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A mixture of Gaussians approach to mathematical
portfolio oversight: the EF3M algorithm
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An analogue can be made between: (a) the slow pace at which species adapt to an environment,
which often results in the emergence of a new distinct species out of a once homogeneous
genetic pool and (b) the slow changes that take place over time within a fund, mutating its
investment style. A fund’s track record provides a sort of genetic marker, which we can use to
identify mutations. This has motivated our use of a biometric procedure to detect the emergence
of a new investment style within a fund’s track record. In doing so, we answer the question:
What is the probability that a particular PM’s performance is departing from the reference
distribution used to allocate her capital? The EF3M algorithm, inspired by evolutionary biology,
may help detect early stages of an evolutionary divergence in an investment style and trigger a
decision to review a fund’s capital allocation.

Keywords: Skewness; Kurtosis; Mixture of Gaussians; Moment matching; Maximum likelihood;
EM algorithm

JEL Classification: C13, C15, C16, C44

1. Introduction

Shortly after the publication of Darwin (1859), several
statistical methods were devised to find empirical evidence
supporting the Theory of Evolution. To that purpose, Francis
Galton set the foundations of ‘regression analysis’. With the
help of other students of Darwin’s theory, Galton established
the journal Biometrika, where Karl Pearson, Ronald Fisher,
William (Student) Gosset, Francis Edgeworth, David Cox
and other ‘founding fathers’ of modern statistical analysis
published their work. ‘Mixture distributions’ were originally
devised as a tool to demonstrate Evolutionary divergence.
Pearson (1894) noted that the breadth of Naples crabs’
forehead could be accurately modelled by mixing two
Gaussian distributions, which would indicate that a new
species of crab was emerging from, and becoming distinctly
different to, a once homogeneous species. Many statistical
methods were inspired by ‘Evolutionary’ ideas, and
remembering that connection can help us see apparently
unrelated matters in a new light.

Ever since Pearson’s work, mixtures have been applied
to problems as varied as modelling complex financial risks

(Alexander 2001, 2004, Tashman and Frey 2008), fitting
the implied volatility surface (Rebonato and Cardoso 2004),
stochastic processes (Brigo et al. 2002), handwriting recog-
nition (Bishop 2006), housing prices, topics in a document,
speech recognition and many examples of clustering or
unsupervised learning procedures in the fields of Biology,
Medicine, Psychology, Geology, etc. (Makov et al. 1985).
In this paper, we will apply mixtures to the problem of
‘portfolio oversight’. In the financial application we present
in this paper, the connection between mixtures and
‘Evolution’ is more evident than in other instances cited
above.

Mixture distributions are derived as convex combinations
of other distribution functions. They are non-Normal,
because their observations are not drawn simultaneously
from all distributions, but from one distribution at a time.
For example, in the case of a mixture of two Gaussians,
each observation has a probability p of being drawn from
the first distribution and a probability 1 − p of coming from
the second distribution (the observation cannot be drawn
from both). Mixtures of Gaussians are extremely flexible
non-Normal distributions and even the mixture of two
Gaussians covers an impressive subspace of moments’
combinations (Bailey and López de Prado 2012).*Corresponding author. Email: lopezdeprado@lbl.gov
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Pearson (1894) was the first to propose the method of
moment matching (MM), which consists in finding the
parameters of a mixture of two Gaussians to match the first
five moments. A gigantic work of algebraic manipulation
allowed him to represent the solution in terms of a 9th degree
(nonic) polynomial in five variables. This results in a variety
of roots and the issue of making the correct choice arises.
Undoubtedly, he must have thought that this problem was
worth the weeks and months that deriving this complex
system must have consumed. Computational limitations of
those days made this approach intractable. More recently,
Craigmile and Titterington (1997), Wang (2001) and
McWilliam and Loh (2008) have revived interest in MM
algorithms.

While working at NASA, Cohen (1967) devised a rather
convoluted way to circumvent Pearson’s nonic equation by
initially assuming equality of the variances. A cubic
equation could then be solved for a unique negative root,
which could then be fed into an iterative process. With the
help of a conditional maximum likelihood (ML) procedure,
he attempted to eliminate the effect of sampling errors
resulting from the direct use of the fifth moment. Similarly,
Day (1969) published in ‘Biometrika’ a procedure for
estimating the components of a mixture of two Normal
distributions through ML.

Since Dempster et al. (1977) introduced the expectation-
maximization (EM) algorithm, this has become the
preferred general approach to fitting a mixture distribution
(see Hamilton 1994 for an excellent reference). The EM
algorithm searches for the parameter estimates that
maximize the posterior conditional distribution function
over the entire sample. Higher moments for which the
researcher may have no theoretical interpretation or
confidence, are impacting the parameter estimates. For
example, financial markets theories typically have no
interpretation for moments beyond the fourth order. It seems
reasonable to focus, as the algorithm we present does,
primarily on the first four moments for which one has
higher confidence and a theoretical interpretation.

Although the MM, ML and EM approaches are
extremely valuable, a number of reasons have motivated
our proposal for a new answer to this century-old question.
First, researchers usually have greater confidence in the first
three or four moments of the distribution than on higher
moments or the overall sample (Bailey and López de Prado
2012). An exact match of the fourth and particularly fifth
moment is not always desirable due to their significant
sampling errors, which are a function of those moments’
magnitude. Basing our estimates on even higher (and there-
fore noisier) moments, as the ML and EM-based algorithms
do, is far from ideal. We would rather have a distribution of
parameter estimates we can trust, than a unique solution
that is derived from unreliable higher moments. Second, in
the Quantitative Finance literature, it is the first four
moments that play a key role in the theoretical modelling
of risk and portfolio optimization (see Hwang and Satchell
1999, Favre and Galeano 2002, Jurcenzko and Maillet
2002, to mention only a few), not the fifth and beyond.
Third, in the context of risk simulation, often we face the
problem of modelling a distribution that exactly matches

the empirically observed first three or four moments (e.g.
Brooks and Kat 2002, López de Prado and Peijan 2004,
López de Prado and Rodrigo 2004). Fourth, EM algorithms
are computationally intensive as a function of the sample
size and tend to get trapped on local minima (Xu and Jor-
dan 1996). Speed, and therefore simplicity, is a critical con-
cern, considering that datasets nowadays often exceed
hundreds of millions of observations. Fifth, a mixture of
two Gaussians offers sufficient flexibility for modelling a
wide range of skewness and kurtosis scenarios. Risk and
portfolio managers (PM) would greatly benefit from an
intuitive algorithm that liberates them from the ubiquitous
assumption of Normality.

