
UC Irvine
ICS Technical Reports

Title
Persistent prototypes

Permalink
https://escholarship.org/uc/item/3s25k7bw

Author
Willson, Stephen Hunter

Publication Date
1986

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3s25k7bw
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

UNIVERSITY OF CALIFORNIA
Irvine

Persistent Prototypes

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Information and Computer Science

By

Stephen Hunter Willson

Committee in charge:
Professor Richard N. Taylor, Chair
Professor Nancy G. Leveson
Professor Rami R. Razouk

Technical Report 86~20

1986

© 1986

Stephen Hunter Willson

All Rights Reserved

The dissertation of Stephen Hunter Willson is approved,
and is acceptable in quality and form for

publication on microfilm:

{!£f/l *mmittee Chair

· University of California, Irvine

1986

ii

This dissertation is dedicated to the memory of
Walt Disney

whose commitment to quality
is a continuing source of inspiration

and to my wife
Kayler M. Clarke

who has helped me so much in so many ways.

iii

Contents

List of Tables ...
List of Figures . .
Acknowledgements
Curriculum Vitae .
Abstract

1 Research Objectives
1.1 Introduction
1.2 Prototyping
1.3 Requirements of Production Environments .
1.4 Prototype Promotion .
1.5 Interactive Ada . . .
1.6 Summary of Results .

2 Rapid Prototyping Environments
2.1 Interlisp
2.2 Cedar
2.3 Cornell Program Synthesizer
2.4 Pecan, Magpie, and Dice .
2.5 C and Lint
2.6 Arcturus
2. 7 Interactive Ada in Surveyor
2.8 Summary

3 Collecting Dependency Information
3.1 Object Dependencies .
3.2 Symbols
3.3 Type Descriptors
3.4 Internal Form . . .

iv

Vl

Vll

Vlll
' x
XI

1
1
3
6
7
9

13

15
16
20
23
25
27
29
31
37

39
40

. . . 44
46
48

3.5 Mapping Functions . 53

3.6 The Collection Process . 54

3.7 Example 56

4 The Export Tool 63

4.1 Algorithm TGEN 66

4.2 Algorithm TSORT 69

4.3 Algorithm BREAKQYCLE 71

4.4 Algorithm TESTCYCLE 75

4.5 Examples 77

5 Recapitulation 84

5.1 Lessons Learned
~~ 84 ..

5.2 Future Work 88

5.3 Summary 90

References 92

v

List of Tables

2.1 Directory of Tektronix 4129 Package ... 38

3.1 Type Descriptor Components in Surveyor 47
3.2 List of Symbols 59
3.3 Dependencies from Type Descriptors 60
3.4 Initialization and Constraint Dependencies . 60
3.5 Dependencies in lookup and enter . . . 61
3.6 Summary of Dependencies . . 61

4.1 Summary of Dependencies . 79
4.2 Predecessor Counts and Successor Sets . 79
4.3 Results of BREAKCYCLE 83

Vl

List of Figures

3.1 Layout of Surveyor Workspace . 42

3.2 Workspace After Redefining ca 43

3.3 A Symbol 44

3.4 Sample Type Descriptor 49

3.5 Factorial Function 51

3.6 BIF Tree for Factorial Function . 52

3.7 Dependency Graph 62

4.1 Ordered Interactive Ada Fragments 78

4.2 Sorted Dependency Graph . 81

4.3 Sample Cyclic Graph 82

vii

ACKNOWLEDGEMENTS

Professor Richard N. Taylor provided many helpful suggestions regarding
the structure of my dissertation.

Thanks to Professors Nancy G. Leveson and Rami R. Razouk for serving
on my committee and providing helpful advice.

Professor Thomas A. Standish introduced me to the fields of programming
environments and "rapid prototyping."

Professor John L. King helped me focus my attention on defining the prob
lem I wanted to solve.

The Surveyor Ada interpreter is based on the Arcturus interpreter developed
by the Programming Environment Project. Professor Standish was responsible
for obtaining our funding and for building a working relationship with the Soft
ware Productivity Project (SPP) at TRW. Steve Whitehill and I wrote the first
version of the interpreter in C [27] including the static scoping and type struc
ture. Steve also wrote the code for unconstrained array types and aggregates.
Frank Tadman added several control constructs including exception handling.
Frank also replaced our hand-written parser and lexer with one produced by
yacc [25] and /ez [30]. Craig Snider maintained Arcturus for several years. Scott
Auchmoody wrote a version of put which prints the values of arbitrarily complex
data types. Ray Klefstad wrote the code for case statements.

Several members of the Software Productivity Project at TRW provided
help. Barry W. Boehm provided insight on the need for evolving software from
prototype implementations. Frank Belz and Judy Bamberger used early versions
of Arcturus. Their experience with the system helped me identify the need for
an export capability.

Kayler M. Clarke helped with algorithm BREAKCYCLE. Kayler also pro
vided intellectual, emotional, and spiritual support during the last two years of
the work. In particular, Kayler acted as my own "export laundry," helping me
turn my stream of consciousness style into something more structured. The many
hours we spent discussing the nature and goals of scientific research were highly
beneficial. Without her help I would not have completed this dissertation.

I am indebted to my friend Rama for teaching me various concentration,
meditation and survival techniques, which have aided me greatly not only as a
graduate student but in many areas of life.

I appreciate the financial support of my parents, Richard and Beverly Will
son, and the Northrop Corporation.

Many thanks to Jim Reis, Manager of the Autonomous Systems Labora
tory at the Northrop Research and Technology Center (NRTC) in Palos Verdes,

viii

California, for encouraging me to complete my dissertation. Jim gave me the
time and resources I needed to complete the work.

Thanks to Marty Cohen for showing me reference [19], and lending me [4]
and [9]. Also, Joa~ Willis, the NRTC librarian, helped me track down several
references.

This dissertation was computer typeset using the L\.TE)X macros by Leslie
Lamport; TPIC, by Brian W. Kernighan and extended by Tim Morgan; and
the '!EX typesetting system by Donald Knuth. Various computer resources at
UCI and NRTC were utilized to typeset the text: the NRTC Vax-8600 (Venus),
the NRTC Computer Science Lab's ISC-68020 (Gremlin), one of UCI's Vax-750s
(ICSC), the UCI Sequent (Bonnie), two of UCI's Sun-3s (ICSG and ICSH), two of
UCI's Sun-2s (Sunl and Sun2), and an earlier draft on Kayler Clarke's IBM-PC
(Rum Punch); and various laser printers at both sites. Thanks also to Marshall
Rose for providing me with great quantities of information that aided me in the
preparation of this manuscript. Marshall also provided access to Gremlin and
was instrumental in installing the Internet connections at both UCI and NRTC.

This work was supported in part by the Defense Advanced Research Proj
ects Agency of the United States Department of Defense under contract MDA-
903-82-C-0039 to the Irvine Programming Environment Project. The views and
conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the United States Government.

The table below lists various trademarks referenced herein and the organi
zations to whom they are registered.

Organization Trademark(s)
American Mathematical Society '!EX
AT&T Unix
Digital Equipment Corporation VMS, Vax, Vax-8600
Integrated Solutions, an NBI Company ISC-68020
International Business Machines Corp. IBM, IBM-PC
Sequent?? Sequent
Sun Microsystems Inc. Sun-2, Sun-3
Tektronix, Inc. Tektronix
United States Government Ada
(Ada Joint Program Office)

ix

CURRICULUM VITAE
Stephen Hunter Wills<?n

August 23, 1959 Born Los Angeles, California
1977 National Merit Scholarship Finalist

Corona del Mar High School
1981 B.S. in Information and Computer Science

(CUM LAUDE)
University of California, Irvine

1982 M.S. in Information and Computer Science
University of California, Irvine

1986 Ph.D. in Information and Computer Science
University of California, Irvine

x

ABSTRACT OF THE DISSERTATION

Persistent Prototypes

by
Stephen Hunter Willson

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1986

Professor Richard N. Taylor, Chair

Rapid prototyping environments (RP Es) give the programmer great flexi
bility during the composition phase of program-creation. An RPE enables the
designer/programmer to define and redefine fragments of programs in an ad hoc
fashion with a minimum number of constraints.

Existing RPEs are based on programming languages which are unsuitable
for use in long term production environments. This inability to move from the
ad hoc development environment to a more structured production environment
inhibits the long term value of the prototype: most prototypes are thrown away
and the work is recreated in a compiler based environment. A persistent proto
type is defined as a prototype which evolves into a mature program. Persistent
prototypes are valuable because they eliminate the need to recreate work done
in the prototyping environment in a compiler based environment.

This dissertation describes the requirements for rapid prototyping environ
ments based on languages with strong typing, which are suitable for production
use. Prototypes are written in interactive Ada, a variant of standard compiled
Ada, which is suitable for prototyping. Interactive Ada relaxes the compiled Ada
constraint that definitions are stored in a particular order. Thus, it is necessary
to ezport the prototype from the interactive environment to a compiled envi
ronment by sorting the declarations into an appropriate order. The dependency
relationships inherent in Ada's strong typing make this sorting process possible.
The _dissertation details the data structures and algorithms necessary to effect
this transfer.

Xl

Chapter 1

,Research Objectives

persist v. 1. To hold firmly and steadfastly
to a purpose or undertaking despite obstacles.

2. To continue in existence. [Lat persist~re.]
The American Heritage Dictionary (1983)

This chapter presents an overview of the research objectives and principle

contributions.

1.1 Introduction

Rapid prototyping environments (RP Es) give the programmer great flexibility

during the composition phase of program-creation. An RPE enables a design-

er/programmer to define and redefine fragments of programs in an ad hoc fashion

with a minimum number of constraints.

1

2

Existing RPEs are based on programming languages which are unsuitable

for large scale development. This inability to move from the ad hoc development

environment to a more structured development environment inhibits the long

term value of the prototype: most prototypes are thrown away and the work

is recreated in a compiler based environment. A persistent prototype is defined

as a prototype which evolves into a mature program. Persistent prototypes are

valuable because they eliminate the need to recreate work done in the prototyping

environment in a compiler based environment.

This dissertation describes the requirements for rapid prototyping environ

ments based on languages with strong typing, which are suitable for production

use. Prototypes are written in interactive Ada, a variant of standard compiled

Ada, which is suitable for prototyping. Interactive Ada relaxes the compiled Ada

constraint that definitions are stored in a particular order. Thus, it is necessary

to ezport the prototype from the interactive environment to a compiled envi

ronment by sorting the declarations into an appropriate order. The dependency

relationships inherent in Ada's strong typing make this sorting process possible.

The dissertation details the data structures and algorithms necessary to effect

this transfer.

3

1.2 Prototyping

Sometimes it is difficult to accurately and completely specify the requirements for

a particular software system [8, page 290]. One technique used to experimentally

determine software system requirements is prototyping. Prototyping is a method-

ology for building a subset of a system and testing portions of the behavior with

potential users to determine if the design meets their requirements.

"In most fields of engineering the significant new project costs are
labor, materials, and capitol [sic]. In software engineering, material
costs are small and capitol [sic] costs are often fixed. Labor, and
therefore time, is the main project expense. Scale modeling of soft
ware, if it is to be cheaper than building the whole system, must take
the form of quickly built models. Thus the term 'rapid prototyping'."
[50, Page 181]

There are generally two approaches to rapid prototyping.

"Discussions of rapid prototyping generally focus on two strategies
for producing the prototype: methodologies and executable specifi
cations. The methodology strategy, in its simplest form, suggests that
the prototype be written in a language which facilitates expression
and experimentation, possibly at the cost of efficiency or robustness.
It is a strategy that we all already use (or should use if we don't),
at least for small prototypes. The executable specifications strategy
involves describing the software to be prototyped in some (relatively
formal) specification language which has some operational semantics
so that it can be directly executed (or interpreted) in some fashion."
[5, page 33]

The focus here is on the methodology approach rather than the executable

specifications approach. As indicated above, a prototype is often developed in

4

a rapid prototyping language (RPL). Rapid prototyping languages typically are

interpreted, lack strong typing, and have minimal structural requirements. Lisp,

Basic, Forth, and APL are languages commonly used for r~pid prototyping. A

rapid prototyping language is used in conjunction with a rapid prototyping en

vironment (RPE). The RPE provides useful services which extend the power of

the RPL. "Using environments, prototypes are used to clarify requirements and

design issues prior to construction of the actual product." [42, page 2].

