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ABSTRACT OF THE DISSERTATION 

Persistent Prototypes 

by 
Stephen Hunter Willson 

Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 1986 

Professor Richard N. Taylor, Chair 

Rapid prototyping environments (RP Es) give the programmer great flexi
bility during the composition phase of program-creation. An RPE enables the 
designer/programmer to define and redefine fragments of programs in an ad hoc 
fashion with a minimum number of constraints. 

Existing RPEs are based on programming languages which are unsuitable 
for use in long term production environments. This inability to move from the 
ad hoc development environment to a more structured production environment 
inhibits the long term value of the prototype: most prototypes are thrown away 
and the work is recreated in a compiler based environment. A persistent proto
type is defined as a prototype which evolves into a mature program. Persistent 
prototypes are valuable because they eliminate the need to recreate work done 
in the prototyping environment in a compiler based environment. 

This dissertation describes the requirements for rapid prototyping environ
ments based on languages with strong typing, which are suitable for production 
use. Prototypes are written in interactive Ada, a variant of standard compiled 
Ada, which is suitable for prototyping. Interactive Ada relaxes the compiled Ada 
constraint that definitions are stored in a particular order. Thus, it is necessary 
to ezport the prototype from the interactive environment to a compiled envi
ronment by sorting the declarations into an appropriate order. The dependency 
relationships inherent in Ada's strong typing make this sorting process possible. 
The _dissertation details the data structures and algorithms necessary to effect 
this transfer. 
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Chapter 1 

,Research Objectives 

persist v. 1. To hold firmly and steadfastly 
to a purpose or undertaking despite obstacles. 

2. To continue in existence. [Lat persist~re.] 
The American Heritage Dictionary (1983) 

This chapter presents an overview of the research objectives and principle 

contributions. 

1.1 Introduction 

Rapid prototyping environments (RP Es) give the programmer great flexibility 

during the composition phase of program-creation. An RPE enables a design-

er/programmer to define and redefine fragments of programs in an ad hoc fashion 

with a minimum number of constraints. 

1 
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Existing RPEs are based on programming languages which are unsuitable 

for large scale development. This inability to move from the ad hoc development 

environment to a more structured development environment inhibits the long 

term value of the prototype: most prototypes are thrown away and the work 

is recreated in a compiler based environment. A persistent prototype is defined 

as a prototype which evolves into a mature program. Persistent prototypes are 

valuable because they eliminate the need to recreate work done in the prototyping 

environment in a compiler based environment. 

This dissertation describes the requirements for rapid prototyping environ

ments based on languages with strong typing, which are suitable for production 

use. Prototypes are written in interactive Ada, a variant of standard compiled 

Ada, which is suitable for prototyping. Interactive Ada relaxes the compiled Ada 

constraint that definitions are stored in a particular order. Thus, it is necessary 

to ezport the prototype from the interactive environment to a compiled envi

ronment by sorting the declarations into an appropriate order. The dependency 

relationships inherent in Ada's strong typing make this sorting process possible. 

The dissertation details the data structures and algorithms necessary to effect 

this transfer. 
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1.2 Prototyping 

Sometimes it is difficult to accurately and completely specify the requirements for 

a particular software system [8, page 290]. One technique used to experimentally 

determine software system requirements is prototyping. Prototyping is a method-

ology for building a subset of a system and testing portions of the behavior with 

potential users to determine if the design meets their requirements. 

"In most fields of engineering the significant new project costs are 
labor, materials, and capitol [sic]. In software engineering, material 
costs are small and capitol [sic] costs are often fixed. Labor, and 
therefore time, is the main project expense. Scale modeling of soft
ware, if it is to be cheaper than building the whole system, must take 
the form of quickly built models. Thus the term 'rapid prototyping'." 
[50, Page 181] 

There are generally two approaches to rapid prototyping. 

"Discussions of rapid prototyping generally focus on two strategies 
for producing the prototype: methodologies and executable specifi
cations. The methodology strategy, in its simplest form, suggests that 
the prototype be written in a language which facilitates expression 
and experimentation, possibly at the cost of efficiency or robustness. 
It is a strategy that we all already use (or should use if we don't), 
at least for small prototypes. The executable specifications strategy 
involves describing the software to be prototyped in some (relatively 
formal) specification language which has some operational semantics 
so that it can be directly executed (or interpreted) in some fashion." 
[5, page 33] 

The focus here is on the methodology approach rather than the executable 

specifications approach. As indicated above, a prototype is often developed in 
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a rapid prototyping language (RPL). Rapid prototyping languages typically are 

interpreted, lack strong typing, and have minimal structural requirements. Lisp, 

Basic, Forth, and APL are languages commonly used for r~pid prototyping. A 

rapid prototyping language is used in conjunction with a rapid prototyping en

vironment (RPE). The RPE provides useful services which extend the power of 

the RPL. "Using environments, prototypes are used to clarify requirements and 

design issues prior to construction of the actual product." [42, page 2]. 

Normally when developing a prototype in an RPL, one makes great use of 

the services provided by the runtime (i.e., interpreted) environment. "One of the 

valuable lessons we learned from Interlisp and Smalltalk was that the availability 

of an interpreter greatly facilitates debugging and testing ... "[46, page 286] For 

instance, the Lisp (print (eval (read))) loop is often modified to provide 

specialized input and output processing. Compile time type checking is not 

considered important and one relies on the interpreter to catch significant errors. 

The error recovery services of the interpreter are used instead of special case code 

(e.g., to check for a null pointer before dereferencing it). 

Since the nature of the task is inherently experimental, it is bad policy to 

overconstrain one's options by hiding subroutines and types that might be useful 

at a later time. Thus, the rapid programming environment usually supports 
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some means (i.e., a database) for accessing a large number of separate functions 

and data structures. 

The methodology of prototyping and the programming environment used 

to carry out that task are intimately connected. "The quality of software depends 

primarily on the programming methodology in use. The choice of programming 

language, however, can have a major impact on the effectiveness of the method

ology." [31, page 565] Similarly, the choice of programming environment impacts 

the effectiveness of the methodology as well. " ... every detailed recommenda

tion on how to write programs is .also a recommendation on how to design an 

interactive programming system that supports the methodology." [38, page 37] 

The characteristics of a rapid prototyping environment that supports the 

prototyping methodology are summarized below: 

• The designer/programmer requires rapid system response to commands to 

execute, suspend, modify and debug a program. 

• The designer/programmer requires fine grained interaction which allows 

him/her to experiment directly in a "free form" manner with data struc

tures and routines, without waiting for a traditional compiler and or linker. 
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• The designer/programmer needs to enter definitions rapidly, without wor

rying too much about getting everything in the right order. The program

mer shouldn't spend time positioning each new routine in the proper place 

relative to the others. 

• The designer /programmer needs access to a potentially large set of data 

structures and routines. The environment needs to support a large, easy 

to manipulate database of these definitions. 

• The designer /programmer should not be overconstrained by environment 

and/or language rules for type checking. The designer/programmer inter

actively defines new types and alters old ones. The key characteristic here 

is the ability to redefine the type of an object. This capability allows the de

signer/programmer to quickly implement major structural changes to the 

data types defined in the prototype. 

1.3 Requirements of Production Environments 

The requirements for production quality programs, namely, reliability and main

tainability, have resulted in a development methodology that, generally speaking, 

is in conflict with the prototyping methodology. The following list, paraphrased 
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from [21, pp. 202-203], describes the characteristics of production quality soft-

ware: 

• The system has to function correctly. Even small errors can be costly. 

• The system is long-lived. The cost of developing the system is recouped 

over a long period of time. 

• During its lifetime, the system undergoes considerable modification. 

• Many people-tens or hundreds-are involved in the development of the 

system. 

The goals of a production environment are to promote stability, relia

bility, and maintainability. These goals conflict directly with the goals of a 

prototyping environment, namely, to promote flexibility and experimentation. 

Interactive development environments tailored to the needs of one or two de

signer /progranuners do not adequately support the needs of large teams of pro

grammers and will not do so in the foreseeable future. 

1.4 Prototype Promotion 

The differences in the two kinds of program development just described have led 

to the notion that prototype programs are significantly different from production 
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programs. But, as mentioned in section 1.2, labor is the most significant cost 

of developing software. To avoid wasted effort (and thereby reduce costs and 

increase productivity) it is desirable to reuse as much of the prototype software 

as possible when constructing the production version of the same system. This 

dissertation proposes the following strategy for reconciling the two methodologies 

in such a way that it is possible to evolve a prototype implementation into a 

production quality implementation. 

1. Develop the prototype in a programming environment that supports inter

active prototyping in Ada. This environment supports the kind of inter

action normally expected in a rapid prototyping environment, but in the 

context of Ada, a strongly typed, statically scoped, modular language. 

2. At the appropriate time, export the prototype from the RPE to a tradi

tional, compiler based programming environment. 

3. Continue development of the program in the traditional environment, using 

the traditional tools of large software development. 

For this approach to work, an RPE for Ada must exist. Since the RPE 

treats Ada as if it were a prototyping language, it may be necessary to repackage 

the prototype into a more standard form before continuing development in the 
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compiler based environment. 

The next section introduces the key concepts of interactive Ada, and in-

dicates how interactive Ada is used both as a prototyping language and a pro-

duction quality language. There are minor differences between interactive Ada 

and standard compiled Ada. These minor differences have a minimal impact 

on the semantics of the language, but have a large impact on the nature of the 

programming environment used to develop Ada programs. 

1.5 Interactive Ada 

Surveyor [52) is a programmmg environment which supports interactive input 

and execution of fragments of Ada programs, including "on-the-fly" redefinition 

of types, variables, and subroutines. Interactive Ada, as implemented in Surveyor, 

is fairly similar to compiled Ada. There are four principle. differences between 

interactive Ada and compiled Ada: 

1. Type checking occurs at runtime. · 

2. A program fragment (e.g., a single statements or declaration) is the basic 

unit of interaction (rather than an entire compilation unit).1 

1The valid top level inputs to the Ada interpreter are as follows: expression, 
simple statement, unlabeled compound statement, use clause, object declaration, 
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3. Programs are not stored in any particular "order." Since it is possible 

to enter an individual declaration without placing it in the context of all 

other declarations as required in compiled Ada, it is necessary for the pro-

gramming environment to take on the burden of connecting together all 

declarations at runtime. 

4. It is possible to redefine the type of an object. Again, since the de-

signer/programmer can enter individual declarations interactively, it is pos-

sible for him to redefine an existing declaration. 

