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ARTICLE

MiR-31 promotes mammary stem cell expansion
and breast tumorigenesis by suppressing Wnt
signaling antagonists
Cong Lv1, Fengyin Li1, Xiang Li1, Yuhua Tian1, Yue Zhang2, Xiaole Sheng1, Yongli Song1, Qingyong Meng1,

Shukai Yuan3, Liming Luan4, Thomas Andl4, Xu Feng5, Baowei Jiao 5, Mingang Xu6, Maksim V. Plikus7,

Xing Dai8, Christopher Lengner9,10,11, Wei Cui 1,12, Fazheng Ren1, Jianwei Shuai13, Sarah E. Millar6,11

& Zhengquan Yu 1

MicroRNA-mediated post-transcriptional regulation plays key roles in stem cell self-renewal

and tumorigenesis. However, the in vivo functions of specific microRNAs in controlling

mammary stem cell (MaSC) activity and breast cancer formation remain poorly understood.

Here we show that miR-31 is highly expressed in MaSC-enriched mammary basal cell

population and in mammary tumors, and is regulated by NF-κB signaling. We demonstrate

that miR-31 promotes mammary epithelial proliferation and MaSC expansion at the expense

of differentiation in vivo. Loss of miR-31 compromises mammary tumor growth, reduces the

number of cancer stem cells, as well as decreases tumor-initiating ability and metastasis to

the lung, supporting its pro-oncogenic function. MiR-31 modulates multiple signaling path-

ways, including Prlr/Stat5, TGFβ and Wnt/β-catenin. Particularly, it activates Wnt/β-catenin
signaling by directly targeting Wnt antagonists, including Dkk1. Importantly, Dkk1 over-

expression partially rescues miR31-induced mammary defects. Together, these findings

identify miR-31 as the key regulator of MaSC activity and breast tumorigenesis.
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Mammary gland is a unique organ in that major devel-
opmental changes, including ductal morphogenesis, side
tertiary branching and alveogenesis, occur postnatally1.

The mammary epithelia exhibit a relatively simple lineage com-
position with luminal cells capable of terminally differentiating
into milk-producing cells, and basal/myoepithelial cells that pos-
sess some mesenchymal-like features2. Mammary gland develop-
ment and homeostasis are fueled by multipotent mammary stem
cells (MaSCs), as well as unipotent stem/progenitor cells3, 4. A
mammary epithelial cell population enriched for MaSCs has been
isolated from the basal compartment based on their expression of
CD24 and CD29 or CD49f antigens5, 6. Wnt targets such as Axin2,
Procr and Lgr5, which are specifically expressed in basal MaSCs,
have been used to identify distinct Wnt-responsive MaSC sub-
sets7–9. Striking a balance between MaSC self-renewal and dif-
ferentiation is essential to maintain mammary tissue homeostasis.
Elucidating the molecular mechanisms that govern this balance is
critical for understanding the basic principles of mammary
development and the ontogeny of breast cancer.

MaSCs are controlled by the dynamic interplay of multiple
molecular pathways such as hormone, Notch and Wnt
signaling7, 10, 11. Progesterone/PR(progesterone receptor) plays a
prominent role in promoting the proliferative capacity of MaSCs
and coordinating alveogenesis during early pregnancy via secre-
ted RANKL11, 12. RANKL binds to its receptor RANK and acti-
vates NF-κB signaling in myoepithelial cells13, 14. In addition to
regulating MaSC activity and alveologenesis in normal mammary
epithelia, RANKL and RANK are critical for the maintenance of
cancer stem cells and for breast cancer metastasis15. Interestingly,
RANKL and RANK are predominantly expressed in hormone
receptor-negative, but not receptor-positive, human breast
tumors15–17, raising the possibility of their activation by
hormone-independent mechanisms in malignant mammary epi-
thelia. Wnt/β-Catenin signaling is important for promoting
MaSC activity and determining a basal cell fate. Wnt ligands such
Wnt4 and Rspo1 have been identified as the niche factors for
MaSCs, functioning to promote MaSC self-renewal18, 19. Forced
activation of Wnt signaling in MMTV-Wnt1 and MMTV-
stabilized-β-Catenin transgenic mice expands mammary stem/
progenitor cell populations5, 20–22. Moreover, hyperactive Wnt
signaling is extensively presented in breast cancer, particularly in
basal-like type with higher grade, stem cell-like characteristics
and aggressive behavior23. Although the involvement of Wnt/β-
Catenin signaling in MaSC biology and breast cancer has been
extensively studied, how it is precisely controlled in mammary
gland to balance stem cell self-renewal and differentiation
remains to be fully understood.

MicroRNAs have been shown to play important roles in con-
trolling adult stem cell fate and tumorigenesis24. Specifically, miR-
31 has been identified as an important regulator of adult muscle
and mesenchymal stem cells25–27. Several reports showed that
miR-31 is enriched in putative mammary progenitor cells28–30.
MiR-31’s importance has also been implicated in a variety of
cancers including breast cancer31. However, the in vivo function
of miR-31 in mammary gland development, MaSC activity and
breast tumorigenesis remain unknown. By utilizing miR-31 gain−
and loss-of-function mouse models, coupled with the MMTV-
PyVT mammary tumor model, here we demonstrate that miR-31
promotes MaSC activity and breast tumorigenesis by regulating
multiple signaling pathways.

Results
MiR-31 is enriched in MaSC population and breast tumors. To
identify the mammary epithelial cell populations that express miR-
31 in vivo, we purified Lin−CD24−CD29−, Lin−CD24−CD29+, Lin

−CD24+CD29low and Lin−CD24+CD29high subpopulations, con-
firming their purity by the expression of basal marker K14 and
luminal marker K18 (Supplementary Fig. 1a). Mature miR-31 was
highly enriched in the CD24+CD29high cell population, with lower
level of expression in the other populations (Fig. 1a). This pattern
parallels that of other MaSC-enriched microRNAs, miR-205 and
miR-2228, 32, 33. In situ hybridization revealed the presence of miR-
31-expressing cells in both basal and luminal layers, with a parti-
cular enrichment in the tertiary branches (Fig. 1b).

During mammary development, miR-31 expression gradually
increased from puberty to adult stages, peaking around post-
pregnancy day 14.5 (14.5 d.p.c.), and then returning to pre-
pregnancy levels upon involution (Fig. 1c). This dynamic
expression pattern is similar to that of NF-κB34, suggesting a
potential correlation between miR-31 and NF-κB. To probe this,
we examined the miR-31 promoter using the JASPAR database,
and identified two potential NF-κB binding sites at positions
−1,746 and −1,375 (Fig. 1d). RANKL is an activator of the NF-κB
pathway14. Knockdown of RANKL with siRNA repressed miR-31
expression (Fig. 1e), concomitant with repression of the NF-κB
pathway (Fig. 1f). In miR-31 promoter driven-luciferase reporter
assays, both RANKL siRNA and mutation of p65-binding sites in
miR-31 promoter suppressed luciferase activity (Fig. 1g). Further-
more, chromatin immunoprecipitation (ChIP) assay revealed that
p65 binds to its predicted cognate sites in miR-31 promoter, and
that RANKL siRNA reduced this binding (Fig. 1h). Together,
these data suggest that miR-31 expression is directly activated by
NF-κB pathway in the mammary gland.

Given that the NF-κB pathway is activated in mammary
myoepithelium by RANKL secreted from the luminal epithelium
upon progesterone signaling35, we asked if miR-31 expression is
also regulated by progesterone. Treatment with estradiol and
progesterone significantly, albeit moderately, increased miR-31
expression (Supplementary Fig. 1b), whereas PR inhibitor Mife-
prinstone decreased miR-31 expression (Supplementary Fig. 1c-e).
In miR-31 promoter driven-luciferase reporter assays, treatment of
estradiol and progesterone enhanced luciferase reporter activity,
while mutation of p65-binding sites blocked it (Supplementary
Fig. 1f). Moreover, treatment of estradiol and progesterone also
enhanced p65 recruitment to its binding site while Mifeprinstone
repressed it (Supplementary Fig. 1g). Thus, miR-31 expression is
also hormone-responsive, likely through an indirect mechanism
that involves the RNAKL/RANK/NF-κB pathway.

Next we examined miR-31 expression in mammary tumors.
MiR-31 was markedly elevated in PyVT-induced tumors (Fig. 1i),
which at late stage expressed high level of RANKL despite an ER-
and PR-negative appearance (Fig. 1k and Supplementary Fig. 1h)
15, as well as high levels of p-p65 and p-IKKα (Fig. 1j). Akt is
activated in PyVT tumors36 and NF-κB is activated through the
Akt-IKKα pathway37, 38, raising the possibility that miR-31 is
induced by Akt pathway activation. Indeed, treatment with Pten
inhibitor bpV induced miR-31 expression in a dose-dependent
manner, concomitant with upregulation of p-Akt, p-Ikkα and p-
p65 (Fig. 1l, m). Strikingly, we also observed an overexpression of
miR-31 in basal-like human breast cancer (Supplementary Fig. 1i),
and its level positively correlated with RANKL and TNFα
(Supplementary Fig. 1j), both of which are activators of the NF-
κB pathway39, 40. Thus, miR-31 induction in mammary tumors is
tightly associated with the NF-κB pathway, which might be
activated by progesterone/PR-independent mechanisms such as
the RANKL and Akt pathways.