In this paper, we present a new, practical approach to
exactly matching the first three moments of a mixture of
two Gaussians. The fourth and fifth moments are used to
guide the convergence of the mixing probability, but they
are not exactly matched. We call this algorithm EF3M, as it
delivers an Exact Fit of the first 3 Moments. We believe
this framework is more representative of the standard
problem faced by many researchers. Our examples are
inspired by financial applications, however the algorithm is
valid for a general mixture of two Gaussians in general.
Our algorithm is purely algebraic—given the first few
moments of the mixture, we algebraically estimate the
means and variances of the two Gaussians and the parame-
ter p for mixing them. The only interaction with the data is
in extracting the moments of the mixture. Thus, unlike ML
and EM, the EF3M algorithm does not require numerically
intensive tasks, and its performance is independent of the
sample size, making it more efficient in ‘big data’ settings,
like high-frequency trading.

The moments used to fit the mixture may be derived
directly from the data or be the result of an annualization or
any other type of time projection, such as proposed by
Meucci (2010). For example, we could estimate the
moments based on a sample of monthly observations,
project them over a horizon of one year (i.e. the projected
moments for the implied distribution of annual returns)
and then fit a mixture on the projected moments, which
can then be used to draw random annual (projected)
returns.

Standard structural break tests (see Maddala and Kim
1999 for a treatise on the subject) attempt to identify a
‘break’ or permanent shift from one regime to another
within a time series. In contrast, the methodology we
present here signals the emergence of a new regime as it
happens, while it co-exists with the old regime (thus the
mixture). This is a critical advantage of EF3M, in terms of
providing an early signal. For example, in the particular
application discussed in Section 4, the ‘portfolio oversight’
department will be able to assess the representativeness of a
track record very early in their post-track observations. The
assumptions and data demands are minimal.

The rest of the paper is organized as follows: Section 2
presents a brief recitation on mixtures. Section 3 introduces
the EF3M algorithm. A first variant uses the fourth moment
to lead the convergence of the mixing probability, p. A
numerical example and the results of a Monte Carlo
experiment are presented. In this variant of EF3M, the fifth
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moment is merely used to select one solution for each run
of EF3M. Some researchers may have enough confidence
and understanding of the fifth moment to use it for guiding
the convergence of p, in which case we propose a second
variant of EF3M. Section 4 introduces the concept of
probability of divergence. Section 5 discusses possible
extensions to this methodology. Section 6 outlines our
conclusions. Three mathematical appendices prove the
equations used by EF3M and a fourth appendix offers the
Python code that implements both variants. Sometimes a
researcher is only concerned with modelling the variance
and tails of the distribution, and not with its mean and
skewness. For that particular case, Appendix 5 provides an
exact analytical solution.

2. Mixtures of distributions

Here, we provide the highlights of the theory behind
mixtures of distributions. Readers familiar with the topic
may prefer to skip it and move to Section 3.

Consider a set of distributions D0;D1; . . .;Dn�1 and
positive real coefficients a0; a1; . . .; an�1 that sum to one. A
new distribution D can be defined as a convex combination
D0;D1; . . .;Dn�1 with coefficients a0; a1; . . .; an�1, where
D ¼ Pn�1

i¼0 aiDi. If d0; d1; . . .; dn�1 are the densities
associated with D0;D1; . . .;Dn�1 then it is immediate that
d ¼ Pn�1

i¼0 aidi is the density associated with D.
We now give a more conceptual description of D. We

put a standard probability measure on R in the usual way
by setting lið½a; b�Þ ¼

R b
a didx and similarly lð½a; b�Þ

¼ R b
a d dx. Let ðXi; miÞ be measure spaces isomorphic to

ðR; liÞ where the Xi’s are pairwise disjoint. Define a new
measure space ðY ; mÞ by putting Y ¼ [iXi and
mðAÞ ¼ P

i aimiðA \ XiÞ. If fi : Xi ! R is the isomorphism
between Xi and R, then we can define a random variable
f : X ! R by setting f ðyÞ ¼ fiðyÞ if y 2 Xi.

Heuristically, f is defined as follows: we first choose i
with probability ai. Then, conditioned on this choice, we
use the measure mi to choose a y 2 Xi. The value of f is
fiðyÞ. Direct computation then shows that D is the
distribution of f. Indeed the probability that f ðyÞ 2 ½a; b� is
given as

P
i aiEi½f ðyÞ 2 ½a; b��, where Ei is the probability

conditioned on y 2 Xi. This in turn is
P

i ai
R b
a didx.

Summarizing in the case of two distributions D0 and D1,
we can build a third by first choosing with some probabili-
ties fp; 1� pg either the first or second distribution and
then using the corresponding density to choose a value for
our random variable. The new distribution D is given for-
mally by pD0 þ ð1� pÞD1. We will denote a D distribution
built this way a mixture of D0 and D1.

In general, an arbitrary distribution D can be decomposed
into mixtures D ¼ P

i aiDi in infinitely many ways.
However, there is a unique canonical distribution of a
mixture of Gaussians. Namely, if D ¼ P

i aiDi ¼
P

j bjEj

where each Di and each Ej is Gaussian, then for all i,
ai ¼ bi and Di ¼ Ei. This follows immediately from the
linear independence of the family of Gaussian density
functions: if we let dða; b; cÞ ¼ expðax2 þ bxþ cÞ, then the

collection of functions F ¼ f1g [ fdða; b; cÞ : at least
one of a or b is not zerog forms a linearly independent
family over R. Hence, a density d can be expressed in at
most one way as a mixture of functions from F . Since F
contains all of the density functions of Gaussians, a repre-
sentation of an arbitrary density function as a mixture of
Gaussians is unique.

3. The EF3M algorithm

Suppose that we are given the first four or five moments of
a distribution D that we assume to be a mixture of two
Gaussian distributions D0 and D1. We address the question
of How we can estimate the parameters determining D0,
D1 and the probability p giving the mixture? This requires
estimating five parameters in total: the mean and variance
of the first Gaussian the mean and variance of the second
Gaussian, and the probability with which observations are
drawn from the first distribution. Knowing that probability,
p, implies the probability for the second distribution, 1 − p,
because by definition the sum of both probabilities must
add up to one.

If D is a mixture of Gaussians then the moments of D can
be computed directly from the five parameters determining it.
In Appendix 1, we derive D’s moments from D’s parameters.
Unfortunately, in general, knowledge of the first five
moments of a mixture of Gaussians is not sufficient to
recover the unique parameters of the mixture, so we cannot
reverse this computation. On the other hand, using higher
moments to recover a unique set of parameters is problem-
atic, as they have substantial measuring errors. Our approach
to finding D starts with the first five observed moments about
the origin ~E½ri� determined by data sampled from D (which
we assume to be a mixture of Gaussians). The algorithm
starts with some random data and generates mixture parame-
ters ðl1; l2; r1; r2; pÞ that give implied E½ri� well approxi-
mating ~E½ri�. As we will see later, all we need is an estimate
of the first four or five moments, ~E½ri�, computed on a sample
or population. This is the only stage of our analysis in which
we deal with actual observations. Should the moments have
been computed about the mean instead of the origin, Appen-
dix 1 also shows how to derive the latter from the former.

