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Dissertation Abstract

In the face of escalating global climate change, the need to mitigate greenhouse gas emissions has

never been more pressing. Agriculture is a major source of greenhouse gas emissions, but is also

gaining recognition for its potential role to reduce atmospheric carbon dioxide by sequestering

carbon in the soil. A recent French initiative called 4 per mille states that if farmers were to increase

soil organic carbon (SOC) on their fields by 0.4% per year, that would be enough to offset all

annual anthropogenic greenhouse gas emissions and stop further increases in atmospheric carbon

dioxide. This initiative highlights that only a small percentage increase in SOC over a large area

of land can yield substantial environmental benefits.

Government and industry stakeholders are beginning to recognize the potential for SOC, and

are in the early stages of developing carbon markets for SOC. But there are still important scien-

tific and economic questions to be answered. These questions call for further research on how to

accurately measure SOC, understand soil capacity for additional carbon sequestration, and how

different farm management practices affect SOC and what their associated private and public ben-

efits are. The topic of carbon markets has garnered significant attention due to recent government

initiatives promoting climate-smart agriculture and private investment in carbon offset programs.

In this dissertation, I bridge the gap between research conducted by soil scientists, who focus on

modeling and sampling techniques to better measure SOC, and the work of economists, who con-

centrate on policy design and the valuation of environmental benefits. My methodology addresses

the challenges of accurately measuring soil carbon and examines how these models can be used

to inform policy design and efforts to establish sustainable carbon markets in agriculture.

This dissertation examines, in three chapters, the relationship between carbon sequestration,

farm management practices, and agri-environmental policy. I analyze the private and public ben-

efits from carbon sequestration on farms in Saskatchewan from 1998 to 2019. To do this, I employ a

novel field-level dataset from the Saskatchewan Crop Insurance Corporation (SCIC) that includes
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detailed information for each field in Saskatchewan: cropping choice, yield, fertilizer use, crop

insurance coverage, and the number of seeded hectares.

In Chapter 1, I develop a novel SOC prediction model that builds on the existing models de-

veloped specifically for Saskatchewan soils. I examine the case of carbon sequestration in the

Saskatchewan prairies, which have experienced substantial increases in SOC over the past 30

years. I use several SOC prediction models to simulate the stock of SOC on fields over time and

compare the results. I then compute the external social benefit from carbon sequestration on all

insurable hectares by simulating various counterfactual scenarios in which 25%, 50%, and 75%

of canola hectares are replaced by summer fallow, representing a reversion to tillage-based sys-

tems, and using various values for the social cost of carbon (SCC) ranging from 14 USD/Mg to

185 USD/Mg. During the period 1998–2019, this external social benefit ranges from 481 million

to 6 billion USD. Projecting average carbon inputs 150 years into the future yields an estimated

external social benefit ranging from 851 million to 30.2 billion USD for the same counterfactual

comparisons.

In Chapter 2, I use the SOC data simulated in Chapter 1 to determine the effects of increased

SOC stocks on crop yield, productivity, and on-farm profit. I use a dynamic panel regression to es-

timate the shadow value of SOC and find that increased SOC stocks have a statistically significant

and a positive affect on crop yields. Performing dynamic simulations, I compute the on-farm and

external social benefits from carbon sequestration that are attributed to selecting a particular crop

rotation, and compare these benefits across rotations. I find that adoption of the Canola-Spring

Wheat-Peas-Spring Wheat crop rotation leads to a 27.5%, 8.2%, and 4.4% increase in long-term av-

erage profit in the brown, dark brown, and black & gray soil zones attributable to increased SOC

over 32 years. On-farm benefits from increased SOC are lower for crop rotations with lower carbon

sequestering capabilities, highlighting the long-term effects on farm profitability and productivity

from selecting particular crop rotations. I compute the external social benefit from the adoption of

Canola-Spring Wheat-Peas-Spring Wheat rotation relative to Spring Wheat-Fallow-Spring Wheat-

Fallow on all insurable hectares in Saskatchewan from 2023 to 2055, and find benefits amounting

to 108 billion CAD when employing a SCC of 185 USD/Mg. I find that the external social benefits
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from crop rotations that include canola rather than pulses or fallow are greater than the associated

private benefits. Hence, selecting crop rotations that have greater SOC sequestration potential not

only improves on-farm profitability over time, but also generates sizable environmental benefits.

In Chapter 3, I assess the effectiveness of second-best policies aimed at increasing the stock

of SOC by examining a hypothetical policy that subsidizes additional canola hectares differently

for each soil zone in Saskatchewan. To analyze the effect of these subsidies, I develop a simulation

model that includes on-farm acreage responses and a SOC state equation to measure changes in

SOC stocks due to alterations in land-use. I find that a policy offering optimal subsidies specific to

each soil zone for additional hectares of canola, implemented in 2019 and continuing indefinitely

for all insured fields in Saskatchewan, generates an external social benefit worth 15.2 billion CAD

when the subsidy is set to maximize the net external social benefit (NESB), and 30.4 billion CAD

when it is set to maximize the change in total welfare. These benefits are calculated using acreage

responses estimated by a nested logit model with field-level data from the SCIC, and an annual

carbon rental rate computed using a SCC of 185 USD/Mg. The NESB is the public benefit from

carbon sequestered by increasing canola hectares minus policy costs, while the change in welfare

is the NESB plus the change in producer surplus. This chapter quantifies the potential environ-

mental and social benefits from implementing second-best policies that aim to increase SOC stocks

by subsidizing changes in cropping choices.
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Chapter 1

A New Field-Level Measure of the Stock

of Soil Organic Carbon and the Value of

Carbon Sequestration

1.1 Introduction

Agricultural sequestration of soil organic carbon (SOC) is considered by many to be a significant

means of reducing atmospheric carbon dioxide. Agricultural production contributes roughly 10%

to 14% of anthropogenic greenhouse gas (GHG) emissions, predominantly from soil and livestock

sources (Paustian et al., 2016). According to Janzen et al. (2022), on a global scale, carbon seques-

tration within agricultural ecosystems has the capacity to absorb an extra 1.5% of current yearly

anthropogenic carbon dioxide emissions, equivalent to 0.14 gigatons of carbon annually into the

soil.

Accurately measuring SOC is essential for a better understanding of the role of agriculture in

reducing atmospheric carbon, assessing its significance, and comprehending how different land

management practices influence SOC stocks. It is both challenging and expensive to directly mea-

sure the changes in SOC attributable to changes in agricultural production systems (McConkey
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et al., 2020).1 In these circumstances, models that predict SOC could offer an economical method

for understanding the dynamics of SOC stocks. Although they cannot replace actual soil sampling

(Le Noë et al., 2023), SOC prediction models can serve as helpful resources for examining relative

changes in SOC stocks in response to various land management practices (Bista et al., 2016).

This essay introduces a novel method for quantifying SOC, termed the Augmented Campbell

model, which enhances the conventional Campbell model by integrating a humification compo-

nent (Campbell et al., 2000, 2001, 2005, 2007a,b). Additionally, the Augmented Campbell model

is expanded to include weather-induced decomposition rate modifiers outlined in the Intergov-

ernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories

(Zhongming et al., 2019). Hence, this essay introduces and uses two versions of the Augmented

Campbell model, distinguished as the “base” version (without the weather-induced decompo-

sition rate modifiers) and the “weather” version (with the weather-induced decomposition rate

modifiers). Unless noted, the “Augmented Campbell model” refers to the weather version.

Employing the Augmented Campbell model, and various alternative models for comparison,

I achieve the first extensive field-level measurement of SOC over time across Saskatchewan. This

measurement enables exploration into how carbon sequestration differs among various soil types

and in response to agricultural production decisions. To estimate SOC stocks with the Augmented

Campbell model, I apply carbon input values derived from the Plant Biomass Carbon Input (PBCI)

model developed by Maillard et al. (2018). Additionally, I use detailed crop production data from

the Saskatchewan Crop Insurance Corporation (SCIC) spanning from 1998 to 2019. The SCIC

dataset includes proprietary details on cropping choices, yields, and input usage at the field level

for all insured hectares in Saskatchewan.

This essay accomplishes three primary purposes. Firstly, I develop and offer an intricate

overview of the Augmented Campbell model, and assess its accuracy compared with other SOC

prediction models, using soil sampling data sourced from Swift Current, Saskatchewan. Secondly,

I analyze the growth in SOC stocks on Saskatchewan fields between 1998 and 2019 using the

1White et al. (2021) state that soil sampling prices typically range from $200 to $300 for each field, which can vary
in size from 40 to 160 acres. The variation in costs is influenced by the quantity of samples collected from a field.
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Campbell and Augmented Campbell models with field-level agricultural production information

from the SCIC. Thirdly, I assess the value of SOC stocks relative to different hypothetical scenarios,

involving the conversion of a portion of canola hectares to fallow land. Subsequently, I project

these scenarios forward 150 years into the future.

I evaluate the predictive performance of both versions of the Augmented Campbell model

(base and weather versions) compared with other SOC prediction models (including the original

Campbell model, the Introductory Carbon Balance Model (ICBM), ICBM/2, and the Rothamsted

Carbon (RothC) model) using soil sampling data from experimental plots managed by Agriculture

and Agri-Food Canada (AAFC) in Swift Current, Saskatchewan. AAFC implements two different

crop rotation strategies in these plots, termed the “New Rotation” and the “Old Rotation.” In

the context of both rotations, both versions of the Augmented Campbell model outperform the

Campbell model in predicting SOC under either rotation. In the context of the New Rotation,

both versions of the Augmented Campbell model predict SOC stocks more accurately than the

alternatives. Among the models, the ICBM/2 shows the best performance across both rotations,

albeit with a tendency to estimate higher SOC stocks on average, relative to other models.2 I

cannot verify SOC predictions using SCIC data because long-term, precise, and consistent soil

sampling records are not available (see Congreves et al. (2015), Fan et al. (2019), Riggers et al.

(2019), Farina et al. (2021), He et al. (2021), and Thiagarajan et al. (2022)).3

Using the Augmented Campbell model (weather version), I predict a weighted average in-

crease in the SOC stock in Saskatchewan of 6,797 kg/ha from 1998 to 2019. I observe variation in

SOC stock changes across soil zones: 4,437 kg/ha in the brown soil zone, 6,048 kg/ha in the dark

brown soil zone, and 7,488 kg/ha in the black & gray soil zone. This difference among soil zones

is attributed to heterogeneity in their cropping choices, farming practices, climate conditions, and

crop yields. In the brown soil zone, characterized by a drier climate compared to the dark brown

2Despite the ICBM/2’s overall superior performance in SOC stock predictions, Riggers et al. (2019) indicate that,
relative to other SOC prediction models, it may overestimate SOC levels more when initial SOC stocks are high.

3For consideration for use in model validation, I further examine the Prairie Soil Carbon Balance (PSCB) project,
which collected soil samples from 90 fields across Saskatchewan on five occasions between 1996 and 2018 (McConkey
et al., 2020). However, inconsistencies in these data pose challenges for their use in validating predicted SOC stock
changes over time. (Paustian et al., 2019). Despite its limitations for validation, the PSCB project still offers researchers
valuable insights into the internal dynamics of SOC within sampled fields throughout Saskatchewan.
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and black & gray soil zones (Marchildon and Sauchyn, 2009), farmers grow a higher proportion

of crops suitable for arid conditions. Consequently, farmers in the brown soil zone plant a lower

proportion of their land to crops with substantial carbon inputs (e.g., canola) and a higher propor-

tion to pulse crops (e.g., lentils and peas) and fallow. The simulated SOC stock change from 1998

to 2019 corresponds to an average annual change of 309 kg/ha/yr across Saskatchewan.

The estimated annual SOC change of 309 kg/ha/yr from the Augmented Campbell model

(weather version) aligns with the range of benchmarks for validating SOC predictions in the

Canadian GHG National Inventory Report (see VandenBygaart et al. (2003), VandenBygaart et al.

(2008), Liang et al. (2020), and Environment and Climate Change Canada (2022)). According to a

meta-analysis by Liang et al. (2020), SOC stocks from no-till systems in western Canada exhibit an

annual change of 300 kg/ha/yr in medium-textured soils (such as silt, silt loam, loam, or sandy

clay loam) and 430 kg/ha/yr in fine-textured soils (including sandy clay, clay loam, silty clay

loam, silty clay, or clay). Given that a significant portion of Saskatchewan’s soils fall within the

medium- and fine-textured categories,4 the annual change in SOC projected by the Augmented

Campbell model in Saskatchewan falls comfortably within the range of SOC stock changes ob-

served under no-till practices in the meta-analysis conducted by Liang et al. (2020).

To value the change in SOC from 1998 to 2019 in Saskatchewan as predicted by the Aug-

mented Campbell model (weather version), I introduce a more sensible method for estimating

the external social benefits of carbon sequestration compared with approaches that calculate these

benefits as though new sequestrations will be sustained in perpetuity. This method employs a

rental rate for carbon derived from the social cost of carbon (SCC) and its related discount rate

applied to the annual change in the stock of SOC implied by a specific counterfactual compari-

son over time. The benefit calculation depends on the choice of a counterfactual scenario against

which to compare actual agricultural production choices. Each counterfactual scenario entails a

switch of a certain percentage of canola hectares to summer fallow, which I simulate field by field

based on draws from a binomial distribution. The counterfactual scenarios proposed in this essay

4Please refer to Saskatchewan Soil Information System for a detailed overview of soil textures across soil zones and
types in Saskatchewan (University of Saskatchewan, 2023).
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envision lower adoption rates of zero-tillage and continuous cropping practices, which have been

widely implemented across Saskatchewan since the 1990s and are known to sequester SOC unlike

the practices they have replaced (Awada et al., 2016). In what follows, in this chapter all monetary

figures are reported in 2023 United States dollars and are adjusted for inflation using the GDP

Deflator from the Federal Reserve Bank of St. Louis (U.S. Bureau of Economic Analysis, 2024).

I estimate that the adoption of zero-tillage and continuous cropping, particularly in relation

to canola cultivation, yielded external social benefits over the period 1998 to 2019 ranging from

$481 million to $6 billion. This range reflects variation in both the assumed Social Cost of Carbon

(SCC) and the percentage of canola hectares that were converted to summer fallow. Specifically,

the lower estimate of $481 million is derived from an SCC of $14/Mg (14 dollars per metric ton),

with 25% of canola hectares converted to summer fallow, and using the lowest value drawn from

the binomial distribution. Conversely, the higher estimate of $6 billion results from an SCC of

$185/Mg, with 75% of canola hectares converted to summer fallow, and employing the highest

value drawn from the binomial distribution. When these changes in management practices are

valued indefinitely into the future, generating a perpetual stream of benefits, the range expands

further, from $766 million to $29.1 billion in external social benefits, depending on the SCC and

the specific counterfactual scenario considered.

In this essay, I also extend the projection of SOC stocks 150 years into the future employing the

Augmented Campbell model (weather version). This projection reveals an external social benefit

ranging from as low as $856 million, based on a SCC of $14/Mg and the scenario where 25% of

canola hectares revert to summer fallow, to as high as $30.2 billion, with an SCC of $185/Mg and

the scenario where 75% of current canola hectares revert to summer fallow. This forward-looking

projection accounts for additional dynamics in SOC, resulting in a broader range in predicted SOC

stocks compared with the counterfactual scenarios over the long term. The projected benefits per

year range from roughly 0.03% to 1% of the $20 billion annual value of cereals, oilseeds, and pulse

exports from Saskatchewan (Government of Saskatchewan, 2022).

If SOC prediction models are to be used in policy guidance, there are several economic and

biogeochemical factors that need to be considered. The impermanence of carbon storage in the
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soil means that SOC can be released back into the atmosphere with changes in farming practices.

This feature necessitates a careful approach to estimating the value of SOC over time. Instead of

presuming indefinite carbon storage, a more nuanced valuation employs the concept of an annual

rental rate for SOC. This rate depends on the prevailing SCC and adjusts for the conversion factor

between SOC and CO2, which is applied to yearly changes in SOC attributable to sequestration ef-

forts. Such an approach ensures that the valuation of SOC aligns with the actual duration of policy

effects. Yet, given the enduring challenge posed by climate change, valuing carbon sequestration

from specific management practices as a perpetual asset may also be warranted.

The remainder of the essay unfolds as follows: sections 1.2 and 1.3 provide background on

crop production in Saskatchewan and on SOC prediction models; sections 1.4 and 1.5 describe the

PBCI model and the Augmented Campbell model; sections 1.6 and 1.7 describe the data and the

sample selection procedure; sections 1.8 and 1.9 evaluate the models, comparing their predictions

to the observed stock of SOC using the soil sampling data from AAFC and field-level data from

the SCIC confidential dataset; section 1.10 provides a brief overview of the PSCB project; section

1.11 describes the method used to compute the external social benefit from changes in the stock of

SOC and proposes potential counterfactuals to be used to estimate the external social benefits from

changes in farming practices and cropping choices; sections 1.12 and 1.13 provide the results from

estimating the historical and forward projected external social benefits from carbon sequestration

by crop farmers in Saskatchewan; and section 1.14 concludes the essay.

1.2 Saskatchewan Crop Production and Carbon Sequestration

Agricultural carbon sequestration involves capturing and storing carbon dioxide from the atmo-

sphere, a process that can occur naturally in forests and soils through biological means, or be

facilitated by human-made systems, as a strategy to mitigate climate change. Illustrated in Figure

1.1, this concept is exemplified by the carbon sequestration cycle of wheat, canola, and summer

fallow. The diagram details how carbon flows in and out of these systems, with the width and

color of the lines indicating the magnitude and direction of carbon movement. Plants like wheat

and canola absorb CO2, integrating carbon into their biomass as they grow. This carbon is partly
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transferred to the soil by plant residues and becomes part of the soil humus, though some is later

released back to the atmosphere as it decomposes. Additionally, carbon is stored in the seeds pro-

duced by these plants, which are then harvested. The practice of tillage influences how quickly soil

organic carbon (SOC) breaks down, with Figure 1.1 highlighting that traditional tillage methods

accelerate CO2 release into the atmosphere compared with no-till practices.

FIGURE 1.1: Agricultural Carbon Sequestration Cycle

Atmospheric Carbon

Summer FallowCanola

Soil Organic Carbon Stock

Wheat GrainGrain

Carbon Inputs

Residue Decay

Carbon Inputs
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Carbon Inputs

Carbon Remobilization Carbon Remobilization

Note: Arrow Thickness represents Rate of Carbon Transfer

(Zero-Tillage)
Soil Decomposition
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Soil Decomposition

Source: Author.

In 1980, cereals dominated the harvested landscape of Saskatchewan, encompassing 89.5%

of the total harvested area, while oilseeds occupied 10.4%, and pulses a mere 0.01%. Between 1980

and 2021, the crop mix was significantly transformed, with cereals declining to 47.2%, oilseeds

rising to 36.3%, and pulses expanding to 16.5% (refer to Figure 1.2). Over the same period,

Saskatchewan witnessed a remarkable increase in its total harvested area, expanding by 4.7 mil-

lion hectares, or by 47.6%. The growth in harvested acres primarily resulted from a reduction
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in summer fallow. Between 1976 and 2016, the extent of summer fallow in Canada dwindled by

7.5 million hectares, or decrease of 92% (Weersink et al., 2019). Saskatchewan contributed signifi-

cantly to this trend, with an average annual conversion of 150 thousand hectares of summer fallow

land into production each year during this period (Statistics Canada, 2021).

FIGURE 1.2: Total Harvested Hectares for Pulses, Cereals, and Oilseeds in
Saskatchewan from 1980 to 2021

Source: Created using data from Statistics Canada (2021).

Prior to the widespread adoption of zero-tillage systems, many farmers allocated their land

using a half-and-half rotation method, reserving half of their land for fallow each year. The intro-

duction of advanced farming equipment, such as air seeders in the late 1980s, propelled the uptake

of zero-tillage practices. Over just two decades, from 1991 to 2011, zero tillage in Saskatchewan

grew from 10% to 70% (Awada et al., 2016). Awada et al. (2016) attribute much of this shift to out-

reach initiatives and knowledge dissemination efforts targeting farmers, facilitated by government

reports aimed at addressing soil erosion in the prairies and highlighting the economic advantages
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of zero-tillage methods.5 Both Zentner et al. (1990) and Lafond et al. (1993) agree that transition-

ing away from fallow-based rotations mitigates soil erosion while simultaneously enhancing soil

productivity and farm profitability across Saskatchewan.

Since 1990, advances in crop breeding, agricultural machinery, and pesticides have signifi-

cantly influenced the adoption of zero-tillage and continuous cropping practices. Factors such as

the decreased cost of glyphosate, the introduction of herbicide-tolerant canola varieties, the avail-

ability of legume inoculants, the invention of air seeders, the use of flexible harvest headers and

straw choppers on combines, the implementation of land rollers for pulse crops, increased quo-

tas from the Canadian Wheat Board, and lower interest rates have all contributed to the decline

of traditional tillage methods across the Canadian prairies (Awada et al., 2016). Nowadays, the

majority of farmers plant crops on all of their cropland each year.

1.3 Soil Organic Carbon Prediction Models

In this section, I provide a brief overview of the various SOC prediction models in use today, ex-

amining their strengths and weaknesses. SOC prediction models fall into two categories: process-

based models and empirical models. Process-based models are more complex, simulating SOC

stocks on either a daily or monthly basis, while empirical models operate on an annual basis. Em-

pirical models use data on crop yield and carbon inputs to estimate SOC stocks, whereas process-

based models also factor in soil type and weather. Empirical models can be categorized further as

either (1) models based on differential equations that describe the behavior of soil carbon, nitro-

gen, or microbial biomass, or (2) models that are derived from regression analyses applied to soil

sampling data. Process-based models are solely based on the former.

Numerous process-based models are capable of predicting crop yields, enhancing their abil-

ity to more accurately project SOC stocks by integrating forecasted crop yields (and thus carbon

5In 1983, the Prairie Farm Rehabilitation Administration (PFRA), a branch of AAFC, released a seminal report
titled “Land Degradation and Soil Conservation Issues on the Canadian Prairies,” shedding light on soil erosion and
loss associated with conventional tillage systems (Awada et al., 2016).
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inputs) with projected weather conditions (Bista et al., 2016). These models often include inter-

actions among SOC measures, nitrogen, nitrous oxide, ammonia, or methane (greenhouse gases),

employing mathematical formulations to simulate the biological and chemical processes influ-

enced by plant life cycles, soil nutrient levels, water and temperature fluctuations, and solar ex-

posure (Necpálová et al., 2015). Notable examples of process-based models include Century, Day-

Cent, and RothC. Both Century and RothC models operate on a monthly basis, while DayCent

offers a more granular, daily time-step analysis, building upon the framework of the Century

model (Chang et al., 2013).

Extensive research has been conducted to evaluate the effectiveness of various SOC predic-

tion models (see Bolinder et al. (2006), Campbell et al. (2007a,b), Lemke et al. (2010), Smith et al.

(2012), Congreves et al. (2015), He et al. (2021), and Thiagarajan et al. (2022)). Bolinder et al. (2006)

find that process-based models do not significantly outperform empirical models. Bolinder et al.

(2006), Congreves et al. (2015), and Thiagarajan et al. (2022) indicate that enhancing the parame-

terization of empirical models such as the Campbell model and the ICBM could elevate their pre-

dictive accuracy, making them more competitive with some process-based models. Specifically,

Campbell et al. (2007a,b) revise the parameters within the ICBM to better reflect the characteris-

tics of chernozemic soils found in Saskatchewan. Improvements to the original ICBM have led

to variants like the ICBM/2, which boast enhanced predictive capabilities (Kätterer and Andrén,

2001; Poeplau et al., 2015; Kröbel et al., 2016). The Augmented Campbell model represents the first

effort to advance the original Campbell model, offering a refined approach to SOC prediction.

A significant critique of the Campbell model is that the time-path to the steady-state equi-

librium is too short. Congreves et al. (2015) show that the Campbell model often underpredicts

SOC in the initial years and attains steady-state equilibrium more quickly than both the ICBM

and DayCent models. This is attributed to the Campbell model employing residue decomposi-

tion parameters from the Voroney equation, which is derived from a study with only ten years of

residue decomposition data (Voroney et al., 1989). Such a duration is insufficient to capture the

complex dynamics of plant residue decomposition, which varies among different plant parts and
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takes longer to achieve a steady-state. To remedy this, the Augmented Campbell model devel-

oped in this essay introduces a humification process, which not only increases carbon inputs but

also extends the time taken to reach steady-state equilibrium.6 In this essay, I concentrate on the

Campbell and Augmented Campbell models due to their manageable data requirements and their

parameters’ suitable representation of soil dynamics in Saskatchewan.

1.4 Plant Biomass Carbon Input Model

The Plant Biomass Carbon Input (PBCI) model computes carbon inputs based on crop yields, con-

sidering yield variations due to changes in weather conditions, cropping selections, and farming

practices. To calculate annual carbon inputs, the PBCI model employs conversion formulas that

consider specific plant traits (Bolinder et al., 2007; Maillard et al., 2018; Fan et al., 2019; He et al.,

2021; Zhang et al., 2021; Thiagarajan et al., 2022). These conversions require information on crop

yield, moisture content, the shoot-to-root ratios, and the harvest index for each type of crop.

To simulate SOC stocks, carbon inputs are essential. Following the method used by Fan

et al. (2019), I apply estimated annual carbon inputs derived from the PBCI model across all SOC

prediction models discussed in this essay. Leveraging crop production data to estimate carbon

inputs presents a significant advantage, as directly measuring carbon inputs is both challenging

and costly.

The harvest index—defined as the ratio of grain to total shoot dry-matter (i.e., plant residue)

(Porker et al., 2020)—is a measure of reproductive efficiency determined by genotypes, environ-

ment, and crop management, that influences biomass accumulation and grain yield potential.

Values of the harvest index can be calculated using data on grain and straw yields. Equation

(1.1) shows the formula for the harvest index, which is equal to the amount of dry-matter yield

of grain divided by the total amount of above-ground biomass (i.e., dry-matter yield of grain and

dry-matter yield of straw).

HIc =
Ygrain,c

Ygrain,c + Ystraw,c
=

Ygrain,c

Yabovegroundbiomass,c
, (1.1)

6Humification involves the transformation of organic matter into humus.
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where, for crop c, HIc is the harvest index, Ygrain,c is the dry-matter yield of grain (kg/ha/yr),

Ystraw,c is the dry-matter yield of straw, and Yabovegroundbiomass,c is the total above-ground dry matter

yield (i.e., grain plus straw).

Because information is not readily available on dry-matter yields of straw by crop, I follow

Fan et al. (2017) and calculate the harvest index from data on dry-matter grain yields (equation

(1.2)):7

HIc = αc + βcYgrain,c (1.2)

where αc and βc are coefficients, unique for crop c, that determine the Harvest Index.

In the PBCI model, carbon inputs originate from the straw and roots of plants as they decom-

pose, and rhizodeposition from the plants as they are growing, at rates that differ among crops.8

These sources of carbon are characterized in equations (1.3) to (1.5). The quantities of carbon in-

puts from roots are calculated using the shoot-to-root ratio by crop.9 Plant biomass is zero for

summer fallow and 5% of the carbon inputs from the previous year’s crop for chemical fallow

(Campbell et al., 2001; Maillard et al., 2018). The SCIC data do not make a distinction between

chemical and summer fallow; hence, in the absence of specific information, it is presumed that all

idle land is considered summer fallow.

Astraw,n,c = Ygrain,n,c ×
(1− HIc

HIc

)
× 0.45, (1.3)

Aroot,n,c =
(
Ygrain,n,c/(HIc × S/Rc)

)
× 0.45, (1.4)

Arhizodep,n,c = Aroot,n,c × 0.65, (1.5)

7Yields in Equation (1.2) are measured as dry-matter grain yields. I use the percentage of moisture content for grain
by crop to convert observed yield to dry-matter yield. Moisture content by crop is based on marketing, harvest, and
storage standards in Saskatchewan (Government of Saskatchewan, 2020).

8Rhizodeposition is the excretion of inorganic and organic elemental solution from living roots (Bolinder et al.,
2007).

9Gill et al. (2002) find that the proportion of roots that die annually in a year (i.e., rhizodeposition) is equal to 0.65.
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where for crop c in year n, Astraw,n,c, Aroot,n,c, and Arhizodep,n,c are the quantities of plant carbon

input from straw, roots, and rhizodeposition, respectively, and S/Rc is the shoot-to-root ratio.

Carbon inputs from equations (1.3) to (1.5) make up the total carbon inputs for each crop.

Hence, for a representative crop c, the total quantity of carbon inputs is,

An,c = Ygrain,c ×
(1− HIc

HIc

)
× 0.45 +

( Ygrain,c

S/Rc × HIc

)
× 0.7425, (1.6)

where An,c is the plant carbon input from straw, roots, and rhizodeposition in year n.

Table 1.1 presents the parameter values for estimating the harvest index of each crop (αc

and βc in equation (1.2)), listed in column (1), as determined by Fan et al. (2017). To derive these

parameters, Fan et al. (2017) used harvest index data and grain yields from 91 studies conducted

across Canada. Additionally, the table includes data on shoot-to-root ratios by crop and soil profile

depth, sourced from Thiagarajan et al. (2018) and displayed in column (2) for soil depths of 0–20cm

and 0–100cm. Thiagarajan et al. (2018) determines the shoot-to-root ratios based on findings from

58 Canadian studies.

Fan et al. (2019) find that across Canada 90% of the root system and rhizodeposition occur

within the 0–20cm profile depth, with nearly all distribution existing within the 0–100cm pro-

file depth. Bolinder et al. (2007) suggest that the shoot-to-root ratio for specific crops may differ

between western and eastern Canada. To approximate the shoot-to-root ratios at the required

0–15cm profile depth, I use data from Thiagarajan et al. (2018), focusing on shoot-to-root ratios

at the 0–20cm profile depth. This approximation is crucial for inputting into SOC prediction

models. Estimates of site-specific initial SOC stocks are derived from observations at six sites

in Saskatchewan, categorized by soil type, and measured at the 0–15cm profile depth (McConkey

et al., 2003), which is significantly influenced by tillage, plant roots, and residue incorporation

(Campbell et al., 2000). Crop yields are standardized to dry-matter yields by considering the mois-

ture content percentage for each crop, as detailed in column (3) of Table 1.1, based on established

standards for marketing, harvesting, and storage in Saskatchewan (Government of Saskatchewan,

2020).
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TABLE 1.1: Harvest Index Coefficients, Shoot-to-Root Ratios, and Moisture Content
by Crop

(1) (2) (3)

Crop
Harvest Index Coefficientsa Shoot-to-Root Ratio Moisture Contentb

Intercept (αc) Slope (βc) 0–20cm 0–100cm %

Barley 0.373 0.028 7.35 5.00 13.5
Canary seed 0.336 0.020 6.94 4.22 13.0
Canola 0.180 0.046 4.24 2.71 9.5
Chick peas 0.301 0.063 8.47 4.59 14.0
Flaxseed 0.171 0.110 12.66 5.18 8.5
Lentils 0.305 0.059 6.45 4.18 13.5
Mustard seed 0.197 0.078 7.63 4.20 9.5
Oats 0.357 0.029 3.72 2.39 12.5
Peas, dryb 0.323 0.067 8.70 4.74 16.0
Wheat, durum 0.344 0.015 7.81 4.61 13.5
Wheat, spring 0.344 0.015 7.81 4.61 13.5
Wheat, winter 0.344 0.015 7.81 4.61 13.5

Source: Fan et al. (2017); Thiagarajan et al. (2018); Government of Saskatchewan (2020).
Notes: The Harvest Index Coefficients sourced from Fan et al. (2017), the Shoot-to-Root Ratios provided by Thia-
garajan et al. (2018), and the Moisture Content is obtained from the Government of Saskatchewan (2020).
a The Harvest Index Coefficients for dry peas are sourced from the upper 95% confidence interval of pulse crop
estimates provided by Fan et al. (2017). These coefficients ensure that carbon inputs for peas remain non-negative.
b Moisture contents by crop are based on marketing, harvest, and storage standards published by the Government
of Saskatchewan (2020).

I now demonstrate how the PBCI model is used to estimate the average annual carbon in-

puts from plant biomass by crop and year, employing equation (1.6) and data on average annual

crop yields in Saskatchewan sourced from Statistics Canada (2021). Figure 1.3 shows the average

annual carbon input values per hectare for various crops in Saskatchewan between 1980 and 2021.

These total carbon input values per hectare as shown in Figure 1.3 align closely with the carbon

input amounts measured by Gan et al. (2009), who determined carbon contributions from straw,

roots, and rhizodeposition by sampling seven crops in western Canada during 2006 and 2007.10

10Plant samples were collected from the Agriculture and Agri-Food Canada’s Semiarid Prairie Agricultural Research
Centre, located near Swift Current, Saskatchewan (Gan et al., 2009).
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FIGURE 1.3: Plant Biomass Carbon Inputs per Hectare by Crop in Saskatchewan
from 1980 to 2021

Source: Author’s Estimates
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Typically, crops that produce more biomass, meaning larger plants with more plant material,

contribute to greater quantities of carbon inputs. This is evident from Figure 1.3, where canola,

being a relatively large plant, leads in carbon input yields among all the crops analyzed. Cereals

also produce more carbon inputs compared to pulses; meanwhile, specialty crops like mustard,

chickpeas, and canary seed generate comparatively smaller quantities of carbon inputs. This il-

lustration offers insight into which types of crops and crop rotations are likely to enhance carbon

sequestration and boost SOC stocks more effectively.

1.5 Augmented Campbell Model

In this section, I describe the development of the Augmented Campbell model by integrating the

Campbell model with the humification process from the ICBM. The Campbell and Augmented

Campbell models stand out for their simplicity and minimal initial stock information require-

ments. The setup of the Campbell model is based on assumptions regarding the allocation of

initial carbon stocks into labile and stable carbon categories,11 without having to initialize the dis-

tribution of the initial stocks across different carbon pools. To derive the Augmented Campbell

model, I assume that a fraction of annual outflux from plant residue to soil carbon occurs through

a humification process, specifically, the same humification process as in the ICBM.

The complete derivation of the Augmented Campbell model is shown in Appendix 1A. The

derivation involves the following sequential steps:

1. solve for a system of differential equations using the Campbell model,

2. add the humification terms from the ICBM to the system,

3. solve the differential equations using the variable coefficients initial value problem,

4. approximate the solutions back to discrete-time using the Euler-Maclaurin formula, and

5. combine the discrete-time solutions to obtain the Augmented Campbell model.

11Labile carbon and refractory carbon decompose at different rates and originate in both plant residue and soil
humus. Labile carbon decomposes more rapidly through microbially or photochemically mediated processes, whereas
refractory carbon is more resistant to degradation (Kätterer and Andrén, 2001).
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Relative to the Campbell model, the Augmented Campbell model predicts higher SOC stocks

across all years, and it requires a longer period for SOC stocks to achieve a steady-state equilib-

rium. This adjustment effectively addresses the primary critiques of the original Campbell model.

Throughout this essay, I calculate SOC stocks using both the Augmented Campbell model and the

Campbell model for every scenario presented. This approach demonstrates the affect of including

the humification process on the time path of predicts SOC stocks.

The Campbell model uniquely processes recent additions of carbon inputs from plant residues

and the existing carbon in the soil separately,12 with the proportion of carbon directed towards

each pool (labile and refractory fractions of plant residues and soil humus) being strictly deter-

mined by its parameter values. Consequently, neither the Campbell model nor the Augmented

Campbell model require initialization for distributing the initial SOC stock among the different

pools, as these distributions are inherently fixed by the parameters established within the Camp-

bell model (Thiagarajan et al., 2022).

The calculation of SOC stocks in the Augmented Campbell model (base version), as out-

lined in equation (1.7), simplifies notation by excluding the crop-specific subscript from the plant

biomass carbon input variable, An, for readability. This formula embeds the original Campbell

model within the Augmented version, with its initial component representing the traditional

Campbell calculation and the subsequent term accounting for SOC accumulation through the hu-

mification of plant residues. The Augmented Campbell model (base version) consistently predicts

a higher SOC stock than its Campbell counterpart in all periods. This is because the humification

process in the Augmented model decomposes at a slower rate compared to the rapid decompo-

sition of plant residues in the Campbell model. As a result, the added term in the Augmented

model accumulates over time, diverging from the static nature of the Campbell model, thereby

extending the time taken to achieve a steady-state equilibrium.

In the Campbell model, the portions of the SOC stock (i.e., labile and refractory) within

plant residue and soil humus decompose at different rates. The Campbell model has two pools

12In the Campbell model, treating carbon from plant residue and pre-existing carbon in the soil separately is a
method developed by Woodruff (1950).

17



that represent different portions of the SOC stock that decompose at different rates, whereas the

base and weather versions of the Augmented Campbell model both have three pools. To adjust

the decay rates of plant residue humification, I incorporate a scaling parameter γ on the decom-

position rates for the plant residue humification term in the Augmented Campbell model (base

and weather versions). When γ exceeds 10, the Augmented Campbell model closely aligns with

the Campbell model. The calibration of the scaling factor for the humification process leverages

soil sampling data from the same AAFC-operated Experimental Research Station in Swift Cur-

rent, Saskatchewan, which also provided the foundational data for developing and calibrating the

Campbell model (Campbell et al., 2000).

SOCt = C0(q1e−k1t + q2e−k2t) +
t

∑
n=0

An(p1e−r1(t−n) + p2e−r2(t−n))︸ ︷︷ ︸
Campbell Model

+
t

∑
s=1

t

∑
n=0

Anh(r1 p1e−γ(r1(t−n)+k1(t−s)) + r2 p2e−γ(r2(t−n)+k2(t−s)))︸ ︷︷ ︸
Plant Residue Humification

(1.7)

Subscripts 1 and 2 in equation (1.7) refer to labile and refractory carbon, respectively. Labile

carbon decomposes more rapidly, whereas refractory carbon decomposes more slowly (Kätterer

and Andrén, 2001). In equation (1.7), SOCt is the total SOC per soil unit mass in year t (this does

not include current year plant residue), C0 is the initial carbon stock, q1 + q2 are the proportions of

labile and refractory soil humus carbon (q1 + q2 = 1), k1 and k2 are the annual rates of soil humus

decomposition, An is the quantity of carbon inputs in year n (kg/ha/yr) derived from the PBCI

model, p1 and p2 are the proportions of plant residue carbon (p1 + p2 = 1), r1 and r2 are the annual

rates of plant residue decomposition, and h is a humification coefficient.

Table 1.2 shows the values of all the parameters used in the model for predicting the stock of

SOC, including concise descriptions for each parameter.
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TABLE 1.2: Parameter Values in the Augmented Campbell Model

Soil Decomposition Rates
Proportion of old labile soil carbon – q1 0.2
Proportion of old refractory soil carbon – q2 0.8

Rates of labile soil decomposition:
Continuous cropping – k1 0.001
Fallow within 6 years and more that every 3rd year – k1 0.0015
Fallow every 3rd year – k1 0.01
Fallow every other year – k1 0.02
Rate of refractory soil decomposition – k2 0.00066

Plant Decomposition Rates
Proportion of labile plant residue carbon – p1 0.72
Proportion of refractory plant residue carbon – p2 0.28

Rate of labile plant residue decomposition – r1 1.4
Rate of refractory plant residue decomposition – r2 0.081

Humification coefficient – h 0.125
Humification scaling parametera – γ 0.10

0.20
Weather modifier calibration parameter – ε 1.5

Source: Andrén and Kätterer (1997), Congreves et al. (2015), and Lemke et al. (2010).
Notes: All parameter values are set as in Congreves et al. (2015) and Lemke et al. (2010)
except the humification rate, which is set as in Andrén and Kätterer (1997). The humifi-
cation scaling parameter and weather modifier calibration parameter are calibrated using
soil sampling data from the Experimental Research Stations operated by Agriculture and
Agri-Food Canada located in Swift Current, Saskatchewan.
a The humification scaling parameter is set to 0.1 in the base version of the Augmented
Campbell model, whereas it is set to 0.2 in the weather version of the Augmented Campbell
model.

Values for the parameters q, k, p, and r are estimated by Campbell et al. (2000, 2001, 2007a,b)

and Lemke et al. (2010) for different cropping systems on chernozemic soils, the broad soil type

in Saskatchewan. In the Campbell model, for soil humus, values of q1 and q2 are 0.20 and 0.80,

and k2 is 0.00066 which is suited for chernozemic soils (Campbell et al., 2000). Values for k1 vary

by cropping system and if rotations incorporate summer fallow. As done by Congreves et al.

(2015), I assume values of 0.001 for continuous cropping (fallow less than once every five years),

0.0015 for rotations including fallow once every four or five years, 0.01 for rotations with fallow

every third year, and 0.02 for rotations with fallow every other year. Hence, tillage increases the
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decomposition rate of SOC in both the Campbell model and Augmented Campbell model (base

and weather versions), which lowers the stock of SOC relative to zero-tillage. In the Campbell

model, the decomposition rate varies with tillage only in the humus portion of the stock of SOC,

whereas in the Augmented Campbell model, it also varies with decomposition rate in the plant

residue humification term. The humification coefficient, h, determines the fraction of plant residue

that enters as soil carbon. I assume a rate of 0.125 for h as done by Andrén and Kätterer (1997) and

Campbell et al. (2007a,b), assuming no farmyard manure or sewage sludge is added to the field.

The Augmented Campbell model (weather version) incorporates weather modifiers on de-

composition rates based on the 2019 refinement to the 2006 Intergovernmental Panel on Climate

Change (IPCC) guidelines for national GHG inventories (Zhongming et al., 2019). Equation (1.8)

presents the formulation of the weather version of the Augmented Campbell model. These modi-

fiers are determined through calibration, with ε set to 1.5 and the scaling parameter adjusted to 0.2,

ensuring optimal alignment with soil sampling data from the AAFC-operated experimental re-

search station in Swift Current, Saskatchewan. While capturing essential aspects of process-based

models, the weather version of the Augmented Campbell model maintains a level of simplicity

and ease of implementation that sets it apart from more complex process-based models.

SOCt = C0

(
q1e−

t f acw f ac
ε k1t + q2e−

t f acw f ac
ε k2t

)
+

t

∑
n=0

[
An

(
p1e−

t f acw f ac
ε r1(t−n) + p2e−

t f acw f ac
ε r2(t−n)

)]
+

t

∑
s=1

t

∑
n=0

[
An

(
hr1 p1e−γ

t f acw f ac
ε (r1(t−n)+k1(t−s)) + hr2 p2e−γ

t f acw f ac
ε (r2(t−n)+k2(t−s))

)]
.

(1.8)

The temperature modifier represents how decomposition rates vary with temperature, and

is equal to:
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t f ac =
1
12

12

∑
i=1

Ti

and

Ti =

(
tmax − tempi

tmax − topt

)0.2

− exp
(

0.0076 ∗
(

1−
(

tmax − tempi

tmax − topt

)2.63))
,

(1.9)

where t f ac is the annual average air temperature effect on soil carbon decomposition, Ti is the

monthly average air temperature effect on decomposition, tmax is the maximum monthly air tem-

perature for decomposition (set to 45 °C), tempi is the monthly air temperature in degrees Celsius,

topt is the optimum air temperature for decomposition (set to 33.69 °C).

The water modifier represents how decomposition rates vary with respect to precipitation

and is equal to:

w f ac = 1.5 ∗
(

1
12

12

∑
i=1

wi

)
,

wi = 0.2129 + (ws ∗mappeti)− (0.2413 ∗mappet2
i ),

and

mappeti = min
(

1.25,
precipi

PETi

)
,

(1.10)

where w f ac is the annual effect of water on soil carbon decomposition, wi is the monthly effect of

water on soil carbon decomposition, ws is the modifier for mappeti (set to 1.331), precipi is the total

precipitation for month i in millimeters, and PETi is the total potential evapotranspiration (PET)

for month i in millimeters.

I employ the adjusted PET formulation provided by Willmott et al. (1985), which builds

upon the Thornthwaite and Mather approach.13 Willmott et al. (1985) adjusts the Thornthwaite

and Mather formula to account for the specific number of days per month and sunlight hours on

13In contrast to the Thornwaite and Mather formula for PET, the Hargreaves-Samani and Penman-Monteith equa-
tions provide alternate methodologies for PET calculation, adjusting for daily sunlight hours to yield daily PET es-
timates. Notably, the Penman-Monteith equation demands further data on daily wind speed (Cai et al., 2007). Both
the Hargreaves-Samani and Penman-Monteith equations, compared to Willmott’s adaptation of the Thornthwaite and
Mather formula, necessitate additional data and subsequent aggregation to derive monthly PET values.
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the 15th day of each month for each observation. As done by Thornthwaite and Mather (1955), I

specify the monthly unadjusted PET for month m as equal to,

PETm =


16 ∗

(
10∗Tm

I

)a
i f Tm < 27◦C

−0.43 ∗ T2
m + 32.24 ∗ Tm − 415.85 i f Tm ≥ 27◦C

,

where


a = (0.000000675 ∗ I3)− (0.0000771 ∗ I2) + (0.01792 ∗ I) + 0.49239,

and I = ∑12
m=1(0.2 ∗ Tm)1.514

.

(1.11)

In equation (1.11), PETm is the monthly potential evapotranspiration in millimeters per

month, Tm is the mean monthly temperature in °C, and a is a coefficient that depends on the

annual heat index I, which depends on the monthly temperature. If the monthly mean tempera-

ture (T) is less than 0 °C, then PET is equal to 0. The PET is adjusted by the hours of sunlight on

the 15th day of each month and the number of days within a month, such that

P̃ET = PET ∗ [(θ/30)(h/12)], (1.12)

where θ is the number of days in the month and h is the duration of daylight that varies by the

latitude and longitude of a field (Willmott et al., 1985).

In addition to the Augmented Campbell model (base and weather versions) and Campbell

model, I also employ the ICBM, ICBM/2, and the Rothamsted Carbon (RothC) model. The ICBM

and ICBM/2 are empirical models that use annual time-steps to predict SOC stocks, whereas

the RothC model is a process-based model that uses monthly time-steps. Appendix 1B includes

further explanation of the ICBM and ICBM/2; likewise, Appendix 1C for the RothC model.
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1.6 Data Collection

To calculate SOC stocks for the province of Saskatchewan at the field level, I employ innovative,

field-specific crop yield and cropping choice data from the SCIC. Most of the past research exam-

ining the agronomic and economic determinants of SOC, farm profitability, or farm productivity

has relied on aggregate data or results from field trials and plot experiments. Previous studies

on the agronomic and economic factors influencing SOC, with farm profitability and productivity,

have predominantly used broad aggregate data or findings from controlled field trials and exper-

iments. Such aggregate data fail to account for the variation among different fields, and overlook

critical details regarding historical cropping choices and yields for specific plots of land. Mean-

while, data from field trials have their limitations in assessing the broader effects that necessitate

acknowledging the diversity of field conditions throughout Saskatchewan.

The SCIC dataset spans the years 1998 to 2019 and encompasses a wide array of information

for each field and year, including the legal land description, municipality, risk zone for insurance,

soil classification, land utilization, insurance status (indicated by a variable), level of insurance

coverage, planted acreage, type of crop, crop variety, yield, and fertilizer application. Notably,

detailed field-level data on crop yield and fertilizer use are only provided by farmers participat-

ing in the Sask Management Plus (SMP) program at SCIC. For farmers not in the SMP program,

reported crop yields reflect the average yield for a specific crop on a farm across all fields with

that crop. Nonetheless, all farmers report their crop choices at the field level. This reporting struc-

ture enables SOC changes at the field level to be estimated using information on the field-specific

crop choices and the farm’s average annual yield (as a proxy for field-specific yield) for those not

participating in the SMP program.
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FIGURE 1.4: Field-Level Map of Soil Zones in Saskatchewan

Source: Generated from ISC land titles registry polygons and soil characteristics
from the Canadian National Soils Database (Agriculture and Agri-Food Canada,

2022; ISC, 2022).

I use the land title dataset provided by ISC, the primary source of land titles registry infor-

mation in Saskatchewan (ISC, 2022). This dataset contains detailed field-level polygons across the

province, and I incorporate soil attributes sourced from both the Saskatchewan Detailed Soil Sur-

vey and the Canadian National Soil Database (Agriculture and Agri-Food Canada, 2022).14 Figure

1.4 illustrates the spatial distribution of fields in Saskatchewan, classified according to distinct soil

zones. Throughout this essay, I aggregate my research results to the brown, dark brown, and

black & gray soil zones. This allows for an examination of the variations in SOC influenced by

diverse farm management practices, soil attributes, and agronomic factors that differ across these

soil zones.

14Soil attributes encompass a range of factors such as clay, sand, and silt percentages, slope, bulk density, organic
carbon content, water retention capacity, cation exchange capacity, and other pertinent characteristics. For further
details, please refer to the Canadian National Soil Database (Agriculture and Agri-Food Canada, 2022).
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I match soil characteristics from the Canadian National Soil Database to all the fields in Fig-

ure 1.4. As an illustration, Figure 1.5 displays the distribution of clay content percentages across

Saskatchewan fields, derived from the same database (Agriculture and Agri-Food Canada, 2022).

The clay percentage plays a specific role solely within the RothC model, where it influences de-

composition rates and the carbon storage capacity of each field. Notably, fields with the highest

clay percentages are predominantly clustered in two regions within the brown and dark brown

soil zones. These regions feature vertisolic soils, situated within the former glacial lake basins of

the Regina and Rosetown plains in Saskatchewan (Brierley et al., 2011).

I obtain weather data from stations managed by Environment and Climate Change Canada

(2023b) and I transform the daily temperature and precipitation records into monthly values. My

analysis incorporates data from 56 weather stations strategically positioned across the agricultural

regions of Saskatchewan, as well as a few stations in Alberta and Manitoba near the provincial

boundaries of Saskatchewan. I employ inverse distance weighting from the five closest weather

stations to interpolate weather data directly to the field level.15 Equation 1.13 presents the inverse

distance weighting formula for weather Wm,n in month m for pixel n. The weather observed at

station i is weighted by its inverse distance 1/di,n to pixel n, ensuring the sum of all weights

equals one.

Wm,n =
∑5

i=1

(
wm,i
di,n

)
∑5

i=1

(
1

di,n

) (1.13)

I match temperature and precipitation to all fields in Saskatchewan. Figure 1.6 shows the

spatial variation in precipitation for June 2007. In any given year and month, precipitation and

temperature vary considerably across the province of Saskatchewan.

15I use around one million spatial pixels throughout Saskatchewan, and employ the inverse distance weather calcu-
lation with respect to each spatial pixel. For generating field-level data, I computed the average of the measurements
from spatial pixels situated within each field. This method significantly enhances the efficiency of computing interpo-
lated spatial data compared to other spatial techniques available in R.
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FIGURE 1.5: Saskatchewan Field-Level Clay Content in Percentage by Field

Source: Generated using data from the Canadian National Soils Database (Agricul-
ture and Agri-Food Canada, 2022).

FIGURE 1.6: Environment Canada Weather Station interpolated data in
Saskatchewan – Precipitation for June 2007

Source: Generated from weather station data collected by Environment and Climate
Change Canada (2023b).

Notes: The black dots represent the location of weather stations.
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The initial stocks of SOC are determined using soil sampling data sourced from the Saskatchewan

Detailed Soil Survey within the Canadian National Soil Database (Agriculture and Agri-Food

Canada, 2022), as well as data from McConkey et al. (2003). The Saskatchewan Detailed Soil Sur-

vey provides SOC stocks for a soil profile depth of 0–20cm in 1971 across the entire province, which

I match to each field in Saskatchewan. Employing measures of bulk density and organic carbon

concentration from the survey, I apply the fixed-depth calculation method, as outlined in Ellert

et al. (1995), to estimate SOC stocks in 1971. Although the fixed-depth method does not account

for changes in bulk density and soil horizons, I refine the 1971 SOC stocks using soil sampling

data from McConkey et al. (2003), which are measured and computed based on an equivalent

mass basis. McConkey et al. (2003) provide data on SOC stocks at a depth of 0-15cm for certain

locations across the province in 1994 and 1995 as shown in Table 1.3. Soil samples were collected

from various plots near different towns, such as Hatton, Swinton, Sceptre, Elstow, Melfort, and

Indian Head during specific periods.16 I make the assumption that there was minimal change in

SOC stocks between 1995 and 1998. Therefore, I estimate the initial SOC stocks in 1998 at a soil

profile depth of 0-15cm, as the SOC stock values updated using samples from 1995 as given in

Table 1.3 are reported at this depth.

To determine the initial SOC stock, I employ the inverse-distance-squared weighting tech-

nique, using it to interpolate the percentage change in SOC stocks across fields between the

soil sampling data from McConkey et al. (2003) and the area-wide average SOC stock from the

Saskatchewan Detailed Soil Survey. This process is performed in three stages: (1) calculate the

percentage change in SOC from 1971 to 1998 at test sites from McConkey et al. (2003), (2) ex-

trapolate these changes to yield a specific percentage change for each field across Saskatchewan

through inverse-distance-squared weighting, and (3) apply this interpolated percentage change to

the field-specific baseline SOC stock ( 1971) to compute specific SOC estimates for 1998 at a 0-15cm

soil profile depth.

16Soil samples were collected from 30 plots near the towns of Hatton, Swinton, and Sceptre in the spring of 1994,
from eight plots near Elstow in the fall of 1995, and from 39 plots near Melfort and Indian Head in the fall of 1994
(McConkey et al., 2003).
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TABLE 1.3: Tillage Effects on Bulk Density and Soil Organic Carbon

(1) (2) (3)

Soil Type Tillagea Bulk Densityb Soil Organic Carbon
Mg/m3 Mg/ha

Elstow clay loam CT 1.14 52.2
NT 1.16 56.6

Meflort silty clay loam CT 1.03 77.2
MT 1.08 84.3
NT 1.14 89.2

Indian Head clay CT 1.17 39.5
MT 1.15 43.6
NT 1.21 43.6

Hatton fine sandy loam MT 1.43 17.4
NT 1.45 19.4

Swinton silt loam MT 1.28 27.9
NT 1.3 28.7

Sceptre clay MT 1.21 25.9
NT 1.27 28.4

Source: McConkey et al. (2003)
Notes: In the spring of 1994, soil samples were collected from 30 plots near the towns of Hat-
ton, Swinton, and Sceptre, and from 8 plots near Elstow in the fall of 1995. In the fall of 1994,
soil samples were collected from 39 plots near Melfort and Indian Head. All plots experienced
different tillage systems by crop rotation. Please refer to McConkey et al. (2003) for more infor-
mation on the crop rotations and tillage systems employed at each site.
a CT: cultivator (full) tillage, MT: minimum tillage, NT: no-tillage
b Bulk Densities are based on soil sample depths of 0-15cm.

Figure 1.7 shows the interpolated changes by field in Saskatchewan between 1971 and 1998,

where the black dots are locations where the soil sampling data originate in McConkey et al.

(2003). These interpolated changes reveal a decrease in SOC stocks on the western side of the

province and an increase on the eastern side. I attribute this primarily to inter-regional differences

between farming practices; canola production and no-till techniques were adopted earlier in east-

ern Saskatchewan while farmers in the western regions continued tillage-intensive practices until

the 2000s.
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FIGURE 1.7: Interpolated Difference in Soil Organic Carbon Stocks by Field in
Saskatchewan from 1971 to 1998

Source: Generated from regional soil sampling data from McConkey et al. (2003)

and soil sampling data from the Canadian National Soil Database (Agriculture and
Agri-Food Canada, 2022).

Notes: Black dots represent the soil sampling locations from McConkey et al. (2003).

Figure 1.8 presents the calculated SOC stock at the field level in Saskatchewan for the year

1998. This calculation is obtained by applying the interpolated percentage change in SOC stock

from 1971 to 1998 to the initial field-level SOC stock data from 1971, as recorded in the Saskatchewan

Detailed Soil Survey and the Canadian National Soil Database.
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FIGURE 1.8: Field-Level Stock of Soil Organic Carbon in Saskatchewan in ∼1998

Source: Generated from regional soil sampling data from McConkey et al. (2003)

and soil sampling data from the Canadian National Soil Database (Agriculture and
Agri-Food Canada, 2022).

To validate the measures of the initial SOC stock values across the province, I benchmark the

SOC stock depicted in Figure 1.8 against data from soil samples collected in 1996 and 1999 as part

of the Prairie Soil Carbon Balance (PSCB) project. Funded by the Saskatchewan Soil Conservation

Association, the PSCB project conducted soil sampling on fields throughout Saskatchewan from

1996 to 2018 to track changes in SOC stocks on commercial farms (McConkey et al., 2020). Ini-

tially, the project sampled 136 fields in 1996. However, due to alterations in sampling methods,

changes in land ownership and in land management practices, some fields were not re-sampled

in subsequent years, leading to a decrease in the number of fields available for longitudinal anal-

ysis (Paustian et al., 2019). To estimate the SOC stock for 1998, I assume a linear change in SOC
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between 1996 and 1999 and calculate the interpolated value for 1998. In Table 1.4, SOC stock

measurements from the PSCB project are summarized by province, as well as by the brown, dark

brown, and black & gray soil zones.

TABLE 1.4: Initial Stocks of Soil Organic Carbon for Saskatchewan in 1998 by Soil
Zone

(1) (2)

Source: Prairie Soil Carbon Balance
Projecta

Saskatchewan Detailed Soil Sur-
vey and McConkey et al. (2003)b

Soil Zone SOC (kg/ha) # of Sites SOC (kg/ha) # of Sites

All 43, 513 136 53, 771 36, 443
Brown & Dark Brown 33, 780 61 43, 989 13, 674
Brown - 0 34, 332 3, 644
Dark Brown - 0 47, 497 10, 030
Black & Gray 55, 732 75 59, 646 22, 769

Source: McConkey et al. (2003, 2020) and Agriculture and Agri-Food Canada (2022).
a Prairie Soil Carbon Balance Project values of SOC are based on interpolating 1996 and 1999 mea-
sured soil samples to the year of 1998.
b To calculate the SOC stock by field in 1998, I use the inverse-distance-squared weighting technique
to interpolate the percentage change in SOC stock across all field in Saskatchewan, based on the
comparison between soil sampling data retrieved by McConkey et al. (2003) and the area average
SOC stock values from the Saskatchewan Detailed Soil Survey and Canadian National Soil Database
(Agriculture and Agri-Food Canada, 2022).

Column (1) of Table 1.4 shows the SOC stocks obtained from the PSCB project alongside the

corresponding number of sites, while column (2) shows the calculated initial SOC stocks for all

of Saskatchewan and the number of fields. In the black & gray soil zone, these two measures

are similar, with only a 7% difference. However, in the brown and dark brown soil zones, the

difference is larger, with the value in column (2) being almost one-third larger than the measure

from the PSCB project. Notably, the SOC stock for both the brown and dark brown soil zones

from the PSCB project in column (1) closely aligns with the SOC stock of the brown soil zone

in column (2), differing by only 1.6%. In column (2), the average SOC stock in the dark brown

soil zone is similar to the combined average stock in the brown and black & gray soil zones.

Specifically, the average SOC stock across the brown and black & gray soil zones is 43,989 kg/ha,

while the SOC stock for the dark brown soil zone is 47,497 kg/ha. The spatial correlation of SOC
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stocks across fields in Saskatchewan is clear, with the dark brown soil zone showing a higher

SOC stock than the brown soil zone, but lower than the black & gray soil zone. The PSCB project

does not fully reveal the spatial diversity in the SOC stock across soil zones, as it combines the

brown and dark brown soil zones into a single region. The verification process provided in this

section shows that the initial SOC stocks estimated in column (2) are within the range of SOC

stock measurements calculated on an equivalent mass basis, as derived from soil sampling data

throughout Saskatchewan, as depicted in column (1) of Table 1.4.

1.7 Sample Selection

To predict the stock of SOC by field, I need a balanced panel dataset encompassing data for every

field in each year. However, the SCIC only gathers data on fields eligible for insurance, excluding

those under summer fallow since farmers do not insure these. To identify fields potentially used

for summer fallow, I incorporated every field that was at least once insured within specific time

blocks: 1998–2001, 2002–2005, 2006–2009, 2010–2013, 2014–2017, and 2018–2019. These intervals

are set at four-year spans, accommodating up to three years of consecutive summer fallow within

a single block and up to six years across two blocks. The final block, covering the last two years,

is shorter and deemed less critical due to the declining use of summer fallow in this period. This

structure ensures each block is of sufficient length to identify a substantial number of fields. Any

field not present in every time block is removed, leaving a dataset of 36,443 fields. This method

mitigates the risk of incorrectly assuming a field is under summer fallow if it does not appear

in the SCIC data. Fields divided among various crops are also excluded, as it is challenging to

determine the specific crop coverage within each field over time. As a result, the dataset is reduced

to 36,443 fields spanning from 1998 to 2019, with 22,769 (62.5%) in the black & gray soil zone,

10,030 (27.5%) in the dark brown soil zone, and 3,644 (10%) in the brown soil zone, culminating in

a comprehensive panel dataset of 801,746 field-year observations.

Figure 1.9 illustrates the temporal variation of summer fallow acres within the selected sam-

ple compared with the estimates of summer fallow hectares reported by Statistics Canada (Statis-

tics Canada, 2022). The two datasets display similar trends in summer fallow hectares across
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the observed period. From 1998 to 2019, the proportion of summer fallow hectares in the SCIC

sub-sample is, on average, 6.3 percentage points greater than that reported by Statistics Canada.

This discrepancy becomes most noticeable between the years of 2012 and 2019. In these years,

Statistics Canada data display a summer fallow share of 4.7 percent, in contrast to the 12.4 percent

observed in the SCIC sub-sample. The figures for summer fallow (and other crops) provided by

Statistics Canada are derived from a field crop reporting series, which compiles data through farm

questionnaires and surveys, in addition to model-based estimates (Statistics Canada, 2022).

FIGURE 1.9: Comparison of the Summer Fallow Hectares Index (1998=100) in
Saskatchewan

Source: Constructed from SCIC confidential data and (Statistics Canada, 2022).
Notes: “In Sample” denotes the summer fallow hectares from fields selected from the SCIC
dataset for carbon prediction, while “Statistics Canada” pertains to their estimated summer

fallow hectares in Saskatchewan.

Reflecting crop rotation practices, the extent of summer fallow hectares fluctuates over time

and varies across different soil zones. Figure 1.10 shows the shares of summer fallow hectares in

the brown, dark brown, and black & gray soil zones from 1998 to 2019. The highest proportion

of summer fallow is found in the brown soil zone, reflecting this area’s slower uptake of canola

and certain agricultural techniques, such as no-till farming. Since 1999, summer fallow decreased

sharply across all soil zones, with a continuing downward trend over the years. Notably, the
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years 2010 and 2011 saw a spike in summer fallow hectares in the dark brown and black & gray

zones, owing to flooding in these areas. Given the consistently lower percentage of summer fallow

hectares in the dark brown and black & gray zones, I anticipate that the average changes in SOC

stocks from 1998 to 2019 in these zones were greater compared with the brown soil zone.

FIGURE 1.10: SCIC Selected Sample – Share of Summer Fallow Hectares relative to
all Crops by Soil Zone in Saskatchewan

Source: Constructed using SCIC confidential data.