MiR-31 induction causes hyperplasia. To investigate the func-
tion of miR-31 in regulating mammary development, we gener-
ated TRE-miR31 mice and bred with K5-rtTA mice to generate
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Fig. 1 Expression pattern of miR-31 in mammary gland and tumors. a qRT-PCR for miR-31, miR-22 and miR205 in Lin-CD24+CD29high, Lin-CD24+CD29low,
Lin-CD24-CD29+ and Lin-CD24-CD29- populations at 12 weeks of age. n= 3 biological replicates. b In situ hybridization for miR-31 in 12-week-old WT
mammary gland ducts and tertiary branches. DTG mammary ducts, a positive control. The DTG mice have been administered with Dox at 1 week of age.
miR-31 KO mammary ducts, a negative control. Scale bar, 25 μm. c qRT-PCR for miR-31 in WT mammary epithelial cells at 6, 10 weeks, P14.5 (14.5 days
post pregnancy), P18.5, L1 (1 day post lactation) and Inv (10 days post involution). n= 3 at each time points. d The schematic diagram showing two
potential p65 (NF-κB) binding sites (-1746 bp and -1375 bp) in the miR-31 promoter. TSS, transcription start site. e, f qRT-PCR for miR-31 e and western
blotting for RANKL, p-p65, p65 f in HC11 mouse mammary epithelial cells treated with RANKL siRNA (SiRANKL), and scramble RNA (NC). g Luciferase
activity in lysates of HC11 mouse mammary epithelial cells transfected with luciferase reporter plasmids of pGL3-basic plasmid, miR-31 promoter or miR-31
mutant promoter with mutation at the -1375 (p65-mut-1) or -1746 (p65-mut-2) binding site, treated with scramble RNA (negative control, NC) and RANKL
siRNA. h ChIP assays carried out on HC11 mammary epithelial cells using antibodies against p65 under indicated conditions. i–k In situ hybridization and
qRT-PCR analysis for miR-31 i and western blotting for p-Ikkα, p-p65 and p65 j, and immunohistochemistry for RANKL k in WT mouse mammary gland and
PyVT tumors. Scale bar, 25 μm. l western blotting for p-Akt, p-Ikkα, p-p65 and p65 in MCF7 breast cancer cells treated with Pten inhibitor bpV(pic) at
indicated concentrations for 12 h. m qRT-PCR for miR-31 in MCF7 breast cancer cells treated with PTEN inhibitor bpV(pic) at indicated concentrations for
12 h. Data represented as mean± S.D. Sample size: WT (n= 3) and PyVT (n= 3) for i–k. Two tailed unpaired t-test for e, g, i, m (*P< 0.05; **P< 0.01; ***P
< 0.001)
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double transgenics (DTG) that inducibly overexpress miR-31
specifically in mammary basal epithelial cells (Supplementary
Fig. 2a). Doxycycline (Dox)-mediated induction of
miR-31 was confirmed (Supplementary Fig. 2b, c), while no sig-
nificant difference was found for miR-205, an unrelated micro-
RNA (Supplementary Fig. 2b). To determine the effects of miR-31
overexpression on mammary morphology, we induced its

expression starting at 1 week of age by oral administration of
Dox-containing water in the lactating females. Following wean-
ing, pups were maintained on Dox-containing water until the end
time point. Since Dox itself may affect mammary development,
we compared mammary gland morphology from mice fed with
either Dox or control water. We found that Dox administration
mildly inhibited mammary branching and ductal elongation at
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6 weeks of age, but by 10 weeks of age such effects were no longer
observed. Therefore, all of the following studies were carried out
on Dox-treated 12-week-old female mice.

By 12 weeks of age, mammary glands of all control mice,
including WT, K5-rtTA and TRE-miR31, were fully developed
with tertiary branching (Fig. 2a and Supplementary Fig. 2d–f). In
contrast, mammary glands of all DTG mice showed no tertiary
branch development (Fig. 2a and Supplementary Fig. 2g–j) and
varying defects in ductal elongation (Supplementary Fig. 2g–i),
branching (Supplementary Fig. 2h–l), and the appearance of
multiple terminal end bud (TEB)-like structures (Fig. 2a and
Supplementary Fig. 2k). On histology, DTG mice had thicker
mammary ducts than controls, characterized by an increase in
cell layers (Fig. 2b and Supplementary Fig. 2m), particularly
pronounced at the end of the branches (Fig. 2c). Consistent with
epithelial hyperplasia, DTG mammary glands exhibited a robust
increase in cell proliferation (Fig. 2d). The effect of miR-31 on
proliferation is likely epithelial cell-autonomous, as Dox-induced
miR-31 overexpression in HC11 cells, a mouse mammary
epithelial cell line, dramatically promoted proliferation (Supple-
mentary Fig. 2n,o). Conversely, HC11 cell proliferation was
significantly repressed in response to miR-31 inhibitor, anti-miR-
31 (Supplementary Fig. 2o).

The preferential expression of miR-31 in mammary basal cells
led us to examine its influence on basal and luminal lineages. In
normal adult mammary glands, ducts are comprised of a single
layer of flattened K14+ myoepithelial cells and a single layer of
K18+ luminal cells (Fig. 2e). By contrast, DTG mammary ducts
contained multiple layers of rounded K14+ cells and displayed an
expansion of K18 expression into the basal cell layers, resulting in
the appearance of K14/K18-double positive cells (Fig. 2e).
Furthermore, in control mice, mammary basal cells were mostly
K14+SMA+ (SMA, smooth muscle actin, is a marker of
differentiated basal cells) (Fig. 2f), whereas the basal layers of
DTG mice contained many K14+SMA− cells, suggesting a
possible arrest in myoepithelial cell maturation (Fig. 2f). Taken
together, these data demonstrate that miR-31 overexpression
causes mammary hyperplasia likely via promoting the prolifera-
tion and inhibiting the differentiation of mammary epithelial
cells.

MiR-31 prevents precocious alveolar differentiation. To probe
the physiological function of miR-31, we generated a constitutive
miR-31 KO mouse model (Supplementary Fig. 3a–c). The miR-31
KO mice exhibited normal overall development and were fertile.
However, analysis of their mammary glands at 6 weeks of age
(puberty) and 10 weeks of age (post-puberty) revealed precocious
alveolar differentiation, resembling glands in early pregnancy
(Fig. 2g and Supplementary Fig. 3d). A remarkable reduction in
the number of proliferating cells was observed in TEBs of miR-31

KO mice at 6 weeks of age (Fig. 2h–j). By 10 weeks of age, miR-31
KO mammary glands expressed milk protein β-Casein, while no
appreciable expression was seen in WT mammary glands at this
stage (Fig. 2k). Moreover, the number of cells positive for Gata-3,
a transcription factor required for differentiation of the luminal
epithelium41, was markedly increased in miR-31 KO mammary
glands (Fig. 2l, o). To determine whether the mammary pheno-
types are due to loss of miR-31 in epithelial cells, we generated
K14-Cre;miR-31fl/fl mice in which miR-31 is specifically deleted in
the mammary epithelium (Supplementary Fig. 3e, f). A similar,
although slightly milder, phenotype of precocious alveolar dif-
ferentiation was observed in K14-Cre;miR-31fl/fl mice at 10 weeks
of age (Supplementary Fig. 3g), suggesting that miR-31 functions
within the virgin mammary epithelium to keep alveolar differ-
entiation in check.

The precocious alveolar differentiation phenotype in miR-31
KO virgin mice closely mimics that observed in P-cadherin null
mice42. Consistently, P-cadherin, which is normally expressed in
mammary myoepithelial cells, was absent in miR-31 KO
mammary epithelium (Fig. 2m, o). Further, the number of cells
positive for p63, which plays a key role in myoepithelial
development and in activating P-cadherin expression43, was
markedly reduced in miR-31 KO mammary epithelium (Fig. 2n,
o). These results indicate that the precocious differentiation
phenotype in miR-31 KO mice is likely associated with reduction
of p63- and P-cadherin-positive cells. Overall, the miR-31 KO
phenotypes of precocious alveolar differentiation and reduced cell
proliferation are directly opposite to these seen in the miR-31-
overexpressing mice, indicating an important physiological role
for miR-31 in promoting cell proliferation and repressing
differentiation.

