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Bayesian Optimization via Barrier Functions

Tony Pourmohamad
Genentech, Inc.

and
Herbert K. H. Lee

Department of Statistics,
University of California, Santa Cruz

Abstract

Hybrid optimization methods that combine statistical modeling with mathemati-
cal programming have become a popular solution for Bayesian optimization because
they can better leverage both the efficient local search properties of the numerical
method and the global search properties of the statistical model. These methods
seek to create a sequential design strategy for efficiently optimizing expensive black-
box functions when gradient information is not readily available. In this article,
we propose a novel Bayesian optimization strategy that combines response surface
modeling with barrier methods to efficiently solve expensive constrained optimization
problems in computer modeling. At the heart of all Bayesian optimization algorithms
is an acquisition function for effectively guiding the search. Our hybrid algorithm is
guided by a novel acquisition function that tries to decrease the objective function
as much as possible while simultaneously trying to ensure that the boundary of the
constraint space is never crossed. Illustrations highlighting the success of our method
are provided, including a real-world computer model optimization experiment from
hydrology. Supplementary materials for this article are available online.

Keywords: Black-box function, expensive computer experiments, Gaussian process
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1 Introduction

Constrained optimization problems are pervasive in scientific and industrial endeavors. In

many engineering applications, physical systems of interest are often represented as black-

box functions, and these black-box functions can be difficult to optimize because their

outputs may be complex, multi-modal, and difficult to understand. The problem becomes

even more challenging when the black-box functions are computationally expensive to eval-

uate and no gradient information is available, as well as when the constraint boundaries

are not known in advance and are nonlinear. Bayesian optimization (BO) has emerged as

a powerful tool for solving global optimization problems of expensive black-box functions

(Jones et al., 1998). Having origins in the work of Mockus et al. (1978), BO is an efficient

sequential design strategy for optimizing black-box functions, in as few steps as possible,

that does not require gradient information (Brochu et al., 2010). The success of BO has

been heavily tied to the use of acquisition functions for guiding the search (Taddy et al.,

2009; Snoek et al., 2012; Lindberg and Lee, 2015; Eriksson et al., 2019). An appropri-

ate acquisition function should accurately encode the beliefs about which is the best next

input to evaluate, while also striking a balance between exploration (global search) and

exploitation (local search). It is due to these reasons that we develop a novel BO acqui-

sition function that is capable of reliably guiding the search algorithm, with few function

evaluations, to the global solution of a black-box constrained optimization problem. When

the black-box function is expensive to evaluate, it is particularly important to be able to

use as few function evaluations as possible.

In this article, we seek to solve problems of the form

min
x
{f(x) : c(x) ≤ 0, x ∈ X} (1)

where X ⊂ Rd is a known, bounded region such that f : X → R denotes a scalar-valued

objective function and c : X → Rm denotes a vector of m constraint functions. Both the

objective, f , and constraint functions, c, are assumed to be expensive black-box functions,

and we focus on the derivative-free situation where no information about the gradients of

the objective and constraint functions is available (Conn et al., 2009). We also define the

feasible set of points, F ⊂ X , to be the collection of inputs x that satisfy the constraint
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functions c. Lastly, we make the assumption that a solution to (1) exists.

Provably convergent methods for solving derivative-free constrained optimization prob-

lems are plentiful in the mathematical programming literature (Conn et al., 2009), yet

their search is typically focused locally and so only local solutions can be guaranteed. On

the other hand, statistical models offer the opportunity to search the space globally for

solutions to constrained optimization problems, but suffer from a lack of convergence guar-

antees, speed as compared to local search algorithms, and typically heuristics are needed

to handle constraints. However, although not coined as BO, many authors have realized

that the marriage of mathematical programming with statistical modeling could serve to

better leverage both the efficient local search properties of the numerical method and the

global search properties of the statistical model. For example, Gramacy et al. (2016) took a

hybrid optimization approach and combined statistical surrogate modeling with a penalty

function approach to derive an acquisition function based on augmented Lagrangians. Like-

wise, Pourmohamad and Lee (2020) combined statistical surrogate modeling with a filter

method in order to derive an acquisition function that chose inputs that maximized the

probability that a point would be acceptable to the filter and thus reduce the objective

function. In this article, we take a similar position and derive a novel acquisition function

based on the hybridization of Gaussian process surrogate modeling (Santner et al., 2003)

and barrier methods (Nocedal and Wright, 2006), that tries to decrease the objective func-

tion as much as possible while also simultaneously trying to ensure that the constraint is

satisfied. Our new BO approach is competitive with the state-of-the-art current methods.