Taken together, these differences significantly alter the way the design-

er/programmer interacts with the system. The compile-link-debug cycle is elimi-

nated. These alterations to the normal use of compiled Ada make interactive Ada 

suitable as a prototyping language without sacrificing the needs of a production 

environment (e.g., strong typing and modular structure). 

Ada as an RPL 

Surveyor's interactive Ada meets the requirements of a prototyping environment: 

type declaration, subprogram declaration, task declaration, rename declaration, 
number declaration, subtype declaration, package declaration, exception decla
ration, subprogram body, task body, package body, and body stub. 
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• Programs are interpreted. Modifications to subroutines or other definitions 

are instantly available for testing. 

• A single statement, declaration, or expression is the level of interaction 

with the interpreter. 

• Programs are not stored in any particular order. The environment takes 

care of connecting definitions with usages at runtime. 

• Definitions are usually stored in one fl.at scope. The normal Ada semantics 

which allow nesting of modules is intact, but for prototyping purposes the 

designer/programmer usually stores everything in one scope. 

• Type checking occurs at runtime. Even though the interactive Ada inter

preter enforces strong typing, the ability to redefine the type Qf an object is 

still available to the designer/programmer. In fact, type definitions them

selves can be redefined, thus causing global changes to the structure of a 

prototype. Strong typing encourages good software practice by helping the 

designer/programmer build hierarchical definitions for complex types. The 

ability to redefine types makes interactive Ada suitable as a prototyping 

language without sacrificing strong typing. 
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Ada as a production language 

The differences between interactive Ada and compiled Ada do not interfere with 

its use in a production environment. 

• Once an interactive Ada· program is translated to compiled Ada, the global 

type checking facilities of the compiler are used in the normal fashion. 

• Again, once an interactive Ada program is translated to compiled Ada 

( ezported), the runtime overhead of the development environment is com

pletely eliminated. 

• The facilities for modular program structure remain intact. Since compiled 

Ada and interactive Ada are so similar, the goals of distributed devel

opment among many individuals, production of maintainable code, and 

management control of module interfaces are nicely supported. 

Once strong typing is introduced as a characteristic of an RPL, a mecha

nism is required to support the ezport of the prototype from the development 

environment to the production environment. This need arises because the RPE 

(Surveyor) does not store programs in any particular order, whereas a compiled 

Ada environment has strict rules defining a required order for the textual rep

resentation of a program [1, page 3-43]. An ezport tool provides the service of 
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packaging up interactive Ada programs into compilable versions of the same. The 

Ada interpreter records the dependency relationships between definitions in the 

RPE. The export tool uses these dependency relationships to sort the definitions 

into an appropriate order for outputting as a compilable file. 

1.6 Summary of Results 

This dissertation discusses a programming environment for building persistent 

prototypes. A persistent prototype is one that is designed to be kept as the basis 

for a more mature system. It is beneficial if the persistent prototype is developed 

in a language with strong typing and modular static scoping (e.g., Surveyor's in

teractive Ada). The quality of the prototype is improved (because of strong 

typing), and the prototype can be further developed and refined in a produc

tion (i.e., compiler based) environment. This approach differs from traditional 

techniques which use dynamically scoped, loosely typed languages for imple

menting prototype systems. Without strong typing and modular structure, tra

ditional prototypes fail to satisfy the requirements of production environments, 

and therefore can not "scale up." 

Chapter 2 presents a survey of related work in programming environments, 

with particular emphasis on the suitability of each environment for developing 
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persistent prototypes. Chapter 2 concludes with a description of Surveyor, and 

indicates how it is used to build prototype systems. 

Chapter 3 explains how the dependency relationships between type def

initions are stored in the Surveyor environment. The issues relating to storing 

programs as unordered fragments are explored, and the need for an ezport tool to 

effect the transfer from Surveyor to a more traditional environment is explained. 

A process for collecting these dependencies into tabular form is presented as well. 

Chapter 4 presents several algorithms which work together to turn the 

table of dependencies generated by the process described in Chapter 3 into an 

ordered list of declarations suitable for use with a compiled environment. The 

algorithms deduce an ordering for the "unordered" definitions stored in Surveyor. 

This ordering serves two purposes: 

1. The ordering illuminates the structure implicit in the dependency relation

ships between various type definitions, and 

2. The ordering allows the definitions to be compiled with a standard compiler. 

The ideas presented in this dissertation point the way to improved pro

gramming environments that support the need for both flexibility and imposed 

structure. 



Chapter 2 

Rapid Prototyping Environments 

Many of Fortran's restrictions, such as the number of array dimen
sions or the form of expressions used as array indices, are based di
rectly on what could be implemented efficiently on the IBM 704. 

The issue of efficiency has changed considerably, however. Efficiency 
is no longer measured only by ·the execution speed and space. The 
effort required to produce a program or system initially and the effort 
required in maintenance can also be viewed as components of the 
efficiency measure. 

- Carlo Ghezzi and Mehdi Jazayeri, 
Programming Language Concepts (1982) 

This chapter presents a survey of related research on programming envi-

ronments. Many of today's research programming environments are strongly 

influenced by the Interlisp programming environment [45,38,47]. The design of 

Surveyor, in particular, is heavily influenced by Interlisp. 

15 
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2.1 Interlisp 

Interlisp is one of the most mature programming environments. It supports 

a dialect of Lisp that has been augmented by many environment-supported 

functions. 1 There are so many features in Interlisp that it is difficult to identify 

them all. The important features that influenced Surveyor are as follows: 

1. Code and data are the same. Of course, all data in Lisp is either a list 

or an atom. Programs are stored using a list representation, so naturally, 

programs are data. This equivalencing makes it easy to write programs 

that create or modify other programs. 

2. The programmer has easy access to internal data structures, including sym-

bol tables (the OBLIST), and program state information (e.g,. backtrace). 

3. New functions are easy to add to the repertoire of functions already in 

Interlisp. These are callable in the same way as built-in routines. 

4. The user interacts with the interpreter at a fine grain of interaction. 

1ln this discussion the incremental compilation facilities included in Interlisp 
are ignored; while these facilities are important, they do not significantly alter 
the interaction between the user and his program. Functions are still invoked 
from the interactive interpreter and do not stand alone. The compilation facil
ities improve the execution speed of Lisp programs but depend heavily on the 
interpreter l'\lntime environment. 
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5. The system maintains an extensive runtime state even though the user 

changes his programs. In other words, when the Interlisp programmer 

changes a function, the data structures and variables he has created are 

not destroyed by the system. 

6. The debugging language is the same as the programming language. 

7. The command language is the same as the programming language. 

All of these capabilities are present in Surveyor, though sometimes in slightly 

different form. 

1. Code and data are the same. Programs are represented as trees. The 

concrete representation of these trees is defined by standard Ada type def

initions which are accessible to the user. These trees are manipulated in 

the same way all Ada data structures are. 

2. The user has access to internal data structures. The runtime stack, symbol 

tables, and type descriptors are all available to the user for analysis. 

3. New routines are added simply by defining them to the top level. They are 

invoked in the same was as all built-in routines, namely, by a procedure or 

function call. 
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4. The granularity of interaction is small; the user can enter a single statement, 

declaration, or expression. 

5. The user declares variables and types to the interpreter and these retain 

their values and definitions throughout the entire session.2 

6. Debugging is accomplished by invoking built-in Ada functions that alter the 

normal flow of control (i.e., the cause execution of the program to suspend 

and control passes to a break package). Once in the break package, built-

in procedures are used to analyze the state of the program (e.g., examine 

variables or the call stack). 

7. The command language is the same as the programming language. Com-

mands for reading and writing files and otherwise altering the programming 

environment are given using standard Ada semantics. 

Although the Interlisp environment is a very good programming environ-

ment, the fact that it is based on Lisp hinders its use for some kinds of applica-

2Here, a session is defined as the time beginning when the user starts the Sur
veyor interpreter to when he finally exits the system by invoking the procedure 
quit. The operating system is given the burden of providing a means of suspend
ing a session and later resuming it. With the proper operating system support, 
the user need never terminate a particular session at all, but merely suspend and 
resume it. In this case, the lifetime of these user defined variables and types is 
indefinitely long. 
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tions. 

1. Lisp environments are tailored to applications that manipulate lists. Work

ing with more structured data types (e.g., multi-dimensional arrays of 

~records) is difficult. 

2. Lisp environments do not provide an adequate syntax for constructing ab

stractions for numerically-intensive applications (e.g., overloading of oper

ators and encapsulation of abstract representations into packages). 

3. Transferring an application from a Lisp environment to an embedded sys

tem is impossible: Lisp applications depend heavily on the Lisp program

ming environment and cannot run without it. 

4. Dynamic scoping and loose typing are unreliable ways to structure a pro

gram [20]. Even supposing a Lisp prototype could be exported, the result

ing code would not be suitable for use in a production environment. 

Recent attempts at imposing static scoping on Lisp have met with some 

success. Scheme [22], T [2], and Common Lisp [40] are dialects of Lisp with 

static scoping. T, in particular, defined a variant of Lisp where the compiled 

and interpreted semantics are identical: both use static scoping and require pre

declaration of special variables. In previous Lisps (as well as the more recent 
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Common Lisp); the compiled and interpreted semantics sometimes differed. In 

order to compile his/her code, the programmer annotated his/her already work-

ing program with type definitions for those variables that conflicted with the 

default data type (a dynamically scoped list). Once these definitions were in-

troduced, they sometimes interfered with the loose typing and dynamic scoping 

rules of the interpreter. The only resolution to this problem thus far has been 

to impose static scoping throughout. This is the approach used in Surveyor, a.rid 

implemented by adopting Ada semantics. 3 

2.2 Cedar 

The Cedar environment [46] is similar to the Interlisp environment, except Cedar 

supports Mesa [33], a strongly typed, statically scoped language similar to Ada. 

" ... A fair characterization of the Cedar project as it is currently constituted is 

that it is an attempt to take the Mesa language and build for it a programming 

environment based on ideas and techniques from Interlisp and Smalltalk." [46, 

page 286]. 

Both Cedar and Surveyor· are based on the same requirements document 

3ln Surveyor, it is possible to dynamically bind a fragment of code into a 
specific scope at runtime; even so, once bound into place, the code obeys the 
normal static scoping rules. 
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[15]. This document outlined the characteristics of interactive environments as 

they were known at the time while including various requirements which at that 

time were only supported by traditional compiled environments. 