Notation: Let l1, l2 be the means of the first two
distributions, r1, r2 the standard deviations and p be the
probability determining the mixing. We use the notation
E½ri� to denote the ith moment of our mixture, as implied
by l1, l2, r1, r2 and p. Appendix 1 shows how the
mixture’s moments are implied from the mixture’s
parameters. Later in the paper we will be concerned about
fitting some data we have observed that we assume is sam-
pled from D, with observed raw moments ~E½ri�. We will
assume that D is a mixture with actual parameters
ð~l1; ~l2; ~r1; ~r2; ~pÞ.

The equations for the moments E½ri� in terms of l1, l2,
r1, r2 and p have some useful properties that allow our
algorithm to work:

(a) The moments of D about the mean E½r� can be
computed as polynomial combinations of the
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moments about the origin and vice versa. Thus, it
suffices to do our computations using moments
about the origin.

(b) From the expressions for the first four moments
about the origin we get some rational functions that
successively express l1 in terms of l2 and p, r1 in
terms of l1, l2 and p, and r2 in terms of the
4-tuple ðp; l2; l1; r1Þ.

(c) From the expressions for the first five moments
about the origin we get another, independent,
rational function that expresses p in terms of
ðl2; l1; r1; r2Þ.

This leads to a very general form of algorithm: To
compute some parameters c0; c1; . . .; cn, we express c1 in
terms of c0; c2 in terms of ðc0; c1Þ; c3 in terms of ðc0; c1; c2Þ
etc. Finally we express c0 independently in terms of
ðc1; . . .; cnÞ. Thus, the algorithm then runs as follows:

(i) An initial guess is made for c0.
(ii) The relations defining ci in terms of

ðc0; c1; . . .; ci�1Þ are used to compute a guess for
a candidate for ci.

(iii) Having defined ðc1; . . .; cnÞ in terms of c0, we get
a new estimate for c0 using its independent
expression in terms of ðc0; . . .; cnÞ.

(iv) One loops back the previous two steps to get new
guesses for ðc0; . . .; cnÞ.

(v) The algorithm runs until some termination
criterion is achieved.

In the following sections we describe two algorithms of
this form and consider their convergence behaviour.

3.1. Convergence of the fourth moment

In this section we describe in more detail our algorithm for
recovering the actual parameters ð~l1; ~l2; ~r1; ~r2; ~pÞ, by fitting
the raw moments ðE½r�;E½r2�;E½r3�;E½r4�Þ implied by
ðl1; l2; r1; r2; pÞ to the observed ð~E½r�; ~E½r2�; ~E½r3�; ~E½r4�Þ.
We refer the reader to Appendix 2 for the expressions
needed by the algorithm. The algorithm starts by taking an
initial guess for l2 and p. We then successively estimate
l1, r2 and r1 using equations (21), (23) and (22) from
Appendix 2. Finally, equation (24) allows us to get a new
guess for p. We iterate this procedure until the results are
stable within some tolerance e. By trying alternative l2
seeds we obtain potential solutions whose first three
moments ðE½r�;E½r2�;E½r3�Þ exactly match ð~E½r�; ~E½r2�;
~E½r3�Þ. Among these solutions we then choose the one that
minimizes the error xð~E½r4� � E½r4�Þ2 þ ð1� xÞ
ð~E½r5� � E½r5�Þ2, where x 2 ½12 ; 1� represents the greater
confidence the researcher has on ~E½r4� relative to ~E½r5�.†
This procedure can be repeated as many times as needed to

generate a distribution of mixture parameters consistent
with the observed moments.

More precisely, let k define the range of the search, i.e.

we will scan for solutions in l2 2 ½~E½r�; ~E½r�
þk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E½r2� � ð~E½r�

q
Þ2�. For a e tolerance threshold, this

defines a step size d ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E½r2��ð~E½r�Þ2

p
e . Scanning equidistant

l2 within that range, with a sufficiently small step size d, is
approximately equivalent to uniform sampling of l2 values.
Therefore, the algorithm is bootstrapping the distribution of
solutions from the subspace of mixture parameters that fit
the first three moments.

Given the moments ð~E½r�; ~E½r2�; ~E½r3�; ~E½r4�; ~E½r5�Þ, EF3M
algorithm requires the following steps:

(1) l2 ¼ ~E½r�.
(2) A random seed for p is drawn from a Uð0; 1Þ

distribution, 0\p\1.
(3) Sequentially estimate:

(a) l1: equation (22).
(b) r22: equation (24). If the estimate of r22\0, go

to Step 7.
(c) r21: equation (23). If the estimate of r21\0, go

to Step 7.
(4) Adjust the guess for p: equation (25). If invalid

probability, go to Step 7.
(5) Loop to Step 3 until p converges within a tolerance

level e.
(6) Store ðl1; l2; r1; r2; pÞ and the corresponding

E½ri�; i ¼ 1; . . .; 5.
(7) Add d to l2 and loop to Step 2 until

l2 ¼ ~E½r� þ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E½r2� � ð~E½r�Þ2

q
.

(8) Optional tiebreak: Among all stored results, we can

select the ðl1; l2; r1; r2; pÞ for which xð~E½r4��
E½r4�Þ2 þ ð1� xÞð~E½r5� � E½r5�Þ2 is minimal.

Steps 2 to 5 are represented in figure 1. Our solution
requires a small number of operations thanks to the special
sequence we have followed when nesting one equation into
the next (see Appendix 2). A different sequence would have
led to the polynomial equations that made Cohen (1967)
somewhat convoluted.

Because not all guessed l2 can match all sets of first
three moments, we must include the possibility of imagi-
nary roots considered by the algorithm (steps 3.b and 3.c),
and invalid probability (step 4). For a feasible l2, each
iteration of EF3M delivers values that exactly matches ~E½r�,
~E½r2�, ~E½r3� and using ~E½r4� our simulations showed that the
output values p very quickly settle into a neighbourhood of
radius e. Finally, the fifth moment is used for evaluation
purposes only, but it is neither exactly fit (like the first three
moments) nor it drives the convergence (as the fourth
moment does). Appendix 4 shows an implementation of the
EF3M algorithm in Python language.

The solution to the problem that is the subject of this
paper is rarely unique when the only reliable moments are
the first five. This bothered Pearson (1894), who advised
using the sixth moment to choose among results. But elying
on noisy high moments for selecting one possible solution

†This tiebreak step is not essential to the algorithm. Its purpose is
to deliver one and only one solution for each run, based on the
researcher’s confidence on the fourth and fifth moments. In
absence of a view on this regard, the researcher may ignore the
tiebreak and use every solution to which the algorithm converges
(one or more per run).
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out of many valid ones seems quite arbitrary. Indeed, from
a Bayesian perspective we would prefer working with a dis-
tribution of parameter estimates rather than with a unique
value for each. Such approach is made possible by the sim-
plicity (translated into speed) of our EF3M’s algorithm.
This allows the researcher to bootstrap the distribution of
alternative values for the mixture’s parameters, which can
then be used to simulate competing scenarios.

