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Group Structure Preserving Pedestrian Tracking
in a Multicamera Video Network

Zhixing Jin, Le An, and Bir Bhanu, Fellow, IEEE

Abstract— Pedestrian tracking in video has been a popular
research topic with many practical applications. In order to
improve tracking performance, many ideas have been proposed,
among which the use of geometric information is one of the most
popular directions in recent research. In this paper, we propose
a novel multicamera pedestrian tracking framework, which
incorporates the structural information of pedestrian groups in
the crowd. In this framework, first, a new cross-camera model is
proposed, which enables the fusion of the confidence information
from all camera views. Second, the group structures on the
ground plane provide extra constraints between pedestrians.
Third, the structured support vector machine is adopted to
update the cross-camera model for each pedestrian according
to the most recent tracked location. The experiments and
detailed analysis are conducted on challenging data. The results
demonstrate that the improvement in tracking performance is
significant when a group structure is integrated.

Index Terms— Group structure, multicamera, pedestrian
tracking.

I. INTRODUCTION

PEDESTRIAN tracking is one of the most important topics
in video technology that has drawn the attention of many

researchers over the years. It has made crucial contributions to
many important application areas, such as video monitoring,
security, surveillance, and resource management [1]. During
the past decades, there has been significant progress for
pedestrian tracking, and researchers have switched their atten-
tion from simple to much more complex scenarios [2]–[9].
For other computer vision tasks, such as image retrieval,
recent work [10] can jointly utilize both visual and textual
information to achieve satisfactory performance on finding
similar semantic content in complex scenes. However, con-
fronting the task of pedestrian tracking, which mainly relies
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on visual information, an acceptable performance still has not
been achieved due to various challenges encountered in the
real world.

One of the aspects that defines the complexity of a scenario
is the amount of occlusion among pedestrians in a video.
For a complex scenario, the occlusions of pedestrians can
be significant, which makes it one of the biggest challenges
in pedestrian tracking. The occlusion for each pedestrian
can be caused by various sources, such as static objects in
surrounding environment (e.g., buildings and trees) and other
pedestrians in the same scene, especially when pedestrians
are in a crowd. When occlusions occur, the appearance and
shape models, which are widely used in traditional tracking
approaches, become less reliable, which leads to degradation
in the performance.

To alleviate the adverse impact of occlusions, researchers
have proposed various methods from different perspectives,
including dividing pedestrian body into different parts and
training separate models for them [3], [11], changing camera
view angles to a bird view to avoid occlusions [12], using
information from both past and future frames in a certain
sliding window to construct pedestrian trajectories [3], [5],
or deploying multiple cameras with overlapping field-of-
views (FOVs) and integrating information from them [7], [13].

The fact that pedestrians have similar appearances is another
challenge that can cause a significant drop in tracking per-
formance. For different pedestrians, it is almost impossible
to distinguish them from one another using only the shape
features computed under normal camera resolution. In addi-
tion, the color features for different pedestrians may also be
similar in complex scenarios, especially when there are many
occlusions. Therefore, additional information needs to be
incorporated when tracking pedestrians in complex scenarios.
For example, the spatial and temporal information is one of the
most useful candidates that can provide significant help. The
use of the spatial and temporal information includes but is not
limited to checking distances between detections from con-
secutive frames when connecting them to form tracklets [3],
grouping pedestrians based on distance and velocity metrics
and taking the advantage of group information in pedestrian
tracking [5], and generating confidence masks according to
pedestrian velocity information when associating detections
and trackers [4].

In this paper, the pedestrian tracking problem that we focus
on contains crowded scenes, which may have many occlu-
sions when only a single camera is used. Therefore, multiple
cameras with overlapping FOVs can be utilized in order to
obtain better tracking performance. In addition, the spatial and
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temporal relationships among pedestrians are explored using
group structures. For each group, its structure is represented
by a minimum spanning tree that connects pedestrians, and
a structure preserving object tracking (SPOT) approach is
adopted [14]. At each time step, a group-based tracking stage
that can simultaneously locate groups and their pedestrians is
used instead of the original individual-based tracking.

The framework for the proposed approach is shown in
Fig. 1. For each pedestrian, a support vector machine (SVM)
classifier is trained for each camera view during the initial-
ization stage. At each time step, multiple groups are extracted
from the whole crowd based on the locations and velocities of
all pedestrians from the previous time step [5]. The structure
for each group is computed as a minimum spanning tree that
connects all the pedestrians [14]. Then, a combined confidence
map for each group is computed on the ground plane based
on the classifiers as well as the group structure. The group
location is tracked using this confidence map, and the location
for each pedestrian in the group is estimated at the same time.
Finally, the estimated pedestrian location on the ground plane
is used to update the cross-camera pedestrian model when the
classification result has a high confidence. As demonstrated in
recent research, the group information can be used to improve
tracking performance [5], [14]. Therefore, the proposed
framework is expected to outperform the tracking approaches
that do not exploit the structural information for each group.

