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ABSTRACT 
In the course of developing an experimental algebra unit, the 
researchers noted variability in their design’s instructional 
potential across a set of implementation media. In an effort to 
explain this variability, we revisited the classical theoretical 
construct of transparency. Transparency is the perceptual and 
conceptual accessibility of the mechanism, logic, and application 
of a tool. Corroborating earlier literature, it appears that 
participants saw only what they had built—transparency is a 
subjective achievement of a learner rather than an inherent feature 
of a device. Our first design prompted students with an algebraic 
proposition, for example “3x+2=4x-1”. The two equivalent 
expressions were to be interpreted by students as alternative 
quantifications of a single linear spatial interval; namely, the path 
that a giant took on two separate occasions to bury and recover 
treasure. Problem solving required manually adjusting the 
modeling media to coordinate two types of equivalence: (a) the 
total length represented by each expression; and (b) the length 
represented by the variable and known units. The researchers 
found that successful coordination was predicated on the 
subjective transparency of the models’ perceptual. Therefore, in 
redesigning the activity as a computer-based application we will 
have learners first construct tools and only then automatize them.  

Categories and Subject Descriptors 
D.2.10 [Design]: Representations and Methodologies 

General Terms 
Design, Experimentation, Theory. 

Keywords 
Transparency, Modeling, Algebra, Representations, Mathematics, 
Learning. 

1. INTRODUCTION 
The structural and interactional properties of a specific tool affect  
the forms of manual engagement it enables. The same holds for 
learning tools, so that particular instantiations of a disciplinary 
idea afford different interactions and, ultimately, learning [16]. 
With respect to mathematical phenomena that we want students to 
mathematize, learning materials should not only elicit learners’ 
intuitive understandings, but also enable them to calibrate these 

intuitions towards formal perspectives [5]. Our central concern for 
this study is whether students’ calibration is conscious or tacit. In 
particular, the child’s agency in building a representation has been 
shown to contribute to learning [5]. In a similar vein, Papert has 
explained his pedagogical philosophy thus: “constructionism boils 
down to demanding that everything be understood by being 
constructed” [12, p. 2]. 
We are interested in the relation between the types of problem- 
modeling media we offer students and their success in 
overcoming the content’s learning issues. Here we argue that 
variations in modeling media that affect its transparency will 
engender differences in learning.  Lastly, we infer implications for 
crossing the “low-tech” to “high tech” divide: working with 
technological media, students could first struggle to build 
transparent tools in accord with the design’s conceptual 
objectives, and then transition to subtly improved versions of 
these tools. Moving from manual to automatic tools, students 
could avail of automatization without forsaking understanding. 

1.1 Background and Objectives 
The initial impetus for this design was a conjecture associating 
students’ poor understanding of algebra content with the pervasive 
metaphor underlying their conceptualization of algebraic 
equations [17]. For example, in arithmetic the = sign is most often 
conceptualized operationally: given “2 + 3 =” the student is 
expected to use a procedure so as to generate a solution [1, 13]. 
This implicit conceptualization of the equal sign is absent of a 
relational sense [9], by which two sides of an equation are 
commensurate [8]. Consequentially, the arithmetic-to-algebra 
transition commonly presents many learners with cognitive 
challenges [7, 14]. 

More generally, we conjectured that the quality of students’ 
progression from arithmetic to algebra is related to the particular 
conceptualizations of algebraic propositions used by teachers and 
textbooks to present algebraic equality. Algebraic propositions 
such as “3x + 14 = 5x + 6” are traditionally conceptualized as two 
equivalent quantities balanced across a scale (see Figure 1, next 
page). The “balance” metaphor offers a mechanistic logic for the 
algebraic algorithm. In particular, the balance of the scale is 
maintained by applying identical arithmetic operations to the 
expressions on each side of the scale, (e.g., “-6”). However, 
although the balance metaphor powerfully explicates the algebraic 
procedure, we were concerned that it may not optimally introduce 
the a priori algebraic rationale, that is, the fundamental idea that 
two superficially different expressions are nevertheless 
equivalent. We thus sought an alternative conceptualization of 
algebraic equivalence. As it turned out, such an alternative already 
existed. 
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Figure 1. “3x + 14 = 5x + 6” on a balance scale 

