
were automatically stored and directly downloaded to a
computer in our research office. The following types of
physical activity data were collected:

METs data
The mean intensity value of a 1-min epoch is calculated
as the average value of six 10s epochs. Based on the
METs recordings, physical activity is automatically clas-
sified as no measurement, lifestyle activity and walking
activity. Moderate to vigorous intensity physical activity
(MVPA) is METs ≥3.

Steps data
The accelerometer provides information on the steps
value of a 1-h epoch and daily steps.

Features
We extracted a set of interpretable features from the ob-
jectively measured physical activity data. For each par-
ticipant, we defined the following features:

1. Week number t: the number of weeks in the study.
2. Average daily steps: average of daily steps from the

first day of the run-in period to the last day of week
t − 1.

3. Initial average daily steps: average of daily steps in
the run-in period.
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4. Last week average daily steps: average of daily steps
in week t − 1.

5. Average goal achieving percentage: percentage of
step goals achieved from the first day of the run-in
period to the last day of week t − 1.

6. Last week goal achieving percentage: percentage of
step goals achieved in week t − 1.

7. Average MVPA minutes in the morning: average
number of minutes with METs ≥3 in the morning
(3:00–9:59) from the first day of the run-in period
to the last day of week t − 1.

8. Initial MVPA minutes in the morning: average
number of minutes with METs ≥3 in the morning
(3:00–9:59) in the run-in period.

9. Last week MVPA minutes in the morning: average
number of minutes with METs ≥3 in the morning
(3:00–9:59) in week t − 1.

10. Average MVPA minutes in the afternoon: average
number of minutes with METs ≥3 in the afternoon
(10:00–14:59) from the first day of the run-in
period to the last day of week t − 1.

11. Initial MVPA minutes in the afternoon: the average
number of minutes with METs ≥3 in the afternoon
(10:00–14:59) in the run-in period.

12. Last week MVPA minutes in the afternoon: average
number of minutes with METs ≥3 in the afternoon
(10:00–14:59) in week t − 1.

13. Average MVPA minutes in the evening: average
number of minutes with METs ≥3 in the evening
(15:00–3:00) from the first day of the run-in period
to the last day of week t − 1.

14. Initial MVPA minutes in the evening: average
number of minutes with METs ≥3 in the evening
(15:00–3:00) in the run-in period.

15. Last week MVPA minutes in the evening: average
number of minutes with METs ≥3 in the evening
(15:00–3:00) in week t − 1.

16. Average MVPA intensity: average METs readings
for METs ≥3 from the first day of the run-in period
to the last day of week t − 1.

17. Initial MVPA intensity: average METs readings for
METs ≥3 in the run-in period.

18. Last week MVPA intensity: the average METs
readings for METs ≥3 in week t − 1.

Daily steps reflect the participant’s overall daily phys-
ical activity. Goal-achieving percentage demonstrates the
participant’s response to step goals. MVPA in different
time in day expresses the preferred time in day of per-
forming MVPA, and MVPA intensity is coarsely indica-
tive of the type of physical activity performed. We
separated a day into three intervals: morning (3:00–9:
59), afternoon (10:00–14:59), and evening (15:00–3:00)
because prior clustering analysis on this dataset [43]

identified three clusters of individuals who tend to do
physical activity in the morning (3:00–9:59), afternoon
(10:00–14:59), and evening (15:00–3:00), respectively.
Restated, our defined set of features includes daily

steps, goal-achieving percentage, MVPA in the morning,
MVPA in the afternoon, MVPA in the evening and
MVPA intensity: The complete set of features includes
all 18 features listed above, where we included the set of
features for the run-in period, in the last week and over
the entire study period. The set of features for the run-
in period are included to account for the initial differ-
ences between participants. The features on last week
behavior capture the immediate past performance. The
features on average behavior demonstrate the overall
performance of the participant so far during the study.
The week number is included to model the changes in
behavior over time.

Analytical methods
In this section, we first define the Discontinuation Pre-
diction Score (DiPS) in the context of a clinical trial.
Then we move on to introduce the statistical models
(i.e., logistic regression and Support Vector Machine)
used to develop this score.