The remainder of this article is organized as follows. In Section 2, we introduce the

three major components that we hybridize for our BO algorithm. Section 3 explains the

derivation of our novel acquisition function. Two versions of the acquisition function are

proposed, and we highlight the rationale behind each. Section 4 demonstrates the efficiency

of our new BO algorithm by solving two synthetic test problems and a real-world hydrology

computer experiment. Lastly, Section 5 finishes with some discussion.

3



2 Hybrid Optimization

Section 2 introduces the three components of our algorithm that we hybridize in order to

solve problems of the form (1).

2.1 Gaussian Process Surrogate Modeling

Popular in the modeling of computer experiments, surrogate models are efficient statistical

models that serve as a fast approximation to the true computer model or black-box function

(Santner et al., 2003; Kleijnen, 2015; Gramacy, 2020). Due to their analytical tractability,

the canonical choice for modeling of computer experiments has been the Gaussian process

(GP). GPs are distributions over functions such that the joint distribution at any finite set

of points is a multivariate Gaussian distribution, and are defined by a mean function and

a covariance function. GPs have a number of desirable properties such as being flexible (a

form of nonparametric regression), being able to closely approximate most functions, and

often being much cheaper/faster to evaluate than the actual computer model. More impor-

tantly, using GPs for surrogate modeling allows for uncertainty quantification of computer

models (or black-box functions) at untried (or unobserved) inputs. Let {x(i), y(i)}ni=1 denote

the input-output pairs of data after n evaluations of a computer model. The GP, Y (x),

serves as a flexible regression model for the data {x(i), y(i)}ni=1 and its predictive equations

arise as a simple application of conditioning for multivariate normal joint distributions, i.e.,

the predictive distribution Y (x)|{x(i), y(i)}ni=1 at a new input x follows another Gaussian

process Y (x)|{x(i), y(i)}ni=1 ∼ N(µ(x), σ2(x)).

2.2 Barrier Methods

Barrier methods (Nocedal and Wright, 2006), also known as interior point methods, are a

natural strategy for solving problems of the form (1) as they try to decrease the objective

function as much as possible while ensuring that the boundary of the feasible set F is never

crossed. In order to ensure that the boundary is never crossed, barrier methods replace the

inequality constraints with an extra term in the objective function that can be viewed as
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a penalty for approaching the boundary. And so, we can rewrite (1) as

min
x

{
f(x) +

m∑
i=1

B{ci(x)≤0}(x)

}
(2)

where B{ci(x)≤0}(x) = 0 if ci(x) ≤ 0 and ∞ otherwise. In general, this reformulation is

not particularly useful as it introduces an abrupt discontinuity when ci(x) > 0. However,

we can replace the discontinuous function in (2) with a continuous approximation, φ(x),

that is ∞ when ci(x) > 0 but is finite for ci(x) ≤ 0 and approaches ∞ as ci(x) approaches

zero. The continuous approximation φ(x), known as the barrier function, thereby creates

a “barrier” to exiting the feasible region. A typical choice of barrier function is the log

barrier function which is defined as

φ(x) = −
(

1

γ

) m∑
i=1

log(−ci(x)) (3)

for γ > 0. Using the log barrier function, we can approximate the problem in (2) as

min
x
{B(x; γ)} = min

x

{
f(x)−

(
1

γ

) m∑
i=1

log(−ci(x))

}
. (4)

Here we note that for ci(x) < 0, φ(x) is a smooth approximation of
∑m

i=1 B{ci(x)≤0}(x), and

that this approximation improves as γ goes to ∞.

2.3 Bayesian Optimization

A method that dates back to Mockus et al. (1978), Bayesian optimization (BO) is a se-

quential design strategy for efficiently optimizing black-box functions, in few steps, that

does not require gradient information (Brochu et al., 2010). More specifically, BO seeks to

solve the minimization problem

x∗ ∈ argmin
x∈X

f(x). (5)

The minimization problem in (5) is solved by iteratively developing a statistical surrogate

model of the unknown objective function f , and at each step of this iterative process, using

predictions from the statistical surrogate model to maximize an acquisition (or utility)

function, a(x), that measures how promising each location in the input space, x ∈ X , is if
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it were to be the next chosen point to evaluate. Thus, the role of the acquisition function,

a(x), is to guide the search for the solution to (5). We introduce new acquisition functions

in Section 3, and review some existing examples here, as different choices of acquisition

functions should lead to different measures of belief of the search algorithm when searching

for the best next input to evaluate. Bayesian optimization essentially embeds a cheaper

optimization problem inside of a difficult and expensive outer optimization problem, and so

a good acquisition function should be easy to evaluate and quick to maximize with respect

to the original outer optimization problem. GPs have been the typical choice of statistical

surrogate model for the objective function f in BO, and this is due to their flexibility,

well-calibrated uncertainty, and analytic properties (Gramacy, 2020).

