
UCSF
UC San Francisco Previously Published Works

Title
Exome copy number variant detection, analysis, and classification in a large cohort of 
families with undiagnosed rare genetic disease.

Permalink
https://escholarship.org/uc/item/3s20v4vs

Journal
American Journal of Human Genetics, 111(5)

Authors
Lemire, Gabrielle
Sanchis-Juan, Alba
Russell, Kathryn
et al.

Publication Date
2024-05-02

DOI
10.1016/j.ajhg.2024.03.008
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3s20v4vs
https://escholarship.org/uc/item/3s20v4vs#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE

Exome copy number variant detection, analysis, and classification in a
large cohort of families with undiagnosed rare genetic disease
Authors

Gabrielle Lemire, Alba Sanchis-Juan,

Kathryn Russell, ..., Michael E. Talkowski,

Harrison Brand, Anne O’Donnell-Luria

Correspondence
glemiret@broadinstitute.org (G.L.),
odonnell@broadinstitute.org (A.O.-L.)
Lemire et al. applied copy number variant

(CNV) detection on exome sequencing from a

cohort of 6,633 families with undiagnosed

rare genetic disorders. With the resolution

provided by exome sequencing, they

identified a causative CNV in 2.6% of families

and assessed CNV pathogenicity by applying

an advanced classification approach.
Lemire et al., 2024, The American Journal of Human Genetics 111, 863–876
May 2, 2024 � 2024 American Society of Human Genetics.
https://doi.org/10.1016/j.ajhg.2024.03.008 ll

mailto:glemiret@broadinstitute.�org
mailto:odonnell@broadinstitute.�org
https://doi.org/10.1016/j.ajhg.2024.03.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2024.03.008&domain=pdf


ARTICLE

Exome copy number variant detection, analysis,
and classification in a large cohort of families
with undiagnosed rare genetic disease

Gabrielle Lemire,1,2,3,4,5,30,* Alba Sanchis-Juan,1,2,4,5,30 Kathryn Russell,1,2 Samantha Baxter,1,2

Katherine R. Chao,1,2,5 Moriel Singer-Berk,1,2,5 Emily Groopman,1,2,3 Isaac Wong,1,2,5

Eleina England,1,2,3 Julia Goodrich,1,2,5 Lynn Pais,1,2,3,5 Christina Austin-Tse,1,2,5 Stephanie DiTroia,1,2,3,5

Emily O’Heir,1,2,3,5 Vijay S. Ganesh,1,2,3,4,5,6 Monica H. Wojcik,1,2,3,4,15 Emily Evangelista,1,2

Hana Snow,1,2 Ikeoluwa Osei-Owusu,1,2,5 Jack Fu,1,2,4,5 Mugdha Singh,1,2,3,4,5 Yulia Mostovoy,1,2,5

Steve Huang,1,2 Kiran Garimella,1,2 Samantha L. Kirkham,3 Jennifer E. Neil,3,7 Diane D. Shao,3,4,8

Christopher A. Walsh,2,3,4,7 Emanuela Argilli,9,10 Carolyn Le,9,10 Elliott H. Sherr,9,10

Joseph G. Gleeson,11,12 Shirlee Shril,4,13 Ronen Schneider,4,13 Friedhelm Hildebrandt,4,13

Vijay G. Sankaran,2,4,14 Jill A. Madden,3,15 Casie A. Genetti,3,15 Alan H. Beggs,2,3,4,15

Pankaj B. Agrawal,2,3,4,15 Kinga M. Bujakowska,2,4,16 Emily Place,2,4,16

(Author list continued on next page)

Summary

Copynumber variants (CNVs) are significant contributors to thepathogenicity of rare genetic diseases and,withnew innovativemethods,

can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV call-

ingusingGATK-gCNVwasperformedonexomes fromacohort of 6,633 families (15,759 individuals)withheterogeneousphenotypes and

variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the

Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified

causalCNVs for171 families (2.6%).Theestimated sizesofCNVs ranged from293bp to80Mb.ThecausalCNVsconsistedof140deletions,

15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by

orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and

Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as var-

iants on theX chromosome to further advance the framework.We interpreted 151CNVs as likely pathogenic/pathogenic and 20CNVs as

high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals un-

diagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome

sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.

Introduction

Copy number variants (CNVs) are imbalances of genomic

material compared with the reference genome resulting

in the addition (duplications and insertions) or removal

(deletions) of genomic segments. CNVs and other types

of structural variants (SVs) such as balanced translocations

and inversions, can vary in size but have traditionally been

defined as variants of more than 50 bp1–3 and are signifi-

cant contributors to rare genetic disease.4,5 Chromosomal

microarrays (CMAs) have been the recommended first-

tier clinical test to investigate individuals with suspected

rare genetic diseases, especially for multiple congenital

anomalies and intellectual disability disorders,6,7 though

practice is moving toward exome sequencing as a first-

line test.8 Standard clinical CMAs typically only detect

CNVs larger than 50–100 kilobases precluding detection

of smaller gene- and exon-disrupting CNVs. Due to tech-

nical limitations from variable sequencing depth, CNVs

are challenging to identify by standard exome sequencing,
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which typically focuses on single-nucleotides variants

(SNVs) and indels.

Traditionally, exome-based CNV algorithms9–11 have

relied on exome read depth to inform of the underlying

copy number at a given locus. However,many factors influ-

ence exome read depth, so detecting CNVs from exome

data is difficult due to the non-uniform distribution of

captured reads caused by biases introduced by PCR amplifi-

cation, exome capture, and mapping. These factors make

it challenging to differentiate between a technical

artifact and a bona fide CNV. The GATK-gCNV tool12 uses

a probabilistic framework to infer rare CNVs from read

depth data in the presence of these systematic biases. The

performance of GATK-gCNV has been benchmarked with

genome sequencing; it achievedmore than 95% sensitivity

for rare CNVs when compared against matched genome

sequencing in 7,962 samples.12

We used the GATK-gCNV algorithm to call CNVs across

the Broad Institute Center for Mendelian Genomics (Broad

CMG) exome cohort, a research center within the Geno-

mics Research to Elucidate the Genetics of Rare Diseases

(GREGoR) consortium. The Broad CMG has performed

exome sequencing onmore than 6,000 families with a sus-

pected genetic disease since 2016, representing a large

cohort of individuals with heterogeneous phenotypes,

including neurodevelopmental disorders, neuromuscular

diseases, retinal disorders, blood disorders, kidney diseases,

multiple malformations syndromes, and other conditions.