3.2. A numerical example

In this section, we consider an example distribution D
formed by mixing Gaussians with an arbitrarily chosen set
of parameters ð~l1; ~l2; ~r1; ~r2; ~pÞ ¼ ð�2; 1; 2; 1; 1

10Þ. The
mixture’s moments about the origin (~E½ri�Þ and about the
mean are given in the left box of figure 2.

We apply EF3M for e ¼ 10�4, k ¼ 5, x ¼ 1
2. This

implies searching within the range l2 2 ½0:7; 7:9629� by try-
ing 10 000 uniform (equidistant) partitions. We can then
repeat this exercise another 10 000 times† and study the
distribution of the parameter estimates.

For a given output ðl1; l2; r1; r2; pÞ of the algorithm, we
can compare:

(1) The difference between the first five moments E½ri�
implied from ðl1; l2; r1; r2; pÞ and the moments
~E½ri� of D,

(2) The differences between ðl1; l2; r1; r2; pÞ and
ð~l1; ~l2; ~r1; ~r2; ~pÞ, i.e. between ðl1; l2; r1;r2; pÞ and
ð�2; 1; 2; 1; 1

10Þ.
The right two boxes in figure 2 show the average errors

over the simulation. The middle middle box gives the errors
in the first five moments and the right most box shows the
errors in estimating the mixture parameters. The results
show that recovered parameters are generally very close to
the mixture parameters from D. Figure 3 is a histogram

showing with what frequency various estimates of l1 occur
as outputs of EF3M, in this particular example. Most of the
‘errors’ in figure 2 are due to the existence of an alternate
solution for l1 around l1 � �1:56.

Figure 3 illustrates the fact that, as discussed earlier, there
is not a unique mixture that matches the first (and only
reliable) moments. However, faced with the prospect of
having to use unreliable moments in order to be able to
pick one solution, we prefer bootstrapping the distribution
of possible mixture’s parameters that are consistent with the
reliable moments. Our approach is therefore representative
of the indetermination faced by the researcher. Section 4
will illustrate how that indetermination can be injected into
the experiments, thus enriching simulations with a
multiplicity of scenarios.

3.3. Monte Carlo simulations

In the previous section, we illustrated the performance of
10 000 runs of EF3M over a particular choice of
ð~l1; ~l2; ~r1; ~r2; ~pÞ. The results raise the issue of whether the
promising performance is related to the properties of the
vector ð�2; 1; 2; 1; 1

10Þ or whether the algorithm behaves
well in general. To test this we randomly change
ð~l1; ~l2; ~r1; ~r2; ~pÞ by drawing them from the uniform distri-
butions with boundaries �1� l1 � 0� l2 � 1, 0\r1 � 1,
0\r2 � 1, 0\p\1.

For e ¼ 10�4, k ¼ 5, x ¼ 1
2, figure 4 shows the statistics

of the estimation errors (~E½ri� � E½ri�) and deviations of the
fit (~l1 � l1, ~l2 � l2, ~r1 � r1, ~r2 � r2, ~p� p). There is a
small departure between the original and recovered parame-
ters, but as the numerical example illustrated, this is
explained by the multiplicity of decompositions of a given
mixture into its component Gaussians.

3.4. Convergence of the fifth moment

We have argued that EF3M’s approach is representative of
the typical problem faced by most researchers fitting a

Figure 1. Algorithm’s flow diagram (with four moments).

Figure 2. Moments (left), their estimation errors (centre) and departure of the recovered parameters from the original parameters (right).

†In each repetition we use the same l2, however the values of p
differ between runs, as they are drawn from a uniform Uð0; 1Þ dis-
tribution.
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mixture: using the first four moments, for which we have
some degree of confidence and theoretical interpretation, to
find the distribution of the mixture’s parameters. As a
consequence of using only four moments, we must start
with a guess l2 and a random seed p. Although the fourth
moment is used for the convergence of p, l2 was not
re-estimated in each iteration.

However, in those cases where the researcher has some
confidence in the fifth moment’s estimate, we could use the
fourth moment to re-estimate l2 and the fifth moment to
re-estimate p. In this way, no parameter remains constant
across the iterations, which has the further advantage of
accelerating the speed of convergence. This second variant of
EF3M is very similar to the first one, as it can be seen next:

(1) l2 ¼ ~E½r�.
(2) A random seed for p is drawn from a Uð0; 1Þ

distribution, 0\p\1.
(3) Sequentially estimate:

(a) l1: equation (26).
(b) r22: equation (26). If the estimate of r22\0, go to

Step 8.

(c) r21: equation (26). If the estimate of r21\0, go to
Step 8.

(4) Adjust the guess for l2: equation (27). If imaginary
root, go to Step 8.

(5) Adjust the guess for p: equation (28). If invalid prob-
ability, go to Step 8.

(6) Loop to Step 3 until p converges within a tolerance
level e.

(7) Store ðl1; l2; r1; r2; pÞ and the corresponding
E½ri�; i ¼ 1; . . .; 5.

(8) Add d to l2 and loop to Step 2 until

l2 ¼ ~E½r� þ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E½r2� � ð~E½r�Þ2

q
.

(9) Optional tiebreak: Among all stored results, we can

select the ðl1; l2; r1; r2; pÞ for which xð~E½r4�
�E½r4�Þ2 þ ð1� xÞð~E½r5� � E½r5�Þ2 is minimal.

Appendix 3 details the relations used in this second
variant of the algorithm. Steps 2 to 6 are represented in
figure 5. Note that, although we are re-estimating the value
of our guesses of both p and l2 during the algorithm, our

Figure 3. Marginal distribution of probability of the l1 parameter.

Figure 4. Estimation error statistics (left) and departure of the recovered parameters from the original parameters (right).
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initial guesses for l2 are still uniformly spaced in our
search interval. Thus, this second variant of the EF3M
algorithm only requires one additional step 4 and a
modification of the equation used in step 5. As it can be
seen in Appendix 4, both variants of the EF3M algorithm
can be implemented in the same code, with a single line
setting the difference.

