
UC Davis
UC Davis Previously Published Works

Title
A lipidome-wide association study of the lipoprotein insulin resistance index

Permalink
https://escholarship.org/uc/item/3rz8q1x8

Journal
Lipids in Health and Disease, 19(1)

ISSN
1476-511X

Authors
Bagheri, Minoo
Tiwari, Hemant K
Murillo, Anarina L
et al.

Publication Date
2020-12-01

DOI
10.1186/s12944-020-01321-8
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rz8q1x8
https://escholarship.org/uc/item/3rz8q1x8#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH Open Access

A lipidome-wide association study of the
lipoprotein insulin resistance index
Minoo Bagheri1,2 , Hemant K. Tiwari3, Anarina L. Murillo3, Rafet Al-Tobasei3, Donna K. Arnett4, Tobias Kind5,
Dinesh Kumar Barupal5, Sili Fan5, Oliver Fiehn5, Jeff O’connell6, May Montasser6, Stella Aslibekyan1*†

and Marguerite R. Irvin1†

Abstract

Background: The lipoprotein insulin resistance (LPIR) score was shown to predict insulin resistance (IR) and type 2
diabetes (T2D) in healthy adults. However, the molecular basis underlying the LPIR utility for classification remains
unclear.

Objective: To identify small molecule lipids associated with variation in the LPIR score, a weighted index of
lipoproteins measured by nuclear magnetic resonance, in the Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) study (n = 980).

Methods: Linear mixed effects models were used to test the association between the LPIR score and 413 lipid
species and their principal component analysis-derived groups. Significant associations were tested for replication
with homeostatic model assessment-IR (HOMA-IR), a phenotype correlated with the LPIR score (r = 0.48, p < 0.001),
in the Heredity and Phenotype Intervention (HAPI) Heart Study (n = 590).

Results: In GOLDN, 319 lipids were associated with the LPIR score (false discovery rate-adjusted p-values ranging
from 4.59 × 10− 161 to 49.50 × 10− 3). Factors 1 (triglycerides and diglycerides/storage lipids) and 3 (mixed lipids)
were positively (β = 0.025, p = 4.52 × 10− 71 and β = 0.021, p = 5.84 × 10− 41, respectively) and factor 2 (phospholipids/
non-storage lipids) was inversely (β = − 0.013, p = 2.28 × 10− 18) associated with the LPIR score. These findings were
replicated for HOMA-IR in the HAPI Heart Study (β = 0.10, p = 1.21 × 10− 02 for storage, β = − 0.13, p = 3.14 × 10− 04

for non-storage, and β = 0.19, p = 8.40 × 10− 07 for mixed lipids).

Conclusions: Non-storage lipidomics species show a significant inverse association with the LPIR metabolic
dysfunction score and present a promising focus for future therapeutic and prevention studies.
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Introduction
Dyslipidemia, one of the major determinants of cardio-
vascular disease (CVD) [1], is defined by elevated circu-
lating triglycerides and decreased high-density
lipoprotein (HDL) cholesterol [2]. In combination with
small dense low-density lipoprotein (LDL) particles,
these lipid abnormalities contribute to the insulin-
resistant metabolic syndrome [2, 3], a major risk factor
for type 2 diabetes (T2D). The comorbidity of insulin re-
sistance (IR) and dyslipidemia [4] is known as diabetic
dyslipidemia. Currently, the available interventions for
individuals susceptible to T2D can impact IR and delay
disease onset [5, 6]. However, the effectiveness of such
interventions can be increased with more accurate and
earlier identification of at-risk individuals, e.g. by lever-
aging differences in their circulating lipid patterns.
Recently, the lipoprotein insulin resistance (LPIR)

score has been shown to significantly improve prediction
of incident T2D in the JUPITER trial and the Women’s
Health Study, even after adjustment for traditional risk
factors such as smoking, physical inactivity and obesity
[7–9]. The LPIR score is a novel composite metabolomic
index, developed to capture the effect of IR on six lipo-
protein quantities in a single algorithm [7, 8]. This score,
derived from nuclear magnetic resonance (NMR) mea-
surements, captures the accumulation of triglyceride-
rich, very low-density lipoprotein particles (VLDL-P),
and the consequent increase in small LDL particles
(LDL-P) and reduction in large HDL particles (HDL-P)
[10]. Thus, it reflects insulin-resistant dyslipoproteine-
mia with more precision compared to traditional lipid
measures and provides stronger evidence for its associ-
ation with IR than each of its individual components
alone [8].
Although the LPIR score is highly variable [11], the rela-

tive contributions of genetic and environmental factors to
phenotypic variation have not been comprehensively in-
vestigated. Currently evolving mass spectrometry-based
lipidomics techniques, capable of detecting small lipid
molecules as the lipidomic signature of lipoprotein sub-
classes [12], have provided insight into molecular mecha-
nisms underlying diseases [13]. Since T2D is recognized as
a global public health problem [14, 15], there is a need to
develop novel prevention strategies rooted in a thorough
understanding of the underlying mechanisms. The advent
of high-throughput lipidomic profiling using the ultra-
performance liquid chromatography coupled to (quadru-
pole) time-of-flight mass spectrometry (UPLC–QTOFMS)
technology offers an opportunity to investigate associa-
tions between LPIR and circuating lipids, thus striving for
deeper, more granular understanding of the underlying
pathophysiology.
To date, there is little published research on the asso-

ciation between lipids and the LPIR score. As both

dyslipidemia and IR are central to T2D pathogenesis, it
is sensible to speculate that the differences in T2D risk
can be related to the LPIR score-associated lipidomic
variability. Thus, this study sought to identify a pattern
of small molecule lipids associated with the LPIR score
in participants of the Genetics of Lipid Lowering Drugs
and Diet Network Study (GOLDN), a cohort character-
ized by uniquely detailed lipid assessments and a variety
of –omics data. To reduce the likelihood of false positive
findings inherent in the high-dimensional lipidomic ana-
lysis, a replication study was pursued in the well charac-
terized Heredity and Phenotype Intervention (HAPI)
Heart Study in which the same lipidomics data was
collected.

