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Abstract

Categorical and coordinate stimulus processing were hypoth-
esized by Kosslyn (1987) to be lateralized visual tasks, dif-
ferentiated by task-relevant spatial frequencies. Slotnick et al.
(2001) directly tested Kosslyn’s hypothesis and concluded that
the lateralization presents only when tasks are sufficiently dif-
ficult. Our differential encoding model is a three layer neural
network that accounts for lateralization in visual processing
via the biologically plausible mechanism of differences in con-
nection spread of long-range lateral neural connections (Hsiao,
Cipollini, & Cottrell, 2013). We show that our model accounts
for Slotnick’s data and that Slotnick’s analysis does not con-
vincingly explain their results. Instead, we propose that Koss-
lyn’s initial hypothesis was based on an incorrect assumption:
categorical and coordinate stimuli are not solely differentiated
by spatial frequencies. The results that our model captures
cannot be reproduced by Ivry and Robertson’s (1998) Dou-
ble Filtering by Frequency theory, which is driven solely by
lateralized spatial frequency processing.

Keywords: Differential encoding; hemispheric asymmetry;
spatial frequency processing; categorical vs. coordinate

Introduction
The human brain is composed of two largely disconnected
hemispheres that communicate via a bridge of neural con-
nections known as the corpus callosum. The level of relative
disconnection and redundancy suggests that, for some cogni-
tive processes, it may be advantageous for each hemisphere
to specialize and reduce redundancy. This functional special-
ization, or “lateralization,” occurs in many diverse cognitive
facilities in humans (Stephan et al., 2003) and non-humans
alike (Rogers & Andrew, 2002). Examples in humans include
fine motor skills and language processing, both of which are
left hemisphere dominant (Knecht et al., 2000). Of particular
interest to us is visual lateralization. Past studies have shown
visual lateralization in processing stimuli ranging from fre-
quency gratings to facial recognition (e.g. Ivry & Robertson,
1998; Sergent, 1985).

Navon’s (1977) hierarchical letters are one visual stimu-
lus showing lateralization. These consist of a large, “global”
letter (e.g., “T”) that is composed of small, “local” letters
(e.g., “F”). Sergent (1982) showed an advantage in identify-
ing the local level target (the letter F in the above example)

presented when flashed in the right visual field/ left hemi-
sphere (RVF-LH), and the reverse (the letter T in the above
example) in the left visual field/ right hemisphere (LVF-RH).
She concluded that the LH performs better with high spatial
frequency (HSF) stimuli, whereas the RH does better with
low spatial frequency (LSF) stimuli. Kitterle, Christman, and
Hellige (1990) directly tested this hypothesis with frequency
gratings and showed that the lateralization was driven by task
demands, rather than purely by stimulus properties.

Inspired by Sergent’s (1982) theory, Ivry and Robertson
(1998) proposed their Double Filtering by Frequency (DFF)
theory to explain these asymmetric processing results. DFF
theory proposes that the hemispheres identically first select
the frequency bands relevant to the task, but then are biased
so that the left hemisphere preferentially processes HSFs, and
the right hemisphere LSFs. DFF theory also accounts for data
suggesting that frequency processing differences between the
hemispheres are not absolute, but instead are relative to the
frequency band relevant for solving the task (Christman, Kit-
terle, and Hellige, 1991). Finally, their model accounts for the
categorical and coordinate spatial relations proposed by Koss-
lyn (1987) and Kosslyn, Koenig, Barrett, Tang, and Gabrieli
(1989), described below. However, there is no neurological
basis for the core mechanisms of the DFF theory, nor is there
a developmental explanation of how or why this phenomenon
would emerge (see Cipollini, 2014 for further discussion).

Kosslyn (1987) and Kosslyn et al. (1989) argued that hu-
mans process visual stimuli using two distinct types of spatial
relations. Coordinate relations rely on an absolute, metric ba-
sis; for example, the statement “the glass of water is 3 inches
from my hand” defines a coordinate judgment of one’s hand
and the glass of water. In contrast, categorical relations rely
on abstract, relative terms. The statement “the glass of wa-
ter is on top of the table” does not tell us exactly where the
glass is, only its relative position to a table. In his 1987 pa-
per, Kosslyn observed a RVF-LH advantage for categorical
relation judgments and a LVF-RH advantage for coordinate
relation judgments in response time. Other work (e.g. Hel-
lige & Michimata, 1989) provided further support for this hy-
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pothesis with more varied types of stimuli (e.g., a bar and dot
stimulus).