Cedar and Surveyor are similar in many ways, but the scope of the Cedar 

project far exceeds that of Surveyor. Surveyor is focused on supporting interactive 

prototyping; Cedar includes document preparation, electronic mail, an advanced 

user interface, and shared (i.e., networked) file systems. 

The relevant portion of Cedar for this discussion is the UaerEuc. The 

UserExec is a line-at-a-time interface to Cedar for Mesa programmers. "One of 

the valuable lessons we learned from Interlisp and Smalltalk was that the avail

ability of an interpreter greatly facilitates debugging and testing ... " [46, page 

290]. The Cedar interpreter is used to call subroutines and evaluate expressions. 

The user ~an assign the results to temporary variables and then ?Se those re

sults in later expressions. The UserExec also accepts debugging commands (e.g., 

setting and clearing breakpoints). 

The UserExec appears to work by loading a symbol table for each module 

being debugged. The module consists of compiled code which is connected to 

the source code by a table of pointers stored in the symbol table. The user can 

enter a. text editor anytime to view the source code connected to the current 
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compiled module. Breakpoints are set by inserting a breakpoint instruction into 

the compiled code. The symbol tables also contain detailed type descriptors for 

each type used or defined in a module. 

The UserExec is a powerful debugging tool. The expression interpreter 

allows flexible interrogation and alteration of the state of a program. Changes 

to the program are made by editing a module, and then recompiling. The ne~ 

code is linked to the existing code. It is not possible to change the code while it 

is executing. 

While Cedar and Surveyor have similar program construction and debug

ging facilities, there are several significant differences. Surveyor contains a more 

extensive interpreter: the user can enter or change type definitions, variables, 

procedures and functions; enter compound statements (e.g., loops and condi~ 

tionals ); as well as evaluate expressions. 

The granularity of incremental program changes is much larger in Cedar: 

the smallest unit of change is the module, rather than an individual statement 

or declaration, as in Surveyor. As a result, the burden of keeping a program in 

order still falls on the programmer. 
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2.3 Cornell Program Synthesizer 

The Cornell Program Synthesizer (CPS) (48] is programming environment for 

interactive input and execution of PL/C programs. CPS focuses are incremental 

checking of user programs. Not only is the program checked and pseudo-code 

generated in the environment, but the code is executed there as well. Addition

ally, incomplete programs can be executed; when the interpreter finds a "hole" 

in a program, it stops and alerts the user. The user can modify his program 

with the syntax-directed editor front-end, and then restart it. Obviously, pro

grams created with CPS are exportable. One merely takes the program text and 

compiles it with an external compiler. 

The Cornell Program Synthesizer is similar to other syntax-directed systems 

(e.g,. POE [17), ALOE [32), and Mentor [16)), in that it focuses on incremen

tal changes to a single monolithic program. This differs significantly from the 

approach in Surveyor, where the user enters fragments of programs stand-alone 

(i.e., without having to explicitly modify the structure of the entire program). 

The Synthesizer Generator is a tool developed by Thomas Reps for generat

ing CPS-like environments [36,34). The most important contribution of this more 

recent work is the use of attribute grammars to specify semantic transformations 

as well as the syntactic transformations. The use of an attribute grammar for 
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describing the editor opened up the possibility of formalizing the update process, 

which Reps did in his dissertation [34], which won the ACM Doctoral Disser

tation Award in 1983. By formally specifying the semantics of the language, it 

is possible to automatically generate a structure editor that checks for semantic 

inconsistencies. The major drawback with this approach, in terms of rapid pro

totyping, is that the feedback loop is too tight: deleting the definition of a single 

variable or type definition may cause large portions of the resulting program 

to become invalid. Changing the type of a. variable may have an equally large 

impact. This makes small-grained experimental changes difficult. 

In Surveyor, the consistency of the program structure is only checked at 

export time or at runtime. As a. result, the designer /programmer is free to 

experiment with temporarily invalid constructs, and even to execute these con

structs without invalidating his previous work. Unfortunately, the Synthesizer 

Generator does not automatically create interpreters for languages specified with 

the attribute grammar formalism. Adding this capability, as well as consider

ing a. mechanism for delaying consistency checking, would increase the value of 

the Synthesizer-created editors for rapid prototyping purposes. Delayed type 

checking and interpretation of incomplete programs are powerful techniques for 

experimental prototyping. 
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2.4 Pecan, Magpie, and Dice 

The following three systems are important because each in a different way pro

motes experimental checkout of portions of a working system at runtime. 

Pecan is another structure editor based system [35]. In this particular case, 

though, the focus is on displaying different simultaneous semantic views of an 

executing program. For rapid prototyping purposes, the most importa11t feature 

of Pecan (which implements a Pascal [23] interpreter), is the incremental seman

tics that allow the program to be compiled into pseudo-code aa it ia being edited. 

This feature provides the same kind of support for Pascal which Surveyor pro

vides for Ada and Interlisp for Lisp, namely, modification of a program without 

destroying the existing global data already created by the program's execution. 

M_agpie [14] is an interactive Pascal environment which also features in

cremental compilation, and therefore avoids the need for a debugging language 

(since the user simply modifies the code directly [inserting/removing print state

ments, etc.]) The focus of the research was on making the programmer unaware 

of the various modes the system is in ( e.g, compiling, editing, etc., appear as one 

uniform activity), The Magpie system has a particular feature that is beneficial 

for rapid prototyping. Magpie allows immediate mode execution of statements, 

including assignment; therefore the user can build data structures by hand. The 
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programmer does this by entering assignment statements or calling already de

fined procedures. The user enters these statements in a special browsing window 

called the workspace. The workspace defines an anonymous procedure which con

tains the statements the user wants to execute. The user does this when he/she 

wants to quickly checkout the effect of calling certain procedures. Magpie does 

not allow local definition of variables or types within the workspace. 

Another system with the same important capability for modifying a pro

gram while it is executing is Dice [18]. Dice, or Distributed Incremental Compiler 

Environment, supports incremental compilation of Pascal code on a remote tar

get computer. Again, the relevant capability is modification of the source code 

while the program is executing. The programmer can insert print statements 

directly into code that has been compiled and loaded on a remote target. In 

addition to the benefit that the programmer does not need to learn- a special de

bugging language, the global program state remains intact even though portions 

of the code have been modified. 

The main problem with these systems, from a rapid prototyping point of 

view, is that the programmer is still constrained to get everything in the right 

order. Each system will check for consistent declarations and usages, but does 
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not provide any a&sistance with the problem of organizing the code.4 Dice, in 

particular, maintains complete cross reference information in order to implement 

the incremental update of the compiled code on the remote target: this cross 

reference information is exactly the information required for automatic ordering 

of the declarations within a scope. The power of the DICE system as well as 

the Pecan system, for rapidly prototyping systems, would be increased with the 

addition of automatic program ordering. 

2.5 C and Lint 

Rapid prototyping is not always done with interactive environments. Many pro-

totype systems are developed in C [27]. The language is flexible enough such that 

the programmer can make major structural changes without a major rewrite. 

Because the language is independent of the development environment, exporting 

applications is not a problem. Many prototype C applications evolve quickly into 

production versions [37]. 

The development environment is a loosely coupled collection of tools: an 

editor, a compiler, a linker, and hopefully, a debugger. Other tools are some-

4 This is not exactly true: The Pecan system provides a special editor which 
makes manually moving declarations around easier to do. 
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times present but this is the basic set. The Unix [26] operating system and its 

many tools is a programming environment tailored to C; simpler C program

ming environments exist also on a wide range of machines, from IBM-PCs to 

Vax/VMS. 

The key aspect of C for rapid prototyping is default argument types and 

function return types. Coupled with the loose type-checking rules, it is easy to 

add new procedures and variables without significant concern for where they are 

declared. Of course, in the case of C, the same flexibility that is beneficial in 

prototyping interferes with creating reliable systems. The loose type checking 

rules allow inconsistencies to creep into programs undetected. 

It is interesting to compare lint [24], the Unix tool for increasing the level of 

type checking in C programs, with the notion presented here of an export tool. In 

some sense, the C designer/programmer develops a prototype by ignoring some 

kinds of type checking. He then exports the prototype for use in a more stable, 

less flexible environment by analyzing the code with lint and fixing any problems. 

These fixups are performed manually even though the detection of the problems 

is done by lint. Unfortunately, many C programs are never checked by lint. 

Standard C programming environments do not support line-at-a-time ex

ecution of C language constructs, but a new breed of interpreter based C envi-



29 

ronments is emerging for use on personal computers [19]. They do not presently 

support line-at-a-time execution of C language constructs but it is not difficult 

to imagine this capability becoming available in the future. 

2.6 Arcturus 

Arcturus is the name of a "blue-sky" programming environment broadly defined 

by Thomas A. Standish. The design of Arcturus has, at one time or another, 

encompassed advanced user interfaces (e.g., lining the walls one's office with flat 

panel displays); novel input devices (e.g., a chair like Captain Kirk's which is 

used to fly around one's files); an integrated Unit Development Folder {UDF) 

[7, pp. 607-612] database; a program transformation system like the one in ECL 

[12]; a program design language [39,44]; a "template assisted editor" [28]; an 

interactive Ada interpreter [51]; and other interesting ideas. Many of the ideas 

were, of course, never realized. The Arcturus system as distributed by the Irvine 

Programming Environment Project consisted of the Ada interpreter and various 

tools, including the uniform user interface, the prototyping language, a fancy 

prettyprinter, and other tools designed and implemented by the graduate stu

dents in the Project. 

Of particular interest here is the interactive Ada interpreter designed by 
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Willson, Tadman and Whitehill (51]. The requirements for the system were 

based loosely on the environment capabilities list in [15]. In fact, only the Ada 

interpreter and a simplified prettyprinter survive in Surveyor, as the result of an 

increased focus of attention by the author on persistent prototyping. In addition, 

the decreased complexity of the system made it easier to change as the research 

progressed. 

There are several important enhancements in the Surveyor interpreter not 

present in Arcturus: 

1. Single stepping and tracing of statements; 

2. Access to internal data structures; 

3. Modified internal type descriptors; and 

4. The addition of the export tool. 

Of these, the last two are the most significant. The type descriptors in 

Arcturus failed to retain the fully qualified name of the type as part of its de

scription. This deficiency made rederiving a valid ordering nearly impossible, 

because the dependency graph was not directly accessible. The names were not 

retained because one of the goals of the Arcturus interpreter was to perform type 

checking early on at the expense of flexibility: "Unfortunately, at the moment 
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much type checking is performed at run-time, though it properly belongs in the 

interpreter's front-end." (41, page 59]. 