Most individuals in this cohort have had prior testing by

gene panels, exome sequencing, and/or clinical CMA,

but the level of prior genetic testing is variable. Several mo-

lecular diagnostic laboratories and many research groups

have incorporated CNV calling in their exome analysis,

particularly in recent years. The reported additional

diagnostic yield of CNV calling on exome data, most

commonly used as a second-line test after CMA, on various

cohorts of individuals with suspected rare genetic diseases

varies between 1% and 2%.13–17

The widespread implementation of CMA and exome/

genome sequencing is expanding the types and numbers

of CNVs identified in both clinical and research settings,

and it can be challenging to determine the impact of these

CNVs on human health. Several resources have been or

are being developed to address this challenge. For instance,

high quality reference population data such as gnomAD SV

v43 (a reference dataset of SVs from short-read genome

sequencing of 63,046 individuals from the general popula-

tion), and gnomAD CNV v4 (a reference dataset of CNVs

from exome sequencing of 464,297 individuals from the

general population) help determine the frequency of a

CNV in the population. Also, in silico prediction tools for

CNVs are available, including some that have been devel-

oped with the goal of helping to distinguish deleterious

CNVs from non-deleterious CNVs. For example, the

StrVCTVRE score is a predictive tool that incorporates

gene importance, conservation, coding sequence, and

exon structure of the disrupted region and can evaluate

CNVs overlapping coding sequences.18 CADD-SV, another

example, is a tool developed using machine-learning

random forest models to differentiate deleterious from

neutral SVs.19

Importantly, accurate classification of CNV pathoge-

nicity requires a consistent and transparent approach to

be used across the human genetics field. Riggs et al. devel-

oped the 2020 American College of Medical Genetics and

Genomics (ACMG) and the Clinical Genome Resource

(ClinGen) consensus standards to guide in the evaluation

of germline CNVs and encourage consistency in CNV

interpretation across laboratories, technologies, and spe-

cialties.20 They proposed a quantitative evidence-based

evaluation framework to classify copy number loss and

copy number gain that follow an autosomal-dominant

inheritance. The curation process is divided into five

sections: assessment of genomic content, overlap with es-

tablished haploinsufficient or triplosensitive regions, eval-

uation of the number of genes in the CNV, evaluation of
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Zornitza Stark,18,19 Tiong Yang Tan,18,19 Susan M. White,18,19 Ana Töpf,20 Volker Straub,20
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cases with the variant in the literature and databases, and

scoring of the variant based on phenotype specificity and

segregation in the family being studied. These standards

did not intend to cover all curation scenarios and, for

example, do not extend to guidance to evidence types

used for SNVs and indels, such as how to score CNVs

following an autosomal-recessive or X-linked inheritance

pattern (allelic data), CNVs with available functional evi-

dence, or SVs beyond deletions and duplications. Here,

we developed and applied additional evidence criteria to

address these limitations and assess the pathogenicity of

all CNVs that were thought to be causal in the Broad

CMG exome cohort.

Subjects, material, and methods

Case selection

The BroadCMGwas established in 2016 as part of an initia-

tive funded by the National Human Genome Research

Institute (NHGRI) of the National Institutes of Health

with the goal of discovering the variants and genes underly-

ing Mendelian disease to increase diagnosis rates for indi-

viduals with a suspected genetic condition.21–23 The Broad

CMG is now part of the NHGRI GREGoR consortium, the

focus of which includes evaluating different approaches

to improve rare disease diagnosis, such as CNV calling on

exomedata. Undiagnosed families recruited and sequenced

through the Broad CMG are enrolled in research studies

with local institutional review board approval, including

for sharing de-identified samples for sequencing and anal-

ysis (MassGeneralBrigham 2013P001477). Informed con-

sentwas obtained for each recruited individual. Phenotypic

information for the affected individuals in each family was

provided using HPO terms.24

From February 2016 to May 2021 (5 years, 3 months),

6,633 undiagnosed families underwent CNV calling (inte-

grated with SNV/indel analysis) on exome data through

the Broad CMG (15,759 individuals, through multiple

callsets). This cohort had heterogeneous phenotypes

including neurodevelopmental, neuromuscular, multiple

congenital anomalies, hematological, ocular, or renal dis-

orders. Most were enrolled due to an unrevealing prior ge-

netic diagnostic evaluation as many had a CMA, gene

panel sequencing for known causes of disease, or clinical

exome prior to research exome sequencing through the

CMG. The sequenced individuals were submitted from a

large number of studies and had variable levels of pre-

screening prior to enrollment (and this information was

not systematically collected).

Exome sequencing

Exome sequencing was performed by the Genomics Plat-

form at the Broad Institute of MIT and Harvard. Libraries

from DNA samples (>250 ng of DNA, at >2 ng/ul) were

created with an Illumina Nextera exome capture (37 Mb

target) and sequenced (150 bp paired reads) to cover

>80% of targets at 203 and a mean target coverage of

>803 from February 2016 through January 2019 and

then using a Twist exome capture (38 Mb target) and

sequenced (150 bp paired reads) to cover >80% of targets

at >203 and a mean target coverage of >603 thereafter.

Sample identity quality assurance checks were performed

on each sample. The exome data was de-multiplexed and

each sample’s sequence data were aggregated into a single

Picard CRAM file. The BWA aligner was used for mapping

reads to the human genome build 38 (GRCh38). SNVs

and insertions/deletions (indels) were jointly called across

all samples using Genome Analysis Toolkit (GATK)

HaplotypeCaller package version 3.5. Default filters were

applied to SNVand indel calls using theGATKVariantQual-

ity Score Recalibration (VQSR) approach. Annotation was

performed using Variant Effect Predictor (VEP) during up-

load of the callset to seqr25 for collaborative analysis be-

tween theBroadCMGteamandcollaborating investigators.

CNV detection on exome data

CNVs were detected from exome sequencing following

GATK-gCNV best practices,12 as follows: read coverage

was first calculated for each exome using GATK Collec-

tReadCounts. After coverage collection, all samples were

subdivided into batches of amedian of 410 samples (range:

160–625) for gCNV model training and execution; these

batches were determined based on a principal components

analysis (PCA) of sequencing read counts. After batching,

one gCNV model was trained per batch using GATK

GermlineCNVCaller on a subset of training samples, and

the trained model was then applied to call CNVs for each

sample per batch. Finally, all raw CNVs were aggregated

across all batches and post-processed using quality- and

frequency-based filtering to produce the final CNV callset.

