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A nonlocal model of dissociative electron attachment and vibrational excitation of NO
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1Department of Applied Science, University of California, Davis, CA 95616
2Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720∗

3Department of Applied Science and Department of Chemistry, University of California, Davis, CA 95616

(Dated: March 17, 2005)

We present the results of a study of elastic scattering and vibrational excitation of NO by electron
impact in the low-energy (0-2 eV) region where the cross sections are dominated by resonance
contributions. The 3Σ−, 1∆ and 1Σ+ NO− resonance lifetimes are taken from our earlier study
[Phys. Rev. A 69, 062711 (2004)], but the resonance energies used here are obtained from new
configuration-interaction studies. Here we employ a more elaborate nonlocal treatment of the nuclear
dynamics, which is found to remedy the principal deficiencies of the local complex potential model
we employed in our earlier study, and gives cross sections in better agreement with the most recent
experiments. We also present cross sections for dissociative electron attachment to NO leading to
ground state products, O−(2P) + N(4S). The calculations show that, while the peak cross sections
starting from NO in its ground vibrational state are very small (∼ 10−20cm2), the cross sections
are extremely sensitive to vibrational excitation of the target and should be readily observable for
target NO molecules excited to ν = 10 and above.

PACS numbers: 34.80.Gs

I. INTRODUCTION

Low-energy electron interactions with nitric oxide are
of interest in a broad range of chemical, physical and at-
mospheric processes. NO is also used as a plasma gas
and plays important functional roles in a variety of phys-
iological systems. Although there have been a number of
experimental studies on the low-energy behavior of the
electron-NO collision cross sections [1–9], relatively little
has been done on the theoretical front [10, 11], partic-
ularly in the energy region below 2 eV, which is dom-
inated by negative ion resonances. Calculations in this
energy range were initiated in our previous study (Zhang
et al. [12]), which presented ab initio determinations of
elastic and vibrational excitation cross sections using the
local complex potential or “boomerang” model, with res-
onance parameters extracted from electronic fixed-nuclei
variational scattering calculations. While those calcula-
tions were successful in capturing the essential features
of the measured cross sections and confirmed the inter-
pretation that the prominent features in the elastic and
vibrational excitation cross sections arise from 3Σ− and
1∆ negative ion states, they also revealed deficiencies in
the local complex potential model, most notably in the
threshold behavior of the cross sections, that arise when
the transiently excited vibrational levels of the anion are
energetically close to the vibrational levels of the neutral
target.

In our previous study [12] we speculated that nonlocal
effects – beyond the boomerang model – would be needed
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Holešovičkách 2, 180 00 Praha 8, Czech Republic

to achieve quantitative agreement with measured cross
sections, particularly for the first peaks in the cross sec-
tions for excitation of higher vibrationally excited states.
New experimental determinations of the cross sections
by Allan [9, 13] have since appeared, which differ near
threshold from the experiments [5, 7, 8] with which we
originally compared. The new measurements do not
show the dramatic suppression of peaks near threshold
that some earlier experiments suggested. These facts
prompted the present study, in which the nuclear dy-
namics problem is treated with a more elaborate nonlo-
cal resonance model that should be better able to treat
the threshold region.

The present study also includes the calculation, using
the same nonlocal model, of dissociative electron attach-
ment (DA) cross sections, from both ground and vibra-
tionally excited target states, that proceed through the
3Σ− anion state and produce ground state fragments.
Near-threshold DA to NO has been studied for several
decades (see Brunt and Kieffer [14], Krishnakumar and
Srivastava [15] and references therein) and, in principle,
can proceed via the following three channels:

e+ NO → O−(2P) + N(4S) (1)

e+ NO → O−(2P) + N∗(2D) (2)

e+ NO → O−(2P) + N∗(2P) (3)

Although several experimental studies have observed
DA associated with channels (2) and (3), detection of DA
channel (1) has been controversial. Orient and Chutjian
[16] claimed to have measured ground state fragments
of reaction channel e + NO → O−(2P) + N(4S), re-
porting it as the most abundant channel in the DA to
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NO. However, several studies performed afterward [17–
20] found no indication of the occurrence of ground-state
fragments in their measurements, consistently reporting
(2) as the major DA channel, with reaction channel (3)
making a smaller contribution. Our calculations show
that, although cross sections that proceed through reac-
tion channel (1) are negligibly small when DA proceeds
from the vibrational ground state of NO, significantly
enhanced cross sections are obtained when the target is
vibrationally excited.