Dickinson and Eade used the number-line to diagram the 
equivalence of algebraic expressions. Figure 2 illustrates the 
number-line instantiation of “3x + 14 = 5x + 6” [3]. To the trained 
eye, this diagram “discloses” that 2x + 6 = 14 and, more 
specifically, that 2x = 8, so that x = 4. This form of algebraic 
reasoning is different from moving symbols across the equal sign 
(e.g., [17]) and therefore bears different pedagogical affordances. 
In particular, the number-line metaphor of algebraic equivalence 
conceptualizes the two equivalent expressions as alternative 
denotations of one and the same linear extension. This aligns the 
mechanism implied by the representation with the mechanism that 
actually motivates the problem. We no longer seek to “maintain 
balance”, but rather to determine an indeterminate quantity. 

 
Figure 2. Number-line representation reproduced from [3] 

The objective of our study was to further explore the pedagoical 
potential of the number-line algebra model. Our goal was to 
assign students greater agency in building their algebraic schemas, 
and our rationale was to draw on their intuitive spatial reasoning 
through engaging narratives that involve motion along the line. 

2. DESIGN: GIANT STEPS FOR ALGEBRA 
Our design draws on the familiar context of pirate stories and the 
related practice of treasure hunts. A problem narrative depicts a 
quasi-realistic situation in which a giant performs two consecutive 
journeys that begin and end at the same location yet differ in their 
respective progression sequences. 

The journeys were modeled as occurring in a scaled down 
“desert”—a 12" by 12" sand tray—and the treasures were small 
glass marbles buried in the sand. Six short stories described the 
how these “treasures” were buried, for example:  

A giant has a treasure he wants to bury. The giant takes 
3 giant steps forward. Then he goes 2 inches forward 
and buries his treasure. The next day he wants to bury 
more treasure but can’t remember exactly where to go. 
The giant goes 4 giant steps forward. Then he realizes 
that he has gone too far and goes back 1 inch, finds the 
right spot, and buries more treasure. Can you figure out 
where the giant buried his treasure?  

Figure 3 depicts our diagrammatic interpretation of this narrative. 
Under three different conditions, the participants used one of the 
following tools to model their problem solving: (a) paper and 
pencil; (b) push-pins, a cork board and a ruler; and (c) a string of 
elastic bands knotted together (the elastic ruler) and pieces of 
wood measured and marked at different inch intervals (see Fig. 4). 
A total of 10 participants participated in the study, ranging in age 
from 8 – 10 years. Three participants worked with paper and 
pencil, 4 with the pushpins, and 3 with the elastic ruler. 

  
Figure 3. Diagram of the “3x + 2 = 4x – 1” story 

 

 

 

 
Figure 4. Three sets of instruments and media used for 

modeling. (1) paper and pencil; (2) pushpins, corkboard, and 
ruler; and (3) elastic ruler and inch strips. 

All sessions were videotaped and later transcribed for the research 
team’s collaborative micro-ethnographic analysis.  

3. TRANSPARENCY 
When we say that a tool is transparent, we mean that the user can 
access, perceive, and understand its mechanism, logic, and 
application. As noted earlier, in the case of pedagogical tools, 
transparency is important for learning. For example, Meira 
considers the “intrinsic qualities of material displays and…how 
those qualities might promote individual cognitive efficiency by 
enabling users to see underlying principles and relations through 
them” [11, pp. 123-124]. From a distributed-cognition 
perspective, the pedagogical utility of learning media is that they 
re-organize and externalize aspects of cognitive process. 
Consequently, “physical actions [upon media] enable people to 
query the environment to test their ideas” [10, p. 589], which may 
result in new insights and hence learning. In a comparative study 
of two designs for modeling probabilistic phenomena, Garuti, 
Dapueto, and Boero found that learning tools that exposed covert 
mechanisms enabled students to create more sophisticated 
schematizations [4]. On the other hand “blackbox” tools—that is, 
tools that are not transparent—impede learning. Our study created 
opportunities to further discuss the detrimental cognitive 
consequences of opaque tools and the significance of user-
constructed transparency. 