Normally when developing a prototype in an RPL, one makes great use of

the services provided by the runtime (i.e., interpreted) environment. "One of the

valuable lessons we learned from Interlisp and Smalltalk was that the availability

of an interpreter greatly facilitates debugging and testing ... "[46, page 286] For

instance, the Lisp (print (eval (read))) loop is often modified to provide

specialized input and output processing. Compile time type checking is not

considered important and one relies on the interpreter to catch significant errors.

The error recovery services of the interpreter are used instead of special case code

(e.g., to check for a null pointer before dereferencing it).

Since the nature of the task is inherently experimental, it is bad policy to

overconstrain one's options by hiding subroutines and types that might be useful

at a later time. Thus, the rapid programming environment usually supports

5

some means (i.e., a database) for accessing a large number of separate functions

and data structures.

The methodology of prototyping and the programming environment used

to carry out that task are intimately connected. "The quality of software depends

primarily on the programming methodology in use. The choice of programming

language, however, can have a major impact on the effectiveness of the method

ology." [31, page 565] Similarly, the choice of programming environment impacts

the effectiveness of the methodology as well. " ... every detailed recommenda

tion on how to write programs is .also a recommendation on how to design an

interactive programming system that supports the methodology." [38, page 37]

The characteristics of a rapid prototyping environment that supports the

prototyping methodology are summarized below:

• The designer/programmer requires rapid system response to commands to

execute, suspend, modify and debug a program.

• The designer/programmer requires fine grained interaction which allows

him/her to experiment directly in a "free form" manner with data struc

tures and routines, without waiting for a traditional compiler and or linker.

6

• The designer/programmer needs to enter definitions rapidly, without wor

rying too much about getting everything in the right order. The program

mer shouldn't spend time positioning each new routine in the proper place

relative to the others.

• The designer /programmer needs access to a potentially large set of data

structures and routines. The environment needs to support a large, easy

to manipulate database of these definitions.

• The designer /programmer should not be overconstrained by environment

and/or language rules for type checking. The designer/programmer inter

actively defines new types and alters old ones. The key characteristic here

is the ability to redefine the type of an object. This capability allows the de

signer/programmer to quickly implement major structural changes to the

data types defined in the prototype.

1.3 Requirements of Production Environments

The requirements for production quality programs, namely, reliability and main

tainability, have resulted in a development methodology that, generally speaking,

is in conflict with the prototyping methodology. The following list, paraphrased

7

from [21, pp. 202-203], describes the characteristics of production quality soft-

ware:

• The system has to function correctly. Even small errors can be costly.

• The system is long-lived. The cost of developing the system is recouped

over a long period of time.

• During its lifetime, the system undergoes considerable modification.

• Many people-tens or hundreds-are involved in the development of the

system.

The goals of a production environment are to promote stability, relia

bility, and maintainability. These goals conflict directly with the goals of a

prototyping environment, namely, to promote flexibility and experimentation.

Interactive development environments tailored to the needs of one or two de

signer /progranuners do not adequately support the needs of large teams of pro

grammers and will not do so in the foreseeable future.

1.4 Prototype Promotion

The differences in the two kinds of program development just described have led

to the notion that prototype programs are significantly different from production

8

programs. But, as mentioned in section 1.2, labor is the most significant cost

of developing software. To avoid wasted effort (and thereby reduce costs and

increase productivity) it is desirable to reuse as much of the prototype software

as possible when constructing the production version of the same system. This

dissertation proposes the following strategy for reconciling the two methodologies

in such a way that it is possible to evolve a prototype implementation into a

production quality implementation.

1. Develop the prototype in a programming environment that supports inter

active prototyping in Ada. This environment supports the kind of inter

action normally expected in a rapid prototyping environment, but in the

context of Ada, a strongly typed, statically scoped, modular language.

2. At the appropriate time, export the prototype from the RPE to a tradi

tional, compiler based programming environment.

3. Continue development of the program in the traditional environment, using

the traditional tools of large software development.

For this approach to work, an RPE for Ada must exist. Since the RPE

treats Ada as if it were a prototyping language, it may be necessary to repackage

the prototype into a more standard form before continuing development in the

9

compiler based environment.

The next section introduces the key concepts of interactive Ada, and in-

dicates how interactive Ada is used both as a prototyping language and a pro-

duction quality language. There are minor differences between interactive Ada

and standard compiled Ada. These minor differences have a minimal impact

on the semantics of the language, but have a large impact on the nature of the

programming environment used to develop Ada programs.

1.5 Interactive Ada

Surveyor [52) is a programmmg environment which supports interactive input

and execution of fragments of Ada programs, including "on-the-fly" redefinition

of types, variables, and subroutines. Interactive Ada, as implemented in Surveyor,

is fairly similar to compiled Ada. There are four principle. differences between

interactive Ada and compiled Ada:

1. Type checking occurs at runtime. ·

2. A program fragment (e.g., a single statements or declaration) is the basic

unit of interaction (rather than an entire compilation unit).1

1The valid top level inputs to the Ada interpreter are as follows: expression,
simple statement, unlabeled compound statement, use clause, object declaration,

10

3. Programs are not stored in any particular "order." Since it is possible

to enter an individual declaration without placing it in the context of all

other declarations as required in compiled Ada, it is necessary for the pro-

gramming environment to take on the burden of connecting together all

declarations at runtime.

4. It is possible to redefine the type of an object. Again, since the de-

signer/programmer can enter individual declarations interactively, it is pos-

sible for him to redefine an existing declaration.

Taken together, these differences significantly alter the way the design-

er/programmer interacts with the system. The compile-link-debug cycle is elimi-

nated. These alterations to the normal use of compiled Ada make interactive Ada

suitable as a prototyping language without sacrificing the needs of a production

environment (e.g., strong typing and modular structure).

Ada as an RPL

Surveyor's interactive Ada meets the requirements of a prototyping environment:

type declaration, subprogram declaration, task declaration, rename declaration,
number declaration, subtype declaration, package declaration, exception decla
ration, subprogram body, task body, package body, and body stub.

11

• Programs are interpreted. Modifications to subroutines or other definitions

are instantly available for testing.

• A single statement, declaration, or expression is the level of interaction

with the interpreter.

• Programs are not stored in any particular order. The environment takes

care of connecting definitions with usages at runtime.

• Definitions are usually stored in one fl.at scope. The normal Ada semantics

which allow nesting of modules is intact, but for prototyping purposes the

designer/programmer usually stores everything in one scope.

• Type checking occurs at runtime. Even though the interactive Ada inter

preter enforces strong typing, the ability to redefine the type Qf an object is

still available to the designer/programmer. In fact, type definitions them

selves can be redefined, thus causing global changes to the structure of a

prototype. Strong typing encourages good software practice by helping the

designer/programmer build hierarchical definitions for complex types. The

ability to redefine types makes interactive Ada suitable as a prototyping

language without sacrificing strong typing.

12

Ada as a production language

The differences between interactive Ada and compiled Ada do not interfere with

its use in a production environment.

• Once an interactive Ada· program is translated to compiled Ada, the global

type checking facilities of the compiler are used in the normal fashion.

• Again, once an interactive Ada program is translated to compiled Ada

(ezported), the runtime overhead of the development environment is com

pletely eliminated.

• The facilities for modular program structure remain intact. Since compiled

Ada and interactive Ada are so similar, the goals of distributed devel

opment among many individuals, production of maintainable code, and

management control of module interfaces are nicely supported.

Once strong typing is introduced as a characteristic of an RPL, a mecha

nism is required to support the ezport of the prototype from the development

environment to the production environment. This need arises because the RPE

(Surveyor) does not store programs in any particular order, whereas a compiled

Ada environment has strict rules defining a required order for the textual rep

resentation of a program [1, page 3-43]. An ezport tool provides the service of

I

13

packaging up interactive Ada programs into compilable versions of the same. The

Ada interpreter records the dependency relationships between definitions in the

RPE. The export tool uses these dependency relationships to sort the definitions

into an appropriate order for outputting as a compilable file.

1.6 Summary of Results

This dissertation discusses a programming environment for building persistent

prototypes. A persistent prototype is one that is designed to be kept as the basis

for a more mature system. It is beneficial if the persistent prototype is developed

in a language with strong typing and modular static scoping (e.g., Surveyor's in

teractive Ada). The quality of the prototype is improved (because of strong

typing), and the prototype can be further developed and refined in a produc

tion (i.e., compiler based) environment. This approach differs from traditional

techniques which use dynamically scoped, loosely typed languages for imple

menting prototype systems. Without strong typing and modular structure, tra

ditional prototypes fail to satisfy the requirements of production environments,

and therefore can not "scale up."

Chapter 2 presents a survey of related work in programming environments,

with particular emphasis on the suitability of each environment for developing

14

persistent prototypes. Chapter 2 concludes with a description of Surveyor, and

indicates how it is used to build prototype systems.

Chapter 3 explains how the dependency relationships between type def

initions are stored in the Surveyor environment. The issues relating to storing

programs as unordered fragments are explored, and the need for an ezport tool to

effect the transfer from Surveyor to a more traditional environment is explained.

A process for collecting these dependencies into tabular form is presented as well.

Chapter 4 presents several algorithms which work together to turn the

table of dependencies generated by the process described in Chapter 3 into an

ordered list of declarations suitable for use with a compiled environment. The

algorithms deduce an ordering for the "unordered" definitions stored in Surveyor.

This ordering serves two purposes:

1. The ordering illuminates the structure implicit in the dependency relation

ships between various type definitions, and

2. The ordering allows the definitions to be compiled with a standard compiler.

The ideas presented in this dissertation point the way to improved pro

gramming environments that support the need for both flexibility and imposed

structure.

Chapter 2

Rapid Prototyping Environments

Many of Fortran's restrictions, such as the number of array dimen
sions or the form of expressions used as array indices, are based di
rectly on what could be implemented efficiently on the IBM 704.

The issue of efficiency has changed considerably, however. Efficiency
is no longer measured only by ·the execution speed and space. The
effort required to produce a program or system initially and the effort
required in maintenance can also be viewed as components of the
efficiency measure.

- Carlo Ghezzi and Mehdi Jazayeri,
Programming Language Concepts (1982)

This chapter presents a survey of related research on programming envi-

ronments. Many of today's research programming environments are strongly

influenced by the Interlisp programming environment [45,38,47]. The design of

Surveyor, in particular, is heavily influenced by Interlisp.

15

16

2.1 Interlisp

Interlisp is one of the most mature programming environments. It supports

a dialect of Lisp that has been augmented by many environment-supported

functions. 1 There are so many features in Interlisp that it is difficult to identify

them all. The important features that influenced Surveyor are as follows:

1. Code and data are the same. Of course, all data in Lisp is either a list

or an atom. Programs are stored using a list representation, so naturally,

programs are data. This equivalencing makes it easy to write programs

that create or modify other programs.

2. The programmer has easy access to internal data structures, including sym-

bol tables (the OBLIST), and program state information (e.g,. backtrace).

3. New functions are easy to add to the repertoire of functions already in

Interlisp. These are callable in the same way as built-in routines.

4. The user interacts with the interpreter at a fine grain of interaction.

1ln this discussion the incremental compilation facilities included in Interlisp
are ignored; while these facilities are important, they do not significantly alter
the interaction between the user and his program. Functions are still invoked
from the interactive interpreter and do not stand alone. The compilation facil
ities improve the execution speed of Lisp programs but depend heavily on the
interpreter l'\lntime environment.

17

5. The system maintains an extensive runtime state even though the user

changes his programs. In other words, when the Interlisp programmer

changes a function, the data structures and variables he has created are

not destroyed by the system.