Methods
Study design and population
GOLDN, the largest study of postprandial dyslipidemia
that offers NMR, clinical lipid, and lipidomic measures,
was initiated to assess the interaction of genetic factors
with environmental interventions (intake of a high-fat
meal and/or fenofibrate treatment) [16]. Briefly, the
study recruited European American families with at least
two siblings from two field centers (Minneapolis, MN
and Salt Lake City, UT) of the Family Heart Study
(FHS). Participants were excluded if they 1) had fasting
triglycerides (TGs) ≥ 1500 mg/dL, 2) had a history of kid-
ney, liver, pancreas, or gallbladder disease, recent myo-
cardial infarction or revascularization, or nutrient
malabsorption, 3) reported a current use of insulin, and
4) were pregnant or lactating. Of the 1327 participants
who were initially screened, 1048 (including 546 women)
met the eligibility criteria and were included in the
study. A written consent form was provided for each
participant and the protocol of the study was reviewed
and approved by the institutional review boards at the
University of Utah, University of Minnesota, and Tufts
University/New England Medical Center (IRB-
160331005).

Lipoprotein phenotypes and the LPIR score
In the current study, data from participants (n = 980)
collected at baseline after an 8-h overnight fast was used.
Targeted metabolomics approach (LipoScience, Raleigh,
NC) was implemented to identify NMR spectroscopy
signals produced by the methyl group of lipoprotein sub-
fractions: Large (≥ 8.8–13 nm), medium (8.2–8.8 nm)
and small (7.3–8.2 nm) HDL, large (≥65 nm), medium
(35–65 nm) and small VLDL (27–35 nm), and large (23–
27 nm) and small (19.8–21.2 nm) LDL. LPIR is a com-
bined weighted score of six lipoprotein subclasses or size
parameters (VLDL, LDL, and HDL mean particle size;
and levels of large VLDL, small LDL, and large HDL
particle numbers). It was calculated for each participant
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using the algorithm described by Shalaurova et al. [8].
Each of six sub-scores ranges from 0 to a capped value,
and the total score ranges from 0 to 100, with decreasing
scores reflecting lower IR. As explained in Table 3 of the
study by Shalaurova et al. [8], each sub-score reflects the
six elements (VLDL, LDL, and HDL mean particle size;
and levels of large VLDL, small LDL, and large HDL
particle numbers). For each element, a distinct score is
assigned. For example, if a participant had a VLDL size
of 41.3 nm she/he received the VLDL size score of 2 cor-
responding to the category of “41.2–41.8”. All other five
sub-scores were calculated following this procedure. The
LPIR score was calculated as the sum of these six sub-
scores.

Glucose, insulin, and HOMA-IR
Laboratory assays were performed on blood samples that
were collected from the study participants after an over-
night fast. A hexokinase-mediated reaction on the Hita-
chi commercial kit (Roche Diagnostics) was used to
measure fasting plasma glucose. Plasma insulin was ex-
amined using competitive RIA (Linco Research, St
Charles, MO, USA). The intra-assay coefficients of vari-
ation for the above measurements were 0.984 and 0.975,
respectively. HOMA-IR, used to estimate insulin resist-
ance, was calculated as fasting plasma glucose x fasting
plasma insulin/22.5 [17].

Lipidomic phenotypes
GOLDN lipidomics data includes neutral lipids and
phospholipids that were collected using UPLC–
QTOFMS at the West Coast Metabolomics Center at
University of California Davis, Davis, CA, US. The proto-
col for this measurement was described in detail else-
where [18, 19]. Briefly, the whole process was divided
into three steps: lipid extraction and separation, data ac-
quisition and lipid identification. Methyl tert-butyl ether
(MTBE), methanol, and water were used to extract
plasma lipids. The quality control (QC) samples were
method blanks and pooled human plasma (Bioreclama-
tionIVT). The separated non-polar phase was injected
into a Waters Acquity UPLC CSH C18 (100 mm length
× 2.1 mm id; 1.7 μm particle size) with an additional Wa-
ters Acquity VanGuard CSH C18 pre-column (5 mm ×
2.1 mm id; 1.7 μm particle size) maintained at 65 °C was
coupled to an Agilent 1290 Infinity UHPLC (Agilent
Technologies) for ESI positive and negative modes. Mo-
bile phase modifiers included ammonium formate and
formic acid for positive mode and ammonium acetate
(Sigma–Aldrich) for negative mode. The same mobile
phase composition of (A) 60:40 v/v acetonitrile:water
(LC-MS grade) and (B) 90:10 v/v isopropanol:acetonitrile
was used for both positive and negative modes. An Agi-
lent 6550 QTOF with a jet stream electrospray source

was employed for acquiring full scan data in the mass
range m/z 65–1700 in positive and negative modes with
scan rate of 2 spectra/second. Instrument parameters
were as follows for the ESI (+) mode – gas temperature
325 °C, gas flow 8 l/min, nebulizer 35 psig, sheath gas
temperature 350 °C, sheath gas flow 11, capillary voltage
3500 V, nozzle voltage 1000 V, fragmentor voltage 120 V
and skimmer 65 V. In negative ion mode, gas
temperature 200 °C, gas flow 14 l/min, fragmentor 175 V,
with the other parameters identical to positive ion mode.
Data are collected in centroid mode at a rate of 2 scans
per second. Injection volume was 1.7 μL for the positive
mode and 5 μL for the negative mode. The gradient
started at 15% B, ramped to 30% at 2 min, 48% at 2.5
min, 82% at 11 min, 99% at 11.5 min and kept at 99% B
until 12 min before ramping down to 15% B at 12.1 min
which was kept isocratic until 15 min to equilibrate the
column. The total run time was 15min and the flow rate
was 0.6 ml/min. Data were acquired in nine batches and
every ten samples, one quality control sample was ana-
lyzed. MS1 data were acquired for all samples, and MS/
MS data were acquired for a set of pooled samples. Data
were processed with the Agilent Quant 7.0 software.
Lipids levels were reported as chromatographic peak
heights and the data were normalized using the SERRF
method (pmid 30,758,187) [20]. After normalization, the
relative standard deviation of quality control samples is
4.7 and 3.4% for negative and positive mode respectively.
Lipid identification was performed by converting the ac-
quired MS/MS spectra to the mascot generic format
(MGF) and then a library search using the in-silico MS/
MS library LipidBlast.
After quality control (see supplemental material sec-

tion for more details), 413 lipid compounds were in-
cluded in the study.