4. RESULTS 
Several annotated transcriptions were selected to depict an 
apparent relation between transparency and learning, illustrate the 
subjectivity of transparency, and emphasize students’ agency in 
constructing transparency. To facilitate juxtaposition, we selected 
events that all revolve around students’ actions related to the same 
conceptually critical coordination. Namely, our analyses focused 
on students’ attempts to spatially align the two journeys such that 
the relationship between the variable (giant steps) and integer 
(inches) could be identified and deciphered. Analyses focus on the 
three experimental conditions (see above) and the extent to which 
the tools obfuscated or illuminated this central coordination. 
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 4.1 Building Transparency for Algebraic 
Equivalence via Coordinating Journeys  
In this excerpt the participant is modeling with paper. 

Res.: What happens in the second trip? Let’s start 
there…He [Giant] gets to two steps [Mary is 
drawing the Day 2 trip over her Day 1 
drawing, respecting common milestones.] 

Mary: [simultaneously “stepping” her left-hand 
index (for Day 1) and her right-hand index 
(for Day 2) toward each other from two 
adjacent giant-step marks—each hand enacts 
the inch information in its respective Day 1 or 
Day 2 journey, and Mary is careful to 
apportion the “inch” steps across the single 
giant step so that the fingers meet at the same 
location]. It has to be there. 

Res.: [mimicking Mary’s hand movements] Why 
are you doing like that in the middle with your 
fingers? 

Mary: Cause maybe there could be a way that it 
could be 2 giant steps and 2 inches here 
[indicates to the left] and 3 giant steps and 3 
inches back here [indicates to the right]. 

Res.: and then they meet. 
Mary:  Yeah, and that’s the right spot. 

A joint review of the solution leads Mary to confirm its validity. 
Thus Mary created a model that enabled her to infer a solution by 
superimposing the two separate journeys. Mary could thus 
visualize both journeys simultaneously and draw inferences with 
respect to their quantitative relations. 

Mary had to construct her solution from scratch, because she was 
given modeling media—paper and pencil—that bore no latent 
information relevant to the problem. She constructed all aspects of 
the story drawings herself, and so all of the inscribed elements in 
her model were meaningful residues of her own reasoning and 
fully transparent to her. 

4.2 Media Impeding the Construction of 
Transparency: Concrete Manipulatives 
The following example is taken from a group using the push-pins 
as their problem-solving medium. The participants are attempting 
to align the two journeys by coordinating the start and end points. 
They are using a ‘guess and check’ method and have estimated 
that a giant step is equal to one inch. Here they grapple with the 
realization that Day 1 and Day 2 end points are not co-located. 

[Bob and York model the Day 2 trip.] 
Res.: So what do we have to do? 
York: We have to add. 
Res.: Where do we have to add? 
[York indicates a spot between the two end locations.] 

We surmise that the concreteness of these modeling media “over-
situated” them at the expense of bearing symbolic meanings—the 
model became a phenomenon onto itself, which therefore invited 
estimation operations that turned out to be counterproductive [15]. 
That is, the available medium caused “ontological slippage” 
between phenomenon and model: users attended to physical and 
topical aspects of the concrete modeling objects—the pins’ actual 
situated locations and the measured intervals between them—at 

the expense of constructing a diagrammatic relational system 
whose numerical values are not pinned down to the measured 
lengths but instead are taken to stand in loosely for the real 
locations and may be determined via deduction and calculation.  

4.3 Media Impeding the Construction of 
Transparency: Elastic Manipulatives 
In this example we examine the process of using the variable 
marker (elastic bands) and fixed markers (wooden inch dowels). 
Kat has just modeled the Day 1 trip by placing the unstretched 
elastic ruler (steps) and fixed integer (inches) into the sand tray. 

Kat: And then the next day he goes 2 steps forward—2 
giant steps forward—which is here [touches ruler]. 
So…and then 2 inches forward. So that’s like...But 
it’s not exactly 3 giant steps…. [Kate sees that the 
Day 1 and Day 2 wood pieces do not end in the 
same spot and infers that her giant step sizes 
cannot be correct] 

Res.: So it looks like he doesn’t end up in exactly the 
same spot. [Kat nods to concur.] So what can we 
do to make it so that it is the same spot? 

Kat: Add one. [She grabs a new inch marker and places 
it in the gap.] 