6. The debugging language is the same as the programming language.

7. The command language is the same as the programming language.

All of these capabilities are present in Surveyor, though sometimes in slightly

different form.

1. Code and data are the same. Programs are represented as trees. The

concrete representation of these trees is defined by standard Ada type def

initions which are accessible to the user. These trees are manipulated in

the same way all Ada data structures are.

2. The user has access to internal data structures. The runtime stack, symbol

tables, and type descriptors are all available to the user for analysis.

3. New routines are added simply by defining them to the top level. They are

invoked in the same was as all built-in routines, namely, by a procedure or

function call.

18

4. The granularity of interaction is small; the user can enter a single statement,

declaration, or expression.

5. The user declares variables and types to the interpreter and these retain

their values and definitions throughout the entire session.2

6. Debugging is accomplished by invoking built-in Ada functions that alter the

normal flow of control (i.e., the cause execution of the program to suspend

and control passes to a break package). Once in the break package, built-

in procedures are used to analyze the state of the program (e.g., examine

variables or the call stack).

7. The command language is the same as the programming language. Com-

mands for reading and writing files and otherwise altering the programming

environment are given using standard Ada semantics.

Although the Interlisp environment is a very good programming environ-

ment, the fact that it is based on Lisp hinders its use for some kinds of applica-

2Here, a session is defined as the time beginning when the user starts the Sur
veyor interpreter to when he finally exits the system by invoking the procedure
quit. The operating system is given the burden of providing a means of suspend
ing a session and later resuming it. With the proper operating system support,
the user need never terminate a particular session at all, but merely suspend and
resume it. In this case, the lifetime of these user defined variables and types is
indefinitely long.

19

tions.

1. Lisp environments are tailored to applications that manipulate lists. Work

ing with more structured data types (e.g., multi-dimensional arrays of

~records) is difficult.

2. Lisp environments do not provide an adequate syntax for constructing ab

stractions for numerically-intensive applications (e.g., overloading of oper

ators and encapsulation of abstract representations into packages).

3. Transferring an application from a Lisp environment to an embedded sys

tem is impossible: Lisp applications depend heavily on the Lisp program

ming environment and cannot run without it.

4. Dynamic scoping and loose typing are unreliable ways to structure a pro

gram [20]. Even supposing a Lisp prototype could be exported, the result

ing code would not be suitable for use in a production environment.

Recent attempts at imposing static scoping on Lisp have met with some

success. Scheme [22], T [2], and Common Lisp [40] are dialects of Lisp with

static scoping. T, in particular, defined a variant of Lisp where the compiled

and interpreted semantics are identical: both use static scoping and require pre

declaration of special variables. In previous Lisps (as well as the more recent

20

Common Lisp); the compiled and interpreted semantics sometimes differed. In

order to compile his/her code, the programmer annotated his/her already work-

ing program with type definitions for those variables that conflicted with the

default data type (a dynamically scoped list). Once these definitions were in-

troduced, they sometimes interfered with the loose typing and dynamic scoping

rules of the interpreter. The only resolution to this problem thus far has been

to impose static scoping throughout. This is the approach used in Surveyor, a.rid

implemented by adopting Ada semantics. 3

2.2 Cedar

The Cedar environment [46] is similar to the Interlisp environment, except Cedar

supports Mesa [33], a strongly typed, statically scoped language similar to Ada.

" ... A fair characterization of the Cedar project as it is currently constituted is

that it is an attempt to take the Mesa language and build for it a programming

environment based on ideas and techniques from Interlisp and Smalltalk." [46,

page 286].

Both Cedar and Surveyor· are based on the same requirements document

3ln Surveyor, it is possible to dynamically bind a fragment of code into a
specific scope at runtime; even so, once bound into place, the code obeys the
normal static scoping rules.

I

I

21

[15]. This document outlined the characteristics of interactive environments as

they were known at the time while including various requirements which at that

time were only supported by traditional compiled environments.

Cedar and Surveyor are similar in many ways, but the scope of the Cedar

project far exceeds that of Surveyor. Surveyor is focused on supporting interactive

prototyping; Cedar includes document preparation, electronic mail, an advanced

user interface, and shared (i.e., networked) file systems.

The relevant portion of Cedar for this discussion is the UaerEuc. The

UserExec is a line-at-a-time interface to Cedar for Mesa programmers. "One of

the valuable lessons we learned from Interlisp and Smalltalk was that the avail

ability of an interpreter greatly facilitates debugging and testing ... " [46, page

290]. The Cedar interpreter is used to call subroutines and evaluate expressions.

The user ~an assign the results to temporary variables and then ?Se those re

sults in later expressions. The UserExec also accepts debugging commands (e.g.,

setting and clearing breakpoints).

The UserExec appears to work by loading a symbol table for each module

being debugged. The module consists of compiled code which is connected to

the source code by a table of pointers stored in the symbol table. The user can

enter a. text editor anytime to view the source code connected to the current

22

compiled module. Breakpoints are set by inserting a breakpoint instruction into

the compiled code. The symbol tables also contain detailed type descriptors for

each type used or defined in a module.

The UserExec is a powerful debugging tool. The expression interpreter

allows flexible interrogation and alteration of the state of a program. Changes

to the program are made by editing a module, and then recompiling. The ne~

code is linked to the existing code. It is not possible to change the code while it

is executing.

While Cedar and Surveyor have similar program construction and debug

ging facilities, there are several significant differences. Surveyor contains a more

extensive interpreter: the user can enter or change type definitions, variables,

procedures and functions; enter compound statements (e.g., loops and condi~

tionals); as well as evaluate expressions.

The granularity of incremental program changes is much larger in Cedar:

the smallest unit of change is the module, rather than an individual statement

or declaration, as in Surveyor. As a result, the burden of keeping a program in

order still falls on the programmer.

23

2.3 Cornell Program Synthesizer

The Cornell Program Synthesizer (CPS) (48] is programming environment for

interactive input and execution of PL/C programs. CPS focuses are incremental

checking of user programs. Not only is the program checked and pseudo-code

generated in the environment, but the code is executed there as well. Addition

ally, incomplete programs can be executed; when the interpreter finds a "hole"

in a program, it stops and alerts the user. The user can modify his program

with the syntax-directed editor front-end, and then restart it. Obviously, pro

grams created with CPS are exportable. One merely takes the program text and

compiles it with an external compiler.

The Cornell Program Synthesizer is similar to other syntax-directed systems

(e.g,. POE [17), ALOE [32), and Mentor [16)), in that it focuses on incremen

tal changes to a single monolithic program. This differs significantly from the

approach in Surveyor, where the user enters fragments of programs stand-alone

(i.e., without having to explicitly modify the structure of the entire program).

The Synthesizer Generator is a tool developed by Thomas Reps for generat

ing CPS-like environments [36,34). The most important contribution of this more

recent work is the use of attribute grammars to specify semantic transformations

as well as the syntactic transformations. The use of an attribute grammar for

24

describing the editor opened up the possibility of formalizing the update process,

which Reps did in his dissertation [34], which won the ACM Doctoral Disser

tation Award in 1983. By formally specifying the semantics of the language, it

is possible to automatically generate a structure editor that checks for semantic

inconsistencies. The major drawback with this approach, in terms of rapid pro

totyping, is that the feedback loop is too tight: deleting the definition of a single

variable or type definition may cause large portions of the resulting program

to become invalid. Changing the type of a. variable may have an equally large

impact. This makes small-grained experimental changes difficult.

In Surveyor, the consistency of the program structure is only checked at

export time or at runtime. As a. result, the designer /programmer is free to

experiment with temporarily invalid constructs, and even to execute these con

structs without invalidating his previous work. Unfortunately, the Synthesizer

Generator does not automatically create interpreters for languages specified with

the attribute grammar formalism. Adding this capability, as well as consider

ing a. mechanism for delaying consistency checking, would increase the value of

the Synthesizer-created editors for rapid prototyping purposes. Delayed type

checking and interpretation of incomplete programs are powerful techniques for

experimental prototyping.

25

2.4 Pecan, Magpie, and Dice

The following three systems are important because each in a different way pro

motes experimental checkout of portions of a working system at runtime.

Pecan is another structure editor based system [35]. In this particular case,

though, the focus is on displaying different simultaneous semantic views of an

executing program. For rapid prototyping purposes, the most importa11t feature

of Pecan (which implements a Pascal [23] interpreter), is the incremental seman

tics that allow the program to be compiled into pseudo-code aa it ia being edited.

This feature provides the same kind of support for Pascal which Surveyor pro

vides for Ada and Interlisp for Lisp, namely, modification of a program without

destroying the existing global data already created by the program's execution.

M_agpie [14] is an interactive Pascal environment which also features in

cremental compilation, and therefore avoids the need for a debugging language

(since the user simply modifies the code directly [inserting/removing print state

ments, etc.]) The focus of the research was on making the programmer unaware

of the various modes the system is in (e.g, compiling, editing, etc., appear as one

uniform activity), The Magpie system has a particular feature that is beneficial

for rapid prototyping. Magpie allows immediate mode execution of statements,

including assignment; therefore the user can build data structures by hand. The

26

programmer does this by entering assignment statements or calling already de

fined procedures. The user enters these statements in a special browsing window

called the workspace. The workspace defines an anonymous procedure which con

tains the statements the user wants to execute. The user does this when he/she

wants to quickly checkout the effect of calling certain procedures. Magpie does

not allow local definition of variables or types within the workspace.

Another system with the same important capability for modifying a pro

gram while it is executing is Dice [18]. Dice, or Distributed Incremental Compiler

Environment, supports incremental compilation of Pascal code on a remote tar

get computer. Again, the relevant capability is modification of the source code

while the program is executing. The programmer can insert print statements

directly into code that has been compiled and loaded on a remote target. In

addition to the benefit that the programmer does not need to learn- a special de

bugging language, the global program state remains intact even though portions

of the code have been modified.

The main problem with these systems, from a rapid prototyping point of

view, is that the programmer is still constrained to get everything in the right

order. Each system will check for consistent declarations and usages, but does

27

not provide any a&sistance with the problem of organizing the code.4 Dice, in

particular, maintains complete cross reference information in order to implement

the incremental update of the compiled code on the remote target: this cross

reference information is exactly the information required for automatic ordering

of the declarations within a scope. The power of the DICE system as well as

the Pecan system, for rapidly prototyping systems, would be increased with the

addition of automatic program ordering.

2.5 C and Lint

Rapid prototyping is not always done with interactive environments. Many pro-

totype systems are developed in C [27]. The language is flexible enough such that

the programmer can make major structural changes without a major rewrite.

Because the language is independent of the development environment, exporting

applications is not a problem. Many prototype C applications evolve quickly into

production versions [37].

The development environment is a loosely coupled collection of tools: an

editor, a compiler, a linker, and hopefully, a debugger. Other tools are some-

4 This is not exactly true: The Pecan system provides a special editor which
makes manually moving declarations around easier to do.

28

times present but this is the basic set. The Unix [26] operating system and its

many tools is a programming environment tailored to C; simpler C program

ming environments exist also on a wide range of machines, from IBM-PCs to

Vax/VMS.

The key aspect of C for rapid prototyping is default argument types and

function return types. Coupled with the loose type-checking rules, it is easy to

add new procedures and variables without significant concern for where they are

declared. Of course, in the case of C, the same flexibility that is beneficial in

prototyping interferes with creating reliable systems. The loose type checking

rules allow inconsistencies to creep into programs undetected.

It is interesting to compare lint [24], the Unix tool for increasing the level of

type checking in C programs, with the notion presented here of an export tool. In

some sense, the C designer/programmer develops a prototype by ignoring some

kinds of type checking. He then exports the prototype for use in a more stable,

less flexible environment by analyzing the code with lint and fixing any problems.

These fixups are performed manually even though the detection of the problems

is done by lint. Unfortunately, many C programs are never checked by lint.

Standard C programming environments do not support line-at-a-time ex

ecution of C language constructs, but a new breed of interpreter based C envi-

29

ronments is emerging for use on personal computers [19]. They do not presently

support line-at-a-time execution of C language constructs but it is not difficult

to imagine this capability becoming available in the future.