Replication study
The HAPI Heart Study, previously described in detail
[20], was initiated in 2002 to identify the genetic and en-
vironmental determinants of responses (blood pressure,
triglyceride excursion and platelet aggregation) to four
short-term interventions including a cold pressor stress
test, a high salt diet, a high fat challenge, and an aspirin
therapy in a four-week time period. Briefly, from the
1003 individuals that were recruited from the Amish
community of Lancaster County, PA into the HAPI
heart study, the interventions were carried out in 868
relatively healthy Amish adults (> = 20 years of age) from
large families. Participants were asked to discontinue the
use of all medications, vitamins and supplements for at
least 7 days prior to the first visit and during the inter-
ventions, to fast at least 12 h prior to their visit, and to
restrain themselves from doing excessive physical activ-
ity on the morning of their appointment. The study
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protocol was approved by the Institutional Review Board
of the University of Maryland, Baltimore and other par-
ticipating institutions.
Fasting glucose was measured by a Beckman glucose

analyzer using the glucose oxidase method, fasting insu-
lin was examined by radioimmunoassay (Linco Research,
Inc., St. Charles, MO), and HOMA-IR, was calculated as
fasting plasma glucose x fasting plasma insulin/22.5. The
same procedures as used in GOLDN were performed to
measure small molecule lipids in the HAPI Heart study
at the West Coast Metabolomics Center.

Statistical analysis
Main study
Shapiro-Wilk tests were used to examine normality of
the data. Quintiles of the LPIR score were compared on
baseline characteristics using Chi-squared and Kruskal-
Wallis tests for categorical and continuous variables, re-
spectively. Lipid species were rank-inverse transformed
to normalize the data for regression modeling. Partial
correlations of LPIR score and each of its six component
scores (VLDL, LDL and HDL sizes, and large VLDL,
small LDL, and large HDL particle concentrations) and
lipid species were estimated, adjusted for sex, age, center
and body mass index (BMI). To explore associations be-
tween the LPIR score and lipid species, linear mixed
models were fitted, adjusting for sex, age, study center,
and BMI as fixed effects, and family structure as a ran-
dom effect using the R lme4 package (lmer function).

False discovery rate (FDR)-adjusted p-value < 0.05 was
considered to be statistically significant in all analyses.
Subsequently, principal component factor analysis

(PFCA) was performed as a dimension reduction
method to identify lipidomic patterns associated with
the LPIR score. After lipid species were clustered into
unrelated groups (components) using principal compo-
nent analysis (PCA), three principal components were
retained based on factors above the break in the scree
plot (Fig. 1), to perform an exploratory factor analysis
(EFA) using varimax rotation. Then the scores of each of
these three factors were calculated by summing stan-
dardized variable values within each factor. Associations
between the LPIR score, its component scores, and
HOMA-IR with each of these three factors were tested
using linear mixed models, in which sex, age, study cen-
ter, and BMI were included as fixed effects and family
structure was included as a random effect.

Replication study
A direct measure of the LPIR score was not available in
HAPI Heart because NMR data were not collected in
that cohort. However, because the LPIR score and
HOMA-IR were strongly correlated in GOLDN (r =
0.48), the association of HOMA-IR with all lipid species
was investigated in the replication study. Chi-squared
and Kruskal-Wallis tests were used to compare categor-
ical and continuous variables, respectively. Lipid metabo-
lites were rank-inverse transformed since they were not

Fig. 1 PCA scree plot indicating the explained variance of the first 10 components
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normally distributed. Associations between HOMA-IR
and lipid species were estimated using statistical models
identical to those in the discovery stage.
All the lipids from GOLDN with loading ≥0.5 within

factors 1–3 that existed in the HAPI Heart study were
selected and PCA was performed on those lipids. Based
on that analysis, three principal components were
retained (guided by the break in the scree plot), and an
exploratory factor analysis (EFA) using varimax rotation
was peformed. Then the scores of each of these three
factors were calculated by summing standardized vari-
able values within each factor. Thompson’s scores were
created using regression. As a result, factors 1, 2 and 3
in the HAPI Heart study consisted of polar lipids, mixed
lipids, and storage lipids (triglycerides and diglycerides)
respectively. The number of lipid species with factor
loading exceeding 0.5 that overlapped between the
GOLDN and HAPI Heart studies in the storage, non-
storage and mixed lipid patterns were 40, 43, 38, re-
spectively. The first three factors explained 41% in the
metabolites in GOLDN and 55% of the variance in the
HAPI Heart cohort. The association between HOMA-IR
and each of the three factors were tested in HAPI Heart
using models identical to the discovery analyses.
A secondary analysis was added to determine if the

GOLDN LPIR associated-metabolites were also associ-
ated with HOMA-IR in GOLDN and then those lipids

were compared with HOMA-IR associated lipids in the
HAPI Heart study.
All data analyses were conducted in the statistical

framework R 3.1.0 (www.rproject.org).

Results
Discovery
Table 1 shows participants’ characteristics by quintile of
the LPIR score. Participants with higher LPIR scores
were more likely to be male, older, and diabetic. They
were also more likely to have higher BMI and waist cir-
cumference. Additionally, the level of fasting glucose,
fasting insulin and HOMA-IR increased by LPIR quintile
category.
Partial correlations between the LPIR score as well as

its component scores and LPIR-related lipids with
P < 0.05 after FDR adjustment (n = 363 lipids)) are
shown in Supplementary Figure 1. Figure 2 shows the
heatmap of LPIR-correlated lipids with correlation coef-
ficients of < − 0.3 or > 0.3 (n = 139). Of these LPIR-
correlated lipid species, triglycerides (TGs) and diglycer-
ides (DGs) (storage lipids), phosphatidylinositols (PIs),
phosphoethanolamines (PEs), and ceramides were posi-
tively correlated while cholesteryl esters (CEs) and one
single sphingomyelin (SM) were inversely correlated with
the LPIR score. Correlations with the PCs were more
heterogeneous.

Table 1 Characteristics* of participants by quintile of the lipoprotein insulin resistance score (n = 980)

Characteristics Q1 (n = 198) Q2 (n = 200) Q3(n = 194) Q4(n = 199) Q5 (n = 184) P-value

Age at blood draw (y) 45.0 (35.0–75.5) 46.0 (34.0–61.3) 48.0 (39.3–61.8) 50.0 (40.5–63.0) 49.5 (40.0–61.3) 0.008

Sex

Male 43 (22) 82 (41) 110 (57) 106 (53) 125 (68) < 0.001

BMI (kg/m2) 23.9 (21.6–27.4) 25.6 (23.0–28.9) 27.8 (25.5–30.9) 29.4 (27.0–32.5) 31.0 (27.8–33.8) < 0.001

Waist circumference (cm)

Male 88.0 (83.0–93.5) 93.5 (89.0–100.0) 98.0 (91.0–105.0) 103.0 (97.0–111.0) 105.0 (97.0–113.0) < 0.001