DiPS definition
DiPS aims to predict the probability of having exercise
relapse (binary) for a particular participant at each week
of a physical activity promotion program based on re-
corded physical activity data in the early weeks. DiPS
outputs a score (between 0 and 1) to suggest how likely
is the participant to have an exercise relapse for the fol-
lowing week. For this paper, we use [0,1] as the interval
for DiPS since the model output is a probability. We fur-
ther define that a participant is having an exercise re-
lapse in a given week if the average steps in that week is
lower than the average steps in the run-in period. The
reason we use the run-in period average is that the
mPED trial was designed so that true baseline steps data
is collected from each participant during the run-in
period. Since the aim of these programs is to increase
participants’ daily steps, comparison with the run-in
average serves as a useful signal reflecting the progress
of the participant.
Recall that the 2018 National Physical Activity Guide-

lines use a week as the unit to measure activity time for
different physical activity intensity [17]. We adopt a
similar approach to use a week as an assessment unit.
Furthermore, this granularity can mitigate the impact of
large day-to-day fluctuations of daily steps. Note that for
a particular week in the past (thus with known data), a
participant has a DiPS of 0 if his/her weekly average step
is lower than his/her run-in average steps and a DiPS of
1 if his/her weekly average steps is higher than his/her
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run-in average steps. Therefore in the training phase,
DiPS can be regarded as a binary variable (since it is ei-
ther 0 or 1). But in the prediction phase, DiPS is a con-
tinuous variable in the range of [0,1], indicating the
likelihood of achieving an above run-in step in the fol-
lowing week.

Pre-processing
Recall that the mPED dataset contains 210 participants.
If we regard each participant as a single data point, our
sample is too small for the model to learn. Therefore, we
first augmented the training data by assuming that the
relationship between week i and i + 1 is independent of
the relationship between week j and j + 1 for i ≠ j, and
under this assumption, we can augment the training data
to include features for each participant for each observed
week. For instance, assume we are at week n of the study
and we want to train the model, then instead of using a
single observation for each participant using data in
week n − 1 as the response variable, our new approach
creates a set of observations for the participant, where
each observation uses data in week 3, 4, .., n − 1 as the
response variable and the corresponding features are
from weeks prior to that week. For example, suppose we
are at the end of week 5 of the study and would like to
generate observations for participant 1001. Then the
augmented training data contains 3 observations for par-
ticipant 1001, i.e., the complete set of features for week
2, 3 and 4; and the response variable is the observed
DiPS of participant 1001 in week 3, 4 and 5 respectively,
i.e., 0 if the participant’s average step in that week is
below the participant’s average step in the run-in period,

1 otherwise. Figure 1 illustrates a simplified example of
this training data augmentation procedure.

Statistical models
We developed two versions of DiPS using logistic regres-
sion (LR) and Support Vector Machine (SVM). These
two methods are standard machine learning methods for
classification. We used these two methods because they
are well-established off-the-shelf methods. LR has strong
interpretability which is important for model validation
and SVM is served as a validation method to evaluate
the robustness of this modeling approach to physical ac-
tivity data. Tree-based models are not evaluated in this
paper because their feature importance is difficult to in-
terpret and different evaluation methods can lead to
drastically different feature importance ranking.

Logistic regression
Since our response variable (exercise relapse or not) is
binary, our problem is a classification problem. There-
fore, logistic regression is a favorable statistical approach
because it has high interpretability and works well in
practice. Logistic regression models the log-odds using
an affine function.
The output of a prediction of the logistic regression

model for a given set of estimated parameters is a
numerical value indicating the likelihood of exercise
relapse. In addition to prediction, a fitted logistic re-
gression model can be valuable for interpretation, be-
cause we can identify the importance of features by
considering their corresponding coefficients. We used
the glm function with the binomial family in R [44]
for LR implementation.

Fig. 1 Simplified example of training data augmentation. Caption: the first table shows the raw physical activity data for two different participants
1001 and 1002 before augmentation and the second table shows the resulting data after augmentation, where the first six rows are the training
data and the last row is the testing data

Zhou et al. BMC Medical Informatics and Decision Making          (2019) 19:169 Page 5 of 11



SVM
Support Vector Machine (SVM) is a classification
method that uses separating hyperplanes. SVM selects
the hyperplane that gives the largest maximum distance
to the training examples. We used the svm function in
the e1071 package in R [44] for SVM implementation,
and [45] provides more theoretical details about the
SVM method.

Train and test data
We trained the models using the preprocessed data col-
lected in the first 15 weeks of the study. Then we used
the trained model to predict exercise relapse for weeks
16–30. We compared our logistic regression (LR) model
with 18 extracted features to the SVM model to demon-
strate prediction accuracy.