The rest of this paper is organized as follows. Section II
gives a brief description on related work and the contributions
of this paper. The related work introduces tracking approaches
for both general purpose and pedestrian tracking, as well as
recent development in grouping-integrated pedestrian tracking.
Section III describes our proposed approach in detail.
Section IV shows the experimental results and provides more
detailed analysis and discussion of the results. Finally this
paper is concluded in Section V.

II. RELATED WORK AND CONTRIBUTIONS

A. Related Work

Most of the state-of-the-art tracking approaches can be
categorized as model-free methods, which are based on
sophisticated classification approaches, for example, the online
AdaBoost [15], multiple instance learning [16], and struck
(structured output tracking with kernels) [17] trackers. Based
on the observation that a single tracker may not always
work well, a symbiotic tracker ensemble is proposed in [18].
This fusion scheme is the first attempt on bypassing the
necessity of knowing all the details about an individual tracker,
and achieves optimal tracking performance. One of the most
important advantages of tracking approaches in this category
is that they do not require a well-defined region-of-interest, but
only a patch that is user defined or automatically detected for
initialization. At the beginning of tracking, an online classifier
is trained based on the features extracted from the initial patch.
Then, for later frames, this classifier is adopted using a sliding
window technique and those maximal outputs on the frames
are used to locate the targeted object. In most cases, the models

for tracked objects are built on appearance and shape fea-
tures [2], [14]–[17]. The online design for the classifier ensures
that it has the ability to update the model according to the
most recent tracking results, because the model may change
under different situations as time passes (e.g., illumination
or pose change and so on). Meanwhile, additional strategies
are adopted in these approaches to increase the tracking
performance, especially for some particular situations. One of
the most straightforward and useful enhancements is to use
group information when tracking multiple targets together. For
example, the SPOT [14] utilizes the structure information for
all the targets in a similar way as in [19] to help improve
performance.

For pedestrian tracking, however, methods specifically
designed for pedestrians only can be used to strengthen
the original tracking-by-classification approaches. For exam-
ple, pedestrians can be distinguished from general objects
based on the shapes of pedestrians by detection-based
approaches [19], [20], and the same pedestrian can be rei-
dentified under different environments and camera views
according to his/her characteristics [21]. Since pedestrians
are usually walking on the same ground plane, one common
setting used in surveillance systems is to deploy multiple
cameras with overlapping FOVs, so that information from
multiple views can be gathered and combined [6], [7], [13].
For each pedestrian in this scenario, the images captured by
different cameras may appear completely different, because
the perspectives of cameras differ from each other. As a
result, some difficulties in single-camera tracking systems,
such as occlusions, can be overcome more easily by gathering
and combining information from multiple cameras. Thus,
the probability that each pedestrian can be confidently tracked
in at least one camera becomes significantly higher.

From a different point of view, the structures of crowds
have received more attention, since one of the most important
characteristics of human beings is social interaction with one
another. In other words, group formation, when people are
walking together, is one of the most natural and widely
observed social behaviors. This social behavior has been
studied from different perspectives. For example, the group
structure has been analyzed in detail [22], and the application
of groups in crowd simulation has demonstrated its own
value [23]. In the field of computer vision, many researchers
have also shown that the spatial and temporal relationships
among pedestrians are useful in enhancing the performance
of a tracking system, especially when the appearance and
shape features are not reliable. For example, the data associa-
tion between tracklets can be greatly improved by different
grouping strategies, and thus, boosting the tracking perfor-
mance [5]. The pedestrian tracking in a nonoverlapping video
network, in which different camera views are captured under
different conditions, can also be improved by using group
information [24]. Even for general objects (not pedestrians)
that do not necessarily have the characteristics of sociability,
the integration of group structure can still help in improving
the tracking performance [14]. Although related to the method
in [14], our approach is different. In particular, in [14], only
2D information is used for constructing spatial relationship

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 18,2020 at 20:14:41 UTC from IEEE Xplore.  Restrictions apply. 



JIN et al.: GROUP STRUCTURE PRESERVING PEDESTRIAN TRACKING IN A MULTICAMERA VIDEO NETWORK 2167

Fig. 1. Framework of the proposed method. At each time step, the groups in the crowd are first determined by the grouping approach, and the structure for
each group is obtained (grouping stage), and then, the tracking is performed on each group using its structural information (tracking stage). The appearance
scores are normalized to [0, 1] and shown using different colors (blue for 0 and red for 1).

among objects, while in our approach, we extend this to 3D
by using a cross-camera model and project the object locations
onto the ground plane for grouping purpose.

B. Contributions of This Paper

As compared with the state-of-the-art tracking systems,
the contributions of this paper are as follows.

1) The multicamera pedestrian tracking system uses
a two-stage tracking on the ground plane: a group-
ing stage and a tracking stage. In the grouping stage,
the groups within the crowd are formed, and the struc-
ture for each group is represented using a minimum
spanning tree. The tracking stage is extended from the
SPOT [14]. For each group, its structure is preserved,
and the locations for the whole group as well as for each
pedestrian in the group are determined at the same time.