Methods are further described in Babadi et al.12

CNV analysis

Each family’s CNV data was manually analyzed in coordi-

nation with the SNV/indel data by members of the Broad

CMG analysis team using our in-house-developed analysis

platform, seqr, an open-source, web-based tool for family-

based monogenic disease analysis that enables project

management, variant filtration, annotation, and prioritiza-

tion in addition to data sharing of candidate disease genes

(with variants and HPO terms) through the Matchmaker

Exchange.25 CNVs were filtered based on their mode of in-

heritance, gCNV quality score (QS) (QS > 50; see Babadi

et al.12 for details), and their frequency in the Broad

CMG callset composed of 21,256 individuals (including

the 15,759 individuals included for this study and addi-

tional samples). For autosomal-dominant conditions, we

filtered for CNVs with an allele frequency of <0.1% in

the Broad callset and used <1% for autosomal-recessive

conditions. When analyzing each family, factors used to

help prioritize if a CNV was of clinical significance for a

given individual included the CNV size, its structural con-

sequences (predicted loss-of-function [LoF] variant, copy

The American Journal of Human Genetics 111, 863–876, May 2, 2024 865



gain), its segregation pattern within the affected family, its

frequency in the gnomAD-SV (v2)3 reference population

database, the number and characteristics of genes involved

in the CNV, and in silico prediction of pathogenicity tools.

Of note, the following criteria needed to be met for an SV

in gnomAD to be considered as the same allele:

(1) Same SV type (duplication, deletion, etc.).

(2) Either has sufficient reciprocal overlap (50% recip-

rocal overlap for large SV >5 Kb; 10% reciprocal overlap

for SV <5 Kb).

Genes included in a CNV were evaluated for gnomAD

gene constraint scores26 (LOEUF, pLI), ClinGen dosage

sensitivity scores, and disease association in OMIM; exons

included in an intragenic CNV were evaluated for exon

expression (pext score in gnomAD27) and conservation.

The probability of a gene being dosage sensitive as defined

by Collins et al. (haploinsufficiency [HI] and triplosensitiv-

ity [TS] scores) was also taken into account when evalu-

ating genes included in a CNV.28 If no promising variants

were found using our initial searches, we removed the QS

filter to include low-quality variants. We reviewed the

StrVCTVRE score18 of candidate CNVs but did not use it

to filter data or rule out variants. The score ranges from

0 to 1, a score of 1 being more deleterious. In line with

the developer suggestions, CNVs with a score >0.37 were

considered as having a higher likelihood of being delete-

rious. To evaluate the quality of a given CNV, the proband’s

copy number level was compared to any additional

sequenced familymembers as well as a cluster of other sam-

ples with similar read depth that act as controls. The copy

number plot of each compelling candidate was assessed to

confirm an increase or decrease (corresponding to either a

gain or a loss) between the proband and the background

cluster, and a difference in the proband’s copy number

within vs. outside the reported coordinates of the CNV

(Figure 1).We also visually inspected the read data of candi-

date CNVs using the Integrated Genomics Viewer (IGV) to

evaluate for sequencing artifacts (Figure 1).

A CNV is defined as high-confidence by GATK-gCNV (see

Babadi et al.12 for details) if the following criteria are met:

(1) The CNV is present in a high-quality sample (with

%200 autosomal raw CNV calls of which at least

35 have QS >20).

(2) The sample frequency of the call is %0.01 within

the Broad callset.

(3) The number of overlapped exons is R3.

(4) The QS is equal or greater than the QS threshold as

defined in Babadi et al.12 (QS >50 for duplications,

>100 for deletions, and >400 for homozygous dele-

tions).

CNV confirmation

CNVconfirmationswereperformedby the investigator that

contributed the sample by a variety of methods (including

FISH [fluorescent in situ hybridization], karyotype, CMA,

MLPA [multiplex ligation-dependant probe amplification],

Sanger sequencing, quantitative PCR, droplet digital [dd]

PCR,29 or genome sequencing) across different clinical or

research laboratories, while some were confirmed by

short-read or long-read genome sequencing performed at

the BroadGenomics Platform (Table S1). Not all CNVs iden-

tified by the gCNV pipeline were confirmed by another

method, largely when samples were from historic cohorts

where there was not a path to return results or there was

insufficient remaining DNA.

Evaluation of CMA coverage for each causal CNV

To evaluate how many causal CNVs could have been de-

tected by a standard clinical CMA,CNVdetection sensitivity

by CMA was assessed by evaluating the number of probes

from the Agilent GenetiSure Cyto CGHþSNP arrays (down-

loaded from https://genome.ucsc.edu/ on May 23, 2023)

included within the genomic coordinates of a given CNV.

Aminimumnumber of five probes was required to consider

that the CNV would confidently be called by CMA.30

Assessment of the pathogenicity of CNVs

We considered a case solved if the CNV was classified as

pathogenic or likely pathogenic and conclusively ex-

plained the phenotype or if a variant was found involving

a novel disease gene (here defined as a gene with no disease

association in OMIM) with moderate/strong supporting

evidence by the ClinGen gene-disease validity criteria.31

Supporting genetic and/or experimental evidence were

required to consider a CNV in a novel gene as the diagnosis

in a given family, most often by additional families identi-

fied through Matchmaker Exchange. We also considered a

case solved when the analysis team and referring provider,

when relevant, considered the variant causative, even if a

CNV was technically a variant of uncertain significance

(VUS) by ACMG/ClinGen CNV criteria. For heterozygous

CNVs in genes associated with a condition that follow an

autosomal recessive inheritance pattern, the presence of

a second variant involving that gene (confirmed or sus-

pected compound heterozygous state) was required to

consider the case solved.

Each CNV was evaluated and classified by two curators

(G.L. and K.R.). In order to systematically assess the patho-

genicity of the SVs in this study, the ACMG/ClinGen stan-

dards for interpretation and reporting of constitutional

copy-number variants were applied.20 For candidate novel

disease genes, the interpretation of gene-disease rela-

tionship was guided by the ClinGen framework.31 We

developed an approach, including new curation criteria,

to optimally capture evidence for pathogenicity for the

range of variants discussed in this article.

Determination of the number of protein-coding genes

included in a CNV

In order to score points from section 3 from the Riggs stan-

dards (‘‘evaluation of gene number’’), we used OMIM gene

number count (https://genescout.omim.org/) and have
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compared it to the gene number count provided by the

DECIPHER browser (https://www.deciphergenomics.org/)

and the ClinGen browser (https://search.clinicalgenome.

org/kb/gene-dosage?page¼1&size¼25&search¼).