Table 1.5 presents comprehensive information on the crop choices across the three soil zones

within two segments of the total SCIC sample: the analysis dataset and the fields that were ex-

cluded. The columns in Table 1.5 show hectares of crops for different soil zones, with column

(1) for the brown soil zone, column (2) for the dark brown soil zone, column (3) for the black &

gray soil zone, and column (4) for the province as a whole. Panel (A) shows the area (thousand

hectares) sown to each crop for the sample chosen for analysis (selected sample), panel (B) for the

fields that were excluded but still insured, and panel (C) for all fields recorded in the SCIC dataset.

The hectare figures represent the cumulative total from 1998 to 2019 within each soil zone.
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TABLE 1.5: Saskatchewan Crop Insurance Corporation Insured Hectares by Sample Selection, Crop Type, and Soil Zone
for 1998 to 2019

(1) (2) (3) (4)

Soil Zone: Brown Dark Brown Black & Gray All

(A) Selected Sample

(000s ha) (%) (000s ha) (%) (000s ha) (%) (000s ha) (%)
Barley 113 4.3 727 7.9 2, 375 11.2 3, 216 9.7
Canola 257 9.8 2, 629 28.6 9, 060 42.8 11, 947 36.2
Flaxseed 38 1.5 457 5.0 606 2.9 1, 101 3.3
Lentils 402 15.4 887 9.7 119 0.6 1, 408 4.3
Oats 8 0.3 110 1.2 1, 048 4.9 1, 166 3.5
Peas, dry 215 8.2 757 8.2 1, 304 6.2 2, 276 6.9
Wheat 1, 577 60.4 3, 622 39.4 6, 676 31.5 11, 874 36.0

Sub-Total 2, 609 100.0 9, 189 100.0 21, 188 100.0 32, 987 100.0
Summer Fallow 975 2, 231 4, 668 7, 873

Total 3, 584 11, 420 25, 856 40, 860

(B) Out of Sample Insured

(000s ha) (%) (000s ha) (%) (000s ha) (%) (000s ha) (%)
Barley 1, 986 5.2 4, 924 7.7 8, 656 12.7 15, 565 9.1
Canola 3, 287 8.6 14, 922 23.2 27, 905 41.1 46, 114 27.0
Flaxseed 628 1.6 3, 184 4.9 2, 133 3.1 5, 945 3.5
Lentils 5, 780 15.1 8, 107 12.6 453 0.7 14, 340 8.4
Oats 237 0.6 970 1.5 4, 428 6.5 5, 636 3.3
Peas, dry 3, 588 9.3 5, 069 7.9 3, 839 5.7 12, 495 7.3
Wheat 22, 876 59.6 27, 161 42.2 20, 512 30.2 70, 549 41.3

Total 38, 381 100.0 64, 338 100.0 67, 924 100.0 170, 644 100.0

(C) All Insured

(000s ha) (%) (000s ha) (%) (000s ha) (%) (000s ha) (%)
Barley 2, 099 5.1 5, 651 7.7 11, 031 12.4 18, 781 9.2
Canola 3, 543 8.6 17, 552 23.9 36, 965 41.5 58, 060 28.5
Flaxseed 666 1.6 3, 641 5.0 2, 739 3.1 7, 046 3.5
Lentils 6, 182 15.1 8, 994 12.2 572 0.6 15, 748 7.7
Oats 245 0.6 1, 080 1.5 5, 476 6.1 6, 801 3.3
Peas, dry 3, 802 9.3 5, 826 7.9 5, 143 5.8 14, 772 7.3
Wheat 24, 453 59.7 30, 783 41.9 27, 187 30.5 82, 423 40.5

Total 40, 991 100.0 73, 528 100.0 89, 113 100.0 203, 631 100.0

Source: Author’s Estimates and constructed using SCIC confidential data.
Notes: Summer fallow hectares are determined by selecting fields within the SCIC database that insured in all time period segments: 1998-2001; 2002-2005; 2006-2009;
2010-2013; 2014-2017; 2018-2019.
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FIGURE 1.11: Share of Insured Hectares by Crop from 1998 to 2019 in Saskatchewan
for Selected SCIC Field-level data for Soil Organic Carbon Prediction

Source: Constructed using SCIC confidential data.

Within the selected sample, the black & gray soil zone accounts for 25.8 million hectares,

significantly larger than the 11.4 million hectares in the dark brown soil zone and the 3.6 million

hectares in the brown soil zone. Relative to the overall hectares recorded in the SCIC dataset, a

greater proportion of the hectares selected for carbon prediction is found in the black & gray soil

zone. This indicates that farmers within this zone are more inclined to consistently secure insur-

ance and less likely to allocate fields to multiple crops compared to those in the dark brown and
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brown soil zones. Regarding the crop distribution, wheat constitutes a major portion of the agri-

cultural land across the province, with canola and barley primarily planted within the dark brown

and black & gray soil zones. Conversely, the brown soil zone has a notably higher percentage of

lentil hectares compared with the other two zones.

Figure 1.11 illustrates the shares of crops for the selected sample from the SCIC dataset span-

ning 1998 to 2019. Over time, there is a noticeable increase in the proportion of canola, especially

within the black & gray and dark brown soil zones. Wheat remains a dominant crop across all

soil zones. The decline in summer fallow coincides with an expansion of canola production in the

black & gray and dark brown zones, along with a rise in both canola and lentil production within

the brown soil zone.

From the examination of Table 1.5 and Figure E.1 in Appendix E,17 I find that the selected

sample closely resembles the excluded fields concerning crop-specific shares and yields. Given

this similarity in attributes between the two samples, it is reasonable to extend certain findings on

a per-hectare basis to derive provincial-level changes in carbon sequestration.

1.8 Validation of Soil Organic Carbon Prediction Models

In this section, I calibrate both versions of the Augmented Campbell model and validate all nine

SOC prediction models using soil sampling data from the Experimental Research Station oper-

ated by AAFC in Swift Current, Saskatchewan. The Campbell Model was originally developed

and parameterized using soil sampling data from the South Farm of the Semi-Arid Prairie Agri-

cultural Research Centre (SPARC) also operated by AAFC at Swift Current (Campbell et al., 2000).

Presently, SPARC remains under the operation of AAFC in Swift Current. I evaluate the accuracy

of both versions of the Augmented Campbell model (base and weather), alongside the Campbell

model, ICBM, ICBM/2, and RothC model, by simulating their performance using agricultural

production data derived from the long-term crop rotation experiments conducted at SPARC.

17For a more detailed examination of field-level characteristics between the in-sample data and the out-of-sample
insured data, Appendix 1E offers additional summary statistics.
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The data provided by AAFC at Swift Current comprises two distinct crop rotation experi-

ments: the “Old Rotation” and the “New Rotation.” The Old Rotation experiment encompasses

soil sampling data collected at a 0–30cm soil profile depth spanning 1976–2003. It includes ro-

tations such as fallow-wheat, fallow-wheat-wheat, and continuous wheat (cont-wheat). On the

other hand, the New Rotation involves soil sampling data obtained at the 0–15cm soil profile

depth spanning 1990-2003 and incorporates rotations such as fallow-wheat-wheat, fallow-wheat-

wheat-wheat, and continuous wheat (cont-wheat). In both cases, adjustments to the coefficients

for the shoot-to-root ratio within the PBCI model are made to accommodate the variation in soil

profile depth.

In both the Old Rotation and New Rotation experiments, each crop rotation consists of multi-

ple plots, with each phase of the rotation occurring annually throughout the duration of the exper-

iment. For instance, in the fallow-wheat rotation, two plots are typically planted where one plot

is left fallow while the other is planted to wheat. These datasets from the Old and New Rotation

experiments conducted at Swift Current are also used by Thiagarajan et al. (2022), who investigate

the predictive capabilities of models including the Campbell model, ICBM, RothC model, and the

IPCC Steady State Tier 2 model (modified Century model).

To evaluate the predictive accuracy of the Campbell model, Augmented Campbell model,

ICBM, ICBM/2, and RothC model, I employ two widely used statistics for measuring deviations:

the root mean squared error (RMSE) and the index of agreement (d-index) (Congreves et al., 2015;

He et al., 2021; Thiagarajan et al., 2022). The RMSE quantifies prediction errors and facilitates

accuracy comparison among various models, whereas the d-index employs a specific ranking cri-

terion to assess the deviation of predictions from observed data for a particular model (Willmott,

1981). The performance of a model is considered moderate when the d-index ranges from 0.7 to

0.8, good between 0.8 and 0.9, and excellent with a d-index above 0.9 (Willmott, 1981). A d-index

value below 0.5 indicates a high level of inconsistency and diversity in model predictions, reflect-

ing poor model performance (Attia et al., 2016; Banger et al., 2019). It is important to note that the

thresholds used to judge model performance based on the d-index can be somewhat subjective,

leading some studies to simply state that a d-index of 0 reflects an absence of agreement between
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the model predictions and observed data (Farina et al., 2021).

Equation (1.14) shows the formula for RMSE and equation (1.15) shows the d-index formula.

RMSE =

√
∑T

t=1(SOCt,predicted − SOCt,sampled)2

N
, (1.14)

d = 1− ∑T
t=1(SOCt,predicted − SOCt,sampled)

2

∑T
t=1(|SOCt,predicted − SOCsampled|+ |SOCt,sampled − SOCsampled|)2

, (1.15)

where d is the d-index, SOCt,predicted is the simulated or predicted SOC in year t, SOCt,sampled is the

measured SOC (soil sampled), and SOCsampled is the average of the measured SOC stocks over T

years (sampling period).

Figures 1.12 and 1.13 show the SOC prediction outcomes generated by the Augmented

Campbell model (both base and weather versions), Campbell model, ICBM, ICBM/2, and RothC

model. Here, the base version of the Augmented Campbell model is calibrated using the fitting

parameter γ = 0.1, while the weather version is calibrated with γ = 0.2 and ε = 1.5. Each panel

in either Figures 1.12 or 1.13 represents a specific crop rotation and its phase. For example, “f-

w-W*” denotes the fallow-wheat-wheat rotation, with the uppercase “W*” indicating that wheat

was planted in the first year of the experiment. Across both the Old Rotation and New Rotation,

all SOC prediction models initially predict similar measures of SOC stocks in the earlier years but

diverge gradually over time. Notably, the SOC stock predictions from both the base and weather

versions of the Augmented Campbell model and ICBM fall within the range defined by the maxi-

mum and minimum values projected by other models (Campbell model, ICBM/2, RothC model).
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FIGURE 1.12: Prediction of Soil Organic Carbon stocks by Prediction model at Agri-
culture and Agri-Food Canada for “Old Rotation” Crop Rotation Experiment in

Swift Current, Saskatchewan

Source: Author’s Estimates and created using data from the Experimental Re-
search Station operated by Agriculture and Agri-Food Canada in Swift Current,

Saskatchewan.
Notes: Black dots represent the measured SOC from soil samples.
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FIGURE 1.13: Prediction of Soil Organic Carbon stocks by Prediction model at Agri-
culture and Agri-Food Canada for “New Rotation” Crop Rotation Experiment in

Swift Current, Saskatchewan

Source: Author’s Estimates and created using data from the Experimental Re-
search Station operated by Agriculture and Agri-Food Canada in Swift Current,

Saskatchewan.
Notes: Black dots represent the measured SOC from soil samples.
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Among the models, the predicted SOC stocks exhibit notable similarities. The primary differ-

ence lies in the consistent tendency of one model to predict either higher or lower stocks compared

to another model. This often results in a model consistently either overestimating or underestimat-

ing the SOC stock relative to the sampled measurements. For example, in Figure 1.13, all models

underestimate the stock for Cont W, f-w-w-W*, and F*-w-w, while they overestimate the stock

for Cont W, f-w-W*, and F*-w-w in Figure 1.12. According to Riggers et al. (2019), the ICBM/2

model tends to overestimate the SOC stock, particularly when the initial SOC stock is relatively

high compared to other prediction models such as C-TOOL, CCB, Century, RothC, and YASSO07.

Among SOC prediction models, they struggle to promptly adapt to significant changes in

measured SOC stocks in the short term, as evident by scenarios such as cont-w, f-W*-w, Fw-w,

and F-w in Figure 1.12, and f-w-W* in Figure 1.13. However, these models demonstrate greater

proficiency in predicting long-term trends in SOC stocks.

In Figure 1.12, the SOC predictions for the Old Rotation demonstrate poor alignment with

the soil sampling data across various rotations for all models, particularly evident in panels for

cont-w, f-w-W*, and f-W*-w. In contrast, Figure 1.13 illustrates that SOC predictions for the New

Rotation are generally more accurate across all models. The varied performance of SOC prediction

models on the Swift Current experimental plots highlights the difficulty of accurately predicting

cumulative changes in SOC stocks over both short and long periods of time. While the predic-

tion in Figures 1.12 and 1.13 reasonably capture the trends in SOC stock, they fail to capture the

variance observed in measured SOC stocks.

Table 1.6 shows the calibration outcomes for various values of the humification scaling pa-

rameter γ in the base version of the Augmented Campbell model, as well as different combinations

of γ and the weather modifier calibration parameter ε in the weather version. I conduct separate

calibrations for each version of the Augmented Campbell model based on the RMSE and d-index,

specifically for both the Old Rotation and New Rotation (see columns (3) and (4) in Table 1.6).

The calibration parameters for both versions are chosen to minimize the cumulative rank across

the RMSE and d-index metrics for both rotations. This process yields a humification scaling pa-

rameter of γ = 0.1 for the base version and γ = 0.2 along with ε = 1.5 for the weather version

42



of the Augmented Campbell model. Further calibration with additional SOC data is needed for

the Augmented Campbell model to increase the performance of SOC prediction. Out-of-sample

predictions are also necessary in understanding the Augmented Campbell’s performance relative

to the other SOC prediction models used for model validation in this section.

Table 1.6 additionally presents the RMSE and d-index values, along with their rankings,

for the Campbell model, Augmented Campbell model, ICBM, ICBM/2, and RothC model. Ac-

cording to the d-index, all models exhibit poor performance on the Old Rotation and moderate

performance on the New Rotation. Since all d-index measures surpass 0.5 (refer to column (2)),

there is no indication of increased inconsistency or diversity in model predictions (Attia et al.,

2016; Banger et al., 2019).

In Table 1.6, column (5) ranks the models according to their RMSE performance. With respect

to the Old Rotation, the ICBM, ICBM/2, and RothC models yield the most accurate predictions,

while for the New Rotation, the Augmented Campbell model (both base and weather versions)

and ICBM/2 are most precise. The Campbell model shows the poorest performance for the Old

Rotation, with both the Campbell and RothC models performing equally as bad for the New Ro-

tation. Comparing RMSE values, the Augmented Campbell model (base and weather versions)

demonstrates superior accuracy over the Campbell model for both rotations, indicating that the in-

tegration of the humification process into the Campbell model—the augmentation—significantly

enhances its SOC stock prediction capability.

If SOC prediction models at best predict the trend in the stock of SOC, their ability to provide

precise measures of SOC stocks is questionable. This emphasizes the necessity for re-evaluating or

improving the calibration and validation of SOC prediction models. Future research in Saskatchewan

should focus on better calibration and regional validation of these models if they are to serve as

reliable alternatives to soil sampling for accurately quantifying SOC stocks. While SOC predic-

tion models remain valuable for understanding SOC dynamics and trends relative to changes in

farm management practices, for cases requiring precise SOC stock measurements, soil sampling

remains the preferred method.
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TABLE 1.6: Deviation Statistics for Crop Rotation Experiments in Swift Current,
Saskatchewan by SOC Prediction Model

(1) (2) (3) (4) (5) (6)

(A) Old Rotation

Model: RMSE d-index Calibration Rank Calibration Rank Rank Rank
(RMSE) (d-index) (RMSE) (d-index)

Augmented Campbell (base)
γ = 0.01 4, 980 0.590 1 1 5 5
γ = 0.1 5, 153 0.584 2 2
γ = 0.2 5, 301 0.576 3 3
γ = 0.3 5, 370 0.572 4 4
Augmented Campbell (weather)
γ = 0.01 & ε = 1 5, 531 0.547 9 9
γ = 0.01 & ε = 1.5 4, 922 0.589 6 6
γ = 0.01 & ε = 2 4, 937 0.591 5 5
γ = 0.1 & ε = 1 4, 871 0.591 4 4
γ = 0.1 & ε = 1.5 4, 764 0.604 2 2
γ = 0.1 & ε = 2 5, 283 0.576 7 7
γ = 0.2 & ε = 1 4, 678 0.606 1 1
γ = 0.2 & ε = 1.5 4, 827 0.601 3 3 4 4
γ = 0.2 & ε = 2 5, 457 0.567 8 8
Campbell 5, 532 0.564 6 6
ICBM 4, 265 0.641 2 1
ICBM/2 4, 235 0.634 1 2
RothC 4, 609 0.616 3 3

(B) New Rotation

Model: RMSE d-index Calibration Rank Calibration Rank Rank Rank
(RMSE) (d-index) (RMSE) (d-index)

Augmented Campbell (base)
γ = 0.01 2, 708 0.719 2 4
γ = 0.1 2, 679 0.744 1 1 1 1
γ = 0.2 2, 720 0.743 3 2
γ = 0.3 2, 753 0.740 4 3
Augmented Campbell (weather)
γ = 0.01 & ε = 1 3, 175 0.661 9 9
γ = 0.01 & ε = 1.5 2, 853 0.704 6 7
γ = 0.01 & ε = 2 2, 740 0.725 1 5
γ = 0.1 & ε = 1 2, 988 0.694 8 8
γ = 0.1 & ε = 1.5 2, 762 0.733 3 4
γ = 0.1 & ε = 2 2, 778 0.742 4 1
γ = 0.2 & ε = 1 2, 893 0.712 7 6
γ = 0.2 & ε = 1.5 2, 759 0.741 2 2 3 2
γ = 0.2 & ε = 2 2, 841 0.736 5 3
Campbell 2, 849 0.724 5 5
ICBM 2, 845 0.727 4 4
ICBM/2 2, 745 0.730 2 3
RothC 3, 019 0.691 6 6

Source: Author’s Estimates and created using data from the Experimental Research Station operated by Agricul-
ture and Agri-Food Canada in Swift Current, Saskatchewan.
Notes: The calibrating parameters for the base and weather version of the Augmented Campbell model are se-
lected by choosing the calibrated model which has the highest cumulative rank for both RMSE and d-index statis-
tics across both the Old Rotation and New Rotation.
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An emerging body of literature aims to develop improved and more precise SOC prediction

models. Riggers et al. (2019), Farina et al. (2021), He et al. (2021), and Thiagarajan et al. (2022)

employ an ensemble approach, combining multiple models rather than using a single model, to

predict SOC stocks. In this case, different weights are assigned to individual SOC prediction

models as a way to calibrate the ensemble of models with soil sampling data.

Researchers are increasingly turning to machine learning techniques to predict SOC stocks,

likely due to the constrained calibration flexibility in traditional SOC prediction models. These

machine learning-based models incorporate satellite data alongside field-level attributes like soil

texture, vegetation characteristics, and crop yield data (see Sothe et al. (2022), St. Luce et al. (2022),

and Taneja et al. (2022)). By making use of machine learning algorithms, these models can make

more adaptable predictions that are unrestricted by the dynamic parameterization inherent in

systems of differential equations.

1.9 Soil Organic Carbon Prediction Results

In this section, the results of SOC stock predictions across 36,443 fields in Saskatchewan from

1998 to 2019 are presented, using six different prediction models. Figure 1.14 shows box and

whiskers plots for the field-specific changes in SOC stocks over the 22-year study period for each

prediction model, within each of the three soil zones, and across the entire province.18 Each plot

shows 801,746 field-year data points across all soil zones, where the box indicates the interquartile

range, the median is denoted by the central line, and the whiskers extend to the minimum and

maximum values, excluding outliers. Outliers, identified by Tukey’s Method, are plotted as dots,

defined as values more than 1.5 times the interquartile range below the first quartile or above the

third quartile (Tukey, 1970).

18All SOC prediction models were executed on a high-performance computing (HPC) cluster at the University of
Saskatchewan, using the PLATO server, which is equipped with a SLURM workload manager for batch job manage-
ment. This server boasts 120 nodes, 7.4 TB of RAM, and 2,000 CPU cores. The SOC prediction tasks were programmed
for parallel processing to leverage the multi-core capabilities. The empirical models (Campbell, ICBM, and Augmented
Campbell) each completed in roughly 7 hours. In contrast, the RothC model, requiring 40 CPU cores and 128GB of
RAM, took between 3 to 4 days to run. Counterfactual scenarios were processed using 30 CPU cores, all running
concurrently, with a total runtime of about 7 hours.
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FIGURE 1.14: Field-Specific Predicted Change in the Stock of Soil Organic Carbon
from 1998 to 2019 by Carbon Prediction model and Soil Zone in Saskatchewan

Source: Author’s Estimates.

Notes: The box represents the range between the 1st and 3rd quartiles, and the line in the
middle of the box represents the median value. The ends of the whiskers are the minimum and
maximum values, excluding ouliers represented by dots. Outliers are chosen using Tukey’s
Method where an outlier is selected if the observation is 1.5 times the interquartile range
beyond either the first or third quartiles (Tukey, 1970). This is often referred to as a “fence”

boundary where data beyond the fences are outliers.
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Figure 1.14 shows that the majority of SOC prediction models predict comparable changes in

SOC stocks, with subtle variations. All models yield closely aligned predictions, with the Camp-

bell model indicating the least change in SOC stock, ICBM/2 forecasting the greatest change, and

the RothC model exhibiting the broadest range of predictions (widest distribution across fields).

These findings align with earlier SOC predictions validated against soil sampling data from long-

term crop rotation experiments at Swift Current, Saskatchewan.

In Figure 1.14, the two versions of the Augmented Campbell model produce nearly identical

outcomes, albeit with the base version predicting slightly larger SOC stocks. Notably, the weather

version of the Augmented Campbell model incorporates weather modifiers affecting decomposi-

tion rates, directly affecting the predicted SOC stock. 19

Among SOC prediction models, the findings shown in Figure 1.14 reveal a consistent pat-

tern: the simulated changes in SOC stock increases from the brown soil zone to the dark brown

soil zone, and further to the black & gray soil zone. These changes in simulated SOC stocks are at-

tributed to evolving cropping patterns, crop yields, and weather conditions over time within each

soil zone, coupled with reductions in summer fallow hectares. Notably, in the brown soil zone,

pulse crops such as lentils and peas constitute a larger proportion of the crop rotation compared

to the dark brown and black & gray soil zones. While pulse crops are well-suited to the semi-arid

climate of the brown soil zone,20 they tend to yield lower carbon inputs and consequently result

in less carbon sequestration relative to other crops with higher biomass.

Table 1.7 presents statistical summaries of the simulated changes in SOC stock from 1998

to various years (2005, 2011, 2019) across different soil zones and SOC prediction model. These

summaries include the mean changes and the bounds of the 90% confidence interval (5% and

95% limits). According to the Augmented Campbell model (weather version), the mean increase

in SOC stock from 1998 to 2019 is recorded at 4,437 kg/ha in the brown soil zone (see column

(2), Table 1.7), 6,048 kg/ha in the dark brown soil zone, and 7,488 kg/ha in the black & gray soil

19For a detailed comparison of SOC stock predictions over time between the base and weather versions of the
Augmented Campbell model, please refer to Figure 1G.1 in Appendix 1G, which showcases results across six randomly
selected fields in Saskatchewan.

20The brown soil zone is often referred to as the Palliser Triangle and upon colonization was deemed unsuitable for
crop production, owing to its drought-prone semi-arid climate (Marchildon and Sauchyn, 2009).
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zone. A sizable share of the SOC stock changes across all zones was observed post-2011, though

significant changes began earlier. Specifically, in the brown (dark brown, black & gray) soil zone,

55% (64%, 63%) of the increase occurred between 2005 and 2019, with 34% (36%, 37%) occurring

after 2011. Table 1.7 displays the SOC stock changes at the 5% and 95% confidence interval limits

for each soil zone, indicating broad confidence intervals. This variation reflects the significant

effect of farm management practices and crop selection on carbon sequestration, and is suggestive

of the potential for considerable variation in SOC stocks within a soil zone due to differences in

field-level management.

Currently, there is a lack of publicly accessible long-term soil sampling data available for val-

idation purposes throughout Saskatchewan. Soil sampling data collected on farms are typically

privately owned by both the farmers themselves and the private companies conducting the soil

sampling, such as Cargill, Richardson Pioneer, Bayer, and others. Due to the unavailability of

soil sampling data for additional validation, I have validated my findings using the same source

material that is used to validate SOC predictions in the 2021 GHG National Inventory Report (En-

vironment and Climate Change Canada, 2022). Additionally, in Appendix 1D, I have conducted

a comparison of my SOC predictions with those made by Sothe et al. (2022), who employ remote

sensing data and machine learning algorithms to predict the average SOC stock from 2015 to 2019

at a spatial resolution of 250m2 across Canada. Sothe et al. (2022) develop the first-ever carbon

map of Canada at a 250m2 spatial grid.

The validation of SOC predictions in the GHG National Inventory Report is conducted by

comparing them with regional soil carbon factor changes derived from a Century-based model

using the IPCC Tier 1 methodology, as calculated by VandenBygaart et al. (2008). These regional

soil carbon factor changes represent the average annual variation in SOC stocks compared to a

counterfactual scenario. They are subsequently validated against sampled measurements of SOC

stocks obtained by VandenBygaart et al. (2003).
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TABLE 1.7: Distribution of Change in the Stock of Soil Organic Carbon per Hectare
from 1998 to 2005/2011/2019 by Soil Zone and Prediction Model in Saskatchewan

(1) (2) (3) (4) (5) (6)

Change in SOC

Augmented Augmented
Campbell Campbell Campbell ICBM ICBM/2 RothC

(base) (weather)
(kg/ha)

A. Brown Soil Zone 1998 - 2005

Mean 1, 917 2, 003 1, 352 1, 934 2, 278 1, 773
Standard Deviation 1, 285 1, 271 1, 042 1, 278 1, 355 1, 967
5% C.I. Limit −224 −77 −445 49 247 −1, 615
95% C.I. Limit 3, 910 4, 003 2, 921 3, 916 4, 419 4, 759

1998 - 2011

Mean 2, 875 2, 918 2, 034 2, 781 3, 471 2, 870
Standard Deviation 1, 792 1, 716 1, 473 1, 491 1, 665 2, 922
5% C.I. Limit −263 −50 −639 415 789 −2, 131
95% C.I. Limit 5, 587 5, 524 4, 179 5, 163 6, 130 7, 342

1998 - 2019

Mean 4, 422 4, 437 3, 220 4, 543 5, 857 5, 700
Standard Deviation 2, 185 2, 111 1, 809 1, 734 2, 069 3, 881
5% C.I. Limit 307 545 −296 1, 573 2, 298 −898
95% C.I. Limit 7, 458 7, 431 5, 619 7, 287 9, 061 11, 753

B. Dark Brown Soil Zone 1998 - 2005

Mean 2, 210 2, 154 1, 569 2, 058 2, 489 1, 657
Standard Deviation 1, 333 1, 260 1, 084 1, 270 1, 364 2, 418
5% C.I. Limit −230 −120 −496 19 278 −2, 469
95% C.I. Limit 4, 173 4, 023 3, 122 4, 127 4, 708 5, 517

1998 - 2011

Mean 3, 937 3, 883 2, 824 3, 516 4, 463 3, 359
Standard Deviation 2, 076 1, 992 1, 702 1, 778 2, 007 3, 775
5% C.I. Limit −81 74 −585 560 1, 059 −3, 165
95% C.I. Limit 6, 805 6, 669 5, 097 6, 299 7, 629 9, 409

1998 - 2019

Mean 6, 338 6, 048 4, 673 6, 281 8, 132 7, 976
Standard Deviation 2, 480 2, 305 2, 041 2, 101 2, 544 5, 049
5% C.I. Limit 1, 302 1, 440 437 2, 471 3, 544 −707
95% C.I. Limit 9, 619 9, 160 7, 293 9, 446 12, 034 15, 791
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TABLE 1.7: Distribution of Change in the Stock of Soil Organic Carbon per Hectare
from 1998 to 2005/2011/2019 by Soil Zone and Prediction Model in Saskatchewan

(continued)

(1) (2) (3) (4) (5) (6)

Change in SOC

Augmented Augmented
Campbell Campbell Campbell ICBM ICBM/2 RothC

(base) (weather)
(kg/ha)

C. Black & Gray Soil Zone 1998 - 2005

Mean 2, 954 2, 774 2, 112 2, 690 3, 293 2, 371
Standard Deviation 1, 543 1, 459 1, 254 1, 389 1, 508 2, 666
5% C.I. Limit −77 −74 −416 173 542 −2, 364
95% C.I. Limit 5, 089 4, 806 3, 781 4, 710 5, 501 6, 352

1998 - 2011

Mean 5, 027 4, 702 3, 627 4, 174 5, 492 4, 002
Standard Deviation 2, 215 2, 091 1, 813 1, 927 2, 158 3, 976
5% C.I. Limit 606 547 −68 950 1, 765 −3, 130
95% C.I. Limit 8, 002 7, 480 5, 978 7, 152 8, 849 9, 928

1998 - 2019

Mean 8, 155 7, 488 6, 041 8, 076 10, 579 9, 505
Standard Deviation 2, 525 2, 370 2, 080 2, 114 2, 588 5, 052
5% C.I. Limit 3, 184 2, 837 1, 864 3, 988 5, 752 556
95% C.I. Limit 11, 361 10, 529 8, 586 11, 067 14, 382 17, 162

D. All Soil Zones 1998 - 2005

Mean 2, 648 2, 527 1, 888 2, 442 2, 972 2, 115
Standard Deviation 1, 517 1, 424 1, 225 1, 383 1, 512 2, 556
5% C.I. Limit −154 −88 −453 87 382 −2, 322
95% C.I. Limit 4, 850 4, 600 3, 610 4, 545 5, 297 6, 047

1998 - 2011

Mean 4, 519 4, 304 3, 252 3, 859 5, 013 3, 715
Standard Deviation 2, 255 2, 110 1, 829 1, 905 2, 182 3, 847
5% C.I. Limit 187 275 −356 739 1, 331 −3, 002
95% C.I. Limit 7, 681 7, 253 5, 732 6, 884 8, 499 9, 652

1998 - 2019

Mean 7, 295 6, 797 5, 392 7, 240 9, 449 8, 719
Standard Deviation 2, 766 2, 529 2, 242 2, 387 2, 986 5, 087
5% C.I. Limit 1, 842 1, 837 869 2, 862 4, 047 −93
95% C.I. Limit 10, 976 10, 186 8, 286 10, 698 13, 856 16, 648

Source: Author’s Estimates
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VandenBygaart et al. (2003) conduct a meta-analysis, compiling annual changes in SOC

stocks per hectare in Canada following a land management change to no-till practices from either

conventional tillage or summer fallow. Liang et al. (2020) update this review by incorporating an

additional 16 peer-reviewed studies, bringing the total to 37. This updated meta-analysis revealed

that in western Canada, the adoption of no-till practices led to an average annual increase in SOC

stocks of 740 kg/ha/yr (± 220 kg/ha/yr) after 10 years, and 260 kg/ha/yr (± 50 kg/ha/yr) in

the subsequent decade. No-till systems in western Canada exhibit an average SOC stock increase

of 300 kg/ha/yr in medium-textured soils and 430 kg/ha/yr in fine-textured soils.21

The weather version of the Augmented Campbell model, the SOC stock in Saskatchewan

increased by 309 kg/ha/yr (± 115 kg/ha/yr) between 1998 and 2019. This growth varied across

soil zones, with the black & gray zone seeing an increase of 340 kg/ha/yr, the dark brown zone

274 kg/ha/year, and the brown soil zone 201 kg/ha/year. Given that a significant portion of soils

in Saskatchewan are either medium-textured (such as silt, silt loam, loam, or sandy clay loam) or

fine-textured (including sandy clay, clay loam, silty clay loam, silty clay, or clay),22 the annual SOC

stock changes in Saskatchewan as predicted by the Augmented Campbell model align closely with

the range of annual SOC stock changes under no-till practices reported in meta-analysis done by

Liang et al. (2020).

The results presented in this section offer insights into the geographical distribution of car-

bon sequestration within Saskatchewan, highlighting areas of significant growth of SOC stocks.

Notably, there are additional environmental factors beyond those considered in this analysis, such

as the reduction in atmospheric carbon equivalent through albedo radiative forcing resulting from

practices like no-till, continuous cropping, and the planting of reflective crops like canola, peas,

and lentils (Liu et al., 2022). Research by Liu et al. (2022) suggest that these additional albedo

changes have led to a drawdown of 179.9 Tg of carbon dioxide equivalent from no-till practices

and 101.6 Tg from continuous cropping in the Canadian Prairies between 1990 and 2019. Given

that the SOC stock is influenced by carbon inputs that are linked to crop yields, it is pertinent for

21In western Canada, 62% of the data analyzed in this meta-assessment were derived from medium-textured soils.
22The Saskatchewan Soil Information System provides in-depth information by location on soil type, texture, and

soil characteristics for all agricultural land in Saskatchewan (University of Saskatchewan, 2023).
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crop-breeding efforts to consider the implications for carbon sequestration, including the devel-

opment of higher-yielding, drought-tolerant varieties.

1.10 Soil Sampling Data for Model Validation and Limitations

In Saskatchewan, the Prairie Soil Carbon Balance (PSCB) project conducted soil sampling across

the province from 1996 to 2018 to monitor changes in SOC stocks (McConkey et al., 2020). Initially

encompassing a network of 136 fields operated by commercial farms in 1996, the project’s scope

reduced to 90 fields by its final year in 2018. Throughout the duration of the project, there were

variations in sampling methods, technology, and laboratory analysis techniques.23 SOC stock

changes were calculated on an equivalent mass basis, employing six cores at each site sampled at

40cm depth intervals with 10cm increments.24 Sampling in 1996, 1999, 2005, and 2011 occurred in

the fall post-harvest, while in 2018, sampling took place in the spring, with some samples collected

before and after seeding.

Aggregate findings of the PSCB project are detailed in a report to the Saskatchewan Soil

Conservation Association (see McConkey et al. (2020)). Comparing these aggregated findings with

the results presented in this essay, it appears that the changes in SOC stocks documented by the

PSCB project from 1996 to 2018 align more closely with the lower 5% interval of the 90% confidence

interval for the changes in SOC stocks from 1998 to 2019 within Saskatchewan predicted by the

Augmented Campbell model.

The management data in the PSCB project are limited and described as “spotty” in the 2020

report (McConkey et al., 2020). Only 56 sites had management data with nine years of information.

Because the management information in the PSCB project is limited, it is difficult to compare

the SOC predictions made using SCIC data with the measured changes from the PSCB project.

Because of the large variation in SOC stocks in Saskatchewan, the small sample size in the PSCB

project makes it impossible to conduct any meaningful validation. The entire PSCB project makes

23Verified with personal communication with Dr. Mervin St. Luce, a project leader of the PSCB project.
24Ellert and Bettany (1995) and Rovira et al. (2022) advocate for the equivalent mass approach as the preferred

method for SOC stock calculation, which adjusts for changes in soil mass at fixed depths.
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up 0.25% of the fields used to predict SOC stocks from the SCIC database. Hence, without any

management information, using data from the PSCB project will entail a sizable risk of sample

selection bias for validation.

Paustian et al. (2019) also note technical discrepancies with the PSCB project. Reflecting on

the period before the 2018 sampling in the PSCB project, Paustian et al. (2019, p. 580) state: “this

15-year study illustrates some of the logistical challenges of direct sampling of SOC through time.

During the study, there were numerous changes in ownership or land management at the study

sites and some sites were lost to attrition. In 2005, 121 of the original 137 sites were sampled,

and at the last sampling in 2011, only 82 sites has the required management data and manager

authorization for inclusion in the project. Additionally, because of the heterogeneity of SOC within

fields (30–65 ha), it was prohibitively expensive to collect enough samples to estimate the average

stock across the field.”

The lack of comprehensive farm management and production data, and an adequate sam-

ple size, contribute to uncertainty on how well the sites in the PSCB project and their observed

changes in SOC stocks correspond with the simulated SOC stocks in this analysis. This highlights

the importance of gathering comprehensive farm management and production data, with consis-

tent soil sampling methods and methodologies. Doing so is crucial for accurately validating SOC

prediction models.

1.11 The External Social Benefit from Changes in Soil Organic Carbon

In this section, I describe the approach used to calculate the annual external social benefits of

SOC sequestered on Saskatchewan farms over the period 1998–2019. These benefits may be deter-

mined as the avoided social cost of carbon emissions, compared with a counterfactual alternative

in which the entire stock of SOC would have been emitted into the atmosphere. However, it is

improbable all SOC would be released from the soil in any reasonable scenario. To measure the
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external social benefits from any particular action affecting the stock of SOC, and hence atmo-

spheric carbon, the crucial step is to define and appropriately quantify the corresponding counter-

factual scenario. Here, the relevant counterfactuals are defined and quantified in terms of changes

in the SOC stocks that would have resulted from hypothetical partial reversals of past changes in

agricultural practices or transitions to different land uses.

Mikhailova et al. (2019) pose a methodology for assessing the value of SOC stocks making

use of a conversion factor of SOC to carbon dioxide and available estimates of the social cost of

atmospheric carbon. They use a conversion factor of 44 Mg CO2 per 12 Mg SOC and a social cost

of carbon (SCC) of 42 U.S. dollars per incremental Mg (metric ton) of carbon dioxide permanently

added to the atmosphere, calculated using a real discount rate of 3% per year (Environmental

Protection Agency, 2016).

In 2021, President Biden made an Executive Order 13990 for the Interagency Working Group

on Social Cost of Greenhouse Gases (IWG) to estimate and publish an interim SCC value (Intera-

gency Working Group on Social Cost of Greenhouse Gases, 2021).25 Using a real discount rate of

3% per year the IWG (2021) computed an SCC of 51 U.S. dollars (in 2020 dollars) per Mg of CO2 in

February 2021. The IWG’s SCC ranges from $14 per Mg of carbon dioxide using a discount rate of

5% per year to $76 per Mg of carbon dioxide using a discount rate of 2.5% per year. Alternatively,

Rennert et al. (2022) estimates a SCC that is greater than the IWG’s SCC, equal to $185/Mg of

CO2. Rennert et al. (2022) uses several damage functions and discount rates to estimate the SCC,

and calculate their preferred SCC of $185/Mg using the Greenhouse Gas Impact Value Estimator

25IWG uses three integrated assessment models (i.e., DICE, PAGE, and FUND) from peer-reviewed research to
determine the SCC. These estimates are to be upheld in courts for government policy and regulation, are updated on a
continual basis, and undergo several rounds of review by the peer reviewers, analysts, and stakeholders (Interagency
Working Group on Social Cost of Greenhouse Gases, 2021).
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(GIVE) damage function with a 2% near-term risk-free discount rate.26, 27

I employ SCC values of $14/Mg, $51/Mg, and $76/Mg from the IWG, and $185/Mg from

Rennert et al. (2022) to compute a range of estimates for the external social benefits of carbon

sequestration in Saskatchewan from 1998 to 2019. These values are expressed in real 2023 dollars,

using the GDP Deflator from the Federal Reserve Bank of St. Louis (U.S. Bureau of Economic

Analysis, 2024).

The standard formula for the present value in the current year, t of a stream of annual social

benefits over an indefinite future horizon is:

PVt =
∞

∑
n=1

SBt+n(1 + r)−n, (1.16)

where PVt is in constant, inflation-adjusted dollars in year t, r is the corresponding real discount

rate, and SBt+n is the social benefit in year t + n. In this application, SBt+n is the benefit from the

introduction of a policy aiming to increase the stock of SOC over time, defined as

SBt+n = Pt(SOCA
t+n − SOCC

t+n)

where Pt = r× SCCt ×
44 Mg CO2
12 Mg SOC

,

(1.17)

26The near-term discount rate used by Rennert et al. (2022) is equal to the average risk-free discount rate over the
first decade of the time horizon, and incorporates a Ramsey-like framework to value the marginal damages from CO2
to account for the risk and uncertainty in future payoffs. The discount rate is determined by the Ramsey-like equation:
rt = ρ + ηgt. The variable gt is the average rate of consumption growth from the year of the emission pulse (a 0.1
Mt pulse of CO2 emissions), whereas parameter ρ represents the rate of pure time preference and η reflects how much
the marginal value of consumption decreases as consumption increases. At a 2% near-term risk-free discount rate,
the discounting parameters are ρ = 0.2% and η = 1.24. In this essay, I use the framework employed by the IWG
and assume a constant, deterministic discount rate with the SCC provided by Rennert et al. (2022). This means that
the environmental benefits computed in this analysis are considered to be a lower-bound in comparison to applying
Ramsey-like discounting as done by Rennert et al. (2022).

27Russell et al. (2022) find that depending on the Representative Concentration Pathways (RCPs) in temperature
projections and Shared Socioeconomic Pathways (SSPs), the SCC could be as low as $2.35/Mg of CO2 as high as
$258.40/Mg of CO2.
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Pt is the annual rental price in 2023 U.S. dollars for an additional unit of SOC reflecting the value

of atmospheric carbon and the conversion rate from SOC to atmospheric carbon,28 and SOCi
t+n is

the stock of SOC in year t + n under scenario i, where i = A refers to the “actual” or with-policy

scenario and i = C refers to the “counterfactual” or without-policy scenario, such that the term in

parentheses is the policy-induced change in the SOC stock. Benefits start to accrue in the following

year (n = 1) because the initial stock of SOC for both the actual and counterfactual scenarios in

year t are equal, and results in an social benefit in year t equal to zero.

Combining equations (1.16) and (1.17), equation (1.18) represents the present value of the

external social benefit from the policy-induced changes in the stock of SOC over the indefinite

future, and provides a money-metric measure of the future external benefits to society from policy-

induced changes in sequestered carbon emissions.

PVt =
∞

∑
n=1

Pt(SOCA
t+n − SOCC

t+n)(1 + r)−n. (1.18)

An equivalent approach for a backwards-looking assessment of social benefits from a policy-

induced change in farming practices introduced N years in the past yields:

PVt =
N

∑
n=1

Pt(SOCA
t−n−1 − SOCC

t−n−1)(1 + r)(n−1). (1.19)

Let r be the real discount rate used to calculate the respective SCC. To ensure the SCC accurately

reflects the present value of all future welfare effects resulting from a marginal increase in atmo-

spheric CO2 in the present context, the discount rate applied to compute the present value of

policy-induced changes in SOC stocks should be the same as the discount rate used to estimate

the SCC. Pearce (2003) provides further details on the SCC. Appendix 1F provides a mathematical

derivation and proof, illustrating how the discount rate, as derived from the SCC, quantifies the

effect of an additional unit of CO2 emitted into the atmosphere over a definite time horizon.

28If this annual flow of social benefits is constant forever, then the value of the perpetuity per ton, $/Mg is given by
V = P/r, where r is the IWG’s real discount rate for the social cost of atmospheric carbon. For example, if V = $51/Mg,
then the equivalent annual rental price is P = 0.03 ∗V = $1.53/Mg.
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I define counterfactual scenarios with lower adoption rates of zero-tillage and continuous

cropping on Saskatchewan farms compared with the observed rates. Using two carbon prediction

models (specifically, the Campbell model and Augmented Campbell model (weather version)),

I simulate counterfactual scenarios in which a certain percentage of canola or lentil hectares is

instead set to summer fallow each year. This percentage is determined using random draws

from a binomial distribution. Equation (1.20) is the equation for the binomial distribution, where

P(CanolaC|CanolaA = 1) represents the probability of seeding canola on a field given it was actu-

ally sown with canola, n is the number of trials or experiments, x is the number of times canola

is not switched to summer fallow within a trial, p is the probability of canola fields that are not

switched to summer fallow in a trial, and q is the probability of switching canola to summer fal-

low in a trail. Each field is subjected to a Bernoulli trial (i.e., one trial per field per year), where

the probability of switching canola to summer fallow corresponds to the desired counterfactual

scenario (e.g., 25%, 50%, or 75% of canola hectares converted to summer fallow). This procedure

remains constant throughout the simulation model, with a draw from the binomial distribution

followed by application of the Campbell and Augmented Campbell model (weather version).

P(CanolaC|CanolaA = 1) =
(

n
x

)
pxqn−x =

n!
x!(n− x)!

pxqn−x (1.20)

I perform thirty simulations for each counterfactual scenario across all fields in the selected

sample, totaling 1,093,290 fields. These simulations are conducted using the same seed of the ran-

dom number generator in R for subsequent draws for a specific counterfactual scenario.29 Sub-

sequently, I predict the SOC stocks for all counterfactual scenarios to generate a distribution of

multiple time-paths for each field. These distributions represent the counterfactual SOC stocks for

each field from 1998 to 2019.

29By employing the same seed for subsequent draws from the binomial distribution in R, I ensure that different
random outcomes are generated for separate counterfactual draws on the same field.
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FIGURE 1.15: Soil Organic Carbon Stock per Hectare for a Randomly Selected Field
in the Black & Gray Soil Zone with respect to the Counterfactual draws from the

Binomial Distribution

Source: Author’s Estimates.

Notes: In every panel, the solid black line depicts the simulated actual SOC stock in the base-
line scenario for a field chosen at random. In the left column, all lines other than the solid
black one show the simulated SOC stocks from various draws of the binomial distribution for
a particular counterfactual scenario, each draw randomly converting a percentage of canola
hectares to summer fallow. On the right column, the red dashed line illustrates the aver-
age simulated SOC stock derived from 30 binomial draws (representing the mean of all SOC

stocks shown in the left panel, excluding the solid black line).
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Figure 1.15 displays the predicted SOC stocks derived from the Augmented Campbell model

(weather version) for a single field chosen at random within the black & gray soil zone,30 illustrat-

ing variation among random selections from the binomial distribution. The figure is organized

into three rows, each corresponding to different probabilities of converting canola fields back to

fallow land. On the left column of each row, various lines indicate individual outcomes from

the binomial distribution, with the solid black line marking the actual SOC stock in the baseline

simulation, with actual cropping patterns. On the right column of each row, the figure displays

the average SOC stocks across all binomial draws for each counterfactual scenario of converting

canola to summer fallow (indicated by a red dashed line) compared with the original simulated

SOC stock (depicted by a solid black line).

Employing these measures, I assess the differences between the counterfactual mean SOC

stocks and the actual SOC stocks in the baseline simulation for each field. Figure 1.16 illustrates

the divergence in the trajectory of the mean SOC per hectare across different soil zones (weighted

by hectares) for each counterfactual scenario. The SOC stocks depicted in Figure 1.16 are predicted

using the weather version of the Augmented Campbell model. Each plot depicts weighted aver-

age stock of SOC from 1998 to 2019 in Saskatchewan for each counterfactual scenario, resulting

from switching a certain percentage of canola to summer fallow (25%, 50%, and 75%).

Figure 1.16 highlights the differences in SOC stocks for each time path for each counterfac-

tual scenario and soil zone. The differences between the actual SOC stock and the counterfactual

scenarios are more pronounced in the black & gray soil zone. Disparity arises due to the higher

proportion of canola hectares in the black & gray soil zone compared with the brown and dark

brown soil zones. Hence, switching a set percentage of canola hectares to summer fallow has a

more substantial affect on SOC stocks within the black & gray soil zone compared to the dark

brown and brown soil zones.

30Due to the confidentiality of field location and identity within the SCIC dataset, I refrain from disclosing any
details about this particular field, except for the fact that it was chosen randomly to illustrate the effect of various
binomial outcomes for different hypothetical scenarios of converting canola hectares to summer fallow.
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FIGURE 1.16: Weighted Average Soil Organic Carbon Stock per Hectare by Soil Zone
and Counterfactual Scenario in Saskatchewan from 1998 to 2019

Source: Author’s Estimates.

FIGURE 1.17: Weighted Average Soil Organic Stock per Hectare by Draw from the
Binomial Distribution in the Black & Gray Soil Zone from 1998 to 2019

Source: Author’s Estimates.
Notes: Draws from the binomial distribution are based on the counterfactual scenario of

switching 75% of canola hectares to summer fallow.
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Figure 1.17 illustrates the range of outcomes in the time path of the weighted average SOC

stock per hectare when 75% of the provincial canola hectares transition to summer fallow in the

black & gray soil zone. Variability in the weighted average SOC stock per hectare among binomial

draws tends to become larger in later years (i.e., 2015–2019), as SOC stocks undergo dynamic

adjustments reflecting historical changes in canola hectares. Nevertheless, the disparity in the

aggregate change of SOC stocks across binomial draws remains relatively minor compared to the

variance observed at the individual field level. This is primarily because the effects of switching

canola from one field to another are largely consistent, differing primarily based on the seeding

year and canola yield. Consequently, when aggregated, the disparities across binomial draws in

the weighted average change in SOC stocks become negligible.

1.12 External Social Benefit from Carbon Sequestration Results

In this section, I provide the results from computing the external social benefits for each year be-

tween 1998 and 2019 by applying a rental rate to the annual difference between the simulated SOC

stocks associated with actual production and the simulated SOC stocks associated with the respec-

tive counterfactual scenario, summarized as a present value. This approach assesses the societal

benefits derived from actual adoption and use of practices such as zero-tillage and continuous

cropping, compared with counterfactual scenarios involving less canola adoption, more summer

fallow, and more tillage. The calculations for the external social benefits are initially performed

for each field within the selected SOC prediction sample. These values are then normalized on a

per-hectare basis and scaled up to encompass all hectares insured by SCIC in Saskatchewan. This

process yields a comprehensive provincial-level estimate of the external benefits associated with

enhanced carbon sequestration under each counterfactual scenario. The approximation is deemed

suitable, given the comparable crop yields and crop shares between the samples, as illustrated in

Figures 1E.1 and 1E.2 in Appendix 1E.

Figures 1.18 to 1.20 present the per-field distribution of the external social benefits derived

from increased carbon sequestration between 1998 and 2019, compared with the a counterfactual

scenario in which canola hectares revert to summer fallow. This analysis does not account for the
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potential dynamic effects of carbon sequestration on crop yield which would feed back into SOC.

Therefore, the findings here should be viewed as conservative estimates regarding how carbon

sequestration affects SOC. The calculations of external social benefits follows equation (1.16), using

a value for the SCC expressed in 2020 U.S. dollars. The estimates of benefits are adjusted to 2023

dollars using a GDP Deflator provided by the Federal Reserve Bank of St. Louis (U.S. Bureau of

Economic Analysis, 2024). Each distribution in Figures 1.18 to 1.21 represents the present value

of external social benefits per hectare in the period from 1998 to 2019 for 36,443 fields, including

30 draws from the binomial distribution for each counterfactual scenario. Specifically, Figure 1.18

illustrates the benefits at a $14/Mg SCC, while Figures 1.19, 1.20, and 1.21 apply SCC values of

$51/Mg, $76/Mg, and $185/Mg, respectively.

Across soil zones, the benefits vary considerably, reflecting differences in the external social

benefits per hectare, the total number of fields, and the proportion of land planted to canola.

The external social benefits per hectare are notably less in the brown soil zone, than in the other

zones. This is largely because not all fields are planted with canola or undergo the counterfactual

treatment where canola is replaced with summer fallow, leading to a concentration of benefits

at zero in the brown soil zone. This phenomenon is more pronounced in scenarios in which a

smaller percentage of canola hectares are converted to summer fallow, resulting in fewer fields

being subject to this counterfactual treatment. As anticipated, the benefits per hectare increase

with a higher SCC. Over the period from 1998 to 2019, the weighted average benefit per hectare

across the analyses in Figures 1.18 to 1.21 varies, showing a range from $0.51/ha to $5.44/ha in

the brown soil zone, from $1.94/ha to $22.78/ha in the dark brown soil zone, and from $3.36/ha

to $40.97/ha in the black & gray soil zones.

I also calculate external social benefits per hectare using the Campbell model, yielding slightly

lower estimates than those obtained from the Augmented Campbell model. Please refer to Figures

1G.2 to 1G.5 in Appendix 1G to view the computed field-level external social benefits per hectare

derived using the Campbell model. Figures 1G.6 and 1G.7 in Appendix 1G present findings for

a scenario in which 25% of lentil hectares are counterfactually converted to summer fallow. In

this case, the weighted average benefit per hectare varies, ranging from $0.42/ha to $1.49/ha in
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the brown soil zone, $0.35/ha to $1.21/ha in the dark brown soil zone, and $0.02/ha to $0.07/ha

in the black & gray soil zones. The greatest benefits are observed in the brown soil zone, which

is the predominant area for lentils. Because lentils have less carbon sequestration capacity than

canola, the external social benefits foregone by reverting 25% of lentil acres to summer fallow are

significantly less than those foregone by similar reversions of canola hectares.

Figure 1G.8 in Appendix 1G shows the variability in external social benefits for a single ran-

domly selected field within the black & gray soil zone, as depicted in Figure 1.15, across different

binomial distribution draws. This figure highlights how the external social benefit per hectare

for this particular field can significantly vary depending on the specific draw from the binomial

distribution, the counterfactual scenario considered, and the SCC applied. While Figure 1G.8 fo-

cuses on the external social benefits for all fields from just one binomial distribution draw, Figure

1G.9 compares the distribution of external social benefits per hectare for a single draw against

the distribution from all draws in Figure 1.19, both employing a SCC of $51/Mg. This comparison

demonstrates that while there is notable variation in benefits for a single field across different bino-

mial draws, the overall distribution of benefits across all fields remains consistent across different

binomial draws.
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FIGURE 1.18: Field-level Distribution of External Social Benefit per Hectare by Draw
of the Binomial Distribution, Counterfactual Scenario and Soil Zone in Saskatchewan
using the Augmented Campbell Model (weather) and a Social Cost of Carbon of

$14/Mg

Source: Author’s Estimates.

Notes: All soil organic carbon predictions in the above graph are computed using the
Augmented Campbell model. The columns of panels refer to the counterfactual shares of
canola switched to summer fallow (25%, 50%, and 75%) of insured hectares in Saskatchewan,

whereas the rows of panels refer to different soil zones.
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FIGURE 1.19: Field-level Distribution of External Social Benefit per Hectare by Draw
of the Binomial Distribution, Counterfactual Scenario and Soil Zone in Saskatchewan
using the Augmented Campbell Model (weather) and a Social Cost of Carbon of

$51/Mg

Source: Author’s Estimates.

Notes: All soil organic carbon predictions in the above graph are computed using the
Augmented Campbell model. The columns of panels refer to the counterfactual shares of
canola switched to summer fallow (25%, 50%, and 75%) of insured hectares in Saskatchewan,

whereas the rows of panels refer to different soil zones.
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FIGURE 1.20: Field-level Distribution of External Social Benefit per Hectare by Draw
of the Binomial Distribution, Counterfactual Scenario and Soil Zone in Saskatchewan
using the Augmented Campbell Model (weather) and a Social Cost of Carbon of

$76/Mg

Source: Author’s Estimates.

Notes: All soil organic carbon predictions in the above graph are computed using the
Augmented Campbell model. The columns of panels refer to the counterfactual shares of
canola switched to summer fallow (25%, 50%, and 75%) of insured hectares in Saskatchewan,

whereas the rows of panels refer to different soil zones.
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FIGURE 1.21: Field-level Distribution of External Social Benefit per Hectare by Draw
of the Binomial Distribution, Counterfactual Scenario and Soil Zone in Saskatchewan
using the Augmented Campbell Model (weather) and a Social Cost of Carbon of

$185/Mg

Source: Author’s Estimates.

Notes: All soil organic carbon predictions in the above graph are computed using the
Augmented Campbell model. The columns of panels refer to the counterfactual shares of
canola switched to summer fallow (25%, 50%, and 75%) of insured hectares in Saskatchewan,

whereas the rows of panels refer to different soil zones.
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Table 1.8 shows the cumulative external social benefits estimated for each counterfactual sce-

nario across various soil zones and SCC rates, using the weather version of the Augmented Camp-

bell model to simulate SOC stocks. Meanwhile, in Appendix 1G, Table 1G.1 shows the external

benefits computed using the Campbell model to predict all SOC stocks. To compute the total ex-

ternal social benefit for each counterfactual scenario across Saskatchewan, I use the total insurable

hectares from the SCIC database spanning from 1998 to 2019, along with the weighted average

external social benefits per hectare extracted from Figures 1.18 to 1.21. Table 1.8 provides insights

into the range of estimated external social benefits, including the minimum, mean, and maximum

values, corresponding to different draws from the binomial distribution, considering each SCC,

counterfactual scenario, and soil zone. Because the computed external social benefits depend on

the dynamics of SOC stocks, the benefits in Table 1.8 are not proportional to the share of canola

reverted to summer fallow as a result of differences in crop yields and crops shares across soil

zones. The external social benefits are also not proportional to the SCC employed because benefits

are computed using a different discount rate for each SCC.

I estimate that, compared with a counterfactual scenario in which some fraction of canola

hectares reverted to summer fallow, the adoption of zero-tillage and continuous cropping in Saska-

tchewan yielded external social benefits over the period 1998 to 2019 ranging (in 2023 present

value terms) from $481 million to $6 billion. The range of values depends up the draw from

the binomial distribution, the chosen counterfacual scenario, and the SCC employed. The mean

benefit across binomial draws is equal to $5.9 billion when a SCC of $185/Mg of CO2 is applied,

as proposed by Rennert et al. (2022).31

With the counterfactual scenario of converting lentil hectares to summer fallow, the estimated

benefits span from $44 million to $182 million. Broadly speaking, compared to counterfactual

scenarios featuring reduced canola hectares and increased summer fallow and tillage from 1998

to 2019, the adoption of zero-tillage and continuous cropping practices represents a value in the

billions of dollars in terms of external social benefits.

31The computed external social benefit exhibits relative consistency across various draws from the binomial distri-
bution, fluctuating by a maximum of $75 million across different draws within a given counterfactual scenario.
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TABLE 1.8: Distribution of External Social Benefits from 1998 to 2019 by Counter-
factual Scenario, Soil Zone, and Social Cost of Carbon in Saskatchewan using the

Augmented Campbell model (weather)

(1) (2) (3) (4)

External Social Benefit

Counterfactual: Share of Canola Hectares Share of Lentil Hectares
reverted to Summer Fallow reverted to Summer Fallow

25% 50% 75% 25%

(i) Brown Soil Zone

Social Cost of Carbon: (millions of dollars)
$14/Mg
Mean 21 43 65 18
Minimum 20 41 64 17
Maximum 23 44 66 19
$51/Mg
Mean 41 83 124 34
Minimum 39 79 122 32
Maximum 43 85 126 37
$76/Mg
Mean 49 99 150 41
Minimum 47 95 147 39
Maximum 52 102 152 44
$185/Mg
Mean 83 168 252 69
Minimum 79 160 247 66
Maximum 87 172 256 74

(ii) Dark Brown Soil Zone

$14/Mg
Mean 149 305 472 26
Minimum 146 302 469 25
Maximum 151 308 475 28
$51/Mg
Mean 277 570 883 49
Minimum 273 565 877 47
Maximum 282 576 888 51
$76/Mg
Mean 332 682 1, 055 58
Minimum 326 675 1, 048 56
Maximum 337 689 1, 062 61
$185/Mg
Mean 555 1, 142 1, 768 97
Minimum 546 1, 131 1, 757 93
Maximum 565 1, 155 1, 780 101
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TABLE 1.8: Distribution of External Social Benefits from 1998 to 2019 by Counter-
factual Scenario, Soil Zone, and Social Cost of Carbon in Saskatchewan using the

Augmented Campbell model (weather) (continued)

(1) (2) (3) (4)

External Social Benefit

Counterfactual: Share of Canola Hectares Share of Lentil Hectares
reverted to Summer Fallow reverted to Summer Fallow

25% 50% 75% 25%

(iii) Black & Gray Soil Zone

Social Cost of Carbon: (millions of dollars)
$14/Mg
Mean 318 669 1, 052 2
Minimum 314 664 1, 047 2
Maximum 322 674 1, 057 2
$51/Mg
Mean 589 1, 239 1, 952 3
Minimum 581 1, 229 1, 942 3
Maximum 596 1, 249 1, 962 4
$76/Mg
Mean 702 1, 479 2, 330 4
Minimum 693 1, 467 2, 318 4
Maximum 711 1, 490 2, 342 4
$185/Mg
Mean 1, 173 2, 473 3, 898 7
Minimum 1, 159 2, 452 3, 877 6
Maximum 1, 188 2, 491 3, 917 7

(iv) Saskatchewan (All Soil Zones)

$14/Mg
Mean 488 1, 018 1, 589 46
Minimum 481 1, 007 1, 579 44
Maximum 496 1, 027 1, 598 49
$51/Mg
Mean 907 1, 893 2, 959 87
Minimum 893 1, 873 2, 941 82
Maximum 921 1, 910 2, 976 91
$76/Mg
Mean 1, 083 2, 260 3, 535 103
Minimum 1, 066 2, 237 3, 513 99
Maximum 1, 100 2, 281 3, 556 109
$185/Mg
Mean 1, 811 3, 783 5, 918 173
Minimum 1, 784 3, 743 5, 881 165
Maximum 1, 840 3, 818 5, 952 182

Source: Author’s Estimates
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1.13 Forward Projection of External Social Benefit from Carbon Seques-

tration in Perpetuity

In this section, I calculate the external social benefits stemming from carbon sequestration in per-

petuity, under the assumption that the change in SOC stocks in 2019 as simulated by the Aug-

mented Campbell model (weather version), relative to each counterfactual scenario, represents

a permanent alteration in SOC. Additionally, I offer a forward-looking projection of the external

social benefits arising from carbon sequestration by modeling future SOC stocks using the Aug-

mented Campbell model (base version) and assuming constant carbon inputs for each field based

on their average from 2015 to 2019.

To compute the external social benefit in perpetuity, I assume that the difference between the

actual and counterfactual SOC stocks attributable to changes in production practices observed in

2019 is sustained forever afterwards. The external social benefit from permanent carbon seques-

tration is then computed as follows:

PESB2019 =

[
SCC2019 ×

44 Mg CO2
12 Mg SOC

]
(SOCA

2019 − SOCC
2019),

where PESB represents the present value of the external social benefit from a permanent change

in SOC stocks equal to the change relative to the counterfactual stock of SOC in 2019.

Table 1.9 presents the estimates of external social benefit for a permanent increase in the stock

of SOC. Estimates are presented for each counterfactual scenario, SCC, and soil zone, based on

corresponding measures of changes in SOC in 2019 simulated using the the Augmented Camp-

bell model (weather version).32 The largest external social benefit from a permanent change in

SOC stock is observed in the black & gray soil zone, amounting to $17.9 billion for a 75% reduc-

tion in canola hectares and an SCC of $185/Mg. This constitutes approximately 61% of the total

external social benefit projected for Saskatchewan under this scenario, totaling $29.1 billion for

32To see the computed external social benefits from a permanent change in SOC stocks using the Campbell model,
please refer to Table 1G.2 in Appendix G.
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the entire province. Notably, the external social benefit from a permanent change in SOC stock

is anticipated to be less than the external social benefit from a permanent change in production

projected forward from 2019 to 2169 with the Augmented Campbell model (base version). This

discrepancy arises because the forward projection accounts for ongoing dynamics between actual

and counterfactual SOC stocks until they reach a steady-state equilibrium under constant carbon

inputs, whereas benefits from a permanent change in SOC stocks do not consider further changes

in SOC stocks beyond the initial difference observed in 2019.