2) A new cross-camera model is proposed for the tracking
system. For each pedestrian, one appearance model is
maintained for each view, and the information from
all camera views is fused together on the ground
plane before the tracking stage. After the locations for
the pedestrians are determined, the updated locations
are then projected back to all views to update the
appearance models, if necessary.

3) The tracking system is tested on challenge data. As com-
pared with our preliminary work [25], in this paper,

the differences with and without grouping stage are
analyzed in detail. Furthermore, the performance under
different crowd densities is discussed.

III. TECHNICAL APPROACH

Fig. 1 shows the framework for the entire tracking system,
which can be mainly divided into two stages for each time
step: 1) the grouping stage that forms the groups for all the
pedestrians in a frame based on their location and velocity
information from the previous time step, and computes the
structure for each group and 2) the tracking stage that locates
each group and all its pedestrians at the same time, and
update the cross-camera model for each pedestrian who has
a high confidence. The group-based tracking is derived from
SPOT [14]. In this section, we will first revisit the original
SPOT approach, and then we describe our improvements
and contributions in detail. Table I summarizes the important
notations used in this section. Note that the subscript and
the superscript (e.g., i and v indicating pedestrian index
and camera index in Bv

i ) are explicitly expressed only when
necessary for more concise presentation.

A. Structure Preserving Object Tracking

The SPOT approach is designed for single-camera generic
object tracking when there are multiple objects (or patches)
in the scene. It maintains the structural information
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TABLE I

SUMMARY OF IMPORTANT NOTATIONS

(spatial relationship) on all objects and this information is
further used in determining their new locations. The approach
can be generally divided into three steps: 1) compute a confi-
dence map for each object; 2) track objects together using
their confidence maps; and 3) for each object, update its
corresponding classifiers using structured SVM. The feature
used in the approach is the histogram of oriented gradients
(HOG) feature with contrast normalization. In the following,
the model, inference, and learning of the SPOT approach will
be introduced. Interested readers are referred to [14] for more
details on SPOT approach.

1) Model: Since it is designed for tracking general objects
using a single camera, the representation for the bounding
box for each object needs four parameters Bi = {xi , wi , hi },
where xi = (xi , yi ) indicates the location within a frame
and (wi , hi ) is the size information (width and height). In this
approach, all the objects that need to be tracked are considered
as in a single group G, i.e., for each object i, i ∈ G.
Then, the set of bounding boxes for all objects is defined as
a configuration, C = {Bi |i ∈ G}. The structure of this group
is represented by a spanning tree, whose edges are represented
by an indicator function E(·, ·), where E(i, j) = 1 means that
the edge between objects i and j is included in this tree. Given
a frame I , the feature extraction for each bounding box Bi is
represented as φ(I, Bi ). The output for the function φ(·, ·) is
a concatenated feature vector, i.e., HOG feature in this case.

For each object i , there is a corresponding weight vector wi ,
which is initialized using an SVM classifier based on the fea-
tures extracted from the first frame when this object appears.
Therefore, at each time step, the appearance score for each
object i that measures the similarity between an observed
image patch and the current object model is computed
as wT

i φ(I, Bi ).
The integration of structural information among all the

objects is represented by adding the edge constraints between
objects. Thus, the complete score of a configuration C at any
frame is given by

S(C, I, θ) =
∑

i∈G

wT
i φ(I, Bi )− λi j

∑

E(i, j )=1

‖(xi − x j )− ei j ‖2

(1)

where xi and x j are the current locations of objects i and j ,
ei j is a vector indicating the previous spatial relationship

between them, λ represents the penalty for the spatial deforma-
tion, and θ is the set of all parameters, θ = {wi |i ∈ G}∪{ei j |i,
j ∈ G, E(i, j) = 1}.

2) Inference: At each time step, the optimal configura-
tion C∗ that maximizes (1) needs to be obtained given the para-
meter set θ . In particular, this optimization can be performed
in linear time using a combination of dynamic programming
and min-convolution for a tree-structured graph [14]. In the
tree-structured graph, each edge is formed by a node and its
parent. Thus, a message-passing procedure can be used to pass
information from object i to its parent node j using

Rij (xi ) = wT
i φ(I, Bi )+

∑

∀k �= j :E(k,i)=1

μk→i (xi ) (2)

μi→ j (x j ) = max
x′i

(
Rij

(
x′i

)− λ
∥∥(

x j − x′i
)− ei j

∥∥2)
. (3)

For each object i , its message that is sent to object j is
determined by three facts: 1) the appearance score at bounding
box Bi ; 2) all the incoming messages from its child nodes;
and 3) the regulation from the spatial relationship between
i and j . For a tree-structured graph, this message passing starts
from the root node, and the optimization finishes after a full
forward–backward pass along the tree.