MiR-31 regulates mammary alveogenesis. Next we examined the
effect of miR-31 overexpression on alveologenesis during preg-
nancy. DTG mice were able to give birth, similar to controls, but
were incapable of nursing their pups, leading to neonatal lethality.
Whole-mount and histology analysis revealed that DTG mam-
mary glands failed to form alveoli and retained undifferentiated
ductal structures at post-pregnancy 14.5 (14.5 d.p.c.) and lactation
day 1 (L1) (Fig. 3a, b). Consistently, β-Casein was completely
absent in DTG glands (Fig. 3c). MiR-31 overexpression in
HC11 cells, which can be differentiated in vitro upon the addition
of lactogenic hormones, also downregulated β-Casein expression
(Supplementary Fig. 4a). Conversely, miR-31 inhibition led to a
modest upregulation of β-Casein expression and resulted in lipid
formation in this system (Supplementary Fig. 4a). These findings
demonstrate that excessive amounts of miR-31 can repress
alveolar differentiation of the mammary epithelium during
pregnancy.

Fig. 2 MiR-31 promotes cell proliferation and concomitantly represses differentiation of mammary epithelium. a Whole mount staining of K5-rtTA and DTG
mammary glands at 12 weeks of age. Arrows, DTG mammary ductal ends with three or more TEB-like structures. Scale bar, 0.2 mm. b H&E staining of K5-
rtTA and DTG mammary ducts and quantification of cell layers of mammary ductal epithelium. Scale bar, 25 μm. c H&E staining of K5-rtTA and DTG
mammary TEBs. Scale bar, 25 μm. d Immunofluorescence for Ki67 in K5-rtTA and DTG mammary glands and quantification of Ki67+ cells in basal and
luminal layers. Scale bar, 25 μm. e K18 and K14 double immunofluorescence in K5-rtTA and DTG mammary glands. Scale bar, 25 μm. f SMA (red) and K14
(green) double immunofluorescence in K5-rtTA and DTG mammary glands. Statistical analysis of K14+/SMA- cells in K5-rtTA and DTG mammary glands.
**p< 0.01. Scale bar, 25 μm. g Whole mount staining of Control and miR-31 KO mammary glands at 6 weeks and 10 weeks of age. Arrows point to
precocious alveoli. h Statistical analysis of Cyclin D1- and Ki67- positive cells in TEBs of 4 Control and 4 miR-31 KO mammary glands at 6 weeks of age in
panels i and j. i Immunohistochemistry for Cyclin D1 in TEBs of Control andmiR-31 KOmammary glands at 6 weeks of age. Scale bar, 25 μm. j Ki67 (red) and
K14 (green) double immunofluorescence in TEBs of Control and miR-31 KO mammary glands. Scale bar, 25 μm. k–n Immunostaining for β-Casein, Gata-3,
P-cadherin and p63 in Control and miR-31 KO mammary glands at 10 weeks of age. Scale bar, 25 μm. o Western blotting for β-Casein, Gata-3, p63 and
P-cadherin in Control and miR-31 KO mammary glands at 10 weeks of age. β-Tubulin was used as a loading control. Data represented as mean± S.D. Sample
size: K5-rtTA (n= 3) and DTG (n= 3) for a–f; Control (n= 3) and miR-31 KO (n= 3) for g–o. Two tailed unpaired t-test for b, d, f, h (**P< 0.01; ***P< 0.001)
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Prlr/Stat5 signaling is critical for alveolar formation during
pregnancy44. In contrast to WT alveoli where many p-Stat5-
positive cells were detected, such cells were completely absent in
DTG mammary glands (Fig. 3d). Prlr-positive cells were also
absent in DTG glands (Fig. 3e), and reduction of Prlr was further
confirmed at both mRNA and protein levels (Fig. 3f, g).
Progesterone signaling is another key regulator of alveolar
formation, but the number of PR-positive cells remained
unaltered in DTG glands (Supplementary Fig. 4b). Interestingly,
the 3′-UTR of Prlr includes a predicted miR-31 binding site
(Supplementary Fig. 4c). Luciferase reporter assay showed that
elevated miR-31 upon Dox treatment strongly repressed WT Prlr
3′-UTR reporter activity, but had no influence on mutant
reporters where the binding site was disrupted (Fig. 3h).
Together, these data suggest a selective inhibitory effect of
miR-31 on Prlr/Stat5 signaling, and underscore Prlr 3′-UTR as a
direct molecular target of miR-31.

We also examined miR-31 KO mice for possible alveologenesis
defects. While these mice were fertile, we noticed that by weaning
age the survival rates of their pups were lower than those from
WT mothers (Supplementary Fig. 4d). The pups nursed by miR-
31 KO mothers had less milk in their stomachs at lactation day 2
(Supplementary Fig. 4e). The alveoli failed to fully develop in
miR-31 KO mothers at both 18.5 d.p.c. and lactation day 2
(Supplementary Fig. 4f). In line with this observation, the miR-31
KO mammary glands displayed a reduction in lipid droplets and
alveolar tissues (Supplementary Fig. 4g). β-Casein immunofluor-
escence showed that milk content was markedly decreased in
miR-31 KO glands (Supplementary Fig. 4h). These findings were
somewhat surprising given that we anticipated precocious
alveologenesis in pregnant miR-31 KO glands based on data
discussed above. To identify the underlying cause of impaired
alveogenesis, we examined miR-31 KO mammary glands at mid-
pregnancy (14.5 d.p.c.). At this earlier time point, enhanced
alveolar content was detected in miR-31 KO glands (Fig. 3i),
presenting as overt luminal feature and an increased number of
intracellular lipid droplets (Fig. 3j). Expression of β-Casein was
also much higher than in control glands (Fig. 3l). Similarly to that
observed in the virgin mammary glands, the levels of Prlr and p-
Stat5 proteins increased (Fig. 3k, o), and the number of
proliferating cells decreased in miR-31 KO alveoli at 14.5 d.p.c.
(Fig. 3m–o). Thus, it appears that the primary consequence of
miR-31 loss is precocious differentiation of the alveolar
epithelium, which is followed by subsequent defect in alveolar
development.

MiR-31 is critical for the self-renewal of MaSCs. Next we
examine the specific effect of miR-31 on MaSCs. Compared to K5-
rtTA and TRE-miR31 control mice, DTG mice at the same estrus
stage (Supplementary Fig. 5a) exhibited a Lin−CD24+CD29high

population that is approximately four-fold larger (Fig. 4a, b). By
contrast, the size of the CD24+CD29high population in miR-31 KO
mice was significantly smaller than in controls (Fig. 4c). A similar
reduction was seen in K14-Cre;miR-31fl/fl mammary epithelium-
specific KO mice (Fig. 4d), indicating that miR-31 functions
within the epithelium to regulate the size of the MaSC-containing
basal cell compartment. A subpopulation of the CD24+CD29high

cells are known to express Lgr5 and exhibit enhanced regenerative
capacity in mammary gland reconstitution assays9, and the size of
this Lgr5+ stem cell subpopulation was significantly reduced in
miR-31 KO mammary glands (Fig. 4e and Supplementary Fig. 5b),
which might account for the reduction of the CD24+CD29high

population in miR-31 KO mice.
To address whether miR-31 directly influences MaSC self-

renewal, we performed in vitro colony formation assays using

purified CD24+CD29high cells from DTG mice. MiR-31 induction
had no significant effect on the number of primary colonies that
formed (Fig. 4f). However, the numbers of secondary, tertiary,
and subsequent colonies were markedly increased by miR-31
induction, with overall colony formation potential showing no
signs of exhaustion after six passages (Fig. 4f). Conversely, the
addition of anti-miR-31 caused a remarkable reduction in colony
formation upon serial passaging (Fig. 4f and Supplementary
Fig. 5c). Colony sizes under control and Dox-treated conditions
were relatively constant (Supplementary Fig. 5d). These results
suggest that miR-31 promotes MaSC self-renewal.

When grown on feeder cell layers, basal progenitor cells form
solid colonies, whereas luminal progenitor cells form acinar
colonies with clear borders29. Sustained miR-31 expression
preferentially increased the number of solid basal colonies at
the cost of acinar colonies (Supplementary Fig. 5e), suggesting
that miR-31 induction promotes the colony formation ability of
basal progenitor cells while inhibiting their luminal differentia-
tion or suppressing luminal cell colony formation.

To determine whether miR-31 positively regulates MaSC
function in vivo, we performed limiting-dilution transplantation
assays in immunodeficient mice using CD24+CD29high cells
isolated from either control or miR-31 KO mammary glands.
The CD24+CD29high cells from miR-31 KO mice displayed a
significantly lower rate of successful engraftment and less extensive
mammary outgrowth than the control cells (Fig. 4g). Collectively,
these results provide strong evidence for the role for miR-31 in
supporting MaSC self-renewal and mammary regeneration.