Of course, since Arcturus was going to perform so much checking in the front-

end to the interpreter, it would still be necessary to get all of the declarations 

within a particular subprogram or package in the right order. In this case, as 

with the other systems described previously, there is no need for an export tool. 

2. 7 Interactive Ada in Surveyor 

The Surveyor programming environment is a successor to Arcturus. The main 

changes, as summarized in the preceding section, are a modification to the rep-

resentation of type descriptors and the addition of the export tool. In general, 

there is a change of focus from Arcturus' proposed early binding of usages to 

definitions, to binding at runtime.6 

Slight modifications to compiled Ada semantics make Surveyor's interactive 

Ada suitable for prototyping. As stated in section 1.5, interactive Ada programs 

5The typical style of interaction with Arcturus was to define everything within 
the context of one large procedure: in this way, the order of definitions was 
maintained explicitly by the author of the prototype. This style of interaction was 
necessary because there was no other way to organize the definition of complex 
data structures. In this respect, Arcturus offers little improvement over the NYU 
Ada interpreter (13]. The NYU interpreter also executes monolithic program 
structures without any sort of dynamic reordering of declarations ala Surveyor. 
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differ from compiled Ada programs in four principle ways: 

1. Type checking occurs at runtime. 

2. A program fragment (e.g., a single statement or declaration) is the basic 

unit of interaction (rather than an entire compilation unit). 

3. Programs are not stored in any particular "order." 

4. It is possible to redefine the type of an object. 

These four principles make interactive Ada suitable for prototyping. For 

readers familiar with compiler-based environments, the last two principles are 

the most interesting aspects of interactive Ada. 

Compiled Ada programs conform to a defined order of elaboration, where 

every symbol is introduced before it is used. This is true in interactive Ada as 

well. Objects must be defined before they are referenced or an error occurs. This 

implies that the definitions are entered in a certain meaningful order, however, 

the initial user-specified ordering disappears aa new definitions replace old ones. 

A correct ordering is nevertheless deducible from the dependency information 

inherent in strong typing. 

The name Surveyor comes from an analogy to cartography. The job of the 

cartographer is to generate a printed two-dimensional representation (a map) of a 
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physical toplogy. Analogously, Surveyor analyzes the topology of an Ada program 

and generates a one-dimensional representation (a listing) of that topology. 

Examples of Interactive Ada in Surveyor 

This section illustrates the prototyping capabilities of interactive Ada in Surveyor. 

The example illustrates a small set of routines for manipulating a Tektronix 

4010 display. Below, move and draw are primitive routines for moving the bea~ 

position and drawing from the current beam position to another point. These 

routines translate the given point into a special Tektronix encoding. 

The plus sign ("+") is a continuation prompt from the system indicating it 

is waiting for the end of a syntactic unit (statement, declaration, or expression). 

Surveyor> procedure move(p : point) 
+ is 
+ begin 
+ code("LF"); 
+ put_point(p); 
+ end; 
Surveyor> procedure draw(p point) 
+ is 
+ begin 
+ code("LG"); 
+ put_point(p); 
+ end; 

The user next specifies a point as a series of three coordinates (x, y, and 

z). 



Surveyor> type coordinate is (x, y, z); 
Surveyor> type point is 
+ array(coordinate range x .. z) of integer; 

Finally, the user enters the definition for the routine put_point. 

Surveyor> procedure put_point(p : point) 
+ is 
+ hix, lox, hiy, loy, extra : integer; 
+ begin 
+ hiy := p(y) I 128 mod 32; 
+ extra := p(x) mod 4 + (p(y) mod 4) * 4; 
+ loy := p(y) I 4 mod 32; 
+ hix := (p(x) I 128) mod 32; 
+ lox := p(x) I 4 mod 32; 
+ outchar(hiy + 32); 
+ outchar(extra + 96); 
+ outchar(loy + 96); 
+ outchar(hix + 32); 
+ outchar(lox + 64); 
+ end; 
Surveyor> 
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Both move and draw call the routine puLpoint which translates a point into 

the appropriate Tektronix escape codes. Notice the definition of point is post-

poned until after move and draw are defined. This is perfectly legal in interactive 

Ada because the local definitions (including the paramaters) in the scopes of 

move and draw are only evaluated at runtime. Of course, compiled Ada does not 

allow such constructions. 

Notice the umantica of Ada remain intact: the most significant differences 

are the "line-at-a-time" level of interaction and the lack of an imposed "order." 
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Interactive Ada allows direct access to definitions as the following session 

illustrates. Origin, pl, p2 are declared to be points. One modifies the values of 

these variables by entering statements. 

The important thing to notice is that the designer/programmero is free to 

enter statements, define variables, examine the values of variables, etc., without 

writing an entire program. The overhead of writing a main procedure, entering 

all routines in libraries, and so on, is eliminated during the experimental pha~e 

of prototype creation. 

Surveyor> origin : point := (0,0,0); 
Surveyor> p1 point := (1,1,1); 
Surveyor> p2 : point; 

The following for loop negates each coordinate in pl, doubles it, and assigns 

it to p2. 

Surveyor> for c in x .. i loop 
+ p2(c) := -p1(c) * 2; 
+ end loop; 

The following calls to move and draw invoke the specified procedure which 

is immediately executed. 

Surveyor> rnove(origin); 
Surveyor> draw(p1); 
Surveyor> draw(p2); 

The user now redefines draw to display the name of the point being drawn 

as a text string. 
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Survyeor> procedure draw(p 
+ is 
+ begin 
+ code("LG"); 
+ put_point(p); 

point) 

+ put("Drawing to point ("); 
+ for c in x .. z loop 
+ put(p(c)); put(' '); 
+ end loop; 
+ put_line(")"); 
+ end; 

The important features shown above are as follows: 
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1. The unit of interaction with Surveyor is an individual statement or decla-

ration. 

2. It is possible to delay the definition of a type. 

3. It is possible to redefine a subroutine without destroying the current values 

of all global variables. 

Table 2.1 on page 38 is a "directory" listing of the contents of a larger 

program. The program provides interfaces to a Tektronix 4129 terminal for 

creating and displaying 3D images (53]. It contains 24 variables, 6 types and 

subtypes, and 64 procedures and functions. 

The type definitions, variable definitions, procedures, and functions are not 

stored in any particular order. (They are alphabetized for convenience only). 
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There is no apparent structure to the program. Each of the 64 procedures and 

functions is accessible directly as an interactive Ada command. The global vari

ables are accessible as well. 

2.8 Summary 

This chapter surveys recent research on programming environments, and ana

lyzes each in terms of its suitability for creating persistent prototypes. Existing 

programming environments fail to provide the proper blend of features necessary 

for prototyping and production use. 

Surveyor supports interactive modification of Ada definitions in a line-at-a

time mode suitable for prototyping. Surveyor also supports strong typing which 

results in a more reliable prototype. Once exported, a prototype is reliable 

enough and structured enough so that further development in a production en

vironment is not only possible, but desirable. 
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ambient : tekrcal; back_distance : integer; 
color...smoothing : integer; debug : boolean; 
depoint..resolution : integer; diffuse : tekreal; 
eye_position : point; front-distance : integer; 
lightamt : tekrcal; lightplace : point; 
obj...surf_disp : integer; pan_dim : integer; 
projection : integer; rotate..radius : integer; 
tekbase : integer; uv.height : integer; 
uv_width : integer; view...norm: norm; 
view..re{: point; view _up : norm; 
viewporLbounds : winbounds; wantsolid : boolean; 
window_bounds : winbounds; tekload: boolean; 
subtype norm; subtype point; 
subtype tekreal; subtype winbounds; 
type Boatarr; type intarr; 
procedure ansi; procedure box; 
{unction chr; procedure closeseg; 
procedure CI11ap; procedure cmap_entry; 
procedure CI11ap...interp; procedure cmaprange; 
procedure code; procedure coord.mode; 
procedure dachara; procedure daindex; 
procedure dalines; procedure davis; 
procedure. delseg; procedure demeH; 
procedure depoint; procedure draw; 
procedure esc; procedure fbox; 
procedure fixsolids; procedure Bagging; 
procedure ignore_deletes; procedure killseg; 
procedure lightsources; procedure move; 
procedure normout; procedure openacg; 
procedure outrcal; procedure ovcrwindow; 
{unction padd; procedure page; 
procedure panel; procedure po; 
procedure promptfile; {unction paub; 
procedure quadout; procedure readsegs; 
procedure renew; function scalar.multiply; 
procedure segment-transform.matrix; procedure seLcolor .map; 
procedure set.line...index; procedure setlight; 
procedure shapes; procedure showmap; 
procedure showmodel; procedure solids; 
{unction str; procedure surfcol; 
procedure tekint; procedure tekmode; 
procedure termcom; procedure testbox; 
procedure testpan; procedure transdir; 
procedure viewattr; procedure viewport; 
procedure viewtrans{orm; procedure window; 
procedure winout; procedure wircbox; 
procedure wire{rame; procedure writesegs; 

Table 2.1: Directory of Tektronix 4129 Package 
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Chapter 3 

Collecting Dependency 

Information 

Many persons who are not conversant with mathematical studies 
imagine that because the business of [Babbage's Analytical Engine] 
is to give its results in numerical notation, the nature of its processes 
must consequently be arithmeticai and numerical, rather than alge
braical and analytical. This is an error. The engine can arrange and 
combine its numerical quantities exactly as if they were letters or any 
other general symbols; and in fact it might bring out its results in 
algebraical notation, were provisions made accordingly. 

- Ada Augusta, Countess of Lovelace (1844) 
as quoted by Donald E. Knuth, Fundamental Algorithms (1968) 

As previously indicated, as definitions are changed, the initial ordering of 

those definitions in the interactive Ada environment is lost. Exporting a pro-

39 
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totype from Surveyor requires organizing these definitions into a more standard 

form. The export process can be broken down into two parts. 

1. Collecting and organizing the dependency information already present in 

the environment, and 

2. Performing a topological sort (including removal of cyclic references) to 

order the definitions. 

In this chapter and Chapter 4, the details of the ordering process are pre

sented. This chapter explains how the dependency information is collected. 