4. A practical application: portfolio oversight

Investment styles are not immutable, but rather evolve, as
prompted by technological and computational advances,
among other factors (López de Prado 2011). We began our
paper recalling the evolutionary motivation behind many
statistical methods and in the case of mixtures in particular.
A parallel can be drawn between the slow pace at which
species adapt to an environment, creating new distinct
species out of a once homogeneous genetic pool and the
slow changes that take place over time within a fund.
Darwinian arguments can be applied with regards to a
fund’s or even a PM’s struggle for survival in a competitive
financial environment. Although a fund’s or PM’s
investment style may evolve so slowly that those changes
will be undetectable in the short-run, the track record will
accumulate evidence of the ‘evolutionary divergence’ taking
place. Sometimes this divergence will occur as a PM
attempts to adapt her style to prevail in a certain
environment or as an environmental change affects a style’s
performance. An example of the former is a new
technology giving an edge to some market participants and
an example for the latter is when the rest of the market
adopts that successful technology over time, thus suppress-
ing its competitive advantage.

A hedge fund’s ‘portfolio oversight’ department assesses
the operational risk associated with individual PMs,
identifies desirable traits and monitors the emergence of
undesirable ones. The decision to fund a PM is typically
informed by her track record. If her recent returns deviate
from the track record used to inform the funding decision,
the portfolio oversight department must detect it. This is
distinct from the role of risk manager, which is dedicated to
assessing the possible losses under a variety of scenarios.
For example, even if a PM is running risks below her
authorized limits, she may not be taking the bets she was
expected to, thus delivering a performance inconsistent with
her track record (and funding). The risk department may
not notice anything unusual regarding that PM, however the
portfolio oversight department is charged with policing and
detecting such situation. A track record can be expressed in

terms of its moments, thus the task of overseeing a PM can
be understood as detecting an inconsistency between the
PM’s recent returns and her ‘approved’ track record.

More specifically, suppose that we invest in a PM with a
track record characterized by IID returns with moments
listed in figure 6. Because we have little to no knowledge
regarding her investment process, we cannot be certain
about how a number of evolving factors (replacement of
PMs, variations to the investment process, market
conditions, technological changes, financial environment,
etc.) may be altering the distribution that governs those
returns. We need to determine a probability that a sequence
of returns is consistent with a pre-existing track record,
which will inform our decision to re-allocate or possibly
redeem our investment. Generally stated, at what point do
we have information sufficient to assess whether a sequence
of observations significantly departs from the original
distribution?

This question can be reformulated in the following
manner:

(1) Assumption: Suppose that the returns of a PM are
drawn from a time-invariant process, such as a pro-
cess that is independent and identically distributed
(IID).

(2) Data: We are given
(a) A sequence of returns, frtg, for t = 1, …, T

(testing set).
(b) A reference distribution, based on a sample of

returns available prior to t = 1 (training set) or
some prior knowledge

(3) Goal: We would like to determine the probability at
t that the cumulative return up to t is consistent
with that reference distribution.

A first possible solution could entail carrying out a
generic Kolmogorov–Smirnov test in order to determine the
distance between the reference (or track) and post-track
distributions. Being a non-parametric test, this approach has
the drawback that it might require impracticably large data
sets for both distributions.

Figure 5. Algorithm’s flow diagram (with 5th moment).

Figure 6. Moments from the ex-ante distribution.
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A second possible solution would be to run a structural
break test, in order to determine at what observation t the
observations are no longer being drawn from the reference
distribution and are coming from a different process instead.
Standard structural break tests include CUSUM, Chow,
Hartley, etc. However, a divergence from the reference
distribution is not necessarily the result of a structural break
or breaks. In our experience, a PM’s style evolves slowly
over time, by gradually transitioning from one set of
strategies to another, in an attempt to adapt better to the
investment environment—just as a species adapts to a new
environment in order to maximize its chances of survival.
As the new set of strategies emerge and become more
prominent, the old set of strategies does not cease to exist.
Therefore, there may not be a clean structural break that
these tests could identify.

We propose a faster, more robust and less computation-
ally intensive approach. The method consists of: (i) apply-
ing the EF3M for matching the track record’s moments, (ii)
simulating path scenarios consistent with the matched
moments, (iii) deriving a distribution of scenarios based on
that match and (iv) evaluate what percentile of the distribu-
tion corresponds with the PM’s recent performance. Note
that there is nothing in the EF3M algorithm that takes any
time structure into account, which might be present in the
reference and/or target data sets. The reason is, the PM’s
returns are assumed to be drawn from a time-invariant
process, such as a process that is IID, which is the standard
assumption used by capital allocation methodologies. If the
process is not time-invariant and as a result the post-track
process significantly diverges from the track process, it is
the goal of this approach to bring that situation to the
attention of the portfolio oversight officer.

An important feature of EF3M is its ability to estimate a
distribution of the possible mixture parameters of our data
using information on the reliable moments. Step 2 simulates
a path scenario for each output and step 3 uses this distribu-
tion on mixture parameters to get a cumulative distribution
of returns at a given horizon t. Thus, at time t we can ask
what percentile a given cumulative return corresponds to,
relative to a collection of simulations corresponding to all
of the outputs of the EF3M algorithm (step 4). The results
allow us to determine difference percentiles associated with
each drawdown and each time under the water.

4.1. Estimating the distribution of mixture’s parameters

Our procedure starts using the EF3M algorithm to search
for parameters that give mixtures whose moments closely
match those of the track record’s non-Normal distribution.
For this particular exercise, the first variant of the EF3M
algorithm will be applied, though the second variant would
work equally well-given reliable information about the fifth
moment. Using the first four moments given in figure 6, we
have run the EF3M algorithm 100 000 times and obtained a
distribution of parameter estimates for a mixture of two
Gaussians. Figure 7 displays the moments’ estimation errors
(~E½ri� � E½ri�) and average fitted parameters
ðl1; l2; r1; r2; pÞ.

4.2. Simulating performance paths on the parameters’
distribution

Let’s define the cumulative return from t − h to t, denoted
Rt;h, as

Rt;h ¼
Yt

i¼t�hþ1

ð1þ riÞ; h ¼ 1; . . .; t (1)

By making h = t, we are computing each cumulative return
looking back the full available post-track sample (an
increasing window). We would like to simulate paths of
cumulative returns (Rt;t) consistent with the observed
moments of simple (non-cumulative) returns (ri). A Monte
Carlo simulation of Rt;t can be computed by making
random draws of ri. But which of the mixture solutions
should we use? One option is to pick one of the
ðl1; l2; r1; r2; pÞ, e.g. the mode of the five-dimensional
distribution of parameter estimates computed earlier. The
problem with that option is that there are several valid
combinations of parameters, some more likely than others.
Figure 8 plots the pdf for a mixture that delivers the same
moments as stated in figure 6. We cannot however postulate
any particular parameter values to characterize the true
ex-ante distribution, as there are multiple combinations able
to deliver the observed moments.