2.6 Arcturus

Arcturus is the name of a "blue-sky" programming environment broadly defined

by Thomas A. Standish. The design of Arcturus has, at one time or another,

encompassed advanced user interfaces (e.g., lining the walls one's office with flat

panel displays); novel input devices (e.g., a chair like Captain Kirk's which is

used to fly around one's files); an integrated Unit Development Folder {UDF)

[7, pp. 607-612] database; a program transformation system like the one in ECL

[12]; a program design language [39,44]; a "template assisted editor" [28]; an

interactive Ada interpreter [51]; and other interesting ideas. Many of the ideas

were, of course, never realized. The Arcturus system as distributed by the Irvine

Programming Environment Project consisted of the Ada interpreter and various

tools, including the uniform user interface, the prototyping language, a fancy

prettyprinter, and other tools designed and implemented by the graduate stu

dents in the Project.

Of particular interest here is the interactive Ada interpreter designed by

30

Willson, Tadman and Whitehill (51]. The requirements for the system were

based loosely on the environment capabilities list in [15]. In fact, only the Ada

interpreter and a simplified prettyprinter survive in Surveyor, as the result of an

increased focus of attention by the author on persistent prototyping. In addition,

the decreased complexity of the system made it easier to change as the research

progressed.

There are several important enhancements in the Surveyor interpreter not

present in Arcturus:

1. Single stepping and tracing of statements;

2. Access to internal data structures;

3. Modified internal type descriptors; and

4. The addition of the export tool.

Of these, the last two are the most significant. The type descriptors in

Arcturus failed to retain the fully qualified name of the type as part of its de

scription. This deficiency made rederiving a valid ordering nearly impossible,

because the dependency graph was not directly accessible. The names were not

retained because one of the goals of the Arcturus interpreter was to perform type

checking early on at the expense of flexibility: "Unfortunately, at the moment

31

much type checking is performed at run-time, though it properly belongs in the

interpreter's front-end." (41, page 59].

Of course, since Arcturus was going to perform so much checking in the front-

end to the interpreter, it would still be necessary to get all of the declarations

within a particular subprogram or package in the right order. In this case, as

with the other systems described previously, there is no need for an export tool.

2. 7 Interactive Ada in Surveyor

The Surveyor programming environment is a successor to Arcturus. The main

changes, as summarized in the preceding section, are a modification to the rep-

resentation of type descriptors and the addition of the export tool. In general,

there is a change of focus from Arcturus' proposed early binding of usages to

definitions, to binding at runtime.6

Slight modifications to compiled Ada semantics make Surveyor's interactive

Ada suitable for prototyping. As stated in section 1.5, interactive Ada programs

5The typical style of interaction with Arcturus was to define everything within
the context of one large procedure: in this way, the order of definitions was
maintained explicitly by the author of the prototype. This style of interaction was
necessary because there was no other way to organize the definition of complex
data structures. In this respect, Arcturus offers little improvement over the NYU
Ada interpreter (13]. The NYU interpreter also executes monolithic program
structures without any sort of dynamic reordering of declarations ala Surveyor.

32

differ from compiled Ada programs in four principle ways:

1. Type checking occurs at runtime.

2. A program fragment (e.g., a single statement or declaration) is the basic

unit of interaction (rather than an entire compilation unit).

3. Programs are not stored in any particular "order."

4. It is possible to redefine the type of an object.

These four principles make interactive Ada suitable for prototyping. For

readers familiar with compiler-based environments, the last two principles are

the most interesting aspects of interactive Ada.

Compiled Ada programs conform to a defined order of elaboration, where

every symbol is introduced before it is used. This is true in interactive Ada as

well. Objects must be defined before they are referenced or an error occurs. This

implies that the definitions are entered in a certain meaningful order, however,

the initial user-specified ordering disappears aa new definitions replace old ones.

A correct ordering is nevertheless deducible from the dependency information

inherent in strong typing.

The name Surveyor comes from an analogy to cartography. The job of the

cartographer is to generate a printed two-dimensional representation (a map) of a

33

physical toplogy. Analogously, Surveyor analyzes the topology of an Ada program

and generates a one-dimensional representation (a listing) of that topology.

Examples of Interactive Ada in Surveyor

This section illustrates the prototyping capabilities of interactive Ada in Surveyor.

The example illustrates a small set of routines for manipulating a Tektronix

4010 display. Below, move and draw are primitive routines for moving the bea~

position and drawing from the current beam position to another point. These

routines translate the given point into a special Tektronix encoding.

The plus sign ("+") is a continuation prompt from the system indicating it

is waiting for the end of a syntactic unit (statement, declaration, or expression).

Surveyor> procedure move(p : point)
+ is
+ begin
+ code("LF");
+ put_point(p);
+ end;
Surveyor> procedure draw(p point)
+ is
+ begin
+ code("LG");
+ put_point(p);
+ end;

The user next specifies a point as a series of three coordinates (x, y, and

z).

Surveyor> type coordinate is (x, y, z);
Surveyor> type point is
+ array(coordinate range x .. z) of integer;

Finally, the user enters the definition for the routine put_point.

Surveyor> procedure put_point(p : point)
+ is
+ hix, lox, hiy, loy, extra : integer;
+ begin
+ hiy := p(y) I 128 mod 32;
+ extra := p(x) mod 4 + (p(y) mod 4) * 4;
+ loy := p(y) I 4 mod 32;
+ hix := (p(x) I 128) mod 32;
+ lox := p(x) I 4 mod 32;
+ outchar(hiy + 32);
+ outchar(extra + 96);
+ outchar(loy + 96);
+ outchar(hix + 32);
+ outchar(lox + 64);
+ end;
Surveyor>

34

Both move and draw call the routine puLpoint which translates a point into

the appropriate Tektronix escape codes. Notice the definition of point is post-

poned until after move and draw are defined. This is perfectly legal in interactive

Ada because the local definitions (including the paramaters) in the scopes of

move and draw are only evaluated at runtime. Of course, compiled Ada does not

allow such constructions.

Notice the umantica of Ada remain intact: the most significant differences

are the "line-at-a-time" level of interaction and the lack of an imposed "order."

35

Interactive Ada allows direct access to definitions as the following session

illustrates. Origin, pl, p2 are declared to be points. One modifies the values of

these variables by entering statements.

The important thing to notice is that the designer/programmero is free to

enter statements, define variables, examine the values of variables, etc., without

writing an entire program. The overhead of writing a main procedure, entering

all routines in libraries, and so on, is eliminated during the experimental pha~e

of prototype creation.

Surveyor> origin : point := (0,0,0);
Surveyor> p1 point := (1,1,1);
Surveyor> p2 : point;

The following for loop negates each coordinate in pl, doubles it, and assigns

it to p2.

Surveyor> for c in x .. i loop
+ p2(c) := -p1(c) * 2;
+ end loop;

The following calls to move and draw invoke the specified procedure which

is immediately executed.

Surveyor> rnove(origin);
Surveyor> draw(p1);
Surveyor> draw(p2);

The user now redefines draw to display the name of the point being drawn

as a text string.

I

Survyeor> procedure draw(p
+ is
+ begin
+ code("LG");
+ put_point(p);

point)

+ put("Drawing to point (");
+ for c in x .. z loop
+ put(p(c)); put(' ');
+ end loop;
+ put_line(")");
+ end;

The important features shown above are as follows:

36

1. The unit of interaction with Surveyor is an individual statement or decla-

ration.

2. It is possible to delay the definition of a type.

3. It is possible to redefine a subroutine without destroying the current values

of all global variables.

Table 2.1 on page 38 is a "directory" listing of the contents of a larger

program. The program provides interfaces to a Tektronix 4129 terminal for

creating and displaying 3D images (53]. It contains 24 variables, 6 types and

subtypes, and 64 procedures and functions.

The type definitions, variable definitions, procedures, and functions are not

stored in any particular order. (They are alphabetized for convenience only).

I

37

There is no apparent structure to the program. Each of the 64 procedures and

functions is accessible directly as an interactive Ada command. The global vari

ables are accessible as well.

2.8 Summary

This chapter surveys recent research on programming environments, and ana

lyzes each in terms of its suitability for creating persistent prototypes. Existing

programming environments fail to provide the proper blend of features necessary

for prototyping and production use.

Surveyor supports interactive modification of Ada definitions in a line-at-a

time mode suitable for prototyping. Surveyor also supports strong typing which

results in a more reliable prototype. Once exported, a prototype is reliable

enough and structured enough so that further development in a production en

vironment is not only possible, but desirable.

38

ambient : tekrcal; back_distance : integer;
color...smoothing : integer; debug : boolean;
depoint..resolution : integer; diffuse : tekreal;
eye_position : point; front-distance : integer;
lightamt : tekrcal; lightplace : point;
obj...surf_disp : integer; pan_dim : integer;
projection : integer; rotate..radius : integer;
tekbase : integer; uv.height : integer;
uv_width : integer; view...norm: norm;
view..re{: point; view _up : norm;
viewporLbounds : winbounds; wantsolid : boolean;
window_bounds : winbounds; tekload: boolean;
subtype norm; subtype point;
subtype tekreal; subtype winbounds;
type Boatarr; type intarr;
procedure ansi; procedure box;
{unction chr; procedure closeseg;
procedure CI11ap; procedure cmap_entry;
procedure CI11ap...interp; procedure cmaprange;
procedure code; procedure coord.mode;
procedure dachara; procedure daindex;
procedure dalines; procedure davis;
procedure. delseg; procedure demeH;
procedure depoint; procedure draw;
procedure esc; procedure fbox;
procedure fixsolids; procedure Bagging;
procedure ignore_deletes; procedure killseg;
procedure lightsources; procedure move;
procedure normout; procedure openacg;
procedure outrcal; procedure ovcrwindow;
{unction padd; procedure page;
procedure panel; procedure po;
procedure promptfile; {unction paub;
procedure quadout; procedure readsegs;
procedure renew; function scalar.multiply;
procedure segment-transform.matrix; procedure seLcolor .map;
procedure set.line...index; procedure setlight;
procedure shapes; procedure showmap;
procedure showmodel; procedure solids;
{unction str; procedure surfcol;
procedure tekint; procedure tekmode;
procedure termcom; procedure testbox;
procedure testpan; procedure transdir;
procedure viewattr; procedure viewport;
procedure viewtrans{orm; procedure window;
procedure winout; procedure wircbox;
procedure wire{rame; procedure writesegs;

Table 2.1: Directory of Tektronix 4129 Package

I

I

Chapter 3

Collecting Dependency

Information

Many persons who are not conversant with mathematical studies
imagine that because the business of [Babbage's Analytical Engine]
is to give its results in numerical notation, the nature of its processes
must consequently be arithmeticai and numerical, rather than alge
braical and analytical. This is an error. The engine can arrange and
combine its numerical quantities exactly as if they were letters or any
other general symbols; and in fact it might bring out its results in
algebraical notation, were provisions made accordingly.

- Ada Augusta, Countess of Lovelace (1844)
as quoted by Donald E. Knuth, Fundamental Algorithms (1968)

As previously indicated, as definitions are changed, the initial ordering of

those definitions in the interactive Ada environment is lost. Exporting a pro-

39

40

totype from Surveyor requires organizing these definitions into a more standard

form. The export process can be broken down into two parts.

1. Collecting and organizing the dependency information already present in

the environment, and

2. Performing a topological sort (including removal of cyclic references) to

order the definitions.

In this chapter and Chapter 4, the details of the ordering process are pre

sented. This chapter explains how the dependency information is collected.

Chapter 4 explains the actual sorting algorithms.

The programmer can ask Surveyor to reorder his definitions. There are two

reasons for reordering, as follows:

1. To organize the definitions in order to examine their structure.

2. To export the definitions to an external compiler.

3.1 Object Dependencies

A simple database called the work8pace stores each definition as is entered. The

workspace is divided into Ada packages. There are several predefined packages,

I

41

e.g., standard and texLio. The package usr is reserved and contains the objects

defined by the user during a Surveyor session. Please refer to figure 3.1.