TABLE 1.9: External Social Benefits from a Permanent Change in SOC Stocks in 2019
by Counterfactual Scenario, Soil Zone, and Social Cost of Carbon in Saskatchewan

using the Augmented Campbell Model (weather)

(1) (2) (3)

External Social Benefit

Counterfactual:
Share of Canola Hectares reverted to Summer Fallow

25% 50% 75%
(i) Brown Soil Zone

Social Cost of Carbon: (millions of dollars)
$14/Mg 75 151 228
$51/Mg 267 538 812
$76/Mg 396 798 1, 204
$185/Mg 857 1, 728 2, 607

(ii) Dark Brown Soil Zone

$14/Mg 233 483 753
$51/Mg 832 1, 723 2, 685
$76/Mg 1, 234 2, 556 3, 982
$185/Mg 2, 672 5, 533 8, 621

(iii) Black & Gray Soil Zone

$14/Mg 458 977 1, 562
$51/Mg 1, 633 3, 485 5, 571
$76/Mg 2, 422 5, 168 8, 262
$185/Mg 5, 242 11, 188 17, 885

(iv) Saskatchewan (All Soil Zones)

$14/Mg 766 1, 611 2, 542
$51/Mg 2, 732 5, 757 9, 068
$76/Mg 4, 052 8, 522 13, 448
$185/Mg 8, 771 18, 449 29, 113

Source: Author’s Estimates

To calculate the forward projection of external social benefits in Saskatchewan, I proceed

under the assumption that the average carbon inputs on fields, as observed during the final five

years of the dataset from 2015 to 2019, will continue unchanged for the next 150 years, up to the
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year 2169. Since weather forecasts are not available, I use the base version of the Augmented

Campbell model to predict the forward-projected SOC stocks. For comparison, I also employ the

Campbell model, where the results can be seen in Table 1G.3 in Appendix G.

The projected estimates should not be seen as reflecting predictions of the future measures

of SOC stocks. The Augmented Campbell model, along with the Campbell model, are not cali-

brated for out-of-sample forecasting purposes. The soil humus component in both the Augmented

Campbell and Campbell model converges to zero in a steady-state equilibrium owing to the way

carbon pools are compartmentalized as developed by Woodruff (1950). Hence, using the Aug-

mented Campbell model and the Campbell model to forward project SOC stocks over extended

periods (beyond 30 years) is not advisable for predicting SOC stocks. Nonetheless, this limitation

does not completely invalidate the analysis. Comparative analysis using differences in projections

from SOC prediction models can still offer valuable insights into the effects of adopting different

agricultural management practices on SOC stocks, as demonstrated by (Bista et al., 2016). Bista

et al. (2016) use the DayCent model, coupled with weather data from 1930 to 2013, to predict yields

from 2011 to 2080 and to analyze differences in SOC stocks between wheat rotations with no-till

and tillage systems in Pendleton, Oregon. Similarly, Lychuk et al. (2019) apply the EPIC model to

assess the effect of various climate scenarios on SOC stocks at the AAFC’s Experimental Research

Station in Scott, Saskatchewan. Importantly, both the Bista et al. (2016) and Lychuk et al. (2019)

studies make comparisons across different counterfactual scenarios rather than providing stan-

dalone forecasts of SOC stocks. This approach acknowledges that while SOC prediction models

are fairly reliable for comparing the effects of various management practices and climate scenarios

on SOC stocks, they are not suited for predicting steady-state equilibria. Confirming a steady-state

equilibrium would necessitate data spanning hundreds of years, under consistent management

and climatic conditions, which is practically unobtainable.

The analysis in this section sheds light on the prospective external social benefits from main-

taining current land management practices well into the future, referred to as the baseline scenario,

compared with various counterfactual scenarios. The baseline scenario assumes that the extent of

canola hectares remains unchanged going into the future. For each of these scenarios, including
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the baseline, I project the evolution of SOC stocks, assuming production patterns consistent with

the average carbon inputs recorded from 2015 to 2019. To simplify the simulation, I select only a

single draw from the binomial distribution for each scenario. This decision is based on findings in

the previous section, that the measures of external social benefits aggregated over fields did not

significantly depend on the specific draws from the binomial distribution.

FIGURE 1.22: Projected Weighted Average Soil Organic Carbon Stock per Hectare by
Counterfactual Scenario, Model, Soil Zone in Saskatchewan from 2020 to 2169

Source: Author’s Estimates.

Figure 1.22 displays the projected weighted average SOC stock per hectare across different

scenarios, soil zones, and prediction models up to the year 2169. In both the Campbell and Aug-

mented Campbell models, the compartmentalization procedure developed by Woodruff (1950) re-

sults in a steady-state equilibrium where the soil humus component reverts to zero. Consequently,

the external social benefit arises from the difference in carbon inputs between the observed sce-

nario and the hypothetical counterfactual scenarios. This difference in SOC stocks between the
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observed and counterfactual scenarios between time paths is precisely what the external social

benefit is calculated from, as depicted in Figure 1.22.

Table 1.10 shows the forward-projected external social benefits across different counterfactual

scenarios, soil zones, and social costs of carbon (SCC) from 2020 to 2169, using the base version

of the Augmented Campbell model. The companion table, Table 1G.3 in Appendix 1G, presents

similar forecasts using the Campbell model. The external social benefits range from $851 million

to $30.2 billion, depending on the SCC and the specific counterfactual scenario considered.

TABLE 1.10: Projected External Social Benefits from 2020 to 2169 by Counterfac-
tual Scenario, Soil Zone, and Social Cost of Carbon in Saskatchewan using the Aug-

mented Campbell Model (base)

(1) (2) (3)

External Social Benefit

Counterfactual:
Share of Canola Hectares reverted to Summer Fallow

25% 50% 75%
(i) Brown Soil Zone

Social Cost of Carbon: (millions of dollars)
$14/Mg 51 108 165
$51/Mg 190 400 610
$76/Mg 282 594 906
$185/Mg 603 1, 269 1, 935

(ii) Dark Brown Soil Zone

$14/Mg 278 564 833
$51/Mg 1, 023 2, 076 3, 068
$76/Mg 1, 516 3, 076 4, 546
$185/Mg 3, 231 6, 555 9, 687

(iii) Black & Gray Soil Zone

$14/Mg 527 1, 058 1, 599
$51/Mg 1, 938 3, 890 5, 882
$76/Mg 2, 870 5, 761 8, 712
$185/Mg 6, 114 12, 273 18, 559

(iv) Saskatchewan (All Soil Zones)

$14/Mg 856 1, 729 2, 597
$51/Mg 3, 151 6, 365 9, 560
$76/Mg 4, 669 9, 431 14, 164
$185/Mg 9, 948 20, 097 30, 181

Source: Author’s Estimates
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The results presented in Tables 1.9 and 1.10 shed light on the potential external social bene-

fits arising from maintaining current land management practices in Saskatchewan, characterized

by zero-tillage, continuous cropping, and crop rotations that include more canola than in past

decades. Table 1.9 shows the benefits resulting from a permanent change in SOC stocks, with-

out accounting for future dynamic processes in SOC stocks beyond 2019. In contrast, Table 1.10

shows the benefits implied by a forward projection of SOC stocks for each scenario, 150 years into

the future. Allowing for future dynamics in SOC stocks results in larger differences between the

actual and counterfactual scenarios over time, and hence greater estimates of external social ben-

efits relative to the benefits from a permanent change in SOC stocks equal to that estimated for

2019. However, assuming that the difference between the actual and counterfactual SOC stocks

attributable to changes in production practices observed in 2019 are permanent results in external

social benefits in perpetuity that are comparable to those computed from the forward projection.

It is apparent that these two differing methods for valuing future SOC relative to a counterfactual

scenario, as presented in this section, each have their own set of advantages and disadvantages.

1.14 Conclusion

In this essay, I introduce an new way to predict SOC stocks on farms across Saskatchewan. Us-

ing the newly developed Augmented Campbell model combined with an exclusive, confidential

dataset at the field level from SCIC, I simulate annual SOC stocks across Saskatchewan farmlands

from 1998 to 2019. Additionally, I calculate the external social benefits derived from agricultural

management practices implemented over the 22 year period, compared with a range of hypothet-

ical counterfactual alternative scenarios and using various estimates of the social cost associated

with atmospheric carbon.

Using the weather version of the Augmented Campbell Model, my analysis shows that, on

average, SOC stocks across Saskatchewan rose by approximately 6,797 kg/ha between 1998 and

2019. This effect is heterogeneous by soil zone, with SOC stocks growing by 4,437 kg/ha in the

brown soil zone, 6,048 kg/ha in the dark brown soil zone, and 7,488 kg/ha in the black & gray

76



soil zone. It translates into an annual average change in SOC stocks across Saskatchewan of 309

kg/ha/yr.

To calculate the external social benefit, I simulate the actual past compared with various

counterfactual scenarios in Saskatchewan, where a percentage of canola hectares revert to summer

fallow (i.e., 25%, 50%, and 75%). I apply a rental rate for SOC implied by an assumed value for the

SCC, representing the marginal social cost of increasing atmospheric carbon stocks. The estimated

external social benefits resulting from canola adoption in Saskatchewan vary depending on the

assumed SCC value and the proportion of canola hectares that would otherwise have reverted to

summer fallow, ranging from $481 million to $6 billion. These estimates refer to benefits accruing

between 1998 and 2019. If the additional SOC storage accomplished in 2019 is permanent from

2019 forward, an additional $766 million to $29.1 billion in external social benefits will accrue.

Furthermore, I project SOC stocks 150 years into the future using the most recent five-year

average carbon inputs for each field. I compute the external social benefit using projections for

a baseline scenario (maintaining current farming practices) and three alternative scenarios (25%,

50%, and 75% of canola hectares converted to summer fallow). I find that the projected exter-

nal social benefit from increased SOC stocks—resulting from the continuation of current farming

practices, relative to alternative practices involving reduced canola, increased summer fallow, and

more tillage—could potentially reach up to $30.2 billion, depending on the SCC and the chosen

counterfactual scenario.

The external social benefits, both per hectare and in total, are most significant in the black

& gray soil zone, where canola predominates, and lowest in the brown soil zone, where summer

fallow is more common. My analysis indicates that the estimated external social benefits from

the adoption of lentils are considerably smaller, amounting to approximately 3% of the benefits

observed from canola adoption under similar scenarios. These benefits are primarily concentrated

in the brown and dark brown soil zones, where lentils are predominantly grown.

Overall, the estimated external social benefits observed over the past 22 years can be largely

attributed to the reduction in tillage and summer fallow, as well as increased adoption of canola.
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This is primarily because canola sequesters significantly more carbon in the soil compared to other

crops because it is physically larger. While canola is typically less common in the brown soil zone

because of higher drought risk and limited moisture (Marchildon and Sauchyn, 2009), integrating

more canola into wheat-lentil rotations in this zone could potentially benefit society by storing

additional carbon. Furthermore, Lafond et al. (2011), Oldfield et al. (2019), Rubio et al. (2021),

Kane et al. (2021), and Wu and Congreves (2021) find that increased SOC improves soil health,

crop yield, and overall crop productivity, further highlighting the potential societal benefits of

carbon sequestration through agricultural practices. In conclusion, the results in this essay show

that the carbon sequestration achieved in Saskatchewan over the past 22 years through practices

like zero-tillage, continuous cropping, and canola adoption is worth billions of dollars.
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Appendix 1A: Derivation of the Augmented Campbell Model

In this appendix, I derive the Augmented Campbell model using the Campbell model and a humi-

fication process that originates from the Introductory Carbon Balance Model (ICBM). The formula

for SOC from the Campbell model is,

SOCt = C0(q1e−k1t + q2e−k2t) +
t

∑
n=0

[An(p1e−r1(t−n) + p2e−r2(t−n))]. (1A.1)

The first-order differential equation that represents the dynamics of the Campbell model is

shown in equation (1A.2). The Campbell model implicitly assumes there are four types of carbon

stocks, comprising two types for each of both young and old carbon stocks, with different decay

rates (k1, k2, r1, and r2). These two types of carbon are labile (i.e., with shares q1 and p1) and

refractory (i.e., with shares q2 and p2). In the essay, I refer to the carbon pools as plant residue

and soil carbon. Throughout Appendix 1A, I instead refer to the carbon pools as young (i.e., plant

residue) and old (i.e., soil carbon) to be consistent with the ICBM terminology.

dSOCt

dt
= At p1 + At p2︸ ︷︷ ︸

Plant Residue

− r1SOCY1
t − r2SOCY2

t︸ ︷︷ ︸
Residue Decay

− k1SOCO1
t − k2SOCO2

t︸ ︷︷ ︸
Humus Decay

(1A.2)

I now provde the derivation for equation (1A.2). Expanding the summation over planting

years in equation (1A.1) results in

SOCt = C0(q1e−k1t + q2e−k2t) + A0(p1e−r1t + p2e−r2t) + · · ·+ At(p1 + p2). (1A.3)

To solve for the first-order differential equation, differentiate equation (1A.3) with respect to

time, t. Equation (1A.4) represents the state equation of the Campbell model. Now,
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dSOC
dt

= −C0(k1q1e−k1t + k2q2e−k2t)− A0(r1 p1e−r1t + r2 p2e−r2t)

− A1(r1 p1e−r1(t−1) + r2 p2e−r2(t−1))− · · · .
(1A.4)

Expanding terms in equation (1A.4) gives,

dSOC
dt

= −C0k1q1e−k1t − C0k2q2e−k2t − A0r1 p1e−r1t − A0r2 p2e−r2t − · · · . (1A.5)

I derive equations (1A.6) – (1A.9) by separating equation (1A.5) into four types of SOC stocks.

Following this system of differential equations, I add a humification term to account for the con-

version of young to old carbon stocks in equations (1A.10) and (1A.11). Before adding the hu-

mification process, I verify the solutions to the system of differential equation with the Campbell

model.33

Old Labile Carbon Stocks:
dSOCO1

t
dt

= −k1SOCO1
t (1A.6)

Old Refractory Carbon Stocks:

dSOCO2
t

dt
= −k2SOCO2

t (1A.7)

Young Labile Carbon Stocks:

dSOCY1
t

dt
= At p1 − r1SOCY1

t (1A.8)

33The differential equations (1A.6) – (1A.9) come from the variable coefficients initial value problem. These differ-
ential equations include a plant residue input and a decay rate on SOC stocks as depicted in the ICBM. Please refer to
Andrén and Kätterer (1997) for more details on the structure of SOC differential equations.
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Young Refractory Carbon Stocks:

dSOCY2
t

dt
= At p2 − r2SOCY2

t (1A.9)

The Campbell model does not allow for a proportion of plant residue (i.e., young carbon

stocks) to convert into old carbon stocks. I propose a change in the differential equations to allow

for feedback from young to old carbon stocks through plant residue humification. The Augmented

Campbell model is characterized by the system of ordinary differential equations (1A.10) – (1A.13).

dSOCO1
t

dt
= hr1SOCY1

t − k1SOCO1
t (1A.10)

dSOCO2
t

dt
= hr2SOCY2

t − k2SOCO2
t (1A.11)

dSOCY1
t

dt
= At p1 − r1SOCY1

t (1A.12)

dSOCY2
t

dt
= At p2 − r2SOCY2

t (1A.13)

Summing these terms, equation (1A.14) characterizes the change in SOC over time in the

Augmented Campbell Model.

dSOCt

dt
= At p1 + At p2︸ ︷︷ ︸

PlantResidue

− r1SOCY1
t − r2SOCY2

t︸ ︷︷ ︸
ResidueDecay

+ hr1SOCY1
t + hr2SOCY2

t︸ ︷︷ ︸
Humi f ication

− k1SOCO1
t − k2SOCO2

t︸ ︷︷ ︸
HumusDecay

(1A.14)

Solving the differential equations (1A.10) – (1A.13) and using the Euler-Maclaurin formula to

approximate the integral as a summation transforms the ordinary differential equation back into
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the Campbell model’s summation form.

For young stocks, the particular solution is the same as the Campbell model,

SOCY1
t = A0 p1e−r1t + e−r1t

∫ t

0
As p1er1sds. (1A.15)

The integral in equation (1A.15) is approximated as a sum by use of the Euler-Maclaurin

formula. Equations (1A.16) – (1A.18) provide the results for young labile carbon stocks, which is

identical to the Campbell Model.

∫ t

0
As p1er1sds = A1 p1er1 + · · ·+ At−1 p1er1(t−1) + At p1er1t (1A.16)

SOCY1
t = A0 p1e−r1t + A1 p1e−r1(t−1) + · · ·+ At−1 p1e−r1 + At p1 (1A.17)

SOCY1
t =

t

∑
n=0

An p1e−r1(t−n) (1A.18)

The equation for refractory young SOC stocks can also be calculated similarly. The result is

shown in equation (1A.19).

SOCY2
t =

t

∑
n=0

An p2e−r2(t−n) (1A.19)

The solution for labile old stock is different from the Campbell model because it now includes

a humification process which is linked to the young stocks. Equation (1A.20) shows the solution

to the first-order differential equation (1A.10).

SOCO1
t = C0q1e−k1t + e−k1t

∫ t

0

s

∑
n=0

hr1An p1e−r1(s−n)ek1sds (1A.20)
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Equations (1A.21) – (1A.23) approximate the sum of the integral by the Euler-Maclaurin for-

mula.

∫ t

0

s

∑
n=0

An p1e−r1(s−n)ek1sds =
t

∑
n=0

An p1e−r1(t−n)ek1 + · · ·

+
t

∑
n=0

An p1e−r1(t−n)ek1(t−1) +
t

∑
n=0

An p1e−r1(t−n)ek1t

(1A.21)

e−k1thr1

∫ t

0

s

∑
n=0

An p1e−r1(s−n)ek1sds =
t

∑
n=0

Anhr1 p1e−r1(t−n)e−k1(t−1) + · · ·

+
t

∑
n=0

Anhr1 p1e−r1(t−n)e−k1 +
t

∑
n=0

Anhr1 p1e−r1(t−n)

(1A.22)

e−k1thr1

∫ t

0

s

∑
n=0

An p1e−r1(s−n)ek1sds =
t

∑
s=1

t

∑
n=0

Anhr1 p1e−r1(t−n)e−k1(t−s) (1A.23)

This gives the equation for labile carbon stocks for the Augmented Campbell model as shown

in equation (1A.24).

SOCO1
t = C0q1e−k1t +

t

∑
s=1

t

∑
n=0

Anhr1 p1e−r1(t−n)e−k1(t−s) (1A.24)

With the same derivation, I obtain the refractory old carbon stocks depicted in equation

(1A.25).

SOCO2
t = C0q2e−k2t +

t

∑
s=1

t

∑
n=0

Anhr2 p2e−r2(t−n)e−k2(t−s) (1A.25)

Combining equations (1A.18), (1A.19), (1A.24), and (1A.25) results in the Augmented Camp-

bell model:
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SOCt = C0(q1e−k1t + q2e−k2t) +
t

∑
n=0

[An(p1e−r1(t−n) + p2e−r2(t−n))]+

t

∑
s=1

t

∑
n=0

[An(hr1 p1e−r1(t−n)−k1(t−s) + hr2 p2e−r2(t−n)−k2(t−s))].

(1A.26)

The last modification to the Augmented Campbell model involves introducing a scalar pa-

rameter, γ, to the plant residue decomposition rates. Specifically, the decomposition rate for plant

residue humification should be lower than that for plant residue but higher than for soil humus.

The equation representing the Augmented Campbell model is then adjusted as follows,

SOCt = C0(q1e−k1t + q2e−k2t) +
t

∑
n=0

[An(p1e−r1(t−n) + p2e−r2(t−n))]+

t

∑
s=1

t

∑
n=0

[An(hr1 p1eγ(−r1(t−n)−k1(t−s)) + hr2 p2eγ(−r2(t−n)−k2(t−s)))].

(1A.27)

The Augmented Campbell model incorporates the Campbell model in the initial two terms

of equation (1A.27). The third term introduces an extra pool of SOC, prolonging the time required

to achieve a steady-state equilibrium compared to the Campbell model. With each time period,

the Augmented Campbell model yields a higher SOC stock compared to the Campbell model,

thereby minimizing prediction errors and mitigating the underestimation of SOC stocks observed

in the Campbell model.
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Appendix 1B: Introductory Carbon Balance Model

The ICBM shares a comparable structure with the Campbell model, featuring distinct pools for

young (labile) and old (refractory) carbon. However, the key difference is in the ICBM’s segmen-

tation of carbon into two distinct pools, namely young and old carbon stocks, which are connected

by a humification process (Andrén and Kätterer, 1997). In Saskatchewan, the decomposition and

humification rates for the ICBM are parameterized by Campbell et al. (2007a,b) and Lemke et al.

(2010).

In Figure 1B.1, Y and O represent the stocks of young and old carbon. Equations inside the

square representing each stock are the steady states for SOC whereas the arrows represent the

inflows and outflows for the SOC system.

FIGURE 1B.1: ICBM Structure of Soil Organic Carbon System

Source: Andrén and Kätterer (1997).
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The ICBM’s system of differential equations is solved analytically to derive the steady-state

equations for each pool. By employing the average carbon inputs for each system and deter-

mining the percentage allocations based on these steady-state equations, I initialize the model by

distributing the initial SOC stock into the young and old pools. Following the approach of Lemke

et al. (2010), I employ the average carbon inputs for each field to compute the steady-state equi-

libria for the young and old pools of SOC. I will now present the solutions for the steady-state

equations that are needed for initializing the ICBM model.

The differential equations that represent the state variable dynamics for the system in Figure

1B.1 can be represented by the system of differential equations shown equations (1B.1) and (1B.2).

dY
dt

= i− k1rY, (1B.1)

dO
dt

= hk1rY− k2rO, (1B.2)

where i is the annual carbon input, k1 is the decomposition rate for young carbon, k2 is the decom-

position rate of old carbon, and h is the humification rate. All decomposition and humification

rates are values are based are parameterized for Saskatchewan (see Campbell et al. (2007a,b) and

Lemke et al. (2010)).

The first-order differential equations can be solved through two main approaches: the inte-

grating factor method or the Laplace transform technique. Andrén and Kätterer (1997) employ

the integrating factor method, incorporating an initial value to address the system. In this work,

I confirm their findings by applying the Laplace transform. These differential equations are for-

malized in equations (1B.3) and (1B.4), with the ICBM system’s initial value condition specified as

Y(t = 0) = Y0 where a, c, b, d ∈ R and a, b, d ̸= 0.

dY
dt

+ aY = c, (1B.3)
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dO
dt

+ bO = dY, (1B.4)

where a = k1r, c = i, b = k2r and d = hk1r. The Laplace transform for equations (1B.1) and

(1B.2) are shown in equations (1B.5) to (1B.12). The variable s represents a common value that

corresponds the variables shown in equations (1B.5) and (1B.6).

L
{dY

dt

}
+ L{aY} = L{c} (1B.5)

L
{dO

dt

}
+ L{bO} = L{d} (1B.6)

Where:

L{s} =
∫ ∞

0
f (t)e−stdt (1B.7)

L
{dY

dt

}
=
∫ ∞

0

dY
dt

e−stdt = −
∫ ∞

0
Y(t)(−se−stdt) + [e−stY(t)]∞0 = sL{Y} −Y0 (1B.8)

L
{dO

dt

}
=
∫ ∞

0

dO
dt

e−stdt = −
∫ ∞

0
O(t)(−se−stdt) + [e−stO(t)]∞0 = sL{O} −O0 (1B.9)

L{Y} =
∫ ∞

0
Y(t)e−stdt (1B.10)

L{O} =
∫ ∞

0
O(t)e−stdt (1B.11)
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L{c} =
∫ ∞

0
ce−stdt = c

[
− e−st

s

]∞

0
=

c
s

(1B.12)

Using the Laplace identities in equations (1B.7) to (1B.12), the Laplace transforms for young

and old carbon stocks are:

sL{Y} −Y0 + aL{Y} = c
s

, (1B.13)

and

sL{O} −O0 + bL{O} = dL{Y}. (1B.14)

Equations (1B.13) and (1B.14) reduce to:

L{Y} = ca
as(s + a)

+
aY0

a(s + a)
, (1B.15)

L{O} = d
s + b

[
c

s(s + a)
+

Y0

s + a

]
+

O0

s + b
. (1B.16)

Employing partial fraction expansion, the first and second terms in equation (1B.16) are:

c
s(s + a)(s + b)

=
A1

s
+

A2

s + a
+

A3

s + b
and

Y0

(s + a)(s + b)
=

B1

s + a
+

B2

s + b
. (1B.17)

Solving for A1, A2, and A3:

[
c

(s + a)(s + b)

]
s=0

=

[
A1 + s

A2

s + a
+ s

A3

s + b

]
s=0

=⇒ A1 =
c

ab
, (1B.18)
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[
c

s(s + b)

]
s=−a

=

[
(s + a)

A1

s
+ A2 + (s + a)

A3

s + b

]
s=−a

=⇒ A2 = − c
a(b− a)

, (1B.19)

[
c

s(s + a)

]
s=−b

=

[
(s + b)

A1

s
+ (s + b)

A2

s + a
+ A3

]
s=−b

=⇒ A3 =
c

b(b− a)
. (1B.20)

Solving for B1 and B2:

[
Y0

s + b

]
s=−a

=

[
B1 + (s + a)

B2

s + b

]
s=−a

=⇒ B1 =
Y0

b− a
, (1B.21)

[
Y0

s + a

]
s=−b

=

[
(s + b)

B1

s + a
+ B2

]
s=−b

=⇒ B2 = − Y0

b− a
. (1B.22)

Substituting equations (1B.18) to (1B.22) into equation (1B.15) and (1B.16) leads to the Laplace

transform identity for the old carbon stock:

L{O} = d
[

c
sab
− c

a(s + a)(b− a)
+

c
b(s + b)(b− a)

+
Y0

(s + a)(b− a)
− Y0

(s + b)(b− a)

]
+

O0

s + b
.

(1B.23)

I now use formulas from the table of Laplace transforms to convert L{Y} and L{O} to Y and

O. These formulas describe the relationships between the Laplace transform and the first-order

differential form to obtain a solution. The solutions to the system of differential equations in the

ICBM are,

L{Y} = i
k1r

(1− e−k1rt) + Y0e−k1rt, (1B.24)
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L{O} = hk1r
[

i
k1rk2r

− i
k1rr(k2 − k1)

e−k1rt +
i

k2rr(k2 − k1)
e−k2rt

+
Y0

r(k2 − k1)
e−k1rt − Y0

r(k1 − k2)
e−k2rt

]
+ O0e−k2rt.

(1B.25)

Rearranging terms in equations (1B.24) and (1B.25) provides the solution to the first-order

differential equations:

Y =
i

k1r
+

(
Y0 −

i
k1r

)
e−k1rt, (1B.26)

O = h
i

k2r
+

(
O0 − h

k2rk1rY0 − k1ri
k2rr(k2 − k1)

)
e−k2rt +

(
h

k1rY0 − i
r(k2 − k1)

)
e−k1rt

+ h
r(k2 − k1)i

k2rr(k2 − k1)
e−k2rt − h

i
k2r

e−k2rt.
(1B.27)

The last two terms in equation (1B.27) are added and subtracted to provide a more concise

equation. This is shown in equation (1B.28).

O = h
i

k2r
+

(
O0 − h

i
k2r

+ h
k1rY0 − i
r(k2 − k1)

)
e−k2rt +

(
h

k1rY0 − i
r(k2 − k1)

)
e−k1rt (1B.28)

The steady states for young and old carbon stocks exist when t → ∞. Equations (1B.29) and

(1B.30) display the steady-state carbon stocks for young and old soil carbon pools.

YSS =
i

k1r
(1B.29)

OSS = h
i

k2r
(1B.30)
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Equations (1B.29) and (1B.30) are required for initializing the ICBM. The share of the initial

SOC stock that is allocated to each pool by field is based on the average carbon input over the

sample period found in equations (1B.29) and (1B.30).

The initial stocks of SOC for each pool using the steady-state equations are as follows:

Y0 =
YSS

YSS + OSS
× C0, and (1B.31)

O0 =
OSS

YSS + OSS
× C0. (1B.32)

Where Y0 is the initial stock of SOC in the young carbon pool, O0 is the initial SOC stock in the old

carbon pool, and C0 in the initial stock of SOC by field based on soil sampling data.

ICBM/2

In addition to the ICBM, the ICBM/2 model is also employed to predict SOC stocks in this

essay. Originally developed by Kätterer and Andrén (2001), the ICBM/2 splits the young pool

into aboveground and belowground components, each with distinct decomposition rates. Poe-

plau et al. (2015) later modified the ICBM/2 to incorporate different humification rates for these

aboveground and belowground pools, instead of varying decomposition rates as in version con-

structed by Kätterer and Andrén (2001). For this analysis, I employ the version of the ICBM/2

that is updated by Poeplau et al. (2015). The model parameters are calibrated for chernozemic

soils in Saskatchewan by Congreves et al. (2015) and Kröbel et al. (2016), who evaluate its per-

formance using soil sampling data from the AAFC Experimental Research Station in Swift Cur-

rent, Saskatchewan. Both the ICBM and ICBM/2 models consider tillage effects through a “rate

modifier” parameter, which adjusts the decomposition rates of young and old carbon pools (Con-

greves et al., 2015). Additionally, some studies introduce an extra pool for manure, resulting in

the ICBM/3 (see Fortin et al. (2011) Kröbel et al. (2016), and Thiagarajan et al. (2022)). Figure 1B.2

illustrates the flow diagram for the modified ICBM/2 model.
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FIGURE 1B.2: ICBM/2 Flow Diagram including Above Ground and Below Ground
Pools with distinct Humification Rates.

Source: Poeplau et al. (2015).

The system of first-order differential equations describing the ICBM/2 are,

dYl

dt
= il − k1rYl , (1B.33)

dYr

dt
= ir − k1rYr, (1B.34)

dO
dt

= hlk1rYl + hrk1rYr − k2rO, (1B.35)

where Yl is the labile young carbon pool representing the aboveground plant residue, and Yr is

the resistant young carbon pool representing the belowground plant residue, il and ir are the

respective carbon inputs (i.e., separated using the PBCI model), and hl and hr are the respective

humification rates.
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Solving the model either by the initial value problem or the Laplace transform provides the

solutions to the steady-state equations. The steady-state equations for each carbon pool for the

ICBM/2 are shown in equations (1B.37) to (1B.39).

Yl,SS =
il

k1r
(1B.36)

Yr,SS =
ir

k1r
(1B.37)

OSS = hl
il

k2r
+ hr

ir

k2r
(1B.38)

where Yl,SS is the steady-state SOC stock for the young carbon pool for the stock of aboveground

SOC, Yr,SS is the steady-state SOC stock for the young carbon pool for the stock of belowground

SOC. The initial SOC stock values for each carbon pool are equal to:

Yl,0 =
Yl,SS

Yl,SS + Yr,SS + OSS
× C0, (1B.39)

Yr,0 =
Yr,SS

Yl,SS + Yr,SS + OSS
× C0, (1B.40)

O0 =
OSS

Yl,SS + Yr,SS + OSS
× C0. (1B.41)

where Yl,0 is the initial stock of SOC for the aboveground young carbon pool, and Yr,0 is the initial

stock of SOC for the belowground young carbon pool.
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Appendix 1C: Rothamsted Carbon Model

The version of the RothC model used in this essay is 26.3, developed by Coleman and Jenkinson

(1996). This model integrates biogeochemical data across five distinct carbon pools and applies

short, monthly time-steps to accurately depict the dynamics of SOC. It consists of four active soil

organic matter pools: Decomposable Plant Material (DPM), Resistant Plant Material (RPM), Mi-

crobial Biomass (BIO), and Humified Organic Matter (HUM), alongside a fifth pool, Inert Organic

Matter (IOM), which is not subject to decomposition. The RothC model’s comprehensive system

of differential equations is used to simulate SOC dynamics across these five pools. As such, the

model employs numerical methods to determine the steady-state equilibrium for each pool at

initialization, allocating specific portions of the initial SOC stock to each pool, in contrast to the

analytical approach to steady-state equations found in the ICBM and ICBM/2 models.

In this essay, I present a derivation of the RothC model that incorporates variable carbon

inputs and makes use of a system of discrete difference equations established by Parshotam (1996,

2001). These equations have undergone rigorous testing and validation against version 26.3 of the

RothC model, ensuring their reliability and accuracy (Parshotam, 1996, 2001). They are derived di-

rectly from the exponential state equations governing each carbon pool, as described by Coleman

and Jenkinson (1996).

I employ the forward Euler method to simulate SOC stocks within the RothC model. Due

to uncertainties regarding the accuracy of solutions derived from certain dynamic solvers for or-

dinary differential equations in the RothC model (see Martin et al. (2009) and Diele et al. (2021)),

I also address discrete solutions obtained from continuous solutions, as outlined by Martin et al.

(2009) in this Appendix. The discrete solutions provided by Parshotam (1996, 2001) align with the

continuous solutions presented by Martin et al. (2009) when applying the forward Euler method

to solve the system of differential equations, which is the standard solver employed in the SoilR

package.34

34For a comprehensive list of models solved using the Euler Method in the SoilR package, please refer to the docu-
mentation available at https://cran.r-project.org/web/packages/SoilR/SoilR.pdf.
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Figure 1C.1 illustrates a flow diagram depicting the RothC model’s process of transitioning

plant residues into various carbon compartments. The abbreviation FYM denotes farmyard ma-

nure, which is not a significant factor in this context. Plant material enters each compartment in

accordance with the parameters outlined in the figure below and undergoes decomposition across

successive stages, progressing from left to right (i.e., time-steps).

Several guides are available for initializing and executing the RothC model version 26.3. The

conventional approach is outlined by Coleman and Jenkinson (1996), while an updated version

is included in the Food and Agriculture Organization (FAO) guidelines for predicting global soil

carbon sequestration (Food and Agricultural Organization, 2020). For this analysis, I adopt the

latest initialization procedure offered by the FAO.

Rothamsted Carbon Model Setup

In the RothC model used for systems of agricultural crops, 59% of plant material goes to

DPM (γ), and the remaining 41% goes to RPM (1− γ) (i.e., a DPM/RPM ratio of 1.44).35 The ratio

of CO2 to BIO+HUM is

x = 1.67(1.85 + 1.60e−0.0786∗pclay), (1C.1)

where pclay is the percentage of clay in the soil by field. The amount going to CO2 is equal to

x/(x + 1) and the amount going to BIO+HUM is 1/(x + 1). Roughly 46% of the carbon going

to BIO+HUM goes to BIO and the remaining 54% goes to HUM. Hence, the coefficients in Figure

1C.1 are α = 0.46
1+1.67(1.85+1.60e−0.0786∗pclay)

and β = 0.54
1+1.67(1.85+1.60e−0.0786∗pclay)

. The IOM compartment is

based on the Falloon method, IOM = 0.049 ∗ C1.139
0 where C0 is the initial stock of organic carbon

in Mg/ha (Falloon et al., 1998).

35Refer to Figure 1C.1 for the corresponding parameters.
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FIGURE 1C.1: Flow diagram of the Rothamsted Carbon model.

Source: Diele et al. (2021).

Notes: FYM is Farmyard Manure, DPM is Decomposable Plant Material, RPM is Resistant
Plant Material, BIO is microbial Biomass, HUM is Humified organic matter, and IOM is Inert

Organic Matter

Building on the soil carbon dynamics illustrated in Figure 1C.1, the RothC model is repre-

sented by a system of first-order differential equations is,

ċ = ρ(t)



kdpm 0 0 0

0 krpm 0 0

αkdpm αkrpm (α− 1)kbio αkhum

βkdpm βkrpm βkbio (β− 1)khum


︸ ︷︷ ︸

=A

c(t) + b(t), such that c(t0) = c0 ≥ 0. (1C.2)

where c(t) =

[
cdpm(t) crpm(t) cbio(t) chum(t)

]T

denotes the vector of initial concentrations,

and b(t) = g(t)

[
γ 1− γ 0 0

]T

represents the carbon inputs entering the system at time t
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such that 0 ≤ γ ≤ 1 are the fraction of inputs that sum to one. The decomposition rate for each

respective compartment is ki, where i ∈ (dpm, rpm, bio, hum). The RothC model has rate modifiers

that are “compartment” dependent. I will explain these modifiers in further detail after deriving

the discrete system of differential equations for the RothC model. Here, the carbon inputs from

plant biomass enter the soil only through DPM and RPM compartments.

Expanding the system in equation (1C.2) provides the system of first-order differential equa-

tions for the RothC model provided in equation (1C.3) to (1C.6).

Decomposable Plant Material (DPM):

dcdpm(t)
dt

= −ρ(t)kdpmcdpm(t) + g(t)γ (1C.3)

Resistant Plant Material (RPM):

dcrpm(t)
dt

= −ρ(t)krpmcrpm(t) + g(t)(1− γ) (1C.4)

Microbial Biomass (BIO):

dcbio(t)
dt

= ρ(t)[αkdpmcdpm(t) + αkrpmcrpm(t) + (α− 1)kbiocbio(t) + αkhumchum(t)] (1C.5)

Humified Organic Matter (HUM):

dchum(t)
dt

= ρ(t)[βkdpmcdpm(t) + βkrpmcrpm(t) + βkbiocbio(t) + (β− 1)khumchum(t)] (1C.6)

Let the system of equations be represented in vector form,

ċ = ρ(t)Ac + b(t). (1C.7)
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The solution to this problem is characterized by,

c = c0eA
∫ t

0 ρ(t)dt + eA
∫ t

0 ρ(t)dt
∫ t

0
b(t)e−A

∫ s
0 ρ(t)dsds. (1C.8)

Based on the initial value problem represented in equation (1C.8), the solution to this discrete

system is characterized as,

c(n+1) = cneAρ(tn)∆t + ∆tb(t). (1C.9)

Martin et al. (2009) suggests that equation (1C.9) provides an approximation of the discrete-

form RothC model. To address this discretization issue, they propose a Fourier transformation

to estimate the discrete RothC model. Employing the continuous form in software like MATLAB

offers adaptable numerical integration techniques facilitated by program functions designed to

solve systems of ordinary differential equations (ODEs), such as ODE45. Alternatively, Diele et al.

(2021) proposes using the Exponential Rosenbrock-Euler model to discretize the continuous RothC

model, which is expected to decrease the estimation time required for calculating SOC stocks.

They evaluate this numerical integration method using dynamic solvers within MATLAB.

Discretization of the Rothamsted Carbon model

In this section, I present the explicit solutions for the discrete RothC model by discretizing the

continuous RothC system using the Euler method (specifically, the forward Euler method) with a

time-step procedure defined as tn+1 = t0 + n∆t where ∆t = 1. Parshotam (1996, 2001) provides

the discrete form solutions for the RothC model, but there exists some uncertainty when choosing

between the continuous and discrete models and their corresponding solvers for ordinary dif-

ferential equations. Despite this, the simplicity of the forward Euler method allows for intuitive

analytical solutions, unlike the more complex numerical integration methods as stated above or

other collocation methods. The SoilR package in R predominantly uses the forward Euler method

to solve the ordinary differential equations for the RothC, Century, ICBM, and many other models.
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This approach follows the same discrete temporal grid outlined by Diele et al. (2021), illustrating

the time-step scheme from the original discrete RothC model.

Applying the Euler scheme with steps defined as tn+1 = t0 + n∆t where ∆t = 1, and using

equations (1C.3) to (1C.6) for integrating over time on the discretized equation, yields the discrete

form solutions for the DPM and RPM compartments (equations (1C.10) and (1C.11)).

DPM:

dcdpm(t)
dt

= −ρ(t)kdpmcdpm(t) + g(t)γ =⇒

cdpm,n+1 = cdpm(tn)e−ρ(tn)kdpm∆t + e−ρ(tn)kdpm∆t
∫ t0+∆t

t0

g(s)γeρ(tn)kdpm∆tds =⇒

cdpm,n+1 = cdpm,ne−ρ(tn)kdpm∆t + ∆tgnγ

(1C.10)

RPM:

dcrpm(t)
dt

= −ρ(t)krpmcrpm(t) + g(t)(1− γ) =⇒

crpm,n+1 = crpm(tn)e−ρ(tn)krpm∆t + e−ρ(tn)krpm∆t
∫ t0+∆t

t0

g(s)γeρ(tn)krpm∆tds =⇒

crpm,n+1 = crpm,ne−ρ(tn)krpm∆t + ∆tgn(1− γ)

(1C.11)

The solutions for DPM and RPM first-order differential equations are the same solutions to

the discrete RothC model as in Parshotam (1996, 2001). The discrete RothC model is derived from

the exponential terms in Coleman and Jenkinson (1996), using discrete time intervals to obtain the

system of difference equations with a matrix of coefficients and the sum of exponentials.

To simplify the BIO and HUM first-order differential equations, I solve for the connecting

stocks of carbon pools using the initial value problem. These terms reflect past biological input

processes and are used to obtain the exact solution to the discrete-time RothC model.

Let the general initial value problem for the associated biological carbon input stocks be
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ci,t = cieY + eY
∫ x

0
(s)e−Yds→ ci,t = c0eY − x(t)

Y
(eY − 1). (1C.12)

Substituting equation (1C.12) into equation (1C.5) results in

dcbio(t)
dt

= ρ(t)kbiocbio(t) + ρ(t)α ∑
i∈dpm,rpm,bio,hum

ki

(
c0,ieY − x(t)

Y
(eY − 1)

)
. (1C.13)

Now using the forward Euler method to solve the discrete form for the biological pool im-

plies,

cbio,n+1 = cbio(tn)e−ρ(tn)kbio∆t

− e−ρ(tn)kbio∆t
∫ t0+∆t

t0

(
ρ(t)α ∑

i∈dpm,rpm,bio,hum
ki

(
c0,ieY − x(s)

Y
(eY − 1)

))
eρ(tn)kbio∆tds.

(1C.14)

The solution to the integral in equation (1C.14) is,

cbio,n+1 = cbio(tn)e−ρ(tn)kbio∆t − ∆tρ(t)α ∑
i∈{dpm,rpm,bio,hum}

ki

(
c0,ieY − x(tn)

Y
(eY − 1)

)
. (1C.15)

To solve for the exact solution as the discrete-time RothC model, it is evident that the general

form initial value problem parameters are equal to c0 = 0, Y = −ρ(tn)ki∆t and x(tn) = ci,n. This

implies,

cbio,n+1 = cbio,ne−ρ(tn)kbio∆t + ∑
i∈{dpm,rpm,bio,hum}

αci,n(1− eρ(tn)ki∆t), (1C.16)

and by symmetry the discrete solution for the HUM compartment is
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chum,n+1 = chum,ne−ρ(tn)khum∆t + ∑
i∈{dpm,rpm,bio,hum}

β(ci,n(1− eρ(tn)ki∆t)). (1C.17)

This provides the solution for the discrete-time version of the RothC model, aligning with

the solutions proposed by Parshotam (1996, 2001), which have undergone testing and validation

against the computational implementation of RothC model version 26.3.

Rothamsted Carbon Rate Modifiers

In this section, I explain the rate modifying decompositions rates shows in equation (1C.2) as

ρ(t). In Coleman and Jenkinson (1996), within each compartment the decomposition rate is

Ym+1 = Ym(1− e−abckt), (1C.18)

where Y is a compartment such as DPM, RPM, BIO, and HUM, a is the rate modifying factor for

temperature, b is the rate modifying factor for moisture, c is the soil cover rate modifying factor,

k is the decomposition rate constant for that compartment, and t is equal to 1/12, since k is based

on a yearly decomposition rate. Corresponding to the notation in equation (1C.2), I assume that

ρ(t) = abc.

Decomposition rate constant (k) is kdpm = 10 for DPM, krpm = 0.3 for RPM, kbio = 0.66 for

BIO, and khum = 0.02 for HUM. This corresponds to the parameters shown in equation (1C.2).

Temperature Modifier

The rate modifying factor for temperature (a) is equal to

a =
47.91

1 + e

(
106.06

Tm+18.27

) , (1C.19)

where Tm is average monthly air temperature in degrees Celsius.

Soil Moisture Modifier
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The rate modifying factor for soil moisture is based on the topsoil moisture deficit (TSMD)

index. The maximum TSMD for 0–23cm soil profile depth is

TSMDmax = −(20 + 1.3(%clay)− 0.01(%clay)2), (1C.20)

and to change soil thickness simply divide by 23cm and multiply by actual thickness. Calculating

Accumulated TSMD is obtained from the first month PET = 0.75 ∗OPE (open pan evaporation)

that is greater than the rainfall (mm) (i.e., TSMDacc = ∑(Precipm − 0.75 ∗OPEm)) until it reaches

its maximum TSMD value. For fields with fallow, the maximum TSMD is divided by 1.8. I chose

to use non-fallow maximum TSMD for all observations because I cannot tell whether the soil is

tilled when a farmer uses summer fallow.

The modifying factor for moisture (b) is

b =


1.0 if TSMDacc < 0.444 ∗ TSMDmax

0.2 + (1.0− 0.2) ∗ TSMDmax−TSMDacc
TSMDmax−0.444∗TSMDmax

otherwise
(1C.21)

Soil Cover Factor Modifier

If plants are present on the soil, then c = 0.6, and if the soil is bare, c = 1.0.

Rothamsted Carbon Initialization Procedure

Following the Food and Agricultural Organization (2020) recommendations for initializing

the RothC model, I compute the concentrations in each SOC compartment using two spin-up

phases. In the first phase, I run the model for a 500 year period using constant climatic conditions

and carbon inputs of 1 t C ha−1 yr−1. The initial allocation of the compartments in the first spin-up

phase are based on pedotransfer functions from Weihermüller et al. (2013), which are specifically

derived for the RothC model. These equations are equal to

RPM = (0.1847× C0 + 0.1555)(%clay + 1.2750)−0.1158, (1C.22)
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HUM = (0.7148× C0 + 0.5069)(%clay + 0.3421)0.0184, (1C.23)

BIO = (0.0140× C0 + 0.0075)(%clay + 8.8473)0.0567, and (1C.24)

DPM = C0 − IOM− RPM− HUM− BIO. (1C.25)

The second phase of the initialization procedure uses the simulated SOC stocks from the first

stage and adjusts carbon inputs using a factor from Smith et al. (2005). I then use these carbon

inputs running the model until the SOC stock is approximately equal to my initial observed SOC

stock. I set a very low tolerance level of 0.00001 kg C ha−1 in the function for the second phase of

the initialization procedure. The formula for the carbon input adjusts in the second phase to

Ceq =
C0 − IOM

Csim − IOM
, (1C.26)

where Ceq is the adjusted carbon input for the second spin-up phase and Csim is the simulated SOC

stock from the first spin-up phase after running the model for 500 years with constant climatic

conditions and carbon inputs of 1 t C ha−1 yr−1. Once the initialization procedure is complete,

the corresponding percentages for each compartment can used to allocate the initial SOC stock

accordingly and proceed using the prediction model with measures of carbon inputs over time.
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Appendix 1D: Satellite- versus Crop Production-based Predictions of

Soil Organic Carbon Stocks

In this Appendix, I assess the accuracy of SOC predictions made by the Augmented Campbell

model, Campbell model, ICBM, ICBM/2, and RothC model against Canada’s first ever carbon

map produced by Sothe et al. (2022). Sothe et al. (2022) employed satellite data alongside machine

learning techniques to predict average SOC levels spanning from 2015 to 2019, achieving a spatial

resolution of 250m2 across Canada. Collaborating with the World Wildlife Fund (WWF) Canada,

Sothe et al. (2022) use a random forest algorithm and 3D modeling methods to estimate SOC stocks

at both 30cm and 1m soil profile depths. I extend the SOC estimations from 30cm to 15cm depths

and adjust them based on the average bulk density ratio and organic carbon percentage at various

soil depths in Saskatchewan sourced from the Canadian National Soil Database (Agriculture and

Agri-Food Canada, 2022).

Sothe et al. (2022) used satellite data, including NDVI from Landsat-8 and MODIS, to predict

plant carbon biomass. They incorporated various additional factors such as precipitation, temper-

ature, and spectral bands from Landsat-8, including red, red-edge near infrared, and short-wave

infrared regions. Moreover, their analysis involved slope and topographic indices, canopy height

percentiles, and Synthetic Aperture Radar data, sourced from satellites like LiDAR, Sentinel-1,

ALOS-2, and ICESat-2. These diverse datasets were integrated into a random forest algorithm

and 3D machine learning techniques to estimate SOC stocks across different soil depths. To val-

idate their SOC prediction model, Sothe et al. (2022) compared their results with soil sampling

data from the World Soil Information Service (WoSIS_latest) database, focusing on non-forested

areas. They also employ data from Lehigh University datasets, primarily applicable to forested

areas, which are not extensively discussed in this essay. The WoSIS database contains soil samples

from 2,157 sites gathered between 1952 and 1985, including data from the Canadian National Soil

Database (Agriculture and Agri-Food Canada, 2022). To align SOC stocks with fields selected for

SOC prediction from the SCIC database to the data provided by Sothe et al. (2022), each field’s

SOC values were weighted based on the area of each raster cell within the field polygon.
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Figures 1D.1 and 1D.2 depict the carbon distribution maps of Canada and southern Saskatchewan,

focusing on soil organic carbon (SOC) stocks at a 15cm depth, derived from data provided by

Sothe et al. (2022). While Figure 1D.1 presents a comprehensive view of carbon distribution across

Canada, Figure 1D.2 zooms in on the prairie region of Saskatchewan. This carbon map illustrates

that the majority of carbon storage in Canada is concentrated in forested regions, with partic-

ularly dense concentrations around Lake Winnipeg in Manitoba (refer to Figure 1D.1). On the

other hand, Figure 1D.2 reveals that Saskatchewan’s carbon reserves are predominantly situated in

forested areas closer to the Canadian shield, which lies farther north. To enhance the visual repre-

sentation and capture a wider range of SOC variation in cropland areas of southern Saskatchewan,

I censor the upper limit of SOC stocks at 100,000 kg/ha. Although no formal analysis has been

conducted, the SOC prediction outcomes from the previous section appear consistent with carbon

map shown in Figure 1D.2, showcasing higher SOC stocks in the black & gray soil zone, gradually

declining as one moves spatially into the dark brown soil zone and further into the brown soil

zone.
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FIGURE 1D.1: World Wildlife Fund, Average Soil Organic Carbon Map of Canada from 2015 to 2019

Source: Created using data from Sothe et al. (2022).

106



FIGURE 1D.2: World Wildlife Fund, Average Soil Organic Carbon Map of Southern
Saskatchewan from 2015 to 2019

Source: Created using data from Sothe et al. (2022).

Notes: Soil Organic Carbon values are censored at 100,000 kg/ha to better illustrate the vari-
ation in soil organic carbon across the prairies.

I match the carbon map data from Sothe et al. (2022) with fields designated for SOC pre-

diction within the SCIC dataset. The carbon map from Sothe et al. (2022), structured as a raster

dataset, encompasses individual cells corresponding to locations within each field. Figure 1D.3

illustrates the alignment of SOC stock predictions for each field, according to various SOC predic-

tion models, with the estimations derived from the WWF carbon map (displayed across panels (a)
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to (f)). A diagonal line in Figure 1D.3, present in every panel, indicates instances where the pre-

dictions from both the SOC models and the WWF carbon map align perfectly for SOC stocks on

a field basis. To address extreme values, I apply a filter to the SOC stocks, considering only those

between 20,000 kg/ha and 150,000 kg/ha as indicated by the WWF carbon map, thereby exclud-

ing outlier cells within each field. These outliers often arise from inaccuracies in remote sensing

data, including cells that capture trees, buildings, roads, bodies of water, and other elements that

can distort satellite imagery. The comparison in Figure 1D.3 reveals significant discrepancies at

the field level between SOC stock measures predicted by SOC models and those from the WWF

carbon map, indicating considerable variance in SOC stock data across different fields. This re-

sults in instances of over prediction by SOC prediction models (or under prediction in the WWF

carbon map) at higher SOC stock values, and under prediction by SOC prediction models (or over

prediction in the WWF carbon map) at lower SOC stock values.

Figures 1D.4 to 1D.6 depict the effect of aggregating SOC predictions at different levels: Rural

Municipality (RM), crop district, and soil zone. In Figures 1D.4 to 1D.6, prediction variances that

deviate from the 45-degree line indicate discrepancies between the two SOC prediction method-

ologies. Through this aggregation process, the predictions of SOC stocks from each model and the

WWF carbon map converge.
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FIGURE 1D.3: Soil Organic Carbon Prediction Model results by Field in Saskatchewan compared to Satellite Prediction
Results from the World Wildlife Fund Carbon Map of Canada

Source: Author’s Estimates and created using data from Sothe et al. (2022).
Notes: All units on the y-axis and x-axis in each panel are in kg/ha. The y-axis of each panel shows the predicted SOC for each
prediction model using the SCIC data, whereas the x-axis includes the matched SOC data using the World Wildlife Fund Carbon

map created by Sothe et al. (2022).
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FIGURE 1D.4: Soil Organic Carbon Prediction Model results by Rural Municipality in Saskatchewan compared to Satel-
lite Prediction Results from the World Wildlife Fund Carbon Map of Canada

Source: Author’s Estimates and created using data from Sothe et al. (2022).
Notes: All estimates of SOC stocks are aggregated from fields to Rural Municipalities. All units on the y-axis and x-axis in each panel
are in kg/ha. The y-axis of each panel shows the predicted SOC for each prediction model using the SCIC data, whereas the x-axis

includes the matched SOC data using the World Wildlife Fund Carbon map created by Sothe et al. (2022).
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FIGURE 1D.5: Soil Organic Carbon Prediction Model results by Crop District in Saskatchewan compared to Satellite
Prediction Results from the World Wildlife Fund Carbon Map of Canada

Source: Author’s Estimates and created using data from Sothe et al. (2022).
Notes: All estimates of SOC stocks are aggregated from fields to crop districts. All units on the y-axis and x-axis in each panel are in
kg/ha. The y-axis of each panel shows the predicted SOC for each prediction model using the SCIC data, whereas the x-axis includes

the matched SOC data using the World Wildlife Fund Carbon map created by Sothe et al. (2022).
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FIGURE 1D.6: Soil Organic Carbon Prediction Model results by Soil Zone in Saskatchewan compared to Satellite Pre-
diction Results from the World Wildlife Fund Carbon Map of Canada

Source: Author’s Estimates and created using data from Sothe et al. (2022).
Notes: All estimates of SOC stocks are aggregated from fields to soil zones. All units on the y-axis and x-axis in each panel are in
kg/ha. The y-axis of each panel shows the predicted SOC for each prediction model using the SCIC data, whereas the x-axis includes

the matched SOC data using the World Wildlife Fund Carbon map created by Sothe et al. (2022).
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In Figure 1D.4, although some discrepancies persists in SOC stocks at the RM level, aggre-

gating to the crop district level in Figure 1D.5 results in more comparable simulated SOC stocks

across the prediction models and predictions from the WWF carbon map. Figure 1D.6 presents

the weighted average SOC stocks for each soil zone. Notably, the SOC prediction models predict

higher SOC stocks in the black & gray soil zone (with the highest observations) and lower SOC

stocks in the brown soil zone (with the lowest observations) compared to the WWF carbon map

SOC stocks. Consequently, the weighted average SOC stocks by crop district from 2015 to 2019

exhibit similarity across both prediction methods: SOC prediction models based on soil science

and soil carbon dynamics, and machine learning algorithms employing satellite data.

The objective of this appendix is to compare the SOC stock predictions made in this study

with those from other published research predicting SOC stocks in Saskatchewan. The findings

offer insights into the apparent differences between SOC prediction models grounded in SOC dy-

namic processes with crop production data and those employing machine-learning algorithms

that incorporate satellite data. Machine-learning algorithms deliver more computationally effi-

cient SOC stock predictions and are easier to scale up compared to models like the Augmented

Campbell model or RothC model. These algorithms are typically modeled using cross-validation

techniques, incorporating both training and testing data for prediction. In contrast, SOC pre-

diction models such as ICBM, DayCent, and RothC simulate SOC stocks over a time series for

individual observations, fields, or plots. However, machine learning-based SOC prediction mod-

els often do not integrate SOC dynamics, relying instead on statistical methods to predict SOC

stocks.
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Appendix 1E: Saskatchewan Crop Insurance Sample Selection for Soil

Organic Carbon Prediction

In this appendix, I describe the difference between the SCIC insured sample used for SOC predic-

tion and the observed SCIC insured sample not used for SOC prediction. The primary distinctions

lie in the distribution of seeded crops and crop yield across each sample. Additionally, there are

differences in the field size, measured in hectares per field. However, both samples exhibit re-

markable similarity in terms of crop distribution, yield, and field size. This alignment suggests

that extrapolating the predicted SOC stock per hectare from the sampled fields to all SCIC insured

hectares is justified. This assertion is supported by the comparable nature of prediction outcomes

for fields not included in the sample, given the identical crop distribution and yields across both

sample sets.

Figure 1E.1 shows the distribution of crop shares within and outside the SOC prediction

sample from 1998 to 2019, categorized by soil zone. Across the timeline, the proportion of hectares

dedicated to each crop type remains consistent between the two samples. Notable distinctions

include a slightly higher proportion of canola hectares within the sample compared to outside

the sample in the dark brown soil zone, and conversely, a slightly lower proportion of durum

wheat hectares within the sample in the same soil zone compared to its representation outside the

sample.

Figure 1E.2 shows that crop yields over time, as well as by crop type and soil zone, are sim-

ilarly distributed between the samples selected for SOC prediction and those not selected. Yields

within the selected sample are slightly higher for certain crops and soil zones compared to the

yields in the out-of-sample group. While density plots and histograms for each crop and soil zone

across all years were generated for both samples, they are not displayed here due to the excessive

number of graphs such an inclusion would necessitate. The analysis reveals no significant statis-

tical difference in the yield distributions between the samples for each crop covered in this essay

and soil zone annually. The most notable variance in yield is observed with oats, which represent

a minor portion of the total hectares recorded in the SCIC database.
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Figure 1E.3 shows the trend in average field size over time, distinguishing between the fields

chosen for SOC prediction (selected sample) and those not chosen (out of sample), further dis-

tinguished by fields seeding a single crop and those with multiple crops. The field sizes within

the selected sample remain relatively consistent over time, in contrast to the out-of-sample fields,

which exhibit a gradual increase in size for both single and multiple crop scenarios. In the initial

years covered by the study, fields not included in the sample and growing only one crop were

typically smaller in size, as a portion of the land was left fallow.

Figure 1E.4 illustrates a declining trend in the proportion of fields growing multiple crops

across all soil zones within the SCIC dataset over time. This trend suggests that differences in

field size between fields selected for SOC prediction (in sample) and those not selected (out of

sample) are unlikely to introduce significant selection bias, especially when crop shares and yields

are consistent between the two groups. Nevertheless, the observed changes in field size reflect

broader agricultural trends toward larger farm operations and going towards economies of scale

in grain production. As a result, with the adoption of larger farming equipment and a reduction

in the number of farmers, the average field size is converging towards the conventional legal land

parcel of 65 hectares (160 acres).
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FIGURE E.1: SCIC Insured Share of Crop Hectares in Saskatchewan In- and Out-of-
Sample for Soil Organic Carbon Prediction

Source: Constructed using SCIC confidential data.
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FIGURE E.2: SCIC Insured Mean Crop Yield in Saskatchewan In- and Out-of-Sample for Soil Organic Carbon Prediction

Source: Constructed using SCIC confidential data.
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FIGURE E.3: SCIC Insured Mean Field Hectares in Saskatchewan In- and Out-of-
Sample for Soil Organic Carbon Prediction

Source: Constructed using SCIC confidential data.
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FIGURE E.4: SCIC Percentage of Insured Fields that Seed Multiple Crops in
Saskatchewan

Source: Constructed using SCIC confidential data.
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Appendix 1F: Calculating the Present Value of Carbon Sequestration us-

ing the Social Cost of Carbon

The economic impact of increasing atmospheric carbon dioxide endures for many decades into

the future, due to the prolonged presence of carbon dioxide in the atmosphere (Greenestone et al.,

2013). Pearce (2003) defines the social cost of carbon (SCC) as the present value of all future

incremental damages resulting from the release of an additional unit of carbon dioxide into the at-

mosphere, which is an estimate of the marginal cost of permanent change. Presently, determining

the SCC relies on integrated assessment models (IAMs), which simulate how human behaviors

and consumption choices influence climate change. IAMs are “integrated” because they merge

economic and societal behaviors with specific Earth’s physical systems, connecting economic and

geophysical stocks and flows.

In 2021, President Biden issued Executive Order 13990, directing the Interagency Working

Group on Social Cost of Greenhouse Gases (IWG) to release an interim estimate for the social

cost of carbon (SCC) (Interagency Working Group on Social Cost of Greenhouse Gases, 2021).

By February 2021, the IWG had computed the SCC at 51 U.S. dollars per Mg of carbon dioxide,

employing a real discount rate of 3% per annum (in 2020 dollars). Depending on the chosen

discount rate, the SCC varied from $14 per Mg of carbon dioxide with a 5% annual discount rate

to $76 per Mg of carbon dioxide with a 2.5% annual discount rate. Numerous other studies use

IAMs to estimate the SCC. Rennert et al. (2022) propose a more precise SCC estimate of $185 per

Mg of CO2 with a 2% near-term risk-free discount rate, whereas Russell et al. (2022) demonstrate

that depending on the Representative Concentration Pathways (RCPs) in temperature projections

and Shared Socioeconomic Pathways (SSPs), the SCC might range from as low as $2.35 per Mg of

CO2 to as high as $258.40 per Mg ton of CO2.

The interim values for the SCC released by the IWG derive from the an ensemble of three

IAMs to evaluate the economic damages of releasing an additional unit of carbon dioxide into the

atmosphere. The three IAMs are the Dynamic Integrated Climate and Economy (DICE) 2010, the
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Climate Framework for Uncertainty, Negotiation, and Distribution (FUND), and the Policy Anal-

ysis of the Greenhouse Gas Effect (PAGE). These models project future policy scenarios through

dynamic processes that incorporate data on economic development and climatic changes.

In this appendix, I demonstrate how to use the SCC to calculate the external social benefits

from carbon sequestration. Given that a unit of carbon sequestered in the soil does not equate to

a unit of atmospheric carbon dioxide, I adjust the SCC to reflect the social cost of sequestering soil

organic carbon (SCSOC). The SCSOC represents the worth of capturing an additional unit of soil

organic carbon (SOC) indefinitely. However, since SOC is not retained in the soil indefinitely, it

is necessary to translate the SCSOC into an annual rental value. This value represents the benefit

from sequestering SOC for one year.

To convert the SCC to SCSOC, Mikhailova et al. (2019) employ a conversion factor of 44 Mg

of carbon dioxide per 12 Mg of SOC. The SCSOC is equal to,

SCSOCt = SCCt ∗
44 Mg CO2
12 Mg SOC

. (1F.1)

This represents the value of storing an additional ton of SOC forever rather than releasing it into

the atmosphere.

In equation (1F.2), the annual rental rate of the SCSOC (Pt) is equal to the SCSOC multiplied

by the discount rate (r) that correspond to the discount rate used to calculate the SCC.

Pt = r ∗ SCSOCt. (1F.2)

Using equation (1F.2), by applying the rental rate to the existing SOC stock, I estimate the exter-

nal societal benefits of the carbon stored in the soil relative to a hypothetical scenario where this

carbon would be emitted into the atmosphere. To assess the external benefits of changes in car-

bon sequestration against a baseline SOC stock, it is essential to establish a specific counterfactual

SOC stock level. This hypothetical SOC stock can either be determined directly or modeled to
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evaluate the effect of certain carbon sequestration policies. For instance, the baseline SOC stock

might be set equal to the steady-state equilibrium stock for native prairie lands or another land

management practice, such as zero tillage.