Female 80.0 (74.0–89.5) 86.0 (79.0–94.0) 94.5 (85.8–105.3) 100.0 (91.0–110.0) 109.0 (96.5–118.0) < 0.001

Fasting glucose (mg/dl) 92.0 (89.0–98.0) 94.0 (90.0–101.0) 97.5 (93.0–105.0) 101.0 (96.0–108.0) 104.0 (98.0–114.0) < 0.001

Fasting insulin (mU/L) 9.0 (7.0–11.0) 10.0 (8.0–12.0) 12.0 (9.0–15.0) 15.0 (11.0–20.0) 16.0 (12.0–22.5) < 0.001

HOMA-IR 2.1 (1.6–2.7) 2.5 (1.9–2.9) 2.8 (2.2–3.9) 3.6 (2.7–5.2) 4.1 (3.2–6.5) < 0.001

Center 0.3

Minnesota 106 (54) 95 (48) 85 (44) 105 (53) 90 (49)

Utah 92 (46) 105 (52) 109 (56) 94 (47) 94 (51)

Diabetes < 0.001

Yes 6 (3) 10 (5) 9 (5) 23 (12) 26 (14)

No 192 (97) 190 (95) 184 (95) 176 (88) 158 (86)

Metabolic Syndrome 0.054

Yes 76 (38) 82 (41) 64 (33) 55 (28) 63 (34)

No 122 (62) 118 (59) 130 (67) 144 (72) 121 (66)

* Median (IQRs) or n (%)
Abbreviations: HOMA-IR Homeostatic model assessment-insulin resistance

Bagheri et al. Lipids in Health and Disease          (2020) 19:153 Page 5 of 14

http://www.rproject.org


Fig. 2 Heat map showing positive (in red), and negative (in blue) partial correlation (adjusting for sex, age, BMI and center) of the lipoprotein insulin
resistance (LPIR) score and its components scores with select metabolites (those with LPIR correlation coefficient less than − 0.3 or more than 0.3 (n= 139)).
Metabolites were characterized according to their molecular structure. Each line belongs to one metabolite. Abbreviations: Ce = ceramide, CE = cholesteryl
ester, DG = diglycerides, PC = phosphatidylcholine, PE = phosphoethanolamine, PI = phosphatidylinositol, SM = sphingomyelin, TG = triglycerides

Table 2 Association* of lipoprotein and insulin resistance score components with lipid species factors in the Lipid Lowering Drugs
and Diet Network Study (n = 980)

Storage lipids (Factor 1) Non-storage lipids (Factor 2) Mixed lipids (Factor 3)

Scores β SE P-value† β SE P-value† β SE P-value†

LPIR 0.025 0.001 4.52E-71 −0.013 0.001 2.78E-18 0.021 0.002 5.84E-41

VLDL_Size −0.004 0.004 0.356 −0.013 0.004 0.002 0.046 0.004 6.06E-27

Large_VLDL 0.056 0.003 1.52E-65 −0.0161 0.003 4.11E-06 0.069 0.003 1.67E-96

LDL_Size 0.150 0.011 4.90E-43 −0.068 0.011 1.10E-09 0.008 0.013 0.533

Small_LDL 0.215 0.016 2.77E-40 −0.028 0.017 0.096 0.033 0.018 0.096

HDL_Size 0.066 0.005 3.62E-45 −0.036 0.005 6.36E-14 0.008 0.005 0.138

Large_HDL 0.113 0.007 2.87E-54 −0.079 0.007 1.05E-27 0.018 0.009 0.037

HOMA-IR 0.080 0.014 1.44E-08 −0.070 0.013 1.04E-07 0.107 0.015 6.30E-13

*Adjusted for age, sex, BMI, center and family relationship
†P-values were FDR corrected to account for multiple comparisons. Bolded values indicate statistical significance (at P-values < 0.05)
Abbreviations: SE Standard error, LPIR Lipoprotein insulin resistance, VLDL Very low-density lipoprotein, LDL Dense low-density lipoprotein, HDL High-density
lipoprotein, HOMA-IR Homeostatic model assessment-insulin resistance
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Findings from the linear mixed models revealed that
the LPIR score was associated (FDR-adjusted p-value <
0.05) with 319 lipid metabolites, controlling for age,

sex, center, BMI and family relationship (Supplementary
Table 1). Significantly associated lipid metabolites in-
cluded 9 acylcarnitines, 7 CEs, cholesterol, 23 ceramides,
13 DGs, 25 free fatty acids, 21 lysophosphatidylcholines
(LPCs), 83 phosphotidylcholines (PCs), 3 lysopho-
sphoethanolamines (LPEs), 34 PEs, 7 prostaglandins
(PGs), 5 PIs, 17 SMs, and 71 TGs (FDR-adjusted p-
values ranging from 4.59 × 10− 161 to 49.50 × 10− 3). Sup-
plementary Figure 2 shows the effect size and direction
(derived from linear mixed models) of the significant
LPIR-related metabolites grouped with respect to their
molecular composition.
To identify a lipid pattern associated with LPIR and

LPIR components, PCFA was performed. Lipid compo-
nents with loading factors exceeding 0.5 within each factor
are shown in Supplementary Table 2. Based on each fac-
tor’s constituents, their biological relevance and their load-
ing factors, the factors were categorized as storage (factor
1), non-storage (factor 2), and mixed (factor 3) lipids. LPIR
and its components were associated with storage (factor
1) and non-storage lipids (factor 2) (Table 2) with similar
direction and effect size except for VLDL size and small
LDL which were not associated with storage and non-
storage lipids, respectively.

Replication
Supplementary Table 4 summarizes participants’ charac-
teristics by quintile of HOMA-IR in the replication
study. Participants with higher HOMA-IR were more
likely to be female and older. Also, BMI, waist circum-
ference and the level of fasting glucose and insulin in-
creased by HOMA-IR quintile category.
A number of 297 lipid species overlapped between 413

and 383 compounds in the discovery and replication
studies, respectively. HOMA-IR was significantly associ-
ated with 200 lipids, of which 128 overlapped with
LPIR-related lipids (Supplementary Table 3). These
common lipids include 5 CEs, 4 Ceramides, 6 DGs, one
fatty acid, 35 PCs, 5 LPCs, 13 PEs, 12 SMs and 47 TGs.
For all these lipids, the observed associations were not
only significant using the FDR-corrected p-value, but

also had the same direction of association (as evidenced
by the sign of the beta) except for one ceramide, two
PCs, two PEs and one SM (Ceramide (d34:2), PC (37:3),
PC (p-38:2) or PC (o-38:3), PE (p-34:1) or PE (o-34:2),
PE (p-38:4) or PE (o-38:5), SM (d32:2)). These lipids
were directly associated with the LPIR score while they
were inversely linked to HOMA-IR. Multivariate-
adjusted associations of each of the three factors with
HOMA-IR are shown in Table 3. Consistently with the
discovery study, HOMA-IR was positively associated
with storage and mixed lipids and inversely linked to
non-storage lipids. Finally, secondary analysis showed
that there were 105 LPIR associated metabolites that
were also associated with HOMA-IR in both GOLDN
and HAPI Heart. The associations were in the same dir-
ection (as evidenced by the sign of the beta) for all these
common metabolites except for PC (37:3) which was in-
versely related to HOMA-IR in GOLDN and directly
linked to HOMA-IR in the HAPI Heart study (Table 4).