However, Sergent (1991) found that this lateralization ef-
fect presented only when stimuli were degraded, and several
analyses have noted that the lateralization only presents in
right-handed people (Slotnick, Moo, Tesoro, & Hart, 2001).
Other researchers likewise found weak or inconclusive evi-
dence for lateralization of categorical and coordinate stim-
uli, especially for the LH advantage on categorical stimuli
(Okubo & Michimata, 2002). Nevertheless, researchers gen-
erally agree that a distinction exists, even if it is weaker than
originally thought (see Jager & Postma, 2003 for a review).

In light of these conflicting data, Kosslyn and colleagues
now argue that lateralization in categorical and coordinate
stimuli results from a differential frequency processing, po-
tentially based on lateralization in neuronal receptive fields
(see Baker, Chabris, & Kosslyn, 1998; Kosslyn, Chabris,
Marsolek, & Koenig, 1992). In support of this hypothesis,
Okubo and Michimata (2002) showed that the RH coordinate
advantage, but not the LH categorical advantage, was elimi-
nated by contrast balancing, which removes low spatial fre-
quency information without degrading stimuli.

Slotnick et al. (2001) revisit Categorical / Coordinate
Of particular interest here are the experiments and results
of Slotnick et al. (2001). In past experiments, researchers
flashed stimuli in one visual field or the other, leaving room
for interhemispheric interference. To isolate lateralization ef-
fects, Slotnick et al. ran a clinical study on 134 subjects, each
of whom had at least one hemisphere temporarily deactivated
by an intracarotid injection of sodium amobarbital.

Using the same stimuli as in Kosslyn et al. (1989), Slot-
nick et al. (2001) sought to reproduce their results in sub-
jects with deactivated hemispheres. In addition, they added
a new stimulus type, paired squares, which was designed to
resist “categorization” of coordinate tasks, whereby a subject
on later trials during an experiment learns a coordinate task
(e.g., is the plus more than two inches from the minus) and
turns it into a categorical task (Slotnick et al., 2001). This
explanation had been proposed to explain the weakening of
the RH advantage on coordinate stimuli. The paired squares
coordinate stimulus forces the subject to make a direct metric
comparison between the two parts of the stimulus.

Unlike the original paper, Slotnick et al. (2001) mea-
sured results by classification error, rather than reaction time.
Though the results generally aligned with Kosslyn’s hypothe-
sis, one coordinate experiment did not show the expected RH
dominance, instead showing lateralization opposite of that in
the original paper. The authors noted that distances between
components of their figures (e.g. the blob and dot), were
larger in their experiments than in Kosslyn et al. (1989). Dif-
ficulty has been reported to modulate lateralization in other
experiments (e.g. Sergent, 1985), and so they posited this
made the task too easy to show proper lateralization. Con-
sequently, post-hoc they stratified the tasks by difficulty and
found that only when a task is sufficiently difficult does later-

alization arise as expected.

Differential Encoding Model

Figure 1: Taken from Hsiao, Cipollini, and Cottrell (2013),
this diagram shows the autoencoder models with varying con-
nection spreads and symmetric connections. Notice the left
hemisphere’s hidden units connect to a more spread out set of
neurons on average, while maintaining the same number of
connections.

Competing with DFF theory is our Differential Encod-
ing (DE) theory (Hsiao, Shahbazi, & Cottrell, 2008; Hsiao,
Cipollini, & Cottrell, 2013). It is inspired by an anatomical
difference in the auditory system’s long range lateral connec-
tions (LRLCs). On average, a LH neuron connects to neigh-
bors generally farther from itself than the RH neurons do
(Galuske, Schlote, Bratzke, & Singer, 2000). The DE model
hypothesizes these LRLCs as the driving factor behind visual
lateralization as well. Compared to the DFF theory, the DE
model has the advantage of having neurodevelopmental and
neuroanatomical plausibility (Cipollini, 2014).