Equation (1F.3) shows a formula for calculating the external social benefit from carbon se-

questered in year t+ n for the “actual” or with-policy stock of SOC (SOCA
t+n) relative to a “counter-

factual” or with-out policy stock of SOC (SOCC
t+n). The term in parentheses is the policy-induced

change in the stock of SOC.

SBt+n = Pt(SOCA
t+n − SOCC

t+n) (1F.3)

Consider a policy change made in year t, such that changes in the stock of SOC occurs in the

following year. The present value of the external social benefit that originates from the policy-

induced change in the stock of SOC over the indefinite future, and using a real discount rate equal

to δ, is equal to:

PVt =
∞

∑
n=1

SBt+n(1 + δ)−n. (1F.4)

If the SCSOC indicates the marginal effect of raising the SOC stock by one unit indefinitely, then

the discount rate in equation (1F.4) should match the discount rate in equation (1F.2).

For instance, suppose that the difference between the stock of SOC with and without a pol-

icy remains unchanged over time. By adopting this assumption, the variable for external social

benefit (SB) no longer requires a time index. Under this condition, equation (1F.4) simplifies to the

following form:

PVt = SB
∞

∑
n=1

(1 + δ)−n. (1F.5)

The closed form solution to the geometric series in equation (1F.5) is,
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PVt =
SB/(1 + δ)

1− 1/(1 + δ)
. (1F.6)

Substituting equation (1F.3) that includes the constant external social benefit into equation

(1F.6) implies,

PVt =
Pt

δ
(SOCA − SOCC). (1F.7)

Substituting r for δ in equation (1F.7) implies,

PVt =
Pt

r
(SOCA − SOCC) = SCCt ∗

44 Mg CO2

12 Mg SOC
(SOCA − SOCC). (1F.8)

When the discount rate applied to determine the present value of the policy-induced vari-

ation in the SOC stock matches the discount rate used for computing the SCC (δ = r), the SCC

reflects the present value of all future welfare effects resulting from a unit increase in carbon diox-

ide emissions into the atmosphere.

123



Appendix 1G: Supplementary Graphs and Tables

This appendix includes the supplementary graphs and tables referenced throughout the essay.

FIGURE 1G.1: Comparison of SOC Prediction using Base and Weather Versions of
the Augmented Campbell model on six Randomly Selected Fields in Saskatchewan

from 1998 to 2019

Source: Author’s Estimates.

Notes: Each panel refers to an individual field that is randomly selected in Saskatchewan.
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FIGURE 1G.2: Field-level Distribution of External Social Benefit per Hectare by
Draw of the Binomial Distribution, Counterfactual Scenario, and Soil Zone in

Saskatchewan using the Campbell Model and a Social Cost of Carbon of $14/Mg

Source: Author’s Estimates.

Notes: All soil organic carbon predictions in the above graph are computed using the Camp-
bell model. The columns of panels refer to the counterfactual shares of canola switched to
summer fallow (25%, 50%, and 75%) of insured hectares in Saskatchewan, whereas the rows

of panels refer to different soil zones.
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FIGURE 1G.3: Field-level Distribution of External Social Benefit per Hectare by
Draw of the Binomial Distribution, Counterfactual Scenario, and Soil Zone in

Saskatchewan using the Campbell Model and a Social Cost of Carbon of $51/Mg

Source: Author’s Estimates.

Notes: All soil organic carbon predictions in the above graph are computed using the Camp-
bell model. The columns of panels refer to the counterfactual shares of canola switched to
summer fallow (25%, 50%, and 75%) of insured hectares in Saskatchewan, whereas the rows

of panels refer to different soil zones.
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FIGURE 1G.4: Field-level Distribution of External Social Benefit per Hectare by
Draw of the Binomial Distribution, Counterfactual Scenario, and Soil Zone in

Saskatchewan using the Campbell Model and a Social Cost of Carbon of $76/Mg

Source: Author’s Estimates.

Notes: All soil organic carbon predictions in the above graph are computed using the Camp-
bell model. The columns of panels refer to the counterfactual shares of canola switched to
summer fallow (25%, 50%, and 75%) of insured hectares in Saskatchewan, whereas the rows

of panels refer to different soil zones.
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FIGURE 1G.5: Field-level Distribution of External Social Benefit per Hectare by
Draw of the Binomial Distribution, Counterfactual Scenario, and Soil Zone in
Saskatchewan using the Campbell Model and a Social Cost of Carbon of $185/Mg

Source: Author’s Estimates.

Notes: All soil organic carbon predictions in the above graph are computed using the Camp-
bell model. The columns of panels refer to the counterfactual shares of canola switched to
summer fallow (25%, 50%, and 75%) of insured hectares in Saskatchewan, whereas the rows

of panels refer to different soil zones.
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FIGURE 1G.6: Field-level Distribution of External Social Benefit per Hectare by Draw
of the Binomial Distribution, Model, and Soil Zone in Saskatchewan using a Social

Cost of Carbon of $51/Mg

Source: Author’s Estimates.

Notes: The columns of panels refer to SOC prediction model employed, whereas the rows of
panels refer to different soil zones. In all panels, I use the counterfactual share of 25% of lentil

hectares switched to summer fallow of insured hectares in Saskatchewan.
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FIGURE 1G.7: Censored Field-level Distribution of External Social Benefit per
Hectare by Draw of the Binomial Distribution, Model, and Soil Zone in

Saskatchewan using a Social Cost of Carbon of $51/Mg

Source: Author’s Estimates.

Notes: The columns of panels refer to SOC prediction model employed, whereas the rows of
panels refer to different soil zones. In all panels, I use the counterfactual share of 25% of lentil
hectares switched to summer fallow of insured hectares in Saskatchewan. The external social
benefit per hectare are censored at zero, which means the figure above only includes benefits

only positive dollars per hectare.
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FIGURE 1G.8: Distribution of External Social Benefit per Hectare by Draw of the
Binomial Distribution, Social Cost of Carbon, and Counterfactual Scenario using the
the Augmented Campbell Model (weather) for a Randomly Selected Field in the

Black & Gray Soil Zone in Saskatchewan

Source: Author’s Estimates.

Notes: All soil organic carbon predictions in the above graph are computed using the Aug-
mented Campbell model. The columns of panels refer to the counterfactual shares of insured
hectares of canola in Saskatchewan switched to summer fallow (25%, 50%, and 75%), whereas

the rows of panels refer to different soil zones.
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FIGURE 1G.9: Field-level Distribution of External Social Benefit per Hectare for a sin-
gle Draw from the Binomial Distribution by Counterfactual Scenario and Soil Zone
in Saskatchewan using the Augmented Campbell Model (weather) and a Social Cost

of Carbon of $51/Mg

Source: Author’s Estimates.

Notes: All soil organic carbon predictions in the above graph are computed using the
Augmented Campbell model. The columns of panels refer to the counterfactual shares of
canola switched to summer fallow (25%, 50%, and 75%) of insured hectares in Saskatchewan,

whereas the rows of panels refer to different soil zones.
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TABLE 1G.1: Distribution of External Social Benefits from 1998 to 2019 by Counter-
factual Scenario, Soil Zone, and Social Cost of Carbon in Saskatchewan using the

Campbell Model

(1) (2) (3) (4)

External Social Benefit

Counterfactual: Share of Canola Hectares Share of Lentil Hectares
reverted to Summer Fallow reverted to Summer Fallow

25% 50% 75% 25%
(i) Brown Soil Zone

Social Cost of Carbon: (millions of dollars)
$14/Mg
Mean 18 37 56 16
Minimum 17 35 54 15
Maximum 19 38 56 17
$51/Mg
Mean 35 70 106 31
Minimum 33 67 104 29
Maximum 37 73 108 33
$76/Mg
Mean 42 85 128 37
Minimum 40 81 125 35
Maximum 44 87 130 40
$185/Mg
Mean 70 143 216 63
Minimum 67 136 211 59
Maximum 75 147 219 67

(ii) Dark Brown Soil Zone

$14/Mg
Mean 127 264 411 24
Minimum 125 261 408 23
Maximum 130 267 414 25
$51/Mg
Mean 238 493 769 44
Minimum 234 488 764 42
Maximum 242 499 774 46
$76/Mg
Mean 284 589 920 52
Minimum 279 583 914 50
Maximum 289 596 926 54
$185/Mg
Mean 476 988 1, 542 87
Minimum 468 977 1, 531 84
Maximum 485 999 1, 552 91
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TABLE 1G.1: Distribution of External Social Benefits from 1998 to 2019 by Counter-
factual Scenario, Soil Zone, and Social Cost of Carbon in Saskatchewan using the

Campbell Model (continued)

(1) (2) (3) (4)

External Social Benefit

Counterfactual: Share of Canola Hectares Share of Lentil Hectares
reverted to Summer Fallow reverted to Summer Fallow

25% 50% 75% 25%
(iii) Black & Gray Soil Zone

Social Cost of Carbon: (millions of dollars)
$14/Mg
Mean 279 592 939 2
Minimum 275 587 934 2
Maximum 282 596 944 2
$51/Mg
Mean 516 1, 098 1, 745 3
Minimum 510 1, 089 1, 736 3
Maximum 523 1, 106 1, 754 3
$76/Mg
Mean 616 1, 311 2, 084 4
Minimum 608 1, 299 2, 073 3
Maximum 624 1, 321 2, 095 4
$185/Mg
Mean 1, 029 2, 192 3, 487 6
Minimum 1, 017 2, 173 3, 468 6
Maximum 1, 042 2, 209 3, 505 7

(iv) Saskatchewan (All Soil Zones)

$14/Mg
Mean 424 892 1, 406 42
Minimum 418 883 1, 396 40
Maximum 431 901 1, 414 44
$51/Mg
Mean 789 1, 661 2, 621 78
Minimum 777 1, 644 2, 604 74
Maximum 802 1, 678 2, 636 82
$76/Mg
Mean 942 1, 985 3, 132 93
Minimum 927 1, 963 3, 112 89
Maximum 957 2, 005 3, 151 98
$185/Mg
Mean 1, 576 3, 323 5, 245 156
Minimum 1, 552 3, 287 5, 211 148
Maximum 1, 602 3, 356 5, 276 164

Source: Author’s Estimates
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TABLE 1G.2: External Social Benefits for a Permanent Change in SOC Stocks 2019
by Counterfactual Scenario, Soil Zone, and Social Cost of Carbon in Saskatchewan

using the Campbell Model

(1) (2) (3)

External Social Benefit

Counterfactual:
Share of Canola Hectares Reverted to Summer Fallow

25% 50% 75%
(i) Brown Soil Zone

Social Cost of Carbon: (millions of dollars)
$14/Mg 63 128 194
$51/Mg 226 457 692
$76/Mg 334 678 1, 027
$185/Mg 724 1, 467 2, 223

(ii) Dark Brown Soil Zone

$14/Mg 202 423 664
$51/Mg 722 1, 508 2, 371
$76/Mg 1, 070 2, 236 3, 516
$185/Mg 2, 317 4, 840 7, 611

(iii) Black & Gray Soil Zone

$14/Mg 405 874 1, 413
$51/Mg 1, 444 3, 120 5, 042
$76/Mg 2, 142 4, 627 7, 478
$185/Mg 4, 637 10, 016 16, 188

(iv) Saskatchewan (All Soil Zones)

$14/Mg 670 1, 425 2, 272
$51/Mg 2, 392 5, 084 8, 105
$76/Mg 3, 547 7, 540 12, 020
$185/Mg 7, 678 16, 323 26, 022

Source: Author’s Estimates
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TABLE 1G.3: Projected External Social Benefits from 2020 to 2169 by Counterfactual
Scenario, Soil Zone, and Social Cost of Carbon in Saskatchewan using the Campbell

Model

(1) (2) (3)

External Social Benefit

Counterfactual:
Share of Canola Hectares reverted to Summer Fallow

25% 50% 75%
(i) Brown Soil Zone

Social Cost of Carbon: (millions of dollars)
$14/Mg 40 84 128
$51/Mg 148 312 476
$76/Mg 220 463 707
$185/Mg 470 989 1, 509

(ii) Dark Brown Soil Zone

$14/Mg 217 439 649
$51/Mg 798 1, 619 2, 394
$76/Mg 1, 183 2, 400 3, 547
$185/Mg 2, 521 5, 113 7, 556

(iii) Black & Gray Soil Zone

$14/Mg 411 825 1, 246
$51/Mg 1, 512 3, 035 4, 589
$76/Mg 2, 239 4, 495 6, 796
$185/Mg 4, 769 9, 573 14, 475

(iv) Saskatchewan (All Soil Zones)

$14/Mg 667 1, 348 2, 024
$51/Mg 2, 459 4, 966 7, 458
$76/Mg 3, 643 7, 358 11, 049
$185/Mg 7, 760 15, 675 23, 539

Source: Author’s Estimates
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Chapter 2

The Consequences of Soil Organic

Carbon for Crop Yield, Farm

Productivity, and Profit

2.1 Introduction

Addressing climate change stands as one of humanity’s paramount challenges, representing the

pivotal issue of our era. Agricultural soils offer significant potential as carbon sinks, with the

expansion of soil organic carbon (SOC) stocks capable of yielding substantial benefits both on-

farm and environmentally. Crops with high carbon storage capacities play a vital role in climate

regulation, particularly in agricultural systems where soils serve as carbon sinks. Hence, farmer

decisions about land use practices that bolster SOC stocks are relevant for governments seeking

to offset greenhouse gas (GHG) emissions (Lemma et al., 2021). Minasny et al. (2017) state that

if agricultural soils around the world increased SOC by 0.4% each year until SOC saturation in

the soil, this could potentially offset 20% to 35% of annual global greenhouse gas emissions from

anthropogenic sources.1 In Canada, increases in SOC stocks on farms from 2013 to 2015 were

sufficient to completely offset all agricultural greenhouse gas emissions, translating to an average

1Achieving this goal depends on many other socioeconomic and environmental factors (Paustian et al., 2016).
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net reduction of 16.2 million metric tonnes CO2-equivalent (Fan et al., 2019). The increase in carbon

sequestration in the Canadian prairies is largely credited to increases in crop yield (Lamb et al.,

2011; Fan et al., 2019), and the expansion of canola cultivation and less summer fallow hectares

(Fan et al., 2019).2

In this essay, I examine the long-term effects of carbon sequestration on crop yields using

field-level data for all insured farms in Saskatchewan for the years 1998 to 2019. During this time

period, farmers eliminated summer fallow , converted a lot of land to zero-tillage and continuous

cropping, and consequently sequestered more carbon in the soil. Taking advantage of the result-

ing variation in SOC over time and across fields, I identify the on-farm shadow value of SOC,

which represents the private value to farmers of an additional unit of SOC. I then use dynamic

simulations to forecast changes in SOC under different crop rotations, and estimate the resulting

long-term changes in on-farm profit. Finally, recognizing that increases in SOC generate a positive

externality in the form of reduced atmospheric carbon, I estimate the external social benefits, by

crop rotation and soil zone, generated by farmers in Saskatchewan.

Agronomic research suggests that increased SOC stocks can lead to higher crop yields (La-

fond et al., 2011; Oldfield et al., 2019; Kane et al., 2021; Rubio et al., 2021; Wu and Congreves,

2021). Cropping choice, tillage practices, and other farm management decisions affect SOC. How-

ever, SOC accumulation is a slow process, and it may take several or many years before noticeable

differences in SOC are evident among different crop rotations and tillage systems (Lychuk et al.,

2019). Previous studies investigating the agronomic and economic factors affecting SOC, farm

profitability, and productivity have mainly relied on either aggregated data or data from field trial

experiments. Aggregated data fail to address the variation among between fields and cannot in-

corporate crucial information regarding past cropping patterns and yields for specific land parcels

(Hendricks et al., 2014). On the other hand, field trial data might not provide an accurate represen-

tation of diverse on-farm responses across the entire province of Saskatchewan. To address these

2Gaudaré et al. (2023) find that a complete conversion to organic farming has the potential to reduce carbon inputs
into SOC by 40%, and hence to reduce the stock of SOC by 9% globally. This illustrates the potential importance of farm
management practices and their consequences for changes in the stock of SOC and atmospheric carbon.
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limitations, I employ detailed field-level data to analyze the relationship between SOC levels and

crop yields.

This essay makes three contributions. First, I show that the shadow value of SOC is not only

positive but also exhibits diminishing marginal returns, with significant variations across differ-

ent crops. In Saskatchewan, the benefit from SOC in terms of average yield increases is greatest

for spring wheat and durum wheat, followed by lentils, peas, canola, and barley. Notably, the

shadow value of SOC is greatest in the brown soil zone, which has the lowest SOC stock. To

arrive at these findings, I employ a dynamic panel fixed effects model that utilizes an exclusive

dataset from the Saskatchewan Crop Insurance Corporation (SCIC).3 This dataset, comprising ap-

proximately 800,000 observations, includes detailed information on field-level cropping decisions,

yields, soil characteristics, weather conditions, and estimated SOC stocks (the latter provided by

Serfas (2024a)), enabling a precise estimation of shadow values for SOC stocks.

Second, this research reveals the potential for farmers to enhance long-term profits through

strategic crop rotations: by 28% in the brown soil zone, by 12% in the dark brown soil zone, and by

6% in the black & gray soil zone. This profit boost stems from adopting crop rotations that enhance

carbon sequestration over a 32-year period.4 To quantify these prospective increases in profit over

the long term, I conduct a dynamic simulation spanning from 2023 to 2055, analyzing five types

of four-year crop rotations for each soil zone (resulting in 8 cycles of four-year crop rotations in

the 32-year period).5 The present value change in on-farm profits with yield response to carbon

sequestration (with SOC effects) between the Canola-Spring Wheat-Canola-Spring Wheat rotation

to the Lentils-Fallow-Lentils-Peas rotation is equal to 265 CAD per hectare in the brown soil zone,

-1 CAD per hectare in the dark brown soil zone, and 322 CAD her hectare in the black & gray soil

zone. When comparing the present value of on-farm profits with no yield response to carbon se-

questration (without SOC effects) for this scenario, the difference is equal to -430 CAD per hectare

3This model is similar to the conventional agricultural outcome model as in Deschênes and Greenstone (2007),
Schlenker and Roberts (2009), Deschênes and Kolstad (2011), and Blanc (2017).

4The change in profits over the 32-year period from 2023 to 2055 in the brown soil zone is computed using the
Canola-Spring Wheat-Peas-Spring Wheat rotation and the change in profits in the dark brown and black & gray soil
zones is computed using the Canola-Spring Wheat-Canola-Spring Wheat rotation.

5The five crop rotations are Canola-Spring Wheat-Canola-Spring Wheat, Canola-Spring Wheat-Peas-Spring Wheat,
Spring Wheat-Peas-Spring Wheat-Peas, Spring Wheat-Fallow-Spring Wheat-Fallow, and Lentils-Fallow-Lentils-Peas.
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in the brown soil zone, -291 CAD per hectare dark brown soil zone, and 113 CAD per hectare in

the black & gray soil zone. The findings emphasize that crop rotations that sequester more SOC

yield greater on-farm profits in the long term, whereas rotations leading to SOC emissions actually

result in lower future profits.

Third, I calculate the external social benefit (and cost) associated with the sequestration

(and release) of SOC on farms across crop rotations and soil zones. This calculation of the ex-

ternal social benefit considers the growth in the stock of SOC and taking into account its dynamic

feedback effects of increasing crop yields over time. The estimated external social benefit de-

pends on the counterfactual SOC stock used to reference changes in the stock of SOC, as well

as the applied social cost of carbon (SCC). For example, consider a scenario in which all insured

hectares in Saskatchewan rotate Canola-Spring Wheat-Peas-Spring Wheat compared to Spring

Wheat-Fallow-Spring Wheat-Fallow for 32 years form 2023 to 2055. Using a SCC of 185 USD/Mg

of CO2 from Rennert et al. (2022), this comparison generates external social benefits worth 108 bil-

lion CAD as a result of greater accumulated SOC stocks compared with the Spring Wheat-Fallow-

Spring Wheat-Fallow rotation. The external social benefit per hectare for this scenario when com-

paring the Canola-Spring Wheat-Peas-Spring Wheat rotation to the Spring Wheat-Fallow-Spring

Wheat-Fallow rotation is equal to 11,067 CAD per hectare in the brown soil zone, 9,445 CAD per

hectare in the dark brown soil zone, and 9,394 CAD per hectare in the black & gray soil zone.

Significant public funds are being allocated to carbon sequestration efforts,6 with a hand-

ful of private enterprises beginning to experiment with carbon offset initiatives that compensate

farmers for their carbon sequestration activities.7 It is evident that carbon sequestration offers sub-

stantial external social advantages beyond the direct benefits to farmers, such as increased crop

yields. This essay provides information on the potential private and social benefits of SOC, and

an estimate of external social benefits from sequestering SOC by crop rotation that considers the

6The United States Government has invested 19.5 billion USD over five years for climate smart agriculture and
conservation program through the Inflation Reduction Act (United States Department of Agriculture, 2023). The Gov-
ernment of Canada has invested 3 billion CAD into on-farm environmental stewardship programs Environment and
Climate Change Canada (2023a).

7Carbon offset programs include Bayer’s Carbon Initiative, Nutrien’s Carbon Program, Truterra’s Farm Carbon
Credits, Nori, and Carbon by Indigo Ag.
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dynamic feedback effects of SOC on crop yield. A better understanding of the private and pub-

lic benefits from carbon sequestration is beneficial not only for farmers and agricultural experts in

strategizing crop management, but also for policymakers in crafting effective carbon sequestration

strategies and in developing carbon offset programs and trading markets.

This essay proceeds as follows; first, I provide the conceptual framework for identifying

the shadow value of SOC; second, I provide the empirical framework and identification strategy;

third, I explain the data; fourth, I discuss the results of the econometric model; fifth, I perform a

dynamic simulation to compute the long-term on-farm and external social benefits from carbon

sequestration; finally, I conclude with a discussion of the spatial effects of cropping choice and

implications for carbon sequestration policies.

2.2 Conceptual Framework

In this section, I outline the conceptual framework that illustrates the process by which farmers

make decisions affecting SOC, under the assumption that their objective is to maximize profits.

Given that the majority of decisions regarding on-farm production are made under uncertainty

prior to planting, harvesting, and selling the grain, this means that farmers will maximize the

profits, production functions, prices, and costs based on expectations held by a farmer. However,

in this section, I abstract from uncertainty and treat the problem as if the farmer is omniscient,

removing any assumptions made on risk preferences and how they affect production decisions.

Again, I assume that farmers are profit maximizers with respect to their input choices and

land allocation. If farmers fully understand and anticipate the dynamic effects of cropping choice

and input use, their objective function can be characterized by the following recursive Bellman

Equation,

V f arm(xt, lt) = max
xt,lt

Π f arm(pt, wt, qt(xt, lt), xt) + βV f arm(xt+1, lt+1)

s.t.
C

∑
c=1

lc,t ≤ Lt and {xt+1, lt+1} = f (xt, lt),
(2.1)
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where xt is a matrix of the use of input j ∈ J, for crop c ∈ C, in year t, and lt is a vector of the

land allocated to crop c on a farm, Lt is the farmer’s total land, pt is the price of crop c in year t,

and wt is the cost of input j in year t. V(·) represents the value function that describes the best

possible value with respect to input use and land allocation on a farm starting in year t. The profit

function Π f arm(·) depends on input and output prices, the production function qt(·), input use,

and land allocation. The land constraint in equation (2.1) ensures a farmer does not allocate more

land to crops than she owns each year and the state equation {xt+1, lt+1} = f (xt, lt) defines how

the farmer chooses inputs and land allocation over time (e.g., crop rotations, fertilizer use, and

pesticide use).

The solution to equation (2.1) is a set of input use and land allocation that considers dynamic

effects from the current choice set and evolving future choice sets. Recursively plugging into the

BE (equation (2.1)) for the next period’s value function V f arm(xt+1, lt+1) better illustrates the choice

set of input use and land allocation over time.8 Doing so transforms the Bellman Equation into a

present value calculation that delineates the dynamic maximization problem of farm-level profits:

max
{xt,lt}∞

t=0

PV f arm = max
x0,l0

{
Π f arm

0 (p0, w0, q0(x0, l0), x0) +

β
[

max
{xt,lt}∞

t=1

∞

∑
t=1

βt−1Π f arm
t (pt, wt, qt(xt, lt), xt)

]}
s.t.

C

∑
c=1

lc,t ≤ Lt and {xt+1, lt+1} = f (xt, lt),

(2.2)

where PV f arm is the present value of the farm-level profits over an infinite-horizon, and β is the

discount factor. Equation (2.3) shows a special case of equation (2.2) where farmers do not con-

sider the dynamic effects of the current choice of inputs and land allocation on future profits, im-

plying a discount factor equal to zero. Peters (2023) estimates the discount factor for crop rotation

decisions among farmers in Alberta, Canada, by soil zone, employing a dynamic discrete choice

modeling. His findings reveal discount factors of 0.65, 0.80, and 0.33 across the black, brown, and

dark brown soil zones. This suggests differences in long-term decision-making regarding crop

8Please refer to Appendix 2A for the derivations that frame equation (2.2) within the context of dynamic program-
ming.
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rotations among farmers across soil zones, however, all significantly undervalue future outcomes.

Given the unpredictability of commodity prices, input costs, labor availability, and weather condi-

tions, this finding is not unexpected, as these factors contribute to the high-risk nature of farming.

If farmers make myopic decisions without consideration of the future, then equation (2.2) reduces

to,

V f arm
t = max

xt,lt
Π f arm

t (pt, wt, qt(xt, lt), xt) s.t.
C

∑
c=1

lc,t ≤ Lt. (2.3)

Throughout the year, some decisions regarding land allocation and input use are made se-

quentially (Antle, 1983). In this context, I assume that a typical farmer seeks to maximize profits

through a two-stage process each year. In the first stage, the farmer chooses the amount of land

allocated to specific crops. This decision is made months ahead of seeding to allow time for seed

procurement and preparation. In the second stage, the farmer adjusts usage of some (variable)

inputs to optimize profits, conditional on the decisions made in the first stage. This two-stage ap-

proach enables the farmer to adapt input usage closer to seeding, benefiting from any additional

information acquired about expected weather patterns, prices, and costs. The problem is solved

through backward induction.

Using a similar the profit function as characterized by Lacroix and Thomas (2011), second-

stage crop production decisions at the farm level are defined by equation (2.4), which represents

the farm-level profit maximization problem.

max
xj,c,t

Π f arm
t =

C

∑
c=1

(
pc,tqc,t(x1,c,t, ..., xJ,c,t, lc,t)−

J

∑
j=1

wj,txj,c,t

)
(2.4)

Let the solutions to equation (2.4) be q∗c,t(pt, wt, lt, Lt) and x∗j,c,t(pt, wt, lt, Lt), where the opti-

mal input use and output depend on vectors of prices, costs, and land allocations for C crops and

J inputs.

Equation (2.5) shows the objective function for the first stage where the farmer selects lc,t, the

amount of land allocated to crop c.
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max
lc,t

Π f arm
t =

C

∑
c=1

(
pc,tq∗c,t (pt, wt, lt, Lt)−

J

∑
j=1

wj,tx∗j,c,t (pt, wt, lt, Lt)

)
s.t.

C

∑
c=1

lc,t ≤ Lt (2.5)

Solving equation (2.5) results in optimal land allocation choices l∗c,t(pt, wt, Lt), output

q∗c,t(pt, wt, l∗t (pt, wt, Lt), Lt), and input use x∗j,c,t(pt, wt, l∗t (pt, wt, Lt), Lt).

Now, consider an alternative method where land allocation decisions have already been final-

ized at both the farm and field levels. In this scenario denoted as the conditional profit maximization

problem, the farmer focuses on optimizing farm-level profits by adjusting input use conditional

on previous cropping decisions. The conditional profit maximization problem, represented by

equation (2.6), involves the summation of field-specific profits, contingent upon the preceding

cropping choices for each field, denoted as n. When cropping decisions are optimally made by

the farmer, the solutions for output and input use align with those obtained from the two-stage

problem given by equations (2.4) and (2.5).

max
xj,c,t

Π f arm
t =

N

∑
n=1

max
xn,j,c,t

[
Π f ield

n,c,t

∣∣c, n
]

=
N

∑
n=1

max
xn,j,c,t

[(
pc,tqn,c,t(xn,1,c,t, ..., xn,J,c,t)−

J

∑
j=1

wj,txn,j,c,t

) ∣∣∣∣ c, n

] (2.6)

For a particular crop and field, the profit maximization problem is,

max
xn,j,c,t

[
Π f ield

n,c,t

∣∣c, n
]
= max

xn,j,c,t

[
pc,tqn,c,t(xn,1,c,t, ..., xn,J,c,t)−

J

∑
j=1

wj,txn,j,c,t

∣∣∣∣ c, n

]
. (2.7)

Crop production by field depends on the stock of SOC per hectare as a quasi-fixed factor,

farmer applied inputs per hectare, and weather characteristics. Field-level crop production is

equal to

[qn,c,t|c, n] =
[

an,tyn,c,t

(
xn,1,c,t

an,t
, ...,

xn,J,c,t

an,t
, SOCn,t, Zn,t

) ∣∣∣ c, n
]

, (2.8)
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where an,t is the hectares per field, yn,c,t is crop yield in kilograms per hectare, SOCn,t is the stock

of SOC in kilograms per hectare, and Zn,t is a variable representing weather characteristics.

Applying the envelope theorem and taking the total differential gives the change in field-

level profits with respect to SOC and weather,

d
[
Π f ield

n,c,t |c, n
]
=

[(
∂pc,t

∂qn,c,t
qn,c,t + pc,t −

J

∑
j=1

∂wj,t

∂qn,c,t

)(
∂qn,c,t

∂SOCn,t
dSOCn,t +

∂qn,c,t

∂Zn,t
dZn,t

)
| c, n

]
.

(2.9)

Assuming that farmers in Saskatchewan are price-takers and that a change in SOC or weather

on a particular field does not affect the world price for crop c, equation (2.9) simplifies to,

d
[
Π f ield

n,c,t |c, n
]
=

[
pc,tan,t

(
∂yn,c,t

∂SOCn,t
dSOCn,t +

∂yn,c,t

∂Zn,t
dZn,t

)
| c, n

]
. (2.10)

The first term of equation (2.10) is the change in crop yield from an increase in the stock of

SOC ( ∂yn,c,t
∂SOCn,t

) multiplied by the hectares in field n (an,t) and commodity price of crop c (pc,t). The

marginal product of the stock of SOC is equal to ∂yn,c,t
∂SOCn,t

. Multiplying the marginal product of SOC

by the commodity price gives the shadow value of SOC, which represents the value to farmers

from an additional unit of SOC (pc,t
∂yn,c,t

∂SOCn,t
).9 I hypothesize that the shadow value is positive

(pc,t
∂yn,c,t

∂SOCn,t
> 0) and demonstrates diminishing marginal returns (pc,t

∂2yn,c,t
∂SOC2

n,t
< 0), implying that its

positive effect on field- and farm-level profits decreases as SOC increases. The second component

in equation (2.10) accounts for the variation in profits resulting from the influence of weather on

crop yield.

The conceptual framework shown in this section illustrates that shocks to either SOC or

weather affect field- and farm-level decisions in a comparable manner when optimal decisions

regarding cropping choices, output, and inputs are made. Hence, only the direct effects of changes

9SOC affects many attributes of the soil that influence crop yields such as water retention, nutrients, food for
vital soil organisms, and provides soil structure. Fontaine et al. (2003) state: “soil carbon is the driving force of most
microbially mediated processes, particularly soil respiration and nitrogen mineralization. The quality of carbon is
particularly important because it constrains the supply of energy for enzyme production and growth.”
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in SOC stocks are considered, whether they influence the profit function indirectly through input

use and land allocation decisions. Moving forward, this framework suggests that it is feasible to

determine the shadow value of SOC by assessing its effects on yield by field, crop, and year.

2.3 Quantitative Model

In this section, I outline a crop yield regression model for estimating the shadow value of SOC.

My methodology closely resembles that of Belcher et al. (2003), in that I employ simulated SOC

stocks to estimate the effect of SOC on crop yield.10 Specifically, I employ SOC stocks derived

from the weather version of the Augmented Campbell model, a SOC prediction model developed

and simulated by Serfas (2024a).11

I employ the Augmented Campbell model to estimate the shadow value of SOC for com-

monly planted crops in Saskatchewan (spring wheat, durum wheat, canola, barley, lentils, and

peas). This model, an extension of the original Campbell model, incorporates an additional SOC

pool dedicated to plant residue humification, thus extending the time taken for the predicted SOC

stock to reach a steady state. Compared to the Campbell model, the Augmented Campbell model

offers greater accuracy in SOC predictions, as the latter tends to underestimate SOC stocks and

prematurely reaches a steady state.

Making use of simulated SOC stocks and crop yield data, I employ a dynamic panel regres-

sion model to estimate the shadow value of SOC stocks. The model is dynamic because the SOC

stock is influenced by previous crop yields. The SOC stock incorporates data on past crop yields,

cropping choices, and weather, similar to an autoregressive model which predicts the dependent

10Belcher et al. (2003) estimate the effect of SOC stocks on crop rotation profit over a 50 year time horizon in western
Canada. They employ the STELLA® research modeling software to estimate crop yields, SOC, soil nutrients, and soil
water.

11The Augmented Campbell model integrates the Plant Biomass Carbon Inputs (PBCI) model to determine carbon
inputs based on crop yields. To calculate annual carbon inputs, the PBCI model uses conversion equations that consider
plant traits (Bolinder et al., 2007; Maillard et al., 2018; Fan et al., 2019; He et al., 2021; Zhang et al., 2021; Thiagarajan
et al., 2022). Measures of carbon inputs reflect changes in yield resulting from changes in weather, cropping choices,
and other production practices and decisions. To model changes SOC stocks, the Augmented Campbell model applies
first-order kinetics, which uses a set of differential equations to account for the decomposition rates of different SOC
“pools”, components, or fractions. SOC pools represent the portions of the stock that decompose at varying speeds
(either more rapidly or more slowly), influenced by their carbon composition (derived from plant and soil material).
Please refer to Serfas (2024a) for an in-depth explanation of the Augmented Campbell model.
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variable based on its own past values, with decreasing weights for successive lags. This model

is parallel to the conventional agricultural outcome model for crop yield, as employed by De-

schênes and Greenstone (2007), Schlenker and Roberts (2009), Deschênes and Kolstad (2011), and

Blanc (2017). I estimate this model separately for each soil zone and crop type. The estimating

equation is,

yn,t = λSOCn,t + f (Zn,t, Z̄n) ξ + SLnδ + Xn,tθ + αr + τt + ωn,t + εn,t, (2.11)

where, yn,t is crop yield on field n in year t, SOCn,t is the SOC stock, Zn,t is a vector of weather

characteristics, Z̄n is a vector of average weather characteristics that represent climate, SLn is a

vector of soil characteristics that vary across fields, Xn,t is a vector of field-level controls that vary

across fields and over time, αr are Rural Municipality (RM) fixed effects that control for unob-

served RM-specific time-invariant determinants of crop yield, τt are year fixed effects that control

for annual differences in crop yield common across fields, ωn,t are unobserved inputs and farm

management characteristics that vary over field and year, and εn,t are idiosyncratic errors.

I choose not to use field fixed effects as they exacerbate the Nickell bias often encountered

in dynamic panel regression models. Given that a crop might be planted only a few times in the

period from 1998 to 2019 on any given field, using field and year fixed effects ends up controlling

for too much of the variation in crop yield. In many instances, the time-paths of SOC stocks in

a field for a specific crop is fully characterized by the inclusion of field and year fixed effects. In

Appendix 2B, through simulation, I demonstrate that when the dynamic independent variable

(SOC stocks) exhibits high collinearity with a time trend, the inclusion of field and year fixed

effects exacerbates both the Nickell bias and the prediction error bias. I show that employing

less-detailed two-way fixed effects (for instance, RM and year) helps to reduce the Nickell bias.

I control for field-level soil characteristics (SLn) in equation (2.11) using data from the Saska-

tchewan Detailed Soil Survey and the Canadian National Soils Database (Agriculture and Agri-

Food Canada, 2022). These characteristics include the percentage of sand, silt, and clay, the soil
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pH, cation exchange capacity, water retention at 33 kilopascals (kP), electrical conductivity, stoni-

ness, and slope gradient. Other field-level controls (Xnt) include the past four-year crop rotation

sequence, with crops grouped into the broad categories of cereal, oilseed, pulse, or fallow. This

generates 256 crop rotation dummy variables. Other field-level controls include nitrogen use, total

liability of crop insurance by field, and the farm size.12

Farmers opt for crops that are expected to perform best on their land, a decision influenced

by their investment in physical capital (like farm machinery) or human capital (such as agronomic

expertise) to maximize on-farm profits. Acknowledging that crop yields are influenced by the

choice of crop, I incorporate a comprehensive set of control variables. First, I employ year fixed

effects which control for factors common to all fields such as commodity prices and changes in

technology. Second, I factor in the past four-year average yield by crop and crop district, as a

farmer is inclined to plant a crop that yields well in their region compared to others.13 Third, I

incorporate controls for crop rotation and RM fixed effects, weather characteristics specific to each

field, crop insurance coverage per field (insurance liability), and the size of the farm.

Unobservable time- and field-specific factors such as inputs and farm management charac-

teristics are denoted as ωnt. These include managerial ability, equipment quality, and knowledge

capital, all of which are understood by the farmer. The majority of attributes encompassed within

ωnt are accounted for by factors like crop rotation, RM and year fixed effects, total liability per

field, and farm size. However, any remaining variation could bias my results if it correlates with

both SOC stocks and crop yields. A potential issue is measurement error in the stock of SOC at-

tributed to straw removal, prevalent when crops are used for cow feed and often seen with barley.

Predicted SOC stocks assume that straw remains in the field; hence, in crops where significant

amounts of straw are removed, predicted SOC stocks may be artificially high. If SOC positively

12I examine nitrogen use instead of other fertilizers such as phosphorus, potassium, and sulfur. Farmers primarily
adjust nitrogen rates to increase crop yields, whereas other macro fertilizers are generally used in fixed proportions
with nitrogen to supplement the existing stock of nutrients in the soil. The inclusion of potassium, phosphorus and
sulfur fertilizer use in the regression models does not affect the shadow value of SOC stocks. Importantly, most farmers
do not apply potassium because Saskatchewan soils are potassium rich, and fertilizers like sulfur are only applied to
particular crops such as canola (Government of Saskatchewan, 2023b).

13For visual reference, a map of the twenty crop districts in Saskatchewan is provided in Figure 2C.6, located in
Appendix 2C.
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affects crop yields, this could lead to attenuation bias. Hence, the results should be interpreted

conservatively lower-bound estimates.

Weather and climate factors may have a non-linear relationship with crop yield, represented

by equation (2.11), which I address using a flexible function f (.). As suggested by Mérel and

Gammans (2021), weather variables can be integrated into the model as crop yield penalties for

deviating from typical weather or climate patterns. This “climate penalty” is assumed to de-

pend on the squared difference between actual weather conditions and the average climate. The

weather variables I include in the model are the average temperature during the growing season

(GSAT) from April to September, and total annual precipitation (TAP), along with their squares,

their first lags, and their squared differences from their respective long term average or “climate.”

Here, climate is defined as the average GSAT and TAP during the period 1998–2019 for each field.

Table 2C.1 in Appendix 2C provides a more detailed explanation for each variable included

in the dynamic panel regression model represented by equation (2.11).

2.4 Data

To estimate the effects of SOC on crop yield, I combine simulated SOC stock data from Serfas

(2024a) with field-specific crop production data sourced from the Saskatchewan Crop Insurance

Corporation (SCIC). I also employ data on weather characteristics from Environment and Climate

Change Canada (2023b), and data on soil characteristics from the Canadian National Soil Database

and Saskatchewan Detailed Soil Survery (Agriculture and Agri-Food Canada, 2022). The SCIC

dataset includes information on the legal land description, municipality, soil classification, land

use, insurance coverage, seeded acres, type of crop, yield, and fertilizer use. Only farmers that

enroll in the Sask Management Plus (SMP) program at SCIC report information on field-level crop

yield and fertilizer use. Yields reported by non-SMP farmers are averaged across their fields for

each crop annually. Data on nitrogen use for SMP farmers begin in 2004. To control for discrepan-

cies between the comprehensive dataset and the SMP-specific data, I introduce a binary indicator
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to denote whether yield data are reported on a field-specific or farm-wide basis. As an additional

robustness check, I estimate all models exclusively with data from the SMP sample.

To identify fields, I use the land title dataset from ISC (an exclusive provider of land titles

registry information in Saskatchewan) that includes polygons within the dataset for all fields in

Saskatchewan (ISC, 2022). This dataset includes detailed geo-referenced information for approx-

imately 311,028 fields. I match weather and soil characteristics to all fields, and link the SCIC

data with the legal land description. This yields detailed agricultural production information for

209,021 insured parcels of land. I take a subset of these data to obtain a strongly balanced panel

of 36,443 fields with complete information on the time-paths of SOC stocks and cropping choices

from 1998 to 2019.

Figure 2.1 shows the field-level map of Saskatchewan categorized by soil zone. I estimate

all my models for the brown, dark brown, and black & gray soil zones separately. Farms located

within the same soil zone exhibit greater similarity in terms of soil attributes, climate conditions,

farm management practices, and cropping choice compared with farms located in different soil

zones.
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FIGURE 2.1: Field-Level Map of Soil Zones in Saskatchewan

Source: Generated from ISC land titles registry polygons and soil characteristics
from the Canadian National Soils Database (Agriculture and Agri-Food Canada,

2022; ISC, 2022).
Notes: The y-axis is latitude and the x-axis is longitude.

Figure 2.2 displays various soil attributes for fields, compiled by the Saskatchewan Detailed

Soil Survey and the Canadian National Soil Database. The dataset from the Saskatchewan Detailed

Soil Survey includes 67,166 geo-referenced soil polygons, each associated with soil attribute data

from the Canadian National Soil Database (Agriculture and Agri-Food Canada, 2022). For the

purposes of this study, 36,351 polygons from the Saskatchewan Detailed Soil Survey were matched

with 36,443 fields documented in the SCIC database. This matching provides detailed field-level

data on soil characteristics, enabling the application of RM fixed effects to determine the shadow

value of SOC stocks while accounting for the variation in soil characteristics among different fields

within an RM.
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FIGURE 2.2: Field-Level Maps of Soil Characteristics in Saskatchewan

Source: Generated from ISC land titles registry polygons and soil characteristics
from the Canadian National Soils Database (Agriculture and Agri-Food Canada,

2022; ISC, 2022).
Notes: The y-axis is latitude and the x-axis is longitude.
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I obtained weather information collected by Environment Canada weather stations (Envi-

ronment and Climate Change Canada, 2023b), and I aggregated temperature and precipitation

figures to the month. These data encompasse observations from 56 stations situated throughout

the agricultural regions of Saskatchewan, with additional stations near the Saskatchewan border

in Alberta and Manitoba. To interpolate the weather data across spatial locations, I applied inverse

distance weighting to the spatial pixel based on the nearest five weather stations.14 The inverse-

distance weighting formula for weather Zm, f , for month m and pixel n, is shown in Equation

(2.12).

Zm,n =
∑5

i=1

(
zm,i
di,n

)
∑5

i=1

(
1

di,n

) (2.12)

The weather reported at weather station i is weighted by the inverse distance 1/di,n to pixel n

such that all weights sum to one. I then take the average of the spatial pixel values that are located

within a field.

Figure 2.3 shows the spatial variation in precipitation and temperature across Saskatchewan

based on the interpolated weather station data using the five nearest neighbors for June 2007 and

June 2009. In any given month of the year, precipitation and temperature may vary considerably

across the province of Saskatchewan.

14I calculate the inverse-distance-weighted weather from the five nearest weather stations employing one million
spatial pixels distributed over fields across Saskatchewan. I then take the average of the spatial pixel values that are
located within a field. This method significantly enhances the efficiency of generating interpolated spatial weather data
compared to the default spatial analysis tools available in R.
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FIGURE 2.3: Environment Canada Weather Station interpolated data in
Saskatchewan

Source: Generated from weather station data collected by Environment and Climate
Change Canada (2023b).

Notes: The y-axis is latitude and the x-axis is longitude. A black dot represents the location of
a weather station.

Figure 2.4 shows the field-specific stock of SOC in Saskatchewan for 1998 from Serfas (2024a).

The SOC stocks for 1998 are computed using soil sampling data from the Saskatchewan Detailed

Soil Survey (a survey representing soil conditions in 1971 (Fan et al., 2019)), and from soil samples

collected by McConkey et al. (2003) in 1995.
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FIGURE 2.4: Saskatchewan Soil Organic Carbon Stock by Field in 1998

Source: Serfas (2024a).

Notes: The y-axis is latitude and the x-axis is longitude.

Additional summary statistics on the share of hectares by crop, crop yields, nitrogen use,

SOC stocks, and weather characteristics by sample are available in Appendix 2C in Figures 2C.1

to 2C.5 and Tables 2C.2 to 2C.6.
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2.5 The Effects of Soil Organic Carbon on Crop Yield

In this section, I present the findings from dynamic panel regression model used to estimate the

marginal product and shadow value of SOC stocks. Unless otherwise stated, this work uses mea-

sures of SOC stocks predicted using the Augmented Campbell model (weather version). The

analysis for each crop was conducted across different soil zones and for two distinct sets of data:

a “Full” sample, which excludes nitrogen use as an explanatory variable, and a narrower “SMP”

sample consisting of farmers participating in the SMP program. The SMP subset provides detailed

data on nitrogen application and crop yields at the field level. All regression models account for

standard errors clustered by farm and weighted according to the size of the field in hectares. First, I

estimate the marginal products of SOC for spring wheat, durum wheat, barley, canola, lentils, and

peas from the coefficient on SOC stocks. Next, to calculate the shadow value of SOC, I multiplied

the derived marginal product of SOC by the prevailing market price of the respective commodity.

Table 2.1 displays the calculated marginal product of SOC stocks for different crops of SOC.15

All regression models include fixed effects for RM, year, and crop rotation, alongside controls

for weather and soil characteristics, historical district-level average yields, farm size, and crop

insurance coverage. The Full sample analysis also adjusts for participation in the SMP program

using an SMP indicator. The results show that, across all models, the marginal products of SOC for

spring wheat, durum wheat, lentils, and peas are greatest in the brown soil zone. For canola and

barley, the effects of SOC on yield are not statistically significant in the brown soil zone, but are

positive and statistically significant in the dark brown and black & gray soil zones. The marginal

product of SOC for lentils is not statistically significance in the black & gray soil zones, and for

peas, it is not statistically significant in the dark brown soil zone. In cases with a relatively small

sample size, such as for canola and barley in the brown soil zone or durum wheat and lentils in the

black & gray soil zone, the estimates of the marginal product of SOC are less precise. Additionally,

the variation in coefficients for nitrogen application among the models for spring wheat, durum

15Table 2D.1 in Appendix D provides comparisons using estimates for spring wheat based on measures of SOC
predicted by alternative models. These comparisons reveal that the calculated marginal products for spring wheat are
robust across the different SOC prediction models.
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wheat, barley, and canola does not display any consistent patterns across different soil zones.16

Table 2D.6 in Appendix 2D shows the robustness of the marginal product of SOC for spring wheat

excluding nitrogen use within the SMP sample, indicating that excluding nitrogen from the model

does not introduce bias from omitted variables in the estimation of equation (2.11).

TABLE 2.1: The Marginal Product of Soil Organic Carbon and Nitrogen Use on Crop
Yield by Crop, Sample, and Soil Zone in Saskatchewan

Dependent Variable: Crop Yield

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray

Sample: Full SMP Full SMP Full SMP
Spring Wheat:
Soil Organic Carbon 0.021*** 0.024*** 0.010*** 0.010*** 0.004*** 0.003***

(0.006) (0.009) (0.001) (0.002) (0.001) (0.001)
Nitrogen Use 2.496 5.750*** 9.462***

(1.581) (0.827) (0.86)

Observations 7,425 2,050 33,174 12,245 92,608 36,033
R2 0.474 0.517 0.577 0.561 0.575 0.532

Canola:
Soil Organic Carbon 0.005 0.0002 0.003*** 0.002** 0.003*** 0.002***

(0.003) (0.004) (0.001) (0.001) (0.0004) (0.001)
Nitrogen Use 5.294*** 4.601*** 5.197***

(0.757) (0.304) (0.372)

Observations 4,085 1,757 40,967 16,761 140,404 55,778
R2 0.555 0.593 0.520 0.503 0.552 0.539

Barley:
Soil Organic Carbon 0.012 −0.005 0.010*** 0.006 0.003** 0.004**

(0.011) (0.019) (0.003) (0.004) (0.001) (0.002)
Nitrogen Use 13.205*** 8.257*** 11.964***

(3.486) (1.66) (1.113)

Observations 1,771 616 10,251 3,840 33,213 12,194
R2 0.583 0.712 0.512 0.489 0.511 0.487

Durum Wheat:
Soil Organic Carbon 0.020*** 0.017*** 0.007*** 0.015*** 0.005 0.010**

(0.003) (0.004) (0.002) (0.003) (0.004) (0.005)
Nitrogen Use 6.177*** 6.633*** 17.532***

(0.729) (0.822) (2.882)

Observations 18,011 6,619 16,940 6,101 1,899 727
R2 0.460 0.466 0.564 0.550 0.664 0.748

16Minimal to no amount of nitrogen is generally applied to pulse crops relative to others during seeding. For further
details on fertilizer application by crop and soil zone in Saskatchewan between 1998 and 2019, see Figure 2C.4 and
Table 2C.4 in Appendix 2C.
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TABLE 2.1: The Marginal Product of Soil Organic Carbon and Nitrogen Use on Crop
Yield by Crop, Sample, and Soil Zone in Saskatchewan (continued)

Dependent Variable: Crop Yield

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray

Sample: Full SMP Full SMP Full SMP
Lentils:
Soil Organic Carbon 0.006** 0.002 0.004** −0.003 0.002 0.004

(0.003) (0.005) (0.002) (0.004) (0.004) (0.006)
Nitrogen Use −3.063* 2.468 −17.311

(1.734) (1.927) (11.499)

Observations 6,342 2,070 12,347 3,129 1,592 405
R2 0.365 0.451 0.325 0.415 0.618 0.815

Peas:
Soil Organic Carbon 0.011** 0.004 0.003 0.007 0.004*** −0.001

(0.004) (0.009) (0.002) (0.004) (0.001) (0.003)
Nitrogen Use −2.033 −3.594 −2.416*

(4.092) (2.273) (1.253)

Observations 3,449 826 11,081 2,168 17,272 3,346
R2 0.441 0.606 0.414 0.485 0.479 0.470

Source: Authors’ Estimates.
Notes: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01. All regression models include Rural Municipality fixed effects,
year fixed effects, crop rotation fixed effects, weather characteristics, soil characteristics, past average
yields by crop district, farm size, insurance liability, and an SMP indicator. GSAT is Growing Season
Average Temperature, TAP is Total Annual Precipitation, and CD is Crop District. Past Average Yield
by CD is a rolling average of the past four years of yields for each crop in each CD. There are 256 crop
rotation variables for the past four-year crop rotation sequence using the categories: oilseeds, pulses,
cereals, and fallow. All regression models account for standard errors clustered by farm and weighted
according to the size of the field in hectares. The Full sample includes all fields selected for Soil Or-
ganic Carbon (SOC) prediction from the SCIC confidential dataset. The Saskatchewan Management
Plus (SMP) sample includes fields that participated in the SMP program and also were selected for
SOC prediction. For more information on the variables used as controls, please refer to Table 2C.1 in
Appendix 2C.

Table 2.1 shows that the marginal effect of SOC on crop yield is greater in the brown soil

zone, which has a lower SOC stock, relative to the dark brown and black & gray soil zones where

SOC stocks are higher, consistent with diminishing marginal returns.17 In Table 2D.2 in Appendix

2D, I estimate all the models using quadratic and logarithmic functional forms for SOC stocks. In

Table 2D.2, the coefficients on SOC for the quadratic and logarithmic specifications are statistically

17These findings align with agronomic research indicating a plateau in yield growth at higher SOC concentrations
in the soil (Oldfield et al., 2019).
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significant and relatively consistent with the results of the linear model.18

Table 2D.4 in Appendix D shows the marginal effect of SOC for each functional form and crop

evaluated at the mean stock of SOC and for one standard deviation above and below the mean.

These results show that for both quadratic and logarithmic functional forms that the marginal

effect is higher for a one standard deviation below the mean stock of SOC within a soil zone

relative to the marginal effect evaluated at the mean, and lower for one standard deviation above

the mean stock of SOC relative to the mean. All marginal effects for each crop at the mean and

by functional form (linear, quadratic, and logarithmic) are greatest in the brown soil zone where

the stock of SOC is lower, and the marginal effects are lowest in the black & gray soil zone where

the stock of SOC is on average higher across the three soil zones in Saskatchewan. This provides

evidence of diminishing marginal returns for crop yield with respect to SOC stocks ( ∂yn,c,t
∂SOCn,t

> 0

and ∂2yn,c,t
∂SOC2

n,t
< 0).19 The relationship of diminishing marginal returns between crop yield and SOC

stocks are observed primarily through spatial differences in the stock of SOC rather than changes

in the stock within a field.

In Saskatchewan, one standard deviation in the stock of SOC from 1998 to 2019 is approx-

imately equal to 11 Mg/ha in the brown soil zone, 17 Mg/ha in the dark brown soil zone, and

25 Mg/ha in the black & gray soil zone. Hence, the marginal product of SOC within a field will

remain relatively constant over time due to the change in the stock of SOC within a field being

relatively low compared to the change in SOC observed spatially across fields.20 This implies that

the marginal product of SOC may slowly change within a field, but substantial changes can only

be observed over relatively long periods of time (≥30 years).

Table 2.2 presents the elasticity of crop yield with respect to SOC, derived from the “Full”-

sample-based estimates of the marginal product of SOC reported in Table 2.1. These elasticities

18Table 2D.3 in Appendix D outlines the significance in estimates for regressions using the linear, quadratic, and
logarithmic functional forms, and also includes the r-squared value for each regression. There are instances in which
the marginal product of SOC is statistically significant for a specific functional form and crop. Please refer to Table 2D.3
in Appendix D to see the comparisons in the statistical significance of the marginal products of SOC for each the linear,
quadratic, and logarithmic specifications of SOC stocks.

19Predictions of crop yield with a linear, quadratic, and logarithmic functional forms for SOC stocks are identical as
a result of the r-squared values being very similar across each functional form as shown in Table 2D.3 in Appendix D.

20Serfas (2024a) simulates the stock of SOC using the Augmented Campbell model (an SOC prediction model) from
1998 to 2019 and finds that it increased on average by 0.309 Mg/ha/yr across Saskatchewan.
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were computed at the respective sample data means, by multiplying the marginal product of SOC

by the average SOC stock, then dividing this product by the average yield for each crop and soil

zone.

TABLE 2.2: The Elasticity of Crop Yield with respect to Soil Organic Carbon by Soil
Zone and Crop Type in Saskatchewan

(1) (2) (3) (4) (5) (6)

Crop Type: Spring Wheat Canola Barley Durum Wheat Lentils Peas

Brown
eyc,SOC 0.43*** 0.11 0.21 0.35*** 0.16** 0.22**

(0.12) (0.07) (0.19) (0.05) (0.08) (0.08)

Dark Brown
eyc,SOC 0.19*** 0.09*** 0.20*** 0.16*** 0.15** 0.07

(0.02) (0.03) (0.06) (0.04) (0.08) (0.05)

Black & Gray
eyc,SOC 0.09*** 0.10*** 0.06** 0.13 0.10 0.11***

(0.02) (0.01) (0.02) (0.10) (0.19) (0.03)

Source: Authors’ Estimates.
Notes: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01. The elasticity of SOC on crop yield is equal to the
marginal product of SOC multiplied by the respective average crop yield and SOC stock. All
standard errors are calculated by applying the delta method to the standard errors shown in Table
2.1. The marginal products for SOC are estimated using the Full sample of data from the SCIC
confidential dataset as shown in Table 2.1. Average crop yields by soil zone are obtained from
the confidential SCIC dataset and average SOC stocks are obtained from Serfas (2024a). Brown,
Dark Brown, and Black & Gray refer to the three primary soil zones in Saskatchewan. For more
information, please refer to the notes in Table 2.1.

In Table 2.2 the estimated elasticities of crop yield with respect to SOC are notably larger for

spring wheat and durum wheat, than for barley and pulses, and more so, canola. This variation

underscores the crop-specific agronomic effect of SOC on yield. In the brown and dark brown

soil zones, the benefits from SOC (i.e., enhanced organic matter, water, and nutrient retention) are

smaller for pulses than for cereal crops, which typically are more susceptible to drought condi-

tions. Canola, requiring greater amounts of precipitation, appears to benefit even less than cereals

from increased SOC. Nonetheless, these rankings do not apply consistently across different soil
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zones, especially the black & gray zone, pointing to the complex interplay of agronomic and sci-

entific factors influencing the effect of SOC on crop yields.

Table 2.3 shows the estimates of the (marginal) shadow value of SOC by crop type and soil

zone, equal to the value of the marginal product, computed by multiplying the marginal product

of SOC in Table 2.1 by the commodity price from the 2023 Saskatchewan Crop Planning Guide

(Government of Saskatchewan, 2023a).

TABLE 2.3: The Shadow Value of Soil Organic Carbon by Soil Zone and Crop Type
in Saskatchewan

(1) (2) (3) (4) (5) (6)

Crop Type: Spring Wheat Canola Barley Durum Wheat Lentils Peas

Brown (2023 CAD/ha/yr)/(Mg of SOC/ha)
Shadow Value 7.83*** 3.88 5.59 8.84*** 4.37** 4.85**

(2.24) (2.33) (5.13) (1.33) (2.18) (1.76)

Dark Brown
Shadow Value 3.73*** 2.33*** 4.66*** 3.09*** 2.91** 1.32

(0.37) (0.78) (1.40) (0.88) (1.46) (0.88)

Black & Gray
Shadow Value 1.49*** 2.33*** 1.40** 2.21 1.46 1.76***

(0.37) (0.31) (0.47) (1.77) (2.91) (0.44)

Source: Authors’ Estimates.
Notes: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01. The shadow value of SOC is equal to the marginal product
of SOC (λ) multiplied by the respective commodity price. All standard errors are calculated by
applying the delta method to the standard errors shown in Table 2.1. The marginal products for SOC
are given by Table 2.1. Commodity prices are from the 2023 Saskatchewan Crop Planning Guide
(Government of Saskatchewan, 2023a). Brown, Dark Brown, and Black & Gray refer to the three
primary soil zones in Saskatchewan. For more information, please refer to the notes in Table 2.1.

Table 2.3 shows that, among crops, the highest shadow value of SOC is observed for durum

wheat in the brown soil zone, barley in the dark brown soil zone, and canola in the black & gray

soil zone. However, spring wheat shows the consistently high shadow values of SOC relative to

all other crops among the soil zones. The shadow value of SOC is interpreted as, for a one Mg of

SOC per hectare increase in the stock of SOC translates into an increase in annual spring wheat

profit of 7.83 CAD per hectare in the brown soil zone. This implies that a one Mg per hectare
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increase in SOC, the extra annual profit is 2,028 CAD for each section (259 hectares or 640 acres) of

land dedicated to spring wheat in the brown soil zone. Similarly, for canola grown in the black &

gray soil zone, a one Mg per hectare increase in SOC stocks raises annual profits by 604 CAD per

section (259 hectares or 640 acres).

The results presented in this essay diverge from the earlier findings of Belcher et al. (2003),

who identified the shadow value of SOC stocks as being higher in the black & gray soil zone than

in the brown soil zone. The simulation runs performed by Belcher were based on the environ-

mental and economic conditions of the 1990s and early 2000s, rather than the period analyzed in

this essay (1998–2019). In the earlier period, practices in the brown soil zone were dominated by

intensive fallowing and tilling, while farmers in the black & gray soil zone had begun transition-

ing to zero-tillage and continuous cropping practices. These results suggest a temporal shift in

the on-farm benefits from SOC stocks, with the increased benefits observed in the brown soil zone

likely attributable to the shift towards zero tillage and continuous cropping practices.

2.6 Dynamic Simulation

In this section, first I introduce a conceptual framework to be used to analyze the immediate and

long-term effects of carbon sequestration on farm profitability and compare specific alternative

crop rotation strategies. Next, I conduct a dynamic simulation across five particular crop rotations,

calculating the SOC stock and integrating dynamic crop yield outcomes with the shadow values

of SOC. Making use of the results from the dynamic simulation, I compute the on-farm benefits

that stem from carbon sequestration from 2023 to 2055, and the benefits relative to different crop

rotations. I also compute the present value of on-farm profits and their corresponding external

social benefits from 2023 to 2055, as well as the differences between crop rotations. Following this,

I analyze the structural effects of weather on crop yields, considering its effects mediated through

SOC stocks as well as residual effects that exclude SOC.

SOC accumulates slowly, and therefore the on-farm benefits from carbon sequestration ac-

crue over long periods of time. I illustrate this effect in Figure 2.5, depicting a two period model
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where Current (C) represents the profits from a specific crop rotation in the current time period,

and Future (F) represents the profits in a future time period. Figure 2.5 shows that when SOC

changes over time this affects crop yields and on-farm profits for specific alternative crop rota-

tions. In this specific, contrived example, compared with crop rotation B, rotation A earns lower

immediate profits but sequesters more SOC and eventually, as a result, earns higher future profits.

In this context, farmers decide which crop rotation to adopt based on the difference in profits be-

tween crop rotations in the future time period after SOC and yield growth are realized. In order to

calculate the future difference in profit between crop rotations, one must first calculate the change

in profit over time (from the current time period to the future time period) that stems from ad-

ditional SOC accumulated by implementing a specific rotation, represented by the green shaded

area in Figure 2.5. This difference in future profit between crop rotations governs how forward-

looking farmers make long-term decisions and the decision to adopt a particular crop rotation

relative to another.

In Figure 2.5, it is assumed that prices are exogenous. Panel (A) depicts a crop rotation strat-

egy that is highly effective in sequestering SOC, resulting in modest immediate profits (indicated

by the shaded blue area), but significantly enhances SOC levels, leading to improved future crop

yields and profit. The future yield enhancement is represented as a downward shift in the average

total cost curve, such that future profits include both the blue and green shaded areas across both

panels. Conversely, Panel (B) illustrates a crop rotation strategy that has higher current profits

but is less effective in SOC sequestration, but happens to contribute less to SOC accumulation.