Discussion
In the current research, which was the first comprehen-
sive lipidomic study of the LPIR score, statistically sig-
nificant associations with several classes of lipids were
found. Specifically, TGs, DGs, PIs, PEs and ceramides
were positively, and CEs and one SM were inversely and
strongly related to this measure of metabolic dysfunc-
tion. Furthermore, metabolites’ patterns characterized by
PCFA distinguished storage and non-storage lipids that
were directly and inversely associated with the score, re-
spectively. These patterns provide the first evidence of
molecular distinctions between various levels of LPIR-
assessed metabolic dysfunction. These findings were val-
idated using a related phenotype (HOMA-IR) in an inde-
pendent population characterized using the same
lipidomics approach, reducing the chance of false posi-
tive findings.
Findings of this study are concordant with several pre-

vious reports of lipid associations with IR, prediabetes
and T2D [21–23]. For example, TGs have been previ-
ously proposed as the early markers of T2D [23]. Con-
cordantly, a robust direct association between TGs with
shorter chain fatty acids and the LPIR score was ob-
served. Similarly, a previous metabolomic study reported
that TGs containing shorter chain fatty acids were ele-
vated in pre-diabetes and T2D, while TGs with longer
chain fatty acids were associated with a decreased risk of
these metabolic disorders [24]. On the other hand, when
not esterified, fatty acids act differently. Importantly,
short chain free fatty acids were reported to be depleted
in diabetic patients while medium and long chain free
fatty acids were higher in patients with impaired fasting
glucose (IFG) and T2D compared to controls [24, 25].
The current study showed that saturated and longer

Table 3 Association* of homeostatic model assessment-insulin
resistance with lipid species factors in The Heredity and
Phenotype Intervention (HAPI) Heart Study (n = 650)

Pattern β SE P-value FDR-corrected P-value

Non-storage lipids − 0.13 0.04 2.10E-04 3.14E-04

Mixed lipids 0.19 0.04 2.80E-07 8.40E-07

Storage lipids 0.10 0.04 1.21E-02 1.21E-02

*Adjusted for age, sex, BMI, center and family relationship
SE: standard error
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Table 4 Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) LPIR associated lipids which are also associated with
homeostatic model assessment-insulin resistance (HOMA-IR) in GOLDN compared to HOMA_IR associated lipid species in the HAPI
Heart study