A better approach consists in running one Monte Carlo
path Rt;t for each of the 100 000 solutions estimated earlier.
Note that by associating an entire Monte Carlo path to the
output from each run of our EF3M algorithm, we are
implicitly giving higher weight to some outputs than others.
This is due to the fact the outputs occur with different
multiplicities. Outputs with high multiplicity are more heav-
ily weighted than low multiplicity outputs. For example, the
output corresponding to l1 ¼ �2:03 in figure 3 would
occur over 1400 times and thus would be weighted heavily
in the aggregated data about the Monte Carlo simulations
corresponding to the moments given in Section 3.2.

4.3. The distrubution of cumulative returns

For observed return frt : 1� t� Tg we can compare each
Rt;h with the expected returns predicted by our simulations.
More precisely, the simulation we described gives us an
approximation to the cumulative distribution
CDFt:R ! ½0; 1�, where CDFtðxÞ is the probability that the
return on the portfolio from our original distribution D is
less than or equal to x. By collecting our 100 000 simulated
Rt;t for a given t, we can derive an approximation to its
CDFt.† The cumulative distribution functions are consistent
with the observed moments on simple returns and incorpo-
rate information about a variety of likely mixtures. The next
step is to determine the different percentiles associated with
each drawdown level and time under the water. Figure 9
plots various percentiles for each CDFt. For example, with
a 99% confidence, drawdowns of more than 5% from any

†This (non-Normal) CDFt is on the cumulative returns, not the
simple returns.
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given point after six observations would not be consistent
with the ex-ante distribution of track record returns.
Furthermore, even if the loss does not reach 5%, a time
under the water beyond one year is highly unlikely (2.5%
probability), thus it should alert the investor regarding the
possibility that the track record’s moments (and its Sharpe
ratio in particular) are inconsistent with the current
performance.

4.4. Probability of divergence

Finally, we are in a position to define the probability of
divergence, PDt, updated with every new observation, as

PDtðRt;tÞ ¼ 2 CDFtðRt;tÞ � 1

2

����
���� (2)

We interpret this number as follows: At time t, Rt;t is the
total cumulative rate of return from observation 1 to t.
Applying CDFt to the number Rt;t give us (our best approx-
imation to) the percentile rank of Rt;t. In particular if Rt;t is
exactly the median predicted return, PDtðRt;tÞ ¼ 0. More
generally, if PDtðRt;tÞ ¼ a, then Rt;t is either in the bottom

or top 1� a proportion of the predicted returns, depending
on the sign of CDFtðRt;tÞ � 1

2. Viewed in this light,
PDtðRt;tÞ measures the proportional departure from the
median of our simulated returns.

Figure 10 plots 1000 returns generated from a mixture of
Gaussians with moments matching those in figure 6, namely
ðl1; l2; r1; r2; pÞ ¼ ð�0:025; 0:015; 0:02; 0:01; 0:1Þ. PD
may sporadically reach high levels, without becoming
extreme permanently. What would happen if draws from
the first Gaussian become more likely? For example, if
p = 0.2 instead of p = 0.1, the mixture’s distribution would
become more negatively skewed and fat-tailed. As figure 11
evidences, that situation is distinct from the approved track
record and PD slowly but surely converges to 1.

Figure 12 presents an example computed on a sequence
of 1000 returns distributed IID Normal that match the mix-
ture’s mean and variance, i.e. Nðl; r2Þ ¼ Nð1:10E � 02;
2:74E � 04Þ. PD approaches 1, although the model cannot
completely discard the possibility that these returns in fact
were drawn from the reference mixture.

Figure 13 presents another example computed on a
sequence of 1000 returns distributed IID Normal with a
mean half the mixture’s and the same variance as the
mixture, i.e. Nðl; r2Þ ¼ Nð5:5E � 03; 2:74E � 04Þ. PD

Figure 7. Moments estimation errors (left) and estimated parameters (right) after 100 000 runs of EF3M.

Figure 8. Example of mixture of two Gaussians consistent with the above moments ðl1; l2; r1; r2; pÞ ¼ ð�0:025; 0:015; 0:02; 0:01; 0:1Þ.
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quickly converges to 1, as the model recognizes that those
normally distributed draws do not resemble the mixture’s
simulated paths.

As measured above, an increase in the probability of
divergence may not always be triggered by a change in the
style, but in the way the style fits to changing market

Figure 9. Performance for various confidence bands.

Figure 10. Returns and probability of divergence for draws from ðl1; l2; r1; r2; pÞ ¼ ð�0:025; 0:015; 0:02; 0:01; 0:1Þ.
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conditions. That distinction may be more of a philosophical
disquisition, because either cause of an increase in the
probability of departure (change of style or change of

environment) should be brought up to the attention of the
portfolio oversight officer and invite a review of the capital
allocated to that PM or strategy.

Figure 11. Returns and probability of divergence for draws from ðl1; l2; r1; r2; pÞ ¼ ð�0:025; 0:015; 0:02; 0:01; 0:2Þ.

Figure 12. Returns and probability of divergence for Nðl; r2Þ ¼ Nð1:10E � 02; 2:74E � 04Þ.
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4.5. Cross-validation†

Suppose that the portfolio oversight officer sets a threshold
PD�, above which the probability of departure is deemed to be
unacceptably high. Further, suppose that T observations are
available out-of-sample (OOS) (i.e. not used in the EF3M
estimation of the mixture’s parameters) and that
PDT ðRT ;T Þ[PD�. Should T be large enough for estimating
the five moments with reasonable confidence, it is possible to
cross-validate the result that divergence has occurred,
following these steps:

(1) We divide the sample of observations into two
samples: in-sample (IS) and OOS. We assume that
both samples are long enough for providing accurate
estimates of five moments.

(2) IS: The training set, used to estimate the set of mixture
parameters ðl1; l2; r1; r2; pÞ.
(a) OOS: The testing set, used to calculate PDtðRt;tÞ,

using the fitted parameters ðl1; l2; r1; r2; pÞ.
(b) Apply the EF3M algorithm OOS, to compute the

mixture’s parameter estimates on the testing set.
We denote these parameters ðl1; l2;
r1; r2; pÞOOS, to distinguish them from the set of
parameters IS, ðl1; l2; r1; r2; pÞ.

(3) Using ðl1; l2; r1; r2; pÞOOS, compute PDIS
t ðRt;tÞ on

the IS data.
(4) Assess whether PDIS

t ðRt;tÞ[PD�. If that is the case,
the divergence has been cross-validated. If not,
additional evidence may be required, in the form of a
longer T.

5. Extensions

A first possible extension of this approach would consist in
allowing for any number of constituting distributions, not
only two. However, that would require fitting a larger
number of higher moments, which we have advised against
on theoretical and empirical grounds. Also, if the diver-
gence is caused by two or more new distributions, our PD
statistic is expected to detect that situation as well, since it
is able to detect the more challenging case of only one
emerging style.