Lastly, although the general definition of BO is that of an unconstrained optimization

problem, extensions to the constrained optimization case are straightforward and many

(Gardner et al., 2014; Gramacy et al., 2016; Letham et al., 2019).

2.3.1 Expected Improvement

Originally introduced in the computer modeling literature (Jones et al., 1998), the expected

improvement (EI) acquisition function has become one of the most famous, and proba-

bly most used, acquisition functions in BO. Realizing the importance of the exploration-

exploitation tradeoff, Jones et al. (1998) defined the improvement statistic at a proposed

input x to be I(x) = maxx{0, fn
min − Y (x)} where, after n runs of the computer model,

fn
min = min{f(x1), ..., f(xn)} is the current minimum value observed amongst all feasible

points. Since the proposed input x has not yet been observed, Y (x) is unknown and can be

regarded as a random variable. Likewise, I(x) can be regarded as a random variable and so

new candidate inputs, x∗, can be selected by maximizing the expected improvement, i.e.,

x∗ ∈ arg max
x∈X

E{I(x)}. (6)

If we treat Y (x) as coming from a GP then, conditional on a particular parameterization

of the GP, the expected improvement acquisition function is available in closed form as

E(I(x)) = (fn
min − µn(x))Φ

(
fn
min − µn(x)

σn(x)

)
+ σn(x)φ

(
fn
min − µn(x)

σn(x)

)
(7)
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where µn(x) and σn(x) are the mean and standard deviation of the predictive distribution

of Y (x), and Φ(·) and φ(·) are the standard normal cdf and pdf respectively. The equation

in (7) provides a combined measure of how promising a candidate point is, that trades off

between local search (µ(x) under fmin) and global search (σ(x)).

Extending EI to the constrained optimization case, Schonlau et al. (1998) defined the

constrained expected improvement (CEI) as

CEI(x) = E{I(x)} × Pr(c(x) ≤ 0) (8)

where Pr(c(x) ≤ 0) is the probability of satisfying the joint constraints. Here, I(x) uses

an fn
min defined over the region where the constraint functions are satisfied. Again, new

candidate inputs, x∗, can now be selected by maximizing the expected feasible improvement,

i.e.,

x∗ ∈ arg max
x∈X

E{I(x)} × Pr(c(x) ≤ 0). (9)

Here the formula in (7) still holds, however, we are now weighting EI by the probability

that x is feasible.

2.3.2 Augmented Lagrangian

Gramacy et al. (2016) introduced augmented Lagrangian (AL) methods as a means of

solving constrained BO problems. Similar to barrier methods, the AL method (see, e.g.,

Nocedal and Wright (2006)) takes the constrained optimization problem in (1) and turns

it into an unconstrained optimization problem by means of a penalty parameter, i.e.,

LA(x;λ, ρ) = f(x) + λT c(x) +
1

2ρ

m∑
j=1

max(0, cj(x))2. (10)

Here, ρ > 0 is a penalty parameter and λ ∈ Rm
+ serves the role of the Lagrange multiplier.

Solving the new unconstrained problem in (10) proceeds iteratively where, given the current

values of ρk−1 and λk−1, at iteration k one approximately solves

x∗ ∈ argmin
x∈X

LA(x;λk−1, ρk−1). (11)
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One of the ways that Gramacy et al. (2016) extended AL methods to the BO framework

was by modeling the augmented Lagrangian in (10) using independent GP surrogates Yf (x)

and Yc(x) = (Yc1(x), ..., Ycm(x)) for the objective and constraint functions, i.e.,

Y (x) = Yf (x) + λTYc(x) +
1

2ρ

m∑
j=1

max(0, Ycj(x))2. (12)

Solving for x∗ can now proceed, say, by selecting the point that minimizes the predictive

mean surface E(Y (x)). For other strategies within the AL framework for solving for x∗ via

BO, please refer to Gramacy et al. (2016) and Picheny et al. (2016).

3 Novel Acquisition Functions

As discussed previously, the heart of all Bayesian optimization algorithms is an acquisition

function, a(x), for effectively guiding the search. It is also important that the acquisition

function should balance exploration — improving the model in the less explored parts of

the search space, and exploitation — favoring parts the model predicts as promising. In

what follows, we explain the derivation of our novel acquisition function, a hybridization of

the methods in Section 2, and explore two different variations of the acquisition function.