Variants following an autosomal-recessive inheritance

pattern

The current ACMG/ClinGen CNV standards do not yet

provide guidance on how to score CNVs in genes for

A B

C

D

E

Figure 1. Exome copy number plot and reads visualization for examples of causal copy number variants (CNVs) in the Broad CMG
cohort
(A) Individual affected with retinitis pigmentosa with a homozygous single-exon deletion in CRB1 (chr1:197,438,450–197,439,442x0,
quality score [QS] ¼ 120) identified on exome. To evaluate the quality of the CNV, the patient’s copy number (CN) level (in red) was
compared to a cluster of other samples with similar read depth that act as controls. The proband’s CN is decreased compared to the back-
ground cluster, compatible with a homozygous deletion. Y axis: CN.
(B) As breakpoints are located within the exome data, manual inspection of read data from the individual from (A) using the Integrated Ge-
nomics Viewer (IGV) showed discordant read pairs, split reads, and complete absence of coverage, compatible with a homozygous exon 10
deletion also including part of upstream exon 9 in CRB1 (chr1:197,435,257–197,441,674x0 [GenBank: NM_201253.3]). Cov, coverage.
(C) Individualwithmultiple congenital anomalies and aheterozygousdeletionof four exons inRAB3GAP1 (Warburgmicro syndrome) (red,
chr2:135,162,318–135,164,794x1, QS ¼ 92) in trans with a frameshift variant in RAB3GAP1 (not shown, c.2393_2394del [GenBank:
NM_012233.3] [p.Leu798ArgfsTer7]), both identifiedbyexome.Thepresenceof thedeletionwasvalidatedbydropletdigitalPCR.Yaxis:CN.
(D) Individual with a neurodevelopmental disorder with a de novo 2.6 Mb heterozygous 1q43q44 deletion (red, chr1:242,523,991–
245,156,781x1, QS ¼ 3077) identified on exome. The presence of this deletion was validated by quantitative PCR. Y axis: CN.
(E) Individual with a neurodevelopmental disorder with a de novo 2.1 Mb 22q11.2 duplication (red, chr22:18,985,739–21,081,116x3,
QS ¼ 3077) identified on exome. The presence of this duplication was validated by chromosomal microarray (CMA). Y axis: CN. All co-
ordinates on GRCh38.
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conditions that follow an autosomal-recessive inheritance

pattern. To classify these variants within this project, we

developed an approach, advancing the current framework.

(1) We applied category 2E and the PVS1 LoF flow-

chart32 for any intragenic CNV or if a CNV had a

complete or partial overlap with a gene with an es-

tablished gene-disease relationship that follows an

autosomal recessive inheritance pattern.

(2) When the candidate CNV involved a gene with no

established gene-disease relationship, we did not

score points from category 2 but rather used cate-

gory 4 to build up evidence for an established

gene-disease relationship by finding additional

cases with overlapping variants from the literature.

(3) Points were awarded to the Broad CMG cases

and published cases from the literature using a

similar system to that which is used when cura-

ting SNVs (the PM3 criteria) (ClinGen Sequence

Variant Interpretation Recommendation for in

trans Criterion [PM3] - Version 1.0 Working Group

Page: https://clinicalgenome.org/working-groups/

sequence-variant-interpretation/, Approved: May

2, 2019). The point-based system suggested in the

PM3 criteria was translated into points of similar

strength level in the Riggs quantitative frame-

work20 (Table 1).

(4) We added 0.15 points when at least one individual

with a unique phenotype (phenotype is highly spe-

cific to disease, low genetic heterogeneity) has been

reported by our study or in the literature (equivalent

of PP4 criteria in Richards et al.33). In some cases, we

awarded 0.30 points when evidence was particularly

strong. This only applied for genetic diseases with a

specific, unique phenotype, high clinical sensitivity

testing (e.g., biochemical assays, enzyme deficiency

assays, functional cytogenetic tests [e.g., chromo-

somal breakage study]), and consistent family his-

tory. These additional points were only used one

time per variant.

Variants following an X-linked inheritance pattern

We developed the following flowchart to score points for

CNVs with an X-linked inheritance pattern (Figure 2).

We incorporated sex of proband, parental genotype, and

parental affected status to score both the proband in which

the X-linked variant was identified and, if applicable, any

individual in the published literature or public databases

that had variants of similar genomic content to the variant

of interest. The points for each case could be increased or

decreased based on phenotype specificity, by increments

of 0.15 points and up to 0.45 points.

Complex SVs

We defined a complex SV as a complex rearrangement typi-

cally composed of three or more breakpoint junctions that

cannot be characterized as a single canonical SV type.34

Some complex SVs were suspected on exome CNV analysis

and/or identified after further validation. As suggested by

Riggs et al.,20 when classifying complex rearrangements (for

example a paired duplication inversion), we evaluated each

CNV separately. The overall classification for the event was

defaulted to the most deleterious classification (for example,

if thedeletionportionwere classified as ‘‘pathogenic’’ and the

duplicationportionwasclassifiedas ‘‘uncertain significance,’’

the entire SV was classified as ‘‘pathogenic’’).

Inversions and insertions

For variants initially called as deletion or duplication by

GATK-gCNV in this cohort, some were identified as

including inversions or insertions by confirmation

methods. The Riggs et al.20 standards do not provide guid-

ance on how to score inversions or insertions. Therefore,

we took guidance from Collins et al.,35 which states that

inversions can be evaluated as an LoF event if exactly

one breakpoint falls within a gene or both breakpoints

fall within the same gene and span at least one exon.

Collins et al. also recommend evaluating a large insertion

within an exon as an LoF event. We applied the ACMG/

AMP PVS1 LoF criteria32 as appropriate for such cases.

Variants with available functional evidence

We added an additional 0.15 points for any variant with at

least supporting functional evidence of pathogenicity, either

from the investigation of our cases or from the literature. Ex-

amples included expression assays (western blot for protein

expression, PCR for RNA expression), RNA sequencing,

cellular assays (impaired localization and/or function), or

protein interaction studies. If the evidence was stronger,

thepointswere upgraded tomoderate (0.30points) or strong

(0.45 points). For example, RNA sequencing results showing

a clear and significantly decreased expression of a gene or an

animal model with the exact variant recapitulating the dis-

ease phenotype was given 0.45 point (strong evidence).