Loss of miR-31 results in compromised tumorigenesis. To
examine the role of miR-31 in mammary tumorigenesis, we bred
the miR-31 KO allele into the MMTV-PyVT mouse model, which
serves as the model for human breast adenocarcenomas15. The
overall survival time of PyVT/KO mice was significantly longer
than PyVT control mice (Supplementary Fig. 6a). Whole-mount
analysis revealed that the development of primary mammary
lesions was markedly suppressed in PyVT/KO mice at 12 and
16 weeks of ages (Fig. 5a). At 20 weeks of age, tumors in PyVT/
KO mice were still much smaller than those in PyVT control mice
(Fig. 5b). PyVT tumors displayed some malignant features
(Fig. 5c), such as pleomorphic cell morphology and a moderate
variation in nuclear morphology, size and shape, as early as at
12 weeks of age. These features were absent in PyVT/KO tumors,
which morphologically appeared more like benign adenomas at
this stage, characterized by relatively uniform cells with round to
oval nuclei (Fig. 5c). In agreement with compromised tumor
growth, the number of proliferating cells was much lower in
PyVT/KO tumors than in PyVT controls (Fig. 5d and Supple-
mentary Fig. 6b). Furthermore, transplantation assays with 4T1
mouse breast cancer cells revealed that inhibiting miR-31 with
anti-miR-31 suppresses tumor growth in host mice (Supple-
mentary Fig. 6c).

Gata3, the expression of which is strongly associated with ERα
in breast cancer, is considered a prognostic marker for less
aggressive breast cancer and associates with favorable outcome45.
While Gata3- and ERα-positive cells were absent in PyVT tumors
at 12 weeks of age, they were abundantly present in PyVT/KO
tumors from the same stage (Fig. 5e, f). Consistently, the
expression level of miR-31 also negatively correlated to Gata3 and
ERα levels in human breast cancer (Supplementary Fig. 6d). K14
+K8+ double positive cells have been reported to be tumor
progenitor cells46. While PyVT tumors contained K14+K8+ cells
at the leading, basal edge of the tumor (Fig. 5g), both tumors and
mammary ducts from PyVT/KO mice lacked K14+ cells (Fig. 5g).
The protein level of luminal marker K8 is much higher in PyVT/
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KO tumors, whereas basal marker K14 is greatly lower (Fig. 5f).
These data suggest that loss of miR-31 induces a basal-to-luminal
cell fate change in mammary tumor cells. Thus, miR-31 is
required for maintaining a basal cell fate in both normal and

malignant mammary epithelia. This notion is consistent with the
presence of ample K14+ cells in triple-negative tumors in which
miR-31 is more highly expressed as compared to hormone
receptor-positive tumors (Supplementary Fig. 6e).
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Cancer stem cells can be isolated from PyVT tumors using cell
surface markers CD90 and CD2447. We found that the expression
levels of miR-31 are higher in the CD24+CD90+ cancer stem cells
as compared to the CD24+CD90− cells (Fig. 5h). We
detected a significant reduction in the percentage of the
CD24+CD90+ cancer stem cell population in PyVT/KO mam-
mary tumors compared to PyVT tumors (Fig. 5i). Moreover,
limiting-dilution transplantation assays revealed that PyVT/KO
tumor cells show an approximately 13-fold decrease in tumor-
initiating ability (Fig. 5j and Supplementary Fig. 6f), and

consequently tumor growth was compromised (Supplementary
Fig. 6f–h). These data demonstrate that miR-31 is required for
maintaining mammary tumor stem cells.

Remarkably, miR-31 deficiency in PyVT mice resulted in a
higher metastasis-free survival rate (Fig. 6a). Consistently, we
found a marked reduction of metastatic foci in PyVT/KO lungs,
compared to PyVT controls (Fig. 6b). To probe the underlying
mechanism, we examined the expression of known markers of
epithelial-mesenchymal transition (EMT), which is arguably
important for tumor invasion and metastasis48–50. The numbers
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of vimentin+ and Slug+ cells were greatly reduced in PyVT/KO
tumors (Fig. 6c, d). The RNA levels of other EMT regulators,
Twist1, Bmi1, Zeb1 and Fzd3, were also markedly decreased in
PyVT/KO tumors (Fig. 6e). Moreover, the expression of
P-cadherin, a metastable EMT marker of poor prognosis of
invasive breast carcinomas51, was reduced in PyVT/KO tumors
and mammary ducts (Fig. 6f). However, the expression levels of
α2- and β1-integrin, which are metastasis repressors in breast
cancer52, are remarkably elevated in PyVT/KO tumors (Fig. 6g,
h). When cultured in matrigel of reconstituted basement
membrane, PyVT tumor cells formed typical acinar structures
with elongated protrusions, but such protrusions were blocked in
PyVT/KO acini (Fig. 6i). In keeping with these in vivo/ex vivo
findings, treatment of BT549 breast cancer cells with miR-31
mimics elicited a morphological conversion from epithelial-like to
mesenchymal-like state (Fig. 6j). Taken together, our findings
reveal a critical involvement of miR-31 in tumor growth and
metastasis, likely through regulating multiple cellular processes
including tumor stem cell self-renewal, basal-luminal differentia-
tion and epithelial plasticity.

MiR-31 activates Wnt/β-Catenin and represses TGFβ signaling.
To identify the signaling events that mediate this function, we
examined the effect of miR-31 alterations on the status of Wnt/β-
catenin signaling, previously shown to be a key pathway that
promotes MaSC self-renewal and stemness5, 7, 53, 54. The Axin2-
LacZ reporter mice have been widely used as an in vivo reporter
for Wnt pathway activity, as Axin2 is a direct Wnt target in most
cell types7. While Axin2-LacZ reporter activity was restricted to
the single layer of basal cells in control mammary glands, it was
expanded to multiple layers in DTG mammary glands and
reduced in miR-31 KO mammary glands (Fig. 7a). Increased
nuclear localization of β-Catenin was seen in the mammary basal
layer of DTG mice at 12 weeks of age, and this increase was more
prominent during pregnancy (Fig. 7b). In contrast, expression of
nuclear β-Catenin was considerably reduced in miR-31 KO
mammary tissues (Fig. 7c). These data, together with the finding
of reduced number of cells that express Wnt downstream target
Lgr5 in miR-31 KO mammary glands (Fig. 4e), support a model
where miR-31 upregulates Wnt/β-catenin pathway activity in the
mammary epithelium.

To ask whether miR-31 impacts Wnt pathway activation in a
cell-autonomous manner, we analyzed the effects of miR-31 on
Wnt signaling status/output in HC11 cells. MiR-31 overexpres-
sion in this system induced prominent nuclear localization of β-
Catenin (Fig. 7d), enhanced the expression of Wnt target LBH
(Fig. 7e), and upregulated TOPflash Wnt reporter activity
(Fig. 7f). In contrast, inhibiting miR-31 with anti-miR-31 led to
decreased LBH expression (Fig. 7e) and reduced TOPflash
reporter activity (Fig. 7f).

In interesting contrast to Wnt signaling, TGFβ signaling was
found to be significantly elevated in miR-31 KO mammary
glands, as evident by increased level of active Smad2/3
(Fig. 7g), as well as upregulated expression of TGFβ
pathway target genes Cdkn2b (encoding p15), Cdkn1a
(encoding p21), Cdkn1c (encoding p57) and Tgfbr1 (Fig. 7h).
In addition, miR-31 inhibition enhanced luciferase reporter
expression driven by Smad-binding element CAGA, while
miR-31 mimics suppressed the expression of this TGFβ
signaling reporter (Fig. 7i). Collectively, our results reveal
opposite effects of miR-31 on Wnt and TGFβ signaling in the
mammary gland.

MiR-31 targets Wnt signaling antagonists in mammary gland.
In order to identify direct molecular targets of miR-31 that
mediate its function in the mammary epithelia, we analyzed miR-
31-binding sites in 3′-UTRs of transcripts encoding regulators of
the Wnt signaling pathway. Putative miR-31-binding sites were
found in several Wnt antagonists including Axin1, Gsk3β and
Dkk1 (Supplementary Fig. 7a). Indeed, a marked increase in
mRNA and protein levels of Axin1, Gsk3β and Dkk1 was detected
in miR-31 KO mammary glands, and conversely a significant
reduction was observed in the levels of the same molecules in
DTG mammary glands (Fig. 8a–c). In reporter luciferase assay,
miR-31 mimics significantly repressed luciferase activity con-
taining Axin1, Gsk3β and Dkk1 3′-UTR elements, while 3′-UTR
elements mutations abolished miR-31 binding and this repressive
effect (Fig. 8d and Supplementary Fig. 7b). Furthermore, RNA
crosslinking, immunoprecipitation, and quantitative polymerase
chain reaction with reverse transcription (qRT-PCR) (CLIP-PCR)
assay revealed that Dkk1, Axin1 and Gsk3β are enriched in the
Ago2 antibody immunoprecipitates and that miR-31 inhibitor
suppresses these enrichments (Fig. 8e), suggesting that miR-31
directly binds to these potential targets. Elevated Axin1, Gsk3β
and Dkk1 expression was also seen in PyVT/KO tumors as
compared to PyVT tumors (Fig. 8f–h). Together, these findings
underscore Axin1, Gsk3β and Dkk1 as direct molecular targets of
miR-31. Similar studies also implicate TGFβ pathway genes
Smad3 and Smad4 as potential targets of miR-31 (Supplementary
Fig. 7 and Fig. 8).