3.1 Expected Barrier Method

One of the simplest approaches to hybridizing mathematical programming with statistical

modeling is to build a surrogate model based on the outputs of the mathematical program,

i.e., modeling y(i) = B(x(i); γ) via f (i) and c(i) by fitting a GP surrogate model, Y (x),

to the n pairs {x(i), y(i)}ni=1. However, as pointed out in Gramacy et al. (2016), models

such as these will likely require nonstationary GP surrogate models in order to do a good

job at model fitting and prediction which ultimately will affect how well we are able to

maximize our acquisition function since this function will critically rely on the GP sur-

rogate predictions. Instead, we follow the recommendation of Gramacy et al. (2016) and

model the components of the barrier method, i.e. f and c, separately using independent

surrogate models. We note that the use of correlated surrogate models for f and c may

yield improvements (Pourmohamad and Lee, 2016), although we found that using inde-
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pendent GP surrogate models worked about as well in practice on this problem and were

faster and easier to implement. Working with independent surrogate models Yf (x) and

Yc(x) = (Yc1(x), ..., Ycm(x)) for the objective and constraint functions, respectively, we can

model y(i) = B(x(i); γ) with the following surrogate model

Y (x) = Yf (x)−
(

1

γ

) m∑
i=1

log(−Yci(x)). (13)

Optimization can now proceed by searching the predictive mean surface of Y (x). In order

to do so, we look to minimize the expectation of Y (x), i.e.,

min
x

E(Y (x)) = min
x

E

(
Yf (x)−

(
1

γ

) m∑
i=1

log(−Yci(x))

)

= min
x

E (Yf (x))−
(

1

γ

) m∑
i=1

E (log(−Yci(x)))

≈ min
x

E (Yf (x))−
(

1

γ

) m∑
i=1

(
log(E(−Yci(x)))− V(−Yci(x))

2E(−Yci(x))2

)
= min

x
µf −

(
1

γ

) m∑
i=1

(
log(−µci) +

σ2
ci

2µ2
ci

)
(14)

The derivation of the expectation of the log operator, in the third line of (14), is taken from

Teh et al. (2007) and is a direct consequence of taking a second order Taylor expansion

about E(−Yci(x)) (see Appendix A for derivation). Now, it is clear to see that minimizing

the predictive mean in (14) can be viewed as maximizing the following acquisition function:

a(x) = −µf +

(
1

γ

) m∑
i=1

(
log(−µci) +

σ2
ci

2µ2
ci

)
. (15)

Following the logic in Section 2.3, we can now sequentially optimize this novel acquisition

function in order to guide our search for the solution to (1). As straight forward as this

may seem, careful inspection of the acquisition function in (15) reveals two non-trivial

challenges that must be addressed before its use. The first challenge is that γ is a free

parameter that, in the context of Bayesian optimization, has no explicit rules in how it

must be set. As we will highlight in the subsequent section, care must be taken when

choosing the value of γ. The second challenge, or rather undesirable characteristic, of our
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acquisition function is that there is no variability associated with the objective function

in it, but only with the constraints, i.e., σ2
ci

. Without a term like σ2
f in (15) to measure

our prediction uncertainty for the objective function, our acquisition function will tend to

favor exploitation, rather than exploration, as it will assume that we are predicting the

objective function at untried inputs exactly correctly. In what follows for the remainder of

Section 3, we explore solutions to these two challenges and further validate these solutions

in Section 4.

3.2 The Role of γ

In the mathematical programming literature (e.g., Nocedal and Wright (2006)), it is com-

mon practice to have the value of γ → ∞ such that, at iteration k + 1 of the barrier

method, γk+1 > γk. In effect, this leads to steadily decreasing the penalty for approaching

the boundary of the feasible set throughout the optimization. Conceptually, this means

that the optimization algorithm starts with a large buffer on the edge of the feasible set,

that in effect smooths out the feasible set. Once the algorithm settles to a fixed point on

that buffer, the penalty is decreased which in effect decreases the buffer and thus allows

for the algorithm to penetrate deeper towards the edge of the feasible set.

Nocedal and Wright (2006) give heuristics for the choice of schedule for γ where starting

with a large penalty and then decreasing it helps with handling the nonlinearity in the

penalized function and avoiding getting stuck in a local optimum of the constraint. In a

similar fashion, we recommend an approach that reduces the number of arbitrary decisions

the user needs to make, and so we allow for the current evaluated data, {x(i), f (i), c(i)}ni=1,

to be used to choose the appropriate value of γ dynamically. To this end, we propose

allowing γ to be defined as γ = 1/σ2
f , where σ2

f is the predictive variance associated with

the surrogate model for the objective function f . Setting γ this way reflects the fact that

we think that the exploration of the objective function’s surface should be based on our

level of certainty about it. Here, σ2
f will be large in areas of the space that do not have

many data points, and small in areas of the space that already have many data points.

Thus, in a local region of the space, as we accumulate more data points in that area, the

barrier penalty, 1/γ, will naturally be decreased, and we will be able to push closer to the
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boundary, just as recommend by Nocedal and Wright (2006).