Simulation
In order to explore the potential benefit of using DiPS-
based intervention, we used simulation to compare a
DiPS-based intervention to a random intervention and a
steps-based intervention, by assuming a simple dynamic
step model with financial incentives. Our model assumes
that for each participant, his/her steps for day n + 1 is
determined as follows:

stepsnþ1 ¼ α∙stepsn þ C þ ϵ

where α is the correlation between steps for day n and
steps for day n + 1, and C is a constant. Here, ϵ is a ran-
dom variable that captures day-to-day fluctuations in
physical activity, and we use the model that ϵ is a uni-
form distribution with range − E to E for a constant E.
We further assume that steps0 is the average steps dur-
ing the run-in period. We used the mPED data to fit the
above model for each participant so that the i-th partici-
pant has model parameters {αi,Ci, Ei}. We used these
parameters when conducting our simulation.
In the simulation, we compare the number of adherent

participants after a 3-month intervention period, where
adherence is as defined in the methodology section: a
participant is adherent if his/her steps in the latest week
is greater or equal than his/her steps in the run-in
period. We consider the following three policies for an
intervention to increase adherence:

1. Random intervention: the probability of giving
intervention for a given day and a given participant
is p∗.

2. Step based intervention: give intervention if
observed daily step is below some threshold step∗.

3. DiPS based intervention: give intervention if
predicted DiPS score is below some threshold DiPS∗.

For simplicity, we assume the intervention is a financial
incentive (i.e., some dollar value for each intervention)
and that giving the intervention will lead to an increase of
500 steps for that day. (The actual responsiveness to a
fixed financial incentive will vary for each participant, and
this sensitivity can be adaptively estimated for each par-
ticipant using machine learning [16, 46]. We did not esti-
mate this sensitivity for the simulation because financial
incentives were not used in the mPED trial, and so the
data needed to be able to estimate sensitivity is not avail-
able.) Therefore, after the parameter estimation phase, we
use the resulting parameters to simulate data for a new
study using one of the three intervention policies. For-
mally, we have:

stepnþ1 ¼ α∙stepn þ C þ ϵþ 500un

where un follows one of the three intervention policies
described above:

1. un has a Bernoulli distribution with success
probability p∗.

2. un ¼ 1; if stepn−1 < step�

0; otherwise

�

3. un ¼ 1; if DiPSn < DiPS� and n mod 7 is 1 ði:e:; first day of weekÞ
0; otherwise

�

For this simulation, DiPS is computed using the steps
data and the week number since we do not observe the
other features. Also, the first two policies are assessed
daily, while the DiPS policy is assessed weekly and its
intervention occurs only on the first day of the week
when the predicted DiPS is smaller than the threshold.
We select a sequence of values for p∗,step∗,DiPS∗, com-
pute spending for each scenario and compare adherence
results under the three policies for the set of thresholds
with comparable total spend.

Results
We evaluated the performance of the models by compar-
ing their Receiver Operating Characteristics (ROC) curve
and Area Under Curve (AUC), where an AUC close to 1
indicates better performance of the classification task.
Table 1 shows the AUC of the predictions for weeks 16–
30 using the model trained by data from the first 15 weeks
(including the 3 weeks of run-in and 12 weeks of interven-
tion). Overall, the LR model has a higher average test
AUC of 0.9016, and the SVM model has a slightly lower
average test AUC of 0.8855. The high accuracy of both
models indicates the robustness of the selected features in
predicting DiPS. We show an example of the AUC curves
of the two models in week 20 (the AUC curves of other
weeks are similar) in Fig. 2 and observe that the optimal
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thresholds for the two models both have high accuracy (>
80%) and high specificity (> 80%).
Table 2 displays the confusion matrix of the observed

and predicted class for week 20 using the LR model with a
threshold of 0.5 (this is an example threshold, and not ne-
cessarily the optimal). DiPS obtains an accuracy of 85%
(179) and a specificity of 67% (141). The prediction accur-
acies in other weeks are comparable to week 20, confirming
the overall robustness of the model. Note the above analysis
was conducted on all participants, disregarding the
randomization group. Therefore, we conducted additional
analysis to evaluate whether the performance of the algo-
rithm is consistent with different randomization groups.
We conducted the ROC and AUC analysis for each of the
individual groups on their test data from weeks 16–30 and

present the results in Table 3. The outcome indicates that
in the beginning weeks of the maintenance period, the test
AUC of the CONTROL Group is lower than that of the
other two groups. But toward later weeks, the test AUC of
the CONTROL group increases. The PLUS group has the
highest test AUC for all weeks during the maintenance
period, except for week 20. The test AUC on the REGU-
LAR group is between those of the CONTROL group and
the PLUS group for 5 of the 20 weeks.