3) Learning: After the optimal configuration C∗ is
obtained, the appearance model wi for each object may need
to be updated as well. In [14], the learning part is conducted
based on a structured SVM. The optimal configuration is
considered as a true positive example in the learning process.
A margin function �(C, C∗) is defined for the structured
SVM, based on the overlapping rate between the two con-
figurations, that is

�(C, C∗) =
∑

i∈G

(
1− Bi ∩ B∗i

Bi ∪ B∗i

)
. (4)

The output of the function is limited to [0, |G|], where 0 can be
reached if and only if C = C∗. Then, the loss of the structured
SVM can be defined as

L(θ, I, C∗) = max
C

(S(C, I, θ)− S(C∗, I, θ) +�(C, C∗)).

(5)

Since (5) only contains a set of affine functions without
quadratic terms, it is a convex function with respect to the
parameter set θ . Therefore, a gradient-based learning schema
can be employed to solve this problem. Let us define the
configuration C̄ that provides the most negative result with
respect to the optimal configuration C∗ as

C̄ = arg max
C

(S(C, I, θ)+�(C, C∗)). (6)

Then, the general form for the gradient (with respect to θ )
of the loss function in (5) can be obtained as

∇θL(θ, I, C∗) = ∇θ S(C̄, I, θ)− ∇θ S(C∗, I, θ). (7)

However, sometimes, this gradient does not behave very
well. To elaborate, we want to distinguish each object in
the scene not only from the background but also from other
objects, whereas because of the penalty, the most negative
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configuration C̄ intends to avoid using the same set of bound-
ing boxes in C∗ with a different structure. So in most cases,
for each object, its most negative configuration cannot be
bounding boxes for other objects. Thus, C̄ cannot provide
enough information to update object models, so that they
can distinguish themselves from each other. To avoid this,
a modified gradient equation is used, in which the computation
of configuration score does not contain the structure penalty.
The modified search direction p is defined as

p = ∇θ S̃(C̄ ′, I, θ)−∇θ S(C∗, I, θ) (8)

where the modified computation for the most negative config-
uration C̄ ′ is

C̄ ′ = arg max
C

(S̃(C, I, θ)+�(C, C∗)) (9)

and the confidence score is only based on the appearance score

S̃(C, I, θ) =
∑

i∈G

wT
i φ(I, Bi ). (10)

It is easy to show that this search direction p and the true
gradient are on the same direction, since p·∇θL(θ, I, C∗) > 0.
In this case, the learning process will still converge [14]. The
configuration C̄ ′ can be obtained efficiently using the same
inference approach, as described in Section III-A2, except for
the regulation from the spatial relationship.

The search direction is then used to update the parameter
set, with a controlling parameter K , such that

θ ← θ − L(θ, I, C∗)
‖p‖2 + 1

2K

p. (11)

The parameter set for object i is only updated when the
confidence at the patch Bi is larger than a threshold Tc.

B. Group Structure Preserving Pedestrian Tracking

Although the SPOT tracking approach [14] is able to utilize
the structural information of groups, it needs several necessary
extensions before it is suitable to be used in our multicamera
pedestrian tracking system. The main extensions are: 1) the
incorporation of the grouping stage before the tracking stage
and 2) the proposal of the cross-camera model for pedestrians.
By adding the grouping stage, the crowd of pedestrians is
divided into several groups rather than a single group in the
original approach [14], and the tracking is done for each
group separately. The cross-camera model maps and fuses
each pedestrian’s information from all different cameras onto
the ground plane; thus, it builds a confidence score map for
each pedestrian on the ground plane. This works as the view-
based confidence map in the original SPOT tracker [14]. In the
following, we describe these extensions in detail.

1) Grouping Stage: A major limitation of the SPOT track-
ing approach [14] is that it does not have an automatic
grouping step. The groups of objects have to be manually
assigned and their structures need to be precomputed before
tracking. In addition, the group information is fixed during the
entire tracking process. Therefore, a grouping stage is added in
our pedestrian tracking system to make the system applicable
to the complex real-world scenarios.

We have adopted a state-of-the-art pedestrian tracking
method [5] for our grouping stage. In [5], the pedestrians are
grouped based on their current status, i.e., their locations as
well as velocities. Note that our pedestrian tracking system
works in a video network that consists of multiple cameras
with overlapping FOVs and we use homography to map image
planes to the ground plane. Therefore, using the location and
velocity information on the ground plane for all pedestrians
in our tracking system becomes a better choice than using the
information on image planes.

For each pedestrian i , his/her status on the ground plane
is represented as (x g

i , yg
i , ug

i , v
g
i ), where pi = (x g

i , yg
i ) indi-

cates the location and vi = (ug
i , v

g
i ) indicates the velocity.