Chapter 4 explains the actual sorting algorithms. 

The programmer can ask Surveyor to reorder his definitions. There are two 

reasons for reordering, as follows: 

1. To organize the definitions in order to examine their structure. 

2. To export the definitions to an external compiler. 

3.1 Object Dependencies 

A simple database called the work8pace stores each definition as is entered. The 

workspace is divided into Ada packages. There are several predefined packages, 
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e.g., standard and texLio. The package usr is reserved and contains the objects 

defined by the user during a Surveyor session. Please refer to figure 3.1. 

Each package contains a number of objects, either predefined or defined 

during a session. Objects often refer to other objects. For example, an ob-

ject corresponding to an array declaration might refer to the predefined object 

character in package standard, as in 

type carray is array(1. .10) 0£ character; 
ca : carray; 

Notice the implicit reference to the predefined object integer in the integer 

range 1..10. Also, the object ca depends on the object carray. 

Over time, more objects are added to the workspace that depend on each 

other. Objects are redefined by entering a new declaration that replaces an 

-

existing one. For instance, changing ca from a character array to an integer will 

remove the dependency link from ca to carray and replace it with one to integer.1 

The new dependency graph is shown irt figure 3.2. 

10verload resolution is not supported in Surveyor, except for some special case 
code to handle Ada's put and get I/O routines. Overloading identifiers does not 
introduce any special problems beyond the extra code for computing the entire 
signature (e.g., the name and argument types) of an identifier, and extra code 
for comparing two signatures. A declaration is redefined when a new declaration 
matches the signature of an existing definition. 
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Figure 3.1: Layout of Surveyor Workspace 
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3.2 Symbols 

A symbol consists of an object in the workspace and associated information, such 

as its name, its type, and other internal information. Symbols are manipulated 

by interactive Ada programs as well as by the interpreter. Symbols point to 

appropriate parts of the internal form; for instance, the symbol for a procedure 

points to the beginning of the internal form of the procedure. 

8: Name 

G= Inter=~= 
Figure 3.3: A Symbol 

A predefined interactive Ada attribute, 'sym, provides access to symbols. 

This attribute, when applied to any identifier in Surveyor, returns the corre-

sponding symbol (see figure 3.3). Symbols are predefined types in Surveyor. For 

example, fact'sym returns the symbol corresponding to the object fact. Some 

tools in Surveyor take symbols as arguments, e.g., the prettyprinter. The pret-

typrinter uses the symbol it is passed to find the internal form associated with 

the Ada object, and prettyprints it. For example, 

> fact_symbol : symbol := fact'sym; 
> pp(fact_syrnbol); 
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Symbol table& store collections of symbols within a particular Ada scope. 

The symbol table is indexed by the name of each symbol. The symbols are not 

stored in any particular order. Each can be accessed randomly by applying the 

attribute 'sym to its identifier. Other mechanisms exist for obtaining a list of the 

symbols present in any symbol table (see section 3.5). 

Symbol tables contain additional information besides the symbols, as fol-

lows: 

• a reference to the symbol that own&2 the table, 

• a static link to the enclosing table (scope), and 

• a list of packages use'd in the scope. 

Packages are represented by two tables. One contains declarations that are 

publicly available and the other contains private (local) definitions. For scoping 

purposes, the private table is considered lexically enclosed in the public table. 

Ada allows packages to be use'd. The definitions in the package specification 

become visible at the point that the package is use'd. The use's list records the 

names of these packages. The use's list is not used during the collection process. 

2For example, carray is in package usr; usr own& the table containing carray. 
The static link for u&r's table points to the table of the enclosing scope (the 
package standard in this case). 
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With clauses are unnecessary in Surveyor, because there is no concept of a 

library: a package is included as part of the workspace by reading in the text of 

the package with the built-in routine include. 

3.3 Type Descriptors 

Type de8criptor8 (in the internal form) represent Ada types. These type descrlp-

tors form a graph of dependencies between all type definitions. The dependencies 

form a graph (rather than a tree) because Ada types sometimes refer to them-

selves via recursive record and access types. For example, consider a linked list: 

type list; 
type listp is access list; 
type list is record 

value : integer; 
next : listp; 

end record; 

The type list depends on the type listp which depends on the type list. 

Type descriptors are tree-like structures formed from type components. The 

top component in a type descriptor is called the main component; it specifies the 

general category of the type (e.g., array or record). All other components are 

called subcomponent& and they specify various aspects of the general category. 

The types of main and subcomponents currently implemented in Surveyor are 
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listed in table 3.1. Notice that some top components are used as subcomponents 

when they occur as part of a larger type definition. For example, in: 

type arr is array(1 .. 10) of integer; 
type arrpointer is access arr; 

The type arr is both a top component and a subcomponent of arrpointer. 

II component I subcomponent(s) II 
named symbol of base type 
subrange base type 

lower bound 
upper bound 

enumeration list of i terns 
lower bound 
upper bound 

constrained array base type 
list of index types 

index base type of index 
lower bound 
upper bound 

derived base type 
access base type 
record (optional) variant fields 

required fields 

Table 3.1: Type Descriptor Components in Surveyor 

Figure 3.4 shows a picture of a sample type descriptor. The main compo-

nent of the type descriptor is a constrained array. The subcomponents of the 

type descriptor are the list of index ranges and the base type. The index com-

ponents have subcomponents consisting of the subranges for each index and the 
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base type of the index. 

It is necessary, when tracing down the branches of a type descriptor, to 

eventually reach a symbol rather than another type descriptor component. The 

symbol makes the name of the base type explicit. It also makes redefining the 

meaning of a type much simpler because all references to the type are made 

indirectly through the symbol for the type. One can continue to analyze the 

subcomponents of that symbol's type, if necessary. 

3.4 Internal Form 

There are two "forms" of the internal form in Surveyor. The first is the Bare 

Internal Form (BIF). The BIF is a tree structure that resembles parse trees. The 

second is the Annotated Internal Form (AIF). The AIF is an annotated version 

of the BIF. The AIF is a graph structure and includes not only the original BIF 

trees, but also includes symbol tables and type descriptors. Generally speaking 

the AIF graphs are formed around the BIF trees, i.e., most explicit references 

point from the symbol tables to the internal form and not vice versa. The BIF 

trees are sometimes augmented further with back pointers to the symbol tables 

for efficiency of symbol table lookup operations, but this is an efficiency concern 



base 
type 

range 

next 

index 
range 

next 

r------, 
I 

integer 1 
I I 
L------.J 

lo: 1 

hi: 10 

base 
type 

lo: 'a' 

hi: 'z' 

base 
type 

type arr is array(l .. 10, 'a' . .'z') of integer; 
Note: The dashed boxes represent symbols. 

Figure 3.4: Sample Type Descriptor 
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r-------, 
I I 

integer 1 
I 

r-------, 
I I 
character 1 

I 
L------.J 
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only, and is entirely optional. 

The BIF contains sufficient information to derive a semantic description 

(the AI].i') of an Ada program. This is reasonable, since the BIF is simply the 

parse tree for th-e original text with extraneous non-terminals removed. 

The programmer interacts with Surveyor by entering fragments of Ada pro

grams. The user interface delivers the text entered by the programmer to a 

parser. The parser in turn produces stripped-down syntax trees. These trees are 

adequate for recovering the original program text, convenient for interpretation, 

and a compact representation. 

The Bare Internal Form is similar to Diana [10,11]. The Surveyor internal 

form has evolved to support interpretation of Ada programs instead of compila

tion. 

The BIF is represented as a tree of variant records, varying according to each 

kind of node. Each variant record contains fields appropriate for that particular 

node. For example, an el8if node contains fields for the condition, the list of 

statements, and a pointer to the next el8if node in the chain. 

Note: it is convenient to describe the internal form in terms of its 

concrete representation (as a tree of variant records) but this is done 

for convenience only. In fact, the concrete representation of the tree 
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structure of the code is unimportant since the trees are accessed via 

an abstract interface. 

An Ada function to compute integer factorial, fact, is shown in figure 3.5. 

The text of fact's BIF tree is shown in figure 3.6. 

function fact(arg : integer) return integer is 
begin 

if arg < 2 then return 1; 
else return arg • fact(arg-1); 
end if; 

end fact; 

Figure 3.5: Factorial Function 

The text in figure 3.6 is structured in the following way: 

• Quantities enclosed in square brackets represent nodes. A node may contain 

pointers to other nodes (or lists of nodes) or an atomic unit such as an 

integer or an identifier. The first element in a bracketed list is the node_op 

of the unit: function, if, ident, return, and else are node_ops. 

• Lists are enclosed in braces. The elements in a list of structures do not nee-

essarily have identical node_ops, however, elements are conceptually simi-

lar, as in a statement list or a declaration list or as otherwise suggested by 



[function 

] 

id: "fact" 
{[par am { [id_decl id: "arg"]} [ident id:" integer"]]} ,,, 
[ident id: "integer"] 
{[if [ < [ident id: "arg" ] [int 2]] 

{[return [int 1]]} 
{[else {[return 

]} 
]} 

]} 

[• [ident id:"arg"] 
[call [ident id: "fact"] 

{ [arg [- [ident id: "arg"] [int 1]]]} 
] 

] 

Figure 3.6: BIF Tree for Factorial Function 
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the Ada syntax. 

A BIF tree is augmented with semantic information to produce an Anno

tated Internal Form ( AIF) graph. This semantic information includes scoping 

information and type information. The AIF graphs are generated by interpret

ing the declaration parts of Ada program fragments. The additional information 

makes it possible to convert the unordered fragments of interactive Ada into 

compiled Ada. 

3.5 Mapping Functions 

The AIF is a complex data structure incorporating many types of information. 

Scanning the different types of information is made easier by a set of mapping 

functionJ. These are analogous to the Lisp mapping functions, e.g., mapcar, but 

handle more than just a few cases (e.g., car, cdr, and atoms) as shown below. 

There are three basic mapping functions in Surveyor. 

1. Maptree is used to visit each node of a BIF tree (in order) and apply some 

specified function. Various uses of maptree include checking the size of a 

tree and copying all or part of a subtree. 

2. Maptab is used to access all the symbols within a particular scope without 
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knowing their names. The export tool uses maptab to collect the symbols 

into a list. 