Model interpretation
An advantage of using LR as the machine learning
methods is its interpretability. For a fitted LR, the import-
ance of each feature can be assessed using the coefficients.

Table 1 Test AUC for predicting weeks 16–30 using the fitted model

Week 16 17 18 19 20 21 22 23

LR 0.932 0.861 0.900 0.893 0.892 0.925 0.884 0.916

SVM 0.905 0.866 0.886 0.879 0.882 0.900 0.862 0.894

Week 24 25 26 27 28 29 30 Mean

LR 0.876 0.920 0.912 0.900 0.900 0.915 0.899 0.902

SVM 0.825 0.900 0.904 0.885 0.905 0.889 0.899 0.886

Fig. 2 LR and SVM Prediction results. Caption: Receiver Operating Characteristics (ROC) curve of the predictions for week 20 using Augmented LR
and SVM: black solid line is LR and red dash line is SVM.
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Table 4 shows the feature importance for the fitted LR
model using data collected during the first 15 weeks.
Week number is highly significant (p-value < 0.001), and
the negative coefficients indicate that as the study pro-
gressed, participants were more likely to have exercise re-
lapses. Initial steps, mean steps and last week steps are
also all highly significant in predicting exercise relapse (p-
value < 0.001). In addition to steps, physical activity
intensity turns out to be a predicative feature. The positive
coefficient of last week intensity indicates that if a partici-
pant was doing higher intensity physical activity, she was
less likely to have an exercise relapse.

Simulation
By assuming a simple dynamic step model with financial
incentives, we used simulation to compare a DiPS-based
intervention to a random intervention and a step-based
intervention. Figure 3 shows the percentage of adherent
participants versus number of interventions per partici-
pant for the three intervention policies. The steps policy
(blue longer dash line) leads to the largest percentage of
adherent participants when on average less than 2.6

interventions were delivered to each participant. As we
increase the number of interventions, the DiPS policy
(red solid line) leads to the largest percentage of adhere
participants. The random policy (green short dash line)
and steps policy (blue longer dash line) have lower per-
formance, and the random policy appears to perform
slightly better than the step-based policy.

Discussion
Accuracy and interpretation of DiPS
The results of our model suggest that DiPS has test ac-
curacy around 80% and makes robust predictions across
different weeks in this study sample. This suggests that
DiPS could be a useful scoring for researchers and clini-
cians to tailor and adapt physical activity interventions
to prevent exercise relapses. Note that this paper is less
focused on finding the “best” ML method for this pre-
diction problem, but rather validating that ML methods
can be applied to the physical activity domain with high
robustness. As a next step, we will evaluate/validate this
framework against other ML methods, such as tree-
based models.
The most predictive features coming out of the LR DiPS

model are: week number, steps data (including initial aver-
age daily steps, average daily steps, last week steps), and
physical activity intensity data. In contrast, preferred MVPA
time in day was not significant. Furthermore, the coefficient

Table 2 Confusion matrix of the observed and predicted class
for week 20 using the augmented Logistic Regression approach
with a threshold of 0.5

True Class

Relapse Not Relapse Total

Predicted class Relapse 25% (53) 23% (49) 102

Not Relapse 4% (8) 48% (100) 108

Total 61 149 210

Table 3 Test AUC for predicting weeks 16-30 for each group
using the fitted model

Week CONTROL Group REGULAR Group PLUS Group

16 0.619 0.878 0.968

17 0.804 0.888 0.986

18 0.810 0.908 0.945

19 0.784 0.891 0.983

20 0.867 0.911 0.889

21 0.904 0.916 0.945

22 0.894 0.850 0.954

23 0.871 0.902 0.976

24 0.846 0.809 0.963

25 0.908 0.914 0.943

26 0.875 0.888 0.912

27 0.907 0.882 0.929

28 0.882 0.857 0.947

29 0.848 0.864 0.957

30 0.893 0.831 0.959

Table 4 Feature importance for the fitted augmented Logistic
Regression model for week 20