Under the choice of γ = 1/σ2
f , we obtain the updated acquisition function

a(x) = −µf + σ2
f

m∑
i=1

(
log(−µci) +

σ2
ci

2µ2
ci

)
. (16)

We refer to this acquisition function as “One Over Sigma Squared” (OOSS). The OOSS

acquisition function incorporates the uncertainty in both the objective and constraint func-

tions, and is able to adaptively set the penalty according to the local number of data points.

3.3 Expected Improvement Approach

Although the EI acquisition function was originally developed for the case of unconstrained

optimization, we can exploit its natural exploration-exploitation characteristics by inserting

the improvement function into the minimization problem in (14). Moreover, the use of

the improvement function will also allow us to naturally incorporate our uncertainty in

the prediction of the objective function into our acquisition function via the uncertainty

term σf . Replacing the objective function’s surrogate model, Yf (x), with the improvement

function −I(x) in (13), yields

min
x

E

(
−I(x)−

(
1

γ

) m∑
i=1

log(−ci(x))

)
= min

x
−E(I(x))−

(
1

γ

) m∑
i=1

(
log(−µci) +

σ2
ci

2µ2
ci

)
.

(17)

Note that since we are minimizing in (14) we will need to use the negative improvement

function. The minimization problem in (17) leads to the following acquisition function

a(x) = (fn
min − µf )Φ

(
fn
min − µf

σf

)
+ σfφ

(
fn
min − µf

σf

)
+

(
1

γ

) m∑
i=1

(
log(−µci) +

σ2
ci

2µ2
ci

)
.

(18)

Similar to the OOSS acquisition function, we allow for γ to be chosen adaptively by setting

γ = 1/σ2
f in (18). For the remainder of the article we refer to this acquisition function as

the EI-OOSS acquisition function.
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4 Illustrative Examples

More and more test problems and comparators have become available in the literature as

Bayesian optimization becomes a more relevant tool for solving constrained optimization

problems. To demonstrate the effectiveness of our novel acquisition function, we solve

two constrained optimization problems from the literature (Gramacy et al., 2016; Pourmo-

hamad and Lee, 2020), as well as a constrained optimization problem with no Bayesian op-

timization comparators. Two of the three problems are synthetic problems where the exact

solutions to the problems are known, and the third problem is motivated by a real-world

hydrology computer experiment that requires running an expensive black-box computer

model. We solved each of the three problems using the two variations of the proposed

acquisition function (Section 3.2 and 3.3) in order to compare and contrast them, and also

included both the augmented Lagrangian (AL) approach (Gramacy et al., 2016) and the

constrained expected improvement (CEI) approach (Schonlau et al., 1998) as comparators.

Where available, we included additional comparator results from the literature. Lastly,

there are many tools and software packages available for fitting GPs to data; for all of

our examples we used the R package laGP (Gramacy, 2016) when fitting our GP surrogate

models to the objective and constraint functions.

4.1 Modified Townsend Problem

The modified Townsend problem (Townsend, 2014) is a constrained optimization problem

that is not new to the mathematical community, but to the best of our knowledge has not

been solved from a Bayesian optimization point-of-view. The modified Townsend problem

is defined as follows:

min f(x1, x2) = −(cos((x1 − 0.1)x2))
2 − x1 sin(3x1 + x2)

s.t. c(x1, x2) = x21 + x22 −
(

2 cos(t)− 1

2
cos(2t)− 1

4
cos(3t)− 1

8
cos(4t)

)2

− (2 sin(t))2

(19)

where t = arctan(x1/x2), −2.25 ≤ x1 ≤ 2.5, and −2.5 ≤ x2 ≤ 1.75. The optimal solution

to the modified Townsend problem is f(x1, x2) = −2.0239884, which occurs at (x1, x2) =

(2.0052938, 1.1944509). The modified Townsend problem is a low dimensional problem
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having only two inputs, x1 and x2, however, solving the problem is nontrivial as both the

objective and constraint functions are highly nonlinear, and the solution to the problem is

known to lie along the boundary of the feasible set F (Figure 1). The problem is further

complicated as there are several local minima within the feasible set which can trap local

or greedy search algorithms.

Figure 1: A view of the the objective function of the modified Townsend problem subject to

the constraint function. The problem contains several local minima, and the global minimum is

known to lie along the boundary of the feasible space.