Results

CNV detection and analysis

CNV calling using the GATK-gCNV algorithm was per-

formed, in parallel to SNV/indel analysis, on exomes

Table 1. Adapted PM3 table to score CNVs in genes for conditions
that follow an autosomal-recessive inheritance pattern

Variant classification/
zygosity

Points per proband

Confirmed
in trans

Phase
unknown

Second variant is pathogenic
(P) or likely pathogenic (LP)

0.30 0.15 (P)
0.08 (LP)

Homozygous occurrence of
this variant (max 0.30 point)

0.15 N/A

Second variant is a variant
of uncertain significance
(max 0.16 point)

0.08 0.0
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from the Broad CMG cohort of 6,633 undiagnosed families

with heterogeneous rare disease phenotypes and variable

prior genetic testing that typically included a gene panel,

exome, and/or CMA. A total number of 9,930 high-confi-

dence unique variants (4,387 deletions and 5,543 duplica-

tions) were identified across 15,759 individuals from these

6,633 families (Figures 3A and S1), 10,472 of the 15,759

samples had at least one rare (<1% frequency in the Broad

data callset) high-confidence CNV, and the median num-

ber identified was two (SD þ �1.55) per individual

(Figure S1). The entire CNV callset for these individuals,

with a total of 2,131,645 copy number calls (292,833

unique variants), was loaded into the seqr platform for

analysis. Many of these low-quality calls were likely arti-

facts, but by incorporating phenotype and allelic variation

(SNVs, indels, CNVs) in the analysis of each family, 26 low-

quality CNV calls were prioritized and ultimately inter-

preted as causal. Through the entire callset analysis, we

have identified a causal variant in 171 previously undiag-

nosed families. CNV calling on existing exome data in

this cohort thus resulted in an additional solve rate of

2.6% (171/6,633). The causal CNVs consisted of 143 dele-

tion, 15 duplication, and 13 suspected complex (multiple

CNVs on a chromosome) GATK-gCNV calls, which are

currently resolved as 140 deletions, 15 duplications, 3 in-

sertions, 10 complex SVs, and 3 suspected complex SVs.

Of the 10 validated complex SVs, three were initially dele-

tion or duplication calls where a complex SV was identified

on validation.

Causal CNVs results

The CNVs mostly involved established genes/loci, but five

families that were considered solved had a CNV involving

a novel disease gene candidate. Supporting genetic and/or

experimental evidence was required to consider a CNV in a

novel gene as the explanation for a given family, most

often by additional families identified through Match-

maker Exchange36 or the literature. Four of the five CNVs

involving a novel gene included at least one haploinsuffi-

cient gene, as defined by Collins et al.28 and gnomAD

gene constraint scores.26 The disorder followed an auto-

somal dominant inheritance in 93 families, an autosomal

recessive inheritance in 60 families and X-linked inheri-

tance in 18 families (Figure 3B). The CNV was confirmed

Figure 2. Flowchart illustrating how points were scored for copy number variants (CNVs) that followed an X-linked inheritance
pattern
We incorporated sex of proband, parental genotype, and parental affected status to score both the proband in which the X-linked variant
was identified and, if applicable, any individual in the published literature or public databases that had variants of similar genomic con-
tent to the variant of interest. The points for each case could be increased or decreased based on phenotype specificity, up to 0.45 points.
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de novo in 70/93 (75%) of the families with an autosomal

dominant disorder, inherited from a parent in 3/93 fam-

ilies (one inherited from an affected parent, one involving

an imprinted locus, and one inherited from an unaffected

parent for a condition known to harbor incomplete pene-

trance/variable expressivity), and the inheritance was

unknown in 20/93 families. Of the 60 families having a

disorder that follow an autosomal recessive inheritance

pattern, the CNV was homozygous in 39 families, was in

a confirmed compound heterozygous state with an SNV

in seven families, and was in a presumed compound het-

erozygous state with an SNV for 14 families. The CNV

was confirmed de novo in 7/18 (39%) of the families with

an X-linked disorder. Detailed information on the CNV

of each family is provided in Table S1. The predominant

phenotype present in the 171 families was neurodevelop-

mental disorders (54%) followed by neuromuscular disor-

ders (15%), but the cohort with causal CNVs also included

individuals with multiple congenital anomalies, hem-

atological, ocular, and renal phenotypes. The degree of

prescreening before research exome differed between indi-

viduals from different sub-cohorts and was therefore non-

uniform across different phenotypes.

The estimated sizes of causal CNVs by exome ranged

from 293 bp to 80 Mb (Figure 3C). One-fifth (21%) of

solved cases had a CNV below the benchmarked resolution

of GATK-gCNV (22 one-exon and 14 two-exon CNVs),

indicating it may be able to detect even smaller CNVs

when allowing for a higher false positive rate. Large

CNVs were also identified as some individuals did not

have CMA prior to research enrollment. Large CNVs of

more than 5–10 Mb tend to be fragmented into multiple

small GATK-gCNV calls. We interpreted fragmented

CNVs as being part of a larger CNV event in 35 families

(35/171, 20%) in this cohort after looking at the copy

number plot and/or confirmation methods.

Evaluation of CMA coverage for each causal CNV

We sought to evaluate howmany of the causal CNVs could

have been detected by evaluating probes on one of the

standard clinical CMAs, which is distinct from a high-den-

sity clinical array, which often has one or more probes per

exon. Standard CMAs usually detect CNVs larger than 50–

100 Kb, but the resolution varies across the genome and

across different array designs as the probes are not evenly

spaced but are clustered around regions of clinical interest.

CNV detection sensitivity by a representative standard

CMA was assessed based on the minimum number of

probes considered ‘‘sufficient’’ for CNV calling per target,

which is defined as R5 probes for the Agilent GenetiSure

Cyto array.30 Based on this, we estimate that 44% (75/

171) of these CNVs are unlikely to have been detected by

standard CMA.

CNV confirmation

More than half of the CNVs (116/171, 68%) were con-

firmed by various orthogonal methods, such as CMA,

PCR, FISH, karyotype, MLPA, Sanger across the CNV or

breakpoints, or short- or long-read genome sequencing.

Of note, some of these methods did not provide break-

points but rather only confirmed the copy number change.