Each package contains a number of objects, either predefined or defined

during a session. Objects often refer to other objects. For example, an ob-

ject corresponding to an array declaration might refer to the predefined object

character in package standard, as in

type carray is array(1. .10) 0£ character;
ca : carray;

Notice the implicit reference to the predefined object integer in the integer

range 1..10. Also, the object ca depends on the object carray.

Over time, more objects are added to the workspace that depend on each

other. Objects are redefined by entering a new declaration that replaces an

-

existing one. For instance, changing ca from a character array to an integer will

remove the dependency link from ca to carray and replace it with one to integer.1

The new dependency graph is shown irt figure 3.2.

10verload resolution is not supported in Surveyor, except for some special case
code to handle Ada's put and get I/O routines. Overloading identifiers does not
introduce any special problems beyond the extra code for computing the entire
signature (e.g., the name and argument types) of an identifier, and extra code
for comparing two signatures. A declaration is redefined when a new declaration
matches the signature of an existing definition.

integer

character

---,
I

- - - .J
I
I
I

I
I

~: ~ ~~1---c-~-:-ay_---1~ - - -~

Figure 3.1: Layout of Surveyor Workspace

42

r--- integer
1

character

---,
I

- - - ..J
I
I

·I

I I
I I

L ___ ~1---c-~-:-ay_--l, _ --~

Figure 3.2: Workspace After Redefining ca

43

44

3.2 Symbols

A symbol consists of an object in the workspace and associated information, such

as its name, its type, and other internal information. Symbols are manipulated

by interactive Ada programs as well as by the interpreter. Symbols point to

appropriate parts of the internal form; for instance, the symbol for a procedure

points to the beginning of the internal form of the procedure.

8: Name

G= Inter=~=
Figure 3.3: A Symbol

A predefined interactive Ada attribute, 'sym, provides access to symbols.

This attribute, when applied to any identifier in Surveyor, returns the corre-

sponding symbol (see figure 3.3). Symbols are predefined types in Surveyor. For

example, fact'sym returns the symbol corresponding to the object fact. Some

tools in Surveyor take symbols as arguments, e.g., the prettyprinter. The pret-

typrinter uses the symbol it is passed to find the internal form associated with

the Ada object, and prettyprints it. For example,

> fact_symbol : symbol := fact'sym;
> pp(fact_syrnbol);

45

Symbol table& store collections of symbols within a particular Ada scope.

The symbol table is indexed by the name of each symbol. The symbols are not

stored in any particular order. Each can be accessed randomly by applying the

attribute 'sym to its identifier. Other mechanisms exist for obtaining a list of the

symbols present in any symbol table (see section 3.5).

Symbol tables contain additional information besides the symbols, as fol-

lows:

• a reference to the symbol that own&2 the table,

• a static link to the enclosing table (scope), and

• a list of packages use'd in the scope.

Packages are represented by two tables. One contains declarations that are

publicly available and the other contains private (local) definitions. For scoping

purposes, the private table is considered lexically enclosed in the public table.

Ada allows packages to be use'd. The definitions in the package specification

become visible at the point that the package is use'd. The use's list records the

names of these packages. The use's list is not used during the collection process.

2For example, carray is in package usr; usr own& the table containing carray.
The static link for u&r's table points to the table of the enclosing scope (the
package standard in this case).

46

With clauses are unnecessary in Surveyor, because there is no concept of a

library: a package is included as part of the workspace by reading in the text of

the package with the built-in routine include.

3.3 Type Descriptors

Type de8criptor8 (in the internal form) represent Ada types. These type descrlp-

tors form a graph of dependencies between all type definitions. The dependencies

form a graph (rather than a tree) because Ada types sometimes refer to them-

selves via recursive record and access types. For example, consider a linked list:

type list;
type listp is access list;
type list is record

value : integer;
next : listp;

end record;

The type list depends on the type listp which depends on the type list.

Type descriptors are tree-like structures formed from type components. The

top component in a type descriptor is called the main component; it specifies the

general category of the type (e.g., array or record). All other components are

called subcomponent& and they specify various aspects of the general category.

The types of main and subcomponents currently implemented in Surveyor are

47

listed in table 3.1. Notice that some top components are used as subcomponents

when they occur as part of a larger type definition. For example, in:

type arr is array(1 .. 10) of integer;
type arrpointer is access arr;

The type arr is both a top component and a subcomponent of arrpointer.

II component I subcomponent(s) II
named symbol of base type
subrange base type

lower bound
upper bound

enumeration list of i terns
lower bound
upper bound

constrained array base type
list of index types

index base type of index
lower bound
upper bound

derived base type
access base type
record (optional) variant fields

required fields

Table 3.1: Type Descriptor Components in Surveyor

Figure 3.4 shows a picture of a sample type descriptor. The main compo-

nent of the type descriptor is a constrained array. The subcomponents of the

type descriptor are the list of index ranges and the base type. The index com-

ponents have subcomponents consisting of the subranges for each index and the

48

base type of the index.

It is necessary, when tracing down the branches of a type descriptor, to

eventually reach a symbol rather than another type descriptor component. The

symbol makes the name of the base type explicit. It also makes redefining the

meaning of a type much simpler because all references to the type are made

indirectly through the symbol for the type. One can continue to analyze the

subcomponents of that symbol's type, if necessary.

3.4 Internal Form

There are two "forms" of the internal form in Surveyor. The first is the Bare

Internal Form (BIF). The BIF is a tree structure that resembles parse trees. The

second is the Annotated Internal Form (AIF). The AIF is an annotated version

of the BIF. The AIF is a graph structure and includes not only the original BIF

trees, but also includes symbol tables and type descriptors. Generally speaking

the AIF graphs are formed around the BIF trees, i.e., most explicit references

point from the symbol tables to the internal form and not vice versa. The BIF

trees are sometimes augmented further with back pointers to the symbol tables

for efficiency of symbol table lookup operations, but this is an efficiency concern

base
type

range

next

index
range

next

r------,
I

integer 1
I I
L------.J

lo: 1

hi: 10

base
type

lo: 'a'

hi: 'z'

base
type

type arr is array(l .. 10, 'a' . .'z') of integer;
Note: The dashed boxes represent symbols.

Figure 3.4: Sample Type Descriptor

49

r-------,
I I

integer 1
I

r-------,
I I
character 1

I
L------.J

50

only, and is entirely optional.

The BIF contains sufficient information to derive a semantic description

(the AI].i') of an Ada program. This is reasonable, since the BIF is simply the

parse tree for th-e original text with extraneous non-terminals removed.

The programmer interacts with Surveyor by entering fragments of Ada pro

grams. The user interface delivers the text entered by the programmer to a

parser. The parser in turn produces stripped-down syntax trees. These trees are

adequate for recovering the original program text, convenient for interpretation,

and a compact representation.

The Bare Internal Form is similar to Diana [10,11]. The Surveyor internal

form has evolved to support interpretation of Ada programs instead of compila

tion.

The BIF is represented as a tree of variant records, varying according to each

kind of node. Each variant record contains fields appropriate for that particular

node. For example, an el8if node contains fields for the condition, the list of

statements, and a pointer to the next el8if node in the chain.

Note: it is convenient to describe the internal form in terms of its

concrete representation (as a tree of variant records) but this is done

for convenience only. In fact, the concrete representation of the tree

51

structure of the code is unimportant since the trees are accessed via

an abstract interface.

An Ada function to compute integer factorial, fact, is shown in figure 3.5.

The text of fact's BIF tree is shown in figure 3.6.

function fact(arg : integer) return integer is
begin

if arg < 2 then return 1;
else return arg • fact(arg-1);
end if;

end fact;

Figure 3.5: Factorial Function

The text in figure 3.6 is structured in the following way:

• Quantities enclosed in square brackets represent nodes. A node may contain

pointers to other nodes (or lists of nodes) or an atomic unit such as an

integer or an identifier. The first element in a bracketed list is the node_op

of the unit: function, if, ident, return, and else are node_ops.

• Lists are enclosed in braces. The elements in a list of structures do not nee-

essarily have identical node_ops, however, elements are conceptually simi-

lar, as in a statement list or a declaration list or as otherwise suggested by

[function

]

id: "fact"
{[par am { [id_decl id: "arg"]} [ident id:" integer"]]} ,,,
[ident id: "integer"]
{[if [< [ident id: "arg"] [int 2]]

{[return [int 1]]}
{[else {[return

]}
]}

]}

[• [ident id:"arg"]
[call [ident id: "fact"]

{ [arg [- [ident id: "arg"] [int 1]]]}
]

]

Figure 3.6: BIF Tree for Factorial Function

52

53

the Ada syntax.

A BIF tree is augmented with semantic information to produce an Anno

tated Internal Form (AIF) graph. This semantic information includes scoping

information and type information. The AIF graphs are generated by interpret

ing the declaration parts of Ada program fragments. The additional information

makes it possible to convert the unordered fragments of interactive Ada into

compiled Ada.

3.5 Mapping Functions

The AIF is a complex data structure incorporating many types of information.

Scanning the different types of information is made easier by a set of mapping

functionJ. These are analogous to the Lisp mapping functions, e.g., mapcar, but

handle more than just a few cases (e.g., car, cdr, and atoms) as shown below.

There are three basic mapping functions in Surveyor.

1. Maptree is used to visit each node of a BIF tree (in order) and apply some

specified function. Various uses of maptree include checking the size of a

tree and copying all or part of a subtree.

2. Maptab is used to access all the symbols within a particular scope without

54

knowing their names. The export tool uses maptab to collect the symbols

into a list.

3. Maptype is used to traverse a type descriptor tree. Maptype is used by the

export tool to collect a list of the symbols used (or referenced indirectly) in

a particular type definition. Type descriptors are the only structures that

record certain dependencies. For instance, the subrange 1 .. 10 implicitly

references the type standard.integer, and this fact is recorded in the type

descriptor (and therefore as part of the annotated internal form), but not

in the bare internal form.

The mapping functions are large case statements recursively applied, where

each case depends on a variant· of the appropriate record. Each case is pro

grammed to apply the supplied function to its node and (recursively) to all of its

children.

3.6 The Collection Process

The sorting algorithms presented in Chapter 4 take, as input, a table of symbols

and their dependencies. It is necessary to scan the definitions stored in the pro

gramming environment and build this table. This section presents a description

55

of that process.

The first step in this process is to collect a list of all the symbols in some

specified scope. A function is supplied to maptab which builds a list of the

symbols in the symbol table.

The second step is to collect, for each symbol, a list of symbols referenced

by the definition of that symbol. There are three classes of definitions, each a

little different from the others. These are:

1. type definitions and object declarations;

2. constants, constraints, and initializers; and

3. procedures, functions, and packages.

The first case uses type descriptors. The type descriptor for a type definition

explicitly includes references to other symbols used in the type definition. The

process of collecting the symbol references is implemented via maptype analogous

to the way the original list of symbols in the scope is collected. A function is

applied to every component of the type descriptor. This function collects a list

of symbols referenced in various components of the type descriptor.

The second case augments the first. Initializers and constraints are Ada ex

pressions represented by BIF trees. The BIF trees reference variables, functions,

56

and constants. It is necessary to know which functions, constants, and variables

are referenced, in order to ensure each is declared before it is used.

A procedure, function or package contains a local symbol table. The process

described herein is applied recursively to the symbols in the local table. In

addition, the BIF tree for the procedure, function, or package body is analyzed

for references to other variables, constants, packages, procedures, and functions.

The BIF trees for the appropriate procedure, function, and package bodies are

traversed, and a function is applied at every node. This function adds the symbols

referenced by various nodes to a list. In this way a list of depended-on symbols

is generated.

3.7 Example

The following sample set of definitions implement a hash table. The hash table

is implemented as an array of bins, where each bin contains a linked list of the

numbers that hashed to that bin. The definitions are shown entered in the order

they would be entered by a programmer, e.g., with some redefinition of previously

entered definitions.