The fixed-nuclei R-dependent energies and widths of
the various negative ion states form the basis for a study
of the nuclear dynamics. Our present study uses the res-
onance widths of Zhang et al. [12], which were in turn
obtained from the results of fixed-nuclei complex Kohn
variational scattering calculations. The calculated cross
sections are found to be extremely sensitive to the rel-
ative positions of the neutral and negative ion states.
We have therefore carried out large-scale configuration
interaction (CI) calculations in an attempt to better po-
sition the neutral NO and the 3Σ−, 1∆ and 1Σ+ an-
ion states. These new CI curves lie closer to the semi-
empirical curves obtained by Teillet-Billy and F. Fiquet-
Fayard [21] and provide a more accurate description of
the low-lying excited states of NO− than the coupled-
cluster (CC) potential curves employed in the previous
study of Zhang et al.

Using these new potentials we have computed elas-
tic and vibrationally inelastic cross sections to com-
pare the results from the local complex potential (or
“boomerang”) model, the local complex potential model
modified by the introduction of “barrier penetration fac-
tors,” and a nonlocal model described below. The nonlo-
cal model was used in our final calculations of vibrational
excitation and dissociative attachment. As will be shown
below, the present results obtained with more accurate
resonance curves and the nonlocal model represent a con-
siderable improvement over the boomerang model used
in our previous calculations and are in reasonably good
agreement with the most recent experimental measure-
ments.

The theoretical formulation we have used is described
in the following section. Section III presents the compu-
tational details of the present theoretical study together
with our results and, where possible, comparisons to both
the previous local complex potential model and recent
experimental data. We conclude with a brief discussion.

II. THEORETICAL FORMULATION AND

IMPLEMENTATION

As explained by Zhang et al. [12], a simple molecular
orbital picture suffices to explain the general features of
low-energy electron-NO scattering. The ground state of
NO has 2Π symmetry, corresponding to a single 2π elec-
tron outside a closed-shell core. By adding a second 2π
electron, one can form negative ion states with symme-

tries 3Σ−, 1∆ or 1Σ+, which, by analogy with O2, are
expected to be separated by only a few electron volts.
Fixed-nuclei electron-NO scattering calculations in these
overall symmetries, at low energies, produce amplitudes
(T-matrices) that display prominent resonant behavior
that depends strongly on the internuclear separation.
The low-energy (0-2 eV) electron-NO elastic and vibra-
tionally inelastic cross sections are found to be dominated
by contributions from these negative ion resonances. To
explain the rich structure observed in the various cross
sections, one needs an accurate characterization of the
R−dependent resonance energies and lifetimes as well as
a suitable model for calculating the nuclear dynamics.

The nonlocal formulation we employ here, as well as
the local complex potential approach used previously by
Zhang et al., reveal an important property of these col-
lisions, and that is that the contributions of the three
resonances to the cross section are independent. Since
the resonances belong to different total symmetries, their
contributions to the observed cross sections are strictly
additive; the resonances may overlap but they do not
interfere. Thus, the nonlocal potential calculations can
be carried out separately for each resonance and these re-
sults can be combined to produce the physically observed
cross sections.

A. Local and nonlocal potential models

Local complex potential — We begin with a descrip-
tion of the local complex potential or “boomerang” ap-
proach to resonant collisions. The theory, which is for-
mulated entirely within the Born-Oppenheimer approxi-
mation, has been derived in several ways [22–24] to arrive
at a nuclear wave equation that governs the nuclear dy-
namics associated with the resonance state.

The nuclear wave equation at total energy E is

(E −KR − Vres)ξν = φν (4)

where KR is the nuclear kinetic energy operator, Vres is
the anion potential,

Vres(R) = Eres(R) − iΓ(R)/2 (5)

and ξν is the nuclear wave function associated with the
electronic resonance state. The position and width of the
resonance that form the anion potential are Eres and Γ
respectively.

The driving term for the nuclear wave equation, or
“entry amplitude”, φν is defined as

φν(R) =

(

Γ(R)

2π

)1/2

ην(R), (6)

where ην is the initial vibrational wave function of the
neutral target.

The local complex potential model is expressed in Eqs.
(4-6) in its original or “boomerang” form, and provides
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the wave function ξν from which the cross sections can
be calculated as described below.