This results in a smaller downward shift in the average cost curve. As drawn, current profits are

larger for the crop rotation depicted in Panel (B) relative to (A), whereas future profits are larger in

Panel (A) relative to (B) owing to the slow, yet more significant, accumulation of SOC for the crop

rotation in (A). This scenario illustrates the possibility that a farmer might undervalue the strat-

egy shown in Panel (A) compared to Panel (B) in the current time period, neglecting the future

advantages of enhanced soil health and increased crop yields resulting from higher SOC stocks.
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FIGURE 2.5: Dynamic Effects of Carbon Sequestration on Current and Future Farm
Profits
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Source: Author.
Notes: The blue shaded regions indicate the Current (C) profits from each crop rotation.
Meanwhile, the green shaded regions show the additional Future (F) profits, the on-farm ben-
efits from having sequestered additional carbon in the soil. In this specific case, current profits
are less for crop rotation A than crop rotation B. However, because if sequesters more carbon,

crop rotation A generates greater future profits than those of crop rotation B.
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In what follows, I conduct a dynamic simulation to assess the on-farm benefits for a spe-

cific crop rotation that stem only from carbon sequestration from 2023 to 2055. I then calculate the

on-farm profitability with and without the benefits from carbon sequestration and calculate the re-

spective external social benefits. The dynamic simulation employs five distinct four-year crop ro-

tation sequences: Canola-Spring Wheat-Canola-Spring Wheat, Canola-Spring Wheat-Peas-Spring

Wheat, Spring Wheat-Peas-Spring Wheat-Peas, Spring Wheat-Fallow-Spring Wheat-Fallow, and

Lentils-Fallow-Lentils-Peas. Instead of directly applying the Augmented Campbell model, I de-

velop a state equation based on SOC stock data simulated by Serfas (2024a) and crop production

data at the field level from SCIC. For each soil zone, I regress the yearly change in SOC stocks on

the stock from the previous year, crop yield, and prior cropping patterns represented by dummy

variables. This method facilitates dynamic simulation while effectively including the dynamic ef-

fects on yield, without having to involve more complex SOC prediction models. All of the data

on expected yields, commodity prices, and production costs per hectare are retrieved from the

2023 Saskatchewan Crop Planning Guide (Government of Saskatchewan, 2023a). The initial stock

of SOC for 2023 is computed as the weighted average stock for each soil zone weighted by the

hectares of a field and simulated by the Augmented Campbell model for the year 2019.21 The

state equation for SOC stocks is characterized as:

∆SOCn,t = αSOCn,t−1 + 1c∈C{βcYc
n,t−1}+ 1mk∈MK{γmkΘmk

n,t}+ Zn,t−1δ + υn,t, (2.13)

where, on field n, ∆SOCn,t is the annual change in SOC between years t and t− 1, SOCn,t−1 is stock

of SOC in the previous year, Yc
n,t−1 is last year’s yield for crop c, Θmk

n,t is the cropping sequence over

the previous two years, Zn,t−1 is a vector of weather variables that include GSAT and TAP, and

υn,t is the error term. Equation (2.13) is estimated for each soil zone with standard errors clustered

at the farm level and observations weighted by the hectares of a field. Index C includes six crops

(canola, barley, spring wheat, durum wheat, lentils, peas) and MK includes 49 combinations of

21I assume that the stock of SOC for the year of 2019 is similar and can be used as a proxy for SOC stocks in the year
2023.
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the past two-year cropping sequence, additionally including summer fallow to the set C.22 The

primary function of the state equation is to predict the change in stock of SOC, which then can

be used to characterize the dynamic interactions between SOC stocks and crop yield using the

shadow value of SOC, which vary across different crop rotations and soil zones.23

Figure 2.6 shows the predicted yearly increases in SOC corresponding to each two-year crop

rotation within each soil zone. The caption in the top of each column indicates the crop that

was planted in the last year, while the label at the bottom of each column indicates the crop that

was planted in the year before last. I construct the 95% confidence interval for each prediction,

calculated using the variance formula,

Var(∆SOCn,t|SOCn,t−1, 1c∈C{Yc
n,t−1}, 1mk∈MK{Θmk

n,t}, Zn,t−1) =

α2Var(SOCn,t−1)

+ 1c∈C{β2
c}Var(1c∈C{Yc

n,t−1})

+ 1mk∈MK{γ2
mk}Var(1mk∈MK{Θmk

n,t})

+ δ2Var(Zn,t−1)

+ 2
[
α1c∈C{βc}Cov(SOCn,t−1, 1c∈C{Yc

n,t−1})

+ α1mk∈MK{γmk}Cov(SOCn,t−1, 1mk∈MK{Θmk
n,t})

+ αδCov(SOCn,t−1, Zn,t−1)

+ 1c∈C{βc}1mk∈MK{γmk}Cov(1c∈C{Yc
n,t−1}, 1mk∈MK{Θmk

n,t})

+ 1c∈C{βc}δCov(1c∈C{Yc
n,t−1}, Zn,t−1)

+ 1mk∈MK{γmk}δCov(1mk∈MK{Θmk
n,t}, Zn,t−1)

]
.

(2.14)

22Adding additional lags of cropping choice slightly improves the prediction of SOC stocks. Table 2E.1 in Appendix
2E shows the ten-fold cross validation results when different cropping sequence lag lengths are tried. I find that the
r-squared value increases by 0.04 in the brown soil zone, 0.06 in the dark brown soil zone, and 0.08 in the black & gray
soil zone when including four lags relative to two. I employ two lags for past cropping choice in the SOC state equation,
which significantly reduces the number of parameters needed for dynamic simulation and does not sacrifice too much
predictive performance as shown in Table 2E.1 in Appendix E.

23To simulate SOC stocks, I use the forward Euler method. Simulation results using the fourth-order Runge-Kutta
method generate identical changes in the stock of SOC to those from the forward Euler method because the state
equation for SOC is linear. Hence, non-linear differential equation solvers like the Runge-Kutta method result in similar
predictions for changes in SOC stocks.
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FIGURE 2.6: Prediction of Annual Change in Soil Organic Carbon by Two-Year Crop Rotation

Source: Author’s Estimates.
Notes: Crops listed in the top panel refer to the crop seeded last year, whereas crops labeled on the x-axis are preceding year’s crop
(seeded two-years ago.) Each point represents the predicted annual change in SOC calculated using equation (2.13) and its associated

95% confidence interval calculated using equation (2.14).
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In Figure 2.6, for each soil zone, the plots depict the yearly average change in SOC. These

predictions were made using the 1998 to 2019 average weather on fields in which SOC is predicted,

the 2019 average SOC stock by soil zone, and the expected yield for each crop retrieved from the

2023 Saskatchewan Crop Planning Guide (Government of Saskatchewan, 2023a). The predictions

indicate that canola, spring wheat, or durum wheat planted in the preceding year contributed

more to annual SOC changes, while lentils, peas, and summer fallow practices contribute less

and can result in a decrease in the SOC stock. Additionally, having seeded canola two years ago

decreases the increase in SOC for all crops planted in the last year, whereas having opted for

summer fallow two years ago increases the increase in SOC change for all crops planted last year.

Figure 2.7 and Table 2.4 display the results from the dynamic simulation for each crop rotation

and soil zone. Specific crop rotations were selected for a variety of reasons. Rotations featuring

canola are prevalent in the dark brown and black & gray soil zones, while Spring Wheat-Peas-

Spring Wheat-Peas is more typical in the brown soil zone. Another common older crop rotation

is Spring Wheat-Fallow-Spring Wheat-Fallow, while Lentils-Fallow-Lentils-Peas represents a low

carbon sequestering rotation that yields relatively higher profits over the four-year cycle compared

to rotations involving cereals and canola.24

Figure 2.7 shows the growth in SOC stock in each soil zone for each crop rotation. Across

these rotations and soil zones, the Canola-Spring Wheat-Canola-Spring Wheat rotation generates

the largest increase in SOC stock from 2023 to 2055 for each soil zone. On average, increases

in SOC are greater in the brown and dark brown soil zones than in the black & gray soil zone,

likely because of the already higher SOC stock in the latter, necessitating more carbon inputs

to be sustained. The smallest increases in SOC stocks are observed in the black & gray soil zone,

particularly with the Lentil-Fallow-Lentils-Peas rotation. These simulations are based on expected

yields from the 2023 Saskatchewan Crop Planning Guide (Government of Saskatchewan, 2023a),

representing an optimistic outlook for future SOC changes. However, we should note that the

responses to adopting these crop rotations could vary considerably over time and space due to

24Fallow is incorporated into this rotation to enable better weed control and reduce disease pressure by exclusively
seeding pulse crops.
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variation in crop yield, soil characteristics, weather conditions, and farm management practices.

Additionally, these predictions are out of sample. As longer time-series data become available,

recalibration of the model will be possible and will allow more precise SOC predictions.25

FIGURE 2.7: Simulated SOC Stocks by Crop Rotation and Soil Zone

Source: Author’s Estimates.
Notes: The time paths for soil organic carbon (SOC) are computed by using equation (2.13)
for each soil zone, mean weather conditions from 1998 to 2023, initial SOC stocks in 2019, and
the 2023 expected crop yields from the Saskatchewan Crop Planning Guide (Government of

Saskatchewan, 2023a).

25All SOC prediction models are calibrated using historical soil sampling data from the Experimental Research
Station operated by Agriculture and Agri-Food Canada located in Swift Current, Saskatchewan.
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TABLE 2.4: Percentage Change in On-Farm Profit from Carbon Sequestration by Crop Rotation

(1) (2) (3) (4) (5) (6) (7) (8)

Soil Zone: Brown

Four-Year Rotation Period: 2024–2027 2028–2031 2032–2035 2036–2039 2040–2043 2044–2047 2048–2051 2052–2055

Crop Rotation: (% change in profit)
Canola-Spring Wheat-Canola-Spring Wheat 2.29 5.33 8.36 11.38 14.39 17.40 20.39 23.38
Canola-Spring Wheat-Peas-Spring Wheat 3.18 6.67 10.15 13.63 17.11 20.58 24.05 27.51
Spring Wheat-Peas-Spring Wheat-Peas 1.62 5.04 8.48 11.91 15.34 18.78 22.22 25.66
Spring Wheat-Fallow-Spring Wheat-Fallow -1.30 1.34 3.97 6.60 9.22 11.83 14.43 17.02
Lentils-Fallow-Lentils-Peas 0.05 0.24 0.43 0.61 0.80 0.98 1.16 1.34

Soil Zone: Dark Brown

Four-Year Rotation Period: 2024–2027 2028–2031 2032–2035 2036–2039 2040–2043 2044–2047 2048–2051 2052–2055

Crop Rotation:
Canola-Spring Wheat-Canola-Spring Wheat 0.98 2.59 4.20 5.80 7.41 9.02 10.62 12.23
Canola-Spring Wheat-Peas-Spring Wheat 0.82 1.88 2.94 4.00 5.06 6.11 7.16 8.22
Spring Wheat-Peas-Spring Wheat-Peas 0.15 0.73 1.32 1.91 2.49 3.07 3.65 4.23
Spring Wheat-Fallow-Spring Wheat-Fallow -0.34 0.63 1.60 2.56 3.52 4.48 5.43 6.38
Lentils-Fallow-Lentils-Peas 0.01 0.08 0.15 0.23 0.30 0.37 0.44 0.51

Soil Zone: Black & Gray

Four-Year Rotation Period: 2024–2027 2028–2031 2032–2035 2036–2039 2040–2043 2044–2047 2048–2051 2052–2055

Crop Rotation:
Canola-Spring Wheat-Canola-Spring Wheat 0.42 1.19 1.96 2.72 3.49 4.25 5.01 5.77
Canola-Spring Wheat-Peas-Spring Wheat 0.45 1.02 1.59 2.17 2.73 3.30 3.86 4.42
Spring Wheat-Peas-Spring Wheat-Peas 0.19 0.57 0.95 1.33 1.71 2.08 2.46 2.83
Spring Wheat-Fallow-Spring Wheat-Fallow -0.15 0.10 0.35 0.59 0.83 1.08 1.32 1.56
Lentils-Fallow-Lentils-Peas 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

Source: Author’s Estimates.
Notes: The percentage change in profit for each four-year crop rotation is relative to the corresponding profit using 2023 prices and costs for
each crop rotation from the Saskatchewan Crop Planning Guide (Government of Saskatchewan, 2023a). The entries in bold are for the crop
rotation yielding the greatest percentage benefit from SOC sequestration.
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In Table 2.4, I summarize the on-farm benefits that stem from cumulative carbon seques-

tration calculated as the average percentage increase in profit relative to 2023 for each four-year

cycle of crop rotation from 2023 to 2055. These findings indicate that the potential on-farm advan-

tages of carbon sequestration are most significant in the brown soil zone, yet still remain beneficial

across all of Saskatchewan. The results reveal that, by 2052-55 farmers could accumulate enough

SOC to increase their four-year crop rotation profits by 27.51% in the brown soil zone, 12.23% in

the dark brown soil zone, and 5.77% in the black & gray soil zone. In the brown soil zone, the

Canola-Spring Wheat-Peas-Spring Wheat rotation shows the greatest percentage increase in profit

attributable to increased SOC, while in both the dark brown and black & gray soil zones, it is the

Canola-Spring Wheat-Canola-Spring Wheat. The results in Table 2.4 show that SOC has a more

pronounced affect on rotations including a mix of pulses, cereals, and canola, or just pulses and ce-

reals, in the brown soil zone compared to the dark brown and black & gray soil zones. In the dark

brown and black & gray soil zone, rotations of spring wheat and canola, excluding pulses, result

in notably higher on-farm benefits from carbon sequestration. This dynamic simulation does not

fully capture the effects of cropping intensity, and rotations emphasizing substantial canola pro-

duction might be more prone to disease. Such susceptibility could significantly decrease on-farm

profitability if there is a correlation between disease risk and specific crop rotations.

Using the results from the dynamic simulation, I calculate the change in on-farm profit re-

sulting from carbon sequestration over 32 years, depicted as the shaded green region in Figure

2.5.26 If current profit is denoted as πC
i for crop rotation i and πF

i signifies the future profit for the

same rotation, then the change in profit attributable to increased SOC after 32 years of dynamic

simulation (2023-2055) is,

∆πF−C
i = πF

i − πC
i . (2.15)

26On-farm profit is equal to the return over variable expenses obtained from the 2023 Saskatchewan Crop Planning
Guide Government of Saskatchewan (2023a). Variable expenses in the Saskatchewan Crop Planning Guide do not
include fixed costs, such as property tax, machinery and building investment and depreciation, or land investment.
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Where ∆πF−C
i represents that change in profit from 2023 to 2055 for a four-year crop rotation, as a

result of additional SOC, interpreted as the on-farm benefit from carbon sequestration. To compare

these benefits between alternative crop rotations, I take the difference. The difference in on-farm

benefit from additional SOC yielded by crop rotation i relative to crop rotation j is estimated as,

ηij = (πF
i − πF

j )− (πC
i − πC

j ), (2.16)

where ηij is the increase in the on-farm benefits from carbon sequestration obtained by choosing

crop rotation i to crop rotation j.

Table 2.5 presents the on-farm benefit from carbon sequestration for each crop rotation as

calculated using equation (2.15) (for diagonal elements) and the comparative on-farm benefit

from carbon sequestration against a different rotation, calculated using equation (2.16) (for non-

diagonal elements). I divide each benefit for the last four years of the four-year crop rotation by

four to obtain the yearly average profit increase from the additional SOC accrued after sustaining

the respective crop rotation for 32 years. In this case, future profits are valued in 2023 CAD, but

are not discounted. Here, I only compute the benefits from carbon sequestration over time and

relative to other crop rotations. Following this, I calculate the present value of on-farm profits and

their external social benefits for each crop rotation and relative to different rotations.

Table 2.5 shows that the increase in on-farm profit is greatest for the Canola-Spring Wheat-

Canola-Spring Wheat rotation. The difference in gains from SOC sequestration between the Canola-

Spring Wheat-Peas-Spring Wheat and the Canola-Spring Wheat-Canola-Spring Wheat rotation is

minimal (less than 1 CAD per hectare) in the brown soil zone, compared with the dark brown

and black & gray soil zones, where the additional gains are 29.78 and 12.46 CAD per hectare,

respectively. In the brown soil zone, the difference between Canola-Spring Wheat-Peas-Spring

Wheat (or Canola-Spring Wheat-Canola-Spring Wheat) and Spring Wheat-Fallow-Spring Wheat-

Fallow is equal to approximately 87 CAD per hectare per year after 32 years of implementation.

Meanwhile, the difference in on-farm profits from carbon sequestration between Canola-Spring

Wheat-Canola-Spring Wheat and Spring Wheat-Fallow-Spring Wheat-Fallow in the dark brown
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and black & gray soil zones amount to 63.55 and 39.42 CAD per hectare, after 32 years of rotating

Canola-Spring Wheat-Canola-Spring Wheat compared with Spring Wheat-Fallow-Spring Wheat-

Fallow.

TABLE 2.5: Matrix of On-Farm Benefits from Carbon Sequestration by Crop Rotation

Formulas: Diag{∆πF−C
i = πF

i − πC
i } & NonDiag{ηi,j = (πF

i − πF
j )− (πC

i − πC
j ) ∀ i ̸= j}

Soil Zone: Brown

Crop Rotation: (1) (2) (3) (4) (5)
(2023 CAD/ha/yr)

(1) Canola-Spring Wheat-Canola-Spring Wheat 109.31
(2) Canola-Spring Wheat-Peas-Spring Wheat 0.13 109.18
(3) Spring Wheat-Peas-Spring Wheat-Peas 25.61 25.47 83.71
(4) Spring Wheat-Fallow-Spring Wheat-Fallow 87.44 87.31 61.84 21.87
(5) Lentils-Fallow-Lentils-Peas 103.60 103.47 77.99 16.16 5.71

Soil Zone: Dark Brown

Crop Rotation: (1) (2) (3) (4) (5)
(1) Canola-Spring Wheat-Canola-Spring Wheat 76.00
(2) Canola-Spring Wheat-Peas-Spring Wheat 29.78 46.23
(3) Spring Wheat-Peas-Spring Wheat-Peas 54.69 24.91 21.31
(4) Spring Wheat-Fallow-Spring Wheat-Fallow 63.55 33.77 8.86 12.46
(5) Lentils-Fallow-Lentils-Peas 73.00 43.23 18.31 9.46 3.00

Soil Zone: Black & Gray

Crop Rotation: (1) (2) (3) (4) (5)
(1) Canola-Spring Wheat-Canola-Spring Wheat 43.49
(2) Canola-Spring Wheat-Peas-Spring Wheat 12.46 31.03
(3) Spring Wheat-Peas-Spring Wheat-Peas 25.16 12.70 18.33
(4) Spring Wheat-Fallow-Spring Wheat-Fallow 39.42 26.95 14.25 4.08
(5) Lentils-Fallow-Lentils-Peas 43.45 30.99 18.28 4.03 0.04

Source: Author’s Estimates
Notes: Diagonal elements are equal to the on-farm benefit per year derived from carbon sequestration
by crop rotation. They signify the difference between current and future profits for a four-year crop
rotation applied from 2023 to 2055, measured in 2023 dollars per hectare per year (refer to equation (2.15)).
Conversely, non-diagonal elements denote the contrast in on-farm benefits from carbon sequestration
across different crop rotations (refer to equation (2.16)). Current profit is computed based on the expected
profit outlined in the 2023 Saskatchewan Crop Planning Guide for a four-year crop rotation, while future
profit is determined using the 2023 prices and costs from the same guide (Government of Saskatchewan,
2023a), combined with simulated crop yields derived from the last four years of dynamic simulation.
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I now compute the present value of on-farm profits and the external social benefit from SOC

sequestration from 2023 to 2055, comparing the five alternatve crop rotations across three soil

zones in Saskatchewan, as done in Table 2.5.27 I calculate the present value of on-farm profits with

and without yield growth effects attributed to carbon sequestration (with and without SOC ef-

fects). The external social benefit is measured as the value of the implied reduction in atmospheric

carbon resulting from additional SOC sequestered by a particular crop rotation, compared with

the 2023 baseline stock and then relative to an alternative crop rotation. Both the on-farm profits

and external social benefits are calculated incorporating the simulated change in SOC stocks from

2023 to 2055. To calculate the external social benefit, I apply a money metric measure of the so-

cial cost of carbon (SCC) to the reduction in atmospheric carbon implied by measured changes in

the stock of SOC. The computation of the external social benefit involves applying an equivalent

annual rental price for SOC, rather than directly employing the SCC.

The present value of on-farm profits and the external social benefit from additional SOC

compared with a fixed initial baseline stock of SOC, are characterized as,

PVi =
2055

∑
t=2024

(1 + r)−(t−2023)πi, (2.17)

and

ESBi =
2054

∑
t=2024

(1 + δ)−(t−2023)P(SOCSimulated
i,t − SOC2023)

+
P
δ
(1 + δ)−(2055−2023)

(
∑2055

t=2055−4 SOCSimulated
i,t − SOC2023

4

)
,

where,

P = δ ∗ SCC ∗ 44 Mg CO2

12 Mg SOC
.

(2.18)

27It is important to note that since the SOC prediction models are subject to error, so too are the estimates of private
and public benefits from changes SOC stocks.
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Let r be the real discount rate applied to on-farm profits and evaluated at 5% per year, ESB

be the external social benefit per hectare of carbon sequestration by soil zone, SOCSimulated
t is the

simulated SOC stock from the dynamic simulation, SOC2023 is the 2023 initial stock of SOC,28 and

δ is the discount rate used to calculate the SCC. The annual rental price of SOC is equal to the

SCC multiplied by its corresponding discount rate and a conversion factor from CO2 to SOC from

Mikhailova et al. (2019).

In this analysis, I assume after 2055 SOC remains constant. Equation (2.18) therefore has two

components: the first captures rising flows of external benefits from additional SOC stored from

2024 to 2054, while the second measures the benefits from the constant flows from 2055 onward,

which can be represented as a perpetuity, as the average annual flow across a four-year rotation.

I apply a SCC value in this analysis sourced from Rennert et al. (2022) at 185 USD/Mg of CO2,

applying a 2% near-term risk-free discount rate. All external social benefits are converted to 2023

real dollars using the GDP Deflator from the Federal Reserve Bank of St. Louis (U.S. Bureau of

Economic Analysis, 2024) and subsequently converted to CAD using the exchange rate from the

Bank of Canada (2023a) for 2023.

Figure 2.8 only shows the discounted flow of external social benefits from 2023 to 2055 for

each of the five crop rotations and in each of the three soil zones, illustrating the benefits to 2055

(as opposed to the benefits from 2055 and onward in perpetuity), as captured by the first term

outlined in equation (2.18). Naturally, the external social benefit is greater for crop rotations with

higher SOC sequestration rates and less for those with lower rates of SOC sequestration.29

28As stated earlier in this section, the inital stock of SOC for 2023 is computed as the weighted average stock for each
soil zone weighted by the hectares of a field using the Augmented Campbell model provided by Serfas (2024a) for the
year 2019 as a proxy for the year 2023.

29Please refer to Figure 2.7 to see the change in the SOC stock by crop rotation over time.
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FIGURE 2.8: Simulated Stream of Discounted External Social Benefits from Carbon
Sequestration by Crop Rotation

Source: Author’s Estimates.
Notes: The external social benefit for each year is calculated using the first term of equation
(2.14). All computations are converted to 2023 dollars using the GDP Deflator from the Federal
Reserve Bank of St. Louis (U.S. Bureau of Economic Analysis, 2024) and to CAD using the U.S.
to Canadian exchange rate from the Bank of Canada (2023a). Here, I employ a social cost of

carbon of 185 USD/Mg of CO2 from Rennert et al. (2022).
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The difference in the present value of on-farm profits and the external social benefits between

crop rotation i and j are,

∆PVij = PVi − PVj (2.19)

and

∆ESBij = ESBi − ESBj. (2.20)

Table 2.6 shows the computed present value of on-farm profits with and without the derived

benefits from carbon sequestration by crop rotation and soil zone, evaluated at real discount rate

of 5% per year. The present value of on-farm profits without SOC effects over 32 years, for the

Canola-Spring Wheat-Peas-Spring Wheat rotation relative to the Lentils-Fallow-Lentils-Peas rota-

tion, is -430 CAD per hectare in the brown soil zone, -291 CAD per hectare in the dark brown soil

zone, and 113 CAD per hectare in the black & gray soil zone. For the same comparison with SOC

effects, the present value of on-farm profits is 265 CAD per hectare in the brown soil zone, -1 CAD

per hectare in the dark brown soil zone, and 322 CAD per hectare in the black & gray soil zone.

Hence, the present value of on-farm profits that stems from differences in carbon sequestration be-

tween the Canola-Spring Wheat-Peas-Spring Wheat rotation and the Lentils-Fallow-Lentils-Peas

rotation on 65 hectares (equivalent a quarter section or field) amounts to 45,175 CAD in the brown

soil zone, 18,850 CAD in the dark brown soil zone, and 13,585 CAD in the black & gray soil zone.30

As illustrated in Figure 2.5, farmers risk underestimating the long-term present value of crop

rotations if they do not consider the long-term effects of SOC on crop yields, and this can affect the

comparison of alternative. For example, in Table 2.6, the present value of on-farm profits is lower

for the Canola-Spring Wheat-Peas-Spring Wheat rotation relative to the Lentils-Fallow-Lentils-

Peas rotation in the brown soil zone when SOC effects are excluded, but this ranking is reversed

30In the brown soil zone the present value of on-farm profits that stems from carbon sequestration between the
Canola-Spring Wheat-Peas-Spring Wheat rotation and the Lentils-Fallow-Lentils-Peas rotation is calculated as 265 CAD
per hectare minus -430 CAD per hectare and then multiplied by 65 hectares.

177



when SOC effects are included. It is important to note that the accuracy of the SOC prediction

model is limited for crop rotations with minimal representation in the dataset, especially over

extended periods, like the Lentils-Fallow-Lentils-Peas rotation. Farmers typically do not adopt the

Lentils-Fallow-Lentils-Peas rotation because it is prone to disease (e.g., aphanomyces). However,

this varies by soil zone. For example, because the brown soil zone is drought prone (Marchildon

and Sauchyn, 2009), farmers favor rotations with more lentils over canola.

Table 2.6 also shows the external social benefit for each crop rotation, soil zone, and SCC

value. For the Canola-Spring Wheat-Peas-Spring Wheat rotation over 32 years relative to the

Spring Wheat-Fallow-Spring Wheat-Fallow rotation, and using a SCC of 185 USD/Mg of CO2,

the external social benefit from carbon sequestration is 11,067 CAD per hectare in the brown soil

zone, 9,445 CAD per hectare in the dark brown soil zone, and 9,394 CAD per hectare in the black

& gray soil zone. The greatest external social benefit from carbon sequestration is for the Canola-

Spring Wheat-Canola-Spring Wheat rotation relative to the Lentils-Fallow-Lentils-Peas rotation,

amounting to 20,114 CAD per hectare in the brown soil zone, is 17,861 CAD per hectare in the dark

brown soil zone, and is 17,884 CAD per hectare in the black & gray soil zone. When comparing

rotation (2), which includes canola, spring wheat, and pulses, with rotation (5), which includes

lentils, peas, and fallow, it is apparent that the relative private on-farm benefits are much lower

compared with the external social benefits attributed to carbon sequestration.

Employing the results from Figure 2.6, suppose every farmer in Saskatchewan who purchases

crop insurance opts for the Canola-Spring Wheat-Peas-Spring Wheat rotation compared with the

Spring Wheat-Fallow-Spring-Wheat-Fallow, sustained for 32 years. In this scenario, the external

social benefit is equal to approximately 108 billion CAD for the entire province of Saskatchewan.

Even though the external social benefit per hectare is greater in the brown soil zone in this compar-

ison, approximately 25% of this benefit is attributed to the brown soil zone, 34% to the dark brown

soil zone, and 42% to the black & gray soil zone due to differences in the number of hectares in

each soil zone.
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TABLE 2.6: Matrix of the Present Value of Private On-Farm Profits and External Social Benefits from Carbon Sequestra-
tion by Crop Rotation

Present Value of On-Farm Profits without SOC Effects Present Value of On-Farm Profits with SOC Effects

Soil Zone: Brown Brown

Crop Rotation: (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

(2023 CAD/ha) (2023 CAD/ha)

(1) Canola-Spring Wheat-Canola-Spring Wheat 7,450 8,161

(2) Canola-Spring Wheat-Peas-Spring Wheat 1,089 6,362 1,070 7,091

(3) Spring Wheat-Peas-Spring Wheat-Peas 2,304 1,215 5,147 3,015 1,944 5,147

(4) Spring Wheat-Fallow-Spring Wheat-Fallow 5,352 4,263 3,048 2,099 5,953 4,882 2,938 2,208

(5) Lentils-Fallow-Lentils-Peas 659 -430 -1,645 -4,693 6,791 1,335 265 -1,680 -4,618 6,826

Soil Zone: Dark Brown Dark Brown

Crop Rotation: (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

(1) Canola-Spring Wheat-Canola-Spring Wheat 9,889 10,377

(2) Canola-Spring Wheat-Peas-Spring Wheat 904 8,985 1,084 9,293

(3) Spring Wheat-Peas-Spring Wheat-Peas 1,951 1,046 7,939 2,439 1,354 7,939

(4) Spring Wheat-Fallow-Spring Wheat-Fallow 6,711 5,807 4,761 3,178 7,134 6,049 4,695 3,244

(5) Lentils-Fallow-Lentils-Peas 614 -291 -1,337 -6,098 9,276 1,083 -1 -1,356 -6,051 9,294

Soil Zone: Black & Gray Black & Gray

Crop Rotation: (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

(1) Canola-Spring Wheat-Canola-Spring Wheat 11,987 12,267

(2) Canola-Spring Wheat-Peas-Spring Wheat 814 11,174 884 11,383

(3) Spring Wheat-Peas-Spring Wheat-Peas 1,768 954 10,220 2,048 1,164 10,220

(4) Spring Wheat-Fallow-Spring Wheat-Fallow 7,727 6,913 5,959 4,261 7,987 7,103 5,939 4,280

(5) Lentils-Fallow-Lentils-Peas 926 113 -841 -6,800 11,061 1,206 322 -842 -6,781 11,061
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TABLE 2.6: Matrix of Private On-Farm Benefits and Public External Social Benefits from Carbon Sequestration by Crop
Rotation (continued)

External Social Benefits Total Benefits with SOC Effects

Soil Zone: Brown Brown

Crop Rotation: (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

(2023 CAD/ha) (2023 CAD/ha)

(1) Canola-Spring Wheat-Canola-Spring Wheat 21,500 29,661

(2) Canola-Spring Wheat-Peas-Spring Wheat 4,911 16,589 5,981 23,680

(3) Spring Wheat-Peas-Spring Wheat-Peas 11,067 6,157 10,432 14,082 8,101 15,579

(4) Spring Wheat-Fallow-Spring Wheat-Fallow 16,775 11,865 5,708 4,724 22,728 16,747 8,646 6,933

(5) Lentils-Fallow-Lentils-Peas 20,114 15,203 9,046 3,338 1,386 21,448 15,468 7,367 -1,279 8,212

Soil Zone: Dark Brown Dark Brown

Crop Rotation: (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

(1) Canola-Spring Wheat-Canola-Spring Wheat 19,618 29,995

(2) Canola-Spring Wheat-Peas-Spring Wheat 4,575 15,042 5,660 24,335

(3) Spring Wheat-Peas-Spring Wheat-Peas 10,332 5,757 9,286 12,771 7,111 17,225

(4) Spring Wheat-Fallow-Spring Wheat-Fallow 14,020 9,445 3,688 5,598 21,154 15,494 8,383 8,841

(5) Lentils-Fallow-Lentils-Peas 17,861 13,286 7,529 3,841 1,757 18,944 13,284 6,173 -2,210 11,051

Soil Zone: Black & Gray Black & Gray

Crop Rotation: (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

(1) Canola-Spring Wheat-Canola-Spring Wheat 18,018 30,285

(2) Canola-Spring Wheat-Peas-Spring Wheat 3,976 14,041 4,860 25,425

(3) Spring Wheat-Peas-Spring Wheat-Peas 9,216 5,239 8,802 11,263 6,403 19,022

(4) Spring Wheat-Fallow-Spring Wheat-Fallow 13,370 9,394 4,154 4,648 21,357 16,497 10,093 8,928

(5) Lentils-Fallow-Lentils-Peas 17,884 13,907 8,668 4,514 134 19,090 14,229 7,826 -2,267 11,195

Source: Author’s Estimates
Notes: Diagonal elements are equal to the present value of on-farm profits, the external social benefit, or the total benefit derived from carbon sequestration stemming from
a four-year crop rotation applied from 2023 to 2055. The total benefits are equal to the sum of the present value of on-farm profits and the external social benefit for each
crop rotation. The present value of on-farm profits and the external social benefit are measured in 2023 CAD per hectare per year (refer to equations (2.17) and (2.18)).
Non-diagonal elements denote the difference in these benefits from carbon sequestration across different crop rotations (refer to equations (2.19) and (2.20)). On-farm profits
are computed based on the expected profits outlined in the 2023 Saskatchewan Crop Planning Guide by crop for a four-year crop rotation using the 2023 prices and costs
from the same guide (Government of Saskatchewan, 2023a), combined with simulated crop yields derived from the dynamic simulation.
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So far, the influence of SOC on crop yield and profitability has been represented as a conse-

quence of cropping choice and crop rotations. However, given that weather significantly affects

crop yields, past weather conditions also dynamically affect SOC, crop yields, and ultimately, on-

farm profitability. Figure 2.9 uses the dynamic simulation to show the effects of weather patterns

on SOC across different crop rotations, soil zones, and over time (2023–2055) for each of the differ-

ent crop rotations. In Figure 2.9, I apply equation (2.11) to adjust the expected yields for 2023 from

the Saskatchewan Crop Planning Guide to reflect various weather scenarios. Specifically, pro-

longed drought is modeled as occurring when total annual precipitation (TAP) falls two standard

deviations below its average for the entire period 2023–2055, while a prolonged heatwave is rep-

resented by growing season average temperature (GSAT) exceeding its average by two standard

deviations for the entire period, 2023–2055.

Figure 2.9 shows that weather extremes, specifically prolonged heatwaves or droughts, would

have a pronounced affect on lowering SOC stocks relative to the base case from 2023 to 2055, with

drought conditions leading to an even larger reduction in SOC than a heatwave. This decline,

relative to the base case, is exacerbated if drought coincides with a heatwave, which would result

in even lower SOC stocks than those depicted in the worst-case scenarios of Figure 2.9. Adverse

weather events can reduce the extent of carbon sequestration and the resulting long-term the ben-

efits. On the other hand, taking a more optimistic view, crop rotations designed to enhance SOC

sequestration can mitigate some of the negative effects of volatile weather, maintaining higher

SOC stocks and, by extension, yielding greater on-farm benefits from improved SOC manage-

ment.
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FIGURE 2.9: Simulated Dynamic Effects of Carbon Sequestration by Weather Scenario

Source: Author’s Estimates.
Notes: Please refer to the notes from Figure 2.7. The drought scenario corresponds to two standard deviations below the mean TAP,

and the heat wave scenario corresponds to two standard deviations above GSAT.
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To compute the structural effects of weather through SOC and other related factors on farm

profits, I make use of the coefficients derived from equations (2.11) and (2.13). These coefficients

enable the calculation of how weather conditions structurally influence farm profitability. Specifi-

cally, the dynamic or marginal effect of weather on current farm profits is calculated as,

∂Πn,c,t
∂Zn,t−1

=
∂Πn,c,t
∂yn,c,t

∂yn,c,t
∂∆SOCn,t

∂∆SOCn,t
∂Zn,t−1

+
∂Πn,c,t
∂yn,c,t

∂yn,c,t
∂∆SOCn,t

∂∆SOCn,t
∂yn,c,t−1

∂yn,c,t−1

∂Zn,t−1︸ ︷︷ ︸
SOC E f f ect

+
∂Πn,c,t
∂yn,c,t

∂yn,c,t
∂Zn,t−1︸ ︷︷ ︸

Residual E f f ect

⇓

∂Πn,c,t
∂Zn,t−1

= pc,t

[
λc

(
δZn,t−1 + βc

(
ξ

Zn,t−1

l(c) + 2
(
Zn,t−1ξ

Z2
n,t−1

l(c) + (Zn,t−1 − Z̄n,t−1)ξ
(Zn,t−1−Z̄n,t−1)2

l(c)

)))
+ ξ

Zn,t−1
c

]
.

(2.21)

Where c is the current year’s crop type, l(c) is the previous year’s crop type, and superscripts for

coefficients on weather variables correspond to the functional form of the weather variable. The

variance of the marginal effect is computed using the delta method, and is computed in three steps.

Step 1:

Var(A1) = Var
(

ξ
Zn,t−1
l(c) + 2

(
Zn,t−1ξ

Z2
n,t−1

l(c) + (Zn,t−1 − Z̄n,t−1)ξ
(Zn,t−1−Z̄n,t−1)

2

l(c)

))
=

Var
(

ξ
Zn,t−1
l(c)

)
+ 4
(

Z2
n,t−1Var

(
ξ

Z2
n,t−1

l(c)

)
+ (Zn,t−1 − Z̄n,t−1)

2Var
(

ξ
(Zn,t−1−Z̄n,t−1)

2

l(c)

))
+ 4
(

Zn,t−1Cov
(

ξ
Zn,t−1
l(c) , ξ

Z2
n,t−1

l(c)

)
+ (Zn,t−1 − Z̄n,t−1)Cov

(
ξ

Zn,t−1
l(c) , ξ

(Zn,t−1−Z̄n,t−1)
2

l(c)

)
+ 2Zn,t−1(Zn,t−1 − Z̄n,t−1)Cov

(
ξ

Z2
n,t−1

l(c) , ξ
(Zn,t−1−Z̄n,t−1)

2

l(c)

))
(2.22)

Step 2:

Var(A2) = Var
(

δZn,t−1 + βc A1

)
=

Var
(

δZn,t−1
)
+ A2

1Var(βc) + β2
cVar(A1) + 2A1Cov

(
δZn,t−1 , βc

) (2.23)

Step 3:

Var

(
∂Πn,c,t

∂Zn,t−1

)
= Var

(
pc(λc A2 + ξ

Zn,t−1
c )

)
=

p2
c

(
A2

2Var(λc) + λ2
cVar(A2) + Var

(
ξ

Zn,t−1
c

)
+ 2A2Cov

(
λc, ξ

Zn,t−1
c

)) (2.24)
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Table 2.7 presents the estimates of the marginal effects of last year’s weather on the prof-

itability of spring wheat following canola. These total marginal effects can be broken down into

two effects based on equation (2.21): the effect through changes in SOC and the residual effect

which represents various factors influenced by last year’s weather.31 The marginal effect iden-

tifies the structural weather effects on SOC by evaluating them at the average climate condition

and at two standard deviations above and below the mean for both GSAT and TAP. I only eval-

uate the structural effects of last year’s weather on SOC for two standard deviations above and

below the mean for both GSAT and TAP, rather than additionally providing the same analysis for

the residual effect. The nonlinear effects of last year’s weather (lag of squared weather variables

and their squared deviations from climate) on crop yield are statistically significant, but includ-

ing these variables does not alter the effect of SOC on crop yield (marginal product of SOC). The

effect of weather on profit via its consequences for SOC, while notable, is substantially less than

the residual effects. The gain in spring wheat profit of increasing SOC by a Mg per hectare (as

shown in Table 2.3) vastly outweighs the implications of a one-degree Celsius increase in GSAT or

a one-millimeter increase in TAP (as shown in Table 2.7). This highlights that SOC is not very re-

sponsive to year-to-year weather variations, with only minor effects on the profitability of spring

wheat following canola.

Because canola stores the most SOC compared to other crops, the influence of weather on

both SOC and profitability of spring wheat is the greatest when spring wheat follows canola,

rather than other crops. The largest marginal effect is observed when weather conditions are at

µGSAT − 2σGSAT, which pertains to a one-degree Celsius increase in GSAT, a substantial deviation

considering that one standard deviation in Saskatchewan is approximately 0.86 degrees Celsius.

The smallest marginal effect for GSAT occurs when weather conditions are at µGSAT − 2σGSAT,

representing a heatwave. These results show that when Saskatchewan experiences above average

temperatures, crop yield increases when holding precipitation constant. In certain instances, the

31The residual effect from weather in the previous year affects crop yield through factors such as disease preva-
lence, soil moisture, nutrient availability (nutrient immobilization), soil compaction, and other weather related factors
affecting yield.
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added carbon inputs from higher crop yield outweigh the negative effects of GSAT on the decom-

position of SOC. This implies that colder weather in Saskatchewan results in lower crop yields,

less carbon inputs, and slower decomposition of SOC stocks. When temperature increases, SOC

stocks decrease as a result of faster decomposition, but crop yields increase and result in more

carbon inputs being added to the soil. The effects of TAP on profit are straightforward, such that

the marginal effect is larger when weather conditions are at µGSAT − 2σGSAT, when additional pre-

cipitation is needed for plant growth, and lower at µGSAT + 2σGSAT when additional precipitation

becomes harmful to plant growth.

TABLE 2.7: Marginal Effect of Previous Year’s Weather on Spring Wheat Profit, 2023
CAD/ha

(1) (2) (3)

Soil Zone: Brown Dark Brown Black & Gray

SOC Effect

µGSAT + 2σGSAT 0.67 0.51*** −0.28**
(1.26) (0.13) (0.12)

µGSAT −2.09*** −0.68*** −0.27***
(0.79) (0.08) (0.07)

µGSAT − 2σGSAT −4.84*** −5.47*** −6.19***
(1.86) (0.18) (0.03)

µTAP + 2σTAP 0.003 −0.009*** −0.007**
(0.007) (0.001) (0.004)

µTAP 0.025*** 0.007*** 0.002
(0.008) (0.001) (0.003)

µTAP − 2σTAP 0.048*** 0.047*** 0.043***
(0.018) (0.002) (0.001)

Residual Effect

µGSAT −3.64 −34.33*** −68.34***
(21.15) (10.9) (9.37)

µTAP 0.491*** 0.276*** 0.082***
(0.107) (0.048) (0.032)

Total Effect

µGSAT −5.72 −35.01*** −68.61***
(21.17) (10.9) (9.37)

µTAP 0.516*** 0.283*** 0.084***
(0.085) (0.048) (0.032)

Source: Author’s Estimates
Notes: All marginal effects represent the effect of either a one de-
gree Celsius increase in GSAT or a one millimeter increase in TAP
on spring wheat profit after canola in the previous year. GSAT is
growing season average temperature and TAP is total annual pre-
cipitation.
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Regarding the residual effects, among zones a one-degree Celsius increase in GSAT has its

largest effect on spring wheat profit in the black & gray soil zone, a reduction of 68.34 CAD per

hectare. Among the zones, a one-millimeter increase in TAP has its largest effect on spring wheat

profit in the brown soil zone, an increase of 0.49 CAD per hectare.

While the immediate effects of weather on SOC may seem negligible, persistent shifts in

weather patterns could result in significantly divergent cumulative changes in SOC stocks. For

most crop rotations, weather has a more pronounced affect on SOC stocks in the brown soil zone

than in the darker brown and black & gray soil zones (see Figure 2.9). This suggests that sequester-

ing SOC in the brown soil zone is more difficult as a result of its prevalence to drought conditions,

relative to the dark brown and black & gray soil zones.

2.7 Conclusions

This essay introduces a conceptual framework and a quantitative model for assessing the the

on-farm and external benefits from production choices that augment the SOC stock on farms

throughout Saskatchewan. Using this model, I estimate the private marginal shadow value of

SOC to farmers, differentiated by the type of crop and soil zone. The results from this research can

be used to help farmers and agronomists to understand the enduring on-farm effects of enhanced

SOC storage, resulting from modifications in production methods, and help government in the

design and implementation of effective carbon sequestration policies and carbon markets.

The findings of this essay indicate that the shadow value of SOC is positive and subject to

diminishing marginal returns, being notably higher in regions with relatively lower SOC stocks,

such as the brown soil zone. Even though the on-farm benefits from marginal changes in the SOC

stock in the dark brown and black & gray soil zone are much lower relative to the brown soil zone,

they remain to be positive. The shadow value of SOC also varies across crops. In Saskatchewan,

spring wheat and durum wheat have the highest average shadow value of SOC across soil zones,

followed by peas and lentils, and then canola and barley. Given that noticeable changes in SOC
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stocks take years to achieve, the associated crop yield improvements resulting from carbon se-

questration might not be immediately evident to farmers. However, a dynamic simulation over

32 years with five unique crop rotations reveals that, under average weather conditions, the yield

increase from carbon sequestration can lead to substantial on-farm benefits. It is projected that

farmers can enhance profits by 28% in the brown soil zone, 12% in the dark brown soil zone, and

6% in the black & gray soil zone over this period as a benefit from additional SOC sequestered

by specific crop rotations.32 Moreover, these rotations offer environmental benefits that exceed

the private on-farm gains from carbon sequestration, suggesting that choosing crop rotations with

high SOC sequestration potential over those with lower carbon inputs could be worth 108 billion

CAD.33.

Going forward, a better understanding of the incentives and opportunities for farmers to

enhance soil carbon storage is essential for developing effective carbon markets and policies aimed

at boosting SOC stocks. The motivation for farmers to store more carbon will vary across different

regions. It is possible that farmers in regions with a high shadow value for SOC are already

adopting practices that increase SOC stocks, though the slow changes in SOC make it challenging

to detect and measure the broader social benefits of these practices. On the other hand, some

farmers may not fully appreciate the on-farm advantages of carbon sequestration, leading to too

little adoption of SOC-enhancing practices. Educating these farmers about the private on-farm

benefits of carbon sequestration could be an efficient policy approach to encourage more SOC-

enhancing farming practices.

32These crop rotations include Canola-Spring Wheat-Peas-Spring Wheat in the brown soil zone and Canola-Spring
Wheat-Canola-Spring Wheat in the dark brown and black & gray soil zones.

33In this scenario, the external social benefit applies to all insured hectares in Saskatchewan assuming that farmers
rotate Canola-Spring Wheat-Peas-Spring Wheat compared with Spring Wheat-Fallow-Spring Wheat-Fallow from 2023
to 2055 using a SCC of 185 USD/Mg of CO2.
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Appendix 2A: Derivation of Dynamic Profit Maximization Problem for

Farm Profit

In this appendix, I provide the derivation of the dynamic profit maximization problem for farmers

with respect to their input choice and land allocation. Let the following Bellman Equation (BE) for

maximizing farm-level profits be equal to,

V f arm(xt, lt) = max
xt,lt

Π f arm(pt, wt, qt(xt, lt), xt) + βV(xt+1, lt+1)

s.t.
C

∑
c=1

lc,t ≤ Lt and {xt+1, lt+1} = f (xt, lt).
(2A.1)

Where xt is a matrix of the use of input j ∈ J, for crop c ∈ C, in year t, and lt is a vector of the land

allocated to crop c on a farm, Lt is the farmer’s total land, pt is the price of crop c in year t, and wt

is the cost of input j in year t. V(·) represents the value function that describes the best possible

value with respect to input use and land allocation on a farm starting in year t. The profit function

Π f arm(·) depends on input and output prices, the production function qt(·), input use, and land

allocation. The land constraint in equation (2.1) ensures the farmer does not allocate more land to

crops than she owns each year. The state equation {xt+1, lt+1} = f (xt, lt) defines how producers

choose next year’s inputs and land allocation based on previous year’s inputs and land allocation

(e.g., crop rotations and fertilizer use).

I recursively solve for the next period’s value function in equation (2A.1), such that the BE

for the following periods are:
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V f arm(xt+1, lt+1) = max
xt+1,lt+1

Π f arm(pt+1, wt+1, qt+1(xt+1, lt+1), xt+1) + βV(xt+2, lt+2)

s.t.
C

∑
c=1

lc,t+1 ≤ Lt+1 and {xt+2, lt+2} = f (xt+1, lt+1)

...

V f arm(x∞−1, l∞−1) = max
x∞−1,l∞−1

Π f arm(p∞−1, w∞−1, q∞−1(x∞−1, l∞−1), x∞−1) + βV(x∞, l∞)

s.t.
C

∑
c=1

lc,∞−1 ≤ L∞−1 and {x∞, l∞} = f (x∞−1, l∞−1).

(2A.2)

Recursively plugging in equation (2A.2) into (2A.1) leads to,

PV f arm = max
xt,lt

{
Π f arm

t (pt, wt, qt(xt, lt), xt)+

max
{xt+1,lt+1}

{
βt+1Π f arm

t+1 (pt+1, wt+1, qt+1(xt+1, lt+1), xt+1)+

· · ·+ max
{x∞,l∞}

{
β∞Π f arm

∞ (p∞, w∞, q∞(x∞, l∞), x∞)
}
· · ·
}}

s.t.
C

∑
c=1

lc,t ≤ Lt and {xt+1, lt+1} = f (xt, lt),

(2A.3)

According to Stockey and Lucas (1989), equation (2A.3) may be characterized as a “sequence

problem,” which generalizes the BE to an infinite horizon dynamic optimization problem. The

sequence problem is denoted as,

PV f arm(xt, lt) = max
{xt,lt}∞

t=0

∞

∑
t=0

βtΠ f arm(pt, wt, qt(xt, lt), xt)

s.t.
C

∑
c=1

lc,t ≤ Lt and {xt+1, lt+1} = f (xt, lt).

(2A.4)

Incorporating time period zero to equation (2A.4) as done by Bellman (1957) characterizes

Bellman’s optimality principle,
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PV f arm = max
x0,l0

{
Π f arm

0 (p0, w0, q0(x0, l0), x0)+

β
[

max
{xt,lt}∞

t=1

∞

∑
t=1

βt−1Π f arm
t (pt, wt, qt(xt, lt), xt)

]}
s.t.

C

∑
c=1

lc,t ≤ Lt and {xt+1, lt+1} = f (xt, lt).

(2A.5)

In equation (2A.5), farmers separate today’s input and land allocation decisions from their future

decisions. Hence, production decisions are broken into several stages or subproblems, such that

decisions made in the current time period lead to optimal future decisions (principle of optimal-

ity). If a farmer fully understands all the dynamic linkages over time, they will optimally select

inputs and land allocation to maximize the present value of profits taking into consideration all

future time periods.

190



Appendix 2B: Stylized Dynamic Panel Regression with Fixed Effects

In this appendix, I derive the Nickell bias within a stylized dynamic panel regression framework

featuring fixed effects, focusing on a specific scenario where the independent variable is soil or-

ganic carbon (SOC) derived from lagged crop yields, weather, and cropping choice. Through

simulations, I calculate a sample analog of the Nickell bias and contrast it with the actual bias,

which is predetermined in the data generating process (DGP). I explore various scenarios, includ-

ing the incorporation of field and farm fixed effects, as well as the inclusion and exclusion of year

fixed effects. Additionally, I investigate the Nickell bias when the SOC stock is simulated with

prediction errors.

I find that including field and year fixed effects in simulations leads to overfitting of the

data, particularly when the trajectories of SOC stocks closely align with a time trend, thereby ex-

acerbating the Nickell bias. Moreover, the presence of prediction errors further exacerbates this

bias. In scenarios where Nickell bias or both Nickell and prediction error biases are present, the

estimated shadow value of SOC becomes highly contingent on whether year fixed effects are in-

cluded or excluded. Hence, a substantial alteration in the estimated coefficient upon the exclusion

of year fixed effects signals potential overfitting and biased outcomes when employing field and

year fixed effects. Conversely, employing farm fixed effects consistently yields estimations of the

shadow value of SOC that remain robust across the inclusion or exclusion of year fixed effects.

Stylized Dynamic Panel Regression Model

Let the stylized dynamic panel regression model for crop yield on SOC stocks be:

Yn,t = ΓSOCn,t + αn + un,t

such that:

SOCn,t = f

(
t−1

∑
l=1

Yn,t−l ,
t−1

∑
l=1

CTn,t−l ,
t−1

∑
l=1

Wn,t−l

)
.

(2B.1)

Where Yn,t is the crop yield on field n in year t, SOCn,t is the soil organic carbon, αn are field fixed

effects, un,t are idiosyncratic errors, Yn,t−l is the crop yield lagged by l years, CTn,t−l is lagged crop
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choice, and Wn,t−l is lagged weather.

The demeaned model of equation (2B.1) is equal to,

Yn,t − Ȳn = Γ (SOCn,t − ¯SOCn) + un,t − ūn,

such that for any given variable:

ω̄n =
1
T

T

∑
t=1

ωn,t.

(2B.2)

Following the approach of Nickell (1981), the bias of the fixed effects estimator from equation

(2B.2) equals

Γ̂FE − Γ =
∑N

n=1 ∑T
t=1 (un,t − ūn) (SOCn,t − ¯SOCn)

∑N
n=1 ∑T

t=1 (SOCn,t − ¯SOCn)
2 . (2B.3)

Nickell (1981) shows that the probability limit of equation (2B.3) as,

Γ̂FE − Γ
p−→

E
[
∑T

t=1 (un,t − ūn) (SOCn,t − ¯SOCn)
]

E
[
∑T

t=1 (SOCn,t − ¯SOCn)
2
] . (2B.4)

Sequential exogeneity implies, 34

E [un,t − ūn|SOCn,t, αn] = −
1
T

t−1

∑
s=1

un,s. (2B.5)

Assuming sequential exogeneity, equation (2B.4) reduces to

Γ̂FE − Γ
p−→ − 1

T

E
[
∑T

t=1 SOCn,t ∑t−1
s=1 un,s

]
E
[
∑T

t=1 (SOCn,t − ¯SOCn)
2
] . (2B.6)

To estimate the Nickell bias accurately, it is more suitable to use the sample analog of equation

(2B.6) instead of equation (2B.4). This choice is justified by the fact that previous SOC stocks are

34More specifically, Juodis and Sarafidis (2022) explain weak (sequential) exogeneity as: E [un,s|xn,t] = 0; s ≥ t.
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orthogonal to the future errors incorporated within ūn, whereas they are not orthogonal to past

errors.

The sample analog formula depicting the Nickell bias is equal to

B̂ias =

∣∣∣∣∣∣− 1
T

∑N
n=1

(
∑T

t=1 SOCn,t ∑t−1
s=1 εn,s

)
∑N

n=1 ∑T
t=1 (SOCn,t − ¯SOCn)

2

∣∣∣∣∣∣ . (2B.7)

Equation (2B.7) requires computation with a strongly balanced panel of data. The absolute value

is required since the sign frequently does not match the true bias observed in simulations. Never-

theless, the directional change in the magnitude of the analog presented in equation (2B.7) consis-

tently exhibits a positive correlation with variations in the actual bias.

If SOC stocks perfectly follow a trend over time, the Nickell bias from equation (2B.3) is equal

to:

Γ̂FE − Γ =
∑N

n=1 ∑T
t=1 (un,t − ūn)

(
δn

(
T2−1

2

))
∑N

n=1 ∑T
t=1

(
δn

(
T2−1

2

))2

where:

SOCn = SOCn,0 +
1
T

T

∑
t=1

tδn,t and SOCn,t = SOCn,0 +
T

∑
t=1

tδn,t.

(2B.8)

Equation (2B.8) shows how the bias depends on the relationships between the trend in SOC

stocks across fields and the error term. If all covariates influencing the constant annual change in

SOC stocks, denoted as δn, are accounted for, the errors become orthogonal to the time trend, thus

perfectly identifying the true effect of SOC on crop yield. However, in simulations of SOC stocks,

the time-paths often follow a linear trajectory with some degree of variability. Introducing time-

fixed effects or a time trend leaves only residual variation unrelated to the time trend to discern

the effect of SOC stocks on crop yields. This residual variation becomes correlated with the lagged

unobserved errors, consequently leading to Nickell bias.
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When the regression incorporates multiple covariates, the fixed effects estimator partials out

effects that correlate with these variables. Thus, the residual maker matrix, denoted as MX =

I−X (X′X)−1 X′, where X may include time dummies or a time trend, removes the influence of the

time trend in SOC stocks on crop yield. This action exacerbates the Nickell Bias, especially when

SOC stocks show a strong linear relationship with time. Given that SOC is derived from historical

crop yields, it inherently exhibits trends and dynamic relationships, tying it to past errors such as

unobserved farm management practices.

In matrix form, the bias in equation (2B.7) when including other covariates such as a time

trend or time dummies is,

B̂ias =

∣∣∣∣− 1
T

((
SOC− SOC

)∗′ (SOC− SOC
)∗)−1

SOC∗′ ε̈

∣∣∣∣
where: (

SOC− SOC
)∗

= MX
(
SOC− SOC

)
and

ε̈′ =

[
0 ε1,1 ∑2

s=1 ε1,s · · · ∑T−1
s=1 ε1,s · · · 0 εN,1 ∑2

s=1 εN,s · · · ∑T−1
s=1 εN,s

]
.

(2B.9)

All matrices in equation (2B.9) are RNT×1, excluding X where the column size is equal to the

number of independent variables included in the model (RNT×T if including time dummies). If

the SOC stocks follow a perfect linear trajectory over time, including a time trend in equation

(2B.9) removes the biases. However, should there be any deviation from this linear path that

correlates with past errors, Nickell bias will appear.

If there is omitted variable bias stemming from the exclusion of a time trend, time-dummies,

or year fixed effects, then equation (2B.7) becomes:

194



Γ̂FE∗ − Γ =
∑N

n=1 ∑T
t=1 (un,t − ūn) (SOCn,t − ¯SOCn)

∑N
n=1 ∑T

t=1 (SOCn,t − ¯SOCn)
2 + ΓT

∑N
n=1 ∑T

t=1 (t− t̄) (SOCn,t − ¯SOCn)

∑N
n=1 ∑T

t=1 (SOCn,t − ¯SOCn)
2︸ ︷︷ ︸

=βT

(2B.10)

In equation (2B.10), ΓT is the effect of the time trend on crop yield and βT is the effect of the time

trend on SOC stocks. I assume that these coefficients represent the effects of omitted variables not

directly observed but inferred through the time trend. Should the effects of time on both yield and

SOC be positive, this leads to an upward biased in the estimated shadow value of SOC.

Prediction Error Bias

When prediction errors are present in the simulated SOC stocks, there is additional bias,

which can accentuate other omitted variable biases, in addition to the Nickell bias.

Let the stylized dynamic panel regression model with prediction error be equal to,

Ỹn,t = ΓS̃OC
o
n,t + ũn,t − Γξ̃n,t

where:

S̃OCn,t = S̃OC
o
n,t + ξ̃n,t

such that for any variable:

ω̃n,t = ωn,t − ω̄n.

(2B.11)

In equation (2B.11), S̃OC
o
n,t is the simulated SOC stocks and ξ̃n,t is the prediction error. The atten-

uation bias with Nickell bias from the prediction error may be described as,

Γ̂FE∗∗ = Γ
SSS̃OCS̃OC + SSS̃OCξ̃

SSS̃OCS̃OC + 2SSS̃OCξ̃
+ SSξ̃ ξ̃

+
SSS̃OCũ + SSξ̃ũ

SSS̃OCS̃OC + 2SSS̃OCξ̃
+ SSξ̃ ξ̃

such that for any given variable:

SSω̃φ̃ =
N

∑
n=1

T

∑
t=1

(ωn,t − ω̄n) (φn,t − φ̄n) .

(2B.12)
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Taking the expectation and applying the central mapping theorem gives,

Γ̂FE∗∗ p−→Γ
σS̃OCS̃OC + σS̃OCξ̃

σS̃OCS̃OC + 2σS̃OCξ̃
+ σξ̃ ξ̃

+
σS̃OCũ + σξ̃ũ

σS̃OCS̃OC + 2σS̃OCξ̃
+ SSξ̃ ξ̃

such that for any given variable:

σω̃φ̃ = E(ωn,t − E(ωn))E(φn,t − E(φn)).

(2B.13)

Under the assumption of sequential exogeneity, if there is a correlation between the lagged

errors and the prediction errors (as noted in the second term of equation (2B.13)), this correlation

exacerbates the Nickell bias. Additionally, an increase in the variability of the prediction error and

its covariance with SOC stocks (highlighted in the first term of equation (2B.13)) leads to greater

attenuation bias.

For the case where omitted variables are represented by the time trend are included in under-

lying DGP and when time-dummies or year fixed effects are not included in the regression model,

the bias becomes:

Γ̂FE∗∗∗ p−→
Γ
(

σ
S̃OCS̃OC

+ σ
S̃OCξ̃

)
σ

S̃OCS̃OC
+ 2σ

S̃OCξ̃
+ σ

ξ̃ ξ̃︸ ︷︷ ︸
Prediction Error Bias

+
ΓT

(
σ

S̃OCt̃
+ σ

ξ̃ t̃

)
σ

S̃OCS̃OC
+ 2σ

S̃OCξ̃
+ σ

ξ̃ ξ̃︸ ︷︷ ︸
O.V.B. + Prediction Error Bias

+
σ

S̃OCũ
+ σ

ξ̃ũ

σ
S̃OCS̃OC

+ 2σ
S̃OCξ̃

+ σ
ξ̃ ξ̃︸ ︷︷ ︸

Nickell + Prediction Error Bias

. (2B.14)

The bias from the prediction error does not only cause attenuation bias, but worsens the omitted

variable bias and the Nickell bias.

In practice, when including and excluding a time trend or year fixed effects from the regres-

sion, I expect the estimated coefficient without a time component to be larger due to the positive

correlation between yield, SOC, and time, and because the prediction errors increase over time.

Simulation Procedure

In this subsection, I perform a simulation to apply the econometric principles discussed in

the preceding section. I illustrate the changes in both the sample analog of the Nickell bias (as

per equation (2B.7)) and the true bias when modifying the number of years included in the Data

196



Generating Process (DGP), introducing year fixed effects, using an unbalanced panel dataset, and

incorporating prediction errors in simulated SOC stocks. For this simulation, consider a scenario

with 10,000 fields (n), managed by 1,000 farmers (k), across a span of 22 years (t), focusing on a

single homogeneous crop.

Let the DGP for crop yield be,

Yn,t = ΓSOCn,t + en,t ∗Ωn∈g

Where:

en,t ∼ N(µ = 0.5, σ = 0.1)

and

Ωn∈g ∈ {30, 40, 50, 60} 7→ g ∈ {1, 2, 3, 4} 7→ n ∈ {1 : 250, 251 : 500, 501 : 750, 751 : 1000}
(2B.15)

In all simulations, the true effect of SOC on crop yield remains constant at Γ = 0.5. As per

equation (2B.15), the yield is determined by a fundamental crop yield contingent on the assigned

field group. For instance, if a field falls within group 1, the base yield (Ωn∈g) is set at 15 (30∗µ),

whereas for fields in group 4, the base yield is elevated to 30 (60∗µ). Introducing errors with a

zero mean and directly incorporating them within the DGP, instead of scaling them by the base

yield, does not affect the outcomes because the field fixed effects adequately adjust for variations

in base yields across groups. However, scaling the errors by the base yield provides a more real-

istic representation, especially considering that regions with higher yields might experience more

substantial variation in crop yields.

I employ the following first order differential equation to represent the dynamics of SOC

stocks. Let SOC be characterized by,

SOCn,t = cYn,t−1 + (1− d) SOCn,t−1. (2B.16)
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Where c is the crop yield to carbon input conversion rate, and d is a parameter for the decay of

SOC, such that (1− d) is the decay rate of SOC stocks. I set c equal to 0.5, and d equal to 0.45, to

construct the time-path of SOC (see Panel(A) in Figure 2B.1). The initial SOC stock depends on

the group that a field is in, such that SOC(0)n∈g = Ωn∈g. Hence, the initial stock of SOC for a field

in group 1 is 30.