A pairwise grouping score is computed between every two
pedestrians based on their spatial relationship, according to
their locations and velocities, that is

Sg
i j = Dg

i j · V g
i j (12)

where Dg and V g are the scores computed based on the
location and the velocity relationship between pedestrians i
and j , respectively. The two scores are calculated using

Dg
i j = 1− 2

π
arctan(dist( pi , p j )) (13)

V g
i j =

1

exp(vel( vi , v j ))+ 1
(14)

where dist( pi , p j ) is a relative distance between the two
pedestrians and vel( vi , v j ) is the relative velocity between
them. These two items are computed by

dist( pi , p j ) = max

(
0,
‖ pi − p j‖2

ri + r j
− 1

)
(15)

vel( vi , v j ) = 2
‖ vi − v j‖2

ri + r j
(16)

where ri and r j are the radius for pedestrian i and j ,
respectively. For simplicity, we assume that all the pedestrians
have the same radius (size) in our system, that is, ri = r j = r .
The operations in the definition of dist(·, ·) ensure that the
smallest distance between any two pedestrians is the sum of
their radii (2r ). The range of Dg and V g is (0, 1].

From the above equations, we can observe a significant
difference between our grouping strategy and the strategy
in [5]. Since the grouping strategy in [5] aims to group
tracklets, which consist of information from multiple frames,
the grouping score for each frame is computed and then
averaged over all frames to obtain the grouping score between
two tracklets. However, in our tracking system, we adopt
a grouping strategy that supports an instant decision, which
means that at each time step, the groups are determined based
only on the information from the previous time step. This
strategy is more robust against the change in the number of
groups.

With these pairwise grouping scores, the labels that indicate
whether two pedestrians are in the same group or not can be
obtained using a threshold Tg . When two pedestrians i and j
have a grouping score Sg

i j ≥ Tg , the indicator function E(i, j ) is
set to 1, otherwise 0. Then, the groups of all pedestrians are
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extended from these pairwise connectivities. If two pedestrians
i and j are connected [E(i, j ) = 1], and i and k are connected
as well [E(i,k) = 1], then we label i , j , and k as belonging
to the same group. This step iterates until the groups are
converged. As a result, given the set of all pedestrians P = {i},
a group of pedestrians is defined as a set of pedestrians
Gi = {i1, i2, . . . , in |1 ≤ ik ≤ |P|} that forms a connected
graph. In addition, any two groups Gi and G j in the set of
groups G = {Gi } are nonoverlapping, Gi ∩ G j = ∅(∀i, j).
The structure for each group G is computed over its edge set
E = {ei j |i, j ∈ G, E(i, j ) = 1}, and the weight of an edge
is defined as the Euclidean distance between two pedestrians.
The SPOT tracking [14] is then conducted for these groups.
Note that this grouping stage is performed at each time step
before the tracking stage, the groups, and their structural
information may be different from frame to frame.

2) Cross-Camera Model: The object model in [14] also
needs to be extended to utilize and update information from
all camera views. Similar to the original model, we define
a bounding box Bv

i = (xv
i , yv

i , wv
i , hv

i ) for each pedestrian i
in each camera view v(v ∈ V), where xv

i = (xv
i , yv

i ) is the
frame location and (wv

i , hv
i ) is the size information (width and

height).
For generic object tracking, the size information of a bound-

ing box is usually unpredictable, because the positions of the
camera and the targeted object, as well as the actual 3D shape
of the object, are arbitrary. However, in pedestrian tracking
systems, the targets are usually walking pedestrians, with
a similar shape from almost all perspectives (except to those
images that were captured in a bird view). Therefore, we use
a scaling technique to represent the size of the bounding
box for a single pedestrian. In particular, we set a standard
size for all pedestrian bounding boxes as (w, h) and the
scale of an arbitrary pedestrian bounding box is computed as
lvi = hv

i /h. That is, the size of the pedestrian’s bounding box
can be represented as (w · lvi , h · lvi ), using only one scaling
variable lvi . As a result, the status for a bounding box Bv

i in
our system can be redefined as Bv

i = (xv
i , yv

i , lvi ).
Accordingly, for each pedestrian i , a configuration is

defined as all corresponding bounding boxes for all cam-
era views Ci = {Bv

i |v ∈ V}, and a configuration for
all the pedestrians in a group G ∈ G is then defined as
C = {Ci |i ∈ G}.

Another difference between this cross-camera model and
the original model used in [14] is the feature extraction.
The original model uses the HOG feature with contrast
normalization. However, this feature descriptor by itself is
not sufficient in a pedestrian tracking system, since it may
fail to distinguish one pedestrian from another. Therefore,
in the current approach, we also incorporate color feature
in addition to the original HOG feature. Given a bounding
box Bv

i and a frame I v , we first resize the bounding box and
the frame according to the scale lvi , so that the bounding box is
resized to the standard size (w, h). The HOG feature and the
color feature are then extracted on the resized frame. We use
�(I v , Bv

i ) to indicate this new feature extraction process.
The updated feature extraction concatenates the color features
and the HOG features.