GOLDN study HAPI Heart Study

Metabolites† β SE FDR-corrected P-value‡ β SE FDR-corrected P-value‡

CE (18:1) − 0.137 0.014 8.41E-21 −0.177 0.036 9.70E-06

CE (18:2) −0.105 0.015 5.14E-12 −0.122 0.038 0.0043

CE (20:3) −0.057 0.015 0.00029 −0.148 0.034 9.17E-05

CE (20:4) −0.083 0.015 5.69E-08 −0.114 0.039 0.0086

CE (22:6) −0.070 0.014 2.65E-06 −0.091 0.039 0.0387

Ceramide (d40:0) 0.093 0.012 4.20E-13 0.113 0.035 0.0033

Ceramide (d42:0) 0.083 0.012 1.59E-10 0.102 0.036 0.0128

DG (32:1) 0.105 0.014 3.41E-13 0.158 0.028 2.90E-07

DG (34:1) 0.115 0.013 8.72E-17 0.184 0.031 1.74E-07

DG (34:2) 0.092 0.014 1.02E-10 0.228 0.037 6.03E-08

DG (36:2) 0.070 0.014 1.76E-06 0.125 0.034 9.00E-04

DG (36:3) 0.054 0.014 0.00031 0.097 0.034 0.0123

DG (38:5) 0.061 0.014 4.79E-05 0.184 0.036 4.80E-06

GlcCer (d42:2) −0.052 0.015 0.00078 −0.102 0.04 0.0233

LPC (18:1) −0.051 0.014 0.00070 −0.112 0.037 0.0067

LPC (18:2) −0.038 0.014 0.01010 −0.081 0.033 0.0291

LPC (20:1) −0.044 0.013 0.00196 −0.149 0.035 1.00E-04

LPC (22:5) −0.046 0.015 0.00359 −0.102 0.04 0.023

PC (34:4) 0.039 0.014 0.01240 0.088 0.036 0.0319

PC (37:3) 0.033 0.015 0.04254 −0.093 0.039 0.0345

PC (37:4) −0.048 0.015 0.00292 −0.095 0.038 0.0281

PC (38:3) 0.061 0.015 9.58E-05 0.176 0.035 5.78E-06

PC (40:4) 0.040 0.015 0.01475 0.171 0.038 5.31E-05

PC (40:6) B 0.031 0.014 0.04002 0.1 0.038 0.0196

PC (42:5) 0.033 0.014 0.04006 0.105 0.039 0.0184

PC (42:6) 0.042 0.015 0.00878 0.135 0.037 0.001

PC (o-32:0) −0.040 0.015 0.01473 −0.181 0.035 2.45E-06

PC (p-32:0) or PC (o-32:1) −0.058 0.015 0.00031 −0.221 0.036 4.60E-08

PC (p-34:0) or PC (o-34:1) −0.095 0.014 9.43E-11 −0.244 0.034 3.85E-10

PC (p-34:1) or PC (o-34:2) B −0.141 0.013 4.08E-24 −0.302 0.032 6.01E-17

PC (p-34:2) or PC (o-34:3) −0.090 0.015 4.09E-09 −0.252 0.035 2.28E-10

PC (p-36:1) or PC (o-36:2) A −0.092 0.013 0.02546 −0.19 0.039 1.31E-05

PC (p-36:2) or PC (o-36:3) −0.044 0.015 0.00736 −0.177 0.036 1.13E-05

PC (p-36:4) or PC (o-36:5) −0.054 0.014 0.00044 −0.172 0.038 4.84E-05

PC (p-38:4) or PC (o-38:5) A −0.058 0.015 0.00032 −0.136 0.038 0.0013

PC (p-38:4) or PC (o-38:5) B −0.068 0.014 6.66E-06 −0.218 0.036 8.86E-08

PC (p-40:1) or PC (o-40:2) −0.035 0.015 0.03400 −0.115 0.039 0.0082

PC (p-40:3) or PC (o-40:4) −0.042 0.015 0.00917 −0.157 0.037 1.00E-04

PC (p-40:4) or PC (o-40:5) −0.055 0.015 0.00049 −0.198 0.037 1.54E-06

PC (p-40:6) or PC (o-40:7) B −0.031 0.014 0.04752 −0.186 0.038 1.28E-05

PC (p-42:2) or PC (o-42:3) −0.069 0.014 4.93E-06 −0.173 0.04 7.84E-05

PC (p-42:3) or PC (o-42:4) −0.053 0.015 0.00089 −0.111 0.04 0.0123
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Table 4 Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) LPIR associated lipids which are also associated with
homeostatic model assessment-insulin resistance (HOMA-IR) in GOLDN compared to HOMA_IR associated lipid species in the HAPI
Heart study (Continued)

GOLDN study HAPI Heart Study

Metabolites† β SE FDR-corrected P-value‡ β SE FDR-corrected P-value‡

PC (p-42:4) or PC (o-42:5) −0.060 0.015 0.00012 −0.201 0.037 1.12E-06

PC (p-42:5) or PC (o-42:6) A −0.045 0.015 1.07E-06 −0.168 0.04 1.00E-04

PC (p-44:4) or PC (o-44:5) −0.053 0.015 0.00063 −0.187 0.036 3.09E-06

PC (p-44:5) or PC (o-44:6) −0.058 0.015 0.00039 −0.121 0.036 0.0028

PE (34:1) 0.080 0.013 1.07E-08 0.116 0.033 0.0017

PE (34:2) 0.073 0.014 2.10E-06 0.129 0.032 3.00E-04

PE (36:1) 0.114 0.014 2.66E-15 0.127 0.027 1.76E-05

PE (36:2) 0.104 0.014 1.40E-13 0.135 0.029 2.09E-05

PE (36:3) 0.069 0.014 4.25E-06 0.06 0.026 0.04

PE (36:4) 0.034 0.013 0.02289 0.092 0.035 0.0196

PE (38:4) B 0.052 0.012 6.71E-05 0.084 0.038 0.0483

PE (38:6) 0.040 0.013 0.00539 0.077 0.034 0.0476

PE (p-40:5) or PE (o-40:6) −0.037 0.014 0.01636 −0.1 0.042 0.0348

SM (d38:2) −0.058 0.014 0.00015 −0.171 0.033 2.43E-06

SM (d39:2) −0.074 0.014 3.75E-07 −0.18 0.034 1.54E-06

SM (d40:2) B −0.056 0.015 0.00048 −0.157 0.037 1.00E-04

SM (d40:3) −0.043 0.014 0.00566 −0.197 0.036 1.27E-06

SM (d42:0) 0.040 0.014 0.00740 0.098 0.038 0.023

SM (d42:2) B −0.038 0.014 0.01437 −0.167 0.037 4.84E-05

SM (d42:3) −0.054 0.013 0.00010 −0.224 0.036 2.54E-08

TG (40:1) 0.124 0.014 6.21E-17 0.057 0.024 0.0336

TG (42:0) 0.117 0.015 4.86E-14 0.08 0.024 0.0024

TG (42:1) 0.118 0.015 1.01E-14 0.082 0.024 0.0017

TG (44:1) 0.132 0.014 6.00E-19 0.101 0.024 1.00E-04

TG (44:2) 0.133 0.014 6.13E-19 0.116 0.024 1.50E-05

TG (46:0) 0.142 0.014 4.69E-23 0.092 0.024 6.00E-04

TG (46:1) 0.135 0.014 1.33E-20 0.131 0.024 8.49E-07

TG (46:2) 0.132 0.014 5.69E-19 0.136 0.025 7.46E-07

TG (48:0) 0.138 0.014 3.64E-22 0.147 0.028 1.54E-06

TG (49:0) 0.139 0.014 3.00E-22 0.076 0.024 0.005

TG (49:1) 0.133 0.014 2.06E-20 0.115 0.025 2.17E-05

TG (49:3) 0.107 0.014 6.96E-13 0.136 0.03 3.87E-05

TG (50:1) 0.132 0.014 8.68E-21 0.183 0.027 1.77E-09

TG (50:2) 0.121 0.013 2.59E-18 0.189 0.029 1.31E-08

TG (51:1) 0.129 0.014 1.29E-19 0.11 0.024 3.57E-05

TG (51:2) 0.112 0.014 3.28E-15 0.133 0.029 3.79E-05

TG (51:3) 0.091 0.014 5.44E-10 0.125 0.034 9.00E-04

TG (51:4) 0.076 0.015 1.09E-06 0.109 0.034 0.0041

TG (51:5) 0.071 0.015 5.72E-06 0.147 0.036 3.00E-04

TG (52:1) 0.143 0.013 2.38E-25 0.15 0.024 3.79E-08

TG (52:2) 0.062 0.014 4.71E-05 0.163 0.034 1.28E-05

TG (52:3) 0.085 0.014 3.51E-09 0.142 0.035 3.00E-04
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chain free fatty acids were directly associated with the
LPIR score. Also, in compounds with the same carbon
number, fatty acids with more double bonds showed
lower effect sizes in their relationships with the LPIR
score in comparison with more saturated fatty acids. Im-
paired insulin function can be stimulated by fatty acids
through mechanisms including inflammation, oxidative
stress, mitochondrial dysfunction and the accumulation
of lipid derivatives [26].
The assessment of the fatty acid composition of chol-

esterol esters provides important information about a
potential role in health and disease. In this study, choles-
terol esters containing fatty acids with carbon number
greater or equal to 18 were inversely associated with the
LPIR score. Consistently, other research has shown that
in groups with impaired glucose tolerance or diabetes
compared to those with normal glucose tolerance, the
proportion of palmitic acid (16:0) and palmitoleic acid
(16:1) in serum cholesterol esters was higher while the
proportion of linoleic acid (18:2) was lower [27].