Since the effects of miR-31 on the mammary gland are most
similar to those of Wnt signaling, we next asked whether
inhibiting Wnt signaling is able to rescue the miR-31 gain-of-
function mammary phenotypes. Specifically, we crossed miR-31
DTG mice with TRE-Dkk1 transgenic mice to generate K5-rtTA/
TRE-miR31/TRE-Dkk1 (DTG/Dkk1) triple transgenic mice.
Mammary glands were harvested from these mice at 12 weeks
of age and the altered expression of miR-31 and/or Dkk1 was
confirmed (Supplementary Fig. 8a, b). Distinct from DTG or
Dkk1 transgenic mammary glands, DTG/Dkk1 triple transgenic

Fig. 5 Loss of miR-31 results in compromised mammary tumor progression and reduces number of cancer stem cells. a Representative whole-mount
staining ofMMTV-PyVT (PyVT) and MMTV-PyVT/miR-31KO (PyVT/KO) mammary glands at 12 and 16 weeks of age. Quantification of PyVT tumor areas at
12 weeks (PyVT: n= 12; PyVT/KO: n= 9) and 16 weeks (PyVT: n= 12; PyVT/KO: n= 6) of age. Scale bar, 2.5 mm. b Gross images of mammary tumors from
PyVT and PyVT/KO mice at 20 weeks of age. Quantification of mammary tumor volume from PyVT (n= 13) and PyVT/KO (n= 9) mice at 20 weeks of age.
c H&E of PyVT and PyVT/KO tumors at 12 weeks of age. Higher magnification images indicated by dashed boxes shown in the lower panels. Arrowheads,
nuclei with diverse shape. Scale bar, top panels, 50 μm; lower panels, 16 μm. d Immunohistochemistry for Ki67 and quantification of Ki67+ cells in PyVT and
PyVT/KO mammary tumors at 12 weeks of age. Scale bar, 25 μm. e Immunostaining for Gata-3 and ERα in PyVT and PyVT/KO mammary tumors at
12 weeks of age. Scale bar, 25 μm. f Western blotting for Gata-3, ERα, K8 and K14 in PyVT and PyVT/KO tumors at 12 weeks of age. g Immunofluorescence
for K14 and K8 at the leading edges of tumors and mammary ducts from PyVT and PyVT/KO mice. Scale bar, 25 μm. h qRT-PCR for miR-31 in CD24+CD90-

and CD24+CD90+ cells from PyVT tumors. n= 3 biological replicates. i Profiles of CD90-PE and CD24-PE-Cy7 in cell suspensions from PyVT and PyVT/KO
tumors. Arrows, CD24+CD90+ cells. Quantification of CD24+CD90+ cells in PyVT (n= 4) and PyVT/KO (n= 4) tumors. j Limiting dilution transplanted
assay showing tumor-initiating cell frequencies (with confidence intervals) χ2-values and associated probabilities. P= 0.0256. Data represented as mean±
S.E.M. for a, b; Data represented as mean± S.D. for d, h, i. Sample size: PyVT (n= 3) and PyVT/KO (n= 3) for c–g. Two tailed unpaired t-test for d, h, i (*P
< 0.05; **P< 0.01; ***P< 0.001)
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glands exhibited structural features similar to those of controls,
including thin ducts, underdeveloped tertiary branches, but
otherwise normal ductal elongation and branching (Supplemen-
tary Fig. 8c). DTG/Dkk1 mammary ducts had fewer cell layers
than DTG ducts (Supplementary Fig. 8c). Furthermore, the

number of CD24+CD29high cells in DTG/Dkk1 mice is much
lower than that of DTG mice but higher than WT mice (Fig. 8i).
Consistently, administration of recombinant Dkk1 protein
suppressed colony formation in vitro (Fig. 4f). Taken together,
these findings indicate that inhibiting Wnt signaling by
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introducing Dkk1 can partially rescue the DTG mammary
morphology, histology and MaSC expansion defects in vivo.
Our data support a model where miR-31 functions in the

mammary gland at least in part through suppressing Wnt
signaling antagonists, thereby maintaining optimal Wnt pathway
activation that is crucial for MaSC/basal cell self-renewal.
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Discussion
In this work, we demonstrate that miR-31 plays an important role
in MaSC self-renewal and tumorigenesis by regulating Wnt
pathway activation. Our work adds miR-31 to a short list of
microRNAs, including miR-22 andmiR-205, which regulate stem/
progenitor cells in the mammary lineage. Ectopic miR-22 over-
expression results in increased mammary ductal side-branching
accompanied by an apparent expansion of MaSCs32. Both over-
expression and knockdown of miR-205 have been shown to cause
perturbations of stem/progenitor-like populations28, 33, yet
in vivo evidence is still lacking. To our knowledge, this study is
the first to demonstrate the in vivo, physiological role of a specific
microRNA in regulating MaSCs and mammary gland develop-
ment using a loss-of-function mouse model (Supplementary
Fig. 9).

The major cellular consequences of miR-31 loss are reduction
of MaSCs, impaired cell proliferation, and precocious alveolar
differentiation. Our findings suggest that reduced Wnt signaling
is at least in part responsible for these effects. It has been shown
that restricting Wnt activity leads to reduction in the frequency/
self-renewal of MaSCs and increased luminal differentiation54–56.
Wnt targets such as Axin2 and Lgr5 have been used to identify
distinct Wnt-responsive MaSC subsets7, 9. We found that both
Axin2-LacZ+ and Lgr5+ cells are reduced in miR-31 KO mam-
mary glands, which could account for the reduced number of
MaSCs in KO mammary glands. On the other hand, the mam-
mary phenotype of DTG mice mimicked hyperplasia and MaSC-
enriched cell expansion resulting from ectopic expression of
Wnt1 or stabilized β-Catenin in transgenic mice5, 57. In serial
passages, miR-31 induction resulted in increased numbers of
colonies, which resemble the effect of Wnt3a on mammary stem
cells7. Moreover, miR-31 overexpression induced prominent
nuclear localization of β-Catenin, enhanced the expression of
Axin2, and upregulated TOPflash Wnt reporter activity, while
miR-31 inhibition exerted opposite effects. Collectively, these data
support the importance of miR-31 in activating the
Wnt/β-Catenin signaling pathway. We surmise that miR-31 does
so primarily in the mammary basal layer to sustain MaSC/basal
cell self-renewal/proliferation and to suppress their differentiation
into luminal/alveolar cells.

Our results also suggest miR-31 as a pro-oncogenic microRNA
in the mammary tissue. Our findings that loss of miR-31 in
MMTV-PyVT mice (which develop multifocal mammary ade-
nocarcinomas and metastatic lesions in the lung58) leads to
compromised tumor growth, reduced number of cancer stem
cells, decreased tumor-initiating ability and impaired metastasis
to the lung, point to an in vivo pro-oncogenic role for miR-31 in
breast cancer. Previous studies have reported an anti-metastatic
role for miR-31 in breast cancer59–62. However, this conclusion
was based on in vitro data as well as an inverse correlation
between miR-31 expression and metastatic potential of breast
cancer subtypes and cell lines59–62. As such, our study represents
the first report of miR-31’s physiological role in mammary
tumorigenesis. K14+K18+ cells are thought to be the progenitor
cells in breast tumorigenesis46, and K14+ cells are capable to
collectively invade in human breast cancer and mouse models of
breast cancer63. Moreover, Gata3 and ERα have been identified as
clinical markers for the less aggressive luminal A-type tumors45.
Loss of miR-31 leads to a remarkable reduction of K14+K18+ and
K14+ cells as well as a significant increase in Gata3- and
ERα-positive cells in PyVT tumors. These data suggest that loss of
miR-31 promotes an aberrant basal-to-luminal cell fate transition
within the tumors, and offer a possible cellular mechanism for
reduced tumor formation and metastasis (Supplementary Fig. 9).
Our work, together with the previous finding that miR-31 also
functions as an oncomir in colon cancer and lung cancer64, 65,

highlights miR-31 as a potential therapeutic target for cancers of
multiple tissues.