Thus Kat attempts to resolve the contradiction by modifying 
elements of the “given” narrative. In this scenario, qualities of the 
modeling tools and their entailments are never constructed by the 
participant, and thus remain opaque, as follows. 

First, there is only one elastic ruler, and so the participant must 
perforce model the two journeys using a single object. Recall that 
in the previous examples the student had to build the coordination 
of the two journeys either diagrammatically (on paper) or 
concretely (sets of pushpins). The absence of an opportunity to 
build this coordination in the case of the elastic band “robbed” the 
child of a conceptually critical coordination, and consequently the 
invariance of the variable units across journeys remained opaque. 

Second, the designers anticipated that the ruler’s elasticity would 
help the child determine the inch value of a giant step, because the 
child could easily adjust the step sizes uniformly. Yet this usage 
did not occur. By building an efficient affordance into the 
instrument, we propose, this property was opaque to the learner. 
Lastly, we note that a phenomenon and its mathematical model, 
which are both epistemologically and ontologically distinct, can 
be laid out either one next to the other or one on top of the other. 
In the paper-and-pencil and pushpin conditions, the phenomenon 
(sand tray) and model (paper, corkboard) were spatially separate, 
yet in the elastic-band condition they were superimposed. In a 
related note, in the paper-and-pencil condition participants created 
diagrams that were not drawn to scale, but in the elastic-band 
condition they expected the model to index the actual physical 
location of the treasure. 

4.4 Summary: Manual Beats Automatic 
By varying the modeling tools across participants, we were able to 
demonstrate a relation between transparency and problem solving. 
The paper-and-pencil appeared to license imprecise yet effective 
spatial alignments, as though the model was never taken to be the 
phenomenon itself. The push-pins appeared to constrain the 
modeling process, as though these concrete manipulatives were 
ontologically too near to the phenomenon. The elastic ruler 
automatically scaled all the variable units uniformly, so that the 
students did not need to attend to making variable units equivalent 
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within each expression (journey) and, moreover, the ruler 
rendered superfluous any need to coordinate the length of the two 
expression-journeys, and the student did not need to ensure that 
variable units were equivalent between the two expressions 
(journeys). Unsurprisingly, therefore, where the tools did work 
behind the scenes, their work remained unseen, un-understood. 

5. DISCUSSION 
It has been argued that transparency is a critical attribute of 
effective pedagogical devices. Notwithstanding, an objectively 
transparent aspect of a device—a feature or behavior that is 
ostensibly salient for all to see—may nevertheless remain covert 
to learners. What the device constructs mechanically, the learner 
may never construct psychologically. Our analyses of learners’ 
actions and utterances suggested a positive relation between 
student agency in linking up a design’s mechanical elements and 
their insight into the mathematical significance of these 
alignments. It is only through agency, struggle, and resolution that 
conceptually critical elements of pedagogical devices become 
transparent. Sometimes, transparency needs to be earned [13, 6].  

6. COMPUTER-BASED RE-DESIGN 
As we consider improvements on the Giant Steps design for 
learning, we have begun to develop a technology-based interface 
analogous to the concrete instantiations. Design considerations 
include previous research indicating that “computer manipulatives 
can help students build on their physical experiences, tying them 
tightly to symbolic representations” [2, p. 148]. 
Digital media afford programmable display elements that could 
include stretch/shrink equipartitioned rulers. However, our 
findings suggest that automatized transformation might remain 
opaque to the learner. Figure 5 presents a screenshot of a solution 
to the problem “3x = 4x – 2.” The Giant’s Day 1 journey is 
represented by the faded red, whereas Day 2 journey is 
superimposed upon Day 1 in bold red and green). Note a certain 
imprecision in the uniform sizes of the variable and, respectively, 
the known units, both within and between days. However, these 
consistencies were intended. As such, even though the interface is 
a digital arena with computational affordances, in this mode the 
actions can be compatible with the paper-and-pencil medium. 
 

 
 

Figure 5. Computer-based solution to “4x = 3x + 2.”  

As we continue to develop the computer-based version of Giant 
Steps of Algebra, we will carefully determine criteria for 
assessing whether the learner is ready to shift gears from manual 
to automatic with respect to each programmable element. For 
example, once the learner has demonstrated proficiency in 
building journeys with equal steps, the interaction mode will 
change so as to enable scaling with uniform units.  
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