3. Maptype is used to traverse a type descriptor tree. Maptype is used by the 

export tool to collect a list of the symbols used (or referenced indirectly) in 

a particular type definition. Type descriptors are the only structures that 

record certain dependencies. For instance, the subrange 1 .. 10 implicitly 

references the type standard.integer, and this fact is recorded in the type 

descriptor (and therefore as part of the annotated internal form), but not 

in the bare internal form. 

The mapping functions are large case statements recursively applied, where 

each case depends on a variant· of the appropriate record. Each case is pro

grammed to apply the supplied function to its node and (recursively) to all of its 

children. 

3.6 The Collection Process 

The sorting algorithms presented in Chapter 4 take, as input, a table of symbols 

and their dependencies. It is necessary to scan the definitions stored in the pro

gramming environment and build this table. This section presents a description 
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of that process. 

The first step in this process is to collect a list of all the symbols in some 

specified scope. A function is supplied to maptab which builds a list of the 

symbols in the symbol table. 

The second step is to collect, for each symbol, a list of symbols referenced 

by the definition of that symbol. There are three classes of definitions, each a 

little different from the others. These are: 

1. type definitions and object declarations; 

2. constants, constraints, and initializers; and 

3. procedures, functions, and packages. 

The first case uses type descriptors. The type descriptor for a type definition 

explicitly includes references to other symbols used in the type definition. The 

process of collecting the symbol references is implemented via maptype analogous 

to the way the original list of symbols in the scope is collected. A function is 

applied to every component of the type descriptor. This function collects a list 

of symbols referenced in various components of the type descriptor. 

The second case augments the first. Initializers and constraints are Ada ex

pressions represented by BIF trees. The BIF trees reference variables, functions, 
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and constants. It is necessary to know which functions, constants, and variables 

are referenced, in order to ensure each is declared before it is used. 

A procedure, function or package contains a local symbol table. The process 

described herein is applied recursively to the symbols in the local table. In 

addition, the BIF tree for the procedure, function, or package body is analyzed 

for references to other variables, constants, packages, procedures, and functions. 

The BIF trees for the appropriate procedure, function, and package bodies are 

traversed, and a function is applied at every node. This function adds the symbols 

referenced by various nodes to a list. In this way a list of depended-on symbols 

is generated. 

3.7 Example 

The following sample set of definitions implement a hash table. The hash table 

is implemented as an array of bins, where each bin contains a linked list of the 

numbers that hashed to that bin. The definitions are shown entered in the order 

they would be entered by a programmer, e.g., with some redefinition of previously 

entered definitions. 

The programmer begins by declaring the size of the hash table. 

Surveyor> size : integer := 16; 



The programmer next declares the link listed structure. 

Surveyor> type list; 
Surveyor> type listp is access list; 
Surveyor> type list is record 
+ next : listp; 
+ val : integer; 
+ end record; 

The hash table itself is an array of pointers to these linked lists. 

Surveyor> type table is array(1 .. size) of listp; 
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At this point, the programmer changes the size of the variable used to define 

the hash table. This introduces a logical inconsistency into the code. 

Surveyor> size := 32; 

The programmer examines the values of the indices of table, which retain 

their old values of 1and16. They retain their value because while the redefinition 

of types is automatic, it is not necessarily reasonable to change existing instances 

of a type. In particular, the problem of what to do with the old value of a variable 

is a problem for future research (see Chapter 5). 

Surveyor> put(table'first); 
1 
Surveyor> put(table'last); 
16 
Surveyor> put(size); 
32 
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The programmer defines a variable mid as the midpoint of the table. Mid 

is defined in terms of the actual table indices, rather than the variable size. 

Surveyor> mid : integer := table'last I 2; 
Surveyor> put(mid); 
8 

The programmer now defines a variable half in terms of the size variable. 

Notice that half is given its value via an initializer. When half and size are later 

exported, their initial values are the value specified in the initializer, and n'ot 

their current values. In this way the programmer is given explicit control over 

their initial state. 

Surveyor> half 
Surveyor> half 
16 

integer := size I 2; 

Finally, two functions to enter and look up a number are entered by the 

programmer. Notice the function lookup automatically enters the_number if it is 

not already in the table. 

Surveyor> function lookup(val : integer) return boolean is 
+ where : integer := val I table'last + 1; 
+ 1 : listp := table(where); 
+ begin 
+ 
+ 
+ 
+ 
+ 

while 1 /= null loop 
if l.val := val then 

return true; 
else 1 := l.next; 
end if; 



+ 
+ 
+ 
+ end; 

end loop; 
enter(val); 
return false; 

Surveyor> procedure enter(val : integer) is 
+ where : integer := val I table'last + 1; 
+ 1 : listp :=new list(table(where), val)); 
+ begin 
+ table(where).next := l; 
+ end; 
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The first step of the collection process is to collect all symbols in the scope 

into a list. Table 3.2 shows this list of symbols. 

enter 
half 
list 
listp 
lookup 
mid 
size 
table 

Table 3.2: List of Symbols 

Table 3.3 lists the information collected from the type descriptors of those 

symbols with a specific type. (The specific type of a function is the return type 

of the function.) 

Table 3.4 lists the various dependencies collected from initializers and con-

straints. For example, the bounds of the array table are based on the simple 
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Symbol Type Depends On 
half simple integer 
list record listp, integer 
listp access list 
lookup function boolean 
mid simple integer 
size simple integer 
table array integer, listp 

Table 3.3: Dependencies from Type Descriptors 

expression size. 

Symbol Type Depends On 
half simple size 
mid simple table 
size simple integer 
table array size 

Table 3.4: Initialization and Constraint Dependencies 

The local definitions in the subroutines lookup and enter contain references 

to other objects in the enclosing scope. It is necessary to find every reference 

made in each routine. References in subroutines and packages are found in local 

definitions as well as in statements. Table 3.5 lists the dependency information 

obtained analyzing the statements in enter and lookup. Note: the definitions 

inside lookup and enter are already in order. 

Table 3.6 summarizes all the dependency information collected above. 



61 

Symbol Type Depends On 
enter procedure integer, table, listp, list 
lookup function integer, boolean, table, listp, enter 

Table 3.5: Dependencies in lookup and enter 

Symbol Type Depends On 
enter procedure integer, table, listp, list 
half simple integer, size 
list record listp, integer 
listp access list 
lookup function integer, boolean, table, listp, enter 
mid simple integer, table 
size simple integer 
table record integer, size, listp 

Table 3.6: Summary of Dependencies 

Figure 3. 7 shows a picture of the complete dependency graph. The arrows 

start at the center of a dependent symbol and point to the nearest corner of the 

depended-on symbol. Integer and boolean are defined in the enclosing scope. 
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integer 

boolean 

enter 

half 

list 

listp 

lookup 

mid 

size 

table 

Figure 3. 7: Dependency Graph 



Chapter 4 

The Export T«?ol 

The problem of topological sorting . . . is to find a way to arrange 
[things] ... so that no term is used before it is defined. Analogous 
problems arise in writing programs to process the declarations in 
certain assembly and compiler languages ... 

- Donald E. Knuth, Fundamental Algorithm& (1968) 

The ezport tool looks at the symbols present in a particular scope and the 

dependencies that exist between them and prints an ordered listing. The export 

tool is an important part of the Surveyor architecture; it is eztremely difficult 

to capture the results of an interactive session, by hand, in a form usable in a 

compiler-based environment. The user would have to prettyprint the definitions 

of all the symbols in the workspace, and laboriously compare each definition for 

references to other definitions. 

63 
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Topological sort is a well-known technique [29, pp. 258-268]1 for arranging 

a directed acyclic graph (DAG) into a linear order. Topological sort would be 

applicable directly to the problem of sorting a symbol table if the partial ordering 

between symbols was acyclic. Alas, symbols frequently have recursive definitions. 

There are two cases in Ada where such recursive definitions are allowed: 

1. An access type, A, may refer to a record, R, which contains a field whose 

type is A; and, 

2. A subprogram definition, F1 , may contain a reference to a subprogram, F2 , 

which in turn refers to F1 • 

The four algorithms presented here implement a form of topological sort 

for Ada definitions, where the cyclic dependencies are removed by generating 

appropriate "forward" definitions, as follows: 

1. The target of an access type is declared before the access type as an in-

complete type definition, and 

. 1 Knuth presents a specific implementation in addition to a high-level descrip
tion. Knuth.'s implementation is tailored to sorting nodes which are labeled by 
small integers. Bentley [6] provides an alternative implementation based on as
sociative arrays in AWK [3]. Bentley's implementation works for nodes labeled 
with arbitrary strings. The description here is drawn from both [29] and [6], but 
ignores the details of the concrete representation. 
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2. Subprogram stubs are generated for recursively referenced subprograms. 

Algorithm TGEN constructs a table used by the other algorithms for finding 

the next symbol to print. Algorithm TSORT is the standard topological sort; the 

only modification is to invoke algorithm BREAKCYCLE when a cycle is detected. 

Algorithm BREAKCYCLE is charged with breaking one or more cycles so that 

algorithm TSORT can continue. 

The algorithms themselves are presented in pseudo-code. Various list ma

nipulating routines are used: 

• append(L, I) - returns a new list consisting of the old list L with item I 

catenated onto the end. 

• tail(L) - returns the tail of the list L, i.e., everything except the first item 

of the list. 

• head(L) - returns the first element of the list L. 

• remove(L, I) - returns a new list with all occurrences of the item I removed 

from L. 

Comments are introduced with two hyphens ("--") and are terminated by 

the end of the line. The word "continue" signifies that control returns to the top 

of the loop in which it is embedded. 
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4.1 Algorithm TGEN 

Purpose 

Algorithm 1 generates a table containing a count of the predecessors of each 

symbol and the set of its successors. This table, called the table of predecessor 

counts and successor sets (PCSS), improves the running time of the topological 

sort algorithm. Without this table, the algorithm must search the entire graph 

each time for a node with no predecessors. With the table, the running time for 

the basic topological sort is proportional to the number symbol pairs, which is 

within a constant factor of optimal [6, page 574]. 

One additional transformation is included. Any direct cycles in the graph 

are eliminated while the table is built. The offending dependency is simply 

ignored. This situation only arises when directly recursive subroutines exist in 

the declarations being sorted, and provides no useful information. 2 

Inputs, Outputs, and Local Data 

The input to algorithm TGEN is a list of symbol pairs, (symbol, depended on 

symbol). These symbols pairs are gathered using the techniques in Chapter 3. 

2Directly recursive subroutines do not require generating any "forward" 
references. 



67 

Only one sy~bol table is sorted. 