Computationally, the Differential Encoding model is a
standard 3-layer neural network which can be thought of as a
recurrent neural network unrolled one step in time. The first
set of connections is a sparse autoencoder, trained on natural
images, to represent how a stimulus might be transformed in
the early stages of the brain using low level processing such
as Gabor filters. Each neuron in the autoencoder corresponds
to a spatial location, and it connects to 5 other neurons gen-
erated randomly from a Gaussian centered around the neuron
itself. The LH and RH networks vary by the standard de-
viation, or sigma parameter, of the Gaussian, to mimic the
lateralized connection spread of the LRLCs, seen in Figure 1.

Note that this differs from a Gaussian receptive field. A
network with Gaussian receptive fields has fixed connections,
and the strength of the connections are determined by a Gaus-
sian. In the DE model, the lateral connections themselves
are stochastic and determined by randomly sampling from a
Gaussian, and the strength of the connections are learned by
training.

In Hsiao, Cipollini, and Cottrell (2013), the authors show
that the autoencoder in the DE model reconstructs natural im-
ages in accordance with the predictions of Sergent (1982).
Specifically, the RH model reconstructs low spatial frequency
(LSF) components of a stimulus better, whereas the LH
model reconstructs HSF components better.

Once trained, each hemisphere’s hidden units are then con-
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Figure 2: These are the stimuli from Slotnick et al. (2001). Note that paired squares only had a coordinate task, whereas
blob/dot and plus/minus have both categorical and coordinate.

nected to a task-specific output unit that is trained by the delta
rule to learn some task. In this way, the information repre-
sented by the hidden layer is tested as to what tasks it is best
at. We have found in many experiments that the LH model is
better at tasks that require HSFs, and vice-versa for the RH
model (Hsiao, Cipollini, & Cottrell, 2013).

In addition to the autoencoder properties outlined above,
the model has accounted for Sergent’s (1982) data, as well as
Kitterle, Christman, and Hellige’s (1990) data showing task
dependence of lateralization (Hsiao, Cipollini, & Cottrell,
2013). This suggests the DE model has the very frequency
encoding properties that Sergent (1982) hypothesized. As
Kosslyn and colleagues have suggested (e.g., Baker, Chabris,
& Kosslyn, 1999), the distinction between categorical and
coordinate stimuli may stem from lateralized frequency pro-
cessing. Therefore, we test the network on Slotnick et al.
(2001)’s stimuli to further establish the relationship between
our model and frequency lateralization, as well attempt to
reach parity with the DFF on these stimuli.

Materials and Methods
Our stimuli mimic those of Slotnick et al. (2001)
The stimuli used in the 2001 study can be seen in Figure 2.
There are three types of stimuli: blob/dot, plus/minus, and
paired squares. All three stimulus types involve coordinate
tasks. Blob/dot requires an evaluation of how far apart the
blob and dot are, and plus/minus likewise requires an eval-
uation of how far apart the plus and minus are. The paired
squares task, in contrast, requires judging whether the two
sets of paired squares are equidistant or not. The former two
stimulus types also have categorical tasks. The blob/dot cate-
gorical task requires evaluating whether the dot is on the blob
or off of it, and the plus/minus categorical task requires eval-
uating whether the plus is on the right or the left. There is no
categorical task for paired squares.

For the plus/minus and blob/dot coordinate stimuli, “near”
configurations were those where the distance between the
plus and minus or blob and dot measured smaller than a refer-
ence distance of 2 inches; the “far” configurations were larger
than 2 inches. In our model, the reference distance was 5.5
and 6 pixels for plus/minus and blob/dot respectively.

Slotnick et al. (2001) hypothesized that these tasks are
harder when the distance between stimulus components are
close to the reference distance of 2 inches. They defined
“hard” configurations as those where the distance between

stimulus components fell within the range of [1, 3] in inches,
i.e. within one inch from the reference distance of 2 inches.
“Easy” configurations were those outside of this range. In our
model, “hard” configurations were those where the distance
fell within 2 pixels of the reference distance, and “easy” were
the other stimuli. Stratifications for paired squares coordinate
and the two categorical tasks were less principled and will be
explored below.