For a pedestrian i in camera view v, the appearance score
on this camera view can be calculated as

cv
f

(
Bv

i , I v , wv
i

) = wv
i

T ·�(
I v , Bv

i

)
(17)

where wv
i is the trained weight vector on the features extracted

using structured SVM. Then, the fused appearance scores on
the ground plane can be obtained by

cg(Ci , I, θi ) = 1

‖V‖
∑

v∈V
Hv

(
cv

f

(
Bv

i , I v , wv
i

))
(18)

where I is defined as the set of all frames across all views
I = {I v |v ∈ V} and θi = {wv

i |v ∈ V}. Hv (·) is a projection
function that transforms the appearance scores at the frame
coordinates of camera view v to the scores at the corre-
sponding coordinates on the ground plane. Since most of the
cameras used in pedestrian tracking systems have perspective
views, we use homography to project the feet locations of all
pedestrians.

Therefore, for a configuration C, its complete score can be
calculated using the following equation corresponding to (1):

Sg(C, I,�) =
∑

i∈G

cg(Ci , I, θi )

− λi j

∑

E(i, j )=1

‖( pi − p j )− ei j ‖2 (19)

where ei j is the edge vector indicating the location difference
for pedestrians i and j on the ground plane from the previous
time step. � is the set of all parameters, � = {θi |i ∈ G} ∪
{ei j |i, j ∈ G, E(i, j) = 1}.

Using the inference similar to Section III-A2, the optimal
configuration C

∗ for all the pedestrians in a group can be
obtained. The only difference is that all the calculations in the
inference are done on the ground plane. In other words,
the fused appearance score cg(Ci , I, θi ) and the location pi

on the ground plane are used instead.
The model updating or model learning process is also

different from the original work [14], since the models for
all camera views need to be updated together. The margin
function for the structured SVM is extended to all camera
views, that is

�(C, C
∗) =

∑

v∈V

∑

i∈G

(
1− Bv

i ∩ Bv∗
i

Bv
i ∪ Bv∗

i

)
. (20)

The loss function is defined according to the complete scores
on the ground plane and the extended margin function

L(�, I, C
∗) = max

C

(Sg(C, I,�)−Sg(C
∗, I,�)+�(C, C

∗)).

(21)

It may seem that this extended loss function is more complex
than the original one in (5). However, the calculations of this
loss function are still limited to a set of affine functions,
without any quadratic terms. Therefore, it is still a convex
function with respect to the parameter set �, which is the
same as in the original work [14].

With this loss function, the learning procedure is essentially
the same as the procedure described in Section III-A3, except
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that all the scores used are the fused scores on the ground
plane. The search direction is defined as

pg = ∇� S̃g(C̄′, I,�)−∇�Sg(C∗, I,�) (22)

where C̄
′ and S̃g are computed as

C̄
′ = arg max

C

(S̃g(C, I,�)+�(C, C
∗)) (23)

S̃g(C, I,�) = 1

‖V‖
∑

v∈V

∑

i∈G

wv
i

T φ
(
I v , Bv

i

)
. (24)

Since the weight vectors wv
i are concatenated in the parameter

set �, they can also be updated using (11), with the global
information for L(�, I, C

∗) and pg provided

�← �− L(�, I, C
∗)

‖pg‖2 + 1
2K

pg. (25)

3) Complexity Analysis: The original SPOT tracker [14]
needs the confidence map for each object [O(n) where n is the
number of objects] and then accomplishes the group tracking
based on inference [O(n)]. So the complexity for the complete
system is still O(n).

Compared with the original SPOT tracker, the proposed
approach has an additional grouping stage and extends the
object model to a cross-camera model, which uses information
from all camera views. In the grouping stage, the computation
of pairwise grouping score Sg

i j and the determination of the
group structure require a complexity of O(n2) (n is the number
of pedestrians). In the cross-camera model, the computation
of the confidence map for each view for each pedestrian
is the same as in the original SPOT tracker [14], which
is O(n), so the calculation of the confidence score on the
ground plane is O(|V|n) where |V| is the number of views.
Therefore, in the proposed approach, the overall complexity
becomes O(n2 + |V|n). Note that the computational cost for
the confidence score map on the ground plane is necessary
as we need to gather information for all pedestrians from all
camera views.

IV. EXPERIMENTS

In order to evaluate the proposed group structure preserving
pedestrian tracking approach, experiments are conducted on
several challenging sequences from publicly available data
sets. In addition, to provide further evidence of the effec-
tiveness of the proposed approach, more detailed analyses are
provided. We describe the experimental results as well as their
corresponding discussions in this section.

A. Experimental Settings
1) Data: We use two sequences for the experiments, both

from the PETS 2009 data set. The first sequence is the S2.L1
(795 frames), containing low density crowd in the scenario.
Another sequence is the S2.L2 (435 frames) that has medium
density crowd. For the first sequence, Views 1, 5, and 7
are used for tracking. For the second sequence, frames from
Views 1 and 2 are used in our experiments. For each view,
we manually annotate the ground truth for every five frames;
the ground truth in between frames is obtained using linear
interpolation. On the ground plane, the ground truth is com-
puted using principal-axis-based correspondence [26] for all
camera views.