Of the 116 confirmed CNVs, 35 (30%) showed differences

when comparing the initial results with the orthogonal

confirmation results: 24 showed differences in gene/exon

A B C

Figure 3. Characteristics of copy number variants (CNVs) across the entire callset and the subset of causal CNVs
(A) Number of high-confidence CNVs by estimated size that were identified in the Broad CMG exome callset of 6,633 families sequenced
between 2016 and 2021. Large CNVs tend to be fragmented intomultiple small GATK-gCNV calls, accounting for why there are no CNVs
in the>10Mb category of the graph. These CNVs were interpreted as being part of the same underlying event when looking at the copy
number plot and/or validation methods and are presented that way in Figures 3B and 3C. DEL, deletion; DUP, duplication.
(B) Mode of inheritance and number of genes involved in each CNV in 171 families in which the CNV was interpreted as causal. The
number of genes included in each interval was chosen based on cutoffs suggested for CNV scoring in section 3 of the Riggs et al. ACMG/
ClinGen standards.20AD, autosomal dominant; AR, autosomal recessive; XL, X-linked.
(C) CNV classification by estimated size in 171 families in which the CNV was interpreted as causal by the multidisciplinary team. The
causal CNVs consisted of 140 deletions, 15 duplications, 3 insertions (miscalled as deletion by GATK-gCNV), and 13 complex structural
variants (SVs). We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as variants of uncertain significance (VUSs).
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content and 11 showed differences in SV type. For ex-

ample, GATK-gCNV initially detected a one-exon deletion

in CLN3 (MIM: 607042) in the exome of five individuals,

which was later corrected to a two-exon deletion by

genome sequencing or Sanger sequencing. That single-

exon deletion was in frame, and the addition of a second

exon resulted in that CNV disrupting the reading frame,

but neither CNV was classified as pathogenic. Importantly,

the difference in gene or exon content identified in 24 fam-

ilies did not result in a change in the clinical interpretation

of the CNV. Of note, only one of these 24 CNVs was

curated as a VUS, and the difference in the number of

exons included in the CNV did not change the scoring

and classification of this CNV. The 11 cases with different

SV type consisted of eight complex SVs, which were either

incompletely characterized or not suspected by GATK-

gCNV on the exome, and a recurrent Alu insertion in

MAK (MIM: 154235)37 identified in three individuals

with retinitis pigmentosa. This insertion was miscalled as

a deletion by the GATK-gCNV pipeline, but manual in-

spection of the exome reads showed discordant read pairs

compatible with an Alu insertion. Sanger sequencing

resolved the nature of this event.

Special categories of CNVs

Overall, there were 10 confirmed complex SVs in this

cohort. We defined a complex SV as a complex rearrange-

ment typically composed of three or more breakpoint

junctions that cannot be characterized as a single canoni-

cal SV type.34 A complex SV was suspected on the GATK-

gCNV calls in 10 families (del/dup, paired dup, etc); seven

of these were confirmed by genome, qPCR, or CMA

(Table S1), and three remained unvalidated. Two deletions

and one duplication identified by GATK-gCNV in three

different families were revealed to be complex SVs (paired

deletion inversions and a paired inversion duplication)

when validated by genome sequencing or long-range PCR.

Twenty-five unrelated families with causal CNVs had a

recurrent CNV that was identified in more than one other

unrelated family in this cohort. The recurrent 22q11.2 mi-

crodeletion syndrome (MIM: 188400) was identified in

nine individuals with neurodevelopmental disorders in

this cohort. Two individuals with a neurodevelopmental

disorder were diagnosed with 22q13.3 deletion syndr-

ome (Phelan-McDermid syndrome [MIM: 606232]). The

17q12 deletion syndrome (MIM: 614527) was identified

in two individuals with renal cystic disease. There were

multiple recurrent CNVs identified in the subgroup of indi-

viduals with retinal disorders in this cohort. Indeed, five

individuals of European ancestry affected with non-syn-

dromic retinal degeneration had a heterozygous 2-exon-

deletion in CLN3, a common variant in that gene,38 in

trans with a pathogenic variant.39 A founder variant in

the Ashkenazi Jewish population, an Alu insertion in

MAK,37,40 was found in three affected individuals of this

ancestry. Two individuals of different ancestries affected

with retinitis pigmentosa were homozygous for the same

two-exon deletion in EYS (MIM: 612424), a deletion previ-

ously reported in the literature.39,41 Two individuals of Eu-

ropean ancestry affected with retinitis pigmentosa had a

heterozygous four-exon deletion in EYS, a deletion re-

ported in multiple affected individuals in the litera-

ture,39,42–44 in transwith a pathogenic or likely pathogenic

variant. Detailed information on the CNV of each of these

families is provided in Table S1.

StrVCTVRE in silico score

The StrVCTVRE in silico score was evaluated across the

cohort. This score was viewable on each CNV within seqr

during the initial analysis but was not used for filtering

and not strongly relied on in analysis (consistent with

how other in silico scores are viewed in our analysis pipe-

line). Sharo et al. reported that a 90% sensitivity is reached

at a StrVCTVRE score of 0.37 (score ranges from 0 to 1, a

score of 1 beingmore deleterious) and observed on a collec-

tion of SVs called from a clinical cohort that this threshold

may identify 90% of pathogenic SVs while reducing the

candidate SV list by 54%.18 In this cohort, 158/165 unique

causal CNVs had a StrVCTVRE score greater than 0.37 (true

positive rate of 96%), while this was the case for 6,162/

10,788 non-causal CNVs (false positive rate 57%) (Table

S2). The median score of the 158 unique causal CNVs

was 0.78 and 0.42 for non-causal CNVs that had a

StrVCTVRE score calculated. One minor limitation of this

analysis is that many large CNVs are fragmented, which

may result in lower StrVCTVRE scores for constituent parts

than would be assigned for the larger CNVevent. While we

manually reassembled and recalculated StrVCTVRE scores

for causal CNVs reported here (as it is appropriate to

apply these scores to the entire CNV), non-causal CNVs

were not reassembled. We note that all CNVs greater

than 3 Mb size automatically had a score of 1, demon-

strating a correlation between the CNV size and the

StrVCTVRE score (Figure S2).

CNV classification

Using the 2020 ACMG/ClinGen CNV interpretation stan-

dards20 and additional evidence criteria that we developed

(detailed in subjects, material, and methods), we inter-

preted 151 CNVs as likely pathogenic/pathogenic and 20

CNVs as VUSs of high interest, including the five in novel

disease-gene candidates (Figure 3C). When evaluating the

pathogenicity of each CNV, we determined the number

of protein-coding genes included in each CNV and

compared that number to three different reference

databases: OMIM (https://genescout.omim.org/), DECIP-

HER browser (https://www.deciphergenomics.org/browser),

and ClinGen browser (https://search.clinicalgenome.org/

kb/gene-dosage?page¼1&size¼25&search¼) (Table S1). The

vast majority of CNVs (146/171, 85%) showed differences

in gene number between these three commonly used data-

bases. Using the 2020 ACMG/ClinGen CNV interpretation

standards,20 different points are scored based on the number

of genes included in a CNV (section 3 of the standards). For
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example, 0 points are given for a deletion with 0–24 genes,

0.45 points for a deletion of 25–34 genes, and 0.9 points for

a deletion of more than 35 genes. For copy gain, 0 points

are given for 0–34 genes, 0.45 points are given for 35–49

genes, and 0.9 points for more than 50 genes. We used the

number of genes provided by theOMIMdatabase to perform

the curation. Using the OMIM database vs. DECIPHER re-

sulted in a different final score for 24/146 (16%) CNVs, but

this would only alter the final classification for one CNV, as

points were awarded from other sections. That altered case

was an 857 kb de novo 22q13 duplication, which would be

classified as a VUS if we use the gene number provided by

OMIM (28 protein-coding genes) but would be classified as

pathogenic if we had used DECIPHER browser (35 protein-

coding genes). Detailed information on the CNV curation

of each family is provided in Table S1.