The programmer begins by declaring the size of the hash table.

Surveyor> size : integer := 16;

The programmer next declares the link listed structure.

Surveyor> type list;
Surveyor> type listp is access list;
Surveyor> type list is record
+ next : listp;
+ val : integer;
+ end record;

The hash table itself is an array of pointers to these linked lists.

Surveyor> type table is array(1 .. size) of listp;

57

At this point, the programmer changes the size of the variable used to define

the hash table. This introduces a logical inconsistency into the code.

Surveyor> size := 32;

The programmer examines the values of the indices of table, which retain

their old values of 1and16. They retain their value because while the redefinition

of types is automatic, it is not necessarily reasonable to change existing instances

of a type. In particular, the problem of what to do with the old value of a variable

is a problem for future research (see Chapter 5).

Surveyor> put(table'first);
1
Surveyor> put(table'last);
16
Surveyor> put(size);
32

58

The programmer defines a variable mid as the midpoint of the table. Mid

is defined in terms of the actual table indices, rather than the variable size.

Surveyor> mid : integer := table'last I 2;
Surveyor> put(mid);
8

The programmer now defines a variable half in terms of the size variable.

Notice that half is given its value via an initializer. When half and size are later

exported, their initial values are the value specified in the initializer, and n'ot

their current values. In this way the programmer is given explicit control over

their initial state.

Surveyor> half
Surveyor> half
16

integer := size I 2;

Finally, two functions to enter and look up a number are entered by the

programmer. Notice the function lookup automatically enters the_number if it is

not already in the table.

Surveyor> function lookup(val : integer) return boolean is
+ where : integer := val I table'last + 1;
+ 1 : listp := table(where);
+ begin
+
+
+
+
+

while 1 /= null loop
if l.val := val then

return true;
else 1 := l.next;
end if;

+
+
+
+ end;

end loop;
enter(val);
return false;

Surveyor> procedure enter(val : integer) is
+ where : integer := val I table'last + 1;
+ 1 : listp :=new list(table(where), val));
+ begin
+ table(where).next := l;
+ end;

59

The first step of the collection process is to collect all symbols in the scope

into a list. Table 3.2 shows this list of symbols.

enter
half
list
listp
lookup
mid
size
table

Table 3.2: List of Symbols

Table 3.3 lists the information collected from the type descriptors of those

symbols with a specific type. (The specific type of a function is the return type

of the function.)

Table 3.4 lists the various dependencies collected from initializers and con-

straints. For example, the bounds of the array table are based on the simple

60

Symbol Type Depends On
half simple integer
list record listp, integer
listp access list
lookup function boolean
mid simple integer
size simple integer
table array integer, listp

Table 3.3: Dependencies from Type Descriptors

expression size.

Symbol Type Depends On
half simple size
mid simple table
size simple integer
table array size

Table 3.4: Initialization and Constraint Dependencies

The local definitions in the subroutines lookup and enter contain references

to other objects in the enclosing scope. It is necessary to find every reference

made in each routine. References in subroutines and packages are found in local

definitions as well as in statements. Table 3.5 lists the dependency information

obtained analyzing the statements in enter and lookup. Note: the definitions

inside lookup and enter are already in order.

Table 3.6 summarizes all the dependency information collected above.

61

Symbol Type Depends On
enter procedure integer, table, listp, list
lookup function integer, boolean, table, listp, enter

Table 3.5: Dependencies in lookup and enter

Symbol Type Depends On
enter procedure integer, table, listp, list
half simple integer, size
list record listp, integer
listp access list
lookup function integer, boolean, table, listp, enter
mid simple integer, table
size simple integer
table record integer, size, listp

Table 3.6: Summary of Dependencies

Figure 3. 7 shows a picture of the complete dependency graph. The arrows

start at the center of a dependent symbol and point to the nearest corner of the

depended-on symbol. Integer and boolean are defined in the enclosing scope.

62

integer

boolean

enter

half

list

listp

lookup

mid

size

table

Figure 3. 7: Dependency Graph

Chapter 4

The Export T«?ol

The problem of topological sorting . . . is to find a way to arrange
[things] ... so that no term is used before it is defined. Analogous
problems arise in writing programs to process the declarations in
certain assembly and compiler languages ...

- Donald E. Knuth, Fundamental Algorithm& (1968)

The ezport tool looks at the symbols present in a particular scope and the

dependencies that exist between them and prints an ordered listing. The export

tool is an important part of the Surveyor architecture; it is eztremely difficult

to capture the results of an interactive session, by hand, in a form usable in a

compiler-based environment. The user would have to prettyprint the definitions

of all the symbols in the workspace, and laboriously compare each definition for

references to other definitions.

63

64

Topological sort is a well-known technique [29, pp. 258-268]1 for arranging

a directed acyclic graph (DAG) into a linear order. Topological sort would be

applicable directly to the problem of sorting a symbol table if the partial ordering

between symbols was acyclic. Alas, symbols frequently have recursive definitions.

There are two cases in Ada where such recursive definitions are allowed:

1. An access type, A, may refer to a record, R, which contains a field whose

type is A; and,

2. A subprogram definition, F1 , may contain a reference to a subprogram, F2 ,

which in turn refers to F1 •

The four algorithms presented here implement a form of topological sort

for Ada definitions, where the cyclic dependencies are removed by generating

appropriate "forward" definitions, as follows:

1. The target of an access type is declared before the access type as an in-

complete type definition, and

. 1 Knuth presents a specific implementation in addition to a high-level descrip
tion. Knuth.'s implementation is tailored to sorting nodes which are labeled by
small integers. Bentley [6] provides an alternative implementation based on as
sociative arrays in AWK [3]. Bentley's implementation works for nodes labeled
with arbitrary strings. The description here is drawn from both [29] and [6], but
ignores the details of the concrete representation.

65

2. Subprogram stubs are generated for recursively referenced subprograms.

Algorithm TGEN constructs a table used by the other algorithms for finding

the next symbol to print. Algorithm TSORT is the standard topological sort; the

only modification is to invoke algorithm BREAKCYCLE when a cycle is detected.

Algorithm BREAKCYCLE is charged with breaking one or more cycles so that

algorithm TSORT can continue.

The algorithms themselves are presented in pseudo-code. Various list ma

nipulating routines are used:

• append(L, I) - returns a new list consisting of the old list L with item I

catenated onto the end.

• tail(L) - returns the tail of the list L, i.e., everything except the first item

of the list.

• head(L) - returns the first element of the list L.

• remove(L, I) - returns a new list with all occurrences of the item I removed

from L.

Comments are introduced with two hyphens ("--") and are terminated by

the end of the line. The word "continue" signifies that control returns to the top

of the loop in which it is embedded.

66

4.1 Algorithm TGEN

Purpose

Algorithm 1 generates a table containing a count of the predecessors of each

symbol and the set of its successors. This table, called the table of predecessor

counts and successor sets (PCSS), improves the running time of the topological

sort algorithm. Without this table, the algorithm must search the entire graph

each time for a node with no predecessors. With the table, the running time for

the basic topological sort is proportional to the number symbol pairs, which is

within a constant factor of optimal [6, page 574].

One additional transformation is included. Any direct cycles in the graph

are eliminated while the table is built. The offending dependency is simply

ignored. This situation only arises when directly recursive subroutines exist in

the declarations being sorted, and provides no useful information. 2

Inputs, Outputs, and Local Data

The input to algorithm TGEN is a list of symbol pairs, (symbol, depended on

symbol). These symbols pairs are gathered using the techniques in Chapter 3.

2Directly recursive subroutines do not require generating any "forward"
references.

67

Only one sy~bol table is sorted.

One of the outputs of algorithm TGEN is a list of external scopes (sym-

bol tables) referenced in the scope being sorted. The parent 8ymbol table for a

symbol is defined to be the symbol table containing it. While building the table

of predecessor counts and successor sets (POSS), the parent of each symbol is

examined. If the symbol's parent table is different from the table presently being

sorted then the reference is out of 8cope, i.e., to some external symbol table. The

name of the owner of the table is saved and can later be made part of an Ada

with clause.

Below, S and P refer to the elements in the symbol pair (symbol, depended

on symbol) mentioned above. For each, the .predct field will contain the count of

immediately preceding symbols, and the .8uccli8t field will contain a pointer to a

list of successor symbols. An additional field, . marker, is used later by algorithm

TESTCYCLE, and is initialized by TGEN to zero.

Algorithm

for each (S, P) pair
S. marker := 0
P.marker := 0

if S = P then
continue

end if

if isJocal(S)3 then
if is Jo cal(P) then

S.predct := S.predct + 1
S := append(P .. mcclist, S)

else
with-1ist := append(withJist, P)

else
withJist := append(withJist, S)

end if
end for

Comments on Algorithm TGEN

68

The table of predecessor counts and successor sets is generated as described in

[6], with the following exceptions:

1. The exact data structures are not specified; the reader is refered to [29,

page 261] or [6, page 574).

2. The generation of the withJist is a new addition, made necessary because

the sort is being done in the context of an Ada program.

3 The routine is_local, not defined here, simply checks if the parent of the symbol
is the symbol table presently being sorted, and returns true if it is, otherwise false.

69

4.2 Algorithm TSORT

Purpose

Algorithm TSORT does the main processing, printing declarations until a cycle

makes printing further symbols impossible.

Inputs, Outputs, and Local Data

The PCSS table generated by algorithm TGEN is the input for TSORT. It scans

for all symbols Sn with a predecessor count of zero; each symbol found can be

output at once. All successors to S, called Tn, have their predecessor counts

decremented. All of the Tns whose predecessor counts become zero are the next

candidates for output. A queue, Q, is used to remember the order in which the

counts become zero. If, after the main processing is done, any symbols remain

which have not been output, there is a cycle in the graph.

The output of this routine is a printed list of symbols in the scope, with

the partial ordering intact, i.e., each symbol is defined before it is used.

Below, S and T are references to symbols defined in the PCSS table built

by TGEN. The fields .predct and .succlist have the same meaning as in TGEN.

The variable N is used to count how many symbols have been successfully sorted.

70

N is initially equal to the number of symbols in the table, and decremented each

time one is printed. At least one cycle is present when Q is empty and N is

non-zero.

Algorithm

Q :=NULL
-- First find all symbols with no predecessors
-- and add them to Q.
for each symbol S

if S.predct = 0 then
Q := append(Q, S)

end if
end for
-- Process contents of Q
while N /= 0

while Q /= NULL
T :=head(Q)
Q :=tail(Q)
N:= N-1
output T
for each S in T.8Ucclist

S.predct := S.predct - 1
if S.predct = 0 then

Q := append(Q, S)
end if

end for
end while

-- One or more cycles are present if N is non-zero.
if then N /= 0 then

call algorithm BREAKCYCLE
end if

end while

71

Comments on Algorithm TSORT

This algorithm also is directly from [6), with the same stipulations as for algo

rithm TGEN. The only addition is that instead halting with an error message

when a cycle is detected, algorithm BREAKCYCLE is invoked to resolve any

circular dependencies. When algorithm BREAKCYCLE returns to algorithm

TSORT, the queue will be non-empty, and the algorithm can continue to find

and output symbols with zero predecessor counts until it is blocked by another

cycle or it completes.

Algorithms TGEN and TSORT are normally combined into a single algo

rithm; they are separated here to emphasize the impact of language constraints

on the sorting process.

4.3 Algorithm BREAKCYCLE

Purpose

The purpose of algorithm BREAKCYCLE is to add at least one new symbol to

the queue Q so that algorithm TSORT can continue to unwind the dependency

graph. Cycles arise in the dependency graph for two reasons.

·~

I

72

1. A record type may contain a field with an access type which points, directly

or indirectly, to the same record.

2. Subroutines and functions may have recursive references to other subpro-

grams.

The dependency relationships between subroutines can be arbitrarily complex.

A function or procedure may call any other function or procedure. Consider, for

example, a function F1 that calls F 2 , F3 , F4 and F 6 , each of which recursively

calls all of the others. Direct cycles are avoided (in algorithm TG EN) by never

adding a symbol to its own successor set.