Because there is dynamic feedback between SOC and crop yield, the steps used to form the

DGP using equations (2B.15) and (2B.16) are:

1. Set all starting measures of SOC for all years to the initial stock value for each field.

2. Calculate the crop yield using equation (2B.15).

3. Recalculate the stock of SOC using (2B.16).

4. Iterate steps 2 and 3 until a stable path is reached.

The approach above vectorizes the dynamic system in R, which substantially increases the com-

putational efficiency and speed.

Simulation Results

The results of the simulation are shown in Tables 2B.1 to 2B.4 and Figure 2B.1. Tables 2B.1

and 2B.2 demonstrate the effect of expanding the number of years in the dynamic panel model

with either field or farm fixed effects, effectively mitigating the Nickell bias across all scenarios.

Additionally, the influence of an unbalanced panel is examined, yielding results similar to those

observed in the strongly balanced panel. Table 2B.1 reveals that the bias computed using the

sample analog of the Nickell bias tends to be less precise for panels spanning less than 10 years

and when excluding year fixed effects; nevertheless, there exists a positive correlation between the

values of the sample analog and the true Nickell bias across panel datasets with different number

of years.

In Table 2B.2, the Nickell bias is mitigated when employing farm fixed effects, likely due to

reduced overfitting of SOC stock and greater orthogonal residual variation relative to past errors.

The shadow value of SOC is predominantly identified across various time periods when using
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farmer fixed effects. In this essay, Rural Municipality (RM) fixed effects are employed instead

of farmer fixed effects. The rationale behind this choice stems from the fact that over half of

farms insure fewer than 10 fields,35 and approximately 2000 observations insure only one field

at the farm level, which will result in overfitting and Nickell bias. I determine farm size using

the customer ID from the SCIC dataset, which does consider the possibility of multiple farmers

insuring land on the same farming operation. Unlike smaller farms, larger farms or corporations

do not encounter this problem as the customer ID pertains to a corporation. In 2019, there were

several hundred farms with over 10,000 acres or 4,000 hectares. The median farm size stood at

1,000 acres or 400 hectares, while the average size was 1,700 acres or 690 hectares (with a right-

skewed distribution).

Tables 2B.3 and 2B.4 show the effect of prediction error bias alongside Nickell bias, both

with and without year fixed effects. The prediction error varies substantially with the degree of

prediction error, observed across scenarios with either field or farmer fixed effects. As expected,

the inclusion of year fixed effects leads to biased coefficients and exacerbates the Nickell bias.

Given the linear trend in SOC stocks, the presence or absence of time-fixed effects serves as a

robustness check for both Nickell and prediction error biases. This sensitivity analysis reveals the

importance of residual variation in SOC stocks, particularly when they are closely aligned with a

time trend.

Incorporating time trends in dynamic panel regressions is essential, though caution is ad-

vised to avoid overfitting when using two-way fixed effects. The inclusion of year fixed effects

can lead to significant multicollinearity between independent variables, which might enlarge the

standard errors but should not bias the estimator. Hence, addressing other biases like omitted

variable bias and Nickell bias is crucial for reducing the overall effect of prediction error bias.

When prediction errors are random and uncorrelated with unobserved factors influencing crop

yield, the bias should be zero.

35In this simulation each farmer has 10 fields.
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TABLE 2B.1: Simulation Results for Nickell Bias in Dynamic Panel Regression Mod-
els with Field Fixed Effects

Years Γ̂FE S.E. T-Value P-Value B̂ias |Γ̂FE − Γ| Observations Panel Year FE

A) Number of Years

1000 0.497 0.000 1200.36 0.000 0.002 0.003 10,000,000 Balanced No

50 0.445 0.002 239.16 0.000 0.076 0.055 500,000 Balanced No

22 0.403 0.003 147.76 0.000 0.194 0.097 220,000 Balanced No

15 0.370 0.003 119.86 0.000 0.283 0.130 150,000 Balanced No

10 0.318 0.004 79.44 0.000 0.509 0.182 100,000 Balanced No

5 0.128 0.007 19.39 0.000 1.257 0.372 50,000 Balanced No

1000 0.497 0.000 1193.54 0.000 0.002 0.003 10,000,000 Balanced Yes

50 0.418 0.002 185.21 0.000 0.015 0.082 500,000 Balanced Yes

22 0.304 0.004 80.42 0.000 0.010 0.196 220,000 Balanced Yes

15 0.172 0.005 36.93 0.000 0.037 0.328 150,000 Balanced Yes

10 -0.021 0.006 -3.39 0.001 0.038 0.521 100,000 Balanced Yes

5 -0.501 0.010 -50.14 0.000 0.025 1.001 50,000 Balanced Yes

B) Unbalanced Panel

22 0.407 0.006 66.39 0.000 NA 0.093 50,000 Unbalanced No

22 0.401 0.004 104.09 0.000 NA 0.099 100,000 Unbalanced No

22 0.319 0.008 38.02 0.000 NA 0.181 50,000 Unbalanced Yes

22 0.301 0.005 56.70 0.000 NA 0.199 100,000 Unbalanced Yes

Source: Author’s Estimates

Notes: In all cases, c=0.5, and d=0.45 in equation (A.16). Each regression includes field fixed effects and clustering of
standard errors at the farm level.
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TABLE 2B.2: Simulation Results for Nickell Bias in Dynamic Panel Regression Mod-
els with Farmer Fixed Effects

Years Γ̂FE S.E. T-Value P-Value B̂ias |Γ̂FE − Γ| Observations Panel Year FE

A) Number of Years

1000 0.500 0.000 1218.05 0.000 0.075 0.000 10,000,000 Balanced No

50 0.484 0.003 145.66 0.000 0.026 0.016 500,000 Balanced No

22 0.492 0.003 193.91 0.000 0.113 0.008 220,000 Balanced No

15 0.489 0.003 188.89 0.000 0.105 0.011 150,000 Balanced No

10 0.491 0.003 140.93 0.000 0.117 0.009 100,000 Balanced No

5 0.469 0.006 79.97 0.000 0.240 0.031 50,000 Balanced No

1000 0.500 0.000 1212.48 0.000 0.070 0.000 10,000,000 Balanced Yes

50 0.491 0.002 247.89 0.000 0.048 0.009 500,000 Balanced Yes

22 0.484 0.003 145.66 0.000 0.089 0.016 220,000 Balanced Yes

15 0.477 0.004 131.71 0.000 0.126 0.023 150,000 Balanced Yes

10 0.472 0.005 95.70 0.000 0.180 0.028 100,000 Balanced Yes

5 0.442 0.008 53.58 0.000 0.353 0.058 50,000 Balanced Yes

B) Unbalanced Panel

22 0.496 0.005 97.05 0.000 NA 0.004 50,000 Unbalanced No

22 0.489 0.004 138.99 0.000 NA 0.011 100,000 Unbalanced No

22 0.497 0.007 73.94 0.000 NA 0.003 50,000 Unbalanced Yes

22 0.480 0.005 103.93 0.000 NA 0.020 100,000 Unbalanced Yes

Source: Author’s Estimates

Notes: In all cases, c=0.5, and d=0.45 in equation (A.16). Each regression includes farmer fixed effects and clustering of
standard errors at the farm level.
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TABLE 2B.3: Sensitivity Analysis with respect to Prediction Error with Field Fixed
Effects

Γ̂FE S.E. T-Value ctrue dtrue cerror derror R2 |Γ̂FE − Γ| Year FE

0.204 0.003 63.07 0.02 0.01 0.5 0.45 0.864 0.296 No

-0.114 0.005 -25.20 0.02 0.01 0.5 0.45 0.874 0.614 Yes

0.414 0.005 77.46 0.5 0.45 0.02 0.01 0.878 0.086 No

0.163 0.020 8.09 0.5 0.45 0.02 0.01 0.882 0.337 Yes

0.290 0.002 130.07 0.02 0.01 0.06 0.04 0.873 0.210 No

-0.040 0.012 -3.43 0.02 0.01 0.06 0.04 0.874 0.540 Yes

0.447 0.002 205.87 0.06 0.04 0.02 0.01 0.871 0.053 No

-0.040 0.005 -8.05 0.06 0.04 0.02 0.01 0.886 0.540 Yes

Source: Author’s Estimates

Notes: The time period used is 22 years resulting in 220,000 observations. The underlying DGP in
equation (A.16) is defined by parameters ctrue and dtrue, where cerror and derror represent the parameters
used to generate the prediction error in SOC stocks.
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TABLE 2B.4: Sensitivity Analysis with respect to Prediction Error with Farmer Fixed
Effects

Γ̂FE S.E. T-Value ctrue dtrue cerror derror R2 |Γ̂FE − Γ| Year FE

0.266 0.003 85.48 0.02 0.01 0.5 0.45 0.860 0.234 No

0.040 0.004 9.11 0.02 0.01 0.5 0.45 0.867 0.460 Yes

0.470 0.005 86.72 0.5 0.45 0.02 0.01 0.862 0.030 No

0.911 0.021 43.40 0.5 0.45 0.02 0.01 0.866 0.411 Yes

0.309 0.002 137.77 0.02 0.01 0.06 0.04 0.868 0.191 No

0.249 0.008 32.13 0.02 0.01 0.06 0.04 0.868 0.251 Yes

0.840 0.003 244.58 0.06 0.04 0.02 0.01 0.881 0.340 No

0.866 0.013 68.40 0.06 0.04 0.02 0.01 0.881 0.366 Yes

Source: Author’s Estimates

Notes: The time period used is 22 years resulting in 220,000 observations. The underlying DGP in
equation (A.16) is defined by parameters ctrue and dtrue, where cerror and derror represent the parameters
used to generate the prediction error in SOC stocks.
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FIGURE 2B.1: Soil Organic Carbon Stocks by Decomposition Rates, Field, and Group

Source: Authors’ Estimates
Notes: Panels (A), (B), and (C) include the time-paths of soil organic carbon over time by field
and group and are computed using Equations (2B.15) and (2B.16). Each color represents a

separate group. Parameter values for c and d correspond to Equation (2B.16).
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Appendix 2C: Data and Summary Statistics

TABLE 2C.1: Description of Variables in the Dynamic Panel Regression Model

Primary Variables: Description: Source:

Crop Yield The field-level average yield in kilogram per
hectare for the respective crop for farms in the
SMP program. The farm-level average yield in
kilograms per hectare for fields not included in the
SMP program

Saskatchewan Crop
Insurance Corporation
Confidential Dataset

Soil Organic Carbon The stock of soil organic carbon on a field in kilo-
grams per hectare.

Serfas (2024a)

Nitrogen Use The pounds per acre of nitrogen applied on a field.
Saskatchewan Crop
Insurance Corporation
Confidential Dataset

Weather Variables:

GSAT The Growing Season Average Temperature (April
to September) in degrees Celsius.

Environment and Climate Change
Canada (2023b)

lag(GSAT) One year lagged term of Growing Season Average
Temperature.

GSAT2 Squared term of Growing Season Average Tem-
perature.

(GSAT − GSAT)2 Total Annual Precipitation squared de-
viation from climate variable for GSAT
from 1998 to 1819.

TAP Total Annual Precipitation in millimeters.
lag(TAP) One year lagged term of Total Annual Precipita-

tion.
TAP2 Squared term of Total Annual Precipitation.
(TAP− TAP)2 Total Annual Precipitation squared devi-

ation from climate variable for TAP from
1998 to 1819.

Soil Characteristic Variables:

Stoniness Occurrence of stones at the surface of the
soil. All values are classified on a discrete
scale from 0 to 5, 0 being no stones and 5
being excessively stony.

Agriculture and Agri-Food Canada (2022)

Slope The slope gradient is the slope of the predominant
landscape and is measured in percent where a 3
percent slope means that the elevation changes 3
feet for every 100 feet of horizontal distance.

Percent Sand Percentage of soil particles that are sand
Percent Silt Percentage of soil particles that are silt
Percent Clay Percentage of soil particles that are clay
pH Measure for the acidity of the soil.
Cation Exchange Capacity Measured in millequivalents per 100 grams of soil.

Millequivalents are the number of ions for a par-
ticular quantity of electracial charges.

Water Retention (@33 kilopascals) The water retention at 33 kilopascals measured as
the percentage of the total soil volume.

Electrical Conductivity Soil electrical conductivity measured in dS/m or
millimhos/centimeter which is inversely propor-
tional to the electrical resistance (Ohms) in the soil.
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TABLE 2C.1: Description of Variables in the Dynamic Panel Regression Model (con-
tinued)

Primary Variables: Description: Source:

Farm Characteristics:

Liability The total liability by field or guarantee to a
farmer in CAD from the Saskatchewan Crop
Insurance Corporation.

Saskatchewan Crop
Insurance Corporation
Confidential Dataset

Insurer Farm Size The total hectares in a year for a farmer that
are insured by the Saskatchewan Crop Insur-
ance Corporation.

SMP Indicator Dummy variable for whether a field is in the
Sask Management Plus Program.

Factors of Cropping Choice:

Crop Rotation Dummy Variables There are 256 crop rotation dummy variables
for the past four-year crop rotation sequence
using the categories: oilseeds, pulses, cereals,
and fallow.

Constructed from the
Saskatchewan Crop
Insurance Corporation
Confidential Dataset

Spring Wheat Past CD Average Yield The past four-year average spring wheat
yield in kg/ha by Crop District in
Saskatchewan.

Canola Past Past CD Average Yield The past four-year average canola yield in
kg/ha by Crop District in Saskatchewan.

Barley Past CD Average Yield The past four-year average barley yield in
kg/ha by Crop District in Saskatchewan.

Durum Wheat Past CD Average Yield The past four-year average durum
wheat yield in kg/ha by Crop District in
Saskatchewan.

Lentils Past CD Average Yield The past four-year average lentil yield in
kg/ha by Crop District in Saskatchewan.

Peas Past CD Average Yield The past four-year average peas yield in
kg/ha by Crop District in Saskatchewan.
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FIGURE 2C.1: Share of Hectares in Saskatchewan from 1998 to 2019 by Crop, Dataset,
and Soil Zone

Source: Constructed using SCIC confidential data.
Notes: All data include fields selected for soil organic carbon (SOC) prediction from the SCIC
confidential dataset, whereas Saskatchewan Management Plus (SMP) data are a subset of

fields that participated in the SMP program.
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FIGURE 2C.2: Share of Summer Fallow Hectares in Saskatchewan from 1998 to 2019
by Soil Zone

Source: Constructed using SCIC confidential data.
Notes: The share of summer fallow hectares is equal to the summer fallow hectares divided
by all cropping hectares and summer fallow hectares for fields selected for SOC prediction.
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TABLE 2C.2: Hectares by Crop, Soil Zone and Dataset in Saskatchewan from 1998 to
2019

(1) (2) (3) (4)

All Hectares

Soil Zone: Brown Dark Brown Black & Gray All
(thousands of hectares)

Barley 113 727 2,375 3,216
Canola 257 2,629 9,060 11,947
Flaxseed 38 457 606 1,101
Lentils 402 887 119 1,408
Oats 8 110 1,048 1,166
Peas, dry 215 757 1,304 2,276
Summer Fallow 975 2,231 4,668 7,873
Wheat, durum 1,111 1,243 171 2,524
Wheat, spring 454 2,308 6,354 9,117
Wheat, winter 12 71 150 233

Total 3,584 11,420 25,856 40,860

SMP Hectares

(thousands of hectares)
Barley 33 213 679 926
Canola 102 946 3,128 4,176
Flaxseed 12 146 170 328
Lentils 123 192 24 339
Oats 1 33 359 392
Peas, dry 48 126 196 370
Wheat, durum 356 361 42 759
Wheat, spring 106 694 2,039 2,839
Wheat, winter 6 31 54 90

Total 788 2,742 6,690 10,220

SMP Share of All Hectares

(%)
Barley 29.5 29.3 28.6 28.8
Canola 39.8 36.0 34.5 35.0
Flaxseed 32.2 32.0 28.0 29.8
Lentils 30.5 21.7 19.9 24.0
Oats 10.2 29.6 34.2 33.6
Peas, dry 22.5 16.7 15.0 16.3
Wheat, durum 32.0 29.1 24.7 30.1
Wheat, spring 23.4 30.1 32.1 31.1
Wheat, winter 48.0 43.5 35.7 38.7

Total 22.0 24.0 25.9 25.0

Source: Constructed using SCIC confidential data.

Notes: All Hectares include fields selected for SOC prediction and the SMP
Hectares include fields that participated in the SMP program and are also se-
lected for SOC prediction.
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FIGURE 2C.3: Average Yield in Saskatchewan from 1998 to 2019 by Crop, Dataset,
and Soil Zone

Source: Constructed using SCIC confidential data.
Notes: All data include fields selected for SOC prediction, whereas SMP data are subset of

fields that participated in the SMP program.
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TABLE 2C.3: Saskatchewan Average Yield by Crop and Soil Zone from 1998 to 2019

(1) (2) (3) (4) (5) (6)

All Yield

Soil Zone: Brown Dark Brown Black & Gray
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

(kg/ha)
Barley 2,245 1,246 2,647 1,214 3,191 1,309
Canola 1,731 757 1,803 694 1,958 749
Flaxseed 1,160 556 1,267 568 1,294 572
Lentils 1,413 657 1,393 677 1,378 778
Oats 1,624 1,288 2,347 1,225 3,422 1,480
Peas, dry 1,948 937 2,226 949 2,402 1,065
Wheat, durum 2,194 1,001 2,414 1,080 2,617 1,026
Wheat, spring 1,899 846 2,293 1,029 2,839 1,082
Wheat, winter 2,597 1,202 2,878 1,139 3,139 1,108

SMP Yield

Soil Zone: Brown Dark Brown Black & Gray
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

(kg/ha)
Barley 2,576 1,172 3,051 1,050 3,533 1,146
Canola 1,844 694 1,950 603 2,111 670
Flaxseed 1,296 464 1,379 531 1,439 573
Lentils 1,535 603 1,556 676 1,789 788
Oats 1,734 938 2,881 1,101 3,837 1,286
Peas, dry 2,258 886 2,575 848 2,779 1,012
Wheat, durum 2,499 941 2,742 1,003 3,219 1,006
Wheat, spring 2,261 806 2,700 933 3,146 962
Wheat, winter 2,606 1,068 3,205 957 3,382 945

Source: Constructed using SCIC confidential data.
Notes: All Yield include all fields selected for SOC prediction and the SMP Yield include
fields that participated in the SMP program and are also selected for SOC prediction.
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FIGURE 2C.4: Average Nitrogen Use in Saskatchewan from 1998 to 2019 by Crop
and Soil Zone

Source: Constructed using SCIC confidential data.
Notes: The SMP data include fields that participated in the SMP program and are selected for

SOC prediction.
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TABLE 2C.4: Average Nitrogen Use by crop and soil zone in Saskatchewan from
1998 to 2019

(1) (2) (3) (4) (5) (6)

SMP Nitrogen Use

Soil Zone: Brown Dark Brown Black & Gray
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

(lbs/ac)
Barley 42 21 56 19 66 17
Canola 76 30 81 28 88 27
Flaxseed 50 23 56 18 61 21
Lentils 8 8 7 9 5 6
Oats 38 15 54 19 63 18
Peas, dry 9 9 7 9 8 13
Wheat, durum 52 24 67 26 73 18
Wheat, spring 43 22 64 26 74 22
Wheat, winter 47 19 72 25 81 29

Source: Constructed using SCIC confidential data.

Notes: The SMP data include fields that participated in the SMP program and are
selected for SOC prediction.
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FIGURE 2C.5: Weighted Average Soil Organic Carbon Stocks in Saskatchewan from
1998 to 2019 by Dataset and Soil Zone

Source: Authors’ Estimates.
Notes: All data include fields selected for SOC prediction, whereas SMP data are a subset of

fields that participated in the SMP program.
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TABLE 2C.5: Weighted Average Simulated Soil Organic Carbon Stocks by soil zone
and Prediction Model in Saskatchewan from 1998 to 2019

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray
Sample: All SMP All SMP All SMP

Augmented Campbell Model (base): (kg/ha)
Mean 36,790 37,641 50,728 52,331 63,819 66,539
Std. Dev. 10,671 10,785 16,612 16,759 25,322 25,563

Augmented Campbell Model (weather):
Mean 36,882 37,722 50,669 52,213 63,544 66,147
Std. Dev. 10,693 10,806 16,628 16,784 25,303 25,551

Campbell Model:
Mean 36,090 36,700 49,834 51,132 62,685 65,075
Std. Dev. 10,593 10,714 16,543 16,707 25,213 25,468

ICBM:
Mean 36,791 37,382 50,599 51,955 63,605 66,032
Std. Dev. 10,678 10,754 16,583 16,723 25,254 25,493

ICBM/2:
Mean 37,374 38,185 51,387 53,031 64,679 67,435
Std. Dev. 10,773 10,845 16,690 16,817 25,420 25,647

RothC Model:
Mean 37,399 38,831 50,934 53,075 63,984 67,024
Std. Dev. 10,303 10,228 15,669 15,563 23,984 23,838

Source: Constructed using SCIC confidential data.
Notes: The All data include fields selected for SOC prediction and the SMP data include fields that
participated in the SMP program and are also selected for SOC prediction.
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TABLE 2C.6: Summary Statistics for Weather and Climate Variables on Fields from
1998 to 2019 in Saskatchewan

(1) (2) (3) (4) (5) (6)

Sample: All SMP
Soil Zone: Brown Dark Brown Black & Gray Brown Dark Brown Black & Gray

GSAT: (°C)
Mean 13.25 13.02 12.56 13.16 12.90 12.42
Std. Dev. 0.82 0.89 0.88 0.70 0.82 0.81

(GSAT − GSAT)2:
Mean 0.64 0.60 0.62 0.45 0.49 0.53
Std. Dev. 0.75 0.67 0.73 0.57 0.60 0.71

TAP: (millimeters)
Mean 353 382 411 358 385 421
Std. Dev. 90 100 101 88 93 91

(TAP− TAP)2:
Mean 7,658 8,697 9,588 7,456 7,871 8,068
Std. Dev. 10,754 13,039 13,892 11,027 13,300 12,477

Source: Created using data from Environment and Climate Change Canada (2023b)
Notes: GSAT is growing season average temperature (April to September) and TAP is total annual precipitation.
The All data include fields selected for SOC prediction and the SMP data include fields that participated in the SMP
program and are also selected for SOC prediction.
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FIGURE 2C.6: Crop Districts and Rural Municipalities Map of Saskatchewan

Source: Government of Saskatchewan (2017)
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Appendix 2D: Supplementary Regressions

TABLE 2D.1: Soil Organic Carbon Marginal Products by SOC Prediction Model,
Sample, and Soil Zone in Saskatchewan

Dependent Variable: Spring Wheat Yield

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray

Sample: Full SMP Full SMP Full SMP
Augmented Campbell Model (base): (kg/ha)
Soil Organic Carbon 0.021*** 0.024*** 0.011*** 0.011*** 0.005*** 0.003***

(0.006) (0.009) (0.001) (0.002) (0.001) (0.001)
Nitrogen Use 2.502 5.747*** 9.459***

(1.58) (0.827) (0.860)

Observations 7,425 2,050 33,174 12,245 92,608 36,033
R2 0.474 0.517 0.577 0.561 0.575 0.532

Augmented Campbell Model (weather):
Soil Organic Carbon 0.021*** 0.024*** 0.010*** 0.010*** 0.004*** 0.003***

(0.006) (0.009) (0.001) (0.002) (0.001) (0.001)
Nitrogen Use 2.496 5.750*** 9.462***

(1.581) (0.827) (0.860)

Observations 7,425 2,050 33,174 12,245 92,608 36,033
R2 0.474 0.517 0.577 0.561 0.575 0.532

Campbell Model
Soil Organic Carbon 0.017*** 0.021** 0.009*** 0.009*** 0.004*** 0.002**

(0.006) (0.009) (0.001) (0.002) (0.001) (0.001)
Nitrogen Use 2.522 5.761*** 9.468***

(1.586) (0.828) (0.861)

Observations 7,425 2,050 33,174 12,245 92,608 36,033
R2 0.473 0.516 0.576 0.56 0.574 0.532

ICBM:
Soil Organic Carbon 0.020*** 0.022** 0.010*** 0.010*** 0.005*** 0.003***

(0.006) (0.009) (0.001) (0.002) (0.001) (0.001)
Nitrogen Use 2.475 5.745*** 9.460***

(1.583) (0.827) (0.860)

Observations 7,425 2,050 33,174 12,245 92,608 36,033
R2 0.474 0.516 0.577 0.56 0.575 0.532

ICBM/2:
Soil Organic Carbon 0.022*** 0.025*** 0.012*** 0.012*** 0.005*** 0.003***

(0.006) (0.009) (0.001) (0.002) (0.001) (0.001)
Nitrogen Use 2.467 5.733*** 9.452***

(1.575) (0.826) (0.860)

Observations 7,425 2,050 33,174 12,245 92,608 36,033
R2 0.474 0.517 0.577 0.561 0.575 0.532

RothC Model:
Soil Organic Carbon 0.030*** 0.033*** 0.016*** 0.015*** 0.008*** 0.006***

(0.005) (0.008) (0.002) (0.002) (0.001) (0.001)
Nitrogen Use 2.424 5.664*** 9.398***

(1.552) (0.821) (0.855)

Observations 7,425 2,050 33,174 12,245 92,608 36,033
R2 0.479 0.523 0.58 0.563 0.576 0.533

Source: Authors’ Estimates.
Notes: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01. For more information, please refer to the notes from Table 2.1.
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TABLE 2D.2: Marginal Product of Soil Organic Carbon on Crop Yield by Functional
Form of SOC, Crop Type, and Soil Zone in Saskatchewan

Dependent Variable: Crop Yield

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray

Functional Form: Quadratic Logarithmic Quadratic Logarithmic Quadratic Logarithmic
Spring Wheat: (kg/ha)
SOC 0.051*** 0.014*** 0.011***

(0.015) (0.004) (0.002)
SOC2 −0.0000004** −0.00000003 −0.00000003***

(0.0000002) (0.00000002) (0.000000008)
ln(SOC) 874.15*** 349.57*** 344.18***

(201.11) (63.21) (45.62)

Observations 7,425 7,425 33,174 33,174 92,608 92,608
R2 0.475 0.475 0.577 0.576 0.575 0.575

Canola:
SOC 0.030*** 0.007*** 0.008***

(0.011) (0.002) (0.001)
SOC2 −0.0000003*** −0.00000003* −0.00000003***

(0.0000001) (0.00000002) (0.000000005)
ln(SOC) 440.51*** 150.03*** 125.64***

(128.48) (35.39) (25.19)

Observations 4,085 4,085 40,967 40,967 140,404 140,404
R2 0.557 0.557 0.520 0.521 0.553 0.552

Barley:
SOC 0.032 0.004 0.011***

(0.031) (0.007) (0.003)
SOC2 −0.0000002 0.00000005 −0.00000004***

(0.0000003) (0.00000005) (0.00000002)
ln(SOC) 469.14 238.90*** 260.02***

(392.02) (87.59) (67.67)

Observations 1,771 1,771 10,251 10,251 33,213 33,213
R2 0.583 0.583 0.512 0.511 0.511 0.511

Durum Wheat:
SOC 0.054*** 0.020*** 0.029***

(0.010) (0.006) (0.011)
SOC2 −0.0000004*** −0.00000009** −0.0000001**

(0.00000009) (0.00000005) (0.00000005)
ln(SOC) 858.96*** 440.21*** 743.60***

(120.95) (109.77) (219.48)

Observations 18,011 18,011 16,940 16,940 1,899 1,899
R2 0.461 0.460 0.565 0.565 0.666 0.666

Lentils:
SOC 0.025** 0.007 0.017*

(0.010) (0.005) (0.010)
SOC2 −0.0000002** −0.00000002 −0.00000008

(0.00000009) (0.00000003) (0.00000005)
ln(SOC) 320.76** 158.80** 594.97***

(124.94) (74.11) (215.95)

Observations 6,342 6,342 12,347 12,347 1,592 1,592
R2 0.366 0.366 0.325 0.325 0.620 0.621

Peas:
SOC 0.024 0.013** 0.010***

(0.015) (0.006) (0.004)
SOC2 −0.0000001 −0.00000008* −0.00000003*

(0.0000002) (0.00000004) (0.00000002)
ln(SOC) 442.42** 261.063*** 117.42

(192.02) (96.46) (78.38)

Observations 3,449 3,449 11,081 11,081 17,272 17,272
R2 0.441 0.441 0.414 0.414 0.479 0.479

Source: Authors’ Estimates.
Notes: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01. For more information, please refer to the notes from Table 2.1. SOC rep-
resents Soil Organic Carbon measured in kilograms per hectare. All models are estimated using the Full sample,
which includes all fields selected for soil organic carbon prediction from the SCIC confidential dataset.
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TABLE 2D.3: Statistical Significance of the Marginal Product of Soil Organic Carbon
by Functional Form, Crop, and Soil Zone in Saskatchewan

Dependent Variable: Crop Yield

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Soil Zone: Brown Dark Brown Black & Gray

Func. Form: Lin Quad Log Lin Quad Log Lin Quad Log
Spring Wheat:
SOC *** *** *** *** *** ***
SOC2 ** - ***
ln(SOC) *** *** ***
R2 0.474 0.475 0.475 0.577 0.576 0.575 0.575 0.575 0.575

Canola:
SOC - *** *** *** *** ***
SOC2 *** * ***
ln(SOC) *** *** ***
R2 0.555 0.557 0.557 0.520 0.520 0.521 0.552 0.553 0.552

Barley:
SOC - - *** - ** ***
SOC2 - - ***
ln(SOC) - *** ***
R2 0.583 0.583 0.583 0.512 0.512 0.511 0.511 0.511 0.511

Durum Wheat:
SOC *** *** *** *** - ***
SOC2 *** ** **
ln(SOC) *** *** ***
R2 0.460 0.461 0.460 0.564 0.565 0.565 0.664 0.666 0.666

Lentils:
SOC ** ** ** - - *
SOC2 ** - -
ln(SOC) ** ** ***
R2 0.365 0.366 0.366 0.325 0.325 0.325 0.618 0.620 0.621

Peas:
SOC ** - - ** *** ***
SOC2 - * *
ln(SOC) ** *** -
R2 0.441 0.441 0.441 0.414 0.414 0.414 0.479 0.479 0.479

Source: Authors’ Estimates.
Notes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01; and - is not statistically significant. Lin represents the linear
functional form of soil organic carbon stocks, Quad is the quadratic form, and Log is the logarithmic
form. All models are estimated using the Full sample of which includes all fields selected for soil
organic carbon prediction from the Saskatchewan Crop Insurance Corporation confidential dataset.
Please refer to Table 2.1 for information concerning regression results for the linear functional form.
For the information on the regression results for the quadratic and logarithmic functional forms,
please refer to Table 2D.2 in Appendix D.
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TABLE 2D.4: Marginal Effect of Soil Organic Carbon on Crop Yield by Functional
Form, Crop, and Soil Zone in Saskatchewan

Dependent Variable: Crop Yield

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Soil Zone: Brown Dark Brown Black & Gray

Func. Form: Lin Quad Log Lin Quad Log Lin Quad Log
(kg/ha)

Spring Wheat:
µSOC + σSOC 0.018*** 0.018*** 0.01*** 0.005*** 0.005*** 0.004***

(0.0061) (0.0042) (0.0015) (0.0009) (0.0007) (0.0005)

µSOC 0.021*** 0.025*** 0.024*** 0.01*** 0.011*** 0.007*** 0.004*** 0.007*** 0.005***
(0.006) (0.0061) (0.0055) (0.001) (0.0016) (0.0012) (0.001) (0.0009) (0.0007)

µSOC − σSOC 0.033*** 0.033*** 0.012*** 0.009*** 0.008*** 0.009***
(0.0078) (0.0077) (0.0021) (0.0012) (0.0012) (0.0012)

Canola:
µSOC + σSOC 0.006* 0.009*** 0.003*** 0.002*** 0.003*** 0.001***

(0.0032) (0.0027) (0.001) (0.0005) (0.0004) (0.0003)

µSOC 0.005 0.012*** 0.012*** 0.003*** 0.004*** 0.003*** 0.003*** 0.004*** 0.002***
(0.003) (0.0043) (0.0035) (0.001) (0.001) (0.0007) (0.0004) (0.0005) (0.0004)

µSOC − σSOC 0.017*** 0.017*** 0.005*** 0.004*** 0.006*** 0.003***
(0.0059) (0.0049) (0.0013) (0.001) (0.0007) (0.0007)

Barley:
µSOC + σSOC 0.012 0.01 0.01*** 0.004*** 0.004*** 0.003***

(0.0105) (0.0082) (0.0028) (0.0013) (0.0013) (0.0008)

µSOC 0.012 0.016 0.013 0.01*** 0.009*** 0.005*** 0.003** 0.006*** 0.004***
(0.011) (0.0125) (0.0106) (0.003) (0.0028) (0.0017) (0.001) (0.0016) (0.0011)

µSOC − σSOC 0.021 0.018 0.007* 0.007*** 0.008*** 0.007***
(0.0169) (0.015) (0.0038) (0.0026) (0.0021) (0.0018)

Durum Wheat:
µSOC + σSOC 0.02*** 0.018*** 0.007*** 0.007*** 0.009** 0.008***

(0.0031) (0.0025) (0.0022) (0.0016) (0.0037) (0.0025)

µSOC 0.02*** 0.028*** 0.023*** 0.007*** 0.01** 0.009*** 0.005 0.015*** 0.012***
(0.003) (0.0039) (0.0033) (0.002) (0.0025) (0.0022) (0.004) (0.0052) (0.0035)

µSOC − σSOC 0.035*** 0.033*** 0.013*** 0.013*** 0.02*** 0.019***
(0.0053) (0.0046) (0.0035) (0.0032) (0.0073) (0.0057)

Lentils:
µSOC + σSOC 0.006** 0.007** 0.004** 0.002** 0.003 0.007***

(0.0028) (0.0026) (0.0019) (0.0011) (0.0036) (0.0024)

µSOC 0.006** 0.011*** 0.009** 0.004** 0.005** 0.003*** 0.002 0.007 0.009***
(0.003) (0.0039) (0.0034) (0.002) (0.0022) (0.0015) (0.004) (0.0046) (0.0034)

µSOC − σSOC 0.015*** 0.012** 0.005* 0.005** 0.011* 0.016***
(0.0055) (0.0048) (0.0028) (0.0022) (0.0064) (0.0056)

Peas:
µSOC + σSOC 0.011** 0.009** 0.003 0.004*** 0.005*** 0.001

(0.0045) (0.004) (0.0022) (0.0014) (0.0014) (0.0009)

µSOC 0.011** 0.014** 0.012** 0.003 0.006** 0.005*** 0.004*** 0.006*** 0.002
(0.004) (0.0059) (0.0052) (0.002) (0.0025) (0.0019) (0.001) (0.0018) (0.0012)

µSOC − σSOC 0.017** 0.017** 0.008** 0.008*** 0.008*** 0.003
(0.0083) (0.0073) (0.0033) (0.0028) (0.0024) (0.0021)

Source: Authors’ Estimates.
Notes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. Lin represents the linear functional form of soil organic carbon stocks, Quad is the quadratic form, and
Log is the logarithmic form. All models are estimated using the Full sample of which includes all fields selected for soil organic carbon prediction
from the Saskatchewan Crop Insurance Corporation confidential dataset. Please refer to Table 2.1 for information concerning regression results
for the linear functional form. For the information on the regression results for the quadratic and logarithmic functional forms, please refer to
Table 2D.2 in Appendix D.
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TABLE 2D.5: Shadow Value of Soil Organic Carbon by Functional Form, Crop, and
Soil Zone in Saskatchewan

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Soil Zone: Brown Dark Brown Black & Gray

Func. Form: Lin Quad Log Lin Quad Log Lin Quad Log
(2023 CAD/ha/yr)/(Mg of SOC/ha)

Spring Wheat:
µSOC + σSOC 6.55*** 6.85*** 3.84*** 1.94*** 1.81*** 1.44***

(2.27) (1.58) (0.55) (0.35) (0.28) (0.19)

µSOC 7.83*** 9.35*** 8.84*** 3.73*** 4.18*** 2.57*** 1.49*** 2.45*** 2.02***
(2.24) (2.27) (2.03) (0.37) (0.61) (0.46) (0.37) (0.34) (0.27)

µSOC − σSOC 12.15*** 12.45*** 4.52*** 3.36*** 3.08*** 3.36***
(2.9) (2.86) (0.79) (0.45) (0.44) (0.45)

Canola:
µSOC + σSOC 4.79* 7.19*** 2.02*** 1.73*** 2.32*** 1.1***

(2.48) (2.1) (0.74) (0.41) (0.34) (0.22)

µSOC 3.88 9.02*** 9.27*** 2.33*** 2.84*** 2.3*** 2.33*** 3.31*** 1.54***
(2.33) (3.3) (2.7) (0.78) (0.76) (0.54) (0.31) (0.42) (0.31)

µSOC − σSOC 13.25*** 13.06*** 3.65*** 3.42*** 4.3*** 2.55***
(4.56) (3.81) (1.01) (0.81) (0.55) (0.51)

Barley:
µSOC + σSOC 5.48 4.6 4.76*** 1.65*** 1.74*** 1.36***

(4.88) (3.84) (1.31) (0.61) (0.58) (0.36)

µSOC 5.59 7.6 5.93 4.66*** 3.99*** 2.2*** 1.4** 2.72*** 1.91***
(5.13) (5.82) (4.96) (1.4) (1.3) (0.81) (0.47) (0.72) (0.5)

µSOC − σSOC 9.72 8.35 3.23* 3.27*** 3.69*** 3.17***
(7.89) (6.98) (1.75) (1.2) (0.97) (0.83)

Durum Wheat:
µSOC + σSOC 8.79*** 7.98*** 3.19*** 2.89*** 4.09** 3.7***

(1.38) (1.12) (0.97) (0.72) (1.63) (1.09)

µSOC 8.84*** 12.16*** 10.29*** 3.09*** 4.56** 3.84*** 2.21 6.57*** 5.17***
(1.33) (1.72) (1.45) (0.88) (1.11) (0.96) (1.77) (2.28) (1.53)

µSOC − σSOC 15.53*** 14.5*** 5.92*** 5.71*** 9.06*** 8.6***
(2.34) (2.04) (1.55) (1.42) (3.21) (2.54)

Lentils:
µSOC + σSOC 4.71** 4.91** 3.2** 1.72** 2.32 4.87***

(2.04) (1.91) (1.37) (0.8) (2.65) (1.77)

µSOC 4.37** 7.81*** 6.33** 2.91** 3.57** 2.28*** 1.46 5.22 6.81***
(2.18) (2.8) (2.46) (1.46) (1.58) (1.06) (2.91) (3.33) (2.47)

µSOC − σSOC 10.91*** 8.91** 3.94* 3.39** 8.11* 11.32***
(3.98) (3.47) (2.07) (1.58) (4.63) (4.11)

Peas:
µSOC + σSOC 4.95** 4.1** 1.32 1.71*** 2.12*** 0.58

(1.99) (1.78) (0.99) (0.63) (0.63) (0.39)

µSOC 4.85** 6.16** 5.29** 1.32 2.43** 2.27*** 1.76*** 2.78*** 0.81
(1.76) (2.61) (2.3) (0.88) (1.09) (0.84) (0.44) (0.79) (0.54)

µSOC − σSOC 7.38** 7.45** 3.53** 3.38*** 3.45*** 1.35
(3.67) (3.23) (1.47) (1.25) (1.07) (0.9)

Source: Authors’ Estimates.
Notes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. Lin represents the linear functional form of soil organic carbon stocks, Quad is the quadratic form,
and Log is the logarithmic form. All models are estimated using the Full sample of which includes all fields selected for soil organic carbon
prediction from the Saskatchewan Crop Insurance Corporation confidential dataset. Please refer to Table 2.1 for information concerning
regression results for the linear functional form. For the information on the regression results for the quadratic and logarithmic functional
forms, please refer to Table 2D.2 in Appendix D.
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TABLE 2D.6: Marginal Product of Soil Organic Carbon on Spring Wheat Yield by
Soil Zone in Saskatchewan - Fertilizer Use Effects

Dependent Variable: Crop Yield

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray

Sample: SMP SMP SMP SMP SMP SMP
Spring Wheat: (kg/ha)
Soil Organic Carbon 0.024*** 0.024*** 0.011*** 0.010*** 0.003*** 0.003***

(0.009) (0.009) (0.002) (0.002) (0.001) (0.001)
Nitrogen Use 2.496 5.750*** 9.462***

(1.581) (0.827) (0.86)

Observations 2,050 2,050 12,245 12,245 36,033 36,033
R2 0.515 0.517 0.545 0.561 0.505 0.532

Source: Authors’ Estimates.
Notes: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01. For more information, please refer to the notes from Table 2.1.

223



TABLE 2D.7: Marginal Product of Soil Organic Carbon on Spring Wheat Yield by
Sample and Soil Zone in Saskatchewan - Field and Year Fixed Effects

Dependent Variable: Crop Yield

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray

Sample: Full SMP Full SMP Full SMP
Spring Wheat: (kg/ha)
Soil Organic Carbon −0.022 −0.031 0.052*** −0.032 0.046*** −0.033**

(0.026) (0.076) (0.012) (0.025) (0.008) (0.015)
Nitrogen Use 1.917 3.691*** 4.577***

(3.485) (1.062) (0.879)

Observations 8,172 2,356 35,419 13,127 98,233 38,249
R2 0.703 0.815 0.735 0.794 0.721 0.775

Source: Authors’ Estimates.
Notes: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01. All regression models include field fixed effects. For more
information, please refer to the notes from Table 2.1.
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TABLE 2D.8: Marginal Product of Soil Organic Carbon on Spring Wheat Yield by
Sample and Soil Zone in Saskatchewan - Field and No Year Fixed Effects

Dependent Variable: Crop Yield

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray

Sample: Full SMP Full SMP Full SMP
Spring Wheat: (kg/ha)
Soil Organic Carbon 0.097*** −0.022 0.124*** 0.004 0.157*** 0.026

(0.021) (0.064) (0.011) (0.021) (0.008) (0.016)
Nitrogen Use 2.632 4.440*** 5.763***

(3.748) (1.21) (0.984)

Observations 8,172 2,356 35,419 13,127 98,233 38,249
R2 0.658 0.79 0.682 0.757 0.656 0.731

Source: Authors’ Estimates.
Notes: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01. All regression models include field fixed effects and do not
include year fixed effects. For more information, please refer to the notes from Table 2.1.
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TABLE 2D.9: Linear Trend of Soil Organic Carbon within fields by Crop, Sample,
and Soil Zone in Saskatchewan

Dependent Variable: Soil Organic Carbon
(1) (2) (3)

Soil Zone: Brown Dark Brown Black & Gray

Sample: Full Full Full
Spring Wheat: (kg/ha)
Year 215.637*** 309.833*** 366.940***

(6.371) (3.523) (2.437)

Observations 11,285 43,836 118,151
R2 0.995 0.997 0.999

Canola:
Year 279.531*** 316.379*** 347.823***

(11.898) (3.119) (2.408)

Observations 4,821 48,523 170,163
R2 0.996 0.997 0.998

Barley:
Year 232.881*** 325.980*** 352.431***

(26.064) (5.521) (2.973)

Observations 2,514 13,927 44,528
R2 0.996 0.998 0.999

Durum Wheat:
Year 220.233*** 286.036*** 341.597***

(4.557) (5.023) (21.381)

Observations 24,327 22,742 3,139
R2 0.992 0.997 0.999

Lentils:
Year 274.450*** 311.599*** 332.898***

(8.88) (4.939) (18.64)

Observations 7,455 15,397 2,223
R2 0.995 0.997 0.999

Peas:
Year 240.959*** 315.323*** 358.596***

(11.589) (6.318) (5.011)

Observations 4,220 13,805 23,685
R2 0.997 0.998 0.999

Source: Authors’ Estimates.
Notes: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01. All regression models
include field fixed effects.
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TABLE 2D.10: Marginal Product of Soil Organic Carbon on Spring Wheat Yield by
Sample and Soil Zone in Saskatchewan - RM and No Year Fixed Effects

Dependent Variable: Crop Yield

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray

Sample: Full SMP Full SMP Full SMP
Spring Wheat: (kg/ha)
Soil Organic Carbon 0.030*** 0.022** 0.012*** 0.010*** 0.006*** 0.003***

(0.006) (0.009) (0.002) (0.002) (0.001) (0.001)
Nitrogen Use 3.084* 5.846*** 9.880***

(1.628) (0.842) (0.889)

Observations 7,425 2,050 33,174 12,245 92,608 36,033
R2 0.413 0.474 0.511 0.506 0.494 0.472

Source: Authors’ Estimates.
Notes: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01. All regression models do not include year fixed effects. For
more information, please refer to the notes from Table 2.1.
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Appendix 2E: Dynamic Simulation Supplementary Material

TABLE 2E.1: Ten-Fold Cross Validation for the State Equation of Soil Organic Carbon
by Soil Zone in Saskatchewan

(1) (2)

Cropping Sequence Brown Soil Zone

Lag Length RMSE R2

1 438 0.66
2 388 0.74
3 375 0.75
4 352 0.78

Dark Brown Soil Zone

RMSE R2

1 505 0.58
2 458 0.66
3 439 0.69
4 412 0.72

Black & Gray Soil Zone

RMSE R2

1 610 0.50
2 570 0.57
3 544 0.61
4 515 0.65

Source: Authors’ Estimates.
Notes: All deviation statistics are computed using
the results from the fitted state equation (equation
(2.13)) varying by the cropping sequence lag length.
RMSE is Root Mean Squared Error. The RMSE and
R2 values are computed as the averages across ten
folds from fitting the state equation on a randomly
selected “training” dataset and estimating the model
on a randomly selected “testing” dataset. All fitted
stated equations are estimated using Rural Munic-
ipality and year fixed effects, and are weighted by
field hectares.
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TABLE 2E.2: Top Ten Rotations by Crop and Soil Zone in Saskatchewan from 2015
to 2019

(1) (2)

Rotation Fields (%)

Brown Soil Zone:
pulse-cereal-pulse-cereal 1,291 7.1
cereal-cereal-cereal-cereal 1,221 6.7
cereal-pulse-cereal-pulse 1,078 5.9
cereal-fallow-cereal-fallow 655 3.6
fallow-cereal-fallow-cereal 532 2.9
cereal-pulse-cereal-fallow 489 2.7
cereal-pulse-cereal-oilseed 438 2.4
pulse-cereal-fallow-cereal 406 2.2
oilseed-cereal-pulse-cereal 405 2.2
cereal-oilseed-pulse-cereal 382 2.1

Percent of Total 37.9

Dark Brown Soil Zone:
cereal-oilseed-cereal-oilseed 4,267 8.5
oilseed-cereal-oilseed-cereal 4,205 8.4
oilseed-pulse-cereal-oilseed 1,530 3.1
cereal-oilseed-pulse-cereal 1,406 2.8
pulse-cereal-oilseed-cereal 1,354 2.7
oilseed-cereal-pulse-cereal 1,029 2.1
cereal-pulse-cereal-oilseed 1,003 2.0
oilseed-cereal-oilseed-fallow 987 2.0
cereal-oilseed-cereal-pulse 980 2.0
pulse-cereal-oilseed-pulse 857 1.7

Percent of Total 35.1

Black & Gray Soil Zone:
oilseed-cereal-oilseed-cereal 23,030 20.2
cereal-oilseed-cereal-oilseed 22,575 19.8
oilseed-cereal-oilseed-fallow 3,988 3.5
oilseed-oilseed-cereal-oilseed 3,320 2.9
oilseed-cereal-oilseed-oilseed 2,676 2.4
oilseed-fallow-oilseed-fallow 2,632 2.3
oilseed-fallow-oilseed-cereal 2,608 2.3
fallow-oilseed-cereal-oilseed 2,601 2.3
cereal-oilseed-fallow-oilseed 2,571 2.3
fallow-oilseed-fallow-oilseed 2,245 2.0

Percent of Total 59.9

Source: Authors’ Estimates by construction from
the Saskatchewan Crop Insurance database. Per-
cent of Total represents the percent of the top ten
crop rotations relative to all crop rotations in that
respective soil zone employed from 2015 to 2019.
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TABLE 2E.3: Soil Organic Carbon State Equation by Functional Form and Soil Zone in Saskatchewan

Dependent Variable: Change in Soil Organic Carbon

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Soil Zone: Brown Dark Brown Black & Gray

Func. Form: Lin Quad Log Lin Quad Log Lin Quad Log
(kg/ha)

lag(SOC) −0.00445*** −0.00509*** −0.00207*** 0.00110* −0.00176*** −0.00036
(0.00026) (0.00134) (0.00015) (0.00058) (0.00007) (0.00024)

lag(SOC2) 0.000000009 −0.00000003*** −0.00000001***
(0.00000002) (0.000000006) (0.000000002)

lag(ln(SOC)) −145.10*** −65.81*** −78.09***
(8.85) (5.01) (3.32)

lag(YieldSpringWheat) 0.35365*** 0.35366*** 0.35344*** 0.25434*** 0.25481*** 0.25351*** 0.19790*** 0.19833*** 0.19679***
(0.00790) (0.00790) (0.00789) (0.00441) (0.00439) (0.00441) (0.00305) (0.00305) (0.00305)

lag(YieldCanola) 0.72550*** 0.72554*** 0.72569*** 0.53419*** 0.53461*** 0.53336*** 0.36516*** 0.36550*** 0.36385***
(0.02551) (0.02552) (0.02557) (0.00641) (0.00638) (0.00642) (0.00615) (0.00619) (0.00612)

lag(YieldBarley) 0.24138*** 0.24141*** 0.24151*** 0.17349*** 0.17402*** 0.17298*** 0.14823*** 0.14842*** 0.14773***
(0.01195) (0.01196) (0.01194) (0.00573) (0.00575) (0.00575) (0.00353) (0.00353) (0.00353)

lag(YieldDurumWheat) 0.37677*** 0.37682*** 0.37676*** 0.29408*** 0.29354*** 0.29389*** 0.22207*** 0.22179*** 0.22232***
(0.00557) (0.00557) (0.00557) (0.00472) (0.00471) (0.00475) (0.00976) (0.00980) (0.00975)

lag(YieldLentils) 0.32276*** 0.32275*** 0.32245*** 0.18907*** 0.18860*** 0.18875*** 0.02866 0.02932 0.02701
(0.01214) (0.01214) (0.01214) (0.00963) (0.00963) (0.00965) (0.02373) (0.02383) (0.02369)

lag(YieldPeas) 0.16343*** 0.16347*** 0.16373*** 0.06830*** 0.06835*** 0.06775*** 0.01660*** 0.01661*** 0.01611***
(0.01179) (0.01179) (0.01170) (0.00686) (0.00686) (0.00688) (0.00522) (0.00522) (0.00523)

lag(TAP) 1.38784*** 1.38708*** 1.38446*** 1.71913*** 1.71594*** 1.72364*** 1.67749*** 1.68000*** 1.67732***
(0.06761) (0.06749) (0.06765) (0.03933) (0.03924) (0.03942) (0.03502) (0.03512) (0.03497)

lag(GSAT) −107.54860*** −107.63830*** −108.03570*** −82.06371*** −82.10233*** −81.97311*** −120.82830*** −120.59040*** −120.17900***
(4.98508) (4.96999) (4.98017) (2.95836) (2.96486) (2.93283) (2.37296) (2.35965) (2.37922)

Constant 1, 023.131*** 1, 035.330*** 2, 385.843*** 516.889*** 456.178*** 1, 116.271*** 1, 122.867*** 1, 081.502*** 1, 858.876***
(87.619) (88.336) (133.156) (44.592) (44.741) (67.614) (29.821) (30.228) (49.412)

Goodness-of-Fit Statistics:
Observations 53,837 53,837 53,837 163,246 163,246 163,246 377,593 377,593 377,593
R2 0.741 0.741 0.741 0.684 0.685 0.684 0.580 0.580 0.579

Source: Authors’ Estimates.

Notes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. Lin represents the linear functional form of soil organic carbon stocks, Quad is the quadratic form, and Log is the logarithmic form. All models are estimated using
the Full sample of which includes all fields selected for soil organic carbon prediction from the Saskatchewan Crop Insurance Corporation confidential dataset. All models include cropping sequence
control variables for the cropping sequence on a field over previous two years. Table 2E.1 in Appendix E includes the ten-fold cross validation results (RMSE and R2) for the soil organic carbon state
equation estimated with various cropping sequence lag lengths.
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Chapter 3

Harvesting Benefits: Exploring the

Effects of Second-Best Policies on

Enhancing Soil Organic Carbon Stocks

in Agriculture

3.1 Introduction

In the agricultural sector, policies that incentivize farmers to increase the stock of soil organic car-

bon (SOC) and reduce atmospheric carbon dioxide are potential instruments for pursuing climate

change goals. While carbon emissions from agricultural activities that stem from both crop and

livestock farming contribute significantly to climate change, farms can also serve as carbon sinks,

sequestering and reducing atmospheric carbon. Incentivizing agricultural practices that enhance

the stock of SOC presents a novel avenue for farmers to not only contribute to environmental sus-

tainability, but also economically benefit from their stewardship of the land. Farmers can augment

SOC through various farm management techniques, such as increasing carbon inputs through

crop selection or slowing SOC decomposition by forgoing tillage practices. Consequently, policies

encouraging production methods that foster additional carbon storage are garnering attention
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from policymakers worldwide.

If the aim is to reduce atmospheric carbon by increasing SOC sequestration on farms, basic

economic principles suggest that the first-best policy would involve taxing emissions and pro-

viding subsidies for carbon that is sequestered directly. In the agricultural sector, such policies

are often disregarded due to the physical challenges and high costs associated with accurately

measuring farm emissions, and in most cases require advanced scientific expertise to develop

(Weersink et al., 1998; Oldfield et al., 2022).1 However, second-best policies that subsidize or tax

farming practices that produce by-products with external benefits or costs can be economically

viable, albeit less efficient than first-best policies (Garnache et al., 2017). Second-best policies for

carbon sequestration may include the development of a privately funded carbon offset program

for specific farming practices, offering discounts on crop insurance premiums for crops that in-

crease SOC, or public subsidization of agricultural practices that increase SOC.2 Currently, there

are a limited number of programs that pay farmers to adopt management practices specifically to

enhance the stock of SOC.3

In this essay, I explore the potential effectiveness of theoretical policies aimed at encouraging

the adoption of practices that enhance the stock of SOC on Saskatchewan farms. More specifically,

I study the effect of a subsidy applied on planting additional hectares of canola and examine how

it influences the stock of SOC in Saskatchewan.4 I focus exclusively on subsidizing additional

canola hectares induced by a canola subsidy. This approach aligns with ongoing implementation

1The process of accurately measuring specific externalities is often detailed and described as measurement, report-
ing, and verification (MRV) protocol (Oldfield et al., 2022).

2An example of a government-operated carbon trading system is the Emissions Reduction Fund in Australia, man-
aged by the Clean Energy Regulator. This voluntary program encourages the adoption of various practices and tech-
nologies across different sectors to reduce net GHG emissions. Specifically, in agriculture, it rewards farmers with
Carbon Credit Units for engaging in certain projects, such as applying particular nutrients or planting pasture, aimed
at reducing emissions or storing GHGs (Australian Government, 2022).

3Notable programs around the world that pay farmers to adopt management practices aimed at enhancing carbon
sequestration and soil health include: Indigo Ag and Nori in the United States, the Emissions Reduction Fund in
Australia, the Kenya Agriculture Carbon Project, and the Green Low-Carbon Agri-Environmental Scheme (GLAS) in
Ireland (Raina et al., 2024).

4In this analysis, I do not examine the effects of changing cropping intensity and cropping sequences on yield with
respect to increased canola production. Johnston et al. (2005) find that in Melfort, Saskatchewan seeding canola on
canola (monoculture) led to lower crop yields relative to rotating other crops such as spring wheat, barley, flax, or peas.
Johnston et al. (2005) state that the lower crop yield for monoculture production systems is related to the increase in
major pathogens that affect crop productivity.
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of policies that subsidize farmers to adopt specific management practices (see Agriculture and

Agri-Food Canada (2023), Wongpiyabovorn and Plastina (2023), and Agri-Pulse Communications

(2024)). However, this does not mean that subsidizing all hectares of canola is an infeasible policy.

Payments made to farmers based on management practices can be awarded on all hectares, but,

only providing payments to practices that are not “business-as-usual” (BAU) is essential for a

sustainable carbon market (Raina et al., 2024).5 Limiting payment to additional (not BAU) hectares

ensures that payments are only awarded on practices that result in policy-induced atmospheric

carbon reductions, rather than providing payments to practices that would have existed without

the policy.

There are many studies that examine the effects of carbon credit payments made to producers

for sequestering carbon in the soil. Many of these studies focus on how carbon credit payments

affect program adoption, contract length, the amount of carbon sequestered, measurement costs,

and farm profitability (Antle et al., 2001; Mooney et al., 2004a,b; Gulati and Vercammen, 2005;

Mooney et al., 2007; Bangsund and Leistritz, 2008; Antle and Ogle, 2012; Bamière et al., 2021;

Mishra et al., 2021). Most of these studies develop an economic simulation model that incorporates

acreage responses and SOC dynamics, also known as an integrated assessment model (Antle et al.,

2001). They typically rely on carbon sequestration rates based on management practices from

the IPCC guidelines, or employ biogeochemical models like Century or DayCent. These studies

primarily focus on the effects of carbon payments or credits that subsidize changes in SOC directly

(Antle et al., 2001; Mooney et al., 2004a,b, 2007; Bangsund and Leistritz, 2008; Antle and Ogle, 2012;

Bamière et al., 2021; Mishra et al., 2021), with little attention on examining the effects of programs

that pay per hectare for changes in farm management practices that are additional.6 Hence, the

effectiveness of second-best policies that aim to increase carbon sequestration on agricultural soils

is understudied, and filling this gap in the literature is the goal of this essay.

5Wongpiyabovorn et al. (2024) state that payments for conservation practices that are not additional, or equivalently
BAU, run the risk of being cost ineffective.

6Mooney et al. (2004a) examine the effects of a subsidy for adopting conservation land management practices, but
these payments are not linked to the quantity of carbon stored in the soil. In this essay, I use an SOC prediction model
called the Augmented Campbell model, linking subsidy payments from changes in cropping choices to the generated
external social benefit from additional sequestered SOC.
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This essay seeks to answer three questions about second-best polices for agricultural carbon

sequestration: (1) How effective would a canola subsidy be at enhancing SOC stocks throughout

Saskatchewan? (2) What would be the net external social benefit (NESB) and change in welfare

from carbon sequestration attributable to an optimal subsidy on canola? and (3) What scientific

and administrative conditions are necessary in order for carbon sequestration policies to be cost-

effective and feasible? Here, the NESB is equal to the external social benefit resulting from carbon

sequestration via expanded canola hectares after the policy costs involved have been subtracted.

The change in welfare is the NESB plus the change in producer surplus. To answer these questions,

I use standard economic theory to determine the optimal canola subsidy for either maximizing

the NESB or the change in welfare. I develop a simulation model that employs a novel field-

level dataset from the Saskatchewan Crop Insurance Corporation (SCIC) to simulate the effects of

implementing a hypothetical canola subsidy for each soil zone in Saskatchewan. The simulation

model incorporates acreage responses and SOC dynamics to determine how much carbon is stored

as a result of implementing a canola subsidy relative to BAU cropping choices. All simulations

start in 2019 and persist indefinitely into the future.

To determine the acreage responses to a canola subsidy, I develop an acreage choice model

following the framework developed by Moreno and Sunding (2005), Carpentier and Letort (2014),

and Koutchadé et al. (2021).7 My analysis employs a discrete choice model incorporating both

Multinomial Logit (MNL) and Nested Logit (NL) models, leveraging cropping choice data at the

field level from the SCIC to estimate the acreage response to expected profits for each crop.8 To

compute how much carbon is stored in the soil as a result of additional canola hectares, I estimate

a SOC state equation for each soil zone in Saskatchewan. I employ field-level simulated SOC

stock data from Serfas (2024a) spanning 1998–2019. The SOC state equation predicts changes in

the stock of SOC using aggregated information on cropping shares by soil zone, where each SOC

state equation is a representative field for each soil zone in Saskatchewan. An aggregate approach

7The acreage choice model in this essay is most similar to the Nested Logit (NL) model devised by Moreno and
Sunding (2005), who compute the price elasticity for adopting irrigation technology in California at the field level.

8Past studies have typically employed crop shares by farm, allowing for the estimation of MNL or ML models
using methods like Ordinary Least Squares (OLS), Instrumental Variables (IV), or General Method of Moments (GMM)
(Berry, 1994).
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to predicting SOC stocks is preferred as it contains less uncertainty in SOC predictions (Oldfield

et al., 2022).9

In the simulation model, I compute optimal canola subsidies that maximize NESB in the

brown, dark brown, and black & gray soil zones of 324.40 CAD/ha/yr, 205.43 CAD/ha/yr and

226.02 CAD/ha/yr. The optimal canola subsidies that maximize the change in welfare are 648.80

CAD/ha/yr in the brown soil zone, 410.86 CAD/ha/yr in the dark brown soil zone, and 452.05

CAD/ha/yr in the black & gray soil zone. These results are computed using a rental rate for

carbon reflecting a social cost of carbon (SCC) of 185 USD/Mg of CO2 (Rennert et al., 2022), and

acreage responses that are estimated from the NL model. When the NESB is maximized, the

average policy-induced changes in the stock of SOC compared to BAU practices for all insured

hectares are 31.81 kg/ha/yr in the brown soil zone, 52.20 kg/ha/yr in the dark brown soil zone,

and 76.49 kg/ha/yr in the black and gray soil zone. These simulated changes in SOC stocks

represent approximately 15–20% of the historical average annual change in SOC stocks by soil

zone from 1998 to 2019 (Serfas, 2024a). The external social benefit from implementing soil zone-

specific optimal canola subsidies that maximizes NESB on all insured hectares in Saskatchewan

is 15.2 billion CAD. If the optimal canola subsidies maximize the change in welfare, the external

social benefit is 30.4 billion CAD.

I also compute the external cost of the policy from additional nitrous oxide emissions associ-

ated with higher fertilizer rates for canola, equal to 666 million CAD when maximizing the NESB

and 1.3 billion CAD when maximizing the change in welfare. These costs account for 4.5% of the

external social benefits generated from implementing an optimal canola subsidy that maximizes

either the NESB or change in welfare for all insured hectares in Saskatchewan.

This essay follows as such: Section 3.2 discusses the current private and public funding for

9Oldfield et al. (2022) state: “Protocols that use model-based estimates of net-GHG reductions that result from
shifts in management practices avoid the need for intensive sampling and can issue credits annually. Process-based
biogeochemical models can, in theory, be deployed at different scales from subfield to farm to region. However, limited
precision associated with model inputs can increase uncertainty at the site level; thus, process-based models generally
do not provide accurate estimates for a single field, especially without detailed site specific data. Uncertainty is in-
versely related to scale in process-model estimates of SOC changes, with uncertainties of 20% at a US national scale
growing to 600 to 700% at the site scale. Thus, models alone are inadequate for soil C estimation at small scales unless
there has been considerable calibration in the areas and for the crops over which the model is used.”
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carbon sequestrated on farms in Canada and the United States; Section 3.3 provides an economic

framework used to derive the optimal canola subsidies that maximize the NESB or the change

in welfare; Section 3.4 discusses the conceptual framework for the acreage choice model; Section

3.5 and 3.6 derive the MNL and NL estimators for the acreage choice model and the acreage

elasticities; Section 3.7 and 3.8 provide a description of the data and estimation results; Sections

3.9 and 3.10 provide the derivation of the simulation model and the simulated results; Section 3.11

provides estimates of nitrous oxide emissions from implementing a canola subsidy; and Section

3.12 concludes.