Barrier penetration factor –In general, cross sections
computed with the entry amplitude in Eq. (6) will not
have the correct energy dependence near threshold and
will thus be inaccurate at very low scattering energies [25,
26]. This problem was addressed in the second model we
consider here which is a modification of the local complex
potential model with a “barrier penetration factor” [27,
28]. This modification involves the introduction of an ad
hoc function of the electron momentum k into the entry
and exit amplitudes.

This idea is based on identifying the angular momen-
tum, l, that corresponds to the lowest partial wave that
contributes to the resonance and enforcing a threshold
law corresponding to that value of l. We define the quan-
tity γ as:

γ(k,R) =

{

k/k(R) if k < k(R)
1 otherwise

(7)

where k is the physical electron momentum, and k(R) is
the local momentum at which the resonance would occur
if electrons were scattered by molecules with the nuclei
fixed at separation R,

k2(R)/2 = Eres(R) − E0(R), (8)

with E0(R) denoting the electronic energy of the target.
The barrier penetration factor is then γl+1/2(k,R). With
the introduction of this factor, the entry amplitude will
be

φν(r) = γl+1/2(ki, R)

(

Γ(R)

2π

)1/2

ην(R), (9)

The modification of Eq. (4) with Eq. (9), and the use of
the same factor in the “exit amplitude” in the expression
for the scattering amplitude below, constitutes the local
complex potential model with barrier penetration factors.

Nonlocal model — To go beyond these simple local
models, we must make use of the well-established formu-
lation of nonlocal versions of these theories. A detailed
exposition of the nonlocal theory based on the projection-
operator formalism has been given by Domcke [29], and
numerous references to earlier work on nonlocal poten-
tial theory can be found therein. However, in our case
we are starting our calculations of the nuclear dynam-
ics with somewhat more information than those theories
ordinarily employ as their point of departure. Typically
one begins with a real-valued and square-integrable ap-
proximation to the electronic resonance wave function,
ψres(r, R), where r denotes all the electronic coordinates.
The expectation value of the (N + 1)-electron Hamilto-
nian with respect to ψres gives a real-valued approxima-
tion to the resonance energy. The interaction of ψres with
the continuum produces both a real-valued “shift” and a
correction that gives the imaginary part of the resonance
energy, or width of the resonance. In the general nonlo-
cal theory both of these corrections appear as nonlocal
and energy-dependent potentials.

Our case is different, because we have already com-
puted the energy and width of the resonance in a com-
plete electron-molecule scattering calculation. We have
therefore calculated the real part of the resonance energy
itself, and no shift correction is required. However, fol-
lowing the ideas of Hazi et al. [24] it is still possible to
construct a nonlocal width function which goes correctly
to the local width Γ(R) in the limit of high energies, and
that can at least partly repair some of the deficiencies of
the local model.

In our nonlocal potential model we begin with Eq. (4)
with the modification of the driving term given in Eq. (9).
We then introduce a complex, energy-dependent, nonlo-
cal potential, Vres , defined as

Vres(R,R
′) = Eres(R)δ(R−R′)

−iπ

open
∑

ν

Uν(kν , R)Uν(kν , R
′). (10)

Eres is the real part of the potential energy curve of the
negative ion from electron-molecule scattering calcula-
tions (or bound-state calculations in its bound region),
and kν is the momentum of the scattering electron when
the molecule is left in the final vibrational state ην . The
sum runs over the energetically open vibrational states
of the ion.

Following Hazi et al. [24, 30] we approximate
Uν(kν , R), the matrix element coupling the resonance
to the non-resonant background associated with a vibra-
tional level ν, as

Uν(kν , R) = γl+1/2(kν , R)

(

Γ(R)

2π

)1/2

ην(R) (11)

At sufficiently high incident energy one can make use
of Eq. (7) and also assume that the sum over vibrational
states in Eq. (10) is complete to show that in the high-
energy limit the nonlocal potential in Eq. (10) produces
the local width function.

open
∑

ν

Uν(kν , R)Uν(kν , R
′) =

Γ(R)

2π
. (12)

Therefore the nonlocal potential model we use here goes
to the local complex potential approach, with the bar-
rier penetration factor still present in the entry and exit
amplitudes, in the limit of high energies. This nonlo-
cal model should at least partially repair the deficien-
cies of the local complex potential approach when it
breaks down in the case that the nuclear motion of the
metastable anion takes place near a crossing of the anion
and the neutral potential curves [24–26].