Feature Coefficient P-value

Intercept 1.378 0.033

Week number −0.122 < 0.001

Initial average daily steps −0.001 < 0.001

Average daily steps 0.0008 < 0.001

Last week average daily steps 0.0004 < 0.001

Initial MVPR morning −0.029 0.138

Initial MVPR afternoon 0.027 0.041

Initial MVPR evening 0.015 0.242

Average MVPR morning 0.067 0.02

Average MVPR afternoon −0.037 0.103

Average MVPR evening 0.005 0.805

Last week MVPR morning −0.032 0.058

Last week MVPR afternoon 0.001 0.920

Last week MVPR evening −0.003 0.797

Initial MVPA intensity −0.158 0.479

Average MVPA intensity −0.354 0.280

Last week MVPA intensity 0.515 < 0.001

Average goal achieving percentage 0.161 0.849

Last week goal achieving percentage 0.294 0.340
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of initial average daily steps is negative, indicating that par-
ticipants with a higher physical activity level during the
run-in period tended to have exercise relapse more often
on average. This is intuitive since we define exercise relapse
to be a comparison between current week steps and initial
steps, thus higher initial steps means a more difficult base-
line to beat. Furthermore, last week daily steps and average
daily steps have positive coefficients, indicating that partici-
pants who were more active in the last week and over the
entire study period were less likely to have exercise
relapses.

Efficient resource allocation using DiPS
The potential of DiPS to provide real-time feedback for
generating just-in-time interventions for individuals likely
to have an exercise relapse was explored through a simula-
tion that compared the cost-effectiveness of different pol-
icies to allocate financial incentives to encourage selected
individuals to increase their physical activity (Fig. 3).
Simulation outcome indicates that a DiPS-based inter-

vention is more effective in enhancing adherence,
compared to step-based and random interventions. Real-
time interventions that improve adherence through mo-
bile devices have not yet been implemented in physical
activity intervention studies. Cadmus-Bertram conducted

a study to track adherence using Fitbit, but no interven-
tion was given in accordance to the collected data [46].
Other studies introduced human moderation to monitor
adherence, and then schedule in-person sessions or
intervention calls to improve adherence [47, 48]. How-
ever, it is important to note that the simulation makes
many assumptions and is conducted to explore the
benefit that could potentially result, rather than to valid-
ate the model. Thus an empirical study is warranted to
confirm the simulation findings.

Incorporation of DiPS into physical activity promotion
programs
DiPS can be potentially incorporated into mobile tech-
nology based physical activity promotion programs that
collect real-time activity data. With the recent rapid de-
velopment of motion sensors and wearable devices, pre-
diction models, such as DiPS, using real-time activity
data, will allow researchers and clinicians to provide
automatically generate individualized, just-in-time inter-
ventions. For example, intervention messages can be de-
livered through push notifications for app-based
programs or through text messages. Such interventions
can be triggered automatically when a low DiPS is pre-
dicted. The content of such interventions can provide an

Fig. 3 Simulation results for the three intervention policies. Caption: Simulation outcome of number of adhere participants after a 3-month trial
with increasing spending under the three intervention policies: red solid line is DiPS based intervention; green shorter dash line is random
intervention; blue dash line is step based intervention.
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interactive dialog to identify the reason for relapse and
provide personalized suggestions. In addition, DiPS can
also assist in adjusting automated, personalized goals
where future step goals are reduced for those who are
ready to experience exercise relapse. In our recent trials,
like other trials, we found that personalized automated
personalized goal setting is more effective than standard
goal setting [35, 49–53]. Thus, DiPS has great potential.
However, several limitations need to be acknowledged.
First, the trial data used in this paper were collected
from only physically inactive female adults. Thus, DiPS
scoring will need to be tested and validated in other
populations, such as male adults and children. Second,
since we did not have objectively measured physical ac-
tivity data beyond 9months, prediction of DiPS scoring
beyond this time period might be lower than our find-
ings in this study. Therefore, the efficacy of DiPS scoring
for physical activity intervention needs to be tested in a
full-scale RCT in the near future.

Conclusion
DiPS is a machine learning-based score that uses logistic
regression or SVM on objectively measured step and goal
data, and it was able to accurately predict exercise relapse
with a sensitivity of 85% and a specificity of 67%. In
addition, simulation results suggest the potential benefit
of DiPS as a score to allocate resources in order to hope-
fully provide more cost-effective interventions for increas-
ing adherence. However, DiPS will need to be validated in
larger and different populations, and its efficacy will need
to be examined in a full-scale RCT in the near future.
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