A second possible extension would mix multivariate
Gaussian distributions. An advantage of doing so would be
that we could directly track down which PMs are the source
of a fund’s divergence, however that would come at the
cost of again having to use higher moments to fit the
additional parameters. The source of the divergence can still
be investigated by running this univariate procedure on
subsets of PMs.

A third possible extension would involve modelling
mixtures of other parametric distributions beyond the
Gaussian case. That is a relatively simple change for the
most common functional forms, following the same
algebraic strategy presented in the Appendix.

6. Conclusions

In this paper, we have described a method of evaluating the
probability that a PM’s returns correspond to a reference
distribution (denoted probability of divergence), which
answers a critical concern of portfolio oversight. Our

Figure 13. Returns and probability of divergence for Nðl; r2Þ ¼ Nð5:5E � 03; 2:74E � 04Þ.

†We are thankful to the referee for suggesting this Section.
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method gives investors the ability to assess the representa-
tiveness of a PM’s track record very early in her post-track
observations. It is based on an algorithm for finding the
parameters determining a mixture of Gaussians just from
the first four or five moments of a given mixture D. Deter-
mining these moments is the only interaction the algorithm
has with the underlying data.

Accordingly, we have devised the EF3M algorithm,
which exactly matches the first three moments (on which
the researcher usually has greatest confidence), reserving
the fourth moment for guiding the convergence of the
mixture probability. That the algorithm converges to a
solution based on the first four moments is consistent with
a theoretical understanding of their meaning. The fourth
moment is closely approximated but not exactly matched,
because of its sampling error. In a second variant of the
EF3M algorithm, we also allow the fifth moment to lead
the convergence of the algorithm, should the researcher be
confident in that moment’s estimate.

The decomposition of a mixture of Gaussians into its
component distributions is rarely unique when the only
reliable inputs are the first four or five moments. Rather
than searching for a unique solution, we advocate comput-
ing a distribution of probability for the fitted parameters.
This is a Bayesian-like approach, by which we would
simulate a large variety of scenarios consistent with the
probable values of the mixture’s parameters. This approach
is made possible, thanks to the relative simplicity (translated
into speed) of our EF3M’s algorithm. Monte Carlo experi-
ments confirm the validity of our method.

Originally inspired by Galton and Pearson’s ‘Mathemati-
cal Theory of Evolution’, mixtures of Gaussians are
nowadays widely used in a number of scientific applica-
tions. The problem of fitting the characteristic parameters
for a mixture of two Gaussians has received a number of
solutions over the last 120 years. We have identified several
scenarios under which MM, ML and EM algorithms may
not fully address the problems faced by many researchers,
particularly in the field of Quantitative Finance. MM
algorithms present the disadvantage that the solution is
impacted by the sample error of the fourth moment.
Besides, requiring a fifth moment introduces the problem of
basing our solution on a moment for which the researcher
typically has no theoretical interpretation. ML and EM
algorithms also suffer the criticism of sampling error and
theoretical interpretation of the moments used, besides
getting trapped on local minima and increased computa-
tional intensity as a function of sample size.

An analogue can be made between: (a) the slow pace at
which species adapt to an environment, which often results
in the emergence of a new distinct species out of a once
homogeneous genetic pool and (b) the slow changes that
take place over time within a fund, mutating its investment
style. A fund’s track record provides a sort of genetic
marker, which we can use to identify mutations. This has
motivated our use of a biometric procedure to detect the
emergence of a new investment style within a fund’s track
record. In doing so, we answer the question: ‘What is the
probability that a particular PM’s performance is departing
from the reference distribution used to allocate her capital?’

Overall, we believe that EF3M is well suited to answer this
critical question.
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Appendices

A.1. Higher moments of a mixture of m normal
distributions

Let z be a random variable distributed as a standard normal,
z�Nð0; 1Þ. Then, g ¼ lþ rz�Nðl; r2Þ, with characteris-
tic function:

0gðsÞ ¼ E½eisg� ¼ E½eisl�E½eisrz� ¼ eisg 0zðsrÞ|fflffl{zfflffl}
e�

1
2s
2r2

¼ eisl�
1
2s

2r2

(3)

Let r be a random variable distributed as a mixture of m
normal distributions,
r�Dðl1; . . .; lm; r1; . . .; rm; p1; . . .; pmÞ, with

Pm
j¼1 pj ¼ 1.

Then:

0rðsÞ ¼ E½eisr� ¼ e
Pm

j¼1
pjðislj�1

2s
2r2j Þ (4)

The k-th moment centred about zero of any random variable
x can be computed as:

E½xk � ¼
@k0xðsÞ
@sk

��� ���
s¼0

ik
(5)

We can use the characteristic function to compute the first
five moments about the origin (or centred about zero) in the
case of a mixture of m Gaussians as:

E½r� ¼
Xm
j¼1

pjlj (6)

E½r2� ¼
Xm
j¼1

pjðr2j þ l2j Þ (7)

E½r3� ¼
Xm
j¼1

pjð3r2j lj þ l3j Þ (8)

E½r4� ¼
Xm
j¼1

pjð3r4j þ 6r2j l
2
j þ l4j Þ (9)

E½r5� ¼
Xm
j¼1

pjð15r4j lj þ 10r2j l
3
j þ l5j Þ (10)

A.1.1. From moments about zero to moments about the
mean

We can use the first moments about the origin (equations
(6)–(10)) together with Newton’s binomium (equation 11)
to derive the moments about the mean (equations (12)–
(16)):

E½ðr � E½r�Þk � ¼
Xk
j¼0

ð�1Þj k
j

� �
ðE½r�ÞjE½rk�j� (11)

E½r � E½r�� ¼ 0 (12)

E½ðr � E½r�Þ2� ¼ E½r2� � ðE½r�Þ2 (13)

E½ðr � E½r�Þ3� ¼ E½r3� � 3E½r2�E½r� þ 2ðE½r�Þ3 (14)

E½ðr � E½r�Þ4� ¼ E½r4� � 4E½r3�E½r� þ 6E½r2�ðE½r�Þ2 � 3ðE½r�Þ4
(15)

E½ðr � E½r�Þ5� ¼ E½r5� � 5E½r4�E½r� þ 10E½r3�ðE½r�Þ2

� 10E½r2�ðE½r�Þ3 þ 4ðE½r�Þ5 ð16Þ

A.1.2. From moments about the mean to moments about
zero

We have computed the moments about the mean from the
moments about the origin. Using equations (12)–(16), the
reverse transformation can be carried out easily:

E½rk � ¼ ð�1Þkþ1ðE½r�Þk þ
Xk�1

j¼1

ð�1Þk�jþ1 k

j

� �
ðE½r�Þk�jE½rj�

þ E½ðr � E½r�Þk � ð17Þ
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E½r2� ¼ E½ðr � E½r�Þ2� þ ðE½r�Þ2 (18)