Amplitudes and cross sections – The resonant T-matrix
for vibrational excitation or elastic scattering is obtained
by projecting the solution of Eq. (4) in any of these three
models onto the “exit amplitude”, φν′ , given by Eq. (6)
or Eq. (9) depending on the model,

Tνν′(E) = 〈φν′ |ξν〉. (13)



4

Integral vibrational excitation cross sections are then
given by

σν→ν′ =
4π3

k2
i

|Tνν′(E)|
2
. (14)

Vibrational excitation and elastic cross sections calcu-
lated for each resonance state from Eq. (14) must be mul-
tiplied by their appropriate statistical weight and added
in order to be compared with experimental measure-
ments. For the case of NO, the physical cross sections
are given by

σtotal
ν→f =

1

8

(

3σ
3Σ−

ν→f + 2σ
1∆
ν→f + σ

1Σ+

ν→f

)

. (15)

In the case of dissociative attachment, a solution of
Eq. (4) must be constructed that is regular at the ori-
gin and subject to purely outgoing boundary conditions.
The integrated cross section for dissociative electron at-
tachment from vibrational state ν is then expressed as

σν→DA = g
2π2

k2
ν

K

µ
lim

R→∞

|ξν(R)|
2

(16)

where g is the ratio of resonance state to initial state
statistical weights (i.e. 3/8 for the case of the 3Σ− res-
onance) and K2/2µ is the asymptotic kinetic energy of
the dissociated fragments with reduced mass µ, i.e.,

K2/2µ = E − Vres(R)|R→∞. (17)

An alternative approach to calculating dissociative at-
tachment cross section, which we will use when inter-
preting the results of our calculations of this process in
NO, can be derived by employing the principle of detailed
balance [31], which relates the T -matrix for dissociative
attachment to the T -matrix for its reverse process, asso-
ciative detachment,

Tν→DA = T ∗

AD→ν . (18)

This equation leads to the following relation between the
cross sections,

meEeσν→DA(Ee) = µEσAD→ν(E) (19)

where me, the mass of the electron, has been written
explicitly for clarity, but is otherwise expressed in atomic
units in this discussion. E is the total energy of the
system,

E = Eν + Ee, (20)

where Eν is the energy of vibrational state ν and Ee is
the energy of the incident electron.

From these considerations (or from an explicit exam-
ination of the asymptotic form of ξ(R) in terms of the
Green’s function for the Hamiltonian in Eq. (4)), the
cross section for dissociative attachment can be written
as

σν→DA(Ee) = g
4π2

Ee

µ

K
|〈ψE |φν〉|

2 (21)

where the scattering solution, ψE , satisfies the
Schrödinger equation

(E −KR − Vres)ψE = 0. (22)

The proper normalization of ψE will be discussed below.
Finally, we note that from these considerations it can

be seen that cross sections for associative detachment to
form NO are much smaller than the corresponding dis-
sociative attachment cross sections. This point is easily
deduced from Eq. (19), where the value of the reduced
mass of NO (µ = 13614) will imply that σAD→ν is ap-
proximately 4 orders of magnitude smaller than σν→DA.

B. Numerical solution of the Schrödinger equation

In order to solve the equations that govern the
electron-molecule collision processes that are relevant
to this study, we have made use of a finite-element
method, implemented using a discrete variable represen-
tation (DVR) [32]. In the case of dissociative attachment,
the generalization of this method to use exterior complex
scaling (ECS) gives the additional advantage of avoiding
the need for explicit imposition of asymptotic boundary
conditions. Details of this very efficient numerical repre-
sentation, as well as important previous developments of
the DVR method, can be found in the work of Rescigno
and McCurdy [32], the recent review of McCurdy et al.
[33], and the references therein. Here we only mention
some of its main features and how they relate to the
present study.

A great advantage of the DVR approach is that any
local operator, like the potential in the local potential
model has a diagonal representation. In this approach
the kinetic energy is non diagonal, but its matrix ele-
ments have simple analytic forms. Although our nonlocal
potential will be non diagonal in the DVR, its matrix ele-
ments can be trivially constructed in terms of the factors
Uν(kν , R) in Eq. (11) evaluated at points, R, on the DVR
grid. Thus the nonlocal potential model is no more diffi-
cult to implement using the finite element DVR approach
than the local potential case.