One of the outputs of algorithm TGEN is a list of external scopes (sym-

bol tables) referenced in the scope being sorted. The parent 8ymbol table for a 

symbol is defined to be the symbol table containing it. While building the table 

of predecessor counts and successor sets (POSS), the parent of each symbol is 

examined. If the symbol's parent table is different from the table presently being 

sorted then the reference is out of 8cope, i.e., to some external symbol table. The 

name of the owner of the table is saved and can later be made part of an Ada 

with clause. 

Below, S and P refer to the elements in the symbol pair (symbol, depended 

on symbol) mentioned above. For each, the .predct field will contain the count of 

immediately preceding symbols, and the .8uccli8t field will contain a pointer to a 

list of successor symbols. An additional field, . marker, is used later by algorithm 

TESTCYCLE, and is initialized by TGEN to zero. 

Algorithm 

for each ( S, P) pair 
S. marker := 0 
P.marker := 0 

if S = P then 
continue 

end if 



if isJocal( S)3 then 
if is Jo cal( P) then 

S.predct := S.predct + 1 
S := append( P .. mcclist, S) 

else 
with-1ist := append(withJist, P) 

else 
withJist := append(withJist, S) 

end if 
end for 

Comments on Algorithm TGEN 
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The table of predecessor counts and successor sets is generated as described in 

[6], with the following exceptions: 

1. The exact data structures are not specified; the reader is refered to [29, 

page 261] or [6, page 574). 

2. The generation of the withJist is a new addition, made necessary because 

the sort is being done in the context of an Ada program. 

3 The routine is_local, not defined here, simply checks if the parent of the symbol 
is the symbol table presently being sorted, and returns true if it is, otherwise false. 



69 

4.2 Algorithm TSORT 

Purpose 

Algorithm TSORT does the main processing, printing declarations until a cycle 

makes printing further symbols impossible. 

Inputs, Outputs, and Local Data 

The PCSS table generated by algorithm TGEN is the input for TSORT. It scans 

for all symbols Sn with a predecessor count of zero; each symbol found can be 

output at once. All successors to S, called Tn, have their predecessor counts 

decremented. All of the Tns whose predecessor counts become zero are the next 

candidates for output. A queue, Q, is used to remember the order in which the 

counts become zero. If, after the main processing is done, any symbols remain 

which have not been output, there is a cycle in the graph. 

The output of this routine is a printed list of symbols in the scope, with 

the partial ordering intact, i.e., each symbol is defined before it is used. 

Below, S and T are references to symbols defined in the PCSS table built 

by TGEN. The fields .predct and .succlist have the same meaning as in TGEN. 

The variable N is used to count how many symbols have been successfully sorted. 
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N is initially equal to the number of symbols in the table, and decremented each 

time one is printed. At least one cycle is present when Q is empty and N is 

non-zero. 

Algorithm 

Q :=NULL 
-- First find all symbols with no predecessors 
-- and add them to Q. 
for each symbol S 

if S.predct = 0 then 
Q := append( Q, S) 

end if 
end for 
-- Process contents of Q 
while N /= 0 

while Q /= NULL 
T :=head( Q) 
Q :=tail( Q) 
N:= N-1 
output T 
for each S in T.8Ucclist 

S.predct := S.predct - 1 
if S.predct = 0 then 

Q := append( Q, S) 
end if 

end for 
end while 

-- One or more cycles are present if N is non-zero. 
if then N /= 0 then 

call algorithm BREAKCYCLE 
end if 

end while 
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Comments on Algorithm TSORT 

This algorithm also is directly from [6), with the same stipulations as for algo

rithm TGEN. The only addition is that instead halting with an error message 

when a cycle is detected, algorithm BREAKCYCLE is invoked to resolve any 

circular dependencies. When algorithm BREAKCYCLE returns to algorithm 

TSORT, the queue will be non-empty, and the algorithm can continue to find 

and output symbols with zero predecessor counts until it is blocked by another 

cycle or it completes. 

Algorithms TGEN and TSORT are normally combined into a single algo

rithm; they are separated here to emphasize the impact of language constraints 

on the sorting process. 

4.3 Algorithm BREAKCYCLE 

Purpose 

The purpose of algorithm BREAKCYCLE is to add at least one new symbol to 

the queue Q so that algorithm TSORT can continue to unwind the dependency 

graph. Cycles arise in the dependency graph for two reasons. 
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1. A record type may contain a field with an access type which points, directly 

or indirectly, to the same record. 

2. Subroutines and functions may have recursive references to other subpro-

grams. 

The dependency relationships between subroutines can be arbitrarily complex. 

A function or procedure may call any other function or procedure. Consider, for 

example, a function F1 that calls F 2 , F3 , F4 and F 6 , each of which recursively 

calls all of the others. Direct cycles are avoided (in algorithm TG EN) by never 

adding a symbol to its own successor set. 

J It is necessary to break one or more cycles by printing one or more forward 

declarations. Cycles are found by exhaustively analyzing the remaining symbols 

in the dependency graph. When a cycle is found, it is broken with a forward 

declaration for some symbol S, and the dependency counts of all symbols in 

S.succlist are reduced. If any of these counts go to zero, algorithm TSORT can 

continue. Otherwise, another cycle must be found and broken.4 

4The entire set of algorithms can be replaced by a simplistic algorithm which 
prints all possible forward declarations (an incomplete type definition for the 
target of every access type, and a stub for every subprogram), and then prints 
the symbols in some random order. The resulting listing isn't very interesting, 
although this approach may have some value if an alphabetical listing is desired. 
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Inputs, Outputs, and Local Data 

The input to algorithm BREAK CYCLE is the PCSS table of TSO RT, where 

all symbols with zero .predct's have been output, and some symbols with non-

zero .predct's remain. This situation only arises when there is a cycle in the 

dependency graph [6, page 574]. 

Two side-effects of algorithm BREAKCYCLE is a non-empty queue Q and a 

modified PCSS table. Additionally,' one or more forward declarations are output.' 

BREAKCYCLE has a local integer variable, M, initially O, which is in-

cremented and then passed to TESTCYCLE. Mis used by TESTCYCLE to 

uniquely mark each symbol it visits (see the description of TESTCYCLE in the 

next section). 

Algorithm 

-- Continue breaking cycles until a symbol is added to Q 
M:=O 
for each symbol S 

if QI= NULL 
-- Terminate when a symbol ha.S been added to Q 
return 

else 
-- Skip S if it has already been output 
if S.predct = 0 then 

continue 
end if 
M:= M+ 1 
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if SUITABLE( S)6 and then TESTCYCLE( S, S, A1)6 then 
output "forward" declaration for S 
for each Tin S.succlist 

T.predct := T.predct - 1 
if T.predct = 0 then 

Q := append( Q, T) 
end if 

end for 
end if 

end if 
end for 
-- Something is seriously wrong if control gets to here -
-- all symbols were looked at without breaking a cycle. 

Comments on algorithm BREAKCYCLE 
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This particular algorithm for finding cycles (testing each symbol individually) was 

chosen for understandability rather than computational efficiency. The running 

time is improved by invoking it only when necessary, i.e., algorithm TSORT 

cannot continue, and so only the minimum number of symbols are checked for 

their presence in a cycle. 

The reader is refered to [43] for an ·efficient and general directed graph or-

5SUITABLE is a routine, not defined here, which merely checks if Sis a proce
dure, function, or record definition. As explained in the comments for BREAK
CYCLE, it is only necessary to test if these kinds of symbols are involved in a 
cycle, since these are the only kinds of symbols which can be declared forward. 

6TESTCYCLE checks if S is involved in a cycle. It is defined in the next 
section. 
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dering algorithm (without any programming environment specific details). Also, 

it is desirable in this setting to find only a single cycle, rather than all cycles. 

In this way, algorithm TSORT will continue to run with only a small number of 

forward declarations being produced. 

Only two types of symbols have corresponding forward declarations, namely, 

records and subprograms. There is little point in analyzing a symbol which is 

not of one of these types, hence the suitability test above. 

Various optimizations are possible, most notably remembering other cycles 

as they are encountered[49, page 44]. 

4.4 Algorithm TESTCYCLE 

Purpose 

Algorithm TESTCYCLE returns true if its first argument S, is a part of a cycle. 

The test for circularity is made by traversing the paths away from Sand checking 

if any of them returns to S. TESTCYCLE is implemented by recursively analyz

ing the nodes in the successor set for S. TESTCYCLE avoids interior cycles (i.e., 

cycles potentially existing within a particular path) by marking the symbols it 

has visited with a unique identifier (an integer). 
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Inputs, Outputs, and Local Data 

The input to TESTCYCLE is the symbol to be tested, S; the current symbol 

along a particular path, S' (initially S' := S); and a unique marker, M. TEST-

CYCLE uses the successor set of S' as the set of paths to follow when searching 

for a cycle containing S. Each symbol Tin the successor set of S' contains a 

.marker field. The value of this field is initialized to zero by TGEN. TESTCY-

CLE checks each T.marker. If T.marker = M then TESTCYCLE has already 

visited that particular node; otherwise, TESTCYCLE sets T.marker := Mand 

continues. The calling routine (algorithm BCYCLE) ensures that Mis unique 

for every top-level (i.e., non-recursive) invocation of TESTCYCLE by passing in 

steadily increasing integers. 

The only output from TESTCYCLE is the return value of true or false. 

Algorithm 

For each symbol Tin S'.succlist 
if T = S then 

return true 
elsif T. marker = M then 

return false 
else 

T.marker := M 
if TESTCYCLE( S, T, M) then 

return true 
end if 
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end if 
return false 

end for 

Comments on Algorithm TESTCYCLE 
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A symbol S is contained in a cycle only if there is a path along some set of 

arcs emanating from S, through one or more intermediate nodes T1 ••• Tn, which 

terminates at S. (There are never any cycles with no intermediate nodes, as 

these are removed when the PCSS table is built by TGEN.) In the worst case, 

TESTCYCLE exhaustively traces every path originating at S, so if a cycle exists, 

TESTCYCLE must find it. The use of the .marker field in each symbol ensures 

that TESTCYCLE will never get caught in an endless loop. Notice that if S has 

no successors, TESTCYCLE returns false immediately, as the for loop will never 

execute. 

4.5 Examples 

This section presents two examples. 

The first example continues with the dependency data gathered in Chap-

ter 3. For reference, table 3.6 is reprinted below as table 4.1. 
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The first task is to compute the table of predecessor counts and successor 

sets for those symbols. Table 4.2 shows the results of this processing. 