J It is necessary to break one or more cycles by printing one or more forward

declarations. Cycles are found by exhaustively analyzing the remaining symbols

in the dependency graph. When a cycle is found, it is broken with a forward

declaration for some symbol S, and the dependency counts of all symbols in

S.succlist are reduced. If any of these counts go to zero, algorithm TSORT can

continue. Otherwise, another cycle must be found and broken.4

4The entire set of algorithms can be replaced by a simplistic algorithm which
prints all possible forward declarations (an incomplete type definition for the
target of every access type, and a stub for every subprogram), and then prints
the symbols in some random order. The resulting listing isn't very interesting,
although this approach may have some value if an alphabetical listing is desired.

-I

I

73

Inputs, Outputs, and Local Data

The input to algorithm BREAK CYCLE is the PCSS table of TSO RT, where

all symbols with zero .predct's have been output, and some symbols with non-

zero .predct's remain. This situation only arises when there is a cycle in the

dependency graph [6, page 574].

Two side-effects of algorithm BREAKCYCLE is a non-empty queue Q and a

modified PCSS table. Additionally,' one or more forward declarations are output.'

BREAKCYCLE has a local integer variable, M, initially O, which is in-

cremented and then passed to TESTCYCLE. Mis used by TESTCYCLE to

uniquely mark each symbol it visits (see the description of TESTCYCLE in the

next section).

Algorithm

-- Continue breaking cycles until a symbol is added to Q
M:=O
for each symbol S

if QI= NULL
-- Terminate when a symbol ha.S been added to Q
return

else
-- Skip S if it has already been output
if S.predct = 0 then

continue
end if
M:= M+ 1

--1

I

if SUITABLE(S)6 and then TESTCYCLE(S, S, A1)6 then
output "forward" declaration for S
for each Tin S.succlist

T.predct := T.predct - 1
if T.predct = 0 then

Q := append(Q, T)
end if

end for
end if

end if
end for
-- Something is seriously wrong if control gets to here -
-- all symbols were looked at without breaking a cycle.

Comments on algorithm BREAKCYCLE

74

This particular algorithm for finding cycles (testing each symbol individually) was

chosen for understandability rather than computational efficiency. The running

time is improved by invoking it only when necessary, i.e., algorithm TSORT

cannot continue, and so only the minimum number of symbols are checked for

their presence in a cycle.

The reader is refered to [43] for an ·efficient and general directed graph or-

5SUITABLE is a routine, not defined here, which merely checks if Sis a proce
dure, function, or record definition. As explained in the comments for BREAK
CYCLE, it is only necessary to test if these kinds of symbols are involved in a
cycle, since these are the only kinds of symbols which can be declared forward.

6TESTCYCLE checks if S is involved in a cycle. It is defined in the next
section.

75

dering algorithm (without any programming environment specific details). Also,

it is desirable in this setting to find only a single cycle, rather than all cycles.

In this way, algorithm TSORT will continue to run with only a small number of

forward declarations being produced.

Only two types of symbols have corresponding forward declarations, namely,

records and subprograms. There is little point in analyzing a symbol which is

not of one of these types, hence the suitability test above.

Various optimizations are possible, most notably remembering other cycles

as they are encountered[49, page 44].

4.4 Algorithm TESTCYCLE

Purpose

Algorithm TESTCYCLE returns true if its first argument S, is a part of a cycle.

The test for circularity is made by traversing the paths away from Sand checking

if any of them returns to S. TESTCYCLE is implemented by recursively analyz

ing the nodes in the successor set for S. TESTCYCLE avoids interior cycles (i.e.,

cycles potentially existing within a particular path) by marking the symbols it

has visited with a unique identifier (an integer).

76

Inputs, Outputs, and Local Data

The input to TESTCYCLE is the symbol to be tested, S; the current symbol

along a particular path, S' (initially S' := S); and a unique marker, M. TEST-

CYCLE uses the successor set of S' as the set of paths to follow when searching

for a cycle containing S. Each symbol Tin the successor set of S' contains a

.marker field. The value of this field is initialized to zero by TGEN. TESTCY-

CLE checks each T.marker. If T.marker = M then TESTCYCLE has already

visited that particular node; otherwise, TESTCYCLE sets T.marker := Mand

continues. The calling routine (algorithm BCYCLE) ensures that Mis unique

for every top-level (i.e., non-recursive) invocation of TESTCYCLE by passing in

steadily increasing integers.

The only output from TESTCYCLE is the return value of true or false.

Algorithm

For each symbol Tin S'.succlist
if T = S then

return true
elsif T. marker = M then

return false
else

T.marker := M
if TESTCYCLE(S, T, M) then

return true
end if

I

end if
return false

end for

Comments on Algorithm TESTCYCLE

77

A symbol S is contained in a cycle only if there is a path along some set of

arcs emanating from S, through one or more intermediate nodes T1 ••• Tn, which

terminates at S. (There are never any cycles with no intermediate nodes, as

these are removed when the PCSS table is built by TGEN.) In the worst case,

TESTCYCLE exhaustively traces every path originating at S, so if a cycle exists,

TESTCYCLE must find it. The use of the .marker field in each symbol ensures

that TESTCYCLE will never get caught in an endless loop. Notice that if S has

no successors, TESTCYCLE returns false immediately, as the for loop will never

execute.

4.5 Examples

This section presents two examples.

The first example continues with the dependency data gathered in Chap-

ter 3. For reference, table 3.6 is reprinted below as table 4.1.

~

78

The first task is to compute the table of predecessor counts and successor

sets for those symbols. Table 4.2 shows the results of this processing.

Working through the example, algorithm TSO RT detects a cycle after print-

ing size and half. Algorithm BREAKCYCLE is activated. Algorithm BREAK-

CYCLE removes the cyclic dependency between list and listp. An incomplete

type definition for list is printed. Processing returns to TSORT. Listp is printed

and the predecessor count of list is reduced to zero. In like fashion the rest of the

symbols are printed.

size : integer := 16;
half . integer := size I 2; .
type list;
type listp is access list;
type list is record

next . listp; .
val . integer; .

end record;
type table is array(1 .. size) of listp;
mid : integer := table'last I 2;
procedure enter
function lookup ...

Figure 4.1: Ordered Interactive Ada Fragments

Figure 4.1 shows the text of the ordering for these sample definitions. The

second assignment to size is ignored: the definition with an initial value is as-

79

Symbol Type Depends On
enter procedure integer, table, listp, list
half simple integer, size
list record listp, integer
listp access list
lookup function integer, boolean, table, listp, enter
mid simple integer, table
size simple integer
table record integer, size, listp

Table 4.1: Summary of Dependencies

Symbol Type Predecessor Successor
Count Set

enter procedure 2 lookup
half simple 1
list record 1 (listp)
listp access 1 {O} enter, table, list, lookup
lookup function 3
mid simple 1
size simple 0 table, half
table array 2 enter, mid, lookup

Table 4.2: Predecessor Counts and Successor Sets

80

sumed to be the correct default value for size. The inconsistency between the

variables mid and half is removed: they now initialize to the same value.

Notice the definition of half was moved forward. While not necessary, mov

ing it does improve the readability of the definitions. In general, many orderings

are possible for a complicated graph. The dependencies between objects specify

a partial ordering only.

Figure 4.2 shows the dependency graph in in sorted order.

The second example focuses on unwinding a complex sequence of cycles. A

picture of the graph is show in figure 4.3. The arrows point to successor nodes.

Node 1 will always be output first, since it has no predecessors. The pre

decessor count of node 2 is reduced from four to three. At this point, there are

no more nodes to output. A node is chosen at random, say node 4. Node 4 is in

a cycle, and so it is declared forward. The predecessor counts of nodes 3, 2 and

5 are decremented. Node 5 is output, as it depended only on node 4. Node 6 is

output, since it depended only on node 5. Again, there are no more candidates,

so another cycle is broken. Suppose node 3 is chosen. It is part of a cycle, so it

is declared forward. The predecessor counts of nodes 2 and 4 are decremented.

Node 2 is output, followed by node 3, and finally node 4. This information is

summarized in table 4.3.

81

integer

boolean

size

half

listp

list

table

mid

enter

lookup

Figure 4.2: Sorted Dependency Graph

82

Figure 4.3: Sample Cyclic Graph

83

The exact ordering depends on the order nodes are chosen to break cycles.

An interesting problem which remains to be solved is to determine which nodes

are the best candidates to analyze first, thus minimizing the number of forward

references. Table 4.3 also shows the ordering resulting from different choices of

nodes.

Node Order Sort Results
4, 5, 6, 3, 2, 1 1, 4" 5, 6, 3,, 2, 3, 4
5, 4, 3, 2, 1, 6 1, 5" 6, 4" 5, 3" 4, 2, 3
1, 2, 3, 4, 5, 6 1, 2" 3" 4, 3, 5, 2, 6

Note: The notation n 1 indicates a forward declaration.

Table 4.3: Results of BREAKCYCLE

Chapter 5

Recapitulation

The obvious is that which is never seen until someone expresses it
simply.

- Christian Morganstern

This chapter indicates some lessons learned and suggests some areas for

future research.

5.1 Lessons Learned

Linear Ordering

Ada specifies an order of elaboration for the definitions within a particular scope.

This order of elaboration is the single greatest impediment to using Ada as a

84

-I

I

85

prototyping language. The export tool presented here solves this problem, but

the question remains, why is it necessary to have the definitions follow such a

strict order of elaboration?

There are three answers to this question.

1. It is easier to write a compiler that processes each declaration, including

any initializers, as it is seen.

2. The programmer can write declarations in the same wa,y he/she writes

statements, with constraints and initializers depending on previously de

fined statements.

3. The scoping rules allow access to global definitions if they are used before

the local definition that hides it.

There are several objections to each of these reasons for imposing an order

of elaboration on the definitions within a scope.

Regarding the first iteni, production quality compilers frequently read entire

program blocks before generating any code. This allows optimization of the

layout of stack frames as well as much greater freedom for code movement and

optimization. Compilers that use the Diana internal form generally create the

internal representation before any processing starts.

86

Regarding the second item, when prototyping, it is frequently useful to use

a definition before it is defined textually in the source code. This capability

eliminates the need for forward declarations and incomplete type definitions.

This "unordered" approach is clearly beneficial in a prototyping environment,

and may be useful in a production environment as well. It is not clear that

because a programming language includes strong typing that it needs a strict

. order of elaboration as well.

Finally, global variables are always accessible in Ada by qualifying the name

of the global variable directly (e.g., proc1. var2). Altering the scoping rules so

that an identifier is available for use preceding its definition actually reduces the

ambiguity: it is always necessary to qualify the global definition and therefore

document the fact it is hidden by a local definition with the same name .

. The advantage of removing this restriction is that one aspect of the prob

lem of getting everything "in the right order" is removed. The statements in a

program obviously must be in the right order. There is no compelling reason

why the declarations within a scope must follow a linear ordering. As this dis

sertation indicates, the complexity of keeping the declarations in the right order

is significant and cannot be ignored.

l
I

87

Experimental Programming Environments

One important lesson learned is that it is enormously beneficial to have access

to the source code for an existing programming environment. Some environ-

ment research necessitates creating an entire new programming environment from

scratch. In such unfortunate situations, the amount of work involved merely to

get up to speed is incredible. Whenever possible, it is advisable to adapt an

existing environment. In this way, the new research is more tightly focused: it

is not necessary to reinvent the wheel {actually, parsers, prettyprinters, inter-

preters, etc.). In addition, it is easier to differentiate new research results from

previous work.

The Arcturus environment began as a simple Ada interpreter. Over time,

all sorts of experimental features were added, and integrated into one cohesive

whole. It became difficult after awhile to say exactly what Arcturus was and what

it was not, and in particular, to say what each student's contribution had been.