Both of the processes that are investigated here can be
represented by Eq. (4). In the case of vibrational exci-
tation, the solution ξν(R) will be square integrable, and
the finite element DVR approach using real-valued coor-
dinates will constitute an adequate approach to solving
Eq. (4). Dissociative electron attachment, on the other
hand, requires a solution of Eq. (4) that behaves outside
the interaction region as a purely outgoing wave. Exte-
rior complex scaling allows one to easily construct such
a solution without detailed consideration of asymptotic
boundary conditions. The origins of this complex coordi-
nate scaling have been discussed extensively in the recent
review by McCurdy et al. [33]. The ECS transformation
which we apply to Eq. (4) is given by

R→ T (R) ≡

{

R R < R0

R0 + (R−R0)e
iη R ≥ R0

(23)
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FIG. 1: (Color online) NO and NO− potential curves and vibrational levels. Solid curves: 2Π neutral ground-state; dashed
curves: 3Σ− anion; dotted curves: 1∆ anion; dash-dot curves: 1Σ+ anion. Left panel: curves obtained from configuration-
interaction calculations; right panel: shifted CI curves (see text). Internuclear distances are given in atomic units, where
ao = 5.2917721 × 10−11 m is the Bohr radius. Energies are in units of eV = 1.6021765 ×10−19 J.

where R is the internuclear distance, while R0 and η are
fixed parameters of the transformation. The transformed
Schrödinger equation is then solved on a grid that ex-
tends beyond R0, into the region in which the outgoing
wave falls off exponentially. The combined finite-element
DVR technique offers a practical and accurate method
for implementing the ECS transformation. We refer the
interested reader to ref. [33] for further details. Making
the radius R0 large enough to enclose the entire interac-
tion region allows the collision dynamics to be extracted
from the region inside that radius, where coordinates are
real. This transformation, as mentioned above, elimi-
nates the need for explicit enforcement of asymptotic
boundary conditions and produces a solution with the
correct boundary conditions automatically.

To construct the wave function corresponding to as-
sociative detachment we must solve Eq. (22). To do so
using the ECS transformation, we first write the radial
scattering solution as the sum of a free function ψ0 and
a scattering wave, ψsc,

ψE = ψ0 + ψsc. (24)

With the cross section defined by Eq. (21), ψ0 is just
sin (KR). Thus, the driven Schrödinger equation be-
comes

(E −KR − Vres)ψsc = Vresψ0 (25)

which has the same form as Eq. (4) and can be solved in
the same way.

C. Fixed-nuclei resonance curves

Zhang et al. [12] carried out fixed-nuclei scattering
calculations using the complex Kohn variational method
and extracted resonance energies and lifetimes for the
negative ion states from Breit-Wigner fits of the relevant
eigenphase sums. The trial wave functions in their cal-
culations were constructed using modest CI expansions.
The molecular orbitals were obtained by averaging the
density matrices of the target and resonance states in
order to strike a balance between correlation effects in
the neutral and anion states. The resonance widths from
that earlier study were also employed in the present cal-
culations.

Since the quasi-bound vibrational levels of the NO−

states overlap, the electron-NO cross sections below 2 eV
are highly structured. To meaningfully compare calcu-
lated cross sections with measured values requires that
the relative positions of the anion states with respect
to the target states be known with an accuracy of less
than 0.1 eV. Practical considerations make it difficult
to achieve such accuracy in scattering calculations, even
with fairly elaborate trial wave functions. Electronic
structure calculations were therefore carried out to bet-
ter position the negative ion and target potential curves.
Zhang et al. had previously employed coupled-cluster,
single- and double-excitation calculations with a non-
iterative triples correction (CCSD(T)). In the present
work, we used large-scale configuration-interaction meth-
ods. CC calculations are size-consistent and are gener-
ally accurate in calculating energy differences between
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FIG. 2: (Color online) 3Σ− symmetry component of the e−-
NO ν = 0 → 1 vibrational excitation cross section. Com-
parison of different theoretical models for treating the nu-
clear dynamics. Solid curve: nonlocal model; solid curve with
stars: local complex potential model with inclusion of bar-
rier penetration factors; dash-dot: local complex potential
(boomerang) model. Cross sections are given in atomic units
(a2

o = 2.8002852 × 10−21 m2) and energies are in units of eV.

the lowest states of systems with different numbers of
electrons, as in the case of NO and NO−. On the other
hand, multi-reference configuration-interaction (MRCI)
calculations will give accurate results for the relative en-
ergies of the different resonance states, providing in this
way, better potential curves for the calculation of disso-
ciative electron attachment cross sections.