To solve the modified Townsend problem, we start with an initial random sample of 20

inputs from a Latin hypercube design (LHD) (McKay et al., 1979) over the input space

and sequentially choose 100 more inputs by following the BO paradigm and using the two

variations of acquisitions functions found in Section 3 (i.e., OOSS and EI-OOSS), as well

as the AL and CEI approaches for comparison. For each of the acquisition functions, we

conduct 30 repetitions of a Monte Carlo experiment in order to understand the distribution

and robustness of our solutions for the modified Townsend problem. Note that each Monte

Carlo experiment is initialized using a LHD of size 20. These initial designs are kept the

same across each acquisition function.
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n 45 70 120

95%

OOSS -1.352 -1.831 -1.963

EI-OOSS -1.352 -1.670 -1.933

AL -1.372 -1.592 -1.930

CEI -1.563 -1.635 -1.747

average

OOSS -1.620 -1.942 -2.003

EI-OOSS -1.611 -1.875 -1.986

AL -1.638 -1.733 -1.983

CEI -1.664 -1.765 - 1.920

5%

OOSS -1.942 -2.018 -2.021

EI-OOSS -1.942 -2.002 -2.014

AL -1.961 -1.964 -2.011

CEI -1.897 -2.002 -2.002

Figure 2: The results of running 30 Monte Carlo repetitions with random starting inputs. The

plot and table show the average best valid objective function values found over 120 black-box

iterations. 5th and 95th percentiles are also included to better understand the spread of the

distribution on the Monte Carlo repetitions. Here the horizontal dashed line corresponds to the

global solution (i.e., minimum) of the optimization problem.

On average, both the OOSS and EI-OOSS acquisition functions were able to find the

global solution of the problem over the additional 100 updates (Figure 2), with OOSS being

much better overall at decreasing the objective function than EI-OOSS, AL and CEI. AL

and CEI seem to do a better job at minimizing the problem at the early stages as compared

to OOSS and EI-OOSS, however, the OOSS acquisition function does steadily decrease the

objective function in the search for the global minimum and, at around 50 iterations, has

caught up to all of the BO algorithms and in the end has consistently found the global

solution of the problem. Likewise, EI-OOSS and AL seem to converge to the global solution
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of the problem on average as well but at a slightly slower rate than the OOSS acquisition

function. The same cannot be said for the CEI as, on average, the BO algorithm under this

acquisition function has not yet converged to the global solution over the 120 iterations.

Figure 3: A view of the performance of the BO algorithm, using the four different acquisition

functions, for a single run of the Monte Carlo experiment.

To better understand the behavior of the different acquisition functions, we take a look

at a single run of the Monte Carlo experiment for each of the four different acquisition

functions (Figure 3). Given the same initial LHD design to the four acquisition functions,

we see very different behavior of the BO algorithms. We hypothesize that CEI did not

fare as well as the other acquisition functions due to the fact that the algorithm tended

to explore infeasible solutions quite often. Irrespective of feasibility, CEI favored exploring

areas of the objective surface that were very low and avoided areas that were towards

maximums. Likewise, the AL algorithm also explored the infeasible space but at a much

lower rate as compared with CEI. However, within the feasible region the AL algorithm

tended to explore the two local minima more often than the global minimum which may
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explain the slower convergence on average to the global solution. On the other hand, both

the EI-OOSS and OOSS acquisition functions spent the majority of their time exploring

mainly the feasible space and the boundary of the feasible space, and do not explore far

beyond the boundary, which allows more search efficiency. We note that while the original

barrier methods were designed to never cross the feasibility boundary, our hybrid approach

does explore along the boundary, sometimes crossing it. This behavior occurs because we

are estimating the location of the boundary, and the statistical model learns the boundary

by sometimes going just beyond it. Interestingly, in this one Monte Carlo simulation,

OOSS tended to spend a brief amount of time searching one of the local minimums before

jumping to the boundary where the global minimum was found. The behavior of the OOSS

acquisition function occurs because early in the optimization, uncertainty is high, and so

the barrier will be thick. In the Townsend problem, the global minimum lies along the

feasible boundary at a steep edge and so a thick barrier will not allow any of the space

near this solution to be reached. It is only in later iterations that the uncertainty decreases

(and thus the barrier thickness decreases) enough that the optimization is able to start

pushing against that part of the barrier and to reach the global solution. On the other

hand, the effect of the improvement function in the EI-OOSS acquisition seemed to lead to

an algorithm that explored the feasible space in a more evenly distributed (space-filling)

fashion.

Lastly, we calculated the the average percent (over the 30 Monte Carlo runs) of infea-

sible points selected after initialization for each of the acquisition functions. The average

percent of infeasible points selected was 20.7%, 30.0%, 29.9%, and 50.8% for the OOSS,

EI-OOSS, AL, and CEI acquisition functions, respectively. Thus, OOSS resulted in the

fewest infeasible evaluations of all of the algorithms.