3.2 Initiatives for Carbon Sequestration Funding in Canada and the

United States

In Canada, significant public funds are dedicated to environmental conservation initiatives, as

well as policies concerning agricultural carbon sequestration. The Sustainable Canadian Agricul-

tural Partnership allocates 3.5 billion CAD toward on-farm environmental stewardship programs

(Environment and Climate Change Canada, 2023a). A component of the Sustainable Canadian

Agricultural Partnership is the On-Farm Climate Action Fund (OFCAF) (Agriculture and Agri-

Food Canada, 2023), which receives 704.1 million CAD in funding farm management practices that

tackle climate change. OFCAF is part of the Government of Canada’s Agricultural Climate Smart

Solutions initiative, which is part of the broader Natural Climate Solutions Fund with total fund-

ing of 4 billion CAD over the coming decade and is managed jointly by Natural Resources Canada,

Environment and Climate Change Canada, and Agriculture and Agri-Food Canada (Agriculture

and Agri-Food Canada, 2023). OFCAF disburses payments to farmers for the adoption of bene-

ficial management practices, with environmental objectives focused on reducing net GHG emis-

sions through enhanced nitrogen management, the implementation of cover cropping, and the

adoption of rotational grazing practices. These payments for beneficial management practices can

be facilitated through various entities, including governmental organizations, non-profit organi-

zations, for-profit entities, producer groups, commodity organizations, indigenous groups, and

236



other non-governmental organizations (Agriculture and Agri-Food Canada, 2023).

In the United States, the Biden administration is exploring ways to compensate farmers for

engaging in carbon sequestration efforts (McCauley, 2021). Similarly, private entities are exam-

ining the role of agriculture in producing carbon offsets. For instance, Microsoft has secured a

deal for 100,000 tonnes of carbon credits for additional carbon stored in the soil with Truterra, a

sustainability venture of the Land O’Lakes dairy cooperative (Ellis, 2021). The United States De-

partment of Agriculture (USDA) currently supports programs aimed at improving soil health and

addressing resource issues like water and energy conservation. Prominent among these are the

Environmental Quality Incentives Program (EQIP) and the Conservation Stewardship Program

(CSP), both overseen by the Natural Resource Conservation Service (NRCS) (Wongpiyabovorn

and Plastina, 2023). Farmers participating in these programs can receive financial payments for

implementing practices such as no-till farming or planting cover crops. Payment rates under

these programs vary, with EQIP offering between 7.50 USD/ac/yr (24.83 CAD/ha/yr) and 40.86

USD/ac/yr (135.30 CAD/ha/yr) for cover crop adoption. The average payment for adopting

no-till is around 11.06 USD/ac/yr (36.62 CAD/ha/yr) through EQIP and 7.50 USD/ac/yr (24.83

CAD/ha/yr) through CSP. Wongpiyabovorn and Plastina (2023) note that these payments reflect

NRCS cost estimates and can vary by region, and in farming practices and expenses.

Emerging initiatives like Farmers for Soil Health are also noteworthy, using DTN’s Ecofield

farm data platform and satellite imagery to authenticate and remunerate farmers for cover crop

adoption (Agri-Pulse Communications, 2024).10 Additionally, the Alliance to Advance Climate-

Smart Agriculture has been granted 80 million USD by the NRCS to fund pilot projects in soil

and water conservation districts across Arkansas, Minnesota, North Dakota, and Virginia. These

projects are set to directly benefit over 4,000 farmers with payments totaling up to 57 million

USD, with the remainder allocated for project management and research. Payments for adopt-

ing climate-smart agricultural practices on cropland could reach up to 100 USD/ac/yr, capped

10More details about Farmers for Soil Health can be found at their website https://farmersforsoilhealth.com.
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at 160 acres per FSA farm number,11 and include a climate-smart certification for participating

farmers. Eligible practices for these payments include cover cropping, no-till farming, nutrient

management, precision nutrient management, conservation crop rotation, and the establishment

of pasture and hay.12

3.3 Optimal Canola Subsidies

In this essay, I propose to subsidize canola production because each hectare of canola generates an

external social benefit from carbon sequestration equal to ESB (2023 CAD/ha/yr). I solve for the

optimal subsidy rate, τ (2023 CAD/ha/yr) on policy-induced incremental hectares, that maximize

either (1) the benefits from reduced externalities (i.e., the quantity of carbon sequestered) for given

subsidy expenditure, or net external social benefits (NESB), or (2) total social benefits or welfare

from consumption and production. For convenience, I assume linear supply and a small open

economy such that prices are exogenous. In this case, when the subsidy is applied, the change in

hectares (∆A) is equal to the subsidy rate multiplied by the slope of the acreage response function,

β : ∆A = β × τ. As a consequence of this change in hectares, the externality costs are reduced

by an amount equal to ESB× ∆A = ESB× β× τ. The cost of the subsidy expenditure is equal

to: τ × ∆A = β × τ2. Associated with the policy-induced increase in hectares is an increase in

producer surplus equal to 1
2 (τ × ∆A) = 1

2 (β× τ2).

Net external social benefits are equal to the change in externality cost minus the cost of the

subsidy expenditure (i.e., equal to total social surplus or welfare minus the change in producer

surplus):

NESB = (ESB× β× τ)− (β× τ2) (3.1)

11Farm Service Agency (FSA) is an agency of the USDA that serves farmers through delivering agricultural pro-
grams. A Farm Number is required to obtain access to various USDA programs, as well as be counted in the USDA’s
Agricultural Census.

12For more information on the Alliance to Advance Climate-Smart Agriculture, visit their website at https://www.
allianceforcsa.org.
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Taking the derivative with respect to τ and setting the result equal to zero yields τ∗ = 1
2 ESB. The

optimal subsidy in this case is exactly half the conventional optimal Pigovian subsidy.

Total social benefits or welfare are maximized when the change in welfare is maximized. The

change in welfare is equal to the change in externality cost, plus the change in producer surplus,

minus the cost of the subsidy expenditure:

∆W = (ESB× β× τ)− (β× τ2) +
1
2
(β× τ2) = (ESB× β× τ)− 1

2
(β× τ2) (3.2)

Taking the derivative with respect to τ and setting the result equal to zero yields τ∗∗ = ESB. This

is the standard text-book result for a Pigovian tax (or subsidy) (see Pigou (1920)).

To find the optimal canola subsidies as derived from equations (3.1) and (3.2), estimates of

the slope of the acreage response function (β) are needed. In the next section, I develop an acreage

choice model to estimate the acreage response with respect to an increase in expected profit for

each crop and soil zone in Saskatchewan. I estimate the acreage responses using the confidential

field-level SCIC data. Afterwards, I develop a more detailed simulation model that incorporates

the estimates of acreage response and a state equation for SOC stocks that depends on the cropping

share for each soil zone in Saskatchewan. I use the SOC state equation to determine the external

social benefit from additional canola hectares in response to a canola subsidy. Employing the

estimates of acreage response and the SOC state equation to determine the external social benefit,

I then solve for the optimal canola subsidies via simulation for each objective function (NESB and

∆W), as described in this section.

3.4 Acreage Choice Model

In this section, I outline an acreage choice model based on the premise that farmers select crops to

maximize their profits, influenced by variables that are both observable and unobservable to the

researcher. Let the profits for field n and crop i to be,
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πi,n = vi,n(zi,n; θ0) + ui,n, (3.3)

where profit depends on the measure of farmer interest in producing crop i, depending on ob-

served factors, zi,n and unobserved factors ui,n (Carpentier and Letort, 2014). The form of acreage

choice is defined for vi,n functions such that θ0 is a vector of parameters for estimation. As charac-

terized by Seo and Mendelsohn (2009), a farmer will select a crop based on the profit maximization

problem,

argmax{1i∈C} = [π1,n(v1,n(z1,n; θ0), u1,n), π2,n(v2,n(z2,n; θ0), u2,n), ..., πC,n(vC,n(zC,n; θ0), uC,n)]. (3.4)

This implies that the probability of choosing the ith crop relative to the jth crop is,

Prij = Pr(vi,n(zi,n; θ0) + ui,n > vj,n(zj,n; θ0) + uj,n) ∀ i ̸= j, (3.5)

which reduces to,

Prij = Pr(uj,n − ui,n < vi,n(zi,n; θ0)− vj,n(zj,n; θ0)) ∀ i ̸= j. (3.6)

If the observed components of the field-level profit for crop i relative to j is greater than the

difference in the unobserved components of field-level profit between crop j relative to i, then the

farmer is more likely to seed crop i. Because there are unobservable factors within the cropping

choice decision, it could also be the case that the field-level profit for crop i is greater than the

field-level profit for j, but the farmer chooses to seed crop j due to the unobservable factors.

I assume that farmers choose crops based on profit maximization, such that the profit from

choosing a crop is,
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πi,n = vi,n(zi,n; θ0) + ui,n = θi,0 + θi,1x1,n + · · ·+ θi,PxP,n + ui,n. (3.7)

As farmers are unable to know the realized profitability of a crop prior to planting, they make crop

selections based on expected profits. Therefore,

E[πi,n] = vi,n(zi,n; θ0) + ui,n = θi,0 + θ1E[πs
i,n] + Xnθi,2 + ui,n ∀ n ∈ s. (3.8)

where E[πi,n] is the expected profit for crop i on field n, E[πs
i,n] is the expected profit for soil zone

s published by the Saskatchewan Crop Planning Guide before the upcoming growing season, and

Xn is a vector of field-level characteristics such as weather, soil, the previous year’s crop insurance

coverage, the previous year’s the size of farm operation in hectares, and the previous year’s seeded

crop type.

I now use this framework in the following sections 3.5 and 3.6 to derive the standard MNL

and NL estimators for the acreage choice model. I provide the standard derivations for the own

and cross-acreage elasticities with respect to a change in expected profit for each crop and soil

zone.

3.5 Multinomial Logit Model

Employing the profit function outlined in equation (3.8) and the assumption that ui,n follows a

Type 1 Extreme Value distribution, the statistical model governing the selection of crop i depends

on the following parameters and variables:

Pri,n =
eθi,0+θ1E[πs

i,n]+Xnθi,2

1 + ∑C−1
m=1 eθm,0+θ1E[πs

m,n]+Xnθm,2
, (3.9)

where Pi,n is probability of selecting crop i on field n. The acreage choice depends on the expected

profit for a particular crop within a soil zone (E[πs
i,n]) as well as all other observed factors (Xn).

Using the same methodology as developed by Croissant (2012), I estimate the expected profit for
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each crop and soil zone with a generic coefficient (θ1), and all other field-level characteristics with

a crop specific coefficient (θi,2). I assume that the probability of choosing the last crop C is,

PrC,n =
1

1 + ∑C−1
m=1 eθm,0+θ1E[πs

m,n]+Xnθm,2
, (3.10)

such that ∑C
i=1 Pri,n = 1. Equation (3.9) represents the closed-form expression of the logit proba-

bility for choosing a particular crop, which is solved for by integrating over the cumulative distri-

bution of cropping choices by field and assuming that the error terms are independent and iden-

tically distributed (i.i.d.) (McFadden, 1974).13 The derivation used to obtain the logit probabilities

is provided in Appendix 3A.

Taking the ratio of the two above probabilities (equations 3.9 and 3.10), and its log, results in,

log
(

Pri,n

PrC,n

)
= θi,0 + θ1E[πs

i,n] + Xnθi,2. (3.11)

Equation (3.11) shows that the coefficients derived from the MNL model correspond to the change

in the log-odds ratio of selecting crop i in comparison to crop C. Across all models, spring wheat

is chosen as the outside crop.

The likelihood function used to estimate the MNL model is,

Pr(x|t) =
C

∏
j=1

[
eθ′i xn

1 + ∑C−1
m=1 eθ′mxn

]tj

(3.12)

where tj = 1i∈C is an encoding vector for cropping choice such that the dataset is represented by

D = {(x1, t1), · · · , (xN , tN)}. The likelihood to observe the dataset is,

Pr(x1, ..., xN |t1, ..., tN) =
N

∏
n=1

C

∏
j=1

[
eθ′i xn

1 + ∑C−1
m=1 eθ′mxn

]tnj

. (3.13)

13The logit formula was originally constructed by Luce (1959) who incorporated assumptions about choice proba-
bilities and the independence from irrelevant alternatives property. Following this, Marschak (1960) showed that the
logit model produces axioms that are consistent with utility maximization.
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Taking the log of the likelihood function provides the solution to the maximization problem:

θ̂ = argmax{θ∈Θ}
1
n

N

∑
n=1

C

∑
j=1

tnjlog
[

eθ′i xn

1 + ∑C−1
m=1 eθ′mxn

]
. (3.14)

Instead of interpreting the coefficient as the change in the log-odds ratio with respect to a

change in an independent variable, I derive the marginal effects as done by Train (2009).14 These

effects are applicable to all crops and can be interpreted in the same way as the coefficients in a

linear probability model. The marginal effect with respect to expect profit is characterized as,

MEi =
∂Pri,n

∂E[πs
i,n]

= θ̂1
eθ̂i,0+θ̂1E[πs

i,n]+Xn θ̂i,2

1 + ∑C−1
m=1 eθ̂m,0+θ̂1E[πs

m,n]+Xn θ̂m,2
×
(

1− eθ̂i,0+θ̂1E[πs
i,n]+Xn θ̂i,2

1 + ∑C−1
m=1 eθ̂m,0+θ̂1E[πs

m,n]+Xn θ̂m,2

)
. (3.15)

Using the definition from equation (3.9), the marginal effect reduces to,

MEi = θ̂1Pri(1− Pri). (3.16)

Multiplying by E[πs
i,n]/Pri provides the own-acreage elasticity,

ε i = θ̂1E[πs
i,n](1− Pri). (3.17)

Deriving the cross marginal effects similarly and multiplying by E[πs
m,n]/Pri results in the cross-

acreage elasticity,

ε im = −θ̂1E[πs
m,n]Prm. (3.18)

14To see the complete derivations of the marginal effects and elasticities for both the MNL and NL models in a
general form, please refer to Appendix 3B.
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A limitation of the MNL model is that the ratio of the acreage shares of two different crops

will only depend on the payoffs of these crops. As a result, the acreage elasticities of crop i with

respect to the gross margins of crop j are equal for all crops i = 1, ..., C for i ̸= j (Carpentier

and Letort, 2014). Carpentier and Letort (2014) classify this as the “independence of the irrelevant

crops” property in the acreage choice MNL model. Hence, there is proportional substitution across

alternative crops that depends on the acreage share of a particular crop. It is unlikely that the

acreage elasticity of spring wheat with respect to the expected profit of canola and the acreage

elasticity of lentils with respect to the expected profit of canola are the same. Because of this, the

“independence of the irrelevant crops” (IIC) property is unlikely to hold in practice.15

3.6 Nested Logit Model

To avoid imposing restrictive substitution patterns dictated by the IIC assumption, I introduce a

Nested Logit (NL) model in this section, which depicts a sequential decision-making framework

for crop selection and relaxes the IIC for crops grouped into different nests. While the NL model

does not entirely relax the IIC assumption, which is imposed now for crops within the same nest,

it allows for more flexible substitution patterns among alternative crops across nests, rendering

it a more realistic option compared to the MNL model.16 Proportional substitution patterns still

occurs for crops outside of a nest, and this results in the “independence of irrelevant nests” (IIN)

assumption. Compared to the MNL model, the NL model offers greater realism and flexibility

regarding substitution patterns between crops.

Let the decision for choosing a nest, which contains multiple crops, be equal to a subset of

nests denoted by B1, B2, .., BK for K nests. Assume the cumulative distribution of errors for the NL

15Train (2009) describes this as the red-bus blue-bus problem in which a traveler has the option to go to work by car
or blue bus. If the choice probabilities for taking each transportation mode is 50%, then the ratio of the probabilities
between each option is equal to 1. In the example provided by Train (2009), when a red bus is introduced as a new
transportation option, the ratio of probabilities for choosing the car and the blue bus must stay the same as a result of
the “independence of irrelevant alternatives.” One might think that the traveler lowers their probability of taking the
blue bus more relative to the car because the red bus is more substitutable with the blue bus. But this is not the case
and after introducing the red bus to the choice set, all choice probabilities for the three options lower to 33.333%.

16Models that completely relax the IIC assumption, like the Mixed Logit model, pose computational challenges
when applied to the very large SCIC field-level dataset and when there is limited variation in the key independent
variable (expected profit by year, crop, and soil zone).
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model is,

F(u) = exp
(
−

K

∑
l=1

(
∑

k∈Bl

e−
uk,n
λl

)λl
)

. (3.19)

Where the marginal distribution of u is extreme value, Cov(uk,n, uj,n) = 0 if k ∈ Bl and j ∈ Bm

with k ̸= l, Cov(uk,n, uj,n) ≥ 0 if k, j ∈ Bl , and λl is a measure of independence in nest l. If λl = 1

for all l, then the NL model reduces to the MNL model.

Let equation (3.8) represent the profit for choosing any crop and the closed form solution to

the distribution of errors shown in equation (3.19) represent the probability of choosing crop i.17

This choice probability is equal to,

Pri,n =

e
θi,0+θ1E[πs

i,n ]+Xnθi,2
λl

(
∑k∈Bl

e
θk,0+θ1E[πs

k,n ]+Xnθk,2
λl

)λl−1

∑K
m=1

(
∑k∈Bm

e
θk,0+θ1E[πs

k,n ]+Xnθk,2
λm

)λm
. (3.20)

The probability of choosing crop i with the nesting structure implies,

Pri,n = Pri,n|k × Prk,n (3.21)

where,

Pri,n =
e

θi,0+θ1E[πs
i,n ]+Xnθi,2

λl

∑k∈Bl
e

θk,0+θ1E[πs
k,n ]+Xnθk,2

λl︸ ︷︷ ︸
=Pri,n|k

×

(
∑k∈Bl

e
θk,0+θ1E[πs

k,n ]+Xnθk,2
λl

)λl

∑K
m=1

(
∑k∈Bm

e
θk,0+θ1E[πs

k,n ]+Xnθk,2
λm

)λm

︸ ︷︷ ︸
=Prk,n

. (3.22)

Let the inclusive value from the NL model be equal to,

17Please refer to Appendix 3A to see the derivation for the closed form solution for this General Extreme Value
(GEV) model (Nested Logit).
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Il,n = ln ∑
k∈Bl

e
θk,0+θ1E[πs

k,n ]+Xnθk,2
λl . (3.23)

Substituting equation (3.23) into (3.22) gives,

Pri,n =
e

θi,0+θ1E[πs
i,n ]+Xnθi,2

λl

∑k∈Bl
e

θk,0+θ1E[πs
k,n ]+Xnθk,2

λl

× eλl Il,n

∑K
m=1 eλm Im,n

. (3.24)

In the NL model, under the assumption of profit maximization, the expected profits are

determined not by characteristics specific to each nest but by those specific to each crop. Thus, the

inclusive value for a given nest represents the expected profits from all cropping choices within

that nest, stemming from the second stage of the decision-making process for crop selection. If

the inclusive value equals 1 for all nests, the NL model simplifies to the MNL model, indicating

the absence of unobserved correlations among crop choices within the same nest (Moreno and

Sunding, 2005).

The NL model is estimated by maximum-likelihood estimator employing a similar log-

likelihood function as in equation (3.14), but instead maximizes the NL closed form solution for

the choice probabilities as shown in equation (3.24). The NL model may alternatively be estimated

as a two-step estimator where the first step is the lower model (cropping choice) and the upper

model is the choice of the nest (Croissant, 2012). However, estimating the NL model by employing

the two-step procedure results in lower standard errors for all estimates and is not as efficient as

estimating the nesting and cropping choice simultaneously (Croissant, 2012).

The marginal effect for the NL model with respect to an increase in expected profit is derived

as,
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MEi =
∂Pri,n

∂E[πs
i,n]

=
θ̂1

λ̂l

e
θ̂i,0+θ̂1E[πs

i,n ]+Xn θ̂i,2
λ̂l

(
∑k∈Bl

e
θ̂k,0+θ̂1E[πs

k,n ]+Xn θ̂k,2
λ̂l

)λ̂l−1

∑K
m=1

(
∑k∈Bm

e
θ̂k,0+θ̂1E[πs

k,n ]+Xn θ̂k,2
λ̂m

)λ̂m

+
θ̂1(λ̂l − 1)

λ̂l

(
e

θ̂i,0+θ̂1E[πs
i,n ]+Xn θ̂i,2

λ̂l

)2(
∑k∈Bl

e
θ̂k,0+θ̂1E[πs

k,n ]+Xn θ̂k,2
λ̂l

)λ̂l−1

∑k∈Bl
e

θ̂k,0+θ̂1E[πs
k,n ]+Xn θ̂k,2

λ̂l ∑K
m=1

(
∑k∈Bm

e
θ̂k,0+θ̂1E[πs

k,n ]+Xn θ̂k,2
λ̂m

)λ̂m

− θ̂1


e

θ̂i,0+θ̂1E[πs
i,n ]+Xn θ̂i,2

λ̂l

(
∑k∈Bl

e
θ̂k,0+θ̂1E[πs

k,n ]+Xn θ̂k,2
λ̂l

)λ̂l−1

∑K
m=1

(
∑k∈Bm

e
θ̂k,0+θ̂1E[πs

k,n ]+Xn θ̂k,2
λ̂m

)λ̂m


2

,

(3.25)

which reduces to

MEi =
θ̂1

λ̂l
Pri +

θ̂1(λ̂l − 1)
λ̂l

Pri
e

θ̂i,0+θ̂1E[πs
i,n ]+Xn θ̂i,2

λ̂l

∑k∈Bl
e

θ̂k,0+θ̂1E[πs
k,n ]+Xn θ̂k,2

λ̂l

− θ̂1Pr2
i . (3.26)

The own-acreage elasticity with respect to expected profit for the NL choice probabilities is equal

to,

ε i = θ̂1E[πs
i,n]

(
1
λ̂l
− 1− λ̂l

λ̂l
Pri|Bl

− Pri

)
, (3.27)

and the cross-acreage elasticity with respect to expected profit for the NL model is,

ε im =


−θ̂1E[πs

m,n]Prm

(
1 + 1−λ̂l

λ̂l

1
PrBl

)
i f m ∈ Bl

−θ̂1E[πs
m,n]Prm i f m /∈ Bl

. (3.28)

Where,
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Pri|Bl
=

Pri

∑s∈Bl
Prs

=
e

θ̂i,0+θ̂1E[πs
i,n ]+Xn θ̂i,2

λ̂l

∑k∈Bl
e

θ̂k,0+θ̂1E[πs
k,n ]+Xn θ̂k,2

λ̂l

and PrBl = ∑
s∈Bl

Prs. (3.29)

As depicted in equation (3.28), the cross-acreage elasticity with respect to expected profit for

crop m now exhibits variation across nests.18

3.7 Data

This section outlines the data used to estimate the acreage choice model using both the MNL and

NL estimators. Displayed in Table 3.1 is the dependent variable (Acreage Choice), along with

all independent variables incorporated in the analysis. In the MNL and NL models, the acreage

choice is represented as Pri,n,t, indicating the likelihood of choosing to plant crop i in the given

year on field n in year t. The expected profit, denoted by E[πs
i,n,t], is calculated as the difference

between revenue and variable costs for each crop i, specific to soil zone s and year t based on

information from the Saskatchewan Crop Planning Guides.

I use the expected prices and costs of production published prior to the upcoming growing

season from the Saskatchewan Crop Planning Guides for each crop and soil zone from 2001 to

2019 (Government of Saskatchewan, 2023a).19 Expected profits from the crop planning guide

are calculated in 2023 CAD adjusted using the Consumer Price Index (CPI) from the Bank of

Canada (2023b). Each year, the Government of Saskatchewan releases a crop planning guide to

help farmers make crop production decisions. Prices, costs, and crop yields are expected in that

they are forecasted for the upcoming growing season using historical price, cost, and production

data and other information or data acquired from producer or industry surveys.

In the Saskatchewan Crop Planning Guides, inputs and returns are associated with obtaining

18To see the complete derivations of the marginal effects and elasticities in general form, please refer to Appendix
3B.

19The Saskatchewan Crop Planning Guides provides consistent and comparable data for on-farm returns and cost
of production from 2001 to 2023.
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a target yield in the 80th percentile for each soil zone (Government of Saskatchewan, 2023a).20

Crop prices reported in the Crop Planning Guides either originate from the average annual farm

gate price from Agriculture and Agri-Food Canada’s most recent winter farm income forecast,

or from reports that retrieve prices from forward contracts or spot prices from local grain buyers

(Government of Saskatchewan, 2023a). For more information on the operating costs please refer

to the Saskatchewan Crop Planning Guide.21 Let xi,n,t encompass all additional controls at the

field and farm level, such as soil properties, the SOC stock, the average temperature during the

previous growing season (GSAT), the total annual precipitation (TAP), the type of crop previously

seeded on the field, the previous year’s insurance coverage on a field, and the previous year’s farm

size measured in insured hectares. To account for factors that vary over time but are consistent

across all fields within a particular soil zone, all of the models incorporate a linear time trend.22

Within this dataset, the simulated SOC stocks originate from Serfas (2024a), who uses field-

level information on cropping choices sourced from the SCIC database.23 The SOC stock variable

serves as a proxy for historical yields, cropping decisions, and weather conditions. In the dataset,

weather characteristics are interpolated across fields using data from the five nearest neighboring

weather stations for each field using daily temperature and precipitation data provided by Envi-

ronment and Climate Change Canada (2023b). Soil characteristics are from the Canadian National

20As stated by the Saskatchewan Crop Planning Guide (Government of Saskatchewan, 2023a): “targeted crop yields
represent the five-year average of the 80th percentile of production for each crop in each soil zone. That is, for each
of the past five years the point where 80 percent of producers would have attained a lower yield for that crop is
determined. That value for each of the five years is then averaged. The calculation uses producer data submitted
to Saskatchewan Crop Insurance Corporation and released each spring. These target yields reflect a higher level of
management, improvements in plant genetics and enhanced nutrient and crop protection management. Producers
should adjust the target yield to meet their goals and management style.”

21In most cases, operating costs are based on retail prices for specific inputs, otherwise obtained from farmers and
reviewed by regional crop experts (Government of Saskatchewan, 2023a).

22I exclude field or RM fixed effects to avoid the incidental parameters problem (Lancaster, 2000). The incorporation
of less granular RM or crop district fixed effects renders the computation of both the MNL and NL models infeasible,
as it results in the gradient of the maximum likelihood estimator equal to zero.

23Serfas (2024a) introduces an novel SOC prediction model called the Augmented Campbell model, which inte-
grates the Plant Biomass Carbon Inputs (PBCI) model for determining carbon inputs based on crop yields. This model
employs conversion formulas that factor in plant traits to compute the annual carbon contributions (Bolinder et al.,
2007; Maillard et al., 2018; Fan et al., 2019; He et al., 2021; Zhang et al., 2021; Thiagarajan et al., 2022). These carbon
input metrics adjust for yield fluctuations influenced by varying weather conditions, cropping selections, and farming
techniques. The Augmented Campbell model utilizes first-order kinetics, a method involving differential equations, to
simulate SOC stocks. This approach accounts for the decomposition rates of different SOC pools, where “pools” refer
to portions of the SOC that decompose at varying speeds due to their specific carbon content, encompassing both plant
and soil material. For a comprehensive explanation of the Augmented Campbell model, please refer to Serfas (2024a).
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Soil Database and the Saskatchewan Detailed Soil Survey database and are matched to all fields in

Saskatchewan (Agriculture and Agri-Food Canada, 2022). The SCIC dataset includes information

on the legal land description, municipality, soil class, land use, insurance coverage, seeded acres,

crop type, yield, and fertilizer use.24

TABLE 3.1: Acreage Choice Model — Dependent and Indepedent Variables

Variable: Description: Source:

Acreage Choice Binary variable for whether crop i is seeded on field n in year t. Saskatchewan Crop Insurance
Corporation Confidential Dataset

Expected Profit Expected profit published prior to the upcoming growing season is
calculated as forecasted revenue minus the forecasted total variable
expenses by crop and soil zone.

2023 Saskatchewan Crop Plan-
ning Guide (Government of
Saskatchewan, 2023a)

lag(GSAT) One year lagged term of Growing Season Average Temperature
(April to September) in degrees Celsuis.

Environment and Climate Change
Canada (2023)

lag(TAP) One year lagged term of Total Annual Precipitation in millimeters.

lag(Liability) One year lagged term for the total liability by field or guarantee to a
farmer in CAD from the Saskatchewan Crop Insurance Corportation.

Saskatchewan Crop Insurance Cor-
poration Confidential Dataset

lag(Insurer Farm Size) One year lagged term for the total hectares in a year for a farmer that
is insured by the Saskatchewan Crop Insurance Corporation.

lag(Canola) Lagged cropping choice in the previous year on field n in year t− 1
is canola.

lag(Cereal) Lagged cropping choice in the previous year on field n in year t− 1
is spring wheat, durum wheat, or barley (cereal crop).

lag(Pulse) Lagged cropping choice in the previous year on field n in year t− 1
is peas or lentils (pulse crop).

lag(Summer Fallow) Lagged cropping choice in the previous year on field n in year t− 1
is summer fallow.

Slope The slope gradient of the predominant landscape for field n. The
slope is measured in percent where a 3 percent slope means that the
elevation changes 3 feet for every 100 feet of horizontal distance. Agriculture and Agri-Food Canada

(2022)Percent Clay The percentage of soil particles that are clay on field n.
pH The measure of acidity of the soil on field n.
Electrical Conductivity The soil electrical conductivity measured in dS/m or mil-

limhos/centimeter which is inversely proportional to the electrical
resistance (Ohms) in the soil.

Soil Organic Carbon The stock of soil organic carbon in kilograms per hectare on field n
in year t.

Serfas (2024a)

To identify fields, I use the land title dataset from ISC (an exclusive provider of land ti-

tles registry information in Saskatchewan) that identifies all field-level polygons in Saskatchewan

(ISC, 2022). This dataset includes detailed geo-referenced information for 311,028 fields. I match

weather and soil characteristics to all fields, and link the SCIC data with the legal land description.

This procedure yields detailed agricultural production information for 209,021 insured parcels of

24Only farmers that enroll in the Sask Management Plus (SMP) program at SCIC share field-level crop yield and
fertilizer use information.
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land. I take a subset of these data to obtain a strongly balanced panel of 36,443 fields with com-

plete information on the time-paths of SOC stocks and cropping choices from 1998 to 2019. Figure

3.1 shows the field-level map of Saskatchewan categorized by soil zone. All my models and re-

sults are computed separately for each of the three soil zones: the brown, dark brown, and black

& gray soil zones. Farms within a soil zone are more similar in their soil characteristics, climate,

farm management practices, and cropping choice than farms in different soil zones.

FIGURE 3.1: Field-level map of soil zones in Saskatchewan

Source: Generated from ISC land titles registry polygons and soil characteristics
from the Canadian National Soils Database (Agriculture and Agri-Food Canada,

2022; ISC, 2022).

Notes: The y-axis is latitude and the x-axis is longitude.
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The identifying assumption in estimating the acreage elasticities is that the expected profits

provided by the Saskatchewan Crop Planning Guides for each soil zone do not depend on un-

observed attributes specific to individual fields or farms.25 This means that the expectations of

profits or other observed variables at the field level for an individual farmer do not influence the

expected profits published by the Saskatchewan Crop Planning Guide.26

As the Saskatchewan Crop Planning Guide relies on historical crop production data from

farmers in Saskatchewan, using the 80th percentile for targeted crop yield applied to all fields re-

gardless of their specific yield potential, the estimated coefficient for expected profit may be down-

ward biased. This bias arises because variation in expected profits observed in the Saskatchewan

Crop Planning Guide is likely to be disproportionately high for seeding a specific type of crop on

marginal or less productive land.

3.8 Estimation Results

This section provides the estimation results for the MNL and NL models developed in the

previous sections. Table 3.2 presents the Multinomial Logit (MNL) and Nested Logit (NL) estima-

tion results for acreage choice for each soil zone in Saskatchewan. The coefficients for expected

profit indicate that for each additional dollar per acre of expected profit, the likelihood of opting

any crop over spring wheat increases by a logit log-odds ratio equal to θ1, holding all other vari-

ables in the model constant. These coefficients are often interpreted as the relative risk or odds

ratio (Paudel et al., 2013), derived by exponentiating the logit coefficients from the MNL and NL

models. A relative risk ratio above one signifies an increase in the relative likelihood of choosing

alternative crops over spring wheat for an increase in expected profit. Conversely, a relative risk

ratio below one signals a decrease in this likelihood. Given that all coefficients in Table 3.2 are

positive, this means that the relative risk ratios across different soil zones exceed one, suggesting

a higher propensity to select crops other than spring wheat for an increase in their expected profit.

25Factors that remain constant over time at the field or farm level also do not affect the expected profits outlined in
the Saskatchewan Crop Planning Guides.

26Notably, farmers will adjust their expectations on profit using information from the Saskatchewan Crop Planning
Guide each year, but discern between the projected profits outlined in the guide and the actual profits anticipated on
their farms for upcoming growing season.
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TABLE 3.2: Multinomial Logit and Nested Logit Results for Acreage Choice by Soil
Zone in Saskatchewan

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray

Acreage Choice Model: MNL NL MNL NL MNL NL

Expected Profit 0.0026*** 0.0009*** 0.0032*** 0.0026*** 0.0032*** 0.0021***
(0.00011) (0.00012) (0.00007) (0.00009) (0.00005) (0.0001)

Inclusive Value 1 0.3244*** 0.6696*** 0.5547***
(0.04145) (0.02559) (0.02608)

Inclusive Value 2 0.3341*** 0.8465*** 0.5526***
(0.04704) (0.03751) (0.03575)

Observations 359,485 359,485 990,654 990,654 2,226,294 2,226,294

Source: Authors’ Estimates.
Notes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. MNL represents the multinomial logit model and NL represents the nested
logit model. The reference crop used in all models is spring wheat. Each coefficient with respect to expected profit
represents the likelihood of opting any crop over spring wheat with respect to an increase in expected profit by a
logit log-odds ratio equal to θ1, holding all other variables in the model constant. The coefficient on the inclusive
value indicates the degree of independence among the unobserved components of expected profit for alternative crops
within a nest. A high coefficient signifies greater independence and less correlation, meaning that the alternative crops
within a nest are dissimilar for unobserved reasons. Please refer to Table 3.1 for all other control variables included in
the MNL and NL models, as well as the variable description and source.

In Table 3.2, the NL model includes coefficients for the inclusive values across different nests.

The nesting configurations that yield coefficients for the inclusive values in the range of 0 to 1

for each soil zone, are provided in Table 3.3. According to Moreno and Sunding (2005), if the

coefficient on the inclusive value is significantly different from one, this indicates that there are

dissimilarities between alternatives and that the nesting structure is appropriate. Given that all

inclusive values significantly differ from one, this evidence strongly supports the chosen nesting

structure of crops within each soil zone.27 The nesting structure is based on crop selection data

from 2001 to 2019 in Saskatchewan, meaning that nesting configurations could vary for different

subsets of time periods within the SCIC dataset.

27The 95% confidence intervals for these inclusive values are calculated using the formula C.I.(λl) = λl ± 1.96×
S.E.(λl).
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TABLE 3.3: Nesting Structure based on Model Specification for Crops and Soil Zones
in Saskatchewan

(1) (2) (3)

Soil Zone: Brown Dark Brown Black & Gray

Nest 1 Spring Wheat Canola Canola
Durum Wheat Spring Wheat Spring Wheat
Lentils Durum Wheat Summer Fallow
Peas Barley

Nest 2 Canola Lentils Barley
Barley Peas Durum Wheat
Summer Fallow Summer Fallow Lentils

Peas

Source: Author.
Notes: The assignment of crops to nests 1 and 2 follows a unique model specification, ensuring
that the inclusive values within the nested logit model for each soil zone in Saskatchewan fall
within the 0 to 1 range.

I calculate the own-acreage elasticity for all crops and soil zones using equations (3.17) and

(3.27) for both the MNL and NL models, as shown in Table 3.4. Additionally, I calculate the

cross-acreage elasticities concerning an increase in expected profit for canola, employing equations

(3.18) and (3.28) for each model, presented in Table 3.5.

The own-acreage elasticities across all crops exhibit similar magnitudes between the MNL

and NL models, all indicating inelastic response (ε i < 1). This implies that a one percent rise in

expected profit for crop i gives rise to a less than a one percent increase in hectares for that crop.

Notably, lentils demonstrate the highest responsiveness to changes in expected profit across all

soil zones. Canola and durum wheat also exhibit higher elasticities compared to crops like spring

wheat, peas, and barley. Spring wheat has the lowest acreage elasticity among all seeded crops,

whereas summer fallow has the lowest compared to all other cropping choices.28

28The expected profit for summer fallow is negative. This means a change in expected profit for summer fallow
reflects a cost savings associated with land management when opting for summer fallow.
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TABLE 3.4: Own-Acreage Elasticities with respect to Expected Profit by Crop and
Soil Zone

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray

Acreage Choice Model: MNL NL MNL NL MNL NL

Canola 0.303*** 0.291*** 0.370*** 0.430*** 0.346*** 0.395***
(0.014) (0.0279) (0.0086) (0.0114) (0.0052) (0.0077)

Barley 0.151*** 0.156*** 0.268*** 0.328*** 0.351*** 0.316***
(0.0068) (0.0156) (0.0062) (0.0094) (0.0053) (0.0089)

Spring Wheat 0.148*** 0.154*** 0.224*** 0.266*** 0.283*** 0.333***
(0.0067) (0.0096) (0.0052) (0.0073) (0.0043) (0.0069)

Durum Wheat 0.180*** 0.161*** 0.399*** 0.486*** 0.410*** 0.491***
(0.0081) (0.0109) (0.0092) (0.0138) (0.0061) (0.0187)

Lentils 0.450*** 0.469*** 0.588*** 0.562*** 0.563*** 0.674***
(0.0203) (0.0291) (0.0136) (0.0127) (0.0085) (0.0256)

Peas 0.219*** 0.235*** 0.310*** 0.297*** 0.325*** 0.343***
(0.0099) (0.0144) (0.0072) (0.0068) (0.0049) (0.0111)

Summer Fallow 0.053*** 0.034*** 0.076*** 0.070*** 0.083*** 0.098***
(0.0024) (0.0029) (0.0018) (0.0015) (0.0012) (0.0021)

Source: Author’s Estimates
Notes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. MNL represents the multinomial logit model and NL represents
the nested logit model. The own-acreage elasticities with respect to expected profit for the MNL model
are calculated using equation (3.17) and for the NL are calculated using equation (3.27) with the mean
expected profit and acreage choice. All standard errors are calculated using the nonparametric bootstrap
method as outlined by Onukwugha et al. (2015), employing 100 random samples with replacement to
estimate the parameters of interest.

Table 3.5 shows the cross-acreage elasticity with respect an increase in expected profit for

canola, revealing uniform values across all crops in the MNL model (see equation (3.18)). This

uniformity stems from the “IIC” assumption described by Carpentier and Letort (2014). In the

NL model, the cross-acreage elasticities with respect to an increase in expected profit for canola

demonstrates greater flexibility and realism compared to the MNL model, as these elasticities vary

among crops between different nests (see equation (3.28)). For instance, in the brown soil zone the

cross-acreage elasticity estimated by the NL model for durum wheat is -0.060, while for barley, it

is equal to -0.009.
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TABLE 3.5: Cross-Acreage Elasticities with respect to Expected Profit of Canola by
Crop and Soil Zone in Saskatchewan

(1) (2) (3) (4) (5) (6)

Soil Zone: Brown Dark Brown Black & Gray

Acreage Choice Model: MNL NL MNL NL MNL NL

Other Crops −0.026*** −0.140*** −0.249***
(0.0012) (0.0032) (0.0037)

Crops in Nest 1 −0.060*** −0.204*** −0.323***
(0.0076) (0.0083) (0.0082)

Crops in Nest 2 −0.009*** −0.117*** −0.167***
(0.0016) (0.0043) (0.0072)

Source: Author’s Estimates
Notes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. MNL represents the multinomial logit model and NL represents
the nested logit model. Other crops refers to all crops excluding canola. Please see Table 3.3 to see which
crops are allocated to nests 1 and 2. The cross-acreage elasticities with respect to canola expected profit
for the MNL model are calculated using equation (3.18) and for the NL are calculated using equation
(3.28) with the mean expected profit and acreage choice. All standard errors are calculated using the non-
parametric bootstrap method as outlined by Onukwugha et al. (2015), employing 100 random samples
with replacement to estimate the parameters of interest.

3.9 Simulation Model

In this section, I develop a simulation model to examine the effects of subsidizing canola hectares

in Saskatchewan on cropping choice and carbon sequestration. In this model, the canola subsidy

is implemented indefinitely into the future, commencing from the year 2019. The model incorpo-

rates marginal effects computed using the MNL and NL models.29 In this model, I assume that

farmers in Saskatchewan face exogenous commodity prices when selling their grain at elevator

terminals. This assumption is likely to be valid because of competitive arbitrage in the market for

29An alternative modeling approach to the simulation model could involve constructing a mathematical program-
ming model, which introduces a large degree of realism by optimizing cropping decisions based on economic data
and constraints (see Perry et al. (1989) Hoag and Holloway (1991), Garnache et al. (2017), and Cobuloglu and Büyük-
tahtakın (2017)). The majority of mathematical programming models simulate the decision-making process of a hy-
pothetical farmer who strategically plans for the future by maximizing profits through optimal cropping choices and
input use. These models employ data on crop rotation, weather forecasts, commodity prices, and input costs to inform
decision-making.
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grain, suggesting that Saskatchewan farmers effectively participate in the global grain market.30

However, if there is any price response to changes in crop production in Saskatchewan, possibly

owing to Canada’s significant role in the world market for a particular crop, this could limit the

effectiveness of the canola subsidy in generating additional canola hectares.

Within the simulation model, I examine two distinct objective functions concerning the im-

plementation of a canola subsidy paid to farmers on policy-induced hectares of canola. First, I ex-

amine the effects of maximizing the NESB, which is equal to the external social benefit attributed

to the canola subsidy minus the cost. I presume that directing resources towards an environmen-

tal policy, whether through private or public funding, involves an opportunity cost. This entails

forgoing investments in climate change policies that may offer higher social returns or pose lower

risk, where prioritizing cost-effective strategies could potentially result in greater overall environ-

mental or social benefits. With both government and private sectors engaged in climate change

mitigation, the management of climate change policy demands meticulous attention from an in-

vestment perspective (Pindyck, 2014).

The second objective function I examine is maximizing the change in welfare, which is equal

to the NESB plus the change in producer surplus. In this case, when investing in climate change

policy, the government would not only consider the environmental benefits generated by imple-

menting a canola subsidy, but also changes in farmer welfare. Because the external social benefit is

assessed solely on policy-induced canola hectares, the optimal canola subsidy when maximizing

the change in welfare is equal to the external social benefit per policy-induced change in hectares

of canola.31

Assuming that farmers in Saskatchewan operate as price-takers regarding the pricing and

seeding costs of any crop, the market equilibrium for seeded hectares of a crop can be character-

ized as:

30There are also implications suggesting that prices for certain commodities are co-integrated with the prices of
substitutes, which restricts the price reaction to changes in production. An illustration of this phenomenon is the co-
integration observed between the soybean and canola markets (Schaefer et al., 2021).

31As stated in section 3.1, implementing a policy that subsidizes all hectares of canola is a feasible policy, and results
in a transfer of wealth from the government to producers for all hectares of canola. However, policies that subsidize
BAU practices are typically not sustainable and cost ineffective (Raina et al., 2024; Wongpiyabovorn et al., 2024).
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Ai = Ψi + βiE[πi] + ∑
i ̸=m

βi,mE[πm], (3.30)

where E[πi] is the expected profit of crop i, E[πm] is the expected profit of all other crops not

including crop i, and Ψi is a constant reflecting all other factors affecting the acreage of crop i that

are unrelated to expected profits. Let βi = MEi ×∑C
i=1 Ai so that the marginal effect or change in

probability of choosing crop i multiplied by the total hectares of cropland is equal to the change

in hectares of crop i with respect to a unit increase in expected profits of crop i.

Taking the derivative with respect to expected profit of crop 1 for C crops in equation (3.30)

results in the system of equations,



∂A1
∂E[π1]

∂A2
∂E[π1]

...
∂AC

∂E[π1]


=



β1 0 · · · 0

β2,1 0 · · · 0
...

...
. . .

...

βC,1 0 · · · 0


subject to: β1 +

C

∑
i=2

βi,1 = 0. (3.31)

where each marginal effect presented in equation (3.31) is derived from either the MNL or NL

models, provided in section 3.8.

The simulation model can be illustrated using a simplified framework as shown in Figure

3.2, with linear marginal net benefit (MNB) curves for canola production and other crops. Addi-

tionally, I incorporate into this framework the SOC response to changes in canola hectares and the

corresponding external social benefits corresponding to alterations in cropping shares. In Figure

3.2, the marginal net benefit for crop i is denoted as,

MNBi = piyi(Ai)− ci, (3.32)
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where pi is the commodity price, ci is the production cost per hectare, and yi is yield per hectare

for crop i that depends on the total hectares seeded to that crop. The yield per hectare for each

crop is assumed to decrease with the increase of cropland for a particular crop. In this case, the

implementation of a subsidy on policy-induced canola hectares (crop i) translates to a higher MNB

from seeding canola (as depicted in the top panel of Figure 3.2), thereby prompting an increase in

canola hectares. The supply of cropland or total hectares of land denoted by L means that with

the canola subsidy, farmers substitute from other crops to canola.

The annual change in producer surplus is represented by the green shaded area in the top

panel of Figure 3.2. The annual cost of the canola subsidy is not shaded in Figure 3.2, but is equal

to twice the area of the change in producer surplus (τ(AS
i − Ai)). The bottom-left panel of Figure

3.2 illustrates that a permanent increase in canola hectares and a permanent decline in hectares

for other crops corresponds to a specific annual increase in SOC stocks relative to BAU practices,

given that canola sequesters more carbon in the soil compared to other crops. Assuming a constant

rental rate for carbon stored in the soil, the implementation of a canola subsidy enhances the stock

of SOC, thereby generating positive external social benefits annually (as outlined by the green

shaded area in the bottom-right panel of Figure 3.2).32

32The blue shaded area represents the annual change in producer surplus if all hectares of canola were subsidized,
which would result in a transfer of government spending to producers. Because the policy examined in this essay
only pays farmers on additional hectares, there is no transfer of spending to producers on all hectares of canola as
represented by the blue shaded area in Figure 3.2.
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FIGURE 3.2: The Annual Effects of Acreage Response to a Canola Subsidy and the External Social Benefits from Carbon
Sequestration
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Source: Author.
Notes: The annual effect of a subsidy leads to a permanent increase in canola hectares (AS

i − Ai) and decrease in the hectares
allocated to other crops (AS

j − Aj). Because canola stores more SOC relative to other crops, the change in SOC stocks relative to BAU
practices is positive due to an increase in canola hectares. The change in annual producer surplus is equal to the one half of the
annual canola subsidy per hectare τ multiplied by the permanent policy-induced change in canola hectares (∆PS = (1/2)τ∆Ai =
(1/2)τ(AS

i − Ai)). The annual change in the external social benefit is equal to the annual change in SOC from the canola subsidy
relative to BAU practices multiplied by the annual rental rate of carbon (P).

260



The objective function aimed at maximizing the NESB (NESBcanola) with respect to the sub-

sidy rate for canola starting in 2019 and continuing forever into the future is,33

max
τ

NESBcanola = ESB(τ, T∗, P, α, A, ME, E[πcanola])− Csubsidy(τ, T∗, A, MEcanola, E[πcanola]),

(3.33)

where,

ESB =
T∗−1

∑
t=1

(1 + δ)−t

{
tP∆SOC

}
+

1
δ
(1 + δ)−T∗

{
T∗P∆SOC

}

=
T∗−1

∑
t=1

(1 + δ)−t

{
tP
( C

∑
i=1

(∆Ai + Ai)
) C

∑
i=1

[
αi

( =ssubsidy
i︷ ︸︸ ︷

∆Ai + Ai

∑C
i=1(∆Ai + Ai)

−

=si︷ ︸︸ ︷
Ai

∑C
i=1 Ai

)]
︸ ︷︷ ︸

=∆SOC/ ∑C
i=1(∆Ai+Ai)

}

+
1
δ
(1 + δ)−T∗

{
T∗P

( C

∑
i=1

(∆Ai + Ai)
) C

∑
i=1

[
αi

( =ssubsidy
i︷ ︸︸ ︷

∆Ai + Ai

∑C
i=1(∆Ai + Ai)

−

=si︷ ︸︸ ︷
Ai

∑C
i=1 Ai

)]
︸ ︷︷ ︸

=∆SOC/ ∑C
i=1(∆Ai+Ai)

}
,

(3.34)

Csubsidy =
T∗−1

∑
t=1

(1 + δ)−t

{
τ∆Acanola

}
− 1

δ
(1 + δ)−T∗

{
τ∆Acanola

}
, (3.35)

∆Ai = τ ×MEi,canola ×
C

∑
i=1

Ai, (3.36)

P = δ ∗ SCC ∗ 44 Mg CO2
12 Mg SOC

, and (3.37)

33Bold letters denote the vector of a variable, with each dimension corresponding to the number of crops.
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∆SOCn,t = γSOCn,t−1 +
C

∑
i=1

1i∈C{αiΘi
n,t−1}+ Zn,t−1ξ + νn,t. (3.38)

Let P be the annual rental rate of SOC, which is equal to the SCC multiplied by its corre-

sponding discount rate δ and a conversion factor from CO2 to SOC (Mikhailova et al., 2019). I

employ a SCC equal to 185 USD/Mg of CO2 at a 2% discount rate per year (Rennert et al., 2022).

All monetary values for the SCC are converted to 2023 CAD using the GDP Deflator from the

Federal Reserve Bank of St. Louis (U.S. Bureau of Economic Analysis, 2024) and an exchange rate

from USD to CAD for 2023 from the Bank of Canada (2023a). The permanent change in the crop

share resulting from the canola subsidy is calculated as the difference between ssubsidy
i and si for

crop i. This difference is determined by the permanent policy-induced change in hectares for each

crop, where Ai represents the hectares without the canola subsidy, and ∆Ai signifies the perma-

nent policy-induced change in hectares resulting from the canola subsidy. I employ the insured

hectares of each crop from the SCIC database for the year 2019. The expected profits for canola

by soil zone are computed as the average expected profits derived from the Saskatchewan Crop

Planning Guides for the years 2015 to 2019.

Let τ be the per hectare subsidy for canola, expressed in 2023 CAD/ha/yr. The coefficient

αi is estimated from the SOC state equation and quantifies the weighted average annual effect on

SOC stocks per hectare for all insured hectares in the following year as a consequence of changing

the crop share in the previous year relative to the 2019 crop share. The state-equation shown

in equation (3.38) is estimated for each soil zone and is estimated using weighted least squares,

weighting by the hectares of a field.34 Let ∆SOCn,t denote the SOC change from year t − 1 to

year t, with SOCn,t−1 as the SOC stock from the previous year, and Zn,t−1 capturing the weather

characteristics from the previous year. I include lagged GSAT and TAP in all regressions (refer to

Table 3.1 for their descriptions). All standard errors in each regression for the SOC state equation

are clustered by farmer. The variable t is used to account for the annual growth in the SOC stock

34The regression outcomes for equation (3.38) are detailed in Table 3C.1 in Appendix 3C. Different functional forms
for the lagged SOC stock are examined and those results are provided in Table 3C.2. Table 3C.2 displays the R2 values
for linear, quadratic, and logarithmic models of lagged SOC stocks, with each model exhibiting very similar predictive
performance between change in the SOC stock and the previous year’s SOC stock.
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relative to the no-policy scenario, whereas T∗ is used to signify the time required to achieve a

steady state in SOC stocks. I assume it takes approximately 30 years for all soil zones to reach a

steady state in SOC stocks.35 Consequently, shortening the time required to reach a steady state

reduces the NESB and the optimal canola subsidy (resulting in less additional SOC stored), while

extending this duration leads to a higher change in NESB and the optimal canola subsidy (more

additional SOC is stored).36

The objective function presented in equation (3.33) does not consider the dynamic effects of

yield growth resulting from carbon sequestration. Hence, the optimal subsidies proposed in the

simulation model overlook potential yield growth from increased SOC stocks and the subsequent

feedback loop between enhanced SOC and crop yields.37 Including yield response to SOC growth

substantially complicates equation (3.33), so much that farmers would additionally respond in

their acreage choices over time due to the improved yield productivity from increased SOC, which

varies across crop type and soil zone. Appendix 3E provides a sensitivity analysis to examine how

the optimal subsidies are affected by an increase in crop yield.38

To determine the optimal canola subsidy, I solve the first-order condition from maximizing

the NESB in equation (3.33) with respect to the canola subsidy (τ). The first-order condition de-

rived from equation (3.33) is expressed as follows:

35Serfas (2024a) performs a forward projection of SOC stocks employing the Augmented Campbell model spanning
from 2019 to 2169 and discovers that SOC stocks stabilize starting around 2050 in every soil zone, indicating a steady
state is attained after approximately 30 years assuming continuous carbon inputs without yield growth. However, for
predicting SOC stocks, it is rare to encounter and confirm steady-state equilibria. Hence, the suggested 30-year time
period to achieve a steady state should be approached with caution.

36Figure 3C.1 in Appendix 3C illustrates how shortening the time it takes to reach a steady state equilibrium in the
stock of SOC to 10 and 20 years would affect the NESB.

37In Appendix 3C, Table 3C.3 presents results from estimating a SOC state equation that includes control variables
for the previous year’s crop yield. Despite this inclusion, Table 3C.4 shows the predictive power (R2) of the state
equation when yield control variables are included does not result in sizable changes in the R2 values for each SOC
state equation by soil zone. Table 3C.5 in Appendix 3C also explores the effects of different yield growth effects on the
projected change in the SOC stock by crop, considering both a 10% and a 20% increase in crop yields. Depending on
the crop yield growth by crop, the resulting changes in the predicted SOC stock could be quite large.

38In Appendix E, I examine the robustness of the simulation model and conduct comparative dynamics to examine
the effects of yield growth, using simulated rates of yield growth by crop and soil zone provided by Serfas (2024b).
Serfas (2024b) finds that canola exhibits varying yield growth rates due to carbon sequestration when subjected to a
four-year crop rotation cycle of Canola-Spring Wheat-Canola-Spring Wheat for 32 years, with computed growth rates
of 0%, 3.1%, and 2.5% observed across the brown, dark brown, and black & gray soil zones. In comparison, spring
wheat yield growth during the same period follows a different trend, showing yield growth of 18.9%, 6.9%, and 2.2% in
the respective soil zones after 32 years. The yield growth for peas when subjected to a 32-year rotation of Canola-Spring
Wheat-Peas-Spring Wheat is 10.2%, 0%, and 1.5% across the brown, dark brown, and black & gray soil zones.
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MESB(T∗, P, α, A, ME, E[πcanola]) = MCsubsidy(τ, T∗, A, MEcanola, E[πcanola]). (3.39)

Where,39

MESB =
∂ESB(τ, T∗, P, α, A, ME, E[πcanola])

∂τ

=
T∗−1

∑
t=1

(1 + δ)−t

{
tP

C

∑
i=1

[
αi

(Ωi ∑C
i=1 Ai + Ai ∑C

i=1 Ωi

∑C
i=1 Ai

)]}

+
1
δ
(1 + δ)−T∗

{
T∗P

C

∑
i=1

[
αi

(Ωi ∑C
i=1 Ai + Ai ∑C

i=1 Ωi

∑C
i=1 Ai

)]}
,

(3.40)

MCsubsidy =
∂Csubsidy(τ, T∗, A, MEcanola, E[πcanola])

∂τ

= 2τ

[
T∗−1

∑
t=1

(1 + δ)−tΩcanola +
1
δ
(1 + δ)−T∗Ωcanola

]
,

(3.41)

and

Ωi =
∂∆Ai

∂τ
= MEi,canola ×

C

∑
i=1

Ai. (3.42)

Solving for τ in equation (3.39) yields the formula for the optimal canola subsidy equal to,

39Please refer to Appendix 3D for the derivation of the marginal external social benefit formula.
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τ∗ =

∑T∗−1
t=1 (1 + δ)−t

{
tP ∑C

i=1

[
αi

(
Ωi ∑C

i=1 Ai+Ai ∑C
i=1 Ωi

∑C
i=1 Ai

)]}

2

[
∑T∗−1

t=1 (1 + δ)−tΩcanola +
1
δ (1 + δ)−T∗Ωcanola

]

+

1
δ (1 + δ)−T∗

{
T∗P ∑C

i=1

[
αi

(
Ωi ∑C

i=1 Ai+Ai ∑C
i=1 Ωi

∑C
i=1 Ai

)]}

2

[
∑T∗−1

t=1 (1 + δ)−tΩcanola +
1
δ (1 + δ)−T∗Ωcanola

] .

(3.43)

Equation (3.43) shows that an increase in either the annual rental rate of SOC (P), the total

cropland area (∑C
i=1 Ai), or the time required for SOC stocks to reach a steady state in the stock of

SOC (T∗) leads to a corresponding rise in the optimal canola subsidy. Yet, the influence of acreage

responses for individual crops or the expected profit for canola on the optimal subsidy remain

unknown. Analytical comparative dynamics of the simulation model are necessary to ascertain

these relationships.

The objective function to maximize the change in welfare with respect to the canola subsidy

is denoted as,

max
τ

∆W = ESB(τ, T∗, P, α, A, ME, E[πcanola])− Csubsidy(τ, T∗, A, MEcanola, E[πcanola])

+ ∆PSsubsidy(τ, T∗, A, MEcanola, E[πcanola]),
(3.44)

where,

∆PSsubsidy =
T∗−1

∑
t=1

(1 + δ)−t

{
1
2

τ∆Acanola

}
+

1
δ
(1 + δ)−T∗

{
1
2

τ∆Acanola

}
. (3.45)

The first-order condition of equation (3.44) with respect to the canola subsidy is,
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MESB(T∗, P, α, A, ME, E[πcanola]) = MCsubsidy(τ, T∗, A, MEcanola, E[πcanola])

− ∂∆PSsubsidy(τ, T∗, A, MEcanola, E[πcanola])/∂τ.
(3.46)

Where,

∂∆PSsubsidy

∂τ
= τ

[
T∗−1

∑
t=1

(1 + δ)−tΩcanola +
1
δ
(1 + δ)−T∗Ωcanola

]
. (3.47)

Solving for τ in equation (3.46) provides the solution for the optimal canola subsidy that maxi-

mizes the change in welfare:

τ∗∗ =

∑T∗−1
t=1 (1 + δ)−t

{
tP ∑C

i=1

[
αi

(
Ωi ∑C

i=1 Ai+Ai ∑C
i=1 Ωi

∑C
i=1 Ai

)]}
∑T∗−1

t=1 (1 + δ)−tΩcanola +
1
δ (1 + δ)−T∗Ωcanola

+

1
δ (1 + δ)−T∗

{
T∗P ∑C

i=1

[
αi

(
Ωi ∑C

i=1 Ai+Ai ∑C
i=1 Ωi

∑C
i=1 Ai

)]}
∑T∗−1

t=1 (1 + δ)−tΩcanola +
1
δ (1 + δ)−T∗Ωcanola

.

(3.48)

The optimal canola subsidy described in equation (3.48) leads to a NESB of zero. This indi-

cates that the external social benefit per policy-induced hectare of canola equals the optimal canola

subsidy required to maximize the change in welfare. Solving for the optimal canola subsidy that

maximizes the change in welfare can also be achieved by equating the external social benefit to

the cost of the subsidy, satisfying condition that NESB is zero. Setting the external social benefit

equal to the subsidy cost yields,
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ESB(τ∗∗, T∗, P, α, A, ME, E[πcanola]) = Csubsidy(τ∗∗, T∗, A, MEcanola, E[πcanola])

⇓

ESB = τ∗∗
[

T∗−1

∑
t=1

(1 + δ)−t

{
∆Acanola(τ

∗∗)

}
− 1

δ
(1 + δ)−T∗

{
∆Acanola(τ

∗∗)

}]
.

(3.49)

Solving for τ in equation (3.49) provides the optimal canola subsidy as derived in equation (3.48),

τ∗∗ =
ESB(τ∗∗, T∗, P, α, A, ME, E[πcanola])

∑T∗−1
t=1 (1 + δ)−t

{
∆Acanola(τ∗∗)

}
− 1

δ (1 + δ)−T∗

{
∆Acanola(τ∗∗)

}

=
MESB(T∗, P, α, A, ME, E[πcanola])

∑T∗−1
t=1 (1 + δ)−t

{
Ωcanola

}
− 1

δ (1 + δ)−T∗

{
Ωcanola

} .
(3.50)

Where,40

ESB(τ, T∗, P, α, A, ME, E[πcanola]) = τMESB(T∗, P, α, A, ME, E[πcanola]). (3.51)

Equation (3.50) reveals that when maximizing the change in welfare, the optimal canola

subsidy equals the external social benefit per policy-induced hectare of canola. I can also be shown

that the optimal canola subsidy in equation (3.43) that maximizes the NESB is equal to half of the

optimal canola subsidy that maximizes the change in welfare as given in equation (3.48). This

suggests,

40Please refer to Appendix 3D to see the derivation of equation (3.51).
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τ∗ =
ESB(τ∗, T∗, P, α, A, ME, E[πcanola])

2

[
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t=1 (1 + δ)−t

{
∆Acanola(τ∗)

}
− 1

δ (1 + δ)−T∗

{
∆Acanola(τ∗)

}]

=
MESB(T∗, P, α, A, ME, E[πcanola])

2

[
∑T∗−1

t=1 (1 + δ)−t

{
Ωcanola

}
− 1

δ (1 + δ)−T∗

{
Ωcanola

}] .
(3.52)

Equation (3.52) aligns with the optimal subsidy shown in equation (3.43), which is derived from

the NESB maximization problem.

For solving the simulation model, I employ the Newton-Raphson method as the search algo-

rithm to numerically solve both the optimal canola subsidy from maximizing NESB in equation

(3.33) and the subsidy maximizing the change in welfare in equation (3.44). The Newton-Raphson

method is a root-finding algorithm that yields approximations of roots for real-valued functions.

The root that satisfies the maximization problem for welfare change, as given in equation (3.44),

corresponds to NESB = 0, meeting the first-order condition outlined in equation (3.50). Similarly,

the root for the NESB maximization problem in equation (3.33) is ESB− 2Csubsidy = 0, satisfying

the first-order condition provided by equation (3.52).