III. CALCULATIONS AND RESULTS

For the present study, multi-reference single- and
double-excitation calculations (MRCISD) [34] were per-
formed on the NO ground state and the 3Σ−, 1∆ and
1Σ+ anion states using one-electron orbitals generated
from multi-reference self-consistent field (MCSCF) cal-
culations for each state. The active space for the MC-
SCF calculations, as well as the reference space for the CI
calculations, consisted of all the orbitals of the 2p shells
of O and N, with the valence electrons distributed in all
possible ways. The neutral and anion potential curves
obtained from these CI calculations are shown in the left
panel of Fig. 1. For all the states, the relative shapes
of the curves and their equilibrium internulear distances
agree with the earlier CC values. The potential curves
for the neutral ground-state and the 3Σ− anion state are
very close to the CC values previously obtained by Zhang
et al. (cf. Fig. 6 of ref. [12]), whereas the 1∆ and 1Σ+

anion curves lie below the previous curves by ∼ 0.24 and
0.26 eV, respectively. These new results give a 1∆ curve
that is in better agreement with the semi-empirical re-
sult obtained by Teillet-Billy and F. Fiquet-Fayard [21],
while the new results for the 1Σ+ state are consistent

with experimental findings of Randell et al. [6].
The left panel of Fig. 1 illustrates the calculated neu-

tral and anion potential curves, together with the real
parts of the vibrational levels associated with each curve.
For the anion states, both the real and imaginary parts
of each resonance, the latter obtained from the earlier
complex Kohn calculations, were used in computing the
vibrational levels. While the present potential curves
give results in better agreement with measured values
than the earlier CC results of Zhang et al., a final small
adjustment of the resonance curves was carried out to
better compare the theoretical cross sections with exper-
iment. The 3Σ− curve was lowered by 65 meV, which
brings the first three peaks in the calculated elastic cross
section into good agreement with the positions of the cor-
responding peaks in Allan’s recent high resolution mea-
surements [9, 13]. The 1∆ curve was lowered by 83 meV,
based again on Allan’s high resolution elastic cross sec-
tions as further explained below. Finally, the 1Σ+ was
lowered by ∼ 0.15 eV so that its asymptotic value at large
internuclear distance coincided with that of the 1∆ state.
The shifted curves, which were used in all the calculations
described below, are shown in the right panel of Fig. 1.
It is worth noting that in their semi-empirical analysis
of Tronc et al.’s data, Teillet-Billy and F. Fiquet-Fayard
assumed a coincidence of the 3Σ−(ν = 7) and 1∆(ν = 2)
levels as a criterion to position the 1∆ curve. Such a cri-
terion, however, is invalidated by the fact that there are
significant shifts, which change with the observed exit
vibrational level, between the actual peak positions in
the cross sections and their expected positions based on
the vibrational energy level values. These shifts arise as
a consequence of the finite lifetimes of the anion states
against autodetachment.

A. Elastic scattering and vibrational excitation

Figure 2 shows the ν = 0 → 1 vibrational excitation
cross sections calculated using three different models for
treating the nuclear dynamics described in section IIA:
(1) the local complex potential model, as used by Zhang
et al. in their earlier calculations, (2) the local complex
potential model with barrier penetration factors included
in the entry and exit amplitudes and, (3) the nonlocal
model. For clarity, only the 3Σ− contribution to the
cross section is shown. As expected, the cross sections
computed without inclusion of barrier penetration factors
are qualitatively incorrect at low energy and significantly
overestimate the first few peaks near threshold. This be-
havior becomes even more pronounced in the higher ex-
citation cross sections (not shown). The introduction of
barrier penetration factors, both in the local and non-
local approximations, produces the correct behavior of
the cross sections at threshold. The latter two models
produce similar results, with the nonlocal model giving
slightly larger peak values in the cross sections at low
energy. As the energy increases, and more vibrational
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curves: total cross sections; dashed curves: 3Σ− symmetry contributions; dash-dot curves: 1∆ symmetry contributions; double
dash-dot curves: 1Σ+ symmetry contributions. Individual symmetry contributions include statistical weights given in Eq. (15).

states become energetically available, all three approxi-
mations yield the same cross sections, as expected. These
trends were also seen in the higher excitation cross sec-
tions. These results serve to quantify the breakdown of
the simple local complex potential model in the present
case where the vibrational levels of the 3Σ− anion are
energetically close to those of the neutral target, which
invalidates several key assumptions used in deriving the
local complex potential model [24, 26]. All subsequent re-
sults we will present, for both vibrational excitation and
dissociative electron attachment, were obtained using the
nonlocal potential model.