Discussion

We present the analysis and curation results from CNV

calling on exome data across a large and phenotypically

heterogeneous cohort. The sequenced individuals in our

cohort were submitted from a large number of studies

and had variable levels of testing prior to enrollment.

This is a limitation of the current study as the likelihood

of identifying a causal CNV varied among individuals.

The additional 2.6% solve rate of exome CNV calling

identified in this cohort is nonetheless comparable to pre-

viously reported diagnostic yields of 1%–2% in other

studies.13–17 In this cohort, most causal CNVs were dele-

tions. Duplications were more common in the callset but

are less likely to disrupt gene function and also typically

require more functional investigation to confirm a delete-

rious effect. Our callset contains many candidate dup-

lications (and deletions) that could potentially elucidate

additional affected families, but their pathogenicity re-

mains uncertain and has not been further investigated.

Similar to using the probes on a microarray to estimate

CNV size, the size of a CNV from exome analysis is an esti-

mate based on which exons have an abnormal copy num-

ber, but the breakpoints typically occur somewhere intronic

or intergenic. In addition, some exons havemore heteroge-

neous coverage, and the deletion or duplication may

involve more or fewer exons than predicted. This can also

result in a largeCNVbeing called asmultiple smaller events,

butwhenthedata is reviewed, it canoftenbeassembled into

a larger event. Based on the probe set from a representative

clinical CMA, we estimated that 44% of the causal CNVs in

our cohort were unlikely to have been detected by standard

CMA. CMAs with higher density probe coverage can often

detect small exonic CNVs (depending on probe placement)

and array-basedmethods will bemore effective at detecting

intronic and intergenic CNVs as these regions are not well

covered in exome data.

In this study, we did not attempt to validate and map all

the CNV breakpoints, and we did not assess the validation

rate of GATK-gCNV as this has been done previously.12 A

small number of causal CNVs in this cohort were nonethe-

less confirmed by genome sequencing by the Broad CMG

as part of initial efforts to validate gCNV performance. Of

the 30 deletions and two duplications identified by

GATK-gCNV and confirmed by genome sequencing, these

were resolved as 29 deletions, one duplication, and two

complex SVs. We recommended that any candidate CNV

variants identified by exome be validated with an orthog-

onal method to confirm the event and clarify the break-

points if possible (though note that breakpoints from

CMA are not the true breakpoints either). This is particu-

larly important for CNVs with QSs below the recommen-

ded thresholds or if altering the CNV call by an exon or

two at either side of the event would change its interpreta-

tion (more likely to be an issue for smaller CNVs where

such adjustments might affect whether the resulting dele-

tion or duplication leads to an in-frame or out-of-frame

transcript). The sensitivity of GATK-gCNV decays greatly

for CNVs smaller than three exons (e.g., only �50% for

CNVs involving 1 exon), but the precision is relatively

stable.12 We might thus have underdetected some small

causal CNVs in our cohort. Still, CNVs in 36 families

(36/171, 21%) in this cohort involved fewer than three

exons, highlighting the benefit of reviewing the full data-

set with the context of the patient’s phenotype and for

some cases, a pathogenic variant in trans can highlight

small or poor quality CNV calls that warrant further atten-

tion. More than half of CNVs were confirmed by various

methods (including 85% [22/26] of causal CNVs that did

not meet the standards to be considered a high-quality

variant), and confirmation is either underway or may not

be possible for the remainder of the identified CNVs.

Importantly, the difference in size and in gene/exon con-

tent for confirmed CNVs did not lead to a change in the

interpretation of any of the CNVs initially identified as

causal, but it is possible that some interesting CNVs in

this cohort were overlooked for that reason.

GATK-gCNV can only call deletions or duplications, so

seven suspected complex SVs and three initially unsus-

pected complex SVs in this cohort were identified by

orthogonal confirmation methods. We likely underde-

tected complex SVs as 32% of the CNVs in this cohort

were not confirmed, and some confirmation methods

would miss a more complex event, such as CMA, droplet

digital, or quantitative PCR, which only confirm the

abnormal copy number without mapping the breakpoints.

There are only a few in silico prediction tools available for

CNV interpretation. Our group applied StrVCTVRE scores,

and we observed that it was a useful tool to consider when

prioritizing CNVs in this cohort. Generally, we use in silico

predictions as accessory annotations for review when

considering a variant rather than using it to filter out vari-

ants, even more so because large CNVs may be represented

by multiple smaller fragmented calls. More data on anal-

ysis of cohorts of patients with rare diseases is needed to

determine its utility overall and comparison to other
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available SV predictors. Of note, StrVCTVRE only provides

a prediction score for CNVs overlapping a coding region,

which was not a factor for this cohort given that it was

exome based, but this is a limitation of the score when

considering genome sequencing and noncoding SVs.

High-quality reference population data is essential for

effective CNV analysis. The gnomAD SV v2 dataset stands

as a pivotal resource in human genetics but is limited to

sequencing data from short-read genomes. We used the

database to evaluate if a given CNV was present in the gen-

eral population, which we found was useful for variant

analysis and prioritization. There is a myriad of technical

differences between genome and exome sequencing and,

while studies have shown high overlap between CNV call-

ing between the two techniques, the recently released gno-

mAD CNV v4 dataset with GATK-gCNV calls on >400,000

individuals is anticipated to improve clinical CNV inter-

pretation since they will be more analogous from a tech-

nical standpoint. As the gnomAD SV dataset expands in

terms of size (incorporating both exome and genome

data) and ancestral diversity, its utility as an invaluable

tool for both rare disease diagnosis and broader genetic

studies will only increase.

Standards for CNV classification are an important yet

challenging area requiring ongoing development. We pro-

posed new evidence criteria to enable the assessment of the

pathogenicity of all CNVs that were thought to be causal in

our cohort. We identified four areas that needed additions

or refinements. First, we suggested that functional data,

including expression assays (western blot, PCR, RNA

sequencing) and cellular assays (localization/function),

be incorporated as evidence at the supporting level of

0.15 points and could be increased in weight as appro-

priate. For example, abnormalities observed in RNA-

sequencing data or an animal model with the same variant

recapitulating the phenotype could be scored 0.3 or 0.45

points, respectively. Given the increasing availability of

RNA sequencing, we suggest that incorporating scoring

for functional evidence is essential for CNV classification.