Simulation Procedure
The simulation was implemented in MATLAB. All code is
open source1. Input images were implemented as bitmaps,
following the images published in the original paper as best
possible. To accomplish this, plus/minus and paired squares
images were 34x25 pixels. Due to the need for increased
resolution, blob/dot images were 68x50 pixels. Due to the
varying resolutions, the experiment sizes had different hyper-
parameters. Of particular interest, the 34x25 images had a RH
and LH standard deviation (sigma) of 4 and 10 pixels respec-
tively; the 68x50 had 4 and 15. In both cases, each neuron
had five connections per hidden unit, with one hidden unit
corresponding to each pixel of the image. Our train and test
data were the same, so to prevent overfitting, we used heavy
regularization. Specifically, we used a relatively high amount
of dropout of 0.7 (Srivastava, Hinton, Krizhevsky, Sutskever,
& Salakhutdinov, 2014) and introduced noise on the input.

The human experiment used 100 LH subjects and 124 RH
subjects; however, 54 hemispheres of patients deemed abnor-
mal or otherwise compromised (e.g. those with parietal lobe
tumors) were excluded (Slotnick et al., 2001). We followed
the same analyses done in the human experiment, and in an at-
tempt to roughly match statistical power, we instantiated each
hemisphere in our computational model 100 times. Instantia-
tions with outlier performance were discarded, so there were
slightly fewer than 100 instantiations for the final results.

Results and Discussion
The output of the DE model is a real-valued number be-
tween 0 and 1, where 0 and 1 represent the target labels (e.g.
off/on for categorical blob/dot). Error is measured as the sum-
squared error (SSE) between the model’s output and the true
label. In Slotnick et al. (2001), they measure mean percent
error in classification. The different measurements means y-

1https://github.com/guruucsd/DifferentialEncoding/releases/tag/
slotnick
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Figure 3: Differential Encoding (left) results follow the overall Slotnick et al. (2001) results for task x hemisphere interactions,
which can be seen as the slope of each line. Note that since hemispheric performance, not absolute performance, was relevant,
y-axes were re-scaled to emphasize slope.

axes are not directly comparable, but in this experiment we
are concerned with the relative performance of hemispheres
on each task. We simply compare the slopes in Figure 3 to
see how well the DE model fits the human data.

From Figure 3, it is clear that the DE results do not fol-
low the human data perfectly, but the key concepts are cap-
tured. Categorical blob/dot, coordinate blob/dot, and categor-
ical plus/minus all showed the expected LH advantage. Co-
ordinate plus/minus shows no LH advantage (F1,195=0.0669,
p > 0.75), and categorical plus/minus has a stronger LH lat-
eralization than it (F1,391=12.96, p <0.001). Crucially, the
anomalous result in the original paper persists: categorical
blob/dot is not more LH-dominant than coordinate blob/dot
(F1,396=1.200, p >0.25), as it was in Kosslyn et al. (1989).

Paired squares on first glance appears to have reverse lat-
eralization as in the human data. However, paired squares
was extremely volatile, and that advantage disappears or re-
verses spontaneously. Statistically, lateralization was non-
significant: there are large error bars for paired squares,
and the repeated-measures anova of this data reveals this
same non-significance (F1,198=0.115, p >0.9). Slotnick et al.
(2001) reported this stimulus had only marginal statistical sig-
nificance (p <0.1) in their results as well. Therefore, while
we plan to investigate this stimulus further, for now, we are
less concerned that it did not show LH dominance.

The middle and bottom rows in Figure 3 show the results of
the human data and the DE model for easy and hard subsets
respectively. Our model replicates the results well. Before
further analyzing the results, we take a closer look at Slotnick

et al.’s (2001) difficulty stratification, to understand what re-
lationships across difficulty are crucial to replicate.

Revisiting Slotnick et al. (2001)
Slotnick et al. (2001) directly measured lateralization in sub-
jects who had a hemisphere temporarily deactivated as part of
a presurgical evaluation for treatment of intractable epilepsy.
This meant the authors only ran their experiments once.
When their data contradicted Kosslyn’s results, they ran a
post-hoc analysis of the data to explain their results. The cru-
cial takeaway was that lateralization presented only if the task
is difficult enough.

We find reasons to doubt Slotnick et al.’s conclusions.
First, there are critical inconsistencies in their figures. If the
easy and hard instances of a task both lateralize in the same
direction, then combining all trials together should as well.
Yet, as shown in Figure 3, coordinate plus/minus overall does
not lateralize, though its easy and difficult subsets did. This
discrepancy is never addressed in their paper.