Similarly, as indicated in Supplementary Table 5, CE (16:
1) was directly correlated with lipid measurements
(HDL, LDL, total cholesterol and TG) and insulin resist-
ance and cholesterol esters having fatty acids with
greater carbon numbers were inversely correlated with
TG and insulin resistance. In this study, individuals with
higher LPIR scores had elevated levels of free cholesterol
and reduced levels of all forms of cholesteryl esters.
Cholesteryl ester transfer protein (CETP), a protein in-
volved in replacing lipids between lipoproteins, improves
insulin sensitivity in obesity through increased choles-
terol delivery to liver and activation of bile acid-sensitive
pathways [28]. This could explain the inverse relation-
ship, observed in the current study, especially for CEs
18:1, 18:2, 20:3 and 20:4.
Other studies have also reported phospholipids as

markers of either diabetes or the complications associ-
ated with this metabolic dysfunction [21, 22]. Findings
of this study have also revealed that in the PCs group,
there were a number of species associated with a higher

Table 4 Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) LPIR associated lipids which are also associated with
homeostatic model assessment-insulin resistance (HOMA-IR) in GOLDN compared to HOMA_IR associated lipid species in the HAPI
Heart study (Continued)

GOLDN study HAPI Heart Study

Metabolites† β SE FDR-corrected P-value‡ β SE FDR-corrected P-value‡

TG (52:4) 0.072 0.014 1.78E-06 0.199 0.035 2.51E-07

TG (52:6) 0.065 0.015 2.81E-05 0.217 0.037 1.94E-07

TG (53:1) 0.138 0.014 1.08E-22 0.098 0.023 2.00E-04

TG (53:3) 0.083 0.014 1.74E-08 0.11 0.033 0.0032

TG (53:4) 0.073 0.014 1.79E-06 0.125 0.036 0.002

TG (53:5) 0.055 0.015 0.00048 0.118 0.035 0.0024

TG (54:0) 0.111 0.015 2.43E-13 0.084 0.034 0.0309

TG (54:1) 0.142 0.014 1.47E-23 0.123 0.024 2.45E-06

TG (54:3) 0.060 0.014 7.07E-05 0.095 0.035 0.0177

TG (55:3) 0.083 0.014 2.77E-08 0.081 0.03 0.0168

TG (56:2) 0.125 0.014 1.82E-18 0.141 0.029 8.44E-06

TG (56:4) 0.059 0.015 0.00019 0.1 0.035 0.0119

TG (56:7) B 0.063 0.014 1.78E-05 0.127 0.036 0.0013

TG (56:8) B 0.061 0.014 4.45E-05 0.115 0.036 0.0039

TG (57:2) 0.127 0.014 1.39E-18 0.091 0.025 0.0013

TG (58:1) 0.109 0.014 1.12E-13 0.167 0.031 1.47E-06

TG (58:2) 0.112 0.014 3.38E-14 0.163 0.037 5.74E-05

TG (58:3) 0.097 0.014 8.15E-11 0.149 0.042 0.0015

TG (58:5) 0.073 0.015 3.67E-06 0.128 0.035 0.001

TG (58:6) 0.071 0.014 2.42E-06 0.14 0.034 2.00E-04

TG (60:2) 0.092 0.014 4.06E-10 0.128 0.036 0.0014

*Adjusted for age, sex, BMI, center and family relationship
† Metabolite values were rank-inverse transferred
‡ P-values were FDR corrected to account for multiple comparisons. Results are shown for significant metabolites (FDR-adjusted P < 0.05). study
Abbreviations: SE Standard Error, CE Cholesteryl ester, DG Diglycerides, LPC Lysophosphatidylcholine, PC Phosphatidylcholine, PE Phosphoethanolamine, SM
Sphingomyelin, TG Triglycerides
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LPIR score, while other compounds called PCs isobars
or PC-O lipid species or ether PCs (e.g. PC (p-36:4) or
PC (o-36:5)) were associated with a decreased risk of
metabolic dysfunction. Consistent with these findings,
there is other research suggesting that PC-Os were lower in
individuals with hypertension compared to normotensive
controls [29]. It is currently unclear whether PC-Os have
an ameliorating effect on IR and subsequent metabolic
complications or whether reduced risk factor accompanied
by a healthy status would contribute to diminished ether
PCs. However, their association with the LPIR score was
discrepant from the other PCs. This observation might be
due to their structural variation, especially in their fatty acid
side chain (based on carbon number and double bond) be-
tween these two sub-groups of lipid species. Previous re-
search highlighted the importance of fatty acid composition
within phospholipid molecules, including PCs and PEs in
determining insulin responsiveness [30]. More specifically,
phospholipids containing longer chain and highly unsatur-
ated fatty acids were related to reduced cardiometabolic
risks.
Regarding LPCs, which are produced when phospholipids

such as PCs or PEs are hydrolyzed by phospholipase A2

(PLA2) [31], results from published studies vary. In harmony
with the findings of this study, lower levels of some LPC
species including LPC (18:2) were associated with a higher
risk of metabolic dysfunction [32, 33]. However, there were
some species like LPC (16:1) that were directly related to
metabolic dysfunction [33]. While observed differences in
the relationship of LPCs with metabolic disease could be
due to the fatty acid side chain, PLA2 isoforms could also
play a role. For example, to protect from adipose tissue in-
flammation during obesity, hyperlipidemic LDL is hydro-
lyzed by PLA2-V to release unsaturated fatty acids which aid
saturated adipocytes-released fatty acids to initiate the
polarization of macrophages [31].
Ceramides, compounds composing of a sphingosine

and a fatty acid, were directly associated with higher
LPIR scores. Bergman et al. pointed to C18:0, C20:0, and
C24:1 ceramides that were increased in T2D, and C16:0
ceramide that was elevated in patients with IR [34]. Im-
paired insulin function can be partly attributed to the in-
creased levels of intracellular lipids such as DGs and
ceramides [26]. The same study also suggested that
while SM C18:0 positively correlated with insulin resist-
ance, other SM species (C14:0, C22:3, and C24:4) are
positively related to insulin secretion [34]. This means
that with respect to SMs, which are ceramides with a PC
within the molecule, not all species showed a similar
trend in metabolic dysregulation. Also, patients with IFG
and T2D were reported to have higher levels of SMs
compared to healthy people [26]. Consistently with prior
literature, findings from this study demonstrated that
some SMs were elevated and some were diminished in