For his research on persistent prototyping, the author removed whole pieces of

the environment toolset. The result was a return, of sorts, to a simple interpreter

-
based system which became the platform for further, individualized work. The

pace of programming environment research was greatly increased with the advent

of the Interlisp system, where each user of the system had access to the source

I

~

88

code. Further Ada programming environment research will have much more

value if a programming environment platform, like Arcturus or Surveyor, is widely

available. Adding a new Lisp-specific tool to Interlisp was relatively simple,

because the Lisp language was simple. Adding an Ada-specific tool to Arcturus

is much more difficult: the semantics of the language are more complicated.1

This difference in complexity serves to underscore the need for a solid research

platform.

5.2 , Future Work

Automatic Hierarchical Organization

Prototype programs are generally organized in one large scope. The intent is to

keep as many definitions visible as possible so that modifications to the struc-

ture of the system are as unconstrained as possible. The graph of dependencies

between fragments of the code will contain an implicit hierarchical organization.

It is desirable to make this implicit hierarchy explicit when exporting to a pro-

duction environment.

There are two key problems that need to be solved.

1 As a hint of the complexity, consider that the syntax of Lisp is easily described
in ten to fifteen BNF rules; Ada requires about 140 rules.

89

1. A means for grouping related definitions into packages needs to be discov-

ered.

2. Any mechanism for breaking the dependency graph into chunks is likely

to produce several alternatives. A method of displaying the choices so the

user can select between them is needed.

Retaining the Value of a Redefined Type

It is sometimes desirable to retain the value of an object even when its type defi-

nition changes. This unusual condition occurs only in an interactive environment

I

!~ with strong typing. Presumably all instances of the type would lose their current

values. This need not be the case. Sometimes the new type definition is "close"

to the previous type definition. Examples are changing the length of an array,

or adding a field to a record. There is no reason the old values of the objects

shouldn't be retained if possible. The benefit is that the values of complex data

structures do not have to be recreated by the programmer.,

There are two main areas of research necessary:

1. A detailed classification of the varieties of types possible and the various

changes they might go through, and

~

I

~

I

90

2. An exact definition of the "closeness" of two type definitions needs to be

developed.

Another benefit of research in this area will be the development of a means

of automatic type coercion between arbitrarily complex but "close" user defined

data types.

5.3 Summary

This dissertation discusses the problem of creating persistent prototypes: proto

types created in a rapid prototyping environment and exported to traditional

compiler based programming environments for further development and refine

ment. It shows that only languages with strong typing are suitable for building

prototypes which evolve into a mature system.

The most significant difficulty with automatically organizing prototype in

teractive Ada programs is collecting the dependency data. One approach, based

on the use of type descriptors as carriers of dependency information, is presented.

In this approach, the basic structure of the program is viewed as a dependency

graph between every object (type, constant, subtype, subprogram, etc.) in the

prototype system. The unstructured prototype implementation is tran,slated to

I

1

~

I

91

a structured version of the same program. There are two benefits from this

translation:

1. The translated version documents the relationships between definitions in

the prototype.

2. The resulting translation is compilable in standard compiler based pro

gramming environments. The scaffolding of the interactive developmeµt

environment is completely stripped away.

The basic algorithm for linearizing the structure of the prototype is the

topological sort by Knuth. The algorithm is modified to handle circular depen

dency relationships as they arise in Ada programs.

The approach here is proactive. The programmer specifies a nummum

amount of structuring information (e.g., strong typing of objects) and the sys

tem imposes all other redundant constraints (e:g., a specific program ordering)

automatically. This approach improves upon the present approach in which

consistency constraints are enforced and the programmer is left to the task of

satisfying those constraints by himself.

1
I

~

I

References

(1] Ada Joint Program Office, Ada Programming Language Reference Man-
ual, ANSI/MIL-STD-1815A-1983, 1983. ,

[2] N.I. Adams and J.A. Rees, The T Manual Pre-release Edition, Computer
Science Department, Yale University, July 1982.

(3] A.V. Aho, B.W. Kernighan and P.J. Weinberger, AWK - a pattern
scanning and processing language (second edition), Unix Programmer's
Guide, Volume IIB, Bell Laboratories, Murray Hill, 1979.

(4] Association for Computing Machinery, Collected Algorithms of the ACM,
Association for Computing Machinery, New York, 1978.

[5] D. Barstow, Rapid prototyping, automatic programming, and e:cperimen
tal sciences, ACM Software Engineering Notes, 7, 5 (December 1982),
pp. 33-34.

[6] J. Bentley, Associative arrays, Communications of the ACM, 28, 6 (June
1985), pp. 570-576.

(7] B.W. Boehm, Software Engineering Economics, Prentice-Hall, Engle
wood Cliffs, 1981.

(8] B.W. Boehm, T.E. Gray and T. Seewaldt, Prototyping vs. specifying: a
multiproject e:cperiment, IEEE Transactions on Software Engineering,
10, 3 (May 1984), pp. 290-302.

[9] W.G. Brown, ed., Reviews in Graph Theory, American Mathematical
Society, Providence, 1980.

92

I

1

93

[10] K.J. Butler Ill, Draft Revised Diana Reference Manual, Tartan Labs,
Inc., Pittsburgh, June 1982.

[11] K.J. Butler Ill and A. Evans, Interim Diana Report, Tartan Labs, Inc.,
Pittsburgh, October 1982.

[12] T.E. Cheatham, J.A. Townley and G.H. Holloway, A System for Program
Refinement, Technical Report 5-79, Research Computing Center, Har
vard University, Cambridge, August 1979.

[13] R.B.K. Dewar, et.al., The NYU Ada Translator and Interpreter, Courant
institute of Mathematical Sciences, New York University, New York,
1980.

[14] N.M. Delisle, D.E. Menicosy and M.D. Schwartz, Viewing a programming
environment as a single tool, ACM Software Engineering Notes, 9, 3
(May 1984), pp. 49-56.

[15] LP. Deutsch and E.A. Taft, Requirements for an ezperimental program
ming environment, CSL-80-10, Xerox Palo Alto Research Center, Palo
Alto, June 1980.

[16] V. Donzeau-Gouge, G. Kahn, B. Lang and B. Melese, Documents structure
and modularity in Mentor, ACM Software Engineering Notes, 9, 3 (May
1984), pp. 141-148 ..

[17] C.N. Fisher, et.al., The POE language-based editor project, ACM Soft
ware Engineering Notes, 9, 3 (May 1984), pp. 21-29.

[18] P. Fritzson, Preliminary ezperience from the DICE System, a distributed
incremental compiling environment, ACM Software Engineering Notes,
9, 3 (May 1984), pp. 113-123.

[19] M. Franz, The state of C interpreters, PC Tech Journal, 4, 5 (May
1986), pp. 153-163.

[20] J.D. Gannon, An ezperimental evaluation of data type conventions,
Communications of the ACM, 20, 8 (August 1977), pp. 584-595.

[21] C. Ghezzi and M. Jazayeri, Programming Language Concepts, John Wiley
& Sons, Inc., New York, 1982.

94

[22] J. Holloway, G.L. Steele Jr., G.J. Sussman and A. Bell, The Scheme-
79 Chip, AI Memo No. 559 (also EE&CS Integrated Circuit Memo
No. 80-6), Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, J ariuary 1980.

(23] K. Jenson and N. Wirth, Pascal User Manual and Report, Springer
Verlag, New York, 1974.

[24] S.C. Johnson, Lint,· a C program checker, Unix Programmer's Guide,
Volume IIB, Bell Laboratories, Murray Hill, 1979.

[25] S.C. Johnson, Yacc: yet another compiler-compiler, Unix Programmer's
Guide, Volume IIB, Bell Laboratories, Murray Hill, 1979.

[26] B.W. Kernighan and J.R. Mashey, The Uniz programming environment,
IEEE Computer, 14, 4 (April 1981), pp. 12-24

[27] B.W. Kernighan and D.M. Ritchie, The G Programming Language,
Prentice-Hall, Englewood Cliffs, 1978.

[28] R.O. Klefstad III, Uniform User Interface for a Programming Environ
ment, Ph.D. dissertation in preparation, Computer Science Depart
ment, University of California, Irvine, 1986.

[29] D.E. Knuth, The Art of Computer Programming vol 1: Fundamental
Algorithms, Addison-Wesley Publishing Company, Inc., Reading, 1968.

(30] M.E. Lesk and E. Schmidt, Lez - a lezical analyzer generator, Unix
Programmer's Guide, Volume IIB, Bell Laboratories, Murray Hill, 1979.

[31] B. Liskov, et.al., Abstraction mechanisms in CL U, Communications of
the ACM, 20, 8 (August 1977), pp. 564-576.

[32] R. Medina-Mora, Syntaz-directed Editing: Towards Integrated Program
ming Environments, Ph.D. dissertation, Carnegie-Mellon University,
Pittsburgh, 1982.

(33] J.G. Mitchell, et.al., Mesa Language Manual, CSL-79-3, Xerox Palo Alto
Research Center, Palo Alto, April 1979.

[34] T.W. Reps, Generating Language-Based Environments, The MIT Press,
Cambridge, 1984.

95

[35] S.P. Reiss, PECAN: program development systems that support multiple
views, IEEE Transactions on Software Engineering, 11, 3 (March 1985),
pp. 276-284.

[36] T.W. Reps and T. Teitelbaum, The synthesizer generator, ACM Software
Engineering Notes, 9, 3 (May 1984), pp. 42-48.

[37] M.T. Rose, personal communication, June 1986.

[38] E. Sandewall, Programming in an interactive environment: the 'Lisp'
ezperience, ACM Computing Surveys, 10, 1 (March 1978), pp. 35-71.

[39] Smith, David Andrew, Rapid Software Prototyping, Ph.D. dissertation,
Computer Science Department, University of California, Irvine, May
12, 1982.

[40] G.L. Steele, Common Lisp: the Language, Digital Press, Maynard 1985.

[41] T.A. Standish and R.N. Taylor, Arcturus: a prototype advanced Ada pro
gramming environment, ACM Software Engineering Notes, 9, 3 (May
1984), pp. 57-64.

[42] S.L. Squires, M. Zelkowitz, M. Branstad, Rapid prototyping work.shop:
overview, ACM Software Engineering Notes, 7, 5(December1982), page
2.

[43] M.M. Syslo, Algorithm 459 - the elementary circuits of a graph, Col
lected Algorithms from CACM, Association for Computing Machinery,
Inc., New York, 1978.

[44] F.P. Tadman, The Arcturus Programming Environment Program Design
and Rapid Prototyping Language, Technical Report (unnumbered), Pro
gramming Environment Project, Computer Science Department, Uni
versity of California, Irvine, October 1982.

[45] W. Teitelman, InterLisp Reference Manual, Xerox Palo Alto Research
Center, Palo Alto, 1975.

[46] W. Teitelman, A tour through Cedar, IEEE Transactions of Software
Engineering, 11, 3 (March 1985), pp. 285-301.

[47] W. Teitelman and J. Mashley, The Interlisp programming environment,
IEEE Computer, 14, 4 (April 1981), pp. 25-33.

i

I

I

96

(48] T .Teitelbaum and T.W. Reps, The Cornell program .synthesizer: a
.syntax-directed programming environment, Communications of the
ACM, 24, 9 (September 1981), pp. 563-573.

(49] H. Weinblatt, A new .search algorithm for finding the .simple cycles of
a finite directed graph, Journal of the Association for Computing Ma
chinery, 19, 1 (January 1972), pp. 43-56.

[50] M. Weisner, Scale models and rapid prototyping, ACM Software Engi
neering Notes, 7, 5 (December 1982), pp. 181-185.

(51] S.H. Willson, The Arcturus User'.s Guide, Technical Report (unnum
bered), Programming Environment Project, Computer Science Depart
ment, University of California, Irvine, March 1983.

[52] S. H. Willson, The Surveyor Programming Environment Reference
Guide, Technical Report 86-9R, Northrop Research and Technology
Center, Palos Verdes, May 1986.

(53) S.H. Willson, An Interactive Ada Interface for Solid Modeling, Techni
cal Report 86-lOR, Northrop Research and Technology Center, Palos
Verdes, May 1986.