In addition, most of the stratifications between easy and
hard were not built in a principled manner and therefore lack
validity. Slotnick et al. (2001) state that the stratification of
the paired squares task was an empirical heuristic, as there
was no neat way of differentiating easy and hard stimuli. Sim-
ilarly, they note that no analogous concept of difficulty exists
for categorical stimuli, so they just used the same division as
their coordinate counterparts.

The coordinate blob/dot results are both internally consis-
tent and well-principled, but the other tasks are not. The over-
all results of Slotnick et al. (2001), matched by our compu-
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Figure 4: Frequency preferences of the DE model for each task. Y-axis is network accuracy, while x-axis marks the center of
the frequency window on which a bandpass filter is applied. If spatial frequencies drive categorical and coordinate processing,
we should see better performance on categorical tasks at HSFs and vice-versa at LSFs. We do not see this pattern.

tational modeling, are not adequately explained by difficulty
stratification. We now look for an alternate explanation.

Spatial frequency selectivity within the DE model
Kosslyn and colleagues (e.g. Baker, Chabris, & Kosslyn,
1999) concluded that categorical and coordinate processing
lateralized according to preferential frequency processing. As
originally hypothesized in Sergent (1982), the LH is thought
to outperform the RH in processing HSFs and vice-versa
for LSFs. Numerous experiments have shown lateralization
as a function of filtering stimuli to specific frequency win-
dows (e.g. Sergent, 1985). The Differential Encoding model
has also shown this same differential frequency processing
(Hsiao, Cipollini, & Cottrell, 2013).

To examine whether spatial frequency differences drove
results on these five tasks, we tested the model with differ-
ent bandpass filters for each task. Specifically, all networks
trained on the same, unchanged image patches to learn the
same features, simulating typical visual experience. How-
ever, the perceptron was trained and tested on stimuli run
through a bandpass filter window of size four and eight CPI,
for 34x25 and 68x50 images respectively. This would allow
us to empirically deduce which frequencies the network best
responded to. Results were agnostic to a host of parame-
ter choices, including sigma, dropout, and bandpass width
(within reason), so we believe the results are general to the
task, and not specific to anything about our network setup.

Per Kosslyn’s hypothesis, we expected to see lateralization
in accordance with task type: there should be increased cate-
gorical performance on HSFs and likewise for coordinate and
LSFs. Figure 4 shows the results. Coordinate paired squares

is almost parabolic with a minimum around 10 CPI. Coordi-
nate plus/ minus is largely agnostic to frequencies, whereas
categorical shows bimodal preference, with the global mini-
mum at HSFs. Categorical blob/dot performed equally well
at the windows centered from 10 to 18 CPIs, whereas coor-
dinate performed best in the window centered at 10 CPIs and
was locally parabolic around that area. Beyond roughly 20
CPI, critical image features are lost and in both cases the net-
works perform poorly.

There is no unified trend of stimulus type and frequency.
Considering the DE model both captures the critical relation-
ships outlined in Slotnick et al. (2001) and accounts for spa-
tial frequency filtering (Hsiao, Cipollini, & Cottrell, 2013), it
appears something besides frequency underlies the categori-
cal and coordinate dichotomy. We plan to explore this further
via contrast balancing (Okubo & Michimata, 2002).

Conclusion
We show in this paper that the DE model both replicates hu-
man data on the categorical and coordinate dichotomy and
doesn’t behave strictly in accordance with spatial frequencies.
This calls into question the hypothesis about spatial frequen-
cies driving coordinate and categorical lateralization. It also
provides a point of differentiation between DFF theory and
the DE model. Limited to spatial frequency information, DFF
would be unable to replicate the conflicting data in Slotnick
et al. (2001) as the DE model does.

In addition, we have shown in other experiments that DE
models of a larger sigma encode more information at higher
spatial frequencies, and vice-versa for smaller sigmas. Fur-
thermore, stimulus size mediates this relationship: as image
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size increases, so too does the point where the LH networks
outperform the RH networks. We are pursuing this as an ex-
planation for the relative frequency effect, noted in Christ-
man, Kitterle, and Hellige (2001).

The DE model already accounts for faces and the categor-
ical and coordinate results. If we can account for the relative
frequency effect, we have superseded the DFF with a model
that is biologically grounded and is informative about exper-
iments to run in biology and psychology.
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