2) Implementation Details: In the original SPOT tracking
approach [14], two tree models are tested: a minimum span-
ning tree model and a star model. In our implementation,
we only use the minimum spanning tree model. The reasons
are twofold: 1) our grouping output provides an initial edge
set for each group, which means that two pedestrians in the
same group may not be directly related and 2) the original
work [14] shows that the minimum spanning tree model has
a better performance than the star model.

Moreover, since the inference for each group is performed
on the ground plane, the computation is rather time-consuming
when the ground plane is divided into a dense grid (details
in Section IV-B). Therefore, the appearance score for each
pedestrian for each view is only computed in a small search
region around its previous location. As a result, the fused
appearance score on the ground plane can also be limited
to a small region. The size of the search region for each
pedestrian on each camera view is set to 320 × 240 with
the bounding box resized and centered at the previous frame
location of this particular pedestrian. This choice of size is able
to significantly reduce the computation time, while it is not
too small for recovery from potential drifting. The location for
pedestrians on the ground plane is obtained using the principal-
axis-based computation [26].

In addition, for each bounding box, not all possible scales
are used in appearance score calculation, since the scale
change for a walking pedestrian from frame to frame is
relatively small. In the experiment, we use three scale levels:
0.95, 1, and 1.05. The appearance score at each position is
the largest one among the scores computed under these three
levels. For each pedestrian, each tracker is initialized using
manual annotation to avoid unnecessary errors. A tracker is
considered as inactive if its score cannot exceed the threshold
for more than ten consecutive frames. This means that the
parameter set � of the tracker is not updated.

3) Parameter Settings: The standard size of each pedes-
trian patch is set to 64 × 128, which is commonly used in
pedestrian detection. The ground plane is set to a grid with
a size of 700× 700. The size of each cell in the grid is
∼6 cm× 6 cm, which is determined empirically. For each
view v, we manually label four corresponding points on the
image plane and the ground plane to estimate the projection
functions Hv (·). The estimated radius of pedestrians r is set
to five cells (about 30 cm).

For the parameters, we follow the settings from the original
work [14]. That is, λi j in (19) is set to 0.001, the confidence
threshold Tc is set to 0.4, and the control parameter K in the
model learning (11) is set to 1. We have empirically found
that these parameter settings provide satisfactory results. The
training of the initial weight vector wv

i uses libSVM [27]
with precomputed kernel matrix and default parameters. The
grouping threshold Tg is set to 0.2 in all experiments.

B. Results

In this section, the results for the two complete sequences
S2.L1 and S2.L2 from PETS 2009 are provided first, followed
by the detailed analysis.
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Fig. 2. Sample frames for sequence S2.L1. Two frames (#272 and #757) with Views 1, 5, and 7 are shown. The left two columns show the tracking results
with and without grouping, respectively. The right column contains the corresponding ground truth. The bounding boxes with the same color in different
views are for the same pedestrian.

1) Complete Sequences: Fig. 2 shows the results for
frames #272 and #757 from the sequence S2.L1
Views 1, 5, and 7. Fig. 3 shows frames #065 and #420
from the sequence S2.L2 Views 1 and 2. The first column
shows the tracking results with grouping; the frames in
the second column are the results obtained when tracking
pedestrians without grouping, and the third column provides
the ground truth.

We use multiobject tracking precision (MOTP) and multiob-
ject tracking accuracy (MOTA) [29] to quantitatively evaluate
the tracking performance. The evaluation is conducted on both
the camera views and the ground plane.

Since the information for each pedestrian is represented as
a bounding box in each camera view, the accuracy of the
tracker is computed based on the overlapping ratio between the
tracked bounding box and the ground truth. The overlapping
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Fig. 3. Sample frames for sequence S2.L2. Two frames (#065 and #420) with Views 1 and 2 are shown. The left two columns show the tracking results with
and without grouping, respectively. The right column contains the corresponding groundtruth. The bounding boxes with the same color in different views are
for the same pedestrian. The total number of pedestrians in this sequence varies between 10 and 36.

ratio of two bounding boxes is defined as the area of their
intersection divided by the area of their union, which falls in
the range of [0, 1]. The tracking is considered to be accurate
when the overlapping ratio is greater than 0.5.

On the ground plane, however, the information for
each pedestrian is maintained using point-based location.
Thus, we use a Euclidean distance-based calculation for
accuracy computation

d(tr, gt) = max

(
0, 1 − ‖ptr − pgt‖2

4r

)
. (26)

When d(tr, gt) > 0.5, the tracked location is considered
to be accurate. That is, the distance between the tracked
location ( ptr) and the ground truth (pgt) is smaller than the
diameter of a pedestrian.

Table II shows the MOTP and MOTA evaluation results
for the two sequences. The results reveal that the structural
information for groups improves the performance of the

tracking system under different crowd densities. In addition,
the improvement is more obvious under medium density
crowd scenarios (S2.L2) compared with low-density crowd
scenarios (S2.L1). This is reasonable, since in general, more
potential groups exist when crowd density gets higher, which
means that the structural information of groups is more useful.