E½r3� ¼ E½ðr � E½r�Þ3� þ 3E½r2�E½r� � 2ðE½r�Þ3 (19)

E½r4� ¼ E½ðr � E½r�Þ4� þ 4E½r3�E½r� � 6E½r2�ðE½r�Þ2 þ 3ðE½r�Þ4
(20)

E½r5� ¼ E½ðr � E½r�Þ5� þ 5E½r4�E½r� � 10E½r3�ðE½r�Þ2

þ 10E½r2�ðE½r�Þ3 � 4ðE½r�Þ5 ð21Þ

A.2. EF3M convergence using the 4th moment

For a given l2, we would like to find the ðl1; r1; r2Þ that
match the observed ð~E½r�; ~E½r2�; ~E½r3�Þ, with p1 approximating
~E½r4�.
Let p ¼ p1 ¼ 1� p2. With knowledge of the first four

non-centred moments of the mixture, ~E½r�, ~E½r2�, ~E½r3�,
~E½r4�, we can define the following relations among the
mixture’s parameters. If the known moments are centred,
the non-centred moments can be readily computed from
equations (10)–(14).

From equation (6), we insert our observation to derive

l1 ¼
~E½r� � ð1� pÞl2

p
(22)

Likewise, from equation (7) we obtain

r21 ¼
~E½r2� � r22 � l22

p
þ r22 þ l22 � l21 (23)

Inserting equations (23) in (8) leads to

r22 ¼
~E½r3� þ 2pl31 þ ðp� 1Þl32 � 3l1ð~E½r2� þ l22ðp� 1ÞÞ

3ð1� pÞðl2 � l1Þ
(24)

For a seed ðl2; pÞ, these relations give us the l1; r1; r2 that
match the first three moments. An algorithm can then be
created to approximate (without exactly matching) the
fourth moment by re-estimating p. For that, we need a new
relationship, which can be derived from equation (9)

p ¼
~E½r4� � 3r42 � 6r22l

2
2 � l42

3ðr41 � r42Þ þ 6ðr21l21 � r22l
2
2Þ þ l41 � l42

(25)

Because we do not have any relationship to re-estimate l2,
that parameter remains fixed through every iteration of the
algorithm. A fifth moment would be needed to allow for
l2’s convergence, as described in the next section.

A.3. EF3M convergence using the 5th moment

We will start by using some of the relationships identified
earlier. In particular, for an initial ðl2; pÞ

l1 ¼
~E½r� � ð1� pÞl2

p

r21 ¼
~E½r2� � r22 � l22

p
þ r22 þ l22 � l21 (26)

r22 ¼
~E½r3� þ 2pl31 þ ðp� 1Þl32 � 3l1 ~E½r2� þ l22ðp� 1Þ� �

3ð1� pÞðl2 � l1Þ

These are the same relations that exactly match the first
three moments. Now we can use the fourth moment to
re-estimate l2, thus allowing it to converge. From equation
(9),

l2 ¼ �3r22 � 6r42 þ
~E½r4� � pð3r41 þ 6r21l

2
1 þ l41Þ

1� p

� �1=2
" #1=2

(27)

but we only need to evaluate the ‘+’ from ‘±’, because
r22 [ 0.

Equation (10) allows us to use the fifth moment to lead
p’s convergence,

p ¼
~E½r5� � b

a� b
(28)

with

a ¼ 15r41l1 þ 10r21l
3
1 þ l51

b ¼ 15r42l2 þ 10r22l
3
2 þ l52 (29)

Unlike in the previous case, this solution incorporates a
relationship to re-estimate l2 in each iteration. We are still
matching the first three moments, with the difference that
now moments fourth and fifth drive the convergence of our
initial seeds, ðl2; pÞ.

A.4. EF3M implementation in python

Both variants of the EF3M algorithm are implemented in
the following code. For the first variant, comment the line
parameters = iter5(mu2,p1,self.moments) and leave
uncommented the line parameters = iter4(mu2,p1,self.mo-
ments). Do the reverse for the second variant.
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A.5. Fitting a mixture to an observed variance and
kurtosis

Let r be a random variable distributed as a mixture of 2
Normal distributions, r�Dðl1; l2; r1; r2; p1; p2Þ, with
p1 þ p2 ¼ 1 and ith population moment about the origin
E½ri�. Given some observed moments ~E½r2�; ~E½r4�, we would
like to estimate the symmetric mixture (E½r3� ¼ 0) centred
about zero (E½r� ¼ 0) such that its population moments
match E½r2� ¼ ~E½r2� and E½r4� ¼ ~E½r4�.

Rewrite p2 ¼ 1� p1. We have five free parameters
(l1; l2; r1; r2; p1) to match only four moments
(E½r� ¼ 0; E½r2� ¼ ~E½r2�; E½r3� ¼ 0; E½r4� ¼ ~E½r4�). A mix-
ture of two Gaussians has mean E½r� ¼ p1l1 þ ð1� p1Þl2
and a third moment about the origin E½r3� ¼ p1ð3r21l1
þl31Þ þ ð1� p1Þð3r22l2 þ l32Þ. Thus, l1 ¼ l2 ¼ 0 meets
our requirement that E½r� ¼ E½r3� ¼ 0. We still have three
free parameters ðr1; r2; p1Þ to match the two remaining
moments ðE½r2� ¼ ~E½r2�; E½r4� ¼ ~E½r4�Þ.

From equations (7) and (9), this particular problem
reduces to the system

~E½r2� ¼ p1r
2
1 þ ð1� p1Þr22

1

3
~E½r4� ¼ p1r

4
1 þ ð1� p1Þr42 (30)

We find solutions in

r22 ¼ ~E½r2� � p1
ð1� p1Þ

1

3
~E½r4� � ð~E½r2�Þ2

� �� �1=2

(31)

r21 ¼
1

p1
ð~E½r2� � ð1� p1Þr22Þ

but because the system is symmetric in r1 and r2, it suf-
fices to evaluate the ‘+’ in ‘�’. In that way, r2 	 r1. A
pending question is, what is the appropriate value for p1?
From the above equations we find that, in order to find
roots in the real domain, an additional condition is

~E½r2�[ ð1� p1Þr22 (32)

which, after replacing r22 with its solution, leads to

p1 [ 1� 3ð~E½r2�Þ2
~E½r4� (33)

and obviously
~E½r4�

ð~E½r2�Þ2 	 3, so that 0� p1 � 1. Putting all
pieces together, for any 0\d\1, a feasible solution is
given by

p1 ¼ 1þ ðd� 1Þ 3ð
~E½r2�Þ2
~E½r4�

r22 ¼ ~E½r2� � p1
ð1� p1Þ

1

3
~E½r4� � ð~E½r2�Þ2

� �� �1=2

(34)

r21 ¼
1

p1
ð~E½r2� � ð1� p1Þr22Þ
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