Methods
Mouse strains. To generate TRE-miR-31 transgenic mice, the mmu-miR-31
sequence was amplified using the following primers: Forward 5′-
CTCGGATCCTGTGCATAA CTGCCTTCA-3′ (BamHI site is added), and
Reverse 5′-CACAAGCTTGAAGT CAGGGCGAGACAGAC-3′ (HindIII site is
added), from mouse tail DNA, and was inserted into pTRE2 vector (Clontech) to
generate a pTRE2-miR-31 construct. TRE-miR31 transgenic mice were produced
using standard protocols. K5-rtTA mice66 were crossed with TRE-miR31 mice to
create K5-rtTA/TRE-miR31 double transgenic mice (DTG). Lgr5-EGFP-CreERT
mice were purchased from the Jackson Laboratory (#008875). Constitutive miR-31
KO mice were generated using CRISPR/Cas9 RNA-guided nucleases at the Nanjing
Animal Center, and 402 bp DNA fragment containing miR-31 was deleted in the
null allele. The conditional miR-31 KO allele was generated at the Shanghai Model
Animal Center, the first exon (14,806-15,522) of miR-31 was targeted with flanking
LoxP sites resulting in the 2 LoxP locus. K14-Cre transgenic mice were obtained
from Jackson Laboratory (stock no.004782). The genetic background of miR-31
KO, K14-Cre, cKO and TRE-miR31 transgenic mice is C57BL/6J and that of
MMTV-PyVT mice is Friend Virus B-type (FVB). All females were used for
analysis in this study. The ages of mice in the experiments have been described in
the Text. To quantify the tumor areas, all lesions in mammary whole-mount
section were measured using Photoshop software. At least three control and three
DTG, or three control and three KO littermates were used to analyze the mammary
phenotypes. For xenograft assay, at least six mice each group were used to be
transplanted with breast cancer cells.

Ethics. All mouse experiment procedures and protocols were evaluated and
authorized by the Regulations of Beijing Laboratory Animal Management and were
strictly in accordance with the guideline under the Institutional Animal Care and
Use Committee of China Agricultural University(approval number, SKLAB-2011-
04-03).

Cell sorting and transplantation assay. Mouse mammary glands and PyVT
tumors were prepared according to the manufacturer protocol (Stem Cell Tech-
nologies, Vancouver, Canada). The minced mammary gland and PyVT tumors
tissues were dissected from age-matched virgin or pregnant mice in EpiCult-B with
5% fetal bovine serum (FBS), 300 U/ml collagenase and 100 U/ml hyaluronidase for
3–6 hrs at 37 °C. After lysis of the red blood cells with NH4Cl, a single cell
suspension was obtained by sequential dissociation of the fragments in 0.25%
trypsin for 1–2 min and 5 mg/ml dispase plus 0.1 mg/ml DNase I (DNase; Sigma)
for 2 min with gentle pipetting, followed by filtration through 40-μm cell strainer
(BD Falcon). The following antibodies were used: CD24-rphycoerythrin-Cy7
(560536, BD), CD29-fluorescein isothiocyanate (561796, BD), CD45-
allophycocyanin (APC, 559864, BD), mouse CD31-APC (551262, BD), mouse
TER-119 APC (557909, BD), CD90.2-PE (553005, BD) and Fixable Viability Dye
eFluor 450 (eBioscience, 65-0863-14). Antibody incubation was performed on ice
for 15 min in HBSS with 2% fetal bovine serum. Cell sorting was performed using a
FACSAria SORP (BD). Sorted cells were re-suspended in 50% Matrigel, PBS with
20% fetal bovine serum, and injected in 10 μl volumes into the cleared fat pads of 3-
week-old femal NOD-SCID mice. Reconstituted mammary glands were examined
after 6–8 weeks post injection. Outgrowths were detected under dissection
microscope (Leica) after Carmine staining. For limiting dilution analyses, the
repopulating frequency after was calculated using the Extreme Limiting Dilution
Analysis Program.

In vitro colony formation assays. Colony formation assays were performed
according to published protocols7 with modifications. We performed fluorescence-
activated cell sorting (FACS) assay to sort CD24+CD29hi cells from DTG mam-
mary glands without Dox treatment. The sorted CD24+CD29hi cells were equally
divided into three aliquots, each containing 105 cells. One aliquot was electro-
transfected with 4 μg of miR-31 inhibitor, anti-miR-31 (5′-CAGCUAUGCCAG-
CAUCUUGCCU-3′) (Shanghai GenePharma Co., Ltd). The other aliquot was
electrotransfected with 4 μg scrambled RNA (5′-CAGUACUUUUGUGUAGUA-
CAA-3′). Next, each aliquot was plated onto 0.4 μm Culture Plate Inserts (Milli-
pore Cor., Billerica, USA). The cells were incubated in Complete EpiCult-B
Medium containing EpiCult-B proliferation supplements, 10 ng/ml recombinant
human Epidermal Growth Factor (rhEGF; Stem Cell Technologies), 10 ng/ml
recombinant human Basic Fibroblast Growth Factor (rh bFGF; Stem Cell Tech-
nologies), 4 μg/ml (0.0004%) Heparin (Stem Cell Technologies), 100 U/mL Peni-
cillin and 100 μg/ml of Streptomycin (Sigma), and 10% FCS (Hyclone). After 24 h,
the culture medium was changed to serum-free Complete EpiCult-B Medium
containing cytokines. The culture medium was changed every 24 h thereafter.
Colony numbers and size were scored after 8 days in culture (first passage). After
scoring, colonies were digested in the corresponding wells by incubation in 1–2 ml
0.25% trypsin−EDTA for 3–5 min at 37 °C. Colonies released from culture plate
inserts were pelleted, followed by gentle pipetting to obtain single cells. The anti-
miR31-treated cells were eletrotransfected again with 4 μg anti-miR-31 RNA. The
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other two aliquots were eletrotransfected with scrambled RNA. The three aliquots
were replated in Culture Plate Inserts. One of the two aliquots eletrotransfected
with scrambled RNA was treated with 200 ng/μl Dox to induce miR-31 over-
expression. The remaining aliquot was cultured without Dox. 8 days after culture,
colony numbers and size were scored again (second passage). The following 3–6
passages were repeated as above.

Colony formation assays on feeder layers were performed as described by
Shackleton et al.5. We sorted Lin− mammary epithelial cells from transgenic
mammary glands without Dox treatment, and plated approximately
10,000 mammary epithelial cells onto irradiated NIH3T3 feeders. Solid and acinar
colonies were observed and compared with or without Dox treatment for 6 days on
feeders.

Cell culture and stable transfection using a Tet-on system. HC11 mouse
mammary epithelial cells were cultured in RPMI-1640 medium (R8758, Sigma)
supplemented with 10% FBS (Hyclone), 10 ng/ml epithelial growth factor (EGF),
5 μg/ml insulin, and grown to 80% confluence, then changed into Opti-MEM
medium without serum and antibiotics so that cells would be 90–95% confluent at
the time of transfection. 4 μg of pTet-On plasmid (Clontech) were transfected using
LipofectamineTM 2000 according to the manufacturer’s instructions. Positive
clones were selected following treatment with 800 μg/ml G418 for 2 weeks. Clones
were seeded into 24-well plates with RPMI-1640 medium and genotyped by PCR.
Positive clones were co-transfected with TRE-miR31 plasmid and selection vector
pTK-Hyg (Clontech) at a molar ratio of 20:1, and selected by addition of 600 μg/ml
Hygromycin for 2 weeks. Surviving clones were PCR genotyped. No mycoplasma
contamination was detected in any of the cultures using a mycoplasma detection
kit.

In vitro lactogenic differentiation assay. HC11 mouse mammary epithelial cells
were cultured in RPMI-1640 growth medium supplemented with 10 ng/ml EGF, 5
μg/ml insulin and 10% FBS. For induction of lactogenic differentiation, lactogenic
hormones (1 μg/ml dexamethasone, 5 μg/ml insulin and 5 μg/ml prolactin (DIP))
were added to RPMI-1640 medium for 6 days. The cells were treated with 200 ng/
ml Doxycycline (Dox), miR-31 inhibitor (Anti-miR-31, GenePharma Co., Ltd), an
artificial RNA sequence (5′-CAGCUAUGCCAGCAUCUUGCCU-3′), or scram-
bled (5′-CAGUACUUUUGUGUAGUACAA-3′). Three independent replicates
were performed for each experiment.