Figure 3 shows the individual resonance contributions
to the elastic and ν = 0 → 1, 2, 3 vibrationally inelastic
cross sections obtained with the nonlocal model and the
shifted CI potential curves described above. The 3Σ−

and 1∆ cross sections both show pronounced boomerang
structure while the 1Σ+ resonance gives only a broad,
structureless contribution to the cross sections. The 3Σ−

peaks are narrower than the 1∆ peaks, reflecting the

longer autodetachment lifetime (inverse width) of the
3Σ− negative ion state. The 3Σ− and 1∆ resonance peaks
overlap strongly above .75 eV, which results in total vi-
brational excitation cross sections with pronounced ir-
regularities. The basic structure of these cross sections,
as Zhang et al. have pointed out, are readily explained
by examination of the neutral and anion potential curves
and vibrational levels (Fig. 1). Below 0.5 eV, the 1∆
resonance cannot be excited; the three lowest peaks in
the elastic cross section arise solely from the 3Σ− state.
This fact allowed us to fix the relative positions of the
neutral and 3Σ− states by comparing the positions of
the calculated and measured elastic peaks. In the case
of the 1∆ resonance, the second peak in the 1∆ elastic
cross section does not overlap any 3Σ− peaks and was
therefore used to position the 1∆ resonance curve, as
explained above. Note that the lowest 3Σ− vibrational
state is bound and lies outside the Franck-Condon region
of the neutral ground level. The first peak in the elastic
cross section arises from the ν = 1 level of the 3Σ− anion.
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A striking point to note about these cross sections is the
fact that the peaks arising from the 3Σ− anion occur at
energies close to the difference between the neutral and
anion vibrational levels and appear at roughly the same
energy in different exit channels. By contrast, the 1∆
peaks in the elastic cross section appear at energies be-
low the anion vibrational energy levels and shift to higher
energy as the excitation level increases. This behavior is
caused by the shorter lifetime of the 1∆ state.

Figure 4 compares our calculated elastic and vibra-
tionally inelastic cross sections with the recent experi-
mental measurements of Jelisavcic et al. [8] and Al-
lan [13]. All data shown is on an absolute scale with
no internormalization. Jelisavcic et al. obtained inte-
grated cross sections from their angular differential mea-
surements by using a multiparameter phase shift analysis
to extrapolate their cross sections to forward and back-
ward angles. Allan made differential measurements at
high resolution and was able to measure cross sections
for individual fine structure levels of the target molecule.

To compare with our calculations, which do not treat
spin-orbit effects, and with the lower resolution measure-
ments of Jelisavcic et al. , we have plotted Allan’s cross
sections summed over all ∆Ω (spin-orbit) transitions.

Allan took absolute measurements at a single angle
(135◦), and in Fig. 4 his results were simply multiplied
by 4π for this comparison. To see why this is a rea-
sonable approximation to the integral cross section, it is
instructive to consider the angular dependence of the res-
onant contribution to vibrational excitation cross section.
Since the ground state of NO is doubly degenerate, we
can write the electronically elastic T-matrix (for a par-
ticular vibrational transition) in the following schematic
notation:

T =

(

T−1,−1 T−1,+1

T+1,−1 T+1,+1

)

, (26)

where the superscripts on the matrices TM ′,M denote ini-
tial and final channels labeled by the Mz quantum num-
bers of the target. Each of these blocks is itself a square
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matrix whose dimension is determined by the number
of partial waves, labeled by (l,m), used to expand the
fixed-nuclei wave function. The differential cross section
associated with a particular transition is then

dσM ′,M

dΩ
=
∑

l,l′

(2π)4

k2
i

1

8π2

×

∫

|Y mol
l,m′ (k′)∗TM ′,M

l′m′,lmY
mol
l,m (k)|2dω

(27)

where the spherical harmonics refer to the body frame of
the target and the integration over ω is the average over
molecular orientations.

In the simplest model, we assume that for all three res-
onances the electron is scattered in a p-wave (l = l′ = 1)
with mz = ±1. Which mz component of the incident or
scattered electron to associate with which target channel
depends on which of the three resonances is in question.
With these assumptions, the angular dependence of the
cross sections can be obtained in closed form. We can
now follow the logic of Dube and Herzenberg [23] to per-
form the necessary transformation to the lab frame and
integrate over molecular orientations. The result is

dσM ′,M

dΩ
=

2π2

k2
i

|TM ′,M |2
3

40
(7 + cos(2θ)) (28)

and has the same form for all four possible choices of M ′

and M in Eq. (26) and for all three resonances . When
Eq. (28) is integrated over the scattering angles, θ and
φ, it reproduces Eq. (14).