Second, to score CNVs involving genes associated with dis-

orders with autosomal-recessive inheritance, we proposed

an approach inspired by the ACMG/AMP criteria PM3

used for SNVs by incorporating phase and classification

of the second variant (Table 1). The point-based system

suggested in the PM3 criteria was translated into points

of similar strength level in the Riggs quantitative frame-

work. We also used the PVS1 flowchart32 (or criteria 2E in

Riggs et al.20) for intragenic CNVs or CNVs including at

least one gene that had an established gene-disease rela-

tionship following an autosomal-recessive inheritance

pattern. Additional points were added based on phenotype

specificity and familial segregation. Third, to classify CNVs

that follow an X-linked inheritance pattern, we developed

a scoring system based on biological sex of the proband,

parental genotype, and affected status of the transmitting

parent (Figure 2). Points were upgraded by one or two

strength levels based on phenotype specificity. We also

used the PVS1 flowchart32 for intragenic CNVs or CNVs

including at least one gene that had an established gene-

disease relationship following an X-linked inheritance

pattern. Finally, to evaluate SVs other than deletion and

duplication, we took guidance from Collins et al.,35 which

states that LoF can be expected if there is an insertion

within an exon, if an inversion breakpoint falls within a

gene, or if both inversion breakpoints fall within the

same gene and span at least one exon. We thus applied

the PVS1 LoF flowchart here. Our approach refined multi-

ple aspects of CNV classification and advanced the system-

atic framework to assess the pathogenicity of CNVs.

An important step in CNV classification involves deter-

mining the number of protein-coding genes it contains.

We observed some significant differences in gene number

in CNVs evaluated in this cohort depending on which

database was queried, the OMIM database being the most

conservative. OMIM’s gene count results from manual cu-

ration of published references while DECIPHER extracts

this information directly from the Ensembl GRCh38

genome. OMIMmight thus underestimate the real number

of genes present in a CNV and DECIPHER might overesti-

mate it. Even though different points were scored for

several CNVs, the choice of which database to use did

not affect the final classification except for one duplication

in this cohort. For that duplication, the genes that were

missing in OMIM but included in DECIPHER consisted

of seven protein-coding genes. Our group opted for a con-

servative approach and used the OMIM database, but this

question needs to be further studied as this can lead to

confusion during the curation process. In addition, a

sliding scale to score progressive points based on the

increasing number of genes in a given CNV could be

used instead of fixed cutoffs, and features such as LoF

constraint, HI, and TS scores could be incorporated.

Conclusion

CNV calling and analysis from existing exome data in-

creases the solve rate by 2.6% in this diverse and presumed

monogenic cohort. This is a higher resolution alternative

to CMA at a fraction of the cost of genome sequencing

and can be applied retrospectively to existing exome data-

sets.We estimate that 44% of the 171 causal CNVsmay not

have been detected by standard clinical CMAs. In classi-

fying these variants, we advanced the current standards

to take into account additional types of evidence contrib-

uting to the systematic framework to assess the pathoge-

nicity of CNVs.

Data and code availability

The CNVs that were interpreted as causal in this cohort

were submitted to ClinVar (https://www.ncbi.nlm.nih.

gov/clinvar/) (submitter ID 506627, Broad Rare Disease

Group). The ClinVar accession numbers of each CNV are

listed in Table S1.
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and Antiñolo, G. (2011). Copy-number variations in EYS: a

significant event in the appearance of arRP. Invest. Ophthal-

mol. Vis. Sci. 52, 5625–5631.

42. Bujakowska, K.M., Fernandez-Godino, R., Place, E., Consu-

gar, M., Navarro-Gomez, D., White, J., Bedoukian, E.C.,

Zhu, X., Xie, H.M., Gai, X., et al. (2017). Copy-number

variation is an important contributor to the genetic causal-

ity of inherited retinal degenerations. Genet. Med. 19,

643–651.

43. Ellingford, J.M., Campbell, C., Barton, S., Bhaskar, S., Gupta,

S., Taylor, R.L., Sergouniotis, P.I., Horn, B., Lamb, J.A., Michae-

lides, M., et al. (2017). Validation of copy number variation

analysis for next-generation sequencing diagnostics. Eur. J.

Hum. Genet. 25, 719–724.

44. McGuigan, D.B., Heon, E., Cideciyan, A.V., Ratnapriya, R., Lu,

M., Sumaroka, A., Roman, A.J., Batmanabane, V., Garafalo,

A.V., Stone, E.M., et al. (2017). EYS Mutations Causing Auto-

somal Recessive Retinitis Pigmentosa: Changes of Retinal

Structure and Function with Disease Progression. Genes 8,

178. https://doi.org/10.3390/genes8070178.

876 The American Journal of Human Genetics 111, 863–876, May 2, 2024

http://refhub.elsevier.com/S0002-9297(24)00081-8/sref37
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref37
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref38
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref38
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref38
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref38
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref38
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref38
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref39
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref39
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref39
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref39
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref39
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref39
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref40
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref40
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref40
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref40
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref41
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref41
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref41
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref41
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref41
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref42
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref42
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref42
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref42
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref42
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref42
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref43
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref43
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref43
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref43
http://refhub.elsevier.com/S0002-9297(24)00081-8/sref43
https://doi.org/10.3390/genes8070178

	Exome copy number variant detection, analysis, and classification in a large cohort of families with undiagnosed rare genet ...
	Introduction
	Subjects, material, and methods
	Case selection
	Exome sequencing
	CNV detection on exome data
	CNV analysis
	CNV confirmation
	Evaluation of CMA coverage for each causal CNV
	Assessment of the pathogenicity of CNVs
	Determination of the number of protein-coding genes included in a CNV
	Variants following an autosomal-recessive inheritance pattern
	Variants following an X-linked inheritance pattern
	Complex SVs
	Inversions and insertions
	Variants with available functional evidence

	Results
	CNV detection and analysis
	Causal CNVs results
	Evaluation of CMA coverage for each causal CNV
	CNV confirmation
	Special categories of CNVs
	StrVCTVRE in silico score
	CNV classification

	Discussion
	Conclusion

	Data and code availability
	Supplemental information
	Acknowledgments
	Declaration of interests
	Web resources
	References