participants with higher measures of metabolic dysfunc-
tion; among 17 LPIR score- related SMs, SM (d39:2) ex-
hibited the strongest and inverse association. Reduced
SM synthesis underlies accumulation of reactive oxygen
species, which can lead to pancreatic β-cell dysfunction
and cause reduced insulin secretion [35].
Given that many correlated metabolites can reside in

overlapping pathways, there is value in investigating pat-
terns captured by particular clusters of metabolites. Of
the three factors that were assessed in the current study,
the relevance of storage lipids and its components to the
score and its role in metabolic disease etiology is of par-
ticular interest. Specifically, levels of storage lipids, com-
posed of TGs and DGs (storage lipids), increased with
the LPIR score. Similar significant patterns of this asso-
ciation were found for all components of the LPIR score,
except for VLDL particle size. A consistent finding, with
respect to different types of lipoproteins, has been re-
ported during IR status and diabetes [36, 37]. However,
VLDL particle size has also been increased in this situ-
ation [36]. The discrepancy regarding this particular
lipoprotein metric might be due to the general good
health status of GOLDN participants; 70% of the study
population had optimal levels of IR (HOMA-IR ≤ 3.8
[38]), and 92.5% of them were non-diabetic. Plasma lipo-
protein fractions may contribute to the transition to IR
status. Elevated large VLDL is the primary abnormality
involved in increasing small-dense LDL production [36,
37], and results of this study suggest both large VLDL
and small LDL are strongly associated with storage lipids
and thus could be significant in developing IR [39].
In contrast to factor 1, factor 2, composed of non-

storage lipids and polar lipids, was inversely associated
with LPIR and all its subclass scores, except for small
LDL. A non-significant association of non-storage lipid
pattern with the small LDL score might indicate that it
is TGs but not phospholipids component of LDL that
play an important role in progression of IR and T2D in
healthy individuals. The observed relationship between
the LPIR score and lipid pattern could be described in
terms of the lipid constituents of this pattern. The stor-
age lipid pattern was mostly composed of TGs which are
positively related to increased metabolic dysfunction in-
cluding diabetes [40]. Further, the majority of lipids with
high loading factor within non-storage lipid pattern in-
cluded SMs and PCs which are protective effects against
metabolic dysfunction [35]. The observation that the
mixed lipid pattern (factor 3) was mostly composed of
TGs and DGs likely explains the direct association be-
tween the LPIR score and the third lipid pattern.

Study limitation
The findings should be considered in the context of sev-
eral limitations. First, the cross-sectional study cannot
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establish a temporal or causal relationship between lipid
species and the LPIR score. Secondly, participants of the
GOLDN study were largely metabolically healthy Ameri-
cans of European descent, which might limit the
generalizability of the findings to other ethnic groups
and clinical populations. Finally, even though the find-
ings were reported after controlling for potential con-
founders including family relationship, residual
confounding may not be excluded such as for age and/
or gender.
Also, while we were able to replicate many of the

lipids discovered in GOLDN for LPIR score using
HOMA-IR as the outcome in the HAPI Heart study,
HOMA-IR was not a perfect proxy. However, secondary
analysis of LPIR associated lipids showed the majority
were also associated with HOMA-IR in GOLDN lending
support to using that phenotype in the external replica-
tion effort. Furthermore, these two cohorts were differ-
ent based on gender. This discrepancy is likely explained
by inherent differences in the GOLDN and HAPI Heart
populations, especially since the latter is an isolated
Amish population. However, Using the HAPI Heart
Study was the best opportunity for replication given the
Amish cohort is of comparable size and race and had
the same lipidomic assays conducted at the same lab
(West Coast Metabolomics Center). To address this dif-
ference in the analysis, sex was adjusted for in all analyt-
ical models and many of the results did replicate.

Study strength
In spite of these limitations, the study possesses some
major strengths. First, GOLDN and HAPI Heart were
large well characterized studies of Caucasian adults that
had available clinical metabolic data and lipidomic data
from the same lab enabling external validation of the
findings. Secondly, a lipidome-wide approach was
employed to comprehensively characterize all associa-
tions, compared to previous smaller candidate lipid stud-
ies. This study was the first to describe molecular
correlates of higher LPIR scores prior to dysglycemia on-
set, and these findings provide the first evidence of po-
tential lipid targets for interventions [41, 42].

Conclusion
a strong positive association was found between storage
lipids including TGs and DGs and a strong inverse asso-
ciation was observed between non-storage lipids with
the metabolic dysfunction score in a healthy population.
Clinical relevance: Additional research should evaluate

whether storage and non-storage lipid patterns, espe-
cially among those with optimal clinical profiles but a
higher LPIR score, could be useful to inform metabolic
disease prevention.

Take home message: A pattern of higher storage lipids
(e.g. TGs) and lower non-storage lipids (e.g. PCs) is as-
sociated with higher LPIR score and insulin resistance in
Caucasian adults. More studies are needed to determine
if these lipid patterns could offer early targets for pre-
vention of metabolic disease.
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Additional file 1. Supplementary Table 1. Linear mixed models for
the association of the lipoprotein insulin resistance score with plasma
lipids in the Lipid Lowering Drugs and Diet Network study.
Supplementary Table 2. Factors identified from exploratory factor
analysis following principal components analysis (PCA) in the Lipid
Lowering Drugs and Diet Network study of lipidomics. Only metabolites
with a factor loading ≥ 0.5 were reported as composing a given factor.
Supplementary Table 3. Results of associations between homeostatic
model assessment-insulin resistance and plasma lipids in the HAPI Heart
study. Supplementary Table 4. Characteristics of participants by quin-
tile of the homeostatic model assessment-insulin resistance (n = 590).
Supplementary Table 5. Partial correlation between cholesterol esters
and lipids and glycemic measurements. Supplementary Figure 1. Heat
map showing positive (in red), and negative (in purple) partial
correlations (adjusting for sex, age, BMI and center) of the lipoprotein
insulin resistance (LPIR) score and its component scores with LPIR-
correlated metabolites (n = 363); metabolites were characterized
according to their molecular structure. Each line belongs to one
metabolite. Supplementary Figure 2. Bar plot showing positive (in
blue) and negative (in red) effect size derived from linear mixed models
of the significant lipoprotein insulin resistance (LPIR)-related metabolites
(n = 319) characterized with respect to metabolite composition. Each line
belongs to one metabolite. To have a better visualization groups with
one metabolite (cholesterol and lactosylceramide (d18:1/24:1(15Z))) were
not included in the figure.

Additional file 2: Supplementary Table 6. Lipidomcs data for UPLC-
QTOF/MS.
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