Based on this analysis, all three resonance contribu-
tions to the integral cross section are expected to have
a fairly flat angular distribution determined by the fac-
tor 7 + cos(2θ). An alternative treatment, that does not
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FIG. 5: (Color online) Angular dependence of resonant cross
sections. With the assumption of a single partial wave, the
resulting distribution is (7 + cos 2Θ) for both 3Σ− and 1∆
cross sections. The angular distributions for 3Σ− and 1∆ are
different when more partial waves are used in the analysis (see
text).
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assume a single partial wave for the scattered electron,
was carried out using the computed T-matrix elements
(at the equilibrium internuclear distance) from the com-
plex Kohn scattering calculations computed exactly on
resonance and evaluating Eq. (27) numerically. Such a
calculation gives angular dependences for the 3Σ− and
1∆ cross sections that are slightly different, but again
nearly isotropic, as can be seen in Fig. 5. In any case,
fixing θ to be 1350, and multiplying the differential cross
section by 4π gives Eq. (14) to within a few percent, so
this approximate conversion of Allan’s data to give inte-
grated cross sections should be reasonable.

The calculated elastic cross sections shown in Fig. 4
include the non-resonant background contributions from
1,3Π symmetry calculated by Zhang et al. [12]. In the case
of elastic scattering, there is excellent agreement bewteen
the two sets of measurements above 0.8 eV, whereas the
peak cross sections values near 0.45 eV and 0.6 eV mea-
sured by Allan [9, 13] are relatively larger than those
measured by Jelisavcic et al. [8]. The agreement with
theory is also rather good, the principal difference be-
ing a somewhat larger value for the background cross
section given by theory. The calculated elastic cross sec-
tions show little structure above 1.5 eV, while Allan’s
measurements show weak structure out to 2.0 eV. Both
Allan and Randell et al. [6] have suggested that the 1Σ+

resonance may be responsible for structure above 1.5 eV,
but our calculations predict the width of this state to be
too large to give any boomerang structure.

The vibrational excitation cross sections have irregu-
lar structures, which is the result of overlapping contri-
butions from the different resonance states. While the
two sets of measured values are in reasonable agreement
above 1.5 eV, they show noticeable differences at lower
energies. The most striking difference is that the low-
est few peaks in the ν = 0 → 1 and ν = 0 → 2 cross
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FIG. 7: Dissociative electron attachment cross sections. Left panel: cross sections from vibrationally excited states 5 through
9. Right panel: cross sections from vibrationally excited states 9 through 23.

sections, while prominent in both Allan’s measurements
and in our calculations as well, are strongly suppressed
in the Jelisavcic et al. measurements. The magnitude of
our calculated cross sections overall appears to be in bet-
ter agreement with Allan’s measurements, but we must
again empasize that Allan’s differential cross sections at
a single angle were multiplied by 4π. The agreement be-
tween theory and experiment for the ν = 0 → 3 cross
section is excellent.

The principal discrepancy between theory and experi-
ment, which is most apparent in the case of the ν = 0 → 2
cross section, is the fact that the calculated 1∆ peaks are
too broad. For example, the broad 1∆ peak at 0.8 eV in
the calculated ν = 0 → 2 cross section obscures the 3Σ−

peaks near 0.65 and 0.9 eV that are clearly seen in Allan’s
measurements. The calculated error in the 1∆ peaks is
undoubtedly caused by an overestimate of the electronic
resonance width of the 1∆ anion. The resonance widths
came from earlier [12] fixed-nuclei scattering calculations,
while the resonance energies came from accurate CI cal-
culations and were further adjusted as described above.
For the 3Σ− state, the scattering calculations and the CI
calculations gave very similar resonance curves. In the
case of the 1∆ state, our shifted anion curve lies ∼0.3 eV
below the scattering results. We would expect the elec-
tronic width of the 1∆ state to therefore be smaller than
the results given by our fixed-nuclei scattereing calcula-
tions. Despite some qualitative differences bewteen the-
ory and experiment, it is clear that the overall features
are properly displayed by these calculations and that the
nonlocal model gives a good description of the vibrational
excitation dynamics in this system.

Figure 6 shows our calculated grand total cross sections
(the sum of the integrated elastic and the vibrationally
inelastic cross sections) and the experