
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Essays on institutions and innovation in natural resource industries

Permalink
https://escholarship.org/uc/item/3rz0j97s

Author
Gilbert, Benjamin Travis

Publication Date
2011
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rz0j97s
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Essays on Institutions and Innovation in Natural Resource Industries

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Economics

by

Benjamin Travis Gilbert

Committee in charge:

Professor Theodore Groves, Chair
Professor Richard Carson
Professor Josh Graff Zivin
Professor Mark Jacobsen
Professor Dale Squires
Professor Junjie Zhang

2011



Copyright

Benjamin Travis Gilbert, 2011

All rights reserved.



The dissertation of Benjamin Travis Gilbert is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Chair

University of California, San Diego

2011

iii



DEDICATION

To Mama.

iv



EPIGRAPH

This is a valley of ashes–a fantastic farm where ashes grow like wheat into ridges

and hills and grotesque gardens; where ashes take the forms of houses and

chimneys and rising smoke and, finally, with a transcendent effort, of men who

move dimly and already crumbling through the powdery air. Occasionally a line of

gray cars crawls along an invisible track, gives out a ghastly creak, and comes to

rest, and immediately the ash-gray men swarm up with leaden spades and stir up

an impenetrable cloud, which screens their obscure operations from your sight.

—F. Scott Fitzgerald, The Great Gatsby

The evolution of the capitalist style of life could be easily – and perhaps most

tellingly – described in terms of the genesis of the modern Lounge Suit.

—Joseph Schumpeter
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ABSTRACT OF THE DISSERTATION

Essays on Institutions and Innovation in Natural Resource Industries

by

Benjamin Travis Gilbert

Doctor of Philosophy in Economics

University of California, San Diego, 2011

Professor Theodore Groves, Chair

Technological progress is associated with both excessive depletion and im-

proved conservation of environmental resources. This dissertation explores the role

of technological progress under different regulatory and producing institutions.

The first chapter, “Firm Boundaries and Impure Public Goods”, establishes

a relationship between property rights, firm structure, and productivity. I adapt

the theory of the firm to show that reducing common-pool externalities can lead

to mergers (distinct from permit consolidation among low cost firms) and greater

human capital investments. These predictions are supported by data from the New

England groundfish industry where some groups called “sectors” were exempted

from input controls and given a collective output quota. Sectors exhibited bet-

ter managerial performance (i.e., higher productivity) relative to non-sector firms

xiii



following the change, but the species composition of their harvest shifted consid-

erably.

The following two chapters investigate technology adoption and produc-

tivity in common-pool resource industries. The second chapter, “Technological

Change and Managerial Ability: Evidence from a Malaysian Artisanal Fishery”,

uses stochastic frontier analysis to compare the productivity of technology adopters

in the gillnet fishery on the east coast of Peninsular Malaysia. Technologies in-

clude cell phones, GPS, sonar, and mechanical winches for hauling nets. Electron-

ics adopters were more productive than non-adopters on average but difficult to

distinguish from efficient non-adopters, while adopters of mechanical net haulers

had low technical efficiency, low labor productivity and high labor use. Our re-

sults suggest capital investments in new technology may tie the least successful

participants to the fishery despite most respondents’ self-reported desire to exit.

The dynamic implications of these findings are explored in the third chap-

ter, “Exogenous Productivity Shocks and Capital Investment in Common-pool

Resources”. We develop a compound Poisson process to model rapid adoption of

technologies in common-pool industries. Technology shocks lower the equilibrium

resource stock while causing capital buildup based on transitory quasi-rents. The

steady state changes from a stable node to a shifting focus with boom and bust

cycles, even if only technology is uncertain.

xiv



Chapter 1

Firm Boundaries with Impure

Public Goods

Abstract

This paper addresses how environmental regulations affect firms’ organiza-

tional choices, such as the decision to merge or not with other firms, and how these

choices further influence their environmental footprint. Market-based environmen-

tal regulations can represent large changes in the rights to use natural resources.

I apply a model of firm boundaries to the case of a common pool resource and

evaluate the effect of changes in property rights on firms’ organization and perfor-

mance. The model predicts that reducing common-pool externalities will influence

ex ante performance investments, leading to mergers or collective ownership. The

framework is extended to a “relational contract” setting where the size of the

externality determines the informal agreements that can be sustained through re-

peated interactions. I provide supporting evidence from a quasi-experiment in

the New England fishing industry where some groups called “sectors” were given

collective rights to a quota share. I estimate time-varying, firm-specific productiv-

ity parameters to capture changes in firm performance. Sector participation lead

to improved performance relative to similar independent fishing boats, even after

controlling for selection and vessel fixed effects. Patterns of specialization and har-

vest composition also changed dramatically within sectors, suggesting potentially

1
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large unintended ecological consequences associated with multi-product firms after

a shift in property rights and firm structure.

1.1 Introduction

Market-based environmental regulations can represent large changes in the

rights of firms to access and exploit natural resources. To a certain extent firms can

make marginal adjustments to the new rules, but in response to large regulatory

changes firms may choose to reorganize production processes or recombine with

other firms with better complementarities. This observation raises two related is-

sues. First, how do environmental regulations affect firms’ organizational choices,

such as the decision to merge or not with other firms? Second, how do organi-

zational choices influence the environmental profile of the merged or reorganized

firm relative to its status quo? This paper begins to unravel these questions for

the case of a common pool resource industry. I use a model of firm boundaries (the

Grossman-Hart-Moore “property rights theory” (Grossman and Hart (1986), Hart

and Moore (1990))) to evaluate the effect of changes in resource rights on firms’

organization and performance, and I provide supporting evidence for the theory

using panel data from a quasi-experiment in the New England fishing industry.

A few examples may help illustrate why firm organization is an important

factor in environmental regulation. Trading schemes for carbon emissions, wetland

mitigation credits, and fishing catch shares are just a few examples of potentially

transformative changes in the rules for natural resource industries. Carbon permit

trading and renewable energy mandates may have different effects on a utility’s

decision between building its own wind or solar plants and buying clean power from

merchant generators. The amount of renewable energy delivered to customers,

however, depends on the match quality between technology (e.g., type of panel

or turbine) and location (e.g., weather patterns and distribution networks). If

ownership distorts the incentives for parties to collaborate to find the best match

ex ante, then regulations that bias the make-or-buy decision will also bias the

ex post fuel mix. In the wetland case, evidence suggests that in recent years
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land developers have been better able to mitigate wetland destruction by buying

mitigation services from third-party “conservation bankers” (Robertson (2006)).

This presents a puzzle as to why these services are more valuable when provided

from outside the firm than from within.

In the fishing industry, independent vessels are rumored to provide each

other services in informal networks despite fierce competition at the industry

level (Wilen (2007)). Are these relationships more likely to become formalized

or marginalized under individually tradable catch share systems? The most pro-

ductive individuals could simply buy more shares and compete more independently,

or fishers could retain the rights and invest in their collaborative partnerships. In

many cases firms have not adhered to strictly competitive, cooperative, or corpo-

rate structures following the implementation of stronger rights, opting instead for

hybrid structures. The production processes resulting under different organiza-

tional choices can have different impacts on the resource stocks and their habitats.

Thus boundary issues could also affect how firms innovate based on complemen-

tarities with their potential partners, parents, or subsidiaries. The U.S. National

Oceanic and Atmospheric Administration is promoting a draft policy to encour-

age catch share adoption in fisheries nationwide, the design of which is likely to

influence these boundaries.

In this paper I explore how the property rights model of firm boundaries

can inform policies that alter property rights in common-pool resource industries,

e.g., where certain inputs are nonexcludable but rival in use. I show that clos-

ing off the commons can raise the incentives to invest in specific human capital

that is more productive in integrated firms than in independent firms. Mergers

are more likely, and collective ownership can dominate in some cases. The merger

effect explored here is distinct from the simple consolidation or exit of redundant

inputs and describes the optimal organizational form for a given production level

and regulatory regime. I extend the framework to a repeated game setting where

informal “relational contracts” over ex ante investments are supported by repu-

tation through grim-trigger punishment strategies, following Baker et al. (2002).

In this context, a wide variety of ownership structures exists and the equilibrium
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is highly dependent on case-specific parameters such as the variability of the re-

source, the long run value of human capital relative to deviation payoffs, and the

relative rate at which externalities in the common-pool erode these values. This re-

flects empirical patterns in common-pool resources, particularly in the developing

world, where observed ownership structures vary widely depending on local condi-

tions and institutions (Ostrom (2007),Ostrom et al. (2007),Schlager and Ostrom

(1992)).

I provide supporting empirical evidence using a quasi-experiment from the

New England groundfish industry, where overfishing has been a persistent prob-

lem. Firms have typically been comprised of independent fishing vessels under

command-and-control regulations. After 2004, federal regulators allowed two small

groups of vessels called “sectors” to collectively manage a secure output quota for

their primary fish species, Atlantic cod. They were allowed to choose any internal

allocation rule for the cod catch as long as their harvest did not exceed their group

quota. Thus the possible outcomes could have ranged from an internal “race to

fish” among members, to a de facto trading system over portions of the quota, to

an integrated corporate structure with coordinated harvest and marketing strate-

gies. My theoretical model predicts that the stronger property right would lead to

more centralized management and greater ex ante investments in performance.

The result was a hybrid of these possibilities. Sectors rewarded competitive

fishing by making individual vessels residual claimants to their own harvest, but

hired a central manager and held monthly meetings to coordinate the strategic

timing of the harvests. One sector implemented a collective strategy to diversify

its catch portfolio and pursue species with healthier stocks. This sector sponsored

independent scientific research on new fishing techniques and shifted its pattern of

specialization from being entirely specialized in cod to having different vessels spe-

cialized in different species. Still other vessels joined the sectors to sell or lease their

groundfish rights to the rest of the group and stopped fishing for groundfish species

entirely. This pattern of diversification and specialization suggests potentially large

unintended ecological consequences associated with multi-product firms following

a shift in property rights and firm structure. To measure performance, I exploit
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the near daily frequency of data from captains’ logbooks to estimate time-varying,

vessel-specific productivity parameters for both sector and independent vessels

while addressing sources of bias from unobserved factors that may have influenced

endogenous matching, sample and program selection, and input choice. Sector

vessel performance, as measured by productivity gains, improved significantly rel-

ative to comparison vessels in most regression specifications1. These findings have

implications for many other settings in which establishing environmental property

rights may cause changes in institutional form and the composition of production.

The rest of the paper is organized as follows. Section 1.2 provides some

background on the relationship between the environmental policy literature and

the literature on institutional form and discusses important complementarities.

Section 1.3 describes the model setup, and section 1.4 analyzes the equilibrium of

the model and considers examples of collective ownership in addition to private

integration and non-integration. Section 1.5 extends this analysis to settings with

repeated interactions and reputational effects. Section 1.6 describes the experience

with sector formation in the New England groundfish fishery and the data used

in the empirical analysis. Section 1.7 describes the empirical approach. Section

1.8 discusses the results of the empirical investigation. Section 1.9 summarizes,

discusses future research, and concludes.

1.2 Background

Much of the environmental economics literature on market-based regula-

tion treats firms as fixed atomistic entities. But firm boundaries matter because

they are determined by the same real-time managerial decisions and ex ante in-

vestments that influence the firm’s external damages through technology choices,

productivity, and abatement capabilities. These decisions and ex ante investments

can be highly specific to the relationship between individual firms because of the

1Nonmarket social benefits such as intergenerational fishing opportunity, resource conserva-
tion, and community-based decision making were also primary motivations for forming the sec-
tors, according to the participants (da Silva and Kitts (2006)). Thus productivity gains are only
one possible measure of performance improvement, but they are the most tangible to measure
given available data.
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heterogeneity and variability of environmental assets across space and time. Thus

the rights to make decisions about asset use - the residual control rights - can

influence the size and character of external environmental costs. Residual control

is important when agreements between firms don’t specify responsibilities for ev-

ery environmental contingency (i.e., when contracts are incomplete), because ex

post decision-making falls to the asset owner. This insight is the essence of the

Grossman-Hart-Moore property rights theory (PRT) of the firm, which I adapt in

this paper for the case when firms use impure public goods as inputs. Residual

control is important in many environmental contexts both in the short run when

technology is fixed (e.g., oil spill cleanup, power plant fuel-switching, intraseason

bycatch avoidance in fisheries, wetland mitigation for development projects, etc.),

and in the long run when new innovations could reduce abatement costs, but the

combination of ex ante human capital investments in breakthroughs and ex post

managerial decisions about adoption and deployment, both matter for realized

resource outcomes.

The PRT is analogous to the theory of induced innovation in the sense

that both theories consider how to encourage ex ante investments that improve

ex post value. Innovative activity responds to changes in relative prices in the

induced innovation theory, and to changes in ownership in the PRT. Economists

have increasingly emphasized the links between environmental policy and induced

technological change, either through investments in knowledge or learning by doing

(Grbler et al. (2002), Jaffe et al. (2003), Pizer and Popp (2008)). Smith (1972a) ar-

gues, for example, that incomplete property rights induce innovations that deplete

the under priced resource, and pricing access alters the direction of innovation.

Goulder and Mathai (2000) show that the optimal time paths of carbon taxes and

pollution abatement are sensitive to the amount of innovation that can be induced

through both learning by doing and investments in human capital or R&D. The

induced innovation theory, however, assumes innovative efforts are contractible

through expenditures on exogenous “innovation possibilities”, whereas innovative

efforts in the PRT are not contractible and ownership is required to induce agents

to devote more resources to these investments.
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A central theme of this paper is that changes in the firm’s choice of organiza-

tional form are an important channel through which changes in property rights can

influence a firm’s ability to innovate and improve performance. The stylized facts

that arise from case studies of fishing rights around the world support this claim.

Rights-based fisheries have often taken the form of catch allocations managed by

groups rather than individual boats, with vessels investing in the development of

more effective and more coordinated harvest techniques, improved product qual-

ity, and scientific research to understand species and habitat conditions. Very few

of these organizations narrowly behave like de facto internal trading organizations

following the establishment of collective rights (Hannesson (1988), Huppert (2005),

Townsend (2005), Matulich et al. (2001), da Silva and Kitts (2006), Townsend et

al. (2008), Townsend (1995)). Furthermore, the actions and abilities of individual

fishing firm managers, i.e., the boat captains, have been identified as a driving force

behind firm performance (Barth (1966), Palsson and Durrenberger (1982), Squires

and Kirkley (1999), Viswanathan et al. (2002), Thorlindsson (1998), Squires et al.

(2003), Wilen (2007), Acheson (1981)).

There are very few formal treatments of the theory of the firm in response

to market-based environmental regulation. Lueck (1995) uses the PRT to analyze

wildlife regulatory institutions, but focuses more on the determinants of regula-

tory structure rather than the effect of regulatory change on firm structure and

performance, which is the focus here. Similarly, Johnson and Libecap (1982),

Libecap and Smith (1999), and Libecap and Wiggins (1984), take the property

rights structure in resource extraction industries as given and examine either the

development of regulatory systems, or directly examine the contracting potential

(or failure therein) between firms or between industry and regulators. These stud-

ies highlight the difficulty of contracting rather than taking the incompleteness of

contracts as the foundation for the analysis.

In the agricultural literature variants of the principal-agent approach have

been used to analyze crop share contracts and the structure of the farming industry.

Allen and Lueck (2004) argue for this approach because they observe that assets

are not relationship-specific in farming, and the more relevant trade offs occur
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with task specialization, capital costs, and use of unpriced inputs or moral hazard.

Deacon et al. (2008), Deacon et al. (2010), and Holzer-Bilbao (2009) have presented

further variations of this approach in a fisheries context. In Holzer-Bilbao (2009)

fishermen trade coordination gains from integration against missing information

about how to coordinate. Deacon et al. (2008) and Deacon et al. (2010) trade

off the provision of club goods (e.g., information about resource stock locations,

shared capital inputs) inside a cooperative against forced sharing of skill rents

and loss of outside opportunities. Deacon et al. (2008), Deacon et al. (2010),

and Holzer-Bilbao (2009) all predict that the least productive agents gain the

most by merging, which is substantiated by the data in Deacon et al. (2008) and

Deacon et al. (2010). In this paper by contrast agents are assumed to have specific

relationships so match quality is more important than ranking. I find that joiners

came from a narrower but higher segment of the productivity distribution than

the rest of the fleet, conditional on vessel and crew size.

These studies all include the important feature of an unpriced, impure pub-

lic input that is common to the industry (in this case, the fish stock and its habi-

tats), but have not explored potential relationship specificities that arise when

dealing with the natural world. Relationship specificity arises when the spot mar-

ket offers significantly inferior substitutes for partners or their assets. This is the

driving force behind integration in most theories of the firm because it gives rise to

opportunistic behavior (Williamson (1979), Klein et al. (1978), Grossman and Hart

(1986), Hart and Moore (1990)). Williamson (1991) lists six potential sources of

relationship specificity: (1) site specificity; (2) specialized physical capital; (3) spe-

cialized human capital; (4) brand name specificities; (5) dedicated asset requests

from important customers; and (6) temporal specificity, a type of site-specificity

when timely responses from partners are required.

Some variant of each of these features is often present in industries that

rely on environmental inputs. Empirically, the question is how important they are

in context relative to other forces. In fishing there is both temporal and spatial

dependence in the relative distribution of different species and harvesting costs

which makes both pre-season and pre-harvest preparation in tracking and moni-
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toring ocean conditions valuable. Insofar as each individual captain can’t track the

entire ecosystem, but only specific pieces of it that are familiar to him, his ex ante

preparations are specific to a set of other captains whose pieces of the ecosystem (or

the market) are ecologically (or economically) adjacent. Captains may also adjust

their fishing gear to the idiosyncrasies of the habitats they frequent. Williamson

(1991) argues that insecure property rights will dampen ex ante investments when

agents know that the value of these investments will be expropriated by other

agents (e.g., through rivalry in the common pool). This paper formalizes and tests

this effect on integration and firm performance outcomes using the property rights

theory framework.

1.3 Model

This section lays out the basic Grossman-Hart-Moore framework (Grossman

and Hart (1986), Hart and Moore (1990)) and incorporates key aspects of common-

pool inputs. The model considers two managers, 1 and 2, who are a small part of a

large industry with many firms. Each of the two managers i = 1, 2 has production

decisions qi ∈ RQ. Managers 1 and 2 are considering a relationship in which they

jointly choose q = (q1,q2) ∈ R2Q. The rights to make these decisions are the

assets in the relationship2. The assets are relationship-specific, meaning that the

partners realize greater value by coordinating their use, and can’t find alternative

assets in the spot market that produce as great of value (e.g., by finding other

similar partners with whom to coordinate similar decisions).

There are two stages in the game. At date 0, managers enter the game each

holding the rights to her own set of decisions qj, for example, her own fishing vessel

and permits which allow physical and legal access to the resource3. These decisions

will not be made and executed until uncertainty is resolved at date 1. Managers

2Typically assets in this model are thought of as pieces of physical capital, but when there
are incomplete property rights and externalities over physical inputs it is more convenient (and
accurate) to define assets as decisions over things rather than the things themselves.

3This initial allocation is without loss of generality and is assumed in order to make the
analogy concrete. Any initial allocation will result in the same equilibrium allocation and will
matter only for the distribution of surplus (Grossman and Hart (1986), Hart and Moore (1990))
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may reallocate the rights at date 0, which establishes the ownership or control

structure. The aim of the model is to determine the optimal control structure given

the contracting constraints. Before date 1 each manager then noncooperatively

chooses a vector of ex ante actions ai ∈ RM with aim ∈ [0, āim], where āim ≥ 0.

These actions are not contractible but will affect the value or productivity of the

partnership at date 1. The actions are relationship-specific to managers 1 and 2 in

that they’re not as valuable when the managers work independently or work with

any other manager they could hire from the spot market. The canonical model

considers these actions as investments in human capital, but this need not be the

only example; their essential features are that their value is inalienable from the

individual manager but specific to the relationship, and they are observable by

the partners but not verifiable by third parties (and are thus not contractible)4.

In the fisheries case these actions could consist of time spent learning the unique

features of specific fishing grounds, species behaviors, markets and regulations,

studying recent oceanographic conditions and forecasts, search effort to find good

crew members, investments in communicative capacity among partners, etc.

At date 1, the managers make the production decisions under their control

and the gains are realized. The decisions q are not contractible until the start of

date 1, when uncertainty about the production environment is revealed5. Because

qi is ex post contractible, however, firms may costlessly renegotiate these decisions

at date 1 before executing them in production. This process always leads to ex post

efficient production decisions, conditional on predetermined choices for the a’s. For

example, at date 1 managers 1 and 2 can calculate the Nash equilibrium q̃1 and

q̃2 that they would choose independently and noncooperatively, but would see

4If these investments are alienable (e.g., an invention by manager 1 that can be operated
without him) the model is still informative but results in different predictions (Hart (1995)).

5These assumptions are designed to capture situations in which it would be prohibitively
costly to describe in advance every choice of q for every state of the world, but in which it is
relatively easy to do so ex post, when the state is observed. As an example from fisheries, it is
hard to imagine vessels writing out pre-season contracts that specify every effort level and gear
type to be executed at every possible fishing location under all possible combinations of daily
oceanographic and market variables. However, once the season begins and information about the
relative spatial distribution of species and associated harvest costs begins to unfold, it would be
relatively easier for vessels to communicate and coordinate their production plans. In this sense,
qi is a residual right of control and manager i has the right to choose it at date 1.
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that they could both gain by renegotiating the q’s to maximize their joint benefit

and splitting the surplus. In other words, they Nash-bargain to a jointly optimal

production profile, using their benefit at the Nash equilibrium q̃j as the threat

point. Realizing this at date 0, managers choose their ex ante non contractible

actions aj to maximize their Nash bargaining share of the expected joint surplus.

For this reason, in equilibrium the decision rights are organized at date 0 to induce

the choices of the a’s that lead to the greatest date 1 surplus6.

Unlike the previous literature on firm theory, I also model these two man-

agers as small players in a large industry with many firms all exploiting a common

resource. Thus each firm’s production activities impose an externality on all other

firms by lowering the availability or value of the remaining resource. Denote the

aggregate level of this externality as E. These externalities expose the industry

to potential regulations that could either reduce the externalities or reduce the

value of coordinating production in partnerships. For the purposes of this paper, I

assume that the size of the industry is large enough that each firm takes E as given

and does not consider their individual impact on other vessels through E directly,

or how their impact on others’ decisions feeds back to their own payoffs through

E indirectly. With a common-pool regime the aggregate harvest will reduce the

availability for managers 1 and 2, but with hundreds of firms the strategic influence

that managers 1 and 2 have on the actions of all other firms is plausibly negligible.

I abstract from these industry-wide strategic decisions in order to focus on the

relationship between the property rights regime and the motivations between indi-

vidual partners. In the New England groundfish industry studied in the empirical

section of this paper, there are approximately 1400 permitted fishing vessels, with

approximately 500 vessels accounting for most of the annual catch. Any strategic

influence an individual vessel has on the aggregate catch is very small, and likely to

be absorbed by the 900 or so marginal vessels that can enter or exit as conditions

6I have assumed managers enter the game with an independent control structure determined
by nature, but can costlessly reallocate control rights at date 0 if they anticipate generating a
greater surplus under some other ownership structure. This increase in surplus from the superior
control structure can be divvied up into a set of side payments for exchange of the assets at date
0; these trades are assumed to be made efficiently without additional transaction costs so that
in equilibrium the best control structure is achieved (although the distribution of total payoffs
may depend on the initial allocation).
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change.

The benefit of the relationship to manager i ∈ {1, 2} at date 1 is Bi(a,q, E),

where B : R2Q+2M+1 → R is a mapping from the investment and production

decisions of both managers in the relationship, and the production externalities

of the industry as a whole, to manager-specific ex post benefits. I allow for the

possibility that some or all of manager 2’s investments may directly enter manager

1’s benefit function and vice versa. Different subsets of all possible elements of a,

q, and E may be more or less relevant for Bi depending on the setting and the

industry being evaluated. The private costs of date 0 actions ai are measured by

their opportunity costs in dollar expenditures.

Except for some additional assumptions about the role E and some clari-

fying definitions for this setting, I adhere very closely to the canonical model of

the property rights theory of the firm in making the following assumptions about

Bi(·):

Assumption 1 Bi(a,q, E) is twice differentiable and concave in a and identical

for i ∈ {1, 2}. ∂Bi/∂ajm ≥ 0 if ajm ∈ (0, ājm), ∂Bi/∂ajm = ∂Bj/∂aim, ∀i, j ∈
{1, 2},m = 1, ...,M , and the Hessian of Bi(a,q, E) with respect to a is negative

definite.

When one manager is dominant, it’s obvious that she should control the de-

cisions. I assume identical payoffs Bi(·) for managers 1 and 2 in order to highlight

the importance of the different types of ex ante actions, rather than the relative

characteristics of the managers, in determining optimal control structures under

different common pool conditions. I will consider several ownership structures:

Nonintegration (or Non), in which each manager controls the decisions over his

capital units (e.g., each captain owns his own fishing vessel); i-Integration (or i-

Int), in which manager i controls all the decisions for both vessels7; and Collective

Ownership (or CO), in which the managers control the decisions collectively ac-

cording to an established social choice mechanism8. I will discuss several familiar

social choice mechanisms and their relative merits within the context of this model.
7In this case, the non-owner’s disagreement point is whatever he or she could expect to gain

in the spot market as a manager-for-hire.
8Note that joint ownership would be one specific type of social choice mechanism in which
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Assumption 2 There is a unique Nash equilibrium q̃ki that maximizes each Bi(·)
subject to qkj for each ownership structure k ∈ {i-Int,Non,CO} and each state of

the externality E.

Assumption 3 There is a unique optimum q∗ that maximizes B1(·) + B2(·) for

each state of the externality E, independent of a.

The assumption of independence between q and a is made for consistency

with the canonical model. Different kinds of human capital investments may also

enter the payoff functions differently - for example, some investments my only

enter the investors payoff, others may purely benefit the other manager in the

relationship, and others may have a different value depending on the decision

rights.

Definition 1 Self investments are those that only enter the manager’s own payoff

function so that ∂Bi(·)
∂ajm

≡ 0. Cross investments are those that only enter other

managers’ payoff functions so that
∂Bj(·)
∂ajm

≡ 0.

The cross investments can be thought of as investments in training part-

ners to improve the fishing technique and ability to locate fish, developing effec-

tive systems of governance, group management capacity, organizational structure,

communication mechanisms, understanding of market timing, or other cooperative

benefits. Self investments can include better understanding of resource complexi-

ties, the ability to locate spatially and stochastically distributed resources, develop

and deliver higher-value products, or the ability to produce or extract quickly at

low cost under harsh conditions. While these self investments may also benefit the

group through cooperative bargaining over the surplus, they do not require actions

from other players and also help improve the firm’s bargaining position relative to

the rest of the group by improving it’s disagreement payoff in negotiations. Man-

agers can appropriate some of the value of others’ self investments or recoup some

of their own cross investments through Nash bargaining.

each manager has a veto over any decision profile. This leads to an extreme emphasis on the
group outcome because the managers have no outside value to negotiate with. As such, joint
ownership will not be considered here.
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Assumption 4 For all i, j ∈ {1, 2} and m = 1, ...,M ,

∂Bi(a,q
∗, E)

∂ajm
>
∂Bi(a,q

i−Int, E)

∂ajm
>
∂Bi(a,q

Non, E)

∂ajm
>
∂Bi(a,q

j−Int, E)

∂ajm

Assumption 4 is a fairly common assumption that says that investments in

manager i’s performance (either self investments or manager j’s cross investments)

are more valuable the more decisions i controls. The magnitudes of these differences

are rarely specified but, as will be shown, their relative values affect the outcome

of the control structure when interacted with common-pool externalities.

Definition 2 A particular investment ajm is convex in control if the following

inequalities hold, and concave in control if all the inequalities are reversed:

∂Bi(a,q
∗, E)

∂ajm
− ∂Bi(a,q

i−Int, E)

∂ajm
>
∂Bi(a,q

i−Int, E)

∂ajm
− ∂Bi(a,q

Non, E)

∂ajm

>
∂Bi(a,q

Non, E)

∂ajm
− ∂Bi(a,q

j−Int, E)

∂ajm

Convexity in control is similar to increasing returns, but it only allows

increasing returns across control structures within a fixed set of relationship-specific

production decisions. In practice a given investment could eventually exhaust

convexities in control and exhibit concavity in control if there are many different

decisions and many different firms over which to coordinate; in the analysis that

follows investments are always one or the other. It’s important to emphasize

that the results here do not rely on increasing returns to scale assumptions in

the neoclassical sense. In fact for a given control structure I assume concavity in

investments as indicated in Assumption 2.

The question of this paper is how the intensity of inter firm externalities

E affect the equilibrium control structure and consequent performance of firms. I

include some assumptions on E that reflect many empirical examples of commons-

type externalities, but its worth noting that depending on the case these external-

ities could influence relationship specificities in alternative ways and give rise to

alternative predictions about institutions. For the purposes of this paper, I assume

that E unambiguously erodes the value of relationship specificity:
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Assumption 5

∂

∂E
[Bi(a,q

∗, E)−Bi(a, q̃, E)] =
∂∆Bi(a, E)

∂E
< 0

For example, a coordinated production plan could require additional time

to execute, but could ultimately produce greater value. With a pure congestion ex-

ternality (as in a fishing derby), competing firms outside the relationship would use

up the resource capacity before the firms inside the relationship have a chance to

execute their plan. This assumption reflects stylized empirical facts about common

pool resources, and indeed many of the arguments for implementing rights-based

management. In the competitive common-pool, firms do not often coordinate on

the act of production (as described in Deacon et al. (2008), Deacon et al. (2010),

and Hilborn et al. (2005), among others), or the timing of supply to improve

product form, quality, or prices (e.g., Kitts et al. (2007), Townsend et al. (2008),

among others). I recognize there may be other cases where the presence of in-

tense inter firm externalities gives rise to opportunities for coordination as a way

of maintaining value - and thus augment relationship specificity. These cases are

not considered here but are simple extensions of this setup that can be derived by

reversing Assumption 5.

When the value of relationship specificity is eroded because of E, either

through physical resource constraints or policies regulating resource use and pro-

duction decisions, this can in turn alter the equilibrium ownership allocations, ex

ante investments, and joint decision profiles. For example, unregulated resource-

extracting or pollution-emitting firms could choose to extract or pollute until the

private benefits no longer exceed the private costs (qi is unconstrained within the

physical limits of the resource), representing a substantial loss in potential surplus

outside the relationship resulting from resource depletion or pollution damages.

If the entire industry (all N firms) are limited by common resource or regulatory

constraints, such as a common pool quota or a resource of fixed size or limited

regenerative capacity, then qi may be privately unconstrained, but E can substan-

tially alter the benefits and choices of qi. The purpose of the relationship between

1 and 2 is to gain benefits from coordinating the choices of q1 and q2, but the
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presence of E could alter this privately optimal coordinated production plan - rep-

resenting a loss in potential surplus inside the relationship. While E represents

an absolute loss in benefits for everyone in the relationship, it may affect the rel-

ative value of coordinating over qi differently depending on the resource. In some

cases, coordination may be the only way to maintain a surplus in the presence of

intense externalities but as conditions improve independent production approaches

the first best; in other cases coordination may have great potential value that is

eroded by the externalities and restored when the externalities are removed, as in

Assumption 5.

How do these externalities and regulations affect firm boundaries and en-

vironmental performance? Regulators could choose to mitigate the losses by tar-

geting qi directly, for example through firm-specific command and control quotas,

tradeable property rights to q, or any number of mechanisms that influence qi and

E. These regulations then determine the scope of the decisions under the firm’s

control. Additionally, there may be several types of ex ante investment, from those

that affect the productivity of the private decisions qi, to those that only influence

the value from the relationship at the coordinated outcome, to those that directly

raise the value of production decisions made by other members of the relationship.

For example, in the unregulated case with privately unconstrained qi, firms may

be most interested in productivity investments that reduce production costs by

effectively sourcing and using cheap, polluting inputs, or that reduce direct re-

source extraction costs. Under firm-specific regulations, firms may become more

interested in productivity investments that improve the joint capacity to develop

cleaner inputs or improve the quality of the resource rather than the pace of extrac-

tion. As observed by Wilen and Richardson (2008), “new rents are generated by

maximizing the value of what is caught, reversing regulated open-access incentives

to maximize the quantity of what is caught. Increasing net value has been accom-

plished by opening up new markets, by changing product mix, and by substituting

capital and labor tasks in ways that preserve the quality of the harvest”.

In what follows I consider formal partnerships, followed by relational con-

tracts. Under a formal agreement, the a’s are chosen independently and nonco-
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operatively in order to maximize the firm’s bargaining position over the date 1

returns, and this game is repeated one period at a time. Under a relational con-

tract, the firms recognize that while an agreement over the a’s can’t be enforced by

the courts it could be self-enforced through the threat of punishment in repeated

interactions. Managers contract on the level of ai that each firm will choose and

a set of side payments; if a manager deviates from the agreement, a punishment

phase is initiated in which the game reverts to a formal agreement in all future

periods, taken one period at a time. In each period of the punishment phase,

the managers will always find it in their interest to renegotiate back to the opti-

mal one-shot formal agreement, in which they behave noncooperatively on all non

contractible decisions.

1.4 A One-Shot Game: Formal Partnerships in

the Commons

Each of the ownership structures is compared to the first-best outcome,

where I denote by a∗ and q∗ the investment and production decisions that maximize

the total ex ante net benefits of the managers for a given level of externalities:

V FB = max
a

B1(a,q∗, E) +B2(a,q∗, E)− 1′a

Here the maximization is over a because the problem is taken ex ante as-

suming that the optimal q∗ will be reached ex post in the first best. The first order

conditions for optimum ex ante actions in the first-best case are:

∂Bi(a,q
∗, E)

∂ajm
= 1, ∀ i, j ∈ {1, 2}, m = 1, ...,M. (1.1)

I consider three types of ex ante investments: a self investment ai1 that

is concave in control, a self investment ai2 that is convex in control, and a cross

investment ai3 that is concave in control. The presence of alternative types of in-

vestments is intended to create a tension between control structures under different

common-pool conditions. For ease of exposition I consider ai2 and ai3 separately

in comparison to ai1.
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Many of the conclusions about the equilibrium ownership structure depend

on the parameters and conditions in a particular problem. For this reason the

following remark summarizes the general results of this section:

Result 1 General results

1. Integration of some form (complete control by one party, randomized allo-

cation of control, or temporary dictatorship by an outside manager) is more

likely to be observed when common-pool externalities are reduced (i.e., prop-

erty rights are more complete).

2. The form of integration chosen depends on the the fixed organizational costs

of each form and the relative value of different investment types. Stochastic

control induces more cross investments than central management, but central

management induces optimal self investments.

3. The optimal structure may change several times as the aggregate externality

is reduced. For example, nonintegration may dominate at high E, with in-

tegration under one party or outside manager over an intermediate range of

E, and stochastic control at low levels of E.

1.4.1 Two types of self investments

For the time being I restrict attention to integration and nonintegration,

and go into further depth on collective ownership in section 1.4.3. Depending on

the control structure k ∈ {i-Int,Non}, each manager i can choose qki at date 1

based on predetermined values of a. If the managers choose these noncooperatively

to maximize private benefits, they will reach a Nash equilibrium in q denoted by

q̃k = (q̃ki ,q̃
k
j ). The two firms can improve upon this outcome by renegotiating to

the optimal q∗ before executing the decisions, and splitting the additional surplus.

The ex ante investment problem for the firms then becomes

max
ai1,ai2

πi = Bi(ai1, ai2, q̃
k, E) +

1

2
[Bi(ai1, ai2,q

∗, E) +Bj(aj1, aj2,q
∗, E)−

Bi(ai1, ai2, q̃
k, E)−Bj(aj1, aj2, q̃

k, E)]− ai1 − ai2
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The first order conditions for firm i are:

∂

∂ai1
Bi(a, q̃

k, E) +
1

2

∂

∂ai1
∆Bi(a, E) = 1 (1.2)

∂

∂ai2
Bi(a, q̃

k, E) +
1

2

∂

∂ai2
∆Bi(a, E) = 1

Under the additional assumption that common-pool externalities erode the

value of investments that are convex in control faster than those that are concave

in control, it can be shown that firms with these types of human capital trade offs

tend to integrate more often when there are no common-pool externalities (e.g.,

with well-defined and enforced property rights), and tend to remain independent

under heavy common-pool externalities:

Assumption 6

∂2Bi(·)
∂aim∂E

= ζm, and
∂2Bi(·)
∂ai2∂E

<
∂2Bi(·)
∂ai1∂E

< 0,

where ζ1 and ζ2 are constants.

Under this assumption, greater externalities reduce the benefit of consol-

idating control by having a relatively greater impact on investments that favor

control. This is stated in the following proposition:

Proposition 1 1. Nonntegration will be weakly better than integration when-

ever the following condition holds:

∂B(aNon,q∗, E)

∂a2

(
ai−Int2 − aNon2

)
− ∂B(aNon,q∗, E)

∂a1

(
aNon1 − ai−Int1

)
≤ 1′ai−Int − 1′aNon

2. Managers will be weakly better off under integration than nonintegration

whenever the following condition holds:

D
[
Bi(a

i−Int,q∗, E) +Bj(a
i−Int,q∗, E)

] (
aNon − ai−Int

)
≤ 1′aNon − 1′ai−Int

Proposition 1 simply expresses the tradeoff between the emphasis on dif-

ferent investments under different ownership structures. Nonintegration will be
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chosen over integration if shifting away from investments that favor independence

into investments that favor central control does not provide enough of a benefit

to justify the increased investment cost. Under integration the owner invests rel-

atively more in ai2 than the nonowner, but these investments are also relatively

more valuable. Conversely, underinvesting in ai1 does relatively less to improve

the manager’s Nash bargaining position under nonintegration than integration, so

larger investments in ai1 are maintained under nonintegration.

The second condition in the proposition can be expanded and rearranged

to yield{
∂Bi(a

i−Int,q∗, E)

∂ai2

(
ai−Inti2 − aNoni2

)
− ∂Bj(a

i−Int,q∗, E)

∂aj2

(
aNonj2 − ai−Intj2

)}
−{

∂Bj(a
i−Int,q∗, E)

∂aj1

(
aNonj1 − ai−Intj1

)
− ∂Bi(a

i−Int,q∗, E)

∂ai1

(
ai−Inti1 − aNoni1

)}
≥
{
ai−Inti2 + ai−Intj2 − aNoni2 − aNonj2

}
+
{
ai−Inti1 + ai−Intj1 − aNoni1 − aNonj1

}
(1.3)

The first set of brackets is the benefit from maintaining a higher level of ai2 un-

der integration, after accounting for the imbalance in investment between the two

managers when one is the owning partner. Likewise, the second set of brackets is

the additional benefit that could be gained from investing more in ai1 under non-

integration, after accounting for the reduced investment from the owning partner

when he no longer controls everything. The two terms on the right hand side are

the net changes in costs for each of these investments between the two regimes.

Corollary 1 Suppose that integration dominates at E = 0. Then the preferred

control structure will eventually switch from integration to nonintegration as E →
∞.

Proof 1 (Proof of Proposition 1) Consider the managers’ first order condi-

tions for each investment under each ownership structure. The first order con-

ditions for the choice of aim are given by

1

2

∂

∂aim
Bi(a,q

∗, E) +
1

2

∂

∂aim
Bi(a, q̃

k, E) = 1 (1.4)

By Assumption 4, the second term is largest when k = i-Int and smallest when

k = j-Int. But when m = 1 the gain for i of moving from k = j-Int to k = Non
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is larger than the loss for i if he moves from k = i-Int to k = Non because ai1

is concave in control. By the symmetry of the managers (Assumption 1) the total

investment in ai1 is largest when k = Non. By the same argument, when m = 2

the gain for i of moving from k = j-Int to k = Non is not as great as the move

from k = Non to k = i-Int because ai2 is convex in control. The total investment

in ai2 is largest when k = i-Int. Because neither control structure is dominant in

both investments, the relative value of the two investment types decides the optimal

control structure. The conditions in Proposition 1 can be derived by comparing the

value function of the partnership evaluated at the realized choices of ak for each

control structure.

V (ak) = B1(ak,q∗, E) +B2(ak,q∗, E)− 1′ak

Because V is a concave function, its value at ai−Int can be compared to

its value at aNon using the rooftop theorem of concave functions. For the first

condition,

DV (aNon)(ai−Int − aNon) ≤ 0⇒ V (ai−Int) ≤ V (aNon)

⇒
[
∂Bi(a

Non,q∗, E)

∂ai1
− 1

]
(ai−Inti1 − aNoni1 )+[

∂Bi(a
Non,q∗, E)

∂ai2
− 1

]
(ai−Inti2 − aNoni2 )+[

∂Bj(a
Non,q∗, E)

∂aj1
− 1

]
(ai−Intj1 − aNonj1 )+[

∂Bj(a
Non,q∗, E)

∂aj2
− 1

]
(ai−Intj2 − aNonj2 ) ≤ 0

Under nonintegration managers invest identically and have equal marginal

values, so the marginal values for each investment type can be combined.

[
∂Bi(a

Non,q∗, E)

∂ai2
− 1

] (
ai−Inti2 + ai−Intj2 − aNoni2 − aNonj2

)
−[

∂Bi(a
Non,q∗, E)

∂ai1
− 1

] (
aNoni1 + aNonj1 − ai−Inti1 − ai−Intj1

)
≤ 0
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Rearranging this expression, combining ai’s measured in the same dollar

units, and dropping redundant subscripts gives the first condition in Proposition 1.

For the second condition,

DV (ai−Int)(aNon − ai−Int) ≤ 0⇒ V (aNon) ≤ V (ai−Int)

⇒
[
∂Bi(a

i−Int,q∗, E)

∂ai1
− 1

]
(aNoni1 − ai−Inti1 )+[

∂Bi(a
i−Int,q∗, E)

∂ai2
− 1

]
(aNoni2 − ai−Inti2 )+[

∂Bj(a
i−Int,q∗, E)

∂aj1
− 1

]
(aNonj1 − ai−Intj1 )+[

∂Bj(a
i−Int,q∗, E)

∂aj2
− 1

]
(aNonj2 − ai−Intj2 ) ≤ 0

Under integration, the owner invests more in both investments than the

employee, so ai−Intim > ai−Intjm for m = 1, 2. Rearranging this expression provides the

condition in equation 1.3.

Proof 2 (Proof of Corollary 1) Consider the first condition in Proposition 1.

Assumption 6 says the first term of the the condition in Proposition 1 is declining

faster than the second term as E increases. The linearity of the declines in As-

sumption 6 assures that the left hand side will decline relative to the right hand

side as E increases.

1.4.2 A self investment and a cross investment

In this section I consider a self investment ai1 that is concave in control

as before, and an additional cross investment ai3 that is also concave in control.

The ability of managers to invest in their partners’ productivity creates different

incentives under Nash bargaining; the cross investments may be quite valuable to

the coalition but will hurt the managers’ ex post bargaining position by improving

the disagreement payoff of their partner. The cross investments produce a slightly

different expression for the first order conditions. The ex ante investment problem



23

for the firms in this case is

max
ai1,ai3

πi = Bi(ai1, aj3, q̃
k, E) +

1

2
[Bi(ai1, aj3,q

∗, E) +Bj(aj1, ai3,q
∗, E)−

Bi(ai1, aj3, q̃
k, E)−Bj(aj1, ai3, q̃

k, E)]− ai1 − ai3

The first order conditions for firm i are:

∂

∂ai1
Bi(a, q̃

k,Q−1) +
1

2

∂

∂ai1
∆Bi(a, E) = 1 (1.5)

1

2

∂

∂ai3
∆Bj(a, E) = 1

In this case, under an assumption similar to Assumption 6, the incentive to make

cross investments may vanish completely as externalities increase, while the incen-

tive to make selfish investments may remain positive:

Assumption 7

∂2Bj(·)
∂ai3∂E

= ψ3,
∂2Bi(·)
∂ai1∂E

= ψ1, and ψ3 < ψ1 < 0,

where ψ1 and ψ3 are constants.

As in section 1.4.1, greater externalities reduce the benefit of consolidating

control by having a relatively greater impact on investments that favor control,

although in this case the cross investment must be much more valuable than the

self investment in order to drive integration because of the penalty it imposes on

the investor in the bargaining phase. This is stated in the following proposition:

Proposition 2 1. Nonintegration will be weakly better than integration when-

ever the following condition holds:

∂B(aNon,q∗, E)

∂a3

(
ai−Int3 − aNon3

)
− ∂B(aNon,q∗, E)

∂a1

(
aNon1 − ai−Int1

)
≤ 1′ai−Int − 1′aNon

2. Managers will be weakly better off under integration than nonintegration

whenever the following condition holds:

D
[
Bi(a

i−Int,q∗, E) +Bj(a
i−Int,q∗, E)

] (
aNon − ai−Int

)
≤ 1′aNon − 1′ai−Int
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Corollary 2 Suppose that integration dominates at E = 0. Then the preferred

control structure will eventually switch from integration to nonintegration as E →
∞.

Proposition 2 is very similar to Proposition 1 except that in this case it is

much more difficult to support integration. The partnership will invest more in a3

under integration than nonintegration, but by a potentially smaller margin than

with a2 because of the damage to the managers’ bargaining position. Therefore

the marginal value of the cross investment at the joint decision profile must exceed

the marginal self investment value by a greater margin - enough to make up for

a smaller net change in the investment level. Managers can only benefit from

their cross investment at the joint production profile, as opposed to the previous

case where managers still benefit from a2 outside the relationship. The proofs of

Proposition 2 and Corollary 2 are almost identical to those for Proposition 1 and

Corollary 1 and are available from the author upon request.

1.4.3 Collective Ownership

Now consider the case where the managers have collective control over pro-

duction decisions. Managers could adopt a social choice mechanism to aggregate

their preferences and determine a production plan q̀ at date 1. Each mechanism

may do a good or bad job depending on its properties, but upon learning the out-

come of the mechanism, managers can bargain to the optimal decision q∗ using

their benefits from the social choice outcome as a disagreement point. In other

words, the mechanism would determine the disagreement point that managers are

stuck with if they fail to bargain to a better solution, in the same way that under

i ownership, j was stuck with q̃ if he could not convince i that q∗ would be an

improvement. I continue to assume they equally split the surplus from any gain

over the social choice outcome.

The ex ante investment problem for firm i then becomes

max
a

Bi(a, q̀
CO, E) +

1

2
[Bi(a,q

∗, E) +Bj(a,q
∗, E)−

Bi(a, q̀
CO, E)−Bj(a, q̀

CO, E)]− 1′a
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∆Bi will be smaller or larger depending on how well q̀ reflects his prefer-

ences. The first order conditions for firm i, for each investment type m, are:

∂

∂aim
Bi(a, q̀

CO, E) +
1

2

∂

∂aim
∆Bi(a, E) = 1 (1.6)

The first term will equal zero if aim is a cross investment. The best own-

ership structure not only depends on the importance of selfish and cooperative

investments and the intensity of the externalities, but on how close q̀i comes to

the optimal choice for i and whether or not the social choice outcome is influenced

by the ex ante investments9.

I consider two simple decision mechanisms for comparison, each of which

reflects practices implemented empirically in common-pool settings10:

1. Hiring an outside manager as a temporary dictator or central manager. This

central manager makes all the production decisions but is not directly in-

volved in production and has no investments to make.

2. Stochastic control. Each manager faces some general probability pi of being

assigned sole ownership at date 1, and using his q̃i−Int as the disagreement

point in negotiations.

The central manager has no relationship-specific decisions to make; his role

is to coordinate the relationship-specific decisions of other parties and his only

incentive is to choose q∗ at the beginning of date 1. If he doesn’t, he can be fired.

There are no distortionary investments to improve bargaining position. There are

9With three or more managers considering integrating it might seem appropriate to investigate
a voting mechanism, such as electing a manager to make decisions or electing a decision profile
directly at date 1. Yet elections are problematic in the context of this model for several reasons.
First, electing a manager to make decisions is akin to assigning him control rights, which could
be done at date 0 if it were efficient. Second, because q is multidimensional, the median voter
theorem can’t guarantee a unique median policy if the election is held on a choice of q. In
the absence of a unique voting outcome, a winner from the resulting tied outcomes must be
chosen at random. Consider, for example, if the managers could offer successive proposals for q
which could be rejected by any other manager. If the identity of the first proposer matters for
which non-rejected proposal is ultimately selected, then the group would have to randomize over
non-rejected proposals or randomize over first-proposers. Probabilistic voting models have been
developed to deal with these issues, but this approach isn’t consistent with the Grossman-Hart-
Moore model because all actions and payoffs are common knowledge.

10See for example: da Silva and Kitts (2006), Townsend et al. (2008), Johnston and Sutinen
(2009), Huppert (2005), Deacon et al. (2008), Deacon et al. (2010), Holland (2007)
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also no incentives to make cross investments, however, and there are additional

costs in the form of a fixed salary wcenter for the central manager. A similar type

of control is often observed in practice in more temporary settings, hence the

existence of the profession of “project manager”. Project managers are often hired

within large firms to coordinate projects between multiple divisions of the firm.

The project manager may have a low rank in the corporate hierarchy, but still

be responsible for coordinating important production decisions. Project managers

are also often hired as independent contractors for joint projects involving multiple

firms or institutions, nonprofits, or governmental organizations. Once the disparate

divisions or organizations have committed to a joint project in a legally binding

contract (or through the directive of a higher executive), the amount of residual

control they have depends on how much direct control has been allocated to the

project manager. If the individual units are bound to the directives of the project

manager they may have very little residual control during the project, even though

the assets may revert to their control after the project ends. Likewise, the project

manager has no residual control in the sense that he can’t walk away from the

parties with all of their assets and deploy them as he pleases 11.

In the second case, the incentives to invest in cross and selfish investments

are distorted by the possibility of eventual complete control12, however, this dis-

tortion acts as a weighted average of all the possible sole owners. Although bla-

tantly randomized absolute control is rarely observed in practice, this weighted-

dictatorship setup is in the spirit of collective management in the sense that each

participant has a voice in management decisions and a chance that their ideas will

be implemented. In that sense it may also capture part of what a voting model

can’t in this context because each agent has a chance at control.

11Alternatively, I could consider hiring an outside party who does have an interest in produc-
tion, such as a major customer of the output (e.g., a fish processor). Then this outside party
would have a self-interested initial q′ from which to bargain. Cases where the outside manager
also has cross investments to make could also be considered

12One could also examine which dimensions of q should be turned over to collective manage-
ment and which should remain in the residual control of the managers. For example, if there are
group allocations of species-specific catch limits, it may be best to have fishing locations decided
centrally, but gear choices, fishing time, etc., decided individually.
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Stochastic control The combination of central management and randomized

control resemble cooperative structures that are observed in practice, where groups

hire a coop manager to execute some decisions, while other decisions are decided

through debates between members, committees, or elected representatives. In the

case of symmetric managers randomized control simply reproduces the same total

investment for the coalition as a whole as with integration under one manager, but

the investments are more evenly distributed between the managers (as opposed to

the lopsided incentives with one manager in complete control from date 0). Under

stochastic control, each manager has some probability of being chosen to decide

on a production profile at the start of date 1.

max
a

pi

{
Bi(a, q̃

i−Int, E) +
1

2

[
∆Bi(a,q

i−Int, E) + ∆Bj(a,q
i−Int, E)

]}
+

(1− pi)
{
Bi(a, q̃

j−Int, E) +
1

2

[
∆Bi(a,q

j−Int, E) + ∆Bj(a,q
j−Int, E)

]}
− 1′a

The first order conditions for firm i are:

pi

[
∂

∂aim
Bi(a, q̃

i−Int, E) +
1

2

∂

∂aim
∆Bi(a,q

i−Int, E)

]
+

(1− pi)
[

∂

∂aim
Bi(a, q̃

j−Int, E) +
1

2

∂

∂aim
∆Bi(a,q

j−Int, E)

]
= 1

This case is very similar to integration, only the sole owner is not revealed

until after investments are made, so the incentives to make cross investments are

a weighted average of being the owner and being the employee, and similarly

for self-investments. Because managers are symmetric in this case, however, the

reduced investment by one manager caused by the weighting is exactly balanced

by increased investment by the other manager. This reallocation of investments

between the managers makes them better off than under integration because of

the concavity of the benefit functions, as stated in Proposition 3.

Proposition 3 Stochastic Control

Suppose that (i) the randomization process incurs a fixed cost Γ, and (ii) at E = 0

managers prefer stochastic control over integration.
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1. If Γ = 0, managers are strictly better off under stochastic control than under

integration.

2. For low, nonzero Γ, the preferred control structure is more likely to switch

from stochastic control to nonintegration as E →∞.

3. For high enough Γ, integration under one party will dominate over an inter-

mediate range of E. The preferred control structure will switch from stochas-

tic control to integration as E increases from 0, then switch again from in-

tegration to nonintegration as E continues to increase.

Proof 3 (Proof of Proposition 3) This is again shown by comparing the value

functions evaluated at the stochastic control investment level aSC and the integrated

investment level.

DV (ai−Int)(aSC − ai−Int) ≤ 0⇒ V (aSC) ≤ V (ai−Int)

⇒
[
∂Bi(a

i−Int,q∗, E)

∂ai1
− 1

]
(aSCi1 − ai−Inti1 )+[

∂Bi(a
i−Int,q∗, E)

∂ai2
− 1

]
(aSCi2 − ai−Inti2 )+[

∂Bj(a
i−Int,q∗, E)

∂aj1
− 1

]
(aSCj1 − ai−Intj1 )+[

∂Bj(a
i−Int,q∗, E)

∂aj2
− 1

]
(aSCj2 − ai−Intj2 ) ≤ 0

The aggregate investments are the same under the two regimes so all of the

terms accounting for additional investment costs cancel. In addition, the changes

in a given investment aSCjm − ai−Intjm are symmetric for a given m between managers

and can be written ∆am. Combining terms and rearranging yields

∆a1

[
∂Bj(a

i−Int, ·)
∂aj1

− ∂Bi(a
i−Int, ·)
∂ai1

]
≤ ∆a2

[
∂Bi(a

i−Int, ·)
∂ai1

− ∂Bj(a
i−Int, ·)

∂aj2

]
The left hand side is positive and the right hand side is negative, so this

condition never holds (i.e., integration is never better than stochastic control when
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randomization is costless). However, both terms approach zero as E grows. With

a fixed cost of randomization, stochastic control is only preferable if

V (aSC)− Γ ≥ V (ai−Int)

As the difference between the two value functions shrinks as common-pool exter-

nalities grow, a switching point will be crossed.

Keeping in mind that the aggregate investment is the same between integra-

tion and stochastic control, the following condition holds at E = 0:

DV (aNon)(ai−Int − aNon) ≥ V (aSC)− V (aNon) > V (ai−Int)− V (aNon)

The first inequality provides the condition for either stochastic control or

integration to dominate nonintegration for a given E. Subtracting a large enough

fixed cost Γ from the middle term in the inequality will make the rankings of the

last two terms more likely to switch as E increases.

The Central Manager The central manager is paid a fixed salary wcenter that

is negotiated at date 0 before the investments are made. The salary must be less

than the difference between the expected surplus under central management and

the next best ownership structure, but greater than the central manager could

earn elsewhere. Once the salary is agreed upon, however, it does not influence any

further investment or production decisions13.

In this case, the central manager has no direct hand in production, and

simply chooses the decisions for the other managers to implement; date 1 bargain-

ing is not required because the central manager has no private incentives that are

in conflict with the group-optimal production plan, and all of the residual control

of the individual managers has been allocated to the central manager as direct

13In Hart and Moore (1990), an outside party should be granted ownership if they are an
indispensable trading partner, but should not be granted control if it’s possible to randomize
the assignment of control among the inside parties just after investments are made, and if the
outsider is completely dispensable. The case considered here is a middle case; the inside parties
can still create value without the outside manager, so he is neither completely indispensable nor
completely dispensable. Randomization over control in this case prioritizes the investment types
differently. A more complete political economy model where managers expend some resources
influencing their control probability is an interesting topic for future research
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control. In this sense, no party has residual control. Each manager simply receives

his own firm’s value from the optimal production plan:

max
ai

πCOi = Bi(a,q
∗, E)− 1

2
wcenter − 1′ai

The first order condition for firm i is

∂

∂aim
Bi(a,q

∗, E) = 1 (1.7)

In a one-shot game, central management provides optimal incentives for self-

investments, but no incentives for cross investments (the derivative of Bi with re-

spect to ai3 is zero). Clearly, in the case in section 1.4.1 with only self-investments,

central management will be optimal if the gains from improved investments exceed

the fixed cost of hiring the coordinating employee, i.e.,

V (a∗,q∗, E)− V (ak,q∗, E) ≥ wcenter (1.8)

This condition is less likely to hold for any alternative k as E increases

(Assumption 6). For high enough management costs it may not even be met at

E = 0.

Proposition 4 Self Investments

Suppose that (i) both investments are self investments as in Section 1.4.1, (ii) the

central manager has a fixed salary wcenter, and (iii) managers 1 and 2 to prefer

central management over any other control structure at E = 0.

1. If wcenter = 0, then the partnership is strictly better off under central man-

agement than any other control structure for all E.

2. At low nonzero levels of wcenter, the preferred control structure is more likely

to switch from central management to nonintegration as E →∞.

3. For high enough wcenter integration under one party will dominate over an

intermediate range of E. The preferred control structure will switch from
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central management to integration as E increases. As E continues to in-

crease, the preferred control structure will switch again from integration to

nonintegration as described in Proposition 1.

Proof 4 (Proof of Proposition 4) Part 1 holds because with self investments

only, central management induces the first best investments.

Because the investments are always greater for central management than

any other structure k, V (a∗,q∗, E) declines more steeply than V (ak,q∗, E) as E

increases (Assumption 6).

By Proposition 1, nonintegration dominates integration at high E. There-

fore at low wcenter, V (a∗,q∗, E)−wcenter is more likely to intersect V (aNon,q∗, E)

than V (ai−Int,q∗, E). As wcenter goes up and V (a∗,q∗, E)− wcenter shifts down in

V -E space, this curve is more likely to intersect V (ai−Int,q∗, E), leaving central

management dominant only at the very lowest externality levels.

Proposition 5 Cross Investments

Suppose that (i) there is only one self investment and one cross investment as in

Section 1.4.2, (ii) the central manager has a fixed salary wcenter, and (iii) managers

1 and 2 to prefer integration over any other control structure at E = 0.

Even at wcenter = 0, central management will only dominate when

∂Bi(a
CO,q∗, E)

∂ai3
< 1.

This condition is more likely to hold at very high levels of E. Nonintegration will

be preferred over an intermediate range of E and will switch to integration under

one party as E → 0.

In the case of section 1.4.2, gains from central management will only be

achieved if the marginal benefit of the first unit of cross investment is not worth its

marginal cost. The equilibrium cross investment in central management is a3 = 0,

although the optimal level of a1 is chosen. Nonintegration can only improve on

this when a3 is worth some nonzero investment, and likewise for integration.
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Proof 5 (Proof of Proposition 5) Nonintegration will be preferred over central

management when

DV (aCO)(aNon − aCO) ≥ 0

⇒
[
∂Bi(a

CO,q∗, E)

∂ai1
− 1

]
(aNoni1 − aCOi1 ) +

[
∂Bi(a

CO,q∗, E)

∂aj3
− 1

]
(aNonj3 − aCOj3 ) +[

∂Bj(a
CO,q∗, E)

∂aj1
− 1

]
(aNonj1 − aCOj1 ) +

[
∂Bj(a

CO,q∗, E)

∂ai3
− 1

]
(aNoni3 − aCOi3 ) ≥ 0

Recall that aCOi1 = a∗i1 ⇒ ∂Bi(a
CO,q∗, E)/∂ai1 = 1. These terms cancel in

the above expression. Furthermore, aCOi3 = 0.

⇒ ∂Bi(a
CO,q∗, E)

∂aj3
· aNonj3 +

∂Bj(a
CO,q∗, E)

∂ai3
· aNoni3 ≥ aNonj3 + aNoni3

The marginal value terms can be combined because they are evaluated at the

same level of aCO and managers are symmetric.

⇒ ∂Bi(a
CO,q∗, E)

∂aj3
· (aNonj3 + aNoni3 ) ≥ aNonj3 + aNoni3

Rearranging terms provides the condition.

1.5 Relational contracts

This section extends the model of sections 1.3 and 1.4 to a repeated game

setting by modifying the relational contracting model developed by Baker et al.

(2002) to accommodate changes in intra-industry externalities. Under relational

contracts, at date 0 firms not only agree on the allocation of decision rights, but

they contract on a set of side payments β(a) to be paid at date 1 after the out-

comes are realized. The reason a and q are not contractible in this model is that

they cannot be verified by neutral third parties (e.g., courts and regulators) even

though they are observable to the agents. In a repeated game, however, the players

can make self-enforcing agreements enforced through trigger-type punishments in

the event of a deviation. They can agree to make the jointly optimal coordinated
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production decisions q at the start of date 1, rather than come to the table bran-

dishing threat points, in exchange for a given set of ex ante choices a and a set

of side payments β. Because the side payments are based on the outcomes, they

depend on the ex ante investments, and the investments are made in anticipation

of how they will affect the realized side payments. At date 1, after any production

uncertainty is resolved but before actually engaging in production, firms decide

whether or not to renege on the agreement. If they don’t renege, they produce

at q∗ and pay β(a). If they renege, they refuse to pay (or receive) β(a), they

threaten to produce at q̃, and Nash-bargain to the coordinated outcome of q∗,

before executing the production decisions. If a player reneges, he is punished by

being excluded from all future relational contracts. The benefits of reneging are

the foregone side payments and the share of surplus gained in bargaining. The

costs of reneging are the loss of all future gains from the agreement. The stages of

the game are infinitely repeated by managers who live forever and share a common

interest rate r.

Let βi =
∑

j bij + bji, or the net payments from i to all other players, and

from all other players to i. In general, i will keep his word if the net present

value of enhanced ex ante investments net of the side payments in every period is

greater than this period’s deviation payoff earned at the current ownership struc-

ture (by refusing to pay the side payments and Nash bargaining over q), plus the

punishment value for all future periods. 14:

Bi(a
R,q∗, E) + βi +

πR

r
≥ Bi(a

R, q̃k, E) +

1

2

[
2∑
j=1

Bj(a
R,q∗, E)−

2∑
j=1

Bj(a
R, q̃k, E)

]
+
πF

r
(1.9)

where R stands for the outcome of the relational contract, and F stands for the

outcome of the next best formal, or one-shot, relationship described in section 1.4.

14With multiple players, if one defects the others could revert to the next best relational
contract without the defector, but still deal with the defector in a formal relationship. This
might weaken the punishments. Allowable punishments may also be constrained by regulations;
if the defector is protected under formal legal agreements, the non-defectors may have limited
ability to wrest control from the defector
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When one manager reneges, the other manager may still find it optimal to work

with him in a formal setting, but won’t engage in future relational contracts that

rely on trust. So the punishment payoff is a reversion to the ownership structure

that provides the best one-shot coalition profits, earned every period in the future.

During the deviation stage, however, the reneging firm gets his Nash bargaining

share based on the current ownership structure - so some ownership structures may

provide greater reneging temptations than others. The results of this analysis rely

on the parameter values and functional forms specific to a given context and thus

don’t lend themselves to formal propositions. Before discussing several ownership

structures I summarize these results below:

Result 2 Relational Contracts

• Relational contracts are more likely to be supported under any ownership

structure as E → 0

• Greater variability in the production environment makes cooperation in rela-

tional contracts more difficult to support at any level of E.

• Integrated ownership under one party creates the greatest temptation to re-

nege. This temptation is declining as E increases; with less overall value,

there is less value in the deviation payoff. However, the value of the contract

could decline at an even faster rate in E so the range where cooperation is

supported is ambiguous.

• Nonintegrated ownership provides the lowest temptation to renege on rela-

tional contracts. This temptation is stable over E. Central management

differs from this only by the size of the fixed salary.

1.5.1 Relational Integration

Under relational integration, the owner has a relational contract with the

other manager (now his employee) to choose the optimal decisions from the begin-

ning of date 1, and will choose the actions aRIi to solve
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πRI = max
ai

βi(a) +Bi(a,q
∗, E)− 1′ai

Notice no bargaining over q is required, so Bi isn’t shared directly, except

through the side payments. While the relational contract is in place, the non-owner

can choose aRIj to solve

max
aj

βi(a) +Bj(a,q
∗, E)− 1′aj

where the total surplus under relational integration is equal to

V RI = Bi(a
RI ,q∗, E) +Bj(a

RI ,q∗, E)− 1′aRIi − 1′aRIj (1.10)

The owner will honor this contract as long as

Bi(a
RI ,q∗, E) + βi +

πRIi
r
≥ Bi(a

RI , q̃i−Int, E) +

1

2

[
∆Bi(a

RI , E) + ∆Bj(a
RI , E)

]
+

1

r
max

[
πFNi , πFIi , πFCi

]
(1.11)

Where FN, FI, and FC stand for formal nonintegration, formal integration,

and formal central management, respectively. Likewise, the non owner will honor

the contract as long as

Bj(a
RI ,q∗, E) + βj +

πRIj
r
≥ Bj(a

RI , q̃i−Int, E) +

1

2

[
∆Bi(a

RI , E) + ∆Bj(a
RI , E)

]
+

1

r
max

[
πFNj , πFIj , πFCj

]
(1.12)

Combining these conditions yields a necessary condition for relational em-

ployment to be self-enforcing:

1

r

{
V RI −max

[
V FN , V FI , V FC

]}
≥ (1.13)

max

{
βi −

1

2

[
∆Bi(a

RI , E)−∆Bj(a
RI , E)

]}
−

min

{
−βj −

1

2

[
∆Bi(a

RI , E)−∆Bj(a
RI , E)

]}
The left hand side of this condition is the expected surplus from improved

investments - the value of moving from the distorted investments in spot ownership
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structures to optimal investments supported by relational contracts, evaluated at

the expected value of any random variables not realized until date 1. How E affects

the value of these investments will determine the size of this surplus.

The right hand side is the temptation to renege, evaluated at the maximum

and minimum of any random variables realized at date 1 (thus giving the maximum

and minimum possible bargaining values and side payments). As I discussed in

Section 1.3, the difference in value between the noncoordinated and coordinated

decisions (∆B) is greater for the non owner than for the owner. This means that

the values in square brackets on the right hand side (the difference in the ∆B’s)

are negative. Furthermore, this disparity is likely to be greater when a good state

of the world is realized at date 1 than in a bad state (in the worst state they

would get nothing for either decision profile) - so these differences augment the

potential difference in maximum and minimum side payments, making relational

employment potentially difficult to sustain. This is similar to one of the main

findings in Baker et al. (2002). The owner has a strong incentive to simply make

his decisions independently, refuse to pay the side payment, and benefit from his

superior bargaining position.

But how does this change as inter firm externalities intensify? The reneg-

ing temptation declines with an increase in these externalities, but whether this

makes relational employment more palatable depends on how fast the relational

surplus (the left hand side) is also declining. And as will become clear in the next

section, the reneging temptation for relational integration declines until it reaches

the temptation in relational non-integration, where it remains for greater external-

ities, while the relational surplus continues to decline. Depending on these relative

rates of decline, there may be different intervals of externalities over which each

ownership form is supported.

1.5.2 Relational Nonintegration

The same reasoning can be used to derive an analogous expression when

each manager controls a separate set of decisions. The nonintegrated managers

agree to choose jointly optimal decisions from the beginning of date 1, an agreement
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which is supported by side payments and trust that the other will abide by the

agreement. Managers will choose the actions aRNi to solve

πRN = max
ai

βi(a) +Bi(ai,q
∗, E)− 1′ai

and similarly for j. The total surplus under relational nonintegration is

equal to

V RN = Bi(a
RN ,q∗, E) +Bj(a

RN ,q∗, E)− 1′aRNi − 1′aRNj (1.14)

Notice the optimization problem is the same as in relational integration,

however, the reneging temptations will be different. A manager will honor this

contract as long as

Bi(a
RN ,q∗, E) + βi +

πRNi
r
≥ Bi(a

RN , q̃Non, E) +

1

2

[
∆Bi(a

RN , E) + ∆Bj(a
RN , E)

]
+

1

r
max

[
πFNi , πFIi , πFCi

]
(1.15)

Although this condition looks similar to 1.11, the current period reneging

payoff is the Nash bargaining solution from a position of Nonintegration, rather

than from a position of sole ownership. So the first term on the right hand side

has a different value than in the previous case.

Combining these conditions yields a necessary condition for relational Non-

integration to be self-enforcing:

1

r

{
V RN −max

[
V FN , V FI , V FC

]}
≥ (1.16)

max

{
βi −

1

2

[
∆Bi(a

RN , E)−∆Bj(a
RN , E)

]}
−

min

{
−βj −

1

2

[
∆Bi(a

RN , E)−∆Bj(a
RN , E)

]}
(1.17)

The more homogeneous the managers are, the more similar are their gains

from coordinating (∆B). In the perfectly symmetric case, the right hand side col-

lapses to just the maximum difference between side payments. This difference is

less sensitive to inter firm externalities than the augmented reneging temptation
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under Relational Integration, which eventually converges to the reneging temp-

tation here as externalities increase. In general, the difference in value between

independent choices of q and coordinated choices of q drives the temptation to

renege. For high externalities, relational integration and relational nonintegra-

tion offer the same benefits. If there are any organizational costs to integrating,

relational non-integration will be preferred over a greater range of externalities

than relational integration. At very intense inter firm externalities, no relational

contract can be supported.

Furthermore, the uncertainty in the random variable realized at date 1

matters. The left hand side is the expected gain from better investments, while

the right hand side is the difference in production values at extreme states of

nature. For wide extremes, the relational contract is less likely to be supported

(and this will affect the relative value of relational integration and nonintegration

over different values of E). The left hand side has a greater value at low E but

may decline faster depending on the variability in the state of nature.

1.5.3 Relational Central Management

In this case, the central manager chooses optimal decisions from the begin-

ning of date 1, and firms agree to make optimal investments which are supported

by side payments and trust that the other will abide by the agreement. Managers

will choose the actions aRCi to solve

πRC = max
ai

βi(a) + βiC(a) +Bi(ai,q
∗, E)− 1′ai

and similarly for j, where βiC is i’s share of the relational contracting pay-

ment to the central manager. Because the realized benefits are contractible in the

repeated game, the central manager can demand a share of the surplus or threaten

to quit. The total surplus under relational central management is equal to

V RC = Bi(a
RC ,q∗, E) +Bj(a

RC ,q∗, E)− 1′aRCi − 1′aRCj − βC (1.18)
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Notice in this case some of the surplus goes to the central manager. Other-

wise the optimization problem is the same as in the other two cases, however, the

reneging temptations will again be different. A manager will honor this contract

as long as

Bi(a
RC ,q∗, E) + βi + βiC +

πRCi
r
≥ (1.19)

Bi(a
RC,q∗, E)− 1

2
wcenter + max

[
πFNi , πFSi , πFCi

]
In this case, if i reneges, he’s still bound by the central manager’s decision

profile and still has to pay his portion of the central manager’s formal salary. The

central manager will honor the contract if today’s realized side payment plus the

present value of expected future side payments exceed the formal salary he could

demand this period and the present value of his outside wage in future periods:

βC +
βeC
r
≥ wcenter +

wout
r

(1.20)

Combining these conditions yields a necessary condition for a relational

central management contract to be self-enforcing:

1

r

{
V RC −max

[
V FN , V FS, V FC

]}
≥ max

[
β + βC +

wout
r

]
−min [β + βC ](1.21)

The right hand side of this condition is slightly greater than the reneging

temptation under relational Nonintegration with symmetric firms, but if firms

are sufficiently asymmetric, then relational central management offers the lowest

reneging temptations. If I assume that E only affects the probability of getting a

good or bad state of nature, but not the value once that state is realized, then the

difference in max and min side payments is constant over any values of E while

the expected surplus from better investments is still declining.

The institutional form ultimately chosen depends on comparative deriva-

tives with respect to E, initial values at E = 0, and the variability in states of

nature.
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1.6 New England Groundfish Sector Allocations

This section describes a quasi-experiment with property rights in the New

England fishing industry that exhibits several important features from the theory

of the firm. In the remainder of the paper I will use this setting to empirically

estimate performance changes under different property and regulatory regimes.

The New England Groundfish Fishery consists of hundreds of vessels with access

permits to harvest over a dozen bottom-dwelling species that are regulated under

one umbrella (including cod, halibut, haddock, pollock, hake, and flounder). Many

vessels are not active, or also fish for additional species regulated under different

sets of rules, but there are several hundred vessels that are consistently active

and rely on groundfish for a substantial portion of their income. Prior to 2004,

all vessels in this fishery were regulated through a combination of limited access

command-and-control policies such as individual limits on days-at-sea (DAS) and

other catch limits and spatial restrictions. In 2004 vessels were given an opportu-

nity to form groups to manage output quotas, and to participate in trading and

leasing markets for their DAS allocations.

Large aggregate externalities generated by individuals through the common-

pool have persisted in the groundfish fishery for decades. Common-pool externali-

ties in this setting have taken two main forms: dynamic impacts on the fish stocks

because of overfishing, and reduced fishing opportunity for individuals within each

season because of regulatory responses to aggregate catches. Most of the groundfish

stocks were classified by federal scientists as either overfished (in a depleted state),

or experiencing overfishing (heading towards or remaining in a depleted state) as of

2007. Within-season regulations included industry-wide soft annual caps on indi-

vidual species (called “target total allowable catches”, or target TACs). When the

industry reached the TAC for a given species there were no shutdown provisions,

but an individual’s remaining DAS were devalued and regulators would implement

area closures and uniform harvest limits for individual trips (“trip limits”). In

other words, an individual vessel could face reductions in fishing opportunity and

catch based on the catches of all the other vessels in the industry. When trip lim-

its were exceeded vessels could legally discard the excess but were not allowed to
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sell it; furthermore, overages at the trip and season level were not deducted from

the following years’ limits to allow the stock to rebound, creating more long-run

externalities. Vessels could also be restricted to specific times of year and areas de-

pending on the type of gear they used and the status of the TAC each year. These

soft limits on catch at the season and trip level did little to reduce the impact of

overfishing, while significantly raising the costs to fishermen of complying with the

regulations.

In 2004 new regulations allowed trading of DAS allocations, but tightened

the species-specific trip limits and issued fewer DAS15. As an experimental pro-

gram, the new regulations also allowed groups of vessels to apply for their own

share of the TAC of individual species to manage themselves, according to their

own rules. Groups could voluntarily form “sectors”, design a plan for managing

their collective allocation, and submit the plan to federal regulators for approval.

Vessels that didn’t form sectors could participate in the DAS market and were

subject to the same complicated system of regulations16. Sectors, by contrast,

were allowed to determine their own distribution of fishing activity among their

members as long as they stayed below their allocated catch limits, did not enter

prohibited areas, or otherwise violate the terms of their federally-approved oper-

ations plan. Sector vessels were, however, prohibited from transferring their DAS

outside the sector.

Sectors resemble the theoretical model in this paper in several important

ways:

1. Reduction in common-pool externalities

Sector vessels were shielded from intraseason common-pool resource exter-

nalities from the rest of the industry. According to the new regulations, “A

primary motivation for the formation of a sector is the assurance that mem-

bers of the sector will not face reductions of catch or effort as a result of the

15Amendment 13 to the Northeast Multispecies Fishery Management Plan.
16The DAS market had many frictions designed to prevent excessive consolidation while reduc-

ing fishing capacity. Trades required application to and approval from federal regulators following
a 45-day waiting period. Permanent transfers of DAS were subject to automatic 40 percent re-
ductions in the remaining DAS for the buyer. In addition, there was no central clearinghouse for
trades, which relied on bilateral bargaining and brokers.
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actions of vessels outside of the sector (i.e., if the other vessels exceed their

target TACs)” (of Commerce (2004)).

2. Timing

There was a distinct “ex ante” period during which sector participants chose

the internal allocation mechanism and had the opportunity to take actions

that would improve the value of the sectors ex post. Sectors were required to

submit their operations plan at least one year before they were to begin fish-

ing operations as a sector, each year. After the initial formation, members

were required to commit to membership several months in advance of the

following fishing year, but could only change their minds before the season

began. These decisions were made with some uncertainty about the pro-

duction environment in the forthcoming seasons. Once in the sector, vessels

were required to stay in the sector for a full year, and could not fish until the

following year if they quit mid-season. Rounds of ex ante investment and ex

post negotiation may also have taken place within the season as members

held periodic meetings to adjust their strategy in between trips.

3. Organizational form

Sectors hired a salaried manager to monitor and enforce operations plans

who was not involved in production, and they elected a board to determine

sector rules and make strategic decisions. There were additional fixed costs

of organizing including ensuring compliance with federal rules, and paying

for third-party monitoring requirements imposed by federal regulators. In-

dividual sector vessels sacrificed some of the residual control over their own

fishing operations attached to their fishing permits by relinquishing control

to the hired, salaried manager, the rules determined by and with other par-

ticipants, and the elected board members of the sector. For example, unlike

the common-pool vessels who each individually owned their DAS, the sec-

tor entity officially owns the DAS allocations of its members and intrasector

transfers must be approved by the sector manager. The sector manager can

also order vessels to stop fishing when limits are approaching, unlike regu-

lators in the common pool. The board can prohibit any fishing activities
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it deems in conflict with sector goals, and violators can be punished with

heavy fines or expulsion, which would prevent them from fishing in the com-

mon pool for a year.

Two such sectors formed following the regulatory change. The Georges

Bank Cod Hook Sector formed in 2004 to manage a cod allocation but remained

under common pool regulations for the catch of all other species. In 2006 the

Georges Bank Fixed Gear Sector formed to harvest an allocation of cod as well.

These sectors were bound by their operations plans to use specific technologies

(gear) in the harvest of their targeted species. Although these sectors only received

a share allocation of one species, the individual vessels’ DAS for all species were

controlled by the sector entity.

Although the sectors were allocated quota only for cod, as figure 1.1 indi-

cates, the actual species composition of the catch changed substantially within one

of the sectors following its formation, particularly with the Hook Sector. Within

the groundfish fishery, Hook Sector vessels had been cod specialists but shifted

away from targeting cod and focused more on haddock, which had begun to show

strong signs of stock recovery (figure 1.11). These sectors were advocating that

they be managed by species quota allocations only, rather than the hybrid of effort

controls and cod quota they faced (da Silva and Kitts (2006)). But the Hook Sec-

tor had very little history catching other groundfish species, and thus very little

basis to make a claim to catch rights of other species. Thus in order to make

the case for expanded quota allocations they needed to pursue a joint strategy

to expand their species portfolio. Fixed Gear Sector vessels, on the other hand,

had always harvested a diverse portfolio of groundfish but had shifted out of cod

(and groundfish in general) in the years leading up to the passage Amendment

13. Following their formation as a sector in 2006, they shifted back into a greater

focus on cod harvesting. It’s less clear whether this was a concerted strategy or

a reflection of industry trends (figures 1.11 and 1.11). Sector vessels also shifted

effort toward other fisheries outside the groundfish complex, most notably into the

shellfish fishery as well as monkfish, dogfish, and other inshore predator fishes.

The data used in this study includes logbook and landings data between the
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fishing years 1999 and 2008. Fishing years run from May 01 to April 30. For each

fishing trip, captains record the catch, landings, discards, and prices by species

as well as the general location of harvest, the gear used, the crew size, and the

amount of time on the water. When vessels land their catch in port, the buyers

fill out a “dealer report” that also includes many of the same variables, includ-

ing when the vessel left, how long it was gone, the size of the crew, and catches

and prices by species. Although both of these datasets are self reported, they are

reported by different sources and matched by National Marine Fisheries Service

data auditors to ensure consistency. Capital stock variables including the length,

tonnage, horsepower, age and owner, are recorded in a federal vessel registry. The

federal observer program also provides occasional trip data from independent ob-

servers who ride along on fishing trips and record data independently, including

species composition, locations, inputs, and records of capital equipment includ-

ing electronics and processing technologies in use on board the vessel. However,

the sample size of independently observered trips is very small and this data is

not used in this version of the paper but will be incorporated in later versions.

Biomass indices for individual species were taken from the Northeast Fisheries

Science Center’s annual spring research bottom trawl survey cruises on Georges

Bank and represent abundance estimates independent of commercial fishing data.

Daily weather and oceanographic data on sea surface temperature and wave height

is downloaded from NOAA data buoys on Georges Bank to control for fishing par-

ticipation and environmental variability. Weekly diesel prices were gathered from

the U.S. Energy Information Administration web site. Combined, these sources

result in a dataset that has almost daily frequency on inputs, outputs, and environ-

mental and market shocks. For econometric analysis, I aggregate the data to the

weekly level to reduce some of the noise and time series gaps caused by irregular

length and frequency of individual fishing trips.
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1.7 Empirical Approach

This section estimates changes in performance for sector vessels following

the policy change, relative to similar independent vessels. To measure perfor-

mance changes, I estimate vessel-specific time-varying productivity parameters in

a difference-in-differences framework. I address selectivity bias that arises from

the decisions to enter or exit the fishery in a given week and to join sectors in a

given year. I also address the potential endogeneity of variable inputs caused by

unobserved ex ante managerial choices, and correct for problems with difference-in-

difference estimators themselves (Donald and Lang (2007), Bertrand et al. (2004)).

These productivity estimates are intended to capture managerial perfor-

mance. The availability of frequent and abundant data on inputs and outputs

for individual fishing trips makes production estimation an obvious first choice

for capturing firm performance. Many authors have argued that the decisions of

the captain have a major impact on realized productivity (Squires et al. (2003),

Viswanathan et al. (2002)). In a recent study of multiple industries, Bloom and

Reenen (2007) found that managerial practices are strongly correlated with firm

productivity in medium-sized firms throughout Europe and the U.S. This precedent

provides a natural analogy to my theoretical model, wherein individual managers

are modeled as having some ex ante influence over the value of their ex post produc-

tion decisions. I recognize that there are alternative measures of performance and

later versions of this paper will examine additional metrics, such as changes in the

market category (and consequently, value) of fish sales, investments in alternative

fishing technologies, and fishing location choices.

As a crude illustration of the difference-in-differences approach, figure 1.11

plots the annual revenue per fishing hour (total revenues and groundfish only rev-

enues) for all three vessel groups: Hook Sector vessels, Fixed Gear Sector vessels,

and the rest of the fleet. Both measures indicate large gains for the Hook Sector

following its formation between 2003 and 2004, although it is less clear from this

depiction alone that the Fixed Gear Sector enjoyed similar gains. The econometric

approach described below provides a less crude measure of productivity differences

by adjusting for more factors than just time on the water.
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Once firm-year-specific productivity estimates are reached, I use contract

choice (sector membership) as a right hand side variable to examine whether per-

formance changes are consistent with the predictions of the property rights theory,

and I exploit the timing of the contract choice to control for endogeneity17. The

groundfish fishing season begins May 1 of each year, and sector members were

required to commit by the beginning of the season for a full year of either fishing

within a sector or fishing in the common pool. So preparations to form, organize,

and join sectors take place in the months leading up to the start of the season,

and choices are fixed for a year once the season starts. I then observe the firms’

subsequent production decisions and performance each year, when the contract

choice is a predetermined variable.

According to the theoretical model, an individual’s expected returns to his

and his partners’ ex ante managerial actions aiy and ajy determine the individual’s

ex ante choice of organization through the partners’ individual and joint char-

acteristics, i.e., the parameters of their payoff functions. I treat these as vessel

fixed-effects, but allow for annual shocks as described below. Investments them-

selves are made after the organizational decision is locked in, and contribute to

realized productivity in each period. Because organizational decisions are made at

the annual level, I also model ex ante managerial decisions on an annual basis. I

use weekly variation in the dataset to estimate these annual parameters as boat-

by-year fixed effects. I address concerns about possibly more frequent managerial

choices below.

The benefit function Biyd described in section 1.3 can be written as the

fishing trip-level profits of vessel i for fish landed on date d in year y.

Biyd = p · f(Xiyd,Ziyd, ωiy(aiy(Giy), y))−w′ ·Xiyd

Xiyd is a vector of production inputs, including the crew size, vessel length,

and time spent on the water. Ziyd is a vector of controls that capture environmental

and market conditions. Ziyd captures daily variation in the productivity of the

fishery, including Inverse Mills terms to address sample and sector selectivity as

17Much of the empirical contracting literature is concerned with explaining the determinants
of observed contracts, with contractual form on the left hand side.
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described below, ocean conditions including the sea surface temperature and wave

height, a within season trend, a daily measure of the catch per fishing hour of the

entire industry, and the individual’s cumulative catch in each season in order to

capture any learning-by-doing effects or expectations about productivity. These

variables enter the manager’s daily decisions about how to prepare for fishing trips

and whether or not to go fishing. The ωiy(aiy(Giy), y) are time-varying productivity

parameters that evolve according to the managerial abilities of the vessel captain.

If managerial inputs are Hicks-neutral in their augmentation of physical inputs,

this can be expressed as

Biyd = p · h [ωiy(aiy(Giy), y)] · f(Xiyd,Ziyd)−w′ ·Xiyd

The organizational structure Giy is chosen first to induce the best choice

of aiy, as described in Section 1.3. After aiy is chosen and ωiy is determined,

productive inputs X are chosen and production can be expressed in the estimating

equation

lnYiyd = α + X
′

iydβx + Z
′

iydβz + ωiy + ηiyd (1.22)

where ηiyd captures idiosyncratic variability in the vessel’s output because

of stochastic environmental factors, luck, etc. In the results shown in the next

section these daily observations are aggregated to the weekly level. Productivity

in a given year ωiy is composed of ex ante productivity investments by a given

manager and his partners in a given year; vessel fixed effects θi that capture time-

invariant characteristics of the vessel and it’s relationship with other vessels; and

factors that are idiosyncratic to the vessel for a given year, such as mechanical

problems or other non-fishing issues that impact the manager’s performance, or

other exogenous vessel-specific forces.

ωiy = g(aiy, ajy) + ρy + X̃
′

iyβ̃ + θi + νiy (1.23)

X̃iy accounts for production inputs that are fixed at the year level and thus

removed from equation 1.22 when vessel- or year-fixed effects are used (e.g., capital

and resource stock levels). Equation 1.24 describes a fixed effects, differences-in-

differences regression with the indicator variable Giy as a proxy for g(aiy, ajy).
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If firms select a newly available governance structure because it induces greater

investment in human capital, then firms in the sector should see an increase in ωiy

relative to nonsector firms after the option was introduced.

ωiy = γGiy + ρy + δGiy ∗ y + X̃
′

iyβ̃ + θi + νiy (1.24)

This framework is similar to the multilevel model described in Donald and

Lang (2007); with only two sectors, the number of treated groups may seem too

small to gain any power from a difference-in-difference approach. With multiple

observations per vessel for each year, however, I treat each vessel as a group and

each vessel’s fishing day (or week) as an individual within that group. Donald

and Lang (2007) present a two-step estimation method to correct for unknown

within-group correlation in the errors, which in this case may be present at the

boat level across days or weeks. Some of these groups select into the treatment

category, e.g., join a sector. This approach suggests a particular form of potential

dependence across “individuals” (days), namely a possible autoregressive error

structure. As Donald and Lang (2007) point out, if the within group correlation

is known, equations 1.22 and 1.24 can be estimated directly in one step using

feasible GLS. Tables 1.2 and 1.3 present estimates of this one-step approach using

fixed effects, feasible GLS, and clustered standard errors from the full sample for

comparison, while tables 1.4 and 1.5 present these results for the comparison groups

derived from a matching estimator described below. Tables 1.6 and 1.7 present

results from Donald and Lang (2007)’s two-step estimator using the full sample and

matched comparison groups. All results of the difference-in-difference approach are

reported with time periods collapsed into pre- and post- sector periods to account

for over-rejection of the null that is a common problem in difference-in-difference

estimates across multiple time periods (Bertrand et al. (2004)).

This framework is analogous to difference-in-difference studies of the effect

of a given policy adopted by multiple counties or states, with potential correlation

across individuals within the state or county; in this case there could be correlation

across weeks for a given vessel. There could still be correlation at the sector level

across vessels, however, which I address in several ways. First, the National Marine
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Fisheries Service subdivides the fishing grounds into “statistical areas” to facilitate

spatial regulation and measure spatial differences in abundance, as in figure 1.11. I

cluster the standard errors by these areas, as well as by port. The standard errors

are larger when clustered by vessel or by year, so only year and vessel clusters are

reported. In addition, I include in Ziyd the weekly aggregate catch per hour fished

for all vessels in each area and port to account for common shocks across vessels.

If productivity variation within the year is driven by managerial decisions

aiy in equation 1.22, instead of being idiosyncratic at the daily or weekly level as

assumed, the year-by-vessel fixed effect will only capture the average impact of

these effects over the year. For example if the investments take some time during

the year to take effect, or if the managerial choices are made on a trip-by-trip or

week-to-week basis, then the error should be written

ηiyd = αiyd + εiyd,

where αiyd depends on aiyd and εiyd is truly idiosyncratic. Then ωiy and ηiyd will be

correlated through the choice of aiyd (notice the additional d index in this case).

If the theory in Sections 1.3 and 1.4 is wrong, there will be no correlation and

thus no bias because ex ante investments won’t vary across organizational forms.

If the theory is correct, and if the aiyd accrue at the daily level and not just the

annual level, αiyd will be positively correlated with the individual in a given year

and organizational structure.

The standard interpretation of this omitted variable problem would suggest

a positive bias and an exaggerated difference in ωiy across organizations and time

periods. In the present case, however, this is not bias per se, but rather an aver-

age of an effect that I would like to directly observe. Taking an average of firm

productivity within each year (i.e., naively calculating the firm-year fixed effects

ωiy) actually understates the ongoing evolution of productivity within the year if it

exists. If the evolution is driven by the non-contractible actions of the managers,

then this actually captures the effect I wish to capture at a lower level of precision.

The procedure of estimating ωiy ignoring these unobserved within-year effects from

productivity investments will be the same as the result if data on the evolution of
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within year productivity were available, but averaged over the year (this follows

from a straightforward derivation of the expression for the bias in this case).

Variable inputs chosen within a year may still be correlated with αiyd. If

I assume αiyd is a managerial input, then it has an equilibrium demand based

on ownership structure and current conditions. The ownership structure is fixed

at the beginning of the year, and the remaining variation in αiyd is captured by

variables likely to enter its demand function, such as daily temperature and ocean

conditions, fuel and output prices, daily aggregate catch per hour fished for the

industry, port, or statistical area, and the individual vessel’s cumulative catch for

the year. These are already included in the regression. In the next section I describe

another potential solution for this issue that I will pursue in future versions of this

paper.

The possibility of selectivity bias is addressed in several ways. Sample

selectivity is likely to be present because on any given day, vessels can choose to go

fishing or stay in port and pursue leisure or other income opportunities. I include

factors in the regression that attempt to capture an individual vessel’s decision to

stay home or go fishing. First, I include measures of aggregate catch per fishing

hour at the industry, port, or statistical fishing area level. This proxy for industry

productivity is intended to capture what an individual boat might know about its

prospects on a given day based on what the captain hears from other captains.

Second, I include an Inverse Mills ratio from a first stage probit regression to

predict daily participation as described below.

Group selectivity bias may also be present. While the sector option was

available to all vessels, many vessels that may have benefited from forming a sec-

tor chose to remain independent because of their skepticism about the program.

There is strong inertia in negative attitudes towards property rights systems among

fishing communities, which is likely to have accounted for significant foregone par-

ticipation. This was one of the first programs of its kind in the region and one of

very few in the United States, so many vessels may have been viewing the program

as a test case. Therefore many nonparticipants could differ from participants more

in their attitudes than in their potential for cooperative gains. If this is not the
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case for all vessels, selectivity bias could still be an issue in estimation. Selection

into a sector based on firm-specific characteristics is a fundamental assumption in

the theory derived earlier; firms that integrate are assumed to have a pre-existing

“specific relationship” or partnership potential that may not be observable in the

data.

I deal with this potential issue in several ways. First, the difference-in-

differences estimator with vessel-level fixed effects using data from several years

before and after the policy change should remove much of the unobserved hetero-

geneity in vessels and captains. Second, comparison vessels are chosen to most

closely resemble sector vessels as described below. Lastly, I include an Inverse

Mills Ratio term to correct for selection into a given sector in a given year after

2004. Each of these terms is significant in most specifications.

Inverse Mills Ratios I calculated the Inverse Mills Ratios using the following

procedures:

• For the fishing participation choice on a given day, I expanded the panel to

a fully balanced panel. An indicator for whether the vessel was out fish-

ing on a given day is regressed (using a probit regression) on current and

multiple lagged prices of all available fish species (including non groundfish

species); current and lagged temperature, wave height and diesel prices; the

total number of other vessels fishing each day; capital stock size; dummies for

whether the vessel is in a sector; a dummy for being owner-operated; yearly,

monthly, and day-of-week dummies; and the lagged proxy for industry ag-

gregate productivity.

• For selection into sectors, I assume that vessels join sectors based on their

expectations about their own future productivity and that of their potential

partners in the next year (since sector participation is decided one year at a

time), and that those expectations are formed based on productivity during

the current year. To capture this I regressed participation in a given year

on the average value of inputs and outputs for the preceding year from all

vessels in the same home port as each vessel, again using a probit.
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Comparison vessels Regression results from the full sample include comparison

vessels that used similar fishing gear to sector vessels. Sector vessels almost never

reported using any gear other than hook and line gear, sink gillnets, scallop dredges,

traps or pots, so the sample was limited to vessels using these gears. This eliminates

various types of trawlers and drift gillnets, which are very different technologies.

From this set of vessels, I constructed several additional comparison groups.

First, I chose vessels who landed fish in ports of similar size or regional proximity

to the sectors’ home ports of Chatham and Harwichport18. Second, I chose vessels

that formed sectors in 2009 when the sector program expanded. The rules for

non-sector vessels were changed in 2009 from input controls to hard common-pool

annual harvest caps on individual species. The spectre of a fishing derby lead many

vessels to form new sectors. From these vessels I formed three comparison groups:

one with vessels from any 2009 sector with more than 5 percent of its participants

using hook-and-line or sink gillnets19, one with the same vessels but using only the

hook-and-line or sink gillnet trips (excluding trips using pots, traps, and dredges)

and one with vessels only from sectors that had stated goals of sustainability

and community-based management which resembled the Hook and Fixed Gear

sectors20.

My emphasis on similar communities or cooperative entities, rather than

simply matching from the entire fleet on vessel observables, is intended to capture

groups of comparison vessels that might exhibit similar relationship specificity as

the Hook and Fixed Gear Sectors, absent the formal quota allocation and contract

structure during the study period. The difference-in-difference estimates from these

comparisons are summarized in Table 1.9.

The size and statistical significance of the results are sensitive to the com-

parison group, indicating significant heterogeneity in the response of different

vessels to the post-2004 regulatory changes. Difference-in-difference estimators

18These ports included Barnstable, Bass River, Chilmark, Cotuit, Dartmouth, Eastham,
Edgartown, Fairhaven, Falmouth, Mattapoisett, Nantucket, Nauset, Onset, Orleans, Seabrook,
Tisbury, Truro, Wellfleet, Woods Hole, Yarmouth, New Bedford, Hyannis, Provincetown, Men-
emsha, Oak Bluffs, Vineyard Haven, and Dennis.

19The Sustainable Harvest Sector, Northeast Seafood Coalition Sectors III and XI, Northeast
Coastal Communities Sector, and the Port Clyde Community Sector.

20The Port Clyde Community Sector and the Northeast Coastal Communities Sector
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only remove pre-treatment mean differences but do not control for heterogeneous

changes in response to post treatment conditions; if the comparison groups do not

respond to the new regulations in the same way as the sector vessels would have,

absent their sector status, then they are not a good control group. To deal with

this, I also implemented a matching estimator.

Matching estimator To implement the matching estimator, I first estimated

the production function described in equation 1.22 using only pre-sector data and

individual time-invariant fixed effects. I then captured these fixed effects as a

variable representing time-invariant ability levels to help explain the propensity to

join sectors. I identified 8 nearest-neighbor vessel matches for each sector vessel’s

weekly observation by combining a Mahalanobis distance and propensity score

procedure. I selected matches by minimizing the Mahalanobis distance between

the date the sector vessel was observed and the date its matches were observed,

combined with a propensity score estimated from a probit regression of future

sector membership on the ability variable (fixed effect estimates), the production

inputs, and weekly production conditions. The propensity score was only estimated

when sector vessels and their matches used the primary gear type (hook and line

or sink gillnets). This procedure produced a comparison group that was likely to

fish at the same time of year, using the same gear and similar inputs, with similar

ability levels. The results of this probability model for both sectors are reported in

Table 1.1. As figures 1.11 and 1.11 indicate, the propensity scores for sector and

nonsector vessels share common support. For any vessel that had been identified

as a match in at least one week, I averaged the propensity scores over all the times

it had been chosen as match to get a single propensity score for each matched

vessel.

I used the boat-year fixed effects ωiy from equation 1.22 as an outcome vari-

able for the matching estimator. I estimated the mean difference in these boat-year

effects between sector vessels and matches, before and after sector formation, using

propensity score matching with four equally-weighted nearest neighbors based on

the averaged propensity score for each matched vessel described above. I also re-

estimated equations 1.22 and 1.24 using all of the data in the two-step procedure,
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but using only the vessels identified as matches for the comparison group. These

results are reported in Table 1.8.

1.7.1 Empirical Limitations and Extensions

The use of productivity as the sole measure of performance has its limita-

tions. Investments in the value of a coalition may also include potential non-market

or social benefits that I do not attempt to measure here, such as increased job sat-

isfaction, improved community ties, intergenerational access to the resource, and

on-the-job safety. Although an observed increase in productivity for sector ves-

sels is consistent with the proposed theoretical model, there may be a number of

explanations for productivity increases. It is important to interpret the empiri-

cal results as consistent with the theory, but not an exact test of the theory21.

Sectors might reallocate fishing activity to only the most productive vessels, who

can produce the same overall quantity with fewer inputs. This is an economet-

ric issue; if I have adequately captured sample selection at the vessel, trip level

then observing the more productive vessels more frequently should not bias my

results. Sectors were also exempt from trip limits for cod harvests (but subject to

limits for other species); sectors might automatically appear more productive by

not having to discard catches on each trip that exceeded the limits. This prob-

lem is reduced if independent vessels adjusted inputs to hit the trip targets, but

mistakes in these adjustments would be truncated. However, sector vessels were

subject to more stringent monitoring, leaving less leeway to throw back smaller

fish for larger, more valuable fish. So while trip limits for cod could create a bias

in the productivity estimates across groups, it’s not obvious which direction the

bias might go.

To address both the sample selection and endogeneity issues, a later version

of this paper will apply corrections similar to those developed by Levinsohn and

21Whinston (2003) highlights the difficulty in devising an exact test of the property rights
theory of the firm. Yet this difficulty does not imply that the theory provides no insight into
organizational decisions or performance, or regulatory changes in this case. As discussed in
section 1.6, the theory closely resembles the case studied here and the stylized facts of many
cases with common property regimes.
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Petrin (2003) and Olley and Pakes (1996). Rather than rely on within transforma-

tions to estimate productivity, these methods assume that managers have better

information and more accurate expectations about future productivity realizations

than the researcher, and that the manager choose ex ante observables based on

these expectations. In this case, the size of the crew for a given trip may be based

on expectations about the productivity of that trip, as well as vessel size and gov-

ernance structure. I then use higher-order polynomial interactions of labor, vessel

size, and governance structure in equation 1.22 to nonparametrically proxy for

αiyd.

This issue could persist at the annual level. An unobserved annual pro-

ductivity process may also cause sample selection and omitted variable biases in

equation 1.24 if νiy contains a process component that is correlated with aiy or Giy,

and/or if it drives the vessel owner’s liquidation decision (Olley and Pakes (1996)).

The coefficient on governance structure will be biased if a manager has a good

forecast about how he will fair in a given year, and this influences his decisions

about whether or not to exit the fishery, which governance structure to choose if

he does not exit, and how much to invest in ex ante productivity enhancements

under a given governance structure.

The size of this bias is likely to be small if it exists at all. Much of what

is typically unobserved in the production process, e.g., a manager’s individual

characteristics and the market and production conditions in a given year, are

captured by the vessel fixed effects and resource stock measure in equation 1.24, and

by the daily and weekly covariates in equation 1.22. However, if there are additional

unobserved annual factors influencing productivity and governance choices, the

method described below should capture those effects.

The direction of this bias is not immediately clear. If high-productivity

vessels are more likely to integrate because of the greater returns that they get

from improved productivity investments of their managers, then the bias will be

positive. If low-productivity vessels are more likely to integrate as a way to sur-

vive against high-productivity vessels, as is maintained by several other studies on

fishing cooperatives, then the bias will be negative. Again, following Olley and
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Pakes (1996), I will account for this by assuming that the manager has better

expectations about the random component of their annual productivity than the

researcher, and makes investments in physical capital based on these expectations.

Thus a kernel estimator or higher-order polynomial series estimator using annual

capital investment activity interacted with vessel age, vessel characteristics, re-

source stock size, and governance structure is a suitable proxy for the unobserved,

exogenous productivity process. Data on annual physical investment activity is

only available for a subset of the vessels from semi-annual investment surveys con-

ducted through the federal observer program. I will use vessel characteristics and

past revenues to project investment activity from vessels that were surveyed onto

vessels that were not surveyed but similar along observable dimensions.

1.8 Results

What were the impacts of sectokr participation on performance? Taken

together, the regression tables suggest consistently positive gains to sector partici-

pation, although the size of the gains are sensitive to specification and comparison

group. The results from the one-step approach in Tables 1.2, 1.3, 1.4, and 1.5

all suggest consistently large positive productivity gains for the Hook Sector in

the 40% range, but perhaps negligible gains for the Fixed Gear Sector. The fixed

effects results in Table 1.2 indicate that variables that control for sample selection

are significant in most cases, but that their inclusion or exclusion does not alter the

coefficients of other explanatory variables. It is likely that the selection decision is

already captured by one of these variables; as Figures 1.11 and 1.11 indicate, there

was some reallocation of effort within the sectors, but no dramatic retirements of

capacity or fishing activity. Even the point mass at zero hours for the Hook Sec-

tor is not vastly different from the distribution of activity in the rest of the fleet.

The Inverse Mills Sample selection term is consistently positive and significant in

most other specifications, suggesting that sample selection is on unobserved pro-

ductivity. For these reasons I will interpret estimated productivity gains as actualy

increases in vessel-specific ability, not an artefact of deploying better units more
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often (which would also cause a mean increase at the group level).

The single stage results rely on assumed perfect knowledge of the structure

of within-vessel error correlation, which imposes unnecessary structure on the es-

timation. Tables 1.6 and 1.7 present results using the Donald and Lang (2007)

two-step approach, with the data at the second step collapsed to the year-vessel

level and estimated using several approaches. Donald and Lang (2007) suggest

feasible GLS at the second stage. In addition, I have included results using Fixed

Effects, and clustered standard errors at the boat and year level. Table 1.7, which

includes suggestions by both Donald and Lang (2007) and Bertrand et al. (2004)

for obtaining consistent difference-in-difference estimates, indicates average pro-

ductivity improvements of 16% for the Hook Sector vessels and 44% for the Fixed

Gear Sector vessels.

Table 1.9 suggests that sector vessels performed well relative to vessels from

similar communities, but not necessarily better than vessel groups that may have

been similarly organized. When compared with vessels from similar ports or vessels

that would eventually form community-based sectors, the Hook Sector showed

between 30% and 40% gains, while the Fixed Gear Sector showed between 40%

and 140% improvements. Compared to any future sector, however the gains were

negligible. This is not necessarily surprising considering the composition of this

group. The “Any Future Sector” comparison group contains vessels that belong

to the Northeast Seafood Coalition, which is large, very well-organized fishermen’s

advocacy group.

Lastly, Table 1.8 gives results from the comparison group constructed with

matching methods. Hook Sector productivity appears to have improved between

16% and 28% relative to its control group. Using the midpoint of this range and an

average annual groundfish revenue of $23,500 for Hook Sector vessels, this amounts

to an annual gain of about $5000. Annual sector fees totalled $10,000 which may

explain why the Hook Sector shrank from 58 vessels to 19 vessels between 2004 and

2008. Most of the exiting vessels had low aggregate earnings, despite having high

production efficiency. The Fixed Gear Sector appears to have faired better, with

gains between 44% and 71%. Using the midpoint of this range and an average
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annual groundfish revenue of $56,100, this amounts to an annual gain of about

$32,000 in groundfish revenues for the average Fixed Gear Sector vessel. This may

explain why the sector nearly doubled its membership between its first and second

years of operation.

1.9 Conclusion

This paper proposes a model that explains some of the heterogeneity in

observed ownership structures under various common property regimes. When

complementarities are potentially valuable, integration or other centralized con-

trol structures are more likely at lower levels of externalities while nonintegration is

more likely at higher levels. However, it should be noted that implementing a policy

to close off the commons will not necessarily immediately lead to the efficient out-

come, particularly if the policy is implemented at a point when agents have already

prepared and invested for the status quo regime, e.g., between date 0 and date 1.

If managers are operating in a nonintegrated structure before the policy, i.e., when

the externality is at some high level Eh, coalitions invest expecting an outcome of

V (aNon,q∗, Eh). If a policy is implemented, such as a cap and trade policy, which

allocates to each of the N managers in the industry a full property right over

their historical use of the resource, eliminating the symmetric externalities, then

the value of those decisions will rise ex post to V (aNon,q∗, 0) > V (aNon,q∗, Eh).

However, if the policy would also have lead to a different management structure,

then there is a different investment profile that the coalition would have chosen

had the policy been implemented at date 0; the potential value of their decisions

is then greater than the realized value: V (ak,q∗, 0) > V (aNon,q∗, 0). Firms may

only value those rights at the predetermined investment profile aNon, so there may

be systematic undervaluing by some firms. Firms that may have integrated and

survived, or even dominated, may inefficiently liquidate their rights22. As Wilen

22If a choice is given to firms of whether or not to participate in the system, the commons
problem may intensify for non joiners, but joining may involve fixed costs. If a are durable
investments firms could be left with persistently unproductive skills in either system if the system
is introduced at date 1.
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(2007) has observed, “many rationalization programs have witnessed changes in

incentives so different than those under regulated open/restricted access, that of-

ten the technology in place before rationalization is not evident afterwards.” If

the best potential users of the new technology, or even its inventors, exit before

they have a chance to adapt to new conditions, there may be a long and costly

adjustment path to the efficient equilibrium.

In the case of the two initial New England groundfish sectors, the alloca-

tion rules required vessels to consider their strategic integration and production

options, providing an opportunity to invest in new capabilities to create value.

Later versions of this paper will examine in more detail the exact mechanisms

through which each sector was able to make use of the collective allocation of

cod. For example, the abilities of hook sector and fixed gear sector vessels appear

to have taken very different trajectories following their formation because of the

unique skills associated with each gear type.

Despite the relative gains to forming the sectors, the fixed costs of organizing

(in the form of sector fees) and the size of the gains in real terms appear to have

determined the size of these cooperatives. At $5000 per year, the gains for the

average Hook Sector vessel would not have covered the membership fees, although

higher performers in the group may have enjoyed substantially larger benefits, and

been willing to compensate other vessels to join in order to expand the DAS and

species quota holdings of the group. The Hook Sector did experience large attrition

rates, however. At about $32,000, the gains for the average Fixed Gear Sector

vessel were substantially larger, which may have drawn in additional participants.

Although in this case collective ownership appears to provide tangible ben-

efits to participants, it also allows for spillovers onto alternative resources. In this

case, the expanded impact on haddock was sanctioned by regulators, but this need

not be the case in general. These ecological spillovers are not unique to fisheries

regulation and are well known in the literature on multi-pollutant problems. This

paper provides a unique perspective by examining how these problems are affected

by a shift in firm boundaries and ownership following regulations of one dimension

within multi-product firms.
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1.11 Figures and Tables
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Figure 1.1: Hook Sector Harvest Composition

Figure 1.2: Fixed Gear Sector Harvest Composition
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Figure 1.3: Rest of Fleet Harvest Composition

Figure 1.4: Biomass Indices
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Figure 1.5: Revenue per Hour
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Figure 1.6: Northeast Statistical Areas
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Figure 1.7: Fishing Hours per Vessel: Hook Sector vs. Fleet

Figure 1.8: Fishing Hours per Vessel: Fixed Gear Sector vs. Fleet
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Figure 1.9: Hook Sector Propensity Score Common Support

Figure 1.10: Fixed Gear Sector Propensity Score Common Support
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Table 1.1: Propensity Score Model

(1) (2)
Hook Sector Fixed Gear Sector

ability -0.048∗∗∗ 0.37∗∗∗

(0.00336) (0.0198)
crew 0.074∗ 0.91∗∗∗

(0.0393) (0.0547)
hours 0.18∗∗∗ -0.18∗∗∗

(0.0204) (0.0189)
length -4.34∗∗∗ -2.99∗∗∗

(0.179) (0.151)
tonnage 0.37∗∗∗ 0.41∗∗∗

(0.0324) (0.0296)
horsepower 0.21∗∗∗ 0.60∗∗∗

(0.0433) (0.0358)
trend 0.0019∗∗∗ 0.0019∗∗∗

(0.000352) (0.000292)
industry CPUE -0.0016∗∗ 0.00042
(all fish) (0.000684) (0.000729)
industry CPUE 0.0071∗∗∗ 0.0015
(groundfish) (0.00121) (0.00124)
owner 0.25∗∗∗ -0.034

(0.0799) (0.0315)
SST -0.076∗∗ 0.22∗∗∗

(0.0344) (0.0339)
wave height -0.047 -0.32∗∗∗

(0.0352) (0.0337)
constant -1.21∗∗∗ -1.70∗∗∗

(0.105) (0.0758)
N 10992 20674
R2 0.11 0.13
ll -6105.5 -5828.7

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.3: Sector Effect, Full Sample

Dependent Variable: Groundfish Sales

(1) (2) (3) (4)
FE boat cluster FGLS (iid) FGLS

Hook 0.42∗∗∗ 0.51∗∗ 0.27∗∗∗ 0.098
(0.0492) (0.241) (0.0575) (0.0653)

Post 2004 -0.48∗∗∗ -0.81∗∗∗ -0.51∗∗∗ -0.52∗∗∗

(0.0599) (0.164) (0.0712) (0.0625)

Fixed Gear 0.024 0.33∗∗ -0.045 -0.045
(0.0618) (0.165) (0.0755) (0.102)

Post 2007 0.89∗∗∗ 1.14∗∗∗ 0.69∗∗∗ 0.89∗∗∗

(0.0607) (0.181) (0.0707) (0.0604)

fishing 0.17 2.97∗∗∗ 1.38∗∗∗ 0.32∗∗∗

(0.105) (0.572) (0.112) (0.0663)
N 49500 49500 49500 49427
R2 0.242 0.315
ll -76353.0 -96368.2 -87522.9
N g 894 894 821

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.4: Hook Sector Effect, Matched Comparisons

Dependent Variable: Groundfish Sales

(1) (2) (3) (4)
FE boat cluster FGLS (iid) FGLS

Hook 0.36∗∗∗ 0.46∗ 0.17∗∗∗ 0.11
(0.0542) (0.252) (0.0632) (0.0694)

Post 2004 0.38∗∗∗ 0.32∗∗ 0.29∗∗∗ 0.18∗∗∗

(0.0443) (0.143) (0.0524) (0.0536)

fishing 0.42∗∗∗ 4.93∗∗∗ 1.54∗∗∗ 0.54∗∗∗

(0.137) (0.566) (0.144) (0.0954)

cons 0.24 -2.16∗∗∗ -0.28∗∗∗ -0.13∗∗∗

(0.672) (0.353) (0.0621) (0.0404)
N 20369 20369 20369 20365
R2 0.270 0.374
ll -30193.2 -37035.2 -34617.7

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1.5: Fixed Gear Sector Effect, Matched Comparisons

Dependent Variable: Groundfish Sales

(1) (2) (3) (4)
FE boat cluster FGLS (iid) FGLS

Fixed Gear -0.11∗ 0.43∗∗∗ -0.12 -0.18∗

(0.0661) (0.139) (0.0740) (0.1000)

Post 2007 0.60∗∗∗ 0.68∗∗∗ 0.47∗∗∗ 0.66∗∗∗

(0.0388) (0.114) (0.0422) (0.0383)

fishing -0.49∗∗∗ -0.82 0.23 -0.043
(0.150) (0.572) (0.156) (0.101)

cons 0.23∗∗ 0.17 -0.19∗∗∗ -0.20∗∗∗

(0.0967) (0.274) (0.0499) (0.0346)
N 27787 27787 27787 27784
R2 0.286 0.299
ll -42916.1 -49939.3 -46610.0

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.6: Second Stage, Full Sample

Dependent Variable: ωiy

(1) (2) (3) (4)
FE boat cluster FGLS (iid) FGLS

Post 2004 0.044 0.026 0.019 0.026
(0.171) (0.142) (0.0143) (0.146)

Hook 0.20 0.12 0.11∗∗ 0.12∗

(0.125) (0.0834) (0.0429) (0.0664)

Post 2007 0.41∗∗ 0.37∗∗∗ 0.39∗∗∗ 0.37∗∗

(0.170) (0.141) (0.0162) (0.144)

Fixed Gear 0.58∗∗∗ 0.50∗∗∗ 0.43∗∗∗ 0.50∗∗∗

(0.218) (0.174) (0.141) (0.174)

cons -0.48∗∗∗ -0.100∗∗ -0.100∗∗∗ -0.100∗∗∗

(0.157) (0.0392) (0.00424) (0.0379)
N 4019 4019 3845 4019
R2 0.019 0.017
ll -5044.1 -5049.1 -5049.1

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.7: Second Stage, Matched Comparisons

Dependent Variable: ωiy

(1) (2) (3) (4)
FE boat cluster FGLS (iid) FGLS

Hook Sector Matches

Post 2004 0.42∗∗∗ 0.40∗∗∗ 0.40∗∗∗ 0.40∗∗∗

(0.117) (0.101) (0.0355) (0.121)

Hook 0.25∗∗ 0.16∗ 0.085∗ 0.16∗

(0.124) (0.0870) (0.0478) (0.0796)
N 1661 1661 1643 1661
R2 0.024 0.021
ll -2015.8 -2018.7 -2018.7

Fixed Gear Sector Matches

Post 2007 0.59∗∗∗ 0.54∗∗∗ 0.54∗∗∗ 0.54∗∗∗

(0.108) (0.0947) (0.0145) (0.0990)

Fixed Gear 0.51∗∗ 0.44∗∗ 0.36∗∗ 0.44∗∗∗

(0.221) (0.183) (0.164) (0.169)
N 1672 1672 1664 1672
R2 0.046 0.042
ll -2040.2 -2043.8 -2043.8

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.8: Matching Estimation for Differences in ωiy

(1) (2) (3) (4)
Pre-Sector Post-Sector Difference FGLS (Matched)

Hook Sector

Matched
Sector 0.6 0.73 0.13
Matches -0.7 -0.85 -0.15
Difference 1.3*** 1.58*** 0.28 0.16**

(0.16) (0.27) (0.32) (0.08)

Unmatched
Sector 0.6 0.73 0.13
Matches -0.68 -0.73 -0.05
Difference 1.28*** 1.46 0.18

(0.12) (0.20) (0.23)

Fixed Gear Sector

Matched
Sector 0.31 1.76 1.45
Matches 0.097 0.84 0.743
Difference 0.21 0.92** 0.71* 0.44***

(0.14) (0.38) (0.41) (0.17)

Unmatched
Sector 0.31 1.76 1.45
Matches -0.6 -0.15 0.45
Difference 0.91 1.91*** 1.0**

(0.15) (0.44) (0.46)

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.9: 2nd Stage, Port and Sector Comparison Groups

(1) (2) (3) (4)
OLS FE boat cluster FGLS

Similar Landing Ports
Hook Sector 0.11 0.32* 0.26 0.28**

(0.22) (0.17) (0.17) (0.12)
Fixed Gear 1.48*** 1.37*** 1.36*** 1.24***

(0.39) (0.29) (0.26) (0.23)
N 1332 1332 1332 1240
R2 0.139 0.182 0.167
LL -2521.8 -1833.2 -1844.8
Ng 348 348 256

Any Future Sector
Hook Sector -0.00061 -0.015 -0.02 0.047

(0.12) (0.10) (0.13) (0.09)
Fixed Gear -0.037 -0.031 -0.022 0.16

(0.21) (0.17) (0.21) (0.15)
N 1265 1265 1265 1260
R2 0.062 0.074 0.07
LL -1657.3 -1266.5 -1268.4
Ng 180 180 175

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 1.9, Cont.:
2nd Stage, Port and Sector Comparison Groups

(1) (2) (3) (4)
OLS FE boat cluster FGLS

Any Future Sector, Longline Trips Only
Hook Sector 0.079 0.26* 0.25 0.31***

(0.16) (0.15) (0.15) (0.12)
N 588 588 588 570
R2 0.115 0.075 0.073
LL -763.6 -548.8 -549.6
Ng 123 123 105

Any Future Sector, Gillnet Trips Only
Fixed Gear 0.16 -0.018 -0.02 0.095

(0.20) (0.17) (0.22) (0.15)
N 769 769 769 760
R2 0.051 0.087 0.087
LL -927.8 -686 -686
Ng 109 109 100

Future Sectors with Community Goals
Hook 0.30* 0.42*** 0.38* 0.42***

(0.17) (0.16) (0.22) (0.14)
Fixed Gear 0.29 0.37 0.32 0.40**

(0.27) (0.24) (0.26) (0.20)
N 638 638 638 633
R2 0.073 0.055 0.05
LL -915.6 -738.9 -741.3
Ng 98 98 93

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Chapter 2

Technological Change and

Managerial Ability: Evidence

From a Malaysian Artisanal

Fishery

Abstract

We compare the productivity of technology adopters to non-adopters using

a cross-sectional survey of artisanal gillnet vessels on the east coast of Peninsular

Malaysia. Technologies include cell phones, GPS, sonar, and mechanical winches

for hauling nets. Stochastic frontier analysis is used to measure differences in

production frontiers and technical efficiency scores. Adopters of mechanical net

haulers had low technical efficiency, low labor productivity and high labor use.

Electronics adopters were more productive than non-adopters on average, but dif-

ficult to distinguish from efficient non-adopters. This is the first paper that we

know of to examine the role of new technologies in the production process of arti-

sanal fishers. Our results suggest capital investments in new technology may tie the

least successful participants to the fishery despite most respondents’ self-reported

desire to exit. Impacts may be fishery-specific and ambiguous, so the consequences

of technology subsidies should be carefully considered in development policy.

78
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2.1 Introduction

“Perhaps one of the main reasons for studying economic development is to

understand better how individuals are able to make the transition out of poverty.

Technology may be viewed as a means to this end.” (Besley and Case (1993))

Technological change in less developed economies has received continued at-

tention because of its potential to improve welfare by raising output and reducing

inefficiencies1. But what is the role of new technology in the production process

for users of a common resource? Are technological improvements unambiguously

welfare-enhancing among small scale common resource users? Are the most skilled

agents better able to adopt and benefit from these technologies, or do the tech-

nologies substitute for skill? This paper is the first that we know of to study the

role of new technology in the production process of artisanal fishers.

Output-augmenting technological change has become a subject of concern

for common resources like fisheries. Unlike agricultural improvements that raise

yields and lower costs, short run fishing productivity improvements can lead to

lower long-run resource stocks, yields and welfare, particularly when rights of ex-

clusion are weak or nonexistent (Squires and Vestergaard (2009)). This “tech-

nology trap” makes it even more difficult to raise standards of living in artisanal

fishing communities2. As in many industrialized nations, developing country insti-

tutions and resources remain limited in their ability to offset increases in fishing

productivity by reducing effort or managing fish stocks (Viswanathan et al. (2002)).

Managers are particularly limited in their ability to adjust for unobservable inputs

like fishing or managerial skill, which may be augmented by the use of new tech-

nologies. Russell and Alexander (1998) observe that in some developing country

fisheries, innovations in electronic fish finding and navigational equipment, as well

1Jensen (2007) shows that cell phone use gives artisanal fishermen in India the information
to choose between coastal fish markets with different prices, bringing these markets in line with
the law of one price and reducing price risk, travel time and wasted catch.

2In the sample studied in this paper, 92% of survey respondents said they don’t want their
children to fish, and 50% said they would like to change jobs themselves. Among those who said
they don’t want to change jobs, 72% said it was because they were too old, can’t learn new skills,
or don’t have enough education or alternative opportunities.
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as boat design, can substitute for traditional fishing skill, but that this has not

been the case in all developing country fleets.

This paper examines the intersection of skill and technology adoption using

cross sectional data from a survey of artisanal gill net vessels on the east coast of

Peninsular Malaysia. We consider whether technology adopters and non-adopters

differ with respect to their production efficiency, and the shape and location of

their production frontiers. We introduce a distinction between innovation that

is complementary to the skill endowment (and is thus “skill-augmenting”) versus

technical change that substitutes for skill (and is thus “skill-diluting”). We em-

ploy stochastic frontier analysis to characterize technical efficiency, combined with

information about the adoption of new technologies like cell phones, global posi-

tioning systems (GPS), echo locaters, sonar, and a mechanical winch used to haul

in fishing nets.

The rest of the paper is organized as follows: section 2.2 reviews the liter-

ature on fishing skill. Because each of these technology types may play a different

role in the production process, section 2.3 describes the hypotheses we will explore

and provides a summary of results. Section 2.4 discusses issues with the data.

Section 2.5 specifies the empirical approach, section 2.6 presents the results of the

analysis, and section 2.7 concludes.

2.2 Fishing Skill

A number of studies have attempted to identify and measure metrics of skill

and their determinants for artisanal fisheries in less developed countries. Individual

skipper and vessel observables often do not show a strong statistical relationship

with technical efficiency estimates or other measures of skill, and when they do, the

findings have been only moderately consistent. Skill in this context is defined as

the ability to consistently catch the most fish, given observable input levels (Barth

(1966); Palsson and Durrenberger (1982); Thorlindsson (1998), Viswanathan et

al. (2002)), or in other words, to produce on the production possibilities frontier.

Thus, technical efficiency scores that measure firm-specific distances from an es-
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timated frontier are often considered good proxies for skill (Viswanathan et al.

(2002), Squires et al. (2003)), while technological change is defined by shifts in the

frontier.

As noted by Thorlindsson (1998), some authors have argued that estimated

skipper effects are driven by a handful of star performers, with performance among

the rest of the fleet distributed randomly, while other authors hold that skipper

skill is a classic fixed effect – and fleet-wide performance rankings should be con-

sistent over time (Barth (1966); Palsson and Durrenberger (1982), Squires and

Kirkley (1999)). Palsson and Durrenberger (1982) found no clear relationship be-

tween experience and catch. Acheson (1975) found that age and education were

not strong proxies for skill. Using a stochastic production frontier, Squires et al.

(1998) found that skipper-specific variables were generally insignificant as predic-

tors of technical efficiency. Using panel data, Squires and Kirkley (1999) found

that differences in technical efficiency were better explained by inter-vessel fixed

effects than by production inputs.

Viswanathan et al. (2002) and Squires et al. (2003) identify several signifi-

cant explanatory variables for technical efficiency, but they are not all consistently

significant in different fisheries. Viswanathan et al. (2002) find that Malaysian

trawlers fishing in the peak season with smaller boats and Chinese captains were

significantly more efficient, all else equal. Squires et al. (2003) find that in the gill

net artisanal fishery on the east coast of peninsular Malaysia, more efficient vessels

had newer engines, more experienced or Chinese captains, smaller vessels, larger

families, and at least a primary school education. On the west coast, more efficient

boats had older hulls and engines but newer nets, Chinese captains, less formal

training, and larger boats with a particular brand of engine. A common theme

in these findings is that proxies for fishery-specific knowledge, such as ethnicity,

family size, and capital vintage, tend to be significant even if direct measures of

experience are not.

Fishing skill has been broken down into a number of individual components,

all of which depend on specific types of experience. Foremost of these is the ability

to find the best fishing location, as emphasized by Barth (1966), Acheson (1981),
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and Marcoul and Weninger (2008). One important question is whether electronic

fish finding equipment substitutes for this dimension of skill or augments it. Echo

locaters, sonar, and GPS are obvious examples, but in the presence of informal

networks even cell phones could be used at sea to share information about good

locations among cooperating captains. Acheson (1981) also listed knowledge of

the oceanographic environment and knowledge of the species as two additional

components of skill, both of which could also be augmented by electronics. To

these aspects of skill, Thorlindsson (1998) added the ability to read the ecological

environment, the willingness to search independently and take risks, and leader-

ship or management qualities, although it’s less clear how the technologies under

discussion here would influence these components of skill.

2.3 Technology Hypotheses

In this section we list and briefly discuss several hypotheses that we will

test about the use of technology. Tables 2.1 – 2.4 provide a brief summary of the

evidence for each hypothesis.

Net Hauler

Hypothesis N1: Net hauler adopters will have higher labor productivity.

The use of a mechanical winch makes it possible for only one crew member

to haul in a net after each fishing set, potentially reducing the crew size required

for a given catch size.

Hypothesis N2: Net hauler adopters will exhibit higher total factor pro-

ductivity.

If this equipment reduces the amount of time it takes to haul in and empty

the gear, it may allow the vessel to fish more sets in any given trip for a given level

of inputs.

Electronics

Hypothesis E1: Electronics users will exhibit higher total factor productivity.
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If electronics allow vessels to find more fish faster, then the productivity of

all production inputs should increase. Cell phones can play this role if different

vessels communicate in informal networks to find the best fishing locations.

Hypothesis E2: Cell phone users fetch higher prices.

If fishermen have a choice between markets, cell phones should allow them

to always pick the highest price market.

Adoption

Hypothesis A1: Newer, more modern vessels will have adopted newer technolo-

gies.

It may be more convenient to install new equipment when the vessel is

built. The characteristics of a fisher who would reinvest in the fishery with a more

modern boat may also be the same as someone who would purchase advanced

equipment.

Hypothesis A2: Adopters will be found in clusters according to location.

This is a form of the well-known “S-curve” diffusion hypothesis – that adop-

tion follows an S-curve over time; as information about the technology spreads,

adoption rates increase until the market becomes saturated. We may be able to

see this pattern in our cross-sectional data; if information is locally obtained then

adoption should take place near locations with other adopters, where skippers can

observe the benefits of particular technologies.

Skill

Hypothesis S1: Technology is skill-augmenting, i.e., technology adopters should

exhibit greater technical efficiency than non-adopters.

We define technical change to be skill-augmenting if the distribution of

technical efficiency scores is wider with a new technology than without, e.g., if firms

producing at or near the frontier are innovators who shift the frontier out, while

non-adopters don’t move relative to the new frontier without further diffusion.

This is the canonical view proposed by Fare et al. (1994). This could occur if the

new technology is complementary with managerial skill, so that new technology
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augments the performance of high-ability managers more than that of low-ability

managers. This could also be the case if more capable managers have better

information about useful technological developments. In either case we would

observe adopters clustered near the frontier with non-adopters lower down in the

technical efficiency rankings, regardless of the causal direction of adoption and

skill.

Conversely, we define technical change to be skill-diluting if the distribution

of technical efficiency scores is narrower with a new technology than without,

e.g., if inefficient firms adopt and move closer to an existing frontier. This would

be the case if the new technology is a substitute for managerial skill, so that

managers will only adopt if the cost is very low relative to the improvement over

their skill endowment. In this case we would observe adopters towards the bottom

or middle of the technical efficiency distribution. These terms refer to the ability

to distinguish between pre-adoption high and low skilled boats when technology is

adopted, rather than the effect of the technology on individual boats. Naturally

the technical efficiency of a low-skilled firm is “augmented” if it moves closer to

the frontier because of a technological adoption, but we will call this change “skill-

diluting” because it’s now more difficult to distinguish the skill of this firm from

other efficient firms. It’s possible that skill-diluting and skill-augmenting effects

will offset each other, leading to no observed difference in the technical efficiency

of adopters and non-adopters, but rather a shifting out of the entire technical

efficiency distribution. Our cross-sectional snapshot will not allow us to distinguish

the two effects. Another – albeit unlikely – explanation is that these technologies

are actually ineffectual. Adopters are a small portion of our sample – and may

be the gullible few who took a risk on new technologies whose benefits may be

nullified by natural resource constraints and excess industry-wide effort.

Finally, we examine two hypotheses that have been of interest throughout

the literature on skipper skill:

Hypothesis S2: Observable skipper characteristics are not good predictors

of technical efficiency.

Hypothesis S3: Skill rankings are stable and consistent.
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2.4 Data

The data comes from a survey of 354 fishers on the east coast of peninsular

Malaysia, and was collected in an effort to explore linkages between sea turtle in-

teractions and local perceptions through a detailed inquiry into fishing activity –

including technologies (Yeo et al. (2007)). This paper focuses on a sub-sample of

120 small-scale gasoline-powered drift net vessels and their use of new technologies.

The data was collected as part of a collaboration between the Malaysian Depart-

ment of Fisheries (DOF), the Turtle and Marine Ecosystem Centre (TUMEC),

World Wildlife Fund-Malaysia, National Oceanic and Atmospheric Administra-

tion (NOAA)-Fisheries, the Department of Economics at UC San Diego, and The

WorldFish Center.

The data is based on recall from the most recent trip, as well as recall esti-

mates of the long run average of a few variables, including monthly fishing income,

and catch and revenue on a typical trip in a given season. Production inputs

surveyed include crew size, fuel quantity, time spent fishing, and capital measures

such as boat length and width, net length and width, horsepower, gross tonnage,

and the age and expected life of boats and nets. A number of socioeconomic char-

acteristics are also present, including marital status, family size, education, income

sources, and attitudes towards fishing.

The fishermen in the sample come from 18 villages spaced roughly 5 to 10

miles apart, spanning 5 districts (or states). We are interested in the relationship

between adoption of new innovations and the vessel’s production possibilities, so we

employ dummy variables for adopters of specific technologies. Table 2.5 provides

summary statistics for the variables in the study. The self-reported peak fishing

season varies by respondent because we are studying a multi-species fishery and

respondents are heterogeneous in their outside opportunities and reliance on the

fishery. “Peak Season” describes whether or not the most recent trip occurred

during this self-reported peak season, or during the self-reported “lean” fishing

season. “Region” lists the districts from south to north, along with a dummy

variable for the southernmost three districts. Respondents were asked to report

their total revenue in Malaysian Ringgits and total catch in kilograms for their
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most recent fishing trip, as well as the typical values for the season in which they

were interviewed. “Typical Catch” and “Typical Revenue” are the respondent’s

guess at average outcomes in the same season as the most recent trip. These values

are approximately double those reported for the most recent trip, suggesting either

the fishing year during this survey was a bad one, or respondents exaggerate their

general performance.

Table 2.6 compares group summary statistics of outcome variables between

adopters and non-adopters of process innovations. These groups are defined in

three ways: as adopters of any innovation, adopters of electronic innovations, and

adopters of mechanical innovations – in this case, net haulers. About 60 percent

of respondents reported typical catch and earnings to be quite a bit higher than in

their most recent trip, leading to greater variation in these figures. Mean outcomes

were higher for adopters in all categories, which is consistent with the productivity

and skill hypotheses discussed in Section 2.3. However, the differences in maxi-

mum outcomes between adopters and non-adopters are often negative, consistent

with a hypothesis that adopters may have come from the middle or lower tail

of the output distribution. While this is always the case with catch, maximum

revenue among electronics adopters is higher than for non-adopters, indicating

electronics may allow vessels to find higher prices, or catch higher value species

in lower quantities. Table 2.7 suggests that this pattern persists at the local level

by comparing outcomes in each district. While mean differences are usually posi-

tive, the minimum outcome tends to be higher among adopters in any given area

and the maximum output tends to be somewhat lower. This is consistent with

the “skill-diluting” hypothesis for new technology, as well as a pattern of selection

into adoption groups based on skill or other vessel heterogeneity. Adopters are

concentrated in the southernmost region, with 11 adopters out of 43 vessels in the

southernmost district and 8 out of 15 in the southernmost village. These repre-

sent a large portion of the 23 adopters in the entire sample – consistent with the

information hypothesis of technology diffusion.

Respondents were asked the age of their boats, as well as how long they

expected their boats to last. Figure 2.9 plots the frequency distribution of these
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values for adopters and non-adopters of each technology type. While the distribu-

tion of boat age does not appear to be noticeably different among adopters and

non-adopters of net haulers (the thicker tail for non-adopters could be attributed

to the small sample of adopters), it is worth noting that all of the adopting boats

are less than 10 years old and half of them are less than five years old. A stronger

difference appears when we consider the amount of usable life remaining in the

boat. Among net hauler adopters, mass is concentrated towards boats that are

younger relative to their expected life – that have used only 20 percent to 40 per-

cent of their boat’s life (bottom left panel of Figure 2.9). Non-adopters, meanwhile,

are approximately normally distributed over the range of boat usage. Electronics

adopters, on the other hand, more closely mirror the distributions of electronics

non-adopters.

There may be two interrelated explanations for the difference in age dis-

tribution by technology type. Net haulers have been adopted more recently than

electronics, and represent more of a capital investment; they are more expen-

sive and less likely to be quickly superseded by a rapidly changing and cheaper

electronics-based production process. While most net haulers were adopted in 2003

and 2005, electronics – mostly cell phones – began to be adopted in 2000. The

average net hauler cost among respondents was RM3000, while the mean boat and

gear costs were RM5750 and RM1200, respectively, so net haulers fall in the cost

range of other major capital investments. If urban economic growth in Malaysia

has put upward pressure on labor demand and wages in recent years, then adopt-

ing an expensive labor-saving innovation would have become more attractive in

the years directly preceding the survey. We would therefore expect the effect of

net hauler adoption on productivity to be labor biased. Net haulers may replace

or augment labor inputs which have become more expensive, without necessarily

increasing output. However, because firms with existing lower labor productivity

also have an incentive to adopt, we may not see the expected signs for coefficients;

boats may improve labor productivity because of adoption but still have lower

labor productivity than non-adopters. In a cross section, adopters could appear

less productive.
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This discussion paints a dual portrait of a net hauler adopter: someone who

has relatively recently invested or re-invested in the fishery, with higher fixed costs

and a potentially longer time horizon than the average non-adopter. This profile

could be consistent with two types of fishermen: “high types” who remain in the

industry by choice because their skill at fishing is relatively better than their next

best option, and “low types”, who have low skill but must remain in the industry

because their outside options are even worse. When selection into adopter and

non-adopter groups is confounded with unobserved attributes in this way, it’s not

immediately clear what the adoption effect on outcomes will be, as is partially

illustrated in Figures 2.9 and 2.9.

2.5 Empirical Approach

We are interested in how technology adopters and non-adopters differ with

respect to their ability to produce on the fleet’s best practice frontier, as well as

whether adopters and non-adopters face different frontiers (Aigner et al. (1977);

Kumbhakar and Lovell (2000)). Technical inefficiency in this methodology is mea-

sured as the distance of each firm’s output from the estimated frontier. The

stochastic frontier methodology was originated by Aigner et al. (1977), and Meeusen

and van den Broeck (1977). Kirkley et al. (1995) justified using a stochastic ap-

proach in fisheries because of the inherent variability in weather, resource avail-

ability, and environmental influences. We combine this approach with a modified

application of Baltagi and Griffin (1988) use of dummy variables to capture dis-

crete technological changes. Instead of using dummy variables to represent discrete

changes in individual time periods, we use them to represent technological differ-

ences across firms within a single time period. Figures 2.9 and 2.9 plot total

revenue against each input with adopters marked in white.

We estimate a stochastic translog production frontier of the form:

log yi = β0 +
∑3

j=1 βj log xij + 1
2

∑3
l=1

∑3
j=1 βjl log xij log xil + φ′Di+

α0Ii +
∑3

j=1 αjIi log xij + 1
2

∑3
l=1

∑3
j=1 αjlIi log xij log xil + εi

where D is a vector of location and time of year dummies, I is a dummy variable
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which takes a value of 1 when the boat has adopted the innovation of interest

(electronic equipment or a net hauler), and xi = (labor, fuel, capital) for each

boat’s most recent trip. The data set contains several measures of capital stock,

but because the small sample size limits the number of parameters we can estimate,

each model is estimated three times using a different variable to capture capital

stock, including net length, horsepower, and the shape of the boat, measured as the

ratio of vessel width to length (as a measure of the capacity of the boat relative to

its maneuverability in the water as well as the maneuverability of the crew within

the vessel). In addition, these vessels exploit a multispecies fishery, but the data

does not provide disaggregated catch by species. We estimate each model with

total catch in kilograms as the dependent variable, and again with revenue as the

dependent variable as a way of weighting the various species by their value.

In the stochastic frontier specification above, the error term is defined as

εi = υi − ui

where v and u are assumed to be distributed independently of each other and of the

regressors x, I, and D. The first component of the error term, v, is an idiosyncratic,

two-sided error term capturing exogenous shocks and is assumed to be distributed

as νi ∼ iidN(0, σ2
ν).

The second component of the error term, u, is a non-negative stochas-

tic inefficiency component drawn from a normal distribution truncated at zero

(Kumbhakar et al. (1991)). This term captures differences in technical inefficiency

and gives a firm-specific measure of the distance of the firm from the best practice

frontier. We assume ui is distributed N+(µi, σ
2
u), where µi = Ziδ, and Z is a vector

of firm-specific explanatory variables that account for differences in efficiency.

This approach assumes technical inefficiency ui to be uncorrelated with

technology adoption, while in reality ui and I are likely to be correlated. Skill may

cause adoption if skill includes the ability to find and deploy new methods first, or

if low skill fishers adopt technologies to improve outcomes. Adoption may cause

changes in skill if fishers differ in their ability to effectively use the technology

or if the fisher was not producing on the frontier before adopting. If skill drives

adoption, so that ui causes I, random assignment of technology is required to
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consistently estimate causal parameters for I3. Lacking random assignment, we

attempt to control for this source of correlation by including variables in Z that

capture the propensity to adopt and explain variation in ui.

On the other hand, if adoption and use of technology determines technical

efficiency, even random assignment of technology will induce correlation between ui

and I. We attempt to control for this source of correlation by including variables in

Z that capture the propensity to make productive use of technology and explain

variation in ui (e.g., the number of technologies used and the education level).

Causality is likely to run in both directions as adoption and skill are jointly deter-

mined, and there is some overlap in the Z that will control for both the propensity

to adopt technology and the propensity to effectively use technology. Therefore, a

number of models with different variables included in Z are tested. The likelihood

function and efficiency measures in this application are generalizations of the con-

ventional case (Battese et al. (1993)). For the bulk of the analysis, the Z variables

include whether the respondent attended primary or secondary school, the number

of times the net was hauled in on the most recent trip, the respondent’s share of

earnings on the most recent trip, the number of innovations adopted by the re-

spondent’s vessel, and in one model, squared values of the logged input variables.

We also estimate several specifications that mirror as closely as possible the inef-

ficiency hypotheses tested by Viswanathan et al. (2002) and Squires et al. (2003),

who found that inefficiency is influenced by vessel characteristics, fishing season,

crew incentives and human capital, although only a few of these were individually

statistically significant.

3Another argument put forth by Zellner et al. (1966) holds that predetermined, fixed produc-
tion inputs may be thought of as exogenous when examining the most recent period of outputs.
A capital investment decision (e.g., boat size, engine size, etc.) made several years ago also
determines the choice of crew size and fuel use in every subsequent trip. At the point of the
most recent fishing trip, these input decisions are predetermined. Thus, this argument holds
that output cannot simultaneously influence input decisions. One drawback to this argument,
however, is that if fixed vessel- or skipper-specific attributes are constant in the long run, such as
innate skill, motivation, or ability, the same attributes that influenced the capital decision years
ago may also influence this period’s output.



91

2.6 Results

2.6.1 Establishing functional form and the presence of a

stochastic frontier

We explore three functional form models to account for the production envi-

ronment. Model 1 is a translog production function as described above. Likelihood

ratio tests of the significance of the second-order terms overwhelmingly reject the

translog form in favor of a Cobb-Douglas production function (Table 2.8).

Based on these results, Model 2 is a modified Cobb Douglas with input

interactions only included where they are interacted with technology dummies:

log yi = β0 +
∑3

j=1 βj log xij + φ′Di + α0Ii +
∑3

j=1 αjIi log xij+

1
2

∑3
l=1

∑3
j=1 αjlIi log xij log xil + εi

We also estimated a third modified translog model with cross-input interac-

tions included in the production function but with squared input terms included in

Z. Likelihood ratio tests of the technology effects (the α’s) across all three models

indicate a significant difference in the frontier between adopters and non-adopters

of net haulers, particularly when revenue is the dependent variable. This difference

is not significant for electronics adoption, however (Table 2.9).

Lastly, we conducted generalized likelihood ratio tests to establish the ex-

istence of a frontier and the significance of the Z vector in explaining inefficiency.

As indicated in Table 2.10, the existence of a stochastic frontier is confirmed in

almost all specifications. The likelihood function for these specifications is not

well-behaved and did not converge in many cases, so we chose several sets of

explanatory variables for the inefficiency function and compare results where con-

vergence was achieved. Several specifications significantly explained variation in

technical efficiency, particularly those that include experience, location, boat width

class, season, and number of technologies adopted (Tables 2.11 and 2.12). These

findings are more robust when net haulers are the adoption of interest than when

electronics are considered. In other words, it is more difficult to explain deviations

from the frontier when we account for electronics adoption.
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2.6.2 Explaining technical efficiency

The individual coefficients in the inefficiency function are presented in Ta-

bles 2.13 and 2.14. Although these sets of variables are often significant as a group,

few of them are individually significant. Positive signs are associated with lower

efficiency. Coefficients on primary school education and catch share paid to the

respondent are positive and often significant. Catch shares paid to the respondent

were included to capture fishing incentives, but greater shares are highly correlated

with fewer crew members. Rather than capturing incentive effects, this result likely

indicates that, ceteris paribus, vessels with smaller crew sizes were less efficient.

The positive sign on primary school completion may be hinting at the selection

issue with fishing; skippers who completed school but could find no other job may

have found fishing as a last resort, not because they are particularly skilled at

it. Vessels in the southern districts (D3-D5) tend to be more efficient, as well

as vessels in the smaller width classes, although wider boats are associated with

more modern designs. This is consistent with the finding among boats with net

haulers: these are relatively younger boats with less efficient captains attempting

to substitute technology for skill. It is also worth noting that the number of new

technologies adopted and the number of times the net was hauled during the most

recent trip had negative signs in the revenue regressions (i.e., are associated with

more efficient vessels), although these are not significant at conventional levels.

2.6.3 Stability of skill rankings

As discussed in Section 2.3, hypothesis S3 concerns whether skill is concen-

trated in a handful of star performers with efficiency more or less driven by luck

in the rest of the fishery, or whether skill is a fixed attribute leading to efficiency

rankings that are stable over time. We attempt to answer this question through

the following exercise: we ranked vessels by their efficiency score and by their

performance in different seasons, and then provide a simple correlation matrix of

these rankings (Table 2.15). Respondents in this data set were asked to estimate

their catch and revenue during a typical fishing trip in their peak season and in

their lean season, as well as during the most recent trip. Inputs are only available
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for the most recent trip. Assuming that input levels used in the most recent trip

are similar to inputs used in a typical trip, we re-estimated a series of frontiers

with typical peak and lean revenues as the dependent variable. We compared the

technical efficiency rankings from these estimates to those from the most recent

trip, as well as rankings of the size of catch and revenue, and found that rankings

are not stable. Correlations are very low for the most part and are only high where

one would expect them to be, for example, comparing the peak earnings rank to

the peak catch rank. Technical efficiency rankings, which should be a better mea-

sure of skill, are not correlated. This is in contradiction to Squires and Kirkley

(1999) who estimate vessel fixed effects using panel data. Our analysis requires

stronger assumptions than Squires and Kirkley (1999) because our data set is less

rich. However, their paper looks at an industrial, developed country fishery with

larger, more advanced vessel technology. It may be that this artisanal fishery is

more prone to random forces.

2.6.4 Parameters of the production frontier

The output elasticities with respect to particular inputs can be expressed

as:

ξj =
∂ log yi
∂ log xij

= βj +
1

2

3∑
l=1

βjl log xil + αjIi +
1

2

3∑
l=1

αjlIi log xil

Scaling the variables by their respective means allows us to summarize the output

elasticity at the mean by ξj = βj + αjIi, with the elasticity differing by adoption

status. The αj term captures the input bias from technical change – a value we

will be particularly interested in. Without scaling variables to have unit means,

the firm-specific input bias would be expressed as:

IBij = E(ξj| I = 1)− E(ξj| I = 0) = αj +
1

2

3∑
l=1

αjl log xil

Technical change from innovation can be expressed as:

TCi = E( log yi| I = 1)− E( log yi| I = 0)

= α0 +
∑3

j=1 αj log xij +
∑3

l=1

∑3
j=1 αjl log xij log xil
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where once again technical change at the mean is captured by α0. We will

also be interested in measuring the scale bias from technical change, or SBi =∑3
j=1 IBij.

Tables 2.16 and 2.17 report estimates of these quantities for Model 2. Con-

sistently negative and significant coefficients of technological change for net hauler

adoption suggest that less productive vessels are adopting the net haulers. Partic-

ularly, less productive labor seem to be associated with adopting net haulers; the

sign of labor bias is negative in most cases and significant when the length of the

net is used to measure the capital stock. The result is indeterminate for fuel and

capital biases, however, because the signs flip depending on the specification. Un-

fortunately, we cannot measure the degree to which adoption has improved labor

or total productivity for these vessels.

To examine this further, we compared technical efficiency scores between

adopters and non-adopters of both technologies (Table 2.18) and found that the

mean technical efficiency score for net hauler adopters was about 28 percentage

points higher than for non-adopters. In other words, the frontier for this group

of vessels is distinct and interior to the frontier for non-adopters, but adopters

operate more efficiently with respect to this interior, “skill-challenged” frontier.

Technology in this sense may be a way of compensating for a lack of skill. It

is possible that these technologies are cost reducing, or skill diluting, or some

combination of these effects which allow adopting firms to appear more efficient

relative to different frontiers – adopters may be the inefficient, low-skill firms in

which case pure technical change effects would appear to be negative. Another

explanation is that adopters are simply inefficient users of the new technologies.

It is likely we have a confounding of these effects going on.

It is worth noting, also, that net haulers adopters were asked about their

crew size before and after adoption. In the sample of gasoline-powered vessels

examined here, 3 out of the 10 net hauler adopters reduced their crew size by

one person; if we include diesel-powered vessels in this count the proportion is

5 of 15, and one vessel reduced crew size by two. In other words, about one

third of artisanal drift net vessels using net haulers reduced their crew size after
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adopting the technology, and none of the vessels increased crew size after adoption.

Furthermore, four of the vessels stated as their reason for using a net hauler that

it was “difficult to find labor,” six said it was “to save energy,” four said it was “to

make work easier,” and one said “to save cost.” Even after adoption, net hauler

adopters had larger average labor usage; the mean crew size among adopters was

2.1 in the overall sample and 2.2 in the largest width class, vs. 1.4 and 1.8,

respectively, among non-adopters in those groups.

The technical change coefficient for electronic equipment, on the other hand,

is positive and usually significant, indicating that either more productive vessels

are adopting this equipment or the equipment is improving productivity. Although

the coefficients on input biases are insignificant, they seem to tell a sensible story:

adopters generally had lower fuel productivity and higher capital and labor pro-

ductivity. This would suggest that adopters are vessels that burn a lot of fuel

searching for fish with limited crew and capital endowment – more evidence of the

skill-diluting theory of technical change in fisheries. This result is stronger when

revenue is the dependent variable, so it is worth asking whether the electronics are

a fish-finding tool or whether cell phones, which comprise most of the electron-

ics use in this sample, are being used to find markets with higher prices (Jensen

(2007)). Table 2.19 provides a simple regression of fish prices on cell phone use and

other variables, and the coefficient on cell phone use is small and not significant.

Cell phone users in this sample are concentrated in the south; rather than con-

tradict recent findings that cell phones help artisanal fishermen find higher priced

markets, our result may be idiosyncratic and simply reflect geographic or social

factors preventing access to alternate markets in this particular fishery and in this

particular season. One interpretation is that cell phones in this fishery are used

more for fish finding than price finding – and in particular, for finding higher-value

species – suggesting the presence of informal networks and cooperation in fishing

activities.

Notably, fuel and capital stock are often significant explanatory variables for

catch and revenue, while crew size is never significant. There is minimal variation

in crew size in this sample – the minimum is one crew member and the maximum
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is three. It seems that fuel use, which can be interpreted as time spent searching

for good fishing spots or willingness to travel to good spots, along with luck, skill,

and vessel characteristics drive productivity in this fishery.

2.6.5 Vessel design characteristics

One consistent result has been that the shape of the boat – its width relative

to its length, has a significant relationship with output. Older, more traditional

boats in this fishery tend to be longer and narrower, which provides less room for

the crew to maneuver. More modern designs use wider hulls, so that boats in this

sample range from less than 1 meter to over 3 meters wide. As indicated by our

discussion of the profile of technology adopters, and of the relationship between

boat age and net-hauler adoption pictured in Figure 2.9, it is worth examining

whether these more modern designs include more technology adopters.

Based on the CDF of boat width (Figure 2.9) we split the sample into four

“width classes.” Figures 2.9 – 2.9 compare the frequency distributions of outcomes

for adopters and non-adopters by width class. From these figures we can see that

the vast majority of adopters (of any technology) are in the largest, more modern

width class. This width class breakdown may remove some of the unobserved

heterogeneity, if choice of boat width is a good proxy for that heterogeneity. Table

2.20 provides summary statistics by technology, width class, and location, with the

left column corresponding to the southernmost district. It is easy to see from the

lower left quadrant of this table that vessels in the southernmost district and the

largest width class were both the most frequent adopters and the most successful

fishermen in the most recent trip. Adopters outside this group performed markedly

less well. It is difficult to disentangle technology and boat width effects, but this

pattern of improvement by width class holds among adopters and non-adopters (of

any technology). Also, adopters in the smallest two width classes perform worse

than non-adopters, but adopters in the largest two width classes perform better.

Both of these patterns hold up across innovation type. Boat width is positively

correlated with typical peak season earnings (0.40) and catch (0.43). Respondents

who said they were only fishermen because they had no other source of income
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also had narrower boats; a “yes” answer to this question was negatively correlated

with boat width (-0.24).

We estimated simple Cobb-Douglas production functions and frontiers for

the 27 vessels in the largest width class. Tables 2.21 and 2.22 break down the

signs of technology interaction coefficients for the different models, and presents

estimates of mean technical efficiency for this group. When a technology adoption

dummy is included without interactions terms with inputs, it appears that the

mean is shifting out in the OLS regressions. When interactions are included and in

frontier estimations, however, it appears that although adopters may have a higher

intercept, and may be more productive at low input levels, adopters have lower

output elasticities for most inputs. Vessels in this width class are also noticeably

more efficient at producing value than volume.

2.7 Concluding Remarks

The direction and magnitude of the effects of new fishing technologies on

technical efficiency is as yet unclear; we do not have information about exogenous

variation in the provision of technology, so we do not identify a causal effect of tech-

nology on technological change or technical efficiency. However, we can measure

observed relationships between technology use and these values. This cross-section

of individual vessels in the artisanal Malaysian gill net fishery suggests that new

technologies can be skill-diluting. Adopters tend to be less technically efficient ves-

sels, with low labor productivity and higher reliance on labor inputs. Skill, search,

and embodied vessel characteristics seem to drive productivity in this fishery. Fish-

ermen who claim to have fewer outside options and use fishing as an occupation

of last resort tend to be less efficient and have less modern vessel designs.

There are several implications for policy and development assistance pro-

grams. This study highlights the need to take a comprehensive look at technology

impacts in artisanal fisheries before promoting technology assistance programs.

Our study raises important questions about the role of technology assistance in

any development policy aimed at artisanal fishing communities. Although our
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limited data restricts the inferences we can make, our study does not confirm

Jensen’s (2007) results that cell phone users find higher prices. Geographical or

social barriers unique to this fishery may limit access to alternate markets. Tech-

nology impacts, and by extension, the desirability of technology assistance, may

thus be fishery-specific. Technical efficiency and technology adoption effects vary

by locality even within our sample.

Our findings suggest that in this fishery cell phones may be used in informal

networks for fish-finding, rather than price finding. More generally, our analysis of

advanced equipment supports a theory of skill-diluting technical change, improving

the technical efficiency of less-efficient vessels. Yet most fishery participants –

adopters and non-adopters alike – remain dissatisfied with fishing as an occupation

and only remain because of their inability to find suitable outside options. The

anecdotal effect of using a mechanical net hauler, if any, is to reduce reliance on

labor, yet adopters still continued to use more labor with less marginal productivity

than non-adopters. Furthermore, net haulers are a more expensive technology,

requiring specific investment, and are typically adopted by younger boats with

longer expected usable lives – and may thus tie these participants to the fishery in

the long run.

These concerns are irrespective of the impact of advanced technology on

resource abundance, which is also a subject of concern but is not measured here.

Technology assistance may not unambiguously improve fishery outcomes, even

without considering impacts on the fish stock. Even improved short-run outcomes

must be weighed against long run considerations as well as alternative policies to

technology assistance. Rather than invest in technologies which further tie the

less successful fishery participants (i.e., the best candidates for exit) to a declining

resource, programs may be better targeted at providing occupational alternatives

or other means to exit the fishery.
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Table 2.5: Summary Statistics

Variable N Mean Std. Dev. Min Max

Catch 115 30 46 1 270
Typical Catch 115 54 86 0 500

Revenue 115 116 156 1 1000
Typical Revenue 115 252 426 1 3000

Peak Season 114 0.54 0.5 0 1
Fish Price 114 5.03 2.39 1 13

Hauls/Trip 114 4.16 2.68 1 20
Share 115 0.75 0.31 0 1

Years Fishing 113 27 15 3 66
Household Size 111 2.61 2 0 8

Boat Ownership 115 0.89 0.32 0 1
Region:

Kuantan 115 0.37 0.49 0 1
Kemaman 115 0.1 0.3 0 1

Dungun 115 0.1 0.31 0 1
Marang 115 0.17 0.37 0 1

Setiu 115 0.26 0.44 0 1
South 115 0.57 0.5 0 1

Inputs:
Crew Size 115 1.42 0.61 1 3

Fuel 115 20 11 4 62
Gear Size 114 731 586 40 3200

Horse Power 114 22 14 6 120
Boat Length 115 6.21 1.71 4.15 18
Boat Width 115 1.65 0.59 0.83 6
Boat Shape 115 0.27 0.04 0.15 0.4

Width Class 115 2.36 1.16 1 4
Technology:

Any 115 0.2 0.4 0 1
Net Hauler 115 0.09 0.28 0 1
Electronics 115 0.15 0.36 0 1

No. Adoptions 115 0.42 0.94 0 5
Education:

Primary 114 0.82 0.39 0 1
Secondary 114 0.15 0.36 0 1
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Table 2.8: Generalized Likelihood Ratio Tests of Translog Coefficients

Null Hypothesis: all second-order coefficients = 0

Capital Likelihood Ratio Likelihood Ratio Critical
Measure (I = Net Haul) (I = Electronics) df Value (5%)

Model 1: Full translog with technology interactions

Dependent Variable: Log of Revenue

Net Length 9.06 11.71 6 12.59
Horsepower 5.27 4.71 6 12.59
Boat Shape 4.37 4.48 6 12.59

Dependent variable: Log of Catch

Net Length 2.77 2.36 6 12.59
Horsepower 1.80 1.39 6 12.59
Boat Shape 6.68 5.58 6 12.59

Model 3: Modified translog with technology interactions

Dependent Variable: Log of Revenue

Net Length 6.94 31.47* 3 7.815
Horsepower 0.82 1.98 3 7.815
Boat Shape 4.69 3.06 3 7.815

Dependent variable: Log of Catch

Net Length 1.71 2.04 3 7.815
Horsepower 0.47 0.40 3 7.815
Boat Shape 7.60 5.43 3 7.815
*This is more likely due to a failed grid search while running Stata 10’s frontier

routine than significant coefficients. This specification produced many other

unlikely values, including individual t-values well above 10,000.
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Table 2.9: LR Test of Technology Effects

Null Hypothesis: all technology coefficients = 0

Capital Net Haul (df=9*) Electronics (df=10)
Measure Log Revenue Log Catch Log Revenue Log Catch

Model 1: full translog with tech interactions

Net Length 30.14 14.87 22.54 11.58
Horsepower 30.67 14.29 7.38 10.77
Boat Shape 27.57 15.79 14.89 12.03

Model 2: Cobb-Douglas with tech interactions

Net Length 29.37 15.03 18.05 12.15
Horsepower 28.93 14.17 13.89 11.06
Boat Shape 28.66 15.62 15.86 12.96

Model 3: modified translog with tech interactions

Net Length 28.59 15.04 44.06** 13.06
Horsepower 23.73 14.04 15.66 11.14
Boat Shape 30.57 17.19 16.85 12.59

Critical Value
Degrees of Freedom: 10% 5% 1%
9 14.68 16.92 21.67
10 15.99 18.31 23.21
*STATA drops one regressor in these

specifications due to collinearity

**see note in Table 2.8
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Table 2.10: LR Test For Presence of Stochastic Frontier

Null Hypothesis: gamma = 0*

Capital Net Haul (df=2) Electronics (df=2)
Measure Log Revenue Log Catch Log Revenue Log Catch

Model 1: full translog with technology interactions

Net Length 15.68 4.86 27.60 4.80
Horsepower 18.20 6.02 14.30 5.67
Boat Shape 15.80 8.35 21.33 8.66

Model 2: Cobb Douglas with technology interactions

Net Length 12.66 5.47 18.03 5.91
Horsepower 14.46 5.29 16.61 6.23
Boat Shape 13.75 5.39 18.32 5.24

Model 3: modified translog with technology interactions

Net Length 14.47 5.15 38.93** 6.39
Horsepower 14.75 6.21 17.93 6.45
Boat Shape 18.25 10.69 13.94 10.16

Critical Value:
5% 1%

Degrees of Freedom: 2 5.14 8.27
*compare to Kodde & Palm 1986, Table 1

**see note in Table 2.8
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Table 2.11: LR Test For Presence of Stochastic Frontier

Null Hypothesis: d1 = ... = dN = 0

Capital Likelihood Ratio Critical Critical
Measure I = Net Haul df* Value (5%) Value (1%)

Model 2: Cobb Douglas with technology interactions

Dependent Variable: Log of Revenue

Z=primary, secondary, # hauls, share, # adoptions
Net Length 21.46 5 11.07 15.09
Horsepower 20.75 5 11.07 15.09
Boat Shape 22.34 5 11.07 15.09

Z=years experience, household size, primary, secondary,
share, district, season, boat width class
Net Length 47.89 13 22.36 27.69
Horsepower 36.86 13 22.36 27.69
Boat Shape 27.66 13 22.36 27.69

Dependent variable: Log of Catch

Z=primary, secondary, # hauls
Net Length 5.70 3 7.82 11.35
Horsepower 5.43 3 7.82 11.35
Boat Shape 6.14 3 7.82 11.35

Z=years experience, household size, primary, secondary,
share, district, season, boat width class
Net Length 46.86 13 22.36 27.69
Horsepower 42.47 10 18.31 23.21
Boat Shape 43.33 12 21.03 26.22
*MLE convergence was not obtained for all sets

of inefficiency variables, so the Z vector was

adjusted where necessary.
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Table 2.12: LR Test For Presence of Stochastic Frontier

Null Hypothesis: d1 = ... = dN = 0

Capital Likelihood Ratio Critical Critical
Measure I = Electronics df* Value (5%) Value (1%)

Model 2: Cobb Douglas with technology interactions

Dependent Variable: Log of Revenue

Z=primary, secondary, # hauls
Net Length 3.47 3 7.82 11.35
Horsepower 4.64 3 7.82 11.35
Boat Shape 5.70 3 7.82 11.35

Z=years experience, household size, primary, secondary,
share, district, season, boat width class
Net Length 30.01 13 22.36 27.69
Horsepower 32.85 13 22.36 27.69
Boat Shape 31.47 13 22.36 27.69

Dependent variable: Log of Catch

Z=primary, secondary, # hauls
Net Length 6.04 3 7.82 11.35
Horsepower 6.35 3 7.82 11.35
Boat Shape 5.66 3 7.82 11.35

Z=years experience, household size, primary, share,
district, season, boat width class
Net Length 45.23 10 18.31 23.21
Horsepower - - - -
Boat Shape 28.62 10 18.31 23.21
*MLE convergence was not obtained for all sets

of inefficiency variables, so the Z vector was

adjusted where necessary.
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Table 2.13: Coefficients on Z variables

Net Hauler, Model 2, t-statistics in italics

Dependent Variable: Revenue

Capital Measure:
Net Length Horsepower Boat Shape

constant -1.60 1.93 -1.92 1.50 -1.52 1.16
-0.89 2.90 -1.02 2.38 -0.89 1.88

# hauls -0.79 -0.75 -0.82
-1.63 -1.55 -1.69

# adoptions -1.22 -1.16 -1.45
-1.45 -1.36 -1.44

experience -0.01 0.00 0.00
-0.78 -0.01 -0.13

household size 0.02 0.03 0.01
0.32 0.51 0.24

primary 1.37 0.47 1.29 0.73 1.40 0.83
1.64 1.82 1.60 2.38 1.67 2.53

secondary 0.74 0.37 0.49 1.08 0.79
0.77 0.36 1.12 1.10 1.75

share 2.48 0.48 2.75 0.62 2.32 0.50
1.95 0.82 2.00 1.39 1.96 1.20

D1 -0.34 -0.53 -0.18
-1.16 -1.87 -0.64

D2 -0.63 -0.81 -0.60
-1.67 -2.02 -1.60

D3 -1.43 -1.60 -1.40
-2.84 -3.59 -3.03

D4 -0.99 -1.01 -0.95
-2.42 -2.53 -2.37

peak season -0.26 -0.36 -0.19
-1.18 -1.65 -0.91

w2 -0.62 -0.54 -0.50
-1.91 -1.70 -1.53

w3 -0.38 -0.27 -0.12
-1.26 -0.92 -0.42

w4 0.08 0.22 0.46
0.22 0.64 1.35



114

Table 2.14: Coefficients on Z variables

Electronics, Model 2, t-statistics in italics

Dependent Variable: Revenue

Capital Measure:
Net Length Horsepower Boat Shape

constant -1.60 0.41 -1.92 1.23 -1.52 1.68
-0.89 0.30 -1.02 1.60 -0.89 2.26

# hauls -0.79 -0.75 -0.82
-1.63 -1.55 -1.69

# adoptions -1.22 -1.16 -1.45
-1.45 -1.36 -1.44

experience 0.00 0.00 0.00
0.09 -0.33 -0.34

household size 0.04 0.07 0.06
0.52 0.89 0.78

primary 1.37 0.96 1.29 0.73 1.40 0.74
1.64 1.86 1.60 1.91 1.67 1.93

secondary 0.74 0.96 0.37 0.14 1.08 0.64
0.77 1.39 0.36 0.21 1.10 1.11

share 2.48 1.37 2.75 0.80 2.32 0.14
1.95 1.55 2.00 1.53 1.96 0.28

D1 -0.45 -0.52 -0.44
-1.20 -1.43 -1.23

D2 -0.52 -0.50 -0.54
-1.18 -1.19 -1.33

D3 -1.26 -1.99 -2.09
-1.84 -3.08 -3.22

D4 -1.76 -1.39 -1.24
-2.49 -2.27 -2.20

peak season -0.56 -0.56 -0.40
-1.86 -2.09 -1.55

w2 -0.83 -0.54 -0.73
-1.94 -1.27 -1.71

w3 -0.15 -0.04 -0.17
-0.41 -0.11 -0.46

w4 -0.25 0.15 0.06
-0.53 0.34 0.14
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Table 2.18: OLS of Technical Efficiency on Adoption

(Model 2)

I = Net Hauler I = Electronics

Capital Measure Revenue TE

Net Length 0.28*** 0.13*
Horsepower 0.27*** 0.11
Boat Shape 0.28*** 0.09

Catch TE

Net Length 0.05 0.02
Horsepower 0.06 0.02
Boat Shape 0.05 0.03

legend: *p < 10%; **p < 5%; ***p < 1%
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Table 2.19: OLS: Log Price

cellphone -0.02
log of catch -0.10***
peak -0.04
kuantan 0.02
kemaman -0.03
dungun -0.43**
marang -0.21
buyer -0.11
primary -0.02
log vessel tons 0.10**
constant 2.04***

N 108
F( 10, 97) 3.58
Prob > F 0.0004
RSS 18.33
Adj R-squared 0.19
legend: *p < 10%; **p < 5%; ***p < 1%
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Table 2.20: Mean Revenue (RM) by District, Boat Width and Technology

Kuantan Kemaman Dungun Marang Setiu
Width 138 (43) 157 (11) 228 (15) 66 (20) 98 (31)

1 63 5 81 4 143 6 40 9 50 15
67 (39)

Net hauler 18 1
Electronics 18 1 24 1 60 1

Cellphone 18 1 24 1
GPS 24 1 60 1

Echo sounder

Sonar

2 88 10 150 1 NA 0 42 3 183 10
124 (24)

Net hauler
Electronics 103 2 100 1

Cellphone 103 2 100 1
GPS

Echo sounder

Sonar 100 1
3 120 16 86 4 575 2 95 3 94 4

140 (29)
Net hauler 54 3
Electronics 580 2 30 1 575 2

Cellphone 580 2 30 1 575 2
GPS

Echo sounder

Sonar

4 236 12 455 2 203 7 112 5 48 2
208 (28)

Net hauler 497 3 107 3
Electronics 505 2 310 1 200 1 105 2

Cellphone 505 2 200 1
GPS 650 1 310 1 110 1

Echo sounder 650 1 310 1
Sonar

Revenue mean by category in bold, N in italics
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Figure 2.1: Vintage vs. Innovation

Figure 2.2: Output vs. Technology Adoption
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Figure 2.3: Log Output vs. Technology Adoption
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Figure 2.4: Electronics Frontiers
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Figure 2.5: Net Hauler Frontiers
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Figure 2.6: CDF of Boat Width
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Figure 2.7: Output vs. Electronics Adoption by Size Class
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Figure 2.8: Output vs. Net Hauler Adoption by Size Class

Figure 2.9: Log Output vs. Electronics Adoption by Size Class
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Figure 2.10: Log Output vs. Net Hauler Adoption by Size Class



Chapter 3

Exogenous Productivity Shocks

and Capital Investment in

Common-pool Resources

Abstract

We model exogenous technology shocks in common-pool industries using a

compound Poisson process for total factor productivity. Rapid diffusion of exoge-

nous innovations is typical in the commons, but technology is rarely modeled this

way. Technology shocks lower the equilibrium resource stock while causing capital

buildup based on transitory profits with myopic expectations. The steady state

changes from a stable node to a shifting focus with boom and bust cycles, even if

only technology is uncertain. A fisheries application is developed, but the results

apply to many settings with discontinuous changes in value and open access with

costly exit.

3.1 Introduction

Excess entry and investment are the hallmarks of congestible, common-pool

resources. Symmetric externalities arise when resources are “rival” in consumption;

when regulators or resource users are unable to effectively limit exploitation by

131
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other agents, the familiar “tragedy of the commons” arises, often manifest through

overcapitalization. The result is that resource stocks are depleted and rents are

dissipated. Yet why does capital investment often persist even as resource stocks

shrink? This paper explores an additional explanation for excess investment in

common-pool industries: discontinuous technological shocks.

Rapid diffusion of exogenously developed innovations is typical in common-

pool resource industries, but technology is rarely modeled this way. Innovations

can be developed in other industries and adapted to the common-pool resource

(e.g., sonar in fisheries) or developed for similar resources elsewhere (e.g., better

groundwater wells); in either case the technology is exogenous to the users of a

given local resource. Improved groundwater wells allow access to deeper aquifers

and the expansion of aquifer-dependent businesses. Better electronic fish-finders

make all inputs more productive, raising the incentives for new vessels to enter.

Until recently, research on technical change in fisheries has focused on identify-

ing and measuring productivity growth and technical efficiency. In a normative,

bioeconomic framework technology is often modeled as being time invariant or

changing smoothly over time (Murray (2006); Squires and Vestergaard (2009)).

While this approximation is convenient from a modeling perspective, in practice

technology appears to move discontinuously. Jin et al. (2002), for example, find

large year-to-year variation in total factor productivity change in the New England

groundfish fishery. Some authors attribute this type of variation in productivity to

a “ratchet effect” of capital investment driven by stock variability and government

subsidies (Ludwig et al. (1993); Hennessey and Healey (2000)) while others point

to exogenous development of technologies that are adapted to the fishery (Jin et

al. (2002)). Because of the race to exploit, the adoption of new technologies tends

to spread almost instantaneously throughout the industry. Our results show that

the “ratchet effect” attributed to policy and stock fluctuations can be replicated

in an open access model with exogenous technology shocks and costly entry and

exit, even without stock uncertainty or policy actions.

We model technological shocks using a Compound Poisson (CP) process in

which the occurrence of a shock has a constant expected arrival rate and the size of
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the shock is determined by a random draw from the exponential distribution. The

article characterizes the response of capital and resource stocks when investment

is quasi-malleable. These technology shocks perturb the open access equilibrium,

causing an increase in extraction ability for a smaller steady state resource stock.

Temporarily positive profits result while the system is out of equilibrium; this

paradoxically induces a buildup of the more productive capital when less capital

is needed to achieve the new equilibrium extraction rate. With a logistic growth

function for the resource stock, the nature of the steady state and the approach

path change from a stable node to a stable vortex because highly productive har-

vesting outpaces the fleet’s and the stock’s ability to adjust. The result is that

the fishery experiences boom and bust cycles as it attempts to adjust to the new

steady state. We present simulations for a fishery example based on a modification

of the myopic expectations case in Berck and Perloff (1984), hereafter referred to

as BP, where we limit exit to a fixed rate of depreciation (this resembles Berck

and Perloff (1984) as well as the quasi-malleable investment case in Clark et al.

(1979)). We focus on a single aspect of capitalization, namely fleet size.

The remainder of the paper will proceed as follows: section 3.2 will discuss

the empirical motivation and related literature. Section 3.3 will present the model.

We will explain the CP process and how this process can be incorporated into

the total factor productivity term of a production function (or the catchability

coefficient of the Schaefer production function in the fisheries context). Section

3.4 presents the results of simulations from this model that replicate boom and

bust patterns observed in fisheries. Section 3.5 concludes.

3.2 Empirical Motivation

Models of constant or continuously growing technology are not consistent

with what is observed in practice, especially in industries with open access to

the exploitation of a resource. Without positive profit margins or large dominant

firms there is little incentive for investment in endogenous technical change; thus

technology is developed exogenously and adopted or adapted to the open access
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resource. When a potential new application of an exogenously developed tech-

nology is realized by the resource exploiters, it is adopted by the entire industry

almost immediately. Gordon and Hannesson (n.d.) documents the rapid fleetwide

adoption of successive new technologies in the Norwegian winter herring fleet from

1937 to 1971 (figure 3.1); the pattern persisted even as the resource stock headed

toward collapse and even if adopting the technology required reinvestment in the

fleet. The rapid adoption is driven by the very nature of open access resources

as impure public goods; they are diminishable (rival) and non-excludable. Com-

petition over the impure public good produces the strong incentives leading to

adoption of technologies as their effectiveness becomes realized. Rapid adoption is

then necessary to remain an efficient competitor.

A precondition for rapid adoption is ready access to capital markets; the

ability to adopt technologies when they are known, available, and the incentive

is present. This condition is easily satisfied in developed countries where borrow-

ing is relatively easy and fixed costs of adopting new technologies are typically

small relative to returns. However, in less developed countries where there are

significant borrowing constraints adoption may diffuse more slowly throughout the

industry. Adapting our model to include various diffusion processes is straightfor-

ward. Simple extensions could include an empirically calibrated parameter that

governs the adoption rate after the introduction of the technology. Because fo-

cus here is primarily on developed countries we will maintain the rapid adoption

modeling approach.

Feedback from technological progress has received relatively little attention

in management models, especially regarding the perverse incentives for reinvest-

ment by resource users. Exogenous technology shocks remain largely unexamined

in this context, despite some empirical literature on discrete change and a growing

theoretical literature on continuous technical change in renewable resources. Em-

pirically, discontinuous change can be measured by using productivity residuals and

index number methods (Squires (1992),Jin et al. (2002)), by estimating the general

index of Baltagi and Griffin (1988) when sufficient data are available (Hannesson

et al. (2010)), or by explicitly accounting for firm-specific adoption of particular
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technologies in the estimation of production (Kirkley et al. (2004)). Hannesson

(2007) shows that productivity growth can mask stock declines. Murray (2007)

demonstrates the consequences of managers overlooking technological change when

estimating the stock and setting harvest limits. Squires and Vestergaard (2009)

derive a modified golden rule for renewable resource harvest when productivity

grows smoothly over time, demonstrating that technology can undo the so-called

“stock effect”, or the rising unit cost of harvest which normally acts as a brake on

effort as the resource stock declines. Smith (1972b) examines endogenous technical

change in common-pool resources.

There is a larger literature on entry and investment in renewable resources,

but little overlap with the literature on technological change. Berck and Perloff

(1984) model entry in a deterministic open access fishery and show that the equilib-

rium effort and stock levels are the same under myopic and rational expectations;

both lead to overfishing and rent dissipation, but the approach paths are different.

Homans and Wilen (1997) show that if total allowable catch and season length are

the only regulatory controls, overcapitalization is exacerbated. These approaches

rely on free entry and exit of capital, however. Models of irreversible investment

in fisheries date back to Clark et al. (1979), who show that with non-malleable (or

quasi-malleable) capital, the economically optimal harvest and investment policy

may involve permanent (or at least prolonged) overcapitalization, depending on

the size of the initial resource stock.

We develop a fisheries application, but the results apply to many settings

with discontinuous changes in value and open access with costly exit. Many con-

gestible, open access resources exhibit similar features that could be modeled using

the Compound Poisson approach developed here. In addition to the groundwater

example described above, many capacity-constrained network resources like broad-

band systems, freeways, and power grids have users that (i) often do not face the

true social cost of entry, (ii) make quasi-irreversible investments that rely on the

network to produce benefits, and (iii) can be expected to behave myopically be-

cause of limited information on the activity of other users. These resources also

face discontinuous changes in the value of their use, such as viral news stories
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that crash web sites, traffic accidents that strand commuters, and the availability

of waves of new electricity-intensive electronics. Siegel (1985) and Hendricks and

Kovenock (1989) describe how the oil and gas industry can exhibit a “race to drill”

when land tenure rules and locational information are imperfect. Dasgupta and

Stiglitz (1980b), Dasgupta and Stiglitz (1980a), and Tandon (1983) explain how

even the innovation process itself can behave like a common-pool resource inciting

an inefficient “race to invent”.

3.3 Modeling Technical Change with Compound

Poisson Processes

The Compound Poisson Process

We will start by briefly outlining some of the properties of the CP process as

it will be used here. The CP process has a variety of applications. It is often used to

capture random events where the time interval between events is independent from

one occurrence to the next. Let q(t) be the technology parameter in a standard

production function which we model as being time-dependent. We model q(t) here

as a simple CP process.

dq(s) = φ(s)dλ(s) P (dλ(s) = 1) = γds

The CP process has a constant intensity parameter γ and the exponential distri-

bution φ(s) ∼ exp(1/ξ) is used as the compounding distribution. The exponential

distribution is used because we assume only positive shocks to technology occur -

that is, technology is only improving over time. As a result q(t − ∆) ≤ q(t) for

∆ ≥ 0. We assume the φ(s) is independent of λ(s) for all s ∈ [0, t]. Having defined

dq(s) in this manner we can recover q(t) as the integral from 0 to t.

q(t) =

∫ t

0

dq(s) =

∫ t

0

φ(s)dλ(s) =
∑
i∈Nt

φ(si)

Nt ≡ {i : dλ(si) = 1, s ∈ [0, t]}
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Here, λ(t) serves as a counting measure, keeping track of each time the Poisson

process receives a shock. The jump size is then given by the exponential distribu-

tion. Thus, q(t) is simply the accumulation of the exponential shocks over time.

The bottom right panel of figure 3.6 shows an example of the evolution of the

process q(t).

Poisson processes are within the family of Lévy processes which are càdlàg,

meaning right continuous with left limits. Because of the lack of right continuity

we introduce the notation q(t−) = lim∆→0 q(t−∆) to indicate the left limit. This

allows us to write the derivative of the composition of two functions y = g(q(t)),

with the nested function CP, as Sennewald and Walde (2006)

dy(t)

dq(t)
= g(q(t−) + φ(t)dλ(t))− g(q(t−))

The expected change in the technology parameter at any instant is defined

simply as the interaction of the expectation of the exponential distribution and

the expected arrival rate of the Poisson process over an increment of time. The

expected value for the technology parameter at any time is defined as the expected

number of arrivals times the expectation of the exponential distribution at each

arrival.

E[dq(s)] = E[φ(s)dλ(s)] = E[φ(s)]E[dλ(s)] = ξγds

E[q(t)] = E[
∑
i∈Nt

φ(si)] = E[#Nt]ξ = tγξ

Where E[#Nt] is the expected cardinality of the set Nt. Having modeled q(t) in

this way carries with it the implication that technological progress is unbounded

as t increases. Note however that this is also true for cases in which technological

progress is assumed to be a linear or exponentially growing trend, as is often the

case. Thus, having unbounded technological progress is not without precedent

from a modeling standpoint. An interesting extension of our modeling approach

would be to make technological progress dependent upon returns to the fishery.

This could be used to bound the technological progress either through the jump

size, intensity parameter, or both. Unbounded technological growth also implies



138

that any open access resource, renewable or otherwise, will eventually be com-

pletely depleted. The intuition behind this is that in an open access setting the

cost of exploitation is the only binding constraint on the industry. Unbounded

technological progress drives costs to virtually nothing, simultaneously driving the

resource to commercial exhaustion.

Technology Shocks in the Bioeconomic Model

We now wish to incorporate the CP into the bioeconomic framework through

the technology parameter of the standard Schaefer production function. This new

technology-dependent production function can be written as

h(t) = q(t)s(t)x(t)

Where s(t) captures the size of the fleet and x(t) gives the size of the stock.

Consistent with Berck and Perloff (1984) and Clark et al. (1979), s(t) and x(t) will

be treated as continuous despite their discrete nature.

In order to bring this into the bioeconomic framework we must couple the

biological growth function with the economic production function and specify the

rent. Following Berck and Perloff (1984), the present value of quasi rents per vessel

and the its equation of motion are given by

y(t) =

∫ ∞
t

e−r(z−t)(pq(z)x(z)− c)dz

dy

dt
= ry − (pq(z)x(z)− c) (3.1)

Assuming that entrants base their entry decision on the present value of

expected rents using current profits as an adaptive, or myopic estimate of future

profits, Berck and Perloff (1984) arrive at an equation of motion for the stock that

asserts that the change in the size of the fleet is proportional to the present value

of rents
ds

dt
= δy =

δ

r
(pq(t)x(t)− c) (3.2)

This is an equilibrium expression for the vessel construction market. Berck and

Perloff (1984) assume that vessel construction costs are quadratic in the rate of
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entry, ds
dt

, and entry occurs until the marginal cost of vessel construction equals the

present value of expected rents, which is the expression in equation 3.2 where δ is

a parameter of the entry cost function. The only obvious difference between our

framework and that of Berck and Perloff (1984) is the insertion of the technology

parameter. The biological equation of motion is given by the growth function less

the amount that is harvested each period.

dx

dt
= Γ(x(t))− q(t)s(t)x(t) (3.3)

The model has been set up in the standard continuous time, surplus production

framework. The system is in equilibrium when ds
dt

= 0 and dx
dt

= 0, i.e., when

the change in the stock is zero so that the surplus growth is exactly equal to the

harvest, and the fleet size is no longer in flux. Solving the system of equations

defined by equations 3.2 and 3.3 in equilibrium

ds

dt
=

δ

r
(pq(t)x(t)− c) = 0

x∗(t) =
c

pq(t)
= fx(q(t)) (3.4)

dx

dt
= Γ(x(t))− q(t)s(t)x(t) = 0

s∗(t) =
Γ(x∗(t))

q(t)x∗(t)

= Γ(
c

pq(t)
)p/c = fs(q(t)) (3.5)

The focus of this paper is on the response of the system to changes in the technol-

ogy. The system can change in two ways: the equilibrium levels will change, and

the nature of the approach path to the equilibrium can change. First, the change

in the equilibrium stock level is characterized by the differential

dx∗(t)

dq(t)
= fx(q(t−) + φ(t)dλ(t))− fx(q(t−)

=
c

p(q(t−) + φ(t)dλ(t))
− c

p(q(t−))
(3.6)

Intuitively, the equilibrium stock size will be smaller as fishermen are capa-

ble of harvesting more fish for any given fleet size. This can be seen here clearly
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as dx∗(t)
dq(t)

≤ 0 since φ(t)dλ(t) ≥ 0. That is to say, the new equilibrium stock size

is always smaller following a technology shock. This is consistent with the basic

result of Squires and Vestergaard (2009), who show that equilibrium stock size

shrinks smoothly with a continuously growing technology parameter. Recall that

dλ(t) is a random variable and P (dλ(s) = 1) = γds or P (dλ(s) = 0) = (1− γ)ds,

thus, dx∗(t)
dq(t)

= 0 most of the time for γ small, as we would expect.

The change in the equilibrium fleet size will not be unambiguous like the

change in the stock size. This is because the fs(q(t)) is dependent upon the growth

function, which is nonlinear. The equilibrium fleet size will depend on how the

growth changes at the new equilibrium.

ds∗(t)

dq(t)
= fs(q(t−) + φ(t)dλ(t))− fs(q(t−))

= [Γ(
c

p(q(t−) + φ(t)dλ(t))
)− Γ(

c

p(q(t−))
)]p/c (3.7)

Equilibrium fleet size will be larger following the technology shock if the new

equilibrium fish stock increases surplus growth. The equilibrium fleet size will

be smaller when growth is reduced. This says nothing, though, about the initial

response of the fleet to the technology shock. To say something about initial

responses to shocks, we must further investigate the off-equilibrium dynamics.

Characterizing the Equilibrium

Growth functions for biological processes are nonlinear; even the simplest

logistic growth function is a nonlinear differential equation. As long as the surface

is sufficiently smooth we can characterize the local behavior of the system by lin-

ear approximation. In particular, the system can be linearized around the critical

point, or equilibria. The nature of the equilibrium at a given point of the linearized

system will be the same as that of the nonlinearized system under standard con-

tinuity and differentiability assumptions. This is the approach followed here. The

linearization of equations 3.2 and 3.3 about the equilibrium yields the following

system of equations relating s to x.(
∆ẋ

∆ṡ

)
≈

(
Γ′(x∗)− q(t)s∗ −q(t)s∗

q(t)δp/r 0

)(
x− x∗

s− s∗

)
= A

(
x− x∗

s− s∗

)
(3.8)
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To determine the nature of the equilibrium we can analyze the determinant of

the eigenvalue matrix A − µI. After plugging in the equilibrium condition the

determinant will be

⇒ µ2 −
(

Γ′
(

c

q(t)p

)
− q(t)p

c
Γ

(
c

q(t)p

))
µ+ q(t)

cδ

r
= 0 (3.9)

µ2 + bµ+ c = 0

The eigenvalues of the system will then be given by the roots

µ =
−b±

√
b2 − 4c

2

and the discriminant will be(
Γ′
(

c

q(t)p

)
− q(t)p

c
Γ

(
c

q(t)p

))2

− 4q(t)
cδ

r

Since 4q(t)cδ/r is strictly positive the eigenvalues will either both be negative

and real, or imaginary with a negative real term. When the eigenvalues are both

negative and the surface is a sink, approach paths to the equilibrium are direct.

However, when the discriminant is less than zero the eigenvalues will be imaginary

and the approach path will be a vortex with the equilibrium as its focus. As

a concrete example consider the case where the growth is given by the logistic

growth function in equation 3.10 where g is the intrinsic growth and k is the

carrying capacity.

Γ(x) = gx(1− x/k) (3.10)

The discriminant of the system with logistic growth will then be less than

zero when(
g

(
1− 2c

q(t)pk

)
− q(t)p

c
g

(
c

q(t)p

)(
1− c

q(t)pk

))2

− 4q(t)
cδ

r
< 0

(
gc

pk

)2

− q(t)34c
cδ

r
< 0

3

√
g2cr

4δp2k2
< q(t) (3.11)

Since q(t) is unbounded it will eventually exceed the threshold established by

equation 3.11. In our experience under most reasonable parameterizations of the
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growth function the threshold is exceeded quite early on the exploitation path.

Figure 3.2 shows the phase plane gradients of the resource stock and the fleet when

the threshold has been exceeded, with arrows indicating the spiraling direction of

convergence from off-equilibrium points. Consequently, with increasing technology

we will eventually see a fishery in which the fleet size is oscillating as it attempts

to approach the steady state.

Notice that this threshold contains an expression for the intrinsic growth

rate of the fish stock relative to the entry cost parameter δ, as well as other

economic parameters and the carrying capacity. This threshold describes a point

where the ability of entry costs to act as a break on rising harvest pressure and

protect stock recovery is exceeded by the ability of each existing vessel to deplete

the stock. In other words, technology makes entry continue to appear profitable

even as the harvest capacity exceeds the stock’s ability to replenish itself.

Figure 3.3 illustrates this point more clearly by redrawing the stock-fleet

phase plane and illustrating example approach paths on either side of the transition

threshold. The black arc represents the locus of equilibrium points in the stock-

fleet plane, at different values of q(t), with the transition threshold marked in red.

A smoothly changing q(t) would trace out this arc over time. Perturbations on

either side of the threshold result in very different dynamics.

Technology Shocks with Rational Expectations

We now temporarily relax the assumption of myopic expectations and ex-

amine the case where agents form and respond to rational expectations about the

future. In a rational expectations framework, agents will consider expected future

changes in technology, stock, and fleet size when making entry and exit decisions.

In particular, the present value of quasi rents in the system described above is

augmented by consideration of the expected time path of technology, given by

y =

∫ ∞
t

e−r(z−t)(pEt[q(z)]x(z)− c)dz

=

∫ ∞
t

e−r(z−t) (p[q(t) + (z − t)ξγ]x(z)− c) dz (3.12)
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The equation of motion for expected quasi rents is given by

dy

dt
= ry − (pq(t)x(t)− c) + p(φ(t)dλ(t)− ξγ)

∫ ∞
t

e−r(z−t)x(z)dz (3.13)

= ry − (pq(t)x(t)− c) + p(φ(t)dλ(t)− ξγ)B(t)

The first two terms are identical to equation 3.1 and is simply the change

in the present value of rents. The final term on the right hand side of equation

3.13 accounts for long run revenue adjustments when current technology shocks

(today’s draw from the CP process) deviate from their expected value. The impact

of today’s deviation on the resource stock at every subsequent moment is then fac-

tored into the evolution of expected rents. In this case, s∗(t) = Γ(x∗(t))/q(t)x∗(t)

as before and additionally y∗(t) = 0, but the expression for x∗(t) = 0 is given by

x∗(t) =
c+ p(φ(t)dλ(t)− ξγ)B(t)

pq(t)
= f̃x(q(t)) (3.14)

Repeating the analysis of section 3.3, the change in the equilibrium stock

size is now

dx∗(t)

dq(t)
= f̃x(q(t−) + φ(t)dλ(t))− f̃x(q(t−))

=
c+ p(φ(t)dλ(t)− ξγ)B(t)

p(q(t−) + φ(t)dλ(t))
−

c+ p(φ(t)dλ(t)− ξγ)B(t)

pq(t−)
(3.15)

Two observations are worth noting here. First, the equilibrium stock size is

smaller than under myopic expectations because firms expect future productivity

gains, which induces more entry earlier and thus more depletion earlier. Second,

the effect of a shock on the equilibrium stock size is dampened by the continual

adjustments to the evolution of expected rents in response to deviations from the

expected path. The equilibrium fleet size is then given by

A(t) = p(φ(t)dλ(t)− ξγ)B(t)

s∗(t) = Γ

(
c+ A(t)

pq(t)

)
p

c+ A(t)
(3.16)
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The change in fleet size now becomes

ds∗(t)

dq(t)
= fs(q(t−) + φ(t)dλ(t))− fs(q(t−))

= Γ

(
c+ A(t)

p(q(t−) + φ(t)dλ(t))

)
p

c+ A(t)
− Γ

(
c+ A(t)

p · q(t−)

)
p

c+ A(t)
(3.17)

Again, the effect of a technology shock is less dramatic than in the myopic

case because of the expected long run revenue adjustments. In this sense, the

rate of entry and stock drawdown following a major technology shock could be

considered indicators of the extent of myopia in the industry.

3.4 Simulation

The theoretical results from the myopic expectations case of section 3.3

make two points that we wish to emphasize and show through simulation. The

first is to propose and characterize the CP process as a model of technological

change that mirrors empirical findings from open access resources, where shocks

accrue to the system randomly and irregularly and the adoption of technology into

the fishery is nearly instantaneous. The second point of our theoretical analysis is

that as technology increases it surpasses a threshold, beyond which the approach

paths to the equilibrium switch from stable convergence to spiraling convergence, or

boom and bust cycles. Discontinuous shocks produce off equilibrium dynamics that

make the approach path relevant and observable. The cyclicality of the approach

path means that we would expect to see boom and bust cycles, particularly in the

years following a technology shock.

The simulations focus on the case of myopic expectation because it is our

belief that this is a fairly close approximation to behavior in many open access

scenarios. We simulate the system defined by the two differential equations 3.2

and 3.3. For the growth function Γ(·) we use the logistic growth function defined

by equation 3.10. The parameters of the simulation can be found in table 3.1. The

process is simulated over 100 years on daily time intervals dt = 1/365 and then

sampled annually at the end of the simulated year. The simulation is initialized

using a technology parameter of q(0) = 1 and with the stock and fleet at their



145

equilibrium values x(0) = c
pq(0)

, s(0) = Γ(x(0))
q(0)x(0)

.

Boom and Bust Cycles

Figures 3.4 and 3.5 plot the time path of variables for the two approach

paths illustrated in the phase plane in figure 3.3, demonstrating shocks that lead

to two different sides of the transition threshold. In figure 3.4, the fishery begins

in equilibrium and after a small technology shock, adjusts smoothly to a larger

equilibrium fleet size (implying larger surplus growth) and lower fish stock. Profits

are quickly dissipated by entrants. In figure 3.5, on the other hand, a large shock

moves the fishery beyond the transition point. Profits, fleet size, and fish stocks

fluctuate for about 30 years before settling down.

Compound Poisson Technology Simulation

While the system begins with stable convergence to the equilibrium, the

technology shocks quickly change the nature of the equilibrium to one of boom

and bust cycles. This produces the erratic fluctuations in the stock, fleet size and

profits that appear in figure 3.6. This pattern closely resembles the time path of

stocks and yields reported by Hennessey and Healey (2000) as a “ratchet effect”

of stock variability and government policy. Technology shocks induce transitory

periods of growth, but the fish stocks remain in long run decline despite relatively

steady per-vessel profits that could hide the severity of stock depletion.

3.5 Conclusion

This article proposes a useful modeling tool for open access resource dynam-

ics that more closely reflects observed patterns of innovation and adoption, and

explores the consequences for renewable resource use. Discontinuous technological

processes can have significant economic and resource impacts. Although smooth

measures of growth based on long run expectations may be accurate over decades,

short run dynamics will differ markedly from the long run forecast when discrete
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shocks are present. Economic resources will be suboptimally allocated through

dimensions such as overcapitalization and resource depletion.

In the fishing context, overfishing for a short time may push resource stocks

below their sustainable limits. Previous explanations of excess capacity and stock

declines in de facto open access fisheries, such as the ratchet effect, ignore this

important driver of observed outcomes. Accurate technological accounting could be

built directly into catch-per-unit effort measures which are often used by regulators

as an indicator of stock abundance.

Management systems should be designed to anticipate and deal with sudden

changes in exploitation power, particularly in cases when its not feasible to regulate

or ban specific technologies. Requiring ex ante public disclosure of investment

plans and announcing real-time resource limitations may dissuade myopic behavior,

leading to fewer wasted inputs and dampening the wide capacity swings that could

lead to resource collapse. When output taxation is feasible and productivity levels

are stationary, it is well known that regulators can achieve optimum rent even

though individual agents face open-access incentives; with technology shocks, an

adaptive system of graduated taxes may be required to reduce expected quasi-rents

for myopic actors following a shock.
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Figure 3.1: Technology Adoption in the Winter Herring Fishery

3.7 Figures and Tables
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Figure 3.2: Dynamics in the stock-fleet plane

Table 3.1: Productivity Shock Simulation Parameter Values

Growth Parameters
Intrinsic growth g = 0.75

Carrying capacity k = 1
Economic Parameters

Interest rate r = 0.05
Price p = 3.5

Operating costs c = 2.33
Entry Proportion δ = 0.001

Technology Parameters
Poisson intensity γ = 0.1

Jump size β = 0.5
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Figure 3.3: Differences in approach path for changing technology

Figure 3.4: Small shock with smooth transition to equilibrium
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Figure 3.5: Big shock inducing oscillating equilibrium

Figure 3.6: Compound Poisson Process Simulation
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