Working through the example, algorithm TSO RT detects a cycle after print-

ing size and half. Algorithm BREAKCYCLE is activated. Algorithm BREAK-

CYCLE removes the cyclic dependency between list and listp. An incomplete 

type definition for list is printed. Processing returns to TSORT. Listp is printed 

and the predecessor count of list is reduced to zero. In like fashion the rest of the 

symbols are printed. 

size : integer := 16; 
half . integer := size I 2; . 
type list; 
type listp is access list; 
type list is record 

next . listp; . 
val . integer; . 

end record; 
type table is array(1 .. size) of listp; 
mid : integer := table'last I 2; 
procedure enter 
function lookup ... 

Figure 4.1: Ordered Interactive Ada Fragments 

Figure 4.1 shows the text of the ordering for these sample definitions. The 

second assignment to size is ignored: the definition with an initial value is as-
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Symbol Type Depends On 
enter procedure integer, table, listp, list 
half simple integer, size 
list record listp, integer 
listp access list 
lookup function integer, boolean, table, listp, enter 
mid simple integer, table 
size simple integer 
table record integer, size, listp 

Table 4.1: Summary of Dependencies 

Symbol Type Predecessor Successor 
Count Set 

enter procedure 2 lookup 
half simple 1 
list record 1 (listp) 
listp access 1 {O} enter, table, list, lookup 
lookup function 3 
mid simple 1 
size simple 0 table, half 
table array 2 enter, mid, lookup 

Table 4.2: Predecessor Counts and Successor Sets 
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sumed to be the correct default value for size. The inconsistency between the 

variables mid and half is removed: they now initialize to the same value. 

Notice the definition of half was moved forward. While not necessary, mov

ing it does improve the readability of the definitions. In general, many orderings 

are possible for a complicated graph. The dependencies between objects specify 

a partial ordering only. 

Figure 4.2 shows the dependency graph in in sorted order. 

The second example focuses on unwinding a complex sequence of cycles. A 

picture of the graph is show in figure 4.3. The arrows point to successor nodes. 

Node 1 will always be output first, since it has no predecessors. The pre

decessor count of node 2 is reduced from four to three. At this point, there are 

no more nodes to output. A node is chosen at random, say node 4. Node 4 is in 

a cycle, and so it is declared forward. The predecessor counts of nodes 3, 2 and 

5 are decremented. Node 5 is output, as it depended only on node 4. Node 6 is 

output, since it depended only on node 5. Again, there are no more candidates, 

so another cycle is broken. Suppose node 3 is chosen. It is part of a cycle, so it 

is declared forward. The predecessor counts of nodes 2 and 4 are decremented. 

Node 2 is output, followed by node 3, and finally node 4. This information is 

summarized in table 4.3. 
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integer 

boolean 

size 

half 

listp 

list 

table 

mid 

enter 

lookup 

Figure 4.2: Sorted Dependency Graph 
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Figure 4.3: Sample Cyclic Graph 
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The exact ordering depends on the order nodes are chosen to break cycles. 

An interesting problem which remains to be solved is to determine which nodes 

are the best candidates to analyze first, thus minimizing the number of forward 

references. Table 4.3 also shows the ordering resulting from different choices of 

nodes. 

Node Order Sort Results 
4, 5, 6, 3, 2, 1 1, 4" 5, 6, 3,, 2, 3, 4 
5, 4, 3, 2, 1, 6 1, 5" 6, 4" 5, 3" 4, 2, 3 
1, 2, 3, 4, 5, 6 1, 2" 3" 4, 3, 5, 2, 6 

Note: The notation n 1 indicates a forward declaration. 

Table 4.3: Results of BREAKCYCLE 



Chapter 5 

Recapitulation 

The obvious is that which is never seen until someone expresses it 
simply. 

- Christian Morganstern 

This chapter indicates some lessons learned and suggests some areas for 

future research. 

5.1 Lessons Learned 

Linear Ordering 

Ada specifies an order of elaboration for the definitions within a particular scope. 

This order of elaboration is the single greatest impediment to using Ada as a 

84 
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prototyping language. The export tool presented here solves this problem, but 

the question remains, why is it necessary to have the definitions follow such a 

strict order of elaboration? 

There are three answers to this question. 

1. It is easier to write a compiler that processes each declaration, including 

any initializers, as it is seen. 

2. The programmer can write declarations in the same wa,y he/she writes 

statements, with constraints and initializers depending on previously de

fined statements. 

3. The scoping rules allow access to global definitions if they are used before 

the local definition that hides it. 

There are several objections to each of these reasons for imposing an order 

of elaboration on the definitions within a scope. 

Regarding the first iteni, production quality compilers frequently read entire 

program blocks before generating any code. This allows optimization of the 

layout of stack frames as well as much greater freedom for code movement and 

optimization. Compilers that use the Diana internal form generally create the 

internal representation before any processing starts. 
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Regarding the second item, when prototyping, it is frequently useful to use 

a definition before it is defined textually in the source code. This capability 

eliminates the need for forward declarations and incomplete type definitions. 

This "unordered" approach is clearly beneficial in a prototyping environment, 

and may be useful in a production environment as well. It is not clear that 

because a programming language includes strong typing that it needs a strict 

. order of elaboration as well. 

Finally, global variables are always accessible in Ada by qualifying the name 

of the global variable directly (e.g., proc1. var2). Altering the scoping rules so 

that an identifier is available for use preceding its definition actually reduces the 

ambiguity: it is always necessary to qualify the global definition and therefore 

document the fact it is hidden by a local definition with the same name . 

. The advantage of removing this restriction is that one aspect of the prob

lem of getting everything "in the right order" is removed. The statements in a 

program obviously must be in the right order. There is no compelling reason 

why the declarations within a scope must follow a linear ordering. As this dis

sertation indicates, the complexity of keeping the declarations in the right order 

is significant and cannot be ignored. 
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Experimental Programming Environments 

One important lesson learned is that it is enormously beneficial to have access 

to the source code for an existing programming environment. Some environ-

ment research necessitates creating an entire new programming environment from 

scratch. In such unfortunate situations, the amount of work involved merely to 

get up to speed is incredible. Whenever possible, it is advisable to adapt an 

existing environment. In this way, the new research is more tightly focused: it 

is not necessary to reinvent the wheel {actually, parsers, prettyprinters, inter-

preters, etc.). In addition, it is easier to differentiate new research results from 

previous work. 

The Arcturus environment began as a simple Ada interpreter. Over time, 

all sorts of experimental features were added, and integrated into one cohesive 

whole. It became difficult after awhile to say exactly what Arcturus was and what 

it was not, and in particular, to say what each student's contribution had been. 

For his research on persistent prototyping, the author removed whole pieces of 

the environment toolset. The result was a return, of sorts, to a simple interpreter 

-
based system which became the platform for further, individualized work. The 

pace of programming environment research was greatly increased with the advent 

of the Interlisp system, where each user of the system had access to the source 
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code. Further Ada programming environment research will have much more 

value if a programming environment platform, like Arcturus or Surveyor, is widely 

available. Adding a new Lisp-specific tool to Interlisp was relatively simple, 

because the Lisp language was simple. Adding an Ada-specific tool to Arcturus 

is much more difficult: the semantics of the language are more complicated.1 

This difference in complexity serves to underscore the need for a solid research 

platform. 

5.2 , Future Work 

Automatic Hierarchical Organization 

Prototype programs are generally organized in one large scope. The intent is to 

keep as many definitions visible as possible so that modifications to the struc-

ture of the system are as unconstrained as possible. The graph of dependencies 

between fragments of the code will contain an implicit hierarchical organization. 

It is desirable to make this implicit hierarchy explicit when exporting to a pro-

duction environment. 

There are two key problems that need to be solved. 

1 As a hint of the complexity, consider that the syntax of Lisp is easily described 
in ten to fifteen BNF rules; Ada requires about 140 rules. 
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1. A means for grouping related definitions into packages needs to be discov-

ered. 

2. Any mechanism for breaking the dependency graph into chunks is likely 

to produce several alternatives. A method of displaying the choices so the 

user can select between them is needed. 

Retaining the Value of a Redefined Type 

It is sometimes desirable to retain the value of an object even when its type defi-

nition changes. This unusual condition occurs only in an interactive environment 

I 

!~ with strong typing. Presumably all instances of the type would lose their current 

values. This need not be the case. Sometimes the new type definition is "close" 

to the previous type definition. Examples are changing the length of an array, 

or adding a field to a record. There is no reason the old values of the objects 

shouldn't be retained if possible. The benefit is that the values of complex data 

structures do not have to be recreated by the programmer., 

There are two main areas of research necessary: 

1. A detailed classification of the varieties of types possible and the various 

changes they might go through, and 
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2. An exact definition of the "closeness" of two type definitions needs to be 

developed. 

Another benefit of research in this area will be the development of a means 

of automatic type coercion between arbitrarily complex but "close" user defined 

data types. 

5.3 Summary 

This dissertation discusses the problem of creating persistent prototypes: proto

types created in a rapid prototyping environment and exported to traditional 

compiler based programming environments for further development and refine

ment. It shows that only languages with strong typing are suitable for building 

prototypes which evolve into a mature system. 

The most significant difficulty with automatically organizing prototype in

teractive Ada programs is collecting the dependency data. One approach, based 

on the use of type descriptors as carriers of dependency information, is presented. 

In this approach, the basic structure of the program is viewed as a dependency 

graph between every object (type, constant, subtype, subprogram, etc.) in the 

prototype system. The unstructured prototype implementation is tran,slated to 



I 

1 

~ 

I 

91 

a structured version of the same program. There are two benefits from this 

translation: 

1. The translated version documents the relationships between definitions in 

the prototype. 

2. The resulting translation is compilable in standard compiler based pro

gramming environments. The scaffolding of the interactive developmeµt 

environment is completely stripped away. 

The basic algorithm for linearizing the structure of the prototype is the 

topological sort by Knuth. The algorithm is modified to handle circular depen

dency relationships as they arise in Ada programs. 

The approach here is proactive. The programmer specifies a nummum 

amount of structuring information (e.g., strong typing of objects) and the sys

tem imposes all other redundant constraints ( e:g., a specific program ordering) 

automatically. This approach improves upon the present approach in which 

consistency constraints are enforced and the programmer is left to the task of 

satisfying those constraints by himself. 
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