Histology and immunostaining. Mammary glands were fixed in 4% PFA,
paraffin-embedded and 5-μm sections were stained with hematoxylin and eosin
(H&E). For immunohistochemistry staining, antigen-retrieval was performed by
heating slides to 95 °C for 10 min in 0.01 M citrate buffer (pH 6) in a microwave
oven. The sections were then immunostained by the ABC peroxidase method
(Vector Laboratories) with diaminobenzidine as the enzyme substrate and hema-
toxylin as a counterstain. For detection of nuclear β-Catenin, antibody clone 15B8
(Sigma; 1:1,000) was used in combination with the MOM kit (Vector Laboratories).
For immunofluorescence staining, paraffin sections were microwave pretreated,
and incubated with primary antibodies, then incubated with secondary antibodies
(invitrogen) and counterstained with DAPI in mounting media. The following
antibodies were used: K14 (1:400, ab7800, Abcam), K18 (1:400, ab668, Abcam),
ERα (1:500, sc-542, Santa Cruz), PR (Cell Signaling Technology), Cyclin D1 (1:100,
ab134175, Abcam), c-Myc (1:200, ab32072, Abcam), Ki67 (1:800, sp6, Thermo
Fisher), β-catenin (1:400, 8480, Cell Signaling Technology), p-Stat5 (1:500, 9359,
Cell Signaling Technology), P-cadherin (1:200, sc-7893, Santa Cruz), p63 (1:500,
ab124762, Abcam), β-casein (1:400, sc-166530, Santa Cruz), GFP (1:500, ab290,
Abcam), Rankl (1:500, ab45039, Abcam), SMA (1:500, A5228, Sigma), k8 (1:500,
ab59400, Abcam), Gata3 (1:800, ab199428, Abcam), Prlr (1:400, sc-20992, Santa
Cruz), Slug (1:500, ab27568, Abcam), Vementin (1:400, 5741, Cell Signaling
Technology), ITGA2 (1:800, ab133557, Abcam), ITGB1 (1:800, ab52971, Abcam),
Dkk1 (1:500, ab61275, Abcam).

Whole mount staining. Inguinal mammary glands were spread on glass slides,
fixed in Carnoy’s fixative (6:3:1, 100% ethanol: chloroform: glacial acetic acid)
for 2–4 h at room temperature, washed in 70% ethanol for 15 min, rinsed through
graded alcohol followed by distilled water for 5 min, then stained in carmine
alum overnight, washed in 70, 95 and 100% ethanol for 15 min each, cleared in
xylene and mounted with Permount. After photographic documentation,
tissues were immersed in xylene to remove mounting medium, transferred to 1:1
xylene: paraffin (60 °C) and embedded in paraffin for sectioning and histological
analysis.

Western blotting. Mammary epithelial cell lysates were prepared in lysis buffer
(150 mM NaCl, 50 mM Tris-Cl, 1% Triton X-100, 0.1% SDS, 0.5% sodium deox-
ycholate, 0.02% sodium azide, 1 mM sodium vanadate, protease inhibitors (10 μg/
ml leupeptin, 10 μg/ml aprotinin, and 1 mM phenylmethylsulfonyl fluoride)).
Protein concentrations were determined using a Bio-Rad protein assay. 20 μg
protein was loaded in 4–12% sodium dodecyl sulphate–polyacrylamide gel elec-
trophoresis (Invitrogen), and transferred to nitrocellulose. Membranes were
blocked in 5% BSA for 1 h, incubated with the primary antibody overnight at 4 °C,

washed, and incubated with the appropriate horseradish-conjugated secondary
antibody (1:5,000) for 1 h at room temperature. An enhanced chemiluminescent
(ECL) kit was used to visualize the signal (Pierce). The following antibodies and
dilutions were used: Dkk1 (1:500, ab61275, Abcam), Axin1 (1:400, sc-14029, Santa
Cruz), LBH (1:400, sc-161791, Santa Cruz), β-catenin (1:400, 8480, Cell Signaling
Technology), and β-actin (1:400, sc-1616, Santa Cruz), Gsk3β (1:5,000, ab32391,
Cell Signaling Technology), p-Smad2/3 (1:1000, 8828, Cell Signaling Technology),
Smad4 (1:400, sc-7966, Santa Cruz), Rankl (1:500, ab45039, Abcam), p-p65
(1:1,000, 3033, Cell Signaling Technology), p65 (1:1,000, 8242, Cell Signaling
Technology), GAPDH (1:2000, 2118, Cell Signaling Technology), p-ikkα (1:1,000,
ab38515, Abcam), p-AKT (1:1000, 9614, Cell Signaling Technology), Gata3
(1:2,000, ab199428, Abcam), Prlr (1:500, sc-20992, Santa Cruz), Cyclin D1 (1:1,000,
ab134175, Abcam), c-Myc (1:1,000, ab32072, Abcam), p-Stat5 (1:1000, 9359, Cell
Signaling Technology), β-Tubulin (1:4,000, ab6046, Abcam), β-casein (1:500, sc-
166530, Santa Cruz), ERα (1:1,000, sc-542, Santa Cruz), k8 (1:2,000, ab59400,
Abcam), K14 (1:2,000, ab7800, Abcam), ITGA2 (1:2,000, ab133557, Abcam),
ITGB1 (1:2,000, ab52971, Abcam), p21(1:1,000, ab109520, Abcam), smad3 (1:1000,
ab40854, Abcam), P-cadherin (1:500, sc-7893, Santa Cruz). Uncropped blots for
western blot analysis are shown in Supplementary Fig. 10.

Quantitative RT-PCR analysis. Total RNA was isolated from mammary epithelial
cells using the mirVanaTM RNA Isolation kit following manufacturer’s
instructions (Ambion). Complementary DNA was prepared using the MMLV
cDNA synthesis kit (Promega). qRT-PCR was performed using the SYBR-green
detection system (Roche). For microRNA expression, mature miR-31 was
quantified using TaqMan microRNA assays according to the manufacturer’s
instructions. U6 snRNA was used as an internal control (Applied Biosystems).
qRT-PCR primers as follows:

Ccnd1-forward: 5′-GCAGGAGAGGAAGTTGTTGG-3′;
Ccnd1-reverse: 5′-AGACCTTTGTGGCCCTCTGT-3′.
c-Myc-forward: 5′-TCCTGTACCTCGTCCGATTC-3′;
c-Myc-reverse: 5′-GGTTTGCCTCTTCTCCACAG-3′.
Axin-1-forward: 5′-CCCCCATACAGGATCCGTAAG-3′;
Axin-1-reverse: 5′-AGAGGTACCCGCCCATTGA-3′.
Dkk1-forward: 5′-TACAATGATGGCTCTCTGCAGCCT-3′;
Dkk1-reverse: 5′-GCAGGTTCTTGATCGCGTTGGAAT-3′.
Gsk3β-forward: 5′-CCAACAAGGGAGCAAATTAGAGA-3′;
Gsk3β-reverse: 5′-GGTCCCGCAATTCATCGAAA-3′.
Smad3-forward: 5′-ACAGGCGGCAGTAGATAACG-3′;
Smad3-reverse: 5′-AACGTGAACACCAAGTGCAT-3′.
Smad4−forward: 5′-GGCTGTCCTTCAAAGTCGTG-3′;
Smad4-reverse: 5′-GGTTGTCTCACCTGGAATTGA-3′.
Cdkn2b -forward: 5′-GCCCAATCCAGGTCATGATG-3′;
Cdkn2b -reverse: 5′-TCACACACATCCAGCCGC-3′.
Cdkn1a -forward: 5′-ATCACCAGGATTGGACATGG-3′;
Cdkn1a -reverse: 5′-CGGTGTCAGAGTCTAGGGGA-3′.
Cdkn1c -forward: 5′-GTTCTCCTGCGCAGTTCTCT-3′;
Cdkn1c -reverse: 5′-GTTCTCCTGCGCAGTTCTCT-3′.
Tgfbr1 -forward: 5′-CAACCCAGGTCCTTCCTAAA-3′;
Tgfbr1-reverse: 5′-GGAGAGCCCTGGATACCAAC-3′.
Smad7-forward: 5′-CTTCTCCTCCCAGTATGCCA-3′;
Smad7-reverse: 5′-GAACGAATTATCTGGCCCCT-3′.
GAPDH -forward: 5′-GTTGTCTCCTGCGACTTCA-3′;
GAPDH -reverse: 5′-TGGTCCAGGGTTTCTTACTC-3′.

In situ hybridization. Dissected mouse mammary glands were pre-fixed
for 2 h in 4% PFA (Sigma) at room temperature, placed in PBS with 30%
sucrose to minimize freeze fracture at 4 °C overnight, and then sectioned at 12 μm
in a cryostat and collected on Superfrost PLUS slides. Slides were fixed in 4%
PFA for 10 min at room temperature, washed twice in PBS, and immersed
in 0.2 M HCl for 15 min, followed by two 5min washes in PBS. Proteinase K
(10 μg/ml) was added to the slides for 5 min at 37 °C. Slides were rinsed
twice in 0.2% glycine, transferred to acetylation solution (590 ml DEPC-treated
water, 8 ml triethanolamine, 1050 μl 37% HCl, 1.5 ml acetic anhydride),
washed twice in PBS. For miR-31 in situ hybridization, digoxigenin-labeled
LNA probes (Exiqon, Vedbaek, Denmark) were used following the
manufacturer’s protocol. TSA plus fluorescein system (PerkinElmer) was used to
enhance signals.