3.10 The Effects of a Canola Subsidy on Soil Organic Carbon Stocks

This section presents the results of the simulation model for the two cases outlined in the previous

section: (1) the case where the canola subsidy is set to maximize the NESB, and (2) the case where

the canola subsidy is set to maximize the change in welfare. Table 3.6 shows the outcomes for the

NESB maximization, focusing on the acreage choice model (MNL and NL models) across various

soil zones in Saskatchewan, using an annual rental rate for carbon computed with a SCC valued at

185 USD/Mg of CO2. Table 3.7 shows the results for simulation model that maximizes the change

in welfare. Tables 3.6 and 3.7 both show the calculated optimal canola subsidy, policy-induced

changes in hectares for each crop, average annual change in the SOC stock per hectare for all
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insured hectares from additional canola hectares relative to the change for BAU practices, external

social benefit, targeted policy cost, net external social benefit, change in producer surplus, and

change in welfare for all insured hectares by soil zone in Saskatchewan.

The optimal subsidies indicated in Table 3.6, as per the MNL and NL models, equal 241.24

and 324.40 CAD/ha/yr in the brown soil zone, 229.73 and 205.43 CAD/ha/yr in the dark brown

soil zone, and 220.03 and 226.02 CAD/ha/yr in the black & gray soil zone.41 In Table 3.7, as

anticipated from the derivation of equations (3.2) and (3.50), the optimal canola subsidy when

maximizing the change in welfare is twice as large as the optimal canola subsidy when maximizing

the NESB. For the MNL and NL models, in the brown soil zone, the optimal canola subsidy for

maximizing the change in welfare is 482.49 and 648.80 CAD/ha/yr, while for the dark brown soil

zone, it is 459.45 and 410.86 CAD/ha/yr, and for the black & gray soil zone, it is 440.07 and 452.05

CAD/ha/yr.

In both Tables 3.6 and 3.7, the optimal canola subsidy for the brown soil zone surpasses

those for the dark brown and black & gray soil zones. This relationship arises because the acreage

response and the change in SOC stocks within the brown soil zone are lower than those in the

dark brown and black & gray soil zones. Consequently, to incentivize a comparable change in

canola hectares, farmers in the brown soil zone require a larger canola subsidy compared to their

counterparts in the dark brown and black & gray zones, where canola already constitutes a larger

crop share.

In all instances, the policy-induced change in hectares is positive for canola, accompanied by

reductions in hectares for all other crops. In Table 3.6, subsidizing farmers to grow canola leads to

an increase in canola hectares in percentage terms equal to 15.51% in the brown soil zone, 17.31%

in the dark brown soil zone, and 17.27% in the black & gray soil zone for the NL model. In this

case, canola hectares increase a total of 677 thousand hectares (17.13%) in Saskatchewan as a result

41Payments to farmers for adopting no-till practices under EQIP average 11.06 USD/ac (36.62 CAD/ha/yr), while
under CSP, they average 7.50 USD/ac/yr (24.83 CAD/ha/yr). For cover crops, EQIP payments can reach up to
40.86 USD/ac/yr (135.30 CAD/ha/yr), whereas CSP payments remain at 7.50 USD/ac/yr (24.83 CAD/ha/yr) (Wong-
piyabovorn and Plastina, 2023). The canola subsidies in this analysis are expected to be much lower after discounting
for the environmental risks and impermanence of carbon sequestration.
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of the subsidy. Table 3C.6 in Appendix C shows the change in hectares and the percentage change

for all cases examined in the simulation model.

The results from the simulation model also show how the canola subsidy affects the average

annual change in the stock of SOC on all insured hectares. The change in SOC stocks from the

canola subsidy is greater in the black & gray soil zone compared to the brown and dark brown

soil zones. This is attributable to higher yields of canola in the black & gray soil zone, leading to

the larger policy-induced increase in the average stock of SOC stock relative to BAU practices for

the same increase in canola hectares in other soil zones. According to Tables 3.6 and 3.7, the MNL

model indicates a smaller change in SOC stock across all policy scenarios compared to the NL

model, except in the dark brown soil zone. This highlights the differences in estimated substitution

patterns resulting from the application of the IIC assumption across crops between the MNL and

NL models.

Serfas (2024a) predicts SOC stock changes in each soil zone from 1998 to 2019 in Saskatchewan

equal to an increase of 201 kg/ha/yr in the brown soil zone, 288 kg/ha/yr in the dark brown

soil zone, and 371 kg/ha/yr in the black & gray soil zone. Table 3.6 indicates that the average

annual change in the SOC stock per hectare for all insured hectares from optimal policy induced

additional canola hectares is equal to approximately 15–20% of the historical annual change in

SOC stocks as simulated by Serfas (2024a). Conversely, in Table 3.7, the change in SOC stocks

across all soil zones corresponds to approximately 30 to 40% of the historical annual change in

SOC stocks simulated by Serfas (2024a). These observations imply that subsidizing canola hectares

in Saskatchewan could lead to a sizable increase in the average stock of SOC across all insured

hectares depending on objectives compared to scenarios without such subsidies.
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TABLE 3.6: Simulation Model Results for the Net External Social Benefit Maximization Problem over an Infinite Time
Horizon starting in 2019

(1) (2) (3) (4)

Soil Zone: Brown Dark Brown Black & Gray All

Acreage Choice Model: MNL NL MNL NL MNL NL MNL NL

Optimal Canola Subsidy (2023 CAD/ha/yr) 241.24 324.40 229.73 205.43 220.03 226.02 226.36 226.54

Change in Hectares: (ha)

Canola 40, 854 52, 800 226, 675 235, 259 217, 112 389, 415 484, 641 677, 474

Barley −1, 358 −4, 231 −20, 055 −26, 103 −19, 209 −35, 131 −40, 622 −65, 464

Spring Wheat −5, 617 −2, 697 −66, 373 −86, 389 −63, 573 −199, 151 −135, 563 −288, 237

Durum Wheat −14, 286 −6, 859 −33, 155 −43, 153 −31, 756 −1, 819 −79, 196 −51, 831

Lentils −5, 395 −2, 590 −26, 210 −19, 485 −25, 104 −1, 949 −56, 709 −24, 024

Peas −2, 961 −1, 422 −22, 851 −16, 987 −21, 887 −18, 412 −47, 698 −36, 821

Summer Fallow −11, 236 −35, 002 −58, 032 −43, 142 −55, 584 −132, 951 −124, 853 −211, 095

Total 0 0 0 0 0 0 0 0

Policy Induced Change in SOC (kg/ha/yr) 18.30 31.81 56.25 52.20 63.48 76.49 51.61 58.69

Welfare: (millions of 2023 CAD)

External Social Benefit 975 1, 694 5, 150 4, 780 7, 223 8, 705 13, 348 15, 178

Targeted Cost of Subsidy 487 847 2, 575 2, 390 3, 612 4, 352 6, 674 7, 589

Net External Social Benefit 487 847 2, 575 2, 390 3, 612 4, 352 6, 674 7, 589

Change in Producer Surplus 244 423 1, 287 1, 195 1, 806 2, 176 3, 337 3, 795

Change in Welfare 731 1, 270 3, 862 3, 585 5, 417 6, 528 10, 011 11, 384

Source: Author’s Estimates
Notes: MNL represents the multinomial logit model and NL represents the nested logit model. The optimal subsidy, policy-induced change in hectares, weighted average
annual change in the SOC stock per hectare for all insured hectares from additional canola hectares relative to the weighted average annual change in SOC stock without
the canola subsidy, external social benefits, subsidy costs, change in producer surplus, and change in welfare are calculated by maximizing the net external social benefit
(NESB) as shown in equation (3.33). All external social benefits are calculated using a rental rate for carbon storage compute with the social cost of carbon equal to 185
USD/Mg of CO2.
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TABLE 3.7: Simulation Model Results for the Change in Welfare Maximization Problem over an Infinite Time Horizon
starting in 2019

(1) (2) (3) (4)

Soil Zone: Brown Dark Brown Black & Gray All

Acreage Choice Model: MNL NL MNL NL MNL NL MNL NL

Optimal Canola Subsidy (2023 CAD/ha/yr) 482.49 648.80 459.45 410.86 440.07 452.05 450.29 453.08

Change in Hectares: (ha)

Canola 81, 708 105, 600 453, 351 470, 517 663, 882 778, 830 1, 198, 941 1, 354, 947

Barley −2, 716 −8, 462 −40, 110 −52, 205 −102, 063 −70, 262 −144, 889 −130, 929

Spring Wheat −11, 235 −5, 394 −132, 746 −172, 778 −298, 262 −398, 303 −442, 243 −576, 475

Durum Wheat −28, 571 −13, 717 −66, 309 −86, 306 −5, 286 −3, 639 −100, 166 −103, 662

Lentils −10, 791 −5, 181 −52, 420 −38, 969 −5, 664 −3, 899 −68, 874 −48, 049

Peas −5, 922 −2, 843 −45, 702 −33, 975 −53, 492 −36, 825 −105, 116 −73, 643

Summer Fallow −22, 473 −70, 003 −116, 065 −86, 283 −199, 116 −265, 903 −337, 654 −422, 189

Total 0 0 0 0 0 0 0 0

Policy Induced Change in SOC (kg/ha/yr) 36.60 63.61 112.50 104.41 126.95 152.99 103.23 117.38

Welfare: (millions of 2023 CAD)

External Social Benefit 1, 949 3, 388 10, 300 9, 559 14, 446 17, 409 26, 695 30, 356

Targeted Cost of Subsidy 1, 949 3, 388 10, 300 9, 559 14, 446 17, 409 26, 695 30, 356

Net External Social Benefit 0 0 0 0 0 0 0 0

Change in Producer Surplus 975 1, 694 5, 150 4, 780 7, 223 8, 705 13, 348 15, 178

Change in Welfare 975 1, 694 5, 150 4, 780 7, 223 8, 705 13, 348 15, 178

Source: Author’s Estimates
Notes: MNL represents the multinomial logit model and NL represents the nested logit model. The optimal canola subsidy, policy-induced change in hectares, weighted
average annual change in the SOC stock per hectare for all insured hectares from additional canola hectares relative to the weighted average annual change in SOC stock
without the canola subsidy, external social benefits, subsidy costs, change in producer surplus, and change in welfare are calculated by maximizing the change in welfare
as shown in equation (3.42). All external social benefits are calculated using a rental rate for carbon storage compute with the social cost of carbon equal to 185 USD/Mg
of CO2.
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Tables 3.6 and 3.7 also provide the calculated external social benefits resulting from the

policy-induced increase in SOC stock across all insured hectares in Saskatchewan starting from

the year 2019 and extending indefinitely into the future. Table 3.6 outline the external social bene-

fits, ranging from 975 to 1,694 million CAD in the brown soil zone, 4,780 to 5,510 million CAD in

the dark brown soil zone, and 7,223 to 8,705 million CAD in the black & gray soil zone depending

on the acreage choice model.42 Consequently, the NESB for all insured hectares in Saskatchewan,

upon applying a different canola subsidy for each soil zone, amounts to 7.6 billion CAD. This cal-

culation employs the acreage responses derived from the NL model, and using a rental rate for

carbon compute with the SCC of 185 USD/Mg of CO2.

When maximizing the change in welfare, the results in Table 3.7 show that all the external so-

cial benefits, optimal canola subsidy, and the policy-induced change in the average annual change

in the stock of SOC are twice as large as their counterparts in Table 3.6. In Table 3.7, the external

social benefit is equal to the targeted cost of the policy, which results in NESB equal to zero. Hence,

the change in producer surplus in Table 3.7 is equal to the change in welfare. When employing

the NL model, the change in welfare is equal to 1,694 million CAD in the brown soil zone, 4,780

million CAD in the dark brown soil zone, and 8,705 million CAD in the black & gray soil zone. In

Table 3.7, when applying a soil zone specific optimal canola subsidies that maximizes the change

in welfare, the change in welfare amounts to 15.2 billion CAD in Saskatchewan.

3.11 Nitrous Oxide Emissions

In this section, I estimate the change in nitrous oxide emissions from the implementation of an op-

timal canola subsidy. Nitrous oxide emissions are expected to increase as canola hectares increase

due to the higher rates of fertilizer that are applied relative to all other crops. Fertilizer application

rates in the black & gray soil zone are typically higher than the rates applied in the brown and

dark brown soil zones, whereas fertilizer rates are the lowest in the brown soil zone for all crops.

In 2019, the average nitrogen rate was approximately 100 kg/ha in the brown soil zone for canola,

42In Table 3.6, the targeted cost of the policy and the NESB are equal to half of the external social benefit, and the
change in producer surplus is equal to a quarter of the external social benefit.
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110 kg/ha in the dark brown soil zone, and 120 kg/ha in the black & gray soil zone. In 2019, the

nitrogen rate for spring wheat was approximately 70 kg/ha in the brown soil zone, 96 kg/ha in

the dark brown soil zone, and 105 kg/ha in the black & gray soil zone. All nitrogen fertilizer ap-

plication rates are obtained from the SCIC database and apply only to farmers who participate in

the Saskatchewan Management Plus (SMP) program and provide information on fertilizer, seed,

and herbicide use. It is important to note that farmers who participate in the SMP program could

apply a different rate of nitrogen fertilizer relative to farmers who do not participate in the pro-

gram. Hence, there a potential for selection bias when computing nitrous oxide emissions based

on fertilizer application rates for only farmers who participate in the SMP program.

To calculate the nitrous oxide emissions from increased fertilizer use, I employ emission

factors (EFs) with respect to synthetic nitrogen use. The EFs are used to estimate nitrous oxide

emissions with respect to a unit of synthetic nitrogen fertilizer applied. I obtain EFs with respect

to synthetic nitrogen use for each soil zone in Saskatchewan from Rochette et al. (2018). They

estimate the EFs using the IPCC Teir II methodology for direct nitrous oxide emissions for agri-

cultural soils across Canada.43 Using this framework, they estimate an average EF with respect

to synthetic nitrogen fertilizer use for the Canadian prairies region equal to 0.0019±0.00064 kg

N2O-N/kg N, which is 6.9 times lower than the estimated EF for Eastern Canada (0.013±0.0064

kg N2O-N/kg N). They also estimate the EFs by soil zone across the Canadian prairies. Table 3.8

shows the EFs from Rochette et al. (2018) by soil zone in the Canadian prairies, which are equal

to 0.0033 kg N2O-N/kg N in the black & gray soil zone, and 0.0033 kg N2O-N/kg N in the brown

and dark brown soil zones. The EFs estimated by Rochette et al. (2018) do not include indirect

emissions linked to the application of synthetic nitrogen, such as leaching, volatilization, and ni-

trogen run-off. Furthermore, these EFs overlook the complete carbon footprint stemming from the

production and distribution of nitrogen fertilizers.

43Rochette et al. (2018) employ data from 50 peer-reviewed papers and 4 unpublished studies in their analysis. This
dataset encompasses 1,026 treatment-years for various cropping systems, soil types, climatic regions, nitrogen fertilizer
types, and nitrogen fertilizer rates. Rochette et al. (2018) estimate the EFs using a stepwise regression analysis selecting
eight variables to predict cumulative nitrous oxide emissions. These variables include growing season precipitation,
synthetic nitrogen application, soil sand content, mean annual air temperature, soil pH, crop type(annual or perennial),
soil C:N ratio, and the two month precipitation following the nitrogen application
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TABLE 3.8: Nitrous Oxide Emission Factors with respect to Synthetic Nitrogen Fer-
tilizer Use by Soil Zone in Saskatchewan

Nitrous Oxide Emission Factor

Soil Zone kg N2O-N/kg N kg CO2-eq/kg N

Brown and Dark Brown 0.0016 0.749

Black & Gray 0.0033 1.545

Source: Rochette et al. (2018)

Notes: Nitrous oxide emission factors (EFs) with respect to synthetic nitrogen fertilizer are com-
puted in CO2-eq by first converting N2O-N to N2O with the conversion rate of 44/28 and then
converting N2O to CO2-eq with a conversion rate of 298 (Environment and Climate Change
Canada, 2022). The EFs from Rochette et al. (2018) do not account for indirect emissions asso-
ciated with synthetic nitrogen use, such as leaching, volatilization, and run-off from nitrogen.
This also does not encompass the full carbon footprint associated with nitrogen fertilizer pro-
duction and distribution.

In Table 3.9, the change in nitrous oxide emissions are determined by using the EFs from

Table 3.8. I compute the change in aggregate nitrogen fertilizer use for each soil zone and crop

in 2019 using the confidential field-level SCIC dataset. I calculate the change in nitrous oxide

emissions as a result of implementing a canola subsidy that either maximizes the NESB or change

in welfare (refer to equations (3.33) and (3.44)). The change in nitrous oxide emissions for each soil

zone from implementing a canola subsidy is calculated as,

∆N2O = EF×
C

∑
i=1

(Ni × ∆Ai). (3.53)

Where ∆Ai is the permanent change in hectares as a result of the canola subsidy, Ni is the average

nitrogen fertilizer use per hectare for each crop and soil zone, and EF is the emission factor by soil

zone for nitrous oxide emissions with respect to nitrogen fertilizer use.

In Table 3.9, the change in SOC stocks for each soil zone are computed by converting the

policy-induced change in SOC to units of CO2-eq with a conversion ratio of 44/12 from SOC to

CO2-eq (Mikhailova et al., 2019). The change in SOC stocks occurs for only 30 years until a steady

state equilibrium in SOC stocks is reached, whereas nitrous oxide emissions are assumed to occur

forever into the future.
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In Table 3.10, the external cost from the change in nitrogen use is equal to the change in

nitrous oxide emissions for all insured hectares in Saskatchewan multiplied by the SCC of 185

USD/Mg of CO2, and converted to 2023 CAD (Bank of Canada, 2023a; U.S. Bureau of Economic

Analysis, 2024). Following this, I value the stream of external costs indefinitely into the future,

employing a real discount rate of 2% per year. This valuation assumes that the change in nitrogen

fertilizer application resulting from the canola subsidy stays constant over time.

TABLE 3.9: Change in Soil Organic Carbon and Nitrous Oxide Emissions from Im-
plementing a Hypothetical Canola Subsidy

(1) (2) (3) (4)

Change in SOC Change in Nitrous Oxide Emissions

Objective Function: Net External Social Benefit Change in Welfare Net External Social Benefit Change in Welfare

(kg of CO2-eq/ha/yr)
Brown 116.62 233.24 1.41 2.82
Dark Brown 191.42 382.83 2.11 4.22
Black & Gray 280.47 560.95 7.30 14.60

Source: Author’s Estimates.
Notes: The change in nitrous oxide emissions are calculated using the nitrous oxide EFs in Table 3.8 from Rochette et al.
(2018) and the change in average fertilizer use by soil zone and crop obtained from the SCIC database for the year 2019.
Please refer to equation (3.53) to see how the change in nitrous oxide emissions are calculated as a result of a canola
subsidy. This is done for each objective function for a canola subsidy that maximizes the NESB or the change in welfare
(see equations (3.33) and (3.44)). The policy-induced change in SOC stocks per hectare per year from Tables 3.6 and
3.7 are converted to CO2-eq using the conversion ratio from SOC to CO2 equal to 44/12 (Mikhailova et al., 2019). This
annual change in kg of CO2-eq/ha/yr for SOC only happens for 30 years until a steady state equilibrium is obtained
in SOC stocks, whereas the change in nitrous oxide emissions is assumed to occur indefinitely into the future.

Using the results in Table 3.10, I compute an external cost from a change in nitrous oxide

emissions as a result of the optimal canola subsidy of 2.72% of the external social benefit from

carbon sequestration in the brown soil zone, 2.47% in the dark brown soil zone, and 5.93 in the

black & gray soil zone. Here, the external cost is the same percent of external social benefits for

when the optimal canola subsidy maximizes NESB or the change in welfare. This percentage is

greatest in the black & gray soil zone because the EF for nitrogen fertilizer use is greater relative to

the EFs for the brown and dark brown soil zones. In Saskatchewan, the external cost from nitrous

oxide emissions for all insured hectares is 4.47 percent of the external social benefits from carbon

sequestration. When the optimal canola subsidy is set to maximize the NESB, the external cost
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for all of Saskatchewan is equal to 0.6 billion CAD, and when it is set to maximize the change in

welfare the external cost is equal to 1.3 billion CAD.

TABLE 3.10: External Costs from a Change in Nitrous Oxide Emissions from Imple-
menting a Hypothetical Canola Subsidy

(1) (2)

Change in External Costs from
Policy-Induced Nitrous Oxide Emissions

Objective Function: Net External Social Benefit Change in Welfare

(millions of 2023 CAD)
Brown 46 91
Dark Brown 117 234
Black & Gray 503 1, 006

Total 666 1, 331

Source: Author’s Estimates
Notes: The external cost from the change in nitrogen use as a result of implementing a canola
subsidy that either maximizes the NESB or change in welfare is equal to the change in nitrous
oxide emissions for all insured hectares in Saskatchewan (see equation (3.53)) multiplied by a SCC
of 185 USD/Mg of CO2 (Rennert et al., 2022). I then convert this external cost to 2023 CAD (Bank
of Canada, 2023a; U.S. Bureau of Economic Analysis, 2024) and use a real discount rate of 2% per
year to value the stream of external costs indefinitely into the future. Please refer to Tables 3.8 and
3.9 for more information on the how to compute the change in nitrous oxide emissions as a result
of the canola subsidy.

In this analysis, most of the nitrous oxide emissions stem from the nitrogen fertilizer use

applied to all cereals and oilseeds, instead of from substitution effects between crops as a result of

the canola subsidy.44 Hence, most of the external costs from a change in nitrous oxide emissions

caused by the canola subsidy are from substituting away from seeding pulse crops or fallowing to

seeding more canola.

44It is important to note that the reduction nitrogen fertilizer use not only contains external social benefits, but
also external costs. Reducing nitrogen use lowers nitrous oxide emissions, but it also has a negative effect on crop
productivity. Lower nitrogen use applied leads to less carbon inputs, lowering SOC stocks. As stated by Guenet et al.
(2021), “the use of mineral nitrogen to increase crop productivity may induce an increase of carbon inputs into the soil
but a complex balance must be found to avoid excessive nitrous oxide emissions and nitrogen leaching.”
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3.12 Conclusions

Agricultural carbon sequestration offers a promising avenue for both policymakers and the pri-

vate sector to combat climate change on a global scale. The results of this research highlight that

identifying policy-driven changes in soil organic carbon (SOC) stocks could yield positive net

external social benefits (NESB) or change in welfare, rendering subsidies on canola hectares a fea-

sible investment option for either public or private entities. The NESB is calculated as the external

social benefit minus the subsidy cost, whereas the change in welfare is equal to the NESB plus

the change in producer surplus. Assuming efficient administration of payments to farmers and

minimal overall policy costs, incentivizing farmers to expand canola hectares could be overseen

by various entities such as crop insurance agencies, private firms, or government bodies armed

with comprehensive farming data. To optimize policy execution, payments might be targeted to-

ward canola hectares surpassing the farm- or region-specific average crop share for canola. The

policy in this essay is hypothetical, meaning that efforts to incentivize farming practices that pro-

mote enhancing SOC stocks, through the development and execution of a carbon sequestration

policy, would first need to undergo rigorous evaluation by economists, scientists, policymakers,

and contract specialists alike.

The results from the analysis in this essay reveal sizable hypothetical optimal canola subsi-

dies. Utilizing acreage responses from the nested logit (NL) model, I compute an optimal canola

subsidy that would maximize NESB of 324.40 CAD/ha/yr in the brown soil zone, 205.43 CAD/ha/yr

in the dark brown soil zone, and 226.02 CAD/ha/yr in the black & gray soil zone. If such a policy

were implemented, a farmer who opted to increase canola production by 65 hectares in the brown

soil zone would receive payments at the rate of 324.40 CAD/ha/yr, totaling 21,086 CAD annually,

and indefinitely. Table 3E.3 in Appendix 3E shows that for such a policy implemented for only

10 (20, 30) years would pay a farmer who opted to increase canola production by 65 hectares in

the brown soil zone at a rate of 76.05 (140.27, 199.86) CAD/ha/yr , totaling 4,943 (9,118, 12,991)

CAD annually. In comparison, under EQIP, farmers can receive 4,156 USD/yr (equivalent to 5,569

CAD/yr) per 65 hectare field for the initial five years of the contract and 5,982 USD/yr (equivalent

to 8,016 CAD/yr) for years 6–10 for adopting cereal rye as a cover crop and maintaining no-till
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practices. Therefore, a canola subsidy acts as a compelling incentive for farmers, particularly those

previously cultivating fewer canola hectares and especially in the brown soil zone, by offering en-

hanced payments, thus encouraging expanded canola adoption to increase SOC stocks and their

environmental benefits.

The Government of Canada has invested 4 billion CAD into the Natural Climate Solution

Fund aimed at supporting diverse policies across various industries and environments to mit-

igate the effects of climate change,45 and 3.5 billion CAD as part of the Sustainable Canadian

Agricultural Partnership toward on-farm environmental stewardship programs (Agriculture and

Agri-Food Canada, 2023; Environment and Climate Change Canada, 2023a, 2024). Similarly, in the

United States, the Inflation Reduction Act (IRA) allocates 19.5 billion USD over a five-year period

to climate-smart agriculture and conservation programs overseen by the NRCS (United States

Department of Agriculture, 2023).46 The findings from this essay demonstrate the potential for

achieving environmental benefits from carbon sequestration efforts on the Canadian prairies by

implementing a hypothetical canola subsidy. Additionally, these results highlight the possibility

of harvesting similar benefits from soils in comparable agricultural regions worldwide through

analogous second-best policies. These policies would involve compensating farmers to adopt

specific farm management practices that provide external social benefits, validated by scientific

research for each particular region.

45The Natural Climate Solution Fund encompasses initiatives within the Environmental and Climate Change pro-
grams, covering sectors such as agricultural production, flood risk management, clean fuel regulations, waste man-
agement, wetlands preservation, climate-resilient rural and indigenous communities, among others (Environment and
Climate Change Canada, 2024).

46Within the IRA, specific provisions include 8.45 billion USD for the Environmental Quality Incentives Program
(EQIP), 4.95 billion USD for the Regional Conservation Partnership Program (RCPP), 3.45 billion USD for the Conser-
vation Stewardship Program (CSP), and 1.4 billion USD for the Agricultural Conservation Easement Program (ACEP)
(United States Department of Agriculture, 2023).
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Appendix 3A: Derivation of the Closed Form Choice Probabilities for

the Multinomial Logit and Nested Logit Models

This section presents the derivation of the closed-form choice probabilities that are used in es-

timating acreage choice within the multinomial and nested logit models. These derivations are

adapted from Train (2009), with the inclusion of the complete derivation of the choice probabil-

ities. Specifically, I introduce the additional step of u-substitution required to integrate over the

probability density function for the Gumbel or Type 1 Extreme Value distribution.

Let the distribution of uc f follow an independent and identical Gumbel distribution or a Type

1 Extreme Value distribution be

f (uc f ) = e−uc f e−e−uc f
, (3A.1)

and the cumulative distribution be,

F(uc f ) = e−e−uc f
. (3A.2)

Let the probability of choosing crop j over crop c be equal to

Prc, f = Prob(vc(z f ; θ0) + uc f > vj(z f ; θ0) + uj f ) ∀ j ̸= c, and

Prc, f = Prob(uj f < uc f + vc(z f ; θ0)− vj(z f ; θ0)) ∀ j ̸= c.
(3A.3)

Then the cumulative distribution is equal to

Prc f |uc f = ∏
j ̸=c

e−e−(uc f +vc(z f ;θ0)−vj(z f ;θ0))

. (3A.4)

280



Because uc f is unknown, the choice probability is the integral of Prc f |uc f over all values

uc f weighted by its density Train (2009). Let uc f = s, such that integrating over the probability

distribution is represented as

Prc f |uc f =
∫ ∞

s=−∞

(
∏
j ̸=c

e−e−(s+vc(z f ;θ0)−vj(z f ;θ0))

)
e−se−e−s

ds. (3A.5)

Collecting terms gives

Prc f |uc f =
∫ ∞

s=−∞
(∏

j
e−e−(s+vc(z f ;θ0)−vj(z f ;θ0))

)e−sds

=
∫ ∞

s=−∞
exp(−∑

j
e−(s+vc(z f ;θ0)−vj(z f ;θ0)))e−sds

=
∫ ∞

s=−∞
exp(−e−s ∑

j
e−(vc(z f ;θ0)−vj(z f ;θ0)))e−sds.

(3A.6)

With u-substitution, let x = exp(−s) and −exp(−s)ds = dx. Where lims→∞ exp(−s) = 0 and

lims→−∞ exp(−s) = ∞. Integrating by u-substitution provides

Prc f |uc f =
∫ 0

∞
exp(−t ∑

j
e−(vc(z f ;θ0)−vj(z f ;θ0)))(−dt)

=
∫ ∞

0
exp(−t ∑

j
e−(vc(z f ;θ0)−vj(z f ;θ0)))dt

=
exp(−t ∑j e−(vc(z f ;θ0)−vj(z f ;θ0)))

−∑j e−(vc(z f ;θ0)−vj(z f ;θ0))

∣∣∣∣∣
∞

0

=
1

∑j e−(vc(z f ;θ0)−vj(z f ;θ0))

=
evc(z f ;θ0)

∑j evj(z f ;θ0)
.

(3A.7)
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General Extreme Value models

To find the closed form solution for the nested logit model, I employ the assumptions from

the general extreme value (GEV) models as done by Train (2009). Provided the GEV conditions

hold, the closed form solution for any extreme value function can be solved (McFadden, 1978).

Consider a function G that depends onYj and let Yj = eVj for all j. Assume the derivative of

G is equal to Gi =
∂G
∂Yi

. A discrete choice model can be used if G satisfies the following criteria:

1. G > 0 for all positive values of Yj for all j.

2. G is homogeneous of degree one. That is, if each Yj is scaled by the value of ρ, then G rises

by the same proportion (G(ρY1, ..., ρYJ) = ρG(Y1, ..., YJ)).

3. If G → ∞ then Yj → ∞ for any j.

4. The cross partial derivatives of G change signs in a particular way such that Gi ≥ 0 for all

i, Gij = ∂Gi
∂Yj
≤ 0 for all j ̸= i, Gijk =

∂Gij
∂Yk
≥ 0 for any distinct i, j, and k, and so on for

higher-order cross partials.

Assume that G = ∑J
j=1 Yj and that Gi = 1. All the conditions from (1) to (4) are satisfied based

on the functional form of G. For the standard logit formula, the probability of choosing crop i is

denoted as,

Pri =
YiGi

G
=

Yi

∑J
j=1 Yj

=
eVi

∑J
j=1 eVj

. (3A.8)

For the Nested Logit model, let there be J alternatives partitioned into K nests labeled as

B1, ..., BK. Assume now that,

G =
K

∑
k=1

(
∑

s∈Bk

Y
1

λk
s

)λk

, (3A.9)

where λk is between 0 and 1 for all k. Based on the functional form of G, it is apparent that

G is positive for all values of Yi for all i, homogeneous degree one, and converges to infinity
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when Yi converges to infinity for any i. The fourth property is that the partial derivatives must

be alternating, and the first partial derivative must be non-negative with respect to Yi. The first

partial derivative of G with respect to Yi is,

Gi = λk

(
∑

s∈Bk

Y
1

λk
s

)λk−1
1
λk

Y
1

λk
−1

i = Y
1

λk−1

i

(
∑

s∈Bk

Y
1

λk
s

)λk−1

∀ i ∈ Bk. (3A.10)

Because Yi ≥ 0 for all i, the condition that Gi ≥ 0 holds. The second cross-partial derivative

is equal to

Gij =
∂Gi

∂Yj
= (λk − 1)Y

(
1

λk

)
−1

i

(
∑

s∈Bk

Y
1

λk
s

)λk−2
1
λk

Y
1

λk
−1

j

=
λk − 1

λk
(YiYj)

1
λk
−1

(
∑

s∈Bk

Y
1

λk
s

)λk−2

∀ j ∈ Bk, and i ̸= j.

(3A.11)

Because 0 ≤ λk ≤ 1, then Gij ≤ 0. For higher order cross partials, the result is such,

Gijm =
∂Gij

∂Yjm
= (λk − 2)

λk − 1
λk

(YiYj)
1

λk
−1

(
∑

s∈Bk

Y
1

λk
s

)λk−3
1
λk

Y
1

λk
−1

m

=
(λk − 1)(λk − 2)

λ2
k

(YiYjYm)
1

λk
−1

(
∑

s∈Bk

Y
1

λk
s

)λk−3

∀ m ∈ Bk, and i ̸= j ̸= m

(3A.12)

Because 0 ≤ λ2
k − 3λk + 2 ≤ 2 for 0 ≤ λk ≤ 1, then Gijm ≥ 0. Given that conditions (1) to (4)

are satisfied, the choice probability for choosing crop i in the nested logit is,

Pri =
YiGi

G
=

YiY
1

λk
−1

i

(
∑s∈Bk

Y
1

λk
s

)λk−1

∑K
k=1

(
∑s∈Bk

Y
1

λk
s

)λk
=

Y
1

λk
i

(
∑s∈Bk

Y
1

λk
s

)λk−1

∑K
k=1

(
∑s∈Bk

Y
1

λk
s

)λk
. (3A.13)
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If Yj = eVj , then the nest logit acreage/cropping choice probability becomes,

Pri =
e

Vi
λk

(
∑s∈Bk

e
Vs
λk

)λk−1

∑K
k=1

(
∑s∈Bk

e
Vs
λk

)λk
. (3A.14)
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Appendix 3B: Derivation of Multinomial Logit and Nested Logit Marginal

Effects and Elasticities

Multinomial Logit Model

Let the choice probability be,

Pri,n =
eθi,0+θ1xi,1,n+···+θi,Pxi,P,n

1 + ∑C−1
m=1 eθm,0+θ1xm,1,n+···+θm,Pxm,P,n

. (3B.1)

The marginal effect is equal to,

MEi =
∂Pri,n

∂x1,n
= θ̂1

eθ̂i,0+θ̂1xi,1,n+···+θ̂i,Pxi,P,n

1 + ∑C−1
m=1 eθ̂m,0+θ̂1xm,1,n+···+θ̂m,Pxm,P,n

×
(

1− eθ̂i,0+θ̂1xi,1,n+···+θ̂i,PxP,n

1 + ∑C−1
m=1 eθ̂m,0+θ̂1xm,1,n+···+θ̂m,Pxm,P,n

)
(3B.2)

Substituting equation (3B.1) into (3B.2), the marginal effect reduces to

MEi = θ̂1Pri(1− Pri). (3B.3)

Multiplying by xi,1/Pri, the own elasticity is equal to

ε i = θ̂1xi,1(1− Pri), (3B.4)

The cross marginal effect is equal to,

MEij =
∂Pri,n

∂xj,n
= −θ̂1

eθ̂i,0+θ̂1xi,1,n+···+θ̂i,Pxi,P,n

(1 + ∑C−1
m=1 eθ̂m,0+θ̂1xm,1,n+···+θ̂m,Pxm,P,n)2

eθ̂j,0+θ̂1xj,1,n+···+θ̂j,Pxj,P,n

= −θ̂1PriPrj.

(3B.5)
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By multiplying equation (3B.5) by xj,1/Pri the cross-acreage elasticity is

ε ij = −θ̂1xj,1Prj. (3B.6)

Nested Logit Model

Let the general form choice probability for the nested logit model be,

Pri,n =

e
(θi,0+θ1xi,1,n+···+θi,P xi,P,n)

λl

(
∑k∈Bl

e
(θk,0+θ1xk,1,n+···+θk,P xk,P,n)

λl

)λl−1

∑K
m=1

(
∑k∈Bm

e
(θk,0+θ1xk,1,n+···+θk,P xk,P,n)

λm

)λm
. (3B.7)

Taking the derivative with respect to the first independent variable in equation (3B.7) is the marginal

effect and is equal to,

MEi =
∂Pri,n

∂xi,1,n
=

θ̂1

λ̂l

e
(θ̂i,0+θ̂1xi,1,n+···+θ̂i,P xi,P,n)

λ̂l

(
∑k∈Bl

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xP,n)

λ̂l

)λ̂l−1

∑K
m=1

(
∑k∈Bm

e
(θ̂k,0+θ̂1x1,n+···+θ̂k,P xP,n)

λ̂m

)λ̂m

+
θ̂1(λ̂l − 1)

λ̂l

(
e
(θ̂i,0+θ̂1xi,1,n+···+θ̂i,P xi,P,n)

λ̂l

)2(
∑k∈Bl

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂l

)λ̂l−1

∑k∈Bl
e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂l ∑K
m=1

(
∑k∈Bm

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂m

)λ̂m

− θ̂1


e
(θ̂i,0+θ̂1xi,1,n+···+θ̂i,P xi,P,n)

λ̂l

(
∑k∈Bl

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂l

)λ̂l−1

∑K
m=1

(
∑k∈Bm

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂m

)λ̂m


2

.

(3B.8)

The marginal effect reduces to
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MEi =
∂Pri,n

∂xi,1,n
=

θ̂1

λ̂l
Pri

+
θ̂1(λ̂l − 1)

λ̂l
Pri

e
(θ̂i,0+θ̂1xi,1,n+···+θ̂i,P xi,P,n)

λ̂l

∑k∈Bl
e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂l

− θ̂1Pr2
i .

. (3B.9)

The own elasticity with respect to profit for the NL choice probabilities is equal to

ε i = θ̂1xi,1

(
1
λ̂l
− 1− λ̂l

λ̂l
Pri|Bl

− Pri

)
. (3B.10)

The cross marginal effect for a variable within the same nest as variable i ∈ l is,

MEij =
θ̂1(λ̂l − 1)

λ̂l

e
(θ̂j,0+θ̂1xj,1,n+···+θ̂j,P xj,P,n)

λ̂l e
(θ̂i,0+θ̂1xi,1,n+···+θ̂i,P xi,P,n)

λ̂l

(
∑k∈Bl

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂l

)λ̂l−1

∑k∈Bl
e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂l ∑K
m=1

(
∑k∈Bm

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂m

)λ̂m

− θ̂1

e
(θ̂j,0+θ̂1xj,1,n+···+θ̂j,P xj,P,n)

λ̂l e
(θ̂i,0+θ̂1xi,1,n+···+θ̂i,P xi,P,n)

λ̂l

((
∑k∈Bl

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂l

)λ̂l−1
)2

(
∑K

m=1

(
∑k∈Bm

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂m

)λ̂m
)2 .

(3B.11)

This reduces to

MEij = −
θ̂1(1− λ̂l)

λ̂l
Prj|Bl

Pri − θ̂1PrjPri (3B.12)

The cross elasticity within the nest is,
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ε ij = −
θ̂1(1− λ̂l)

λ̂l
Prj|Bl

xj,1 − θ̂1xj,1Prj

= −θ̂1xj,1Prj

(
1 +

1− λ̂l

λ̂l

Prj|Bl

Prj

)

= −θ̂1xj,1Prj

(
1 +

1− λ̂l

λ̂l

1
PrBl

)
.

(3B.13)

The cross marginal effect for a variable outside nest of variable i /∈ l is,

MEij = −θ̂1e
(θ̂j,0+θ̂1xj,1,n+···+θ̂j,P xj,P,n)

λ̂s

(
∑

k∈Bs

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂s

)λ̂s−1

×

e
(θ̂i,0+θ̂1xi,1,n+···+θ̂i,P xi,P,n)

λ̂l

(
∑k∈Bl

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂l

)λ̂l−1

(
∑K

m=1

(
∑k∈Bm

e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂m

)λ̂m
)2 .

(3B.14)

This reduces to

MEij = −θ̂1PrjPri. (3B.15)

The cross elasticity outside the nest is,

ε ij = −θ̂1xj,1Prj. (3B.16)

Hence, the cross elasticity with respect to profit for the NL model is,

ε ij =


−θ̂1xj,1Prj

(
1 + 1−λ̂l

λ̂l

1
PrBl

)
i f j ∈ Bl

−θ̂1xj,1Prj i f j /∈ Bl

. (3B.17)
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Where,

Pri|Bl
=

Pri

∑s∈Bl
Prs

=
e
(θ̂i,0+θ̂1xi,1,n+···+θ̂i,P xi,P,n)

λ̂l

∑k∈Bl
e
(θ̂k,0+θ̂1xk,1,n+···+θ̂k,P xk,P,n)

λ̂l

and PrBl = ∑
s∈Bl

Prs. (3B.18)
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Appendix 3C: Supplementary Tables and Figures

TABLE 3C.1: Regression Results for Soil Organic Carbon State Equation by Soil Zone
in Saskatchewan

(1) (2) (3)
Dependent variable: ∆SOC

Soil Zone: Brown Dark Brown Black & Gray
(kg/ha)

lag(SOC) −0.004*** −0.001*** −0.001***
(0.0003) (0.0002) (0.0001)

lag(Canola) 906.019*** 832.786*** 499.892***
(39.596) (12.236) (8.241)

lag(Barley) 214.283*** 114.884*** −109.667***
(37.846) (12.971) (9.224)

lag(Spring Wheat) 261.624*** 223.619*** −41.599***
(28.352) (11.506) (7.967)

lag(Durum Wheat) 303.113*** 321.440*** 143.089***
(29.119) (13.728) (17.752)

lag(Lentils) −221.466*** −271.892*** −642.737***
(28.563) (12.787) (26.977)

lag(Peas) −155.800*** −199.121*** −472.620***
(29.175) (12.449) (9.885)

lag(Summer Fallow) −754.763*** −763.389*** −1, 129.714***
(29.015) (13.937) (11.231)

lag(GSAT) −31.6279*** −35.335*** −15.539***
(2.257) (1.319) (1.395)

lag(TAP) 2.205*** 1.881*** 1.693***
(0.067) (0.040) (0.036)

Goodness-of-Fit Statistics:
Observations 56,107 169,546 392,417
R2 0.528 0.523 0.453

Source: Author’s Estimates
Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Each regression is estimated by weighted least squares,
weighted by the hectares of a field. All standard errors are clustered by farm.
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TABLE 3C.2: R-Squared Values for the Soil Organic Carbon State Equation by Func-
tional Form and Soil Zone in Saskatchewan

(1) (2) (3)
State Equation: ∆SOC = f (SOC) + X + v
Soil Zone: Brown Dark Brown Black & Gray
Functional Form: ( f (SOC)) Goodness-of-Fit Statistic: R2

Linear 0.528 0.523 0.453

Quadratic 0.529 0.524 0.454

Logarithmic 0.525 0.522 0.452

Observations 56,107 169,546 392,417

Source: Author’s Estimates
Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Each regression is estimated by weighted least squares,
weighted by the hectares of a field. All standard errors are clustered by farm.
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TABLE 3C.3: Regression Results for Soil Organic Carbon State Equation with Crop
Yield Effects by Soil Zone in Saskatchewan

(1) (2) (3)
Dependent variable: ∆SOC

Soil Zone: Brown Dark Brown Black & Gray
(kg/ha)

lag(SOC) −0.005*** −0.003*** −0.002***
(0.0003) (0.0002) (0.0001)

lag(yieldCanola) 0.740*** 0.506*** 0.356***
(0.029) (0.009) (0.007)

lag(yieldBarley) 0.229*** 0.151*** 0.163***
(0.017) (0.008) (0.005)

lag(yieldSpringWheat) 0.358*** 0.217*** 0.176***
(0.010) (0.006) (0.004)

lag(yieldDurumWheat) 0.377*** 0.281*** 0.222***
(0.006) (0.007) (0.015)

lag(yieldLentils) 0.311*** 0.205*** −0.0002
(0.014) (0.010) (0.034)

lag(yieldPeas) 0.180*** 0.093*** 0.058***
(0.012) (0.007) (0.007)

lag(Canola) −378.223*** −75.714*** −189.052***
(49.572) (17.539) (13.823)

lag(Barley) −338.650*** −311.693*** −629.442***
(34.142) (22.619) (16.107)

lag(Spring Wheat) −444.299*** −297.217*** −536.790***
(30.223) (15.238) (13.207)

lag(Durum Wheat) −548.235*** −390.796*** −446.510***
(30.442) (18.791) (37.312)

lag(Lentils) −668.244*** −568.176*** −637.384***
(31.594) (17.927) (37.428)

lag(Peas) −512.879*** −412.552*** −605.774***
(34.717) (18.182) (17.853)

lag(Summer Fallow) −758.317*** −771.585*** −1, 128.748***
(27.341) (13.661) (11.222)

lag(GSAT) −14.483*** −27.262*** −13.233***
(2.279) (1.383) (1.371)

lag(TAP) 1.730*** 1.800*** 1.727***
(0.060) (0.040) (0.036)

Goodness-of-Fit Statistics:
Observations 56,107 169,546 392,417
R2 0.674 0.607 0.505
Source: Author’s Estimates
Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Each regression is estimated by weighted least squares, weighted by the
hectares of a field. All standard errors are clustered by farm. Lagged weather variables include the first lags of
growing season average temperature (GSAT) and total annual precipitation (TAP).
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TABLE 3C.4: Comparison of SOC Stock Predictions by SOC State Equation With and
Without Yield Controls

(1) (2) (3) (4) (5) (6)

Dependent Variable: ∆SOC

Soil Zone: Brown Dark Brown Black & Gray

Coefficient: αi αi + βi ∗ yi αi αi + βi ∗ yi αi αi + βi ∗ yi

(kg/ha)
Canola 906.019 942.209 832.786 839.167 499.892 509.005

Barley 214.283 205.796 114.884 100.246 −109.667 −101.604

Spring Wheat 261.624 256.473 223.619 204.105 −41.599 −37.105

Durum Wheat 303.113 313.672 321.440 299.127 143.089 141.999

Lentils −221.466 −208.412 −271.892 −271.412 −642.737 −640.211

Peas −155.800 −147.672 −199.121 −201.222 −472.620 −464.870

Summer Fallow −754.763 −758.317 −763.389 −771.585 −1129.714 −1128.748
Source: Author’s Estimates
Notes: All change in SOC stocks with respect to land use are computed using estimates from Tables 3C.1 and 3C.3.
More specifically, the change in SOC stocks for columns (1), (3), and (5) are from estimated coefficients for the past
year’s land use (αi for crop i) given in Table 3C.1, and columns (2), (4), and (6) consider yield effects at the mean
yield in addition to land use (αi + βi ∗ yi), where the coefficients are provided in Table 3C.3.
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TABLE 3C.5: Comparison of SOC Stock Effects for the SOC State-Equation with respect to Yield Growth

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dependent Variable: ∆SOC

Soil Zone: Brown Dark Brown Black & Gray

Coefficient: αi + βi ∗ yi αi + βi ∗ 1.1yi αi + βi ∗ 1.2yi αi + βi ∗ yi αi + βi ∗ 1.1yi αi + βi ∗ 1.2yi αi + βi ∗ yi αi + βi ∗ 1.1yi αi + βi ∗ 1.2yi

Crop: (kg/ha)
Canola 942.209 1074.252 1206.295 839.167 930.656 1022.144 509.005 578.811 648.616

Barley 205.796 260.241 314.686 100.246 162.036 182.633 −101.604 −48.820 3.964

Spring Wheat 256.473 326.550 396.628 204.105 279.303 304.369 −37.105 12.864 62.833

Durum Wheat 313.672 399.863 486.054 299.127 402.615 437.112 141.999 200.850 259.700

Lentils −208.412 −162.428 −116.445 −271.412 −226.897 −212.059 −640.211 −640.494 −640.776

Peas −147.672 −111.152 −74.631 −201.222 −169.523 −158.957 −464.870 −450.780 −436.689

Summer Fallow −758.317 −758.317 −758.317 −771.585 −771.585 −771.585 −1128.748 −1128.748 −1128.748

Source: Author’s Estimates
Notes: All change in SOC stocks with respect to land use are computed using estimates from Table 3C.3. The change in SOC stocks for columns (1), (4), and (7) are
from estimated coefficients for past year’s land use and yield effects at the mean yield (αi + βi ∗ yi). Columns (2), (5), and (8) compute the change in SOC stocks with
a 10% yield growth, and columns (3), (6), and (9) employs a 20% yield growth.
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FIGURE 3C.1: The Effects of the Steady State Equilibrium in Soil Organic Stocks on
the Net External Social Benefit
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Source: Author.
Notes: T∗ represents the number of years it takes to reach a steady state equilibrium in the

stock of soil organic carbon.
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TABLE 3C.6: Simulation Model Results for a Change in Hectares from Implementing an Optimal Canola Subsidy over
an Infinite Time Horizon starting in 2019

(1) (2) (3) (4) (5) (6) (7) (8)

Objective Function: Net External Social Benefit

Soil Zone: Brown Dark Brown Black & Gray All

Model: MNL NL MNL NL MNL NL MNL NL

Change in Hectares: (ha) (%) (ha) (%) (ha) (%) (ha) (%) (ha) (%) (ha) (%) (ha) (%) (ha) (%)

Canola 40,854 12.00 52,800 15.51 226,675 16.68 235,259 17.31 217,112 9.63 389,415 17.27 484,641 12.26 677,474 17.13

Barley -1,358 -1.50 -4,231 -4.67 -20,055 -10.32 -26,103 -13.43 -19,209 -4.55 -35,131 -8.32 -40,622 -5.74 -65,464 -9.26

Spring Wheat -5,617 -2.96 -2,697 -1.42 -66,373 -7.06 -86,389 -9.19 -63,573 -4.68 -199,151 -14.65 -135,563 -5.45 -288,237 -11.58

Durum Wheat -14,286 -2.02 -6,859 -0.97 -33,155 -8.68 -43,153 -11.30 -31,756 -195.71 -1,819 -11.21 -79,196 -7.18 -51,831 -4.70

Lentils -5,395 -1.25 -2,590 -0.60 -26,210 -8.31 -19,485 -6.18 -25,104 -79.43 -1,949 -6.17 -56,709 -7.28 -24,024 -3.08

Peas -2,961 -2.11 -1,422 -1.01 -22,851 -7.27 -16,987 -5.40 -21,887 -8.81 -18,412 -7.41 -47,698 -6.78 -36,821 -5.23

Summer Fallow -11,236 -3.26 -35,002 -10.15 -58,032 -16.47 -43,142 -12.24 -55,584 -12.05 -132,951 -28.83 -124,853 -10.78 -211,095 -18.23

Total 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

Objective Function: Change in Welfare

Soil Zone: Brown Dark Brown Black & Gray All

Model: MNL NL MNL NL MNL NL MNL NL

Change in Hectares: (ha) (%) (ha) (%) (ha) (%) (ha) (%) (ha) (%) (ha) (%) (ha) (%) (ha) (%)

Canola 81,708 24.01 105,600 31.03 453,351 33.37 470,517 34.63 663,882 29.44 778,830 34.53 1,198,941 30.32 1,354,947 34.27

Barley -2,716 -3.00 -8,462 -9.33 -40,110 -20.63 -52,205 -26.85 -102,063 -24.17 -70,262 -16.64 -144,889 -20.49 -130,929 -18.51

Spring Wheat -11,235 -5.92 -5,394 -2.84 -132,746 -14.12 -172,778 -18.38 -298,262 -21.95 -398,303 -29.31 -442,243 -17.77 -576,475 -23.17

Durum Wheat -28,571 -4.05 -13,717 -1.94 -66,309 -17.37 -86,306 -22.61 -5,286 -32.58 -3,639 -22.43 -100,166 -9.08 -103,662 -9.39

Lentils -10,791 -2.50 -5,181 -1.20 -52,420 -16.63 -38,969 -12.36 -5,664 -17.92 -3,899 -12.34 -68,874 -8.84 -48,049 -6.17

Peas -5,922 -4.21 -2,843 -2.02 -45,702 -14.54 -33,975 -10.81 -53,492 -21.52 -36,825 -14.82 -105,116 -14.94 -73,643 -10.47

Summer Fallow -22,473 -6.52 -70,003 -20.31 -116,065 -32.94 -86,283 -24.49 -199,116 -43.18 -265,903 -57.67 -337,654 -29.15 -422,189 -36.45

Total 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

Source: Author’s Estimates
Notes: MNL represents the multinomial logit model and NL represents the nested logit model. The change in hectares with respect to the optimal canola subsidy are calculated by maximizing either
the net external social benefit as shown in equation (3.33) or the change in welfare as shown in equation (3.42). Please refer to Tables 3.6 and 3.7 for more information.
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Appendix 3D: Derivation of the Marginal External Social Benefit from

Carbon Sequestration

In this section, I provide the derivation for equation (3.51), showing the relationship between the

external social benefit and the marginal external social benefit. Using the definition from equation

(3.34), the external social benefit is,

ESB =
T∗−1

∑
t=1

(1 + δ)−t

{
tP
( C

∑
i=1

(∆Ai + Ai)
) C

∑
i=1

[
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( ∆Ai + Ai

∑C
i=1(∆Ai + Ai)

− Ai

∑C
i=1 Ai

)]}

+
1
δ
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{
T∗P
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) C

∑
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[
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∑C
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− Ai
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i=1 Ai

)]}
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(3D.1)

Equation (3D.1) reduces to,
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∑
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{
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(3D.2)

Taking the derivative of the external social benefit with respect to τ provides the marginal

external social benefit,

MESB =
T∗−1

∑
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(1 + δ)−t

{
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(3D.3)

Where,
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Ωi =
∂∆Ai

∂τ
= MEi,canola ×

C

∑
i=1

Ai. (3D.4)

Multiplying Ωi by τ provides the change in canola hectares ∆Ai (τΩi = ∆Ai), as shown in

equation (3.36). Given this relationship, it is now apparent that,
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(3D.5)
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Appendix 3E: Sensitivity Analysis

In this section, I examine the sensitivity by employing comparative dynamics with the simulation

model and the objective that maximizes the NESB as presented in equation (3.33). First, I examine

the effects of increasing crop yields, second, I examine the effects of scaling down the acreage

responses, and third, I examine the effect of shortening the time horizon of the hypothetical policy

to 10, 20, and 30 years on the optimal canola subsidy.

By excluding the dynamic feedback effects between crop yields and SOC stocks from the

optimization procedure and using comparative dynamics, I employ a hypothetical increase in

crop yields, applying the outcomes across different crop categories as computed by Serfas (2024b).

These yield growth rates are 0% (3.1%, 2.5%) for oilseeds, 18.9% (6.9%, 2.2%) for cereals, and 10.2%

(0%, 1.5%) for pulses in the brown (dark brown, black & gray) soil zone. Table 3E.1 shows the

results for the base case as shown in Table 3.6, as well as the case for when the SOC state equation

includes crop yield control variables (please see Table 3C.3 in Appendix 3C).

In Table 3E.1, the calculated optimal canola subsidy rates using the mean crop yields are

360.88 CAD/ha/yr, 235.71 CAD/ha/yr, and 254.71 CAD/ha/yr for the brown, dark brown, and

black & gray soil zones. The policy-induced annual change in weighted average SOC stocks for all

insured hectares equal 39.36 kg/ha/yr, 68.73 kg/ha/yr, and 91.17 kg/ha/yr for the brown, dark

brown, and black & gray soil zones. After increasing the crop yields at the rates provided by Serfas

(2024b), this results in optimal subsidies equal to 348.59 CAD/ha/yr, 235.89 CAD/ha/yr, and

258.09 CAD/ha/yr for the brown, dark brown, and black & gray soil zones. With re-optimization

of the canola subsidies including higher crop yields, this slightly adjusts the predicted annual

change in the weighted average stock of SOC, equaling 36.73 kg/ha/yr, 68.83 kg/ha/yr, and 99.73

kg/ha/yr for the brown, dark brown, and black & gray soil zones.47

47All calculations in Table 3E.1 are based on acreage responses estimated by the NL model and using a rental rate
calculated from the SCC of 185 USD/Mg of CO2.
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TABLE 3E.1: The Effects of Increased Crop Yields on the Results of the Simulation
Model with respect to a Canola Subsidy

(1) (2) (3)

Soil Zone: Brown

Crop Yield Scenario: Base Mean Yield High Yield

Optimal Canola Subsidy (2023 CAD/ha/yr) 324.40 360.88 348.59
Policy Induced Change in SOC (kg/ha/yr) 31.81 39.36 36.73
Net External Social Benefit (2023 CAD) 847 1,048 978

Soil Zone: Dark Brown

Crop Yield Scenario: Base Mean Yield High Yield

Optimal Canola Subsidy (2023 CAD/ha/yr) 205.43 235.71 235.89
Policy Induced Change in SOC (kg/ha/yr) 52.20 68.73 68.83
Net External Social Benefit (2023 CAD) 2,390 3,146 3,150

Soil Zone: Black & Gray

Crop Yield Scenario: Base Mean Yield High Yield

Optimal Canola Subsidy (2023 CAD/ha/yr) 226.02 254.74 258.09
Policy Induced Change in SOC (kg/ha/yr) 76.49 91.17 99.73
Net External Social Benefit (2023 CAD) 4,352 5,528 5,675

Source: Author’s Estimates
Notes: The optimal subsidy, policy-induced change in hectares, external social benefits, and
costs for the base case are calculated by maximizing the net external social benefit (NESB) as
shown in equation (3.33). For the mean yield and high yield cases, instead of employing the SOC
state equation given by equation (3.38), I predict changes in SOC stocks using the regression
results that include crop yield control variables as shown in Table 3C.3 in Appendix 3C. The
high crop yield scenario refers to the growth rates simulated by Serfas (2024b) under various
crop rotations. These increases in crop yields are 0%, 3.1%, and 2.5% for oilseeds, 18.9%, 6.9%,
and 2.2% for cereals, and 10.2%, 0%, and 1.5% for pulses in the brown, dark brown, black & gray
soil zones.

Table 3E.1 shows that increases in crop yield result in reduced optimal canola subsidies in

the brown and dark brown soil zones, and an increase in the optimal canola subsidy for the black

& gray soil zone. This pattern can be attributed to the smaller yield growth for cereals in the black

& gray zone relative to canola, coupled with a higher rate of substitution between canola and

spring wheat compared to the other soil zones.48 Hence, if yield growth from SOC enhancements

favor canola over spring wheat in the black & gray zone—unlike in the brown and dark brown

48Table 3.5 shows that for the NL model the cross-acreage elasticity for spring wheat with respect to expected profit
of canola is larger in the black & gray soil zone in comparison to the brown and dark brown soil zones.
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zones—raising the canola subsidy incentivizes a greater amount of substitution in hectares from

spring wheat to canola, thereby increasing the NESB.

The simulation model presented in this essay also does not consider another important as-

pect: the dynamics of crop supply in response to increased on-farm profits. According to the

theory proposed by Eckstein (1984), who developed a land allocation model, the productivity of

a crop is influenced by whether more land was allocated to a different crop in the preceding year,

indicating the effects of rotating crops. This suggests that the acreage response may be higher

in the short term compared to the long term, as demonstrated by Hendricks et al. (2014) in their

study of corn and soybean rotations in Iowa, Illinois, and Indiana at the field level. If the long-

term elasticity of cropping choices decreases following the implementation of the canola subsidy

over a prolonged period of time, the outcomes depicted in the simulation model could be inflated.

TABLE 3E.2: The Effects of Reduced Marginal Effects on the Results of the Simula-
tion Model with respect to a Canola Subsidy

(1) (2)

Soil Zone: Brown

Acreage Response Scenario: Base 30% Reduction

Optimal Canola Subsidy (2023 CAD/ha/yr) 324.40 324.40
Policy Induced Change in SOC (kg/ha/yr) 31.81 22.26
Net External Social Benefit (millions of 2023 CAD) 847 593

Soil Zone: Dark Brown

Acreage Response Scenario: Base 30% Reduction

Optimal Canola Subsidy (2023 CAD/ha/yr) 205.43 205.43
Policy Induced Change in SOC (kg/ha/yr) 52.20 36.54
Net External Social Benefit (millions of 2023 CAD) 2,390 1,673

Soil Zone: Black & Gray

Acreage Response Scenario: Base 30% Reduction

Optimal Canola Subsidy (2023 CAD/ha/yr) 226.02 226.02
Policy Induced Change in SOC (kg/ha/yr) 76.49 53.54
Net External Social Benefit (millions of 2023 CAD) 4,352 3,047

Source: Author’s Estimates
Notes: The optimal subsidy, policy-induced change in hectares, external social benefits, and costs
are calculated by maximizing the net external social benefit (NESB) as shown in equation (3.33). A
30% reduction is applied to all the marginal effects for that specific scenario.
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To measure the effects of long term adjustments in cropping hectares, I lower all acreage

response estimates (marginal effects estimated by the NL model) by 30%. Table 3E.2 shows that

for each soil zone the downward scaling of all the acreage responses does not alter the optimal

canola subsidies. However, this substantially reduces the NESB across all soil zones, such that the

NESB is equal to 593 million CAD, 1,673 million CAD, and 3,047 million CAD in the brown, dark

brown, and black & gray soil zones. This decrease in acreage responses leads to a reduction in the

NESB, equal to -254 million CAD in the brown soil zone, -717 million CAD in the dark brown soil

zone, and -1,305 million CAD in the black & gray soil zone.

The larger effect is anticipated in the black & gray soil zone, which has a higher proportion

of canola planted compared to the brown and dark brown soil zones. This examination highlights

the importance of crop supply dynamics, which may diminish the long-term acreage response to

a subsidy and, consequently, the expected NESB from incentivizing farmers to incorporate more

canola into their crop rotations. Therefore, the NESB figures derived from the simulation model

should be viewed as optimistic estimates concerning long term acreage response.

In the simulation model, I consider the effects of reducing the time-horizon examined to

subsidize farmers to seed additional hectares of canola. Contracts that pay producers to adopt

a particular management practice provide payments for a specific number of years for when the

practice is implemented. Table 3E.3 shows the effects on the optimal canola subsidy when only the

external social benefit from carbon sequestration is valued for a definite time horizon, specifically

10, 20, and 30 years. In Table 3E.3, the optimal canola subsidy maximizes the NESB or change

in welfare where the external social benefit is calculated using a rental rate for carbon computed

with the SCC of 185 USD/Mg of CO2.
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TABLE 3E.3: Optimal Canola Subsidy with respect to the Time Horizon of the Simu-
lation Model by Soil Zone in Saskatchewan

(1) (2) (3) (4) (5) (6)

Optimal Canola Subsidy:

Soil Zone: Brown Dark Brown Black & Gray

Objective Function NESB ∆W NESB ∆W NESB ∆W

(2023 CAD/ha/yr)

10 Years 76.05 152.10 48.16 96.32 52.99 105.98

20 Years 140.27 280.54 88.83 177.65 97.73 195.46

30 Years 199.86 399.73 126.56 253.13 139.25 278.51

Source: Author’s Estimates
Notes: NESB represents the net external social benefit and ∆W represents the change in welfare. All
simulation scenarios employ an annual rental rate of carbon based on a social cost of carbon of 185
USD/Mg of CO2 and employ marginal effects from the nested logit model to compute the optimal
canola subsidy for each objective function (net external social benefit and change in welfare). Please
refer to Tables 3.6 and 3.7 for more information.

Table 3E.3 shows that shortening the time horizon reduces the optimal canola subsidy. This

is due to the fact that the external social benefit is lower if sequestered SOC is valued for a shorter

time period, and less SOC is sequestered for years prior to the steady state equilibrium in SOC

stocks. When examining the optimal canola subsidies that maximize the NESB for a 20 year time

horizon, this results in an optimal subsidy equal to 140.25 CAD/ha/yr (42.36 USD/ac/yr) in the

brown soil zone, 88.83 CAD/ha/yr (26.83 USD/ac/yr) in the dark brown soil zone, and 97.73

CAD/ha/yr (29.51 USD/ac/yr) in the black & gray soil zone.
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