4.2 Gramacy et al. 2016 Problem

Originally introduced in Gramacy et al. (2016), the optimization problem is a toy exam-

ple with known solution and known comparators (Gramacy et al., 2016; Picheny et al.,

2016). The problem contains a simple known linear function, and two unknown nonlinear
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constraints. More formally, we state the problem as follows:

min f(x1, x2) = x1 + x2

s.t. c1(x1, x2) =
3

2
− x1 − 2x2 −

1

2
sin(2π(x21 − 2x2)),

c2(x1, x2) = x21 + x22 −
3

2

(20)

where the optimal solution is f(x1, x2) = 0.5998, which occurs along the constraint bound-

ary at (x1, x2) = (0.1954, 0.4044). We stress the fact that the objective function is a known

function because Gramacy et al. (2016) treats the objective function as known rather than

a black-box function. For sake of comparison we could also take this approach, however,

in this example we choose to treat the objective function as a black-box function merely

for illustration, as we postulate that having to model and quantify the uncertainty for the

objective function (even as simple of a function as it is) should put our BO algorithm

at a slight disadvantage as opposed to treating it as known. Mimicking the sample size

conditions put forth in Gramacy et al. (2016), we start with an initial LHD of size 10 from

the input space, and then sequentially select an additional 100 inputs to evaluate, and we

repeat this Monte Carlo experiment a total of 100 times.

As seen in Figure 4, on average, all five algorithms converge to the global solution by

around 60 iterations. AL tended to be slower at decreasing the best objective function

values at the beginning, but then dramatically approached the global solution much faster

than any other algorithm. On the other hand, EI-OOSS and OOSS were fast to decrease

the objective function but then slowed down as compared to AL. At around 25 iterations,

on average, OOSS and EI-OOSS seemed to converge to the global solution at the same

rate as CEI. Again, the OOSS acquisition function selected, on average, the fewest number

of infeasible points at 12.15%, followed by EI-OOSS, AL, and CEI at 30.7%, 63.65%, and

81.5%, respectively.

4.3 Pump-and-treat Hydrology Problem

A real-world hydrology computer experiment, the pump-and-treat hydrology problem (Ma-

tott et al., 2011) is based on a groundwater contamination scenario stemming from the

Lockwood Solvent Groundwater Plume Site located near Billings, Montana. Years of in-
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n 25 50 100

95%

OOSS 0.803 0.755 0.606

EI-OOSS 0.778 0.613 0.605

AL 1.023 0.601 0.600

CEI 0.831 0.624 0.608

average

OOSS 0.660 0.611 0.602

EI-OOSS 0.655 0.604 0.602

AL 0.684 0.600 0.599

CEI 0.671 0.609 0.603

5%

OOSS 0.604 0.601 0.600

EI-OOSS 0.602 0.600 0.600

AL 0.604 0.600 0.599

CEI 0.606 0.601 0.600

Figure 4: The results of running 100 Monte Carlo repetitions with random starting inputs.

The plot and table show the average best valid objective function values found over 100 black-

box iterations. 5th and 95th percentiles are also included to better understand the spread of the

distribution on the Monte Carlo repetitions. Here the horizontal dashed line corresponds to the

global solution (i.e., minimum) of the optimization problem.

dustrial practices have led to the formation of two plumes of chlorinated contaminants in the

area that are slowly, and dangerously, migrating towards the Yellowstone river. Preventing

the two plumes from reaching the Yellowstone river is of utmost importance to ensure the

safety of the local water supplies. In order to stop the migration of the two plumes, a

pump-and-treat remediation is proposed. Six pump-and-treat wells will be placed at the

site of the plumes and these wells will then pump out the contaminated water from the

soil, purify it, and then return the clean treated water to the soil. To better understand

the dynamics of the physical system, and to come up with an optimal strategy, a computer
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simulator was constructed to model the physical process. Here the inputs to the computer

simulator are the pumping rates that can be set for the six pump-and-treat wells, and the

output of the computer simulator is the cost associated with running the pump-and-treat

wells and whether or not the containment of the two contaminated plumes was successful.

Thus, the goal of the pump-and-treat hydrology problem is to minimize the cost of running

the pump-and-treat wells while ensuring that the two contaminated plumes are contained.

Casting the pump-and-treat hydrology problem in the framework of a constrained op-

timization, we formulate the problem as follows:

min
x
{f(x) =

6∑
j=1

xj : c1(x) ≤ 0, c2(x) ≤ 0, x ∈ [0, 20 · 104]6}. (21)

Here the objective function, f , is (known) linear and describes the cost associated with

running the pump-and-treat wells. The two plumes of contaminants are contained when

the two constraints, c1 and c2, are satisfied. The inputs x1, ..., x6 represent the six pumping

rates that can be set for the six pump-and-treat wells within the computer simulator. The

computer simulator is essentially a black-box function since, for any input configuration

evaluated by the simulator, the only information that is returned is that of the objective

and constraint values. Likewise, each input evaluation is an expensive one, and so the time

it takes to run the computer simulator is nontrivial.