Compared with our previous tracking system [28] that is
integrated with a crowd simulator, the evaluation results on the
ground plane are better for both the sequences. For sequence
S2.L2, the results on camera views from the current system
are similar to [28]; but for sequence S2.L1, the evaluation
results on Views 5 and 7 are not as good as those in [28]. The
main reason for this is that the sizes of the bounding boxes
in the current system cannot be drastically changed (shown
in Fig. 2, Views 5 and View 7), while in [28], the sizes are
determined by pedestrian detections. Therefore, a bounding
box, which may still be centered at the correct position,
may not be evaluated as accurate, since its overlap with the
ground truth is small. However, this does not have significant
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TABLE II

MOTP AND MOTA EVALUATION FOR TWO SEQUENCES

TABLE III

MOTP AND MOTA EVALUATION FOR ALL THREE SEGMENTS

FROM PETS 2009 S2.L2

impact on tracking on the ground plane, since the location
on the ground plane is determined by the principal axis of
the bounding box. Conclusively, with the cross-camera model,
the group structural information helps pedestrian tracking in
a multicamera video network, especially for the pedestrian
locations on the ground plane.

2) Detailed Analysis: The first experiment investigates
the tracking performance under different crowd densities.
We select three segments from sequence S2.L2. The first seg-
ment starts from frame #0, the second starts from frame #115,
and the third starts from frame #300. Each segment has
20 frames. For the first segment, there are about 30 pedestrians
in the scenario; for the second one, there are about 20 pedes-
trians; and for the third one, there are about 10 pedestrians.
The evaluation results on these three segments are reported
in Table III. We can observe that the tracking performance is
improved under all three different pedestrian densities.

The second experiment aims to study the tracking per-
formance for those pedestrians who are involved in groups
only. Since sequence S2.L2 is more complicated than S2.L1,
we use this sequence for this analysis. At first, the ground truth
of groupings is obtained by running our grouping approach
over the ground truth of pedestrian locations and velocities
on the ground plane. Then, among all the groups that last
more than 30 frames, we randomly select 20 groups, and
for each group, we randomly select 20 continuous frames
for testing. The tracking is performed on these 20 groups,
and for each run, the results are evaluated only on those
pedestrians who are in the corresponding group. Besides the
MOTP and MOTA metrics, we use distance-based evaluation
as well. The distance on each frame is computed as the
pixel-based Euclidean distance between the centers of the
tracked bounding box and the ground truth. The distance on

TABLE IV

TRACKING PERFORMANCE ON SEGMENTS FROM PETS 2009 S2.L2
FOR PEDESTRIANS IN GROUPS ONLY

TABLE V

AVERAGE PROCESSING TIME FOR EACH FRAME AND

EACH PEDESTRIAN FOR PETS 2009 S2.L2

the ground plane is computed as the cell-based Euclidean
distance. Two different tracking strategies are investigated:
tracking individually and tracking in groups. The results are
reported in Table IV. The significant differences observed in
this experiment suggest that the performance improvement is
brought by the structural information of groups. Fig. 4 shows
the sample results for tracking two pedestrians in a group using
two different strategies.

C. Computational Cost

As mentioned in Section III-B3, the proposed approach has
an overall complexity of O(n2 + |V|n), and the computation
time of confidence score is already minimal. So the only
extra computation is the grouping cost. However, in reality,
the computation for the confidence score is usually time
consuming, so that the additional cost for the grouping may
not be observable. Table V shows the average processing time
for each frame and each pedestrian with/without grouping
under different pedestrian densities for the data sequence
PETS 2009 S2.L2. The tracking system is implemented in
C++ using OpenCV 2.41 and Visual Studio 2012, and
it runs on a laptop with Intel i7 2675QM 2.8 GHz and
8-GB RAM. The results show that the average processing
time is almost identical under different pedestrian densities,
and the difference between systems with and without grouping
is very small. This means that the grouping strategy does not
significantly increase the computational time, while it helps
improve the tracking performance.
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Fig. 4. Sample frames for tracking two pedestrians in a group using two different strategies. From the left column to the right column, four frames (#048,
#053, #058, and #063) are shown. The top two rows show the tracking results with and without grouping, respectively. The last row contains the corresponding
ground truth. Frames are enlarged and cropped for better illustration.

V. CONCLUSION

In this paper, a new approach that tracks pedestrians in
a multicamera video network is proposed. A unique merit
of this approach is that it preserves group structure during
tracking. At each time step, the integrated grouping computes
the groups of all pedestrians based on their previous locations
and velocities, and calculates the structural information for
each group. The extended structure preserving tracking is
then used for each group for tracking pedestrians, and a new
cross-camera model is used to fuse information from multiple
camera views. After the inference on the ground plane has
been made, the locations for all the pedestrians in the group
are determined jointly, and the model for each pedestrian can
be updated according to the new information. The experiments
on challenging data demonstrate that the integration of group
structural information can help improve the tracking perfor-
mance significantly.
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