Dual luciferase activity assays. The Dkk1 3′-UTR was amplified with the fol-
lowing primers: forward 5′-TA TGGGGAAGAGAAGAAACG-3′; and reverse 5′-
TTTGGAAGGTATTGTC GGAA-3′. Axin1 3′-UTR was amplified with the fol-
lowing primers: forward 5′-GTTTCTTTTCAGCGGCACTC-3′; and reverse
5′-ATATTTACACGGACAC TTGG-3′). Gsk3β 3′-UTR was amplified with the
following primers: forward 5′-TTAGCGGCCGCTCAGTTTCACAGGGTTAT-3′;
and reverse 5′-GCGCTCGAGACAAAGGCATTCAAGTAG-3′). Smad3 3′-UTR
was amplified with the following primers: forward 5′-CCGCTCGAGCACCA-
CACCGAATGAATG-3′; and reverse 5′-ATAAGAATGCGGCCGCTGGCAATCC
TTTACCATAGC-3′). Smad4 3′-UTR was amplified with the following primers:
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forward 5′-TTACTCCTAGCAGCACCC-3′; and reverse 5′-CAGTTGTCG
TCTTCCCTC-3′). 3′-UTRs were cloned into the XhoI and NotI sites of a modified
psiCHECK2 vector (Promega) immediately downstream of the Renilla luciferase
stop codon. Putative miR-31 recognition elements in the Dkk1 3′-UTR were
mutated by site-directed mutagenesis (Stratagene). For the dual luciferase assay,
HC11 cells were transfected with 4 μg of Dkk1 3′-UTR, mutated 3′-UTR or control
vector using Lipofectamine 2000 (Invitrogen). After 36 h, cells were lysed and the
Dual-Glo luciferase reporter assay (Promega) was performed according to the
manufacturer’s protocol.

TOP/FOP flash reporter assay. HC11 mouse mammary epithelial cells stably
transfected for miR-31 inhibitor and Dox-inducible miR-31 were transfected with
10 μg/100 μl TOPflash reporter plasmid or 10 μg/100μl FOPflash reporter plasmid
using Lipofectamine 2000 (Invitrogen). The transfected cells were cultured in the
absence or presence of Dox for 24 h, and both firefly and the renila luciferase
activities were measured using Dual Luciferase Reporter Assay System Kit
(Promega). TOP/FOP activities were calculated following the formula:
TOP/FOP = (TOP firefly luciferase activity/renila luciferase activity)/(FOP firefly
luciferase activity/renila luciferase activity). MiR-31 inhibitor (anti-miR-31,
GenePharma Co., Ltd), an artificial RNA sequence (5′-CAGCUAUGCCAGCA
UCUUGCCU-3′). Scrambled RNA was used as a negative control (5′-CAG
UACUUUUGUGUAGUACAA-3′). This experiment was repeated three times.

Cell viability assays. Cell viability was assessed by a tetrazolium salt
(WST-8)-based colorimetric assay using the Cell Counting Kit 8 (CCK-8, Dojindo,
Japan). Briefly, control and Dox-treated cells were seeded onto 96-well plates at an
initial density of 5 × 103 cells per well. CCK-8 or medium was added to parallel sets
of wells to control for CCK-8 interference. At specified time points, 10 μl of CCK-8
solution was added to each well of the plate, and the plate was incubated for 1 h at
37 °C. Cell viability was determined by scanning with a micro-plate reader at 450
nm. Data were expressed as the relative absorbance rate calculated as follows:
relative viability = [A450(Dox)-A450(blank)]/ [A450(control)-A450(blank)].
For cell cycle analysis, cells were washed once in PBS, trypsinized, pelleted at
1,000×g, and rinsed once in 2 ml of cold PBS. After centrifugation, cells were
slowly resuspended in 2 ml of cold 75% ethanol, after fixation for 2 h at 4 °C.
Cells were washed in 1 ml PBS, stained with 50 μg/ml propidium iodide
(PI, Sigma) and treated with 100 μg/ml RNase A (Invitrogen), 0.2% Triton X-100
(Sigma) for 30 min at 4 °C. Cells were analyzed for cell cycle stage by flow
cytometry.

Chromatin immunoprecipitation (ChIP) assay. ChIP assays were performed
using the SimpleCHIP enzymatic ChIP kit (Cell Signaling Technology) according
to the protocol. Cells were harvested and cross-linked with 1% (v/v) formaldehyde
for 10 min at RT. Then nuclei were isolated and chromatin was digested into
fragments of 150–900 bp by micrococcalnuclease for 20 min at 37 °C, followed by
ultrasonic disruption of the nuclear membrane using Sonics Vibra-Cell™
(80% amplitude, seven sets of 20 s pulses). The sonicated nuclear fractions were
divided for input control and for overnight incubated at 4 °C with 5 mg of either
anti-p65 Ab or the negative control IgG. After incubation with 30 μl of ChIP
grade protein G-agarose beads for 2 h at 4 °C, the Ab-protein-DNA complexes
were then eluted from the beads and digested by Proteinase K (40 mg) for 2 h
at 65 °C, followed by purification of the DNA. Finally, genomic DNA recovered
from the ChIP assays were qPCR amplified with primers. The primers used for
detection of the p65-binding elements of the miR-31 promoter sequence were as
follows respectively: p65-binding site 1-forward: 5′-GCCATGCTTCTGTG-
TAACCT-3′; p65 binding site 1-reverse: 5′-TCCTCACCTGTTATGCTTGTG-3′;
p65 binding site 2-forward: 5′-GCAGTTCAAAGGGCAGTTCA-3′. p65 binding
site 2-reverse: 5′-TGTGAGAACATCCCTGCACA-3′. The specificity of each
primer set was verified by analyzing the dissociation curve of each gene-specific
PCR product.

BRCA subtype analysis. For BRCA subtype analysis, mRNA expression levels
from RNA-Seq on TCGA BRCA tumor samples were analyzed. Expression values
were obtained by trimmed mean of M-values (TMM) normalization of read counts
in genes by edgeR67. BRCA subtype was obtained by combining the classifications
of PAM5068 and hierarchical clustering of BRCA Expression values. We used the
PAM50 classifier and its associated TCGA69 training cohort by pamr70 and then
predicted subtype. Hierarchical clustering was analyzed with Pearson’s correlation
and average linkage.

CLIP-qPCR assay. CLIP-qPCR assay performed as previously described with
modification. Cells were treated with scramble RNA or miR-31 mimics, and then
harvested after irradiated at 400 mJ/cm2 for twice, then resuspended with PXL
buffer including RNAsin (Promega) and RQ1 DNAse(Promega), 15,000 r.p.m. for
30 min, remaining supernatant. Protein A Dynabeads (Dynal, 100.02, Thermo
Fisher, Fremont, CA) and goat anti-rabbit IgG (Jackson ImmunoResearch, West
Grove, PA) or Ago2 antibody incubate for 4 h at 4 °C with rotation. The super-
natant was added to the Beads for 2–4 h at 4 °C. Beads were washed twice and

digested with Proteinase K (4 mg/ml) after 20 min at 37 4 °C, RNA was extracted
from beads using Trizol Reagent (invitrogen) and then quantified with qRT-PCR.

Xenograft assay. 5 × 105 (n= 7 mice each), 1 × 103 (n= 6 mice each), 1 × 102

(n= 6 mice each) PyVT and PyVT/KO primary breast cancer cells were injected
into the fourth mammary fat pad of female NOD-SCID mice (6–8 weeks of age).
Animals were sacrificed and analyzed 8 weeks after injection. 4T1 mouse mam-
mary breast cancer cells were treated with miR-31 inhibitor and scramble RNA
(NC), then 5 × 104 inhibitor- and NC-treated cells were injected into the fourth
mammary fat pad of female BALB/C mice (6–8 weeks of age). Animals were
sacrificed and analyzed 4 weeks after injection. The mice were randomly divided
into different groups before xenografting.

Statistic analysis. All analyses were performed in triplicate or greater. Two-tailed
unpaired student’s t-test was used for statistical analysis when a pair of conditions
was compared. Asterisks denote statistical significance (*P< 0.05; **P< 0.01;
***P< 0.001). The data are reported as mean ± S.D., unless mean± S.E.M. are
specifically stated in figure legends. Survival curves were estimated by the
Kaplan–Meier method and compared using the Wilcoxon test.

Data availability. The TCGA data referenced during the study are available in a
public repository from the TCGA research website (https://cancergenome.nih.gov/).
All other data are available within the Article and its Supplementary Files, or
available from the authors upon request.
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