The pump-and-treat hydrology problem was solved (amongst other older poorer solu-

tions) in Gramacy et al. (2016) using AL and in Pourmohamad and Lee (2020) using the

statistical filter method (SFM), so we benchmark the results of our BO algorithm against

theirs. Once again, we try to mimic the conditions put forth in those papers as closely as

we can so that as fair of a comparison as possible can be made. Mimicking Gramacy et al.

(2016), we start with an initial LHD of size 10 from the input space, and then sequen-

tially select an additional 500 inputs to evaluate. Likewise, we repeat this Monte Carlo

experiment a total of 30 times. Results are shown in Figure 5.

The BO algorithm seemed to perform best under the OOSS acquisition function, which

was the only acquisition function able to challenge the SFM, dominating it through several

stretches of iterations, and arriving at nearly the same best overall average value found.

Overall, the OOSS and EI-OOSS acquisition functions were successful at minimizing the

objective function and were highly competitive compared to AL, CEI and the SFM. All of
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EI-OOSS 35254 30824 25994

SFM 34763 30220 24742

AL 37040 29266 26050

CEI 34347 29553 25937

average

OOSS 28297 25305 23892

EI-OOSS 29738 27044 24804

SFM 28974 25604 23738

AL 31902 26912 25186

CEI 30814 27441 25246

5%

OOSS 24847 23881 23437

EI-OOSS 25996 24222 23717

SFM 27647 24464 23236

AL 26966 25191 24211

CEI 27692 26189 24512

Figure 5: The results of running 30 Monte Carlo repetitions with random starting inputs. The

plot and table show the average best valid objective function values found over 500 black-box

iterations. 5th and 95th percentiles are also included to better understand the spread of the

distribution on the Monte Carlo repetitions.

the algorithms selected, on average, a very high number of infeasible points after initializa-

tion. Here, the OOSS acquisition function still performed the best with 86.25% of points

being infeasible. The EI-OOSS, AL, and CEI acquisition followed with 87.4%, 94.8%, and

95.4%, respectively.
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5 Discussion

Constrained optimization is a challenging task when the functions of interest arise from

expensive black-box systems. BO has been shown, many times over, to be an effective

solution to problems of this nature. The success of BO algorithms are clearly tied to the

acquisition function they use for effectively guiding the search. The novelty of the work

presented in this article is in the development of a new and efficient acquisition function

for BO of expensive black-box constrained optimizations problems. Deriving the novel

acquisition function from the successful hybridization of statistical surrogate modeling with

barrier methods leads to a powerful acquisition function that is able to leverage both the

efficient local search properties of the numerical method and the global search properties

of the statistical model. We demonstrated the success of our new BO algorithm on a suite

of test problems and a real-world computer experiment.

Our approach does require a choice of acquisition function for which we have provided

two good candidate choices. Our OOSS acquisition function performed well in comparisons,

and appeared to be the slightly better and more robust option. In some cases, careful tuning

of γ in the EI-OOSS acquisition function may be capable of achieving slightly better results,

but that does require rules for tuning, for which heuristical advice must be determined.

We speculate that barrier methods may perform well when the unconstrained objective

function is complex near and beyond the boundary, as the barrier methods are more focused

on keeping the search within the feasible region, while methods with less severe penalties

may get more distracted exploring locally optimal values outside the feasible region. Indeed,

with a sufficient penalty term, barrier methods will never evaluate a point that is infeasible

in expectation. Our experiments have demonstrated that our approach evaluates fewer

infeasible points than the comparators. This property may be particularly useful if a “safe

BO” method is needed, such as when infeasible evaluations risk damaging equipment.

6 Supplementary Materials

Modified Townsend Code: R code for reproducing the Bayesian optimization algorithm

used to solve the modified Townsend problem. (.R file)
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Appendix

A Expectation of the log operator

Let x be a random variable. The expectation of log(x) can be approximated using a second

order Taylor expansion of log(x) around x0 = E(x), and then by taking the expectation of

that Taylor expansion. A second order Taylor expansion around x0 = E(x) yields

log(x) ≈ log(E(x)) +
1

E(x)
× (x− E(x))− 1

2

1

E(x)2
(x− E(x))2. (22)

Taking expectations we obtain

E(log(x)) ≈ E(log(E(x))) +
1

E(x)
× (E(x)− E(x))− 1

2

1

E(x)2
E(x− E(x))2) (23)

= log(E(x))− 1

2

V(x)

E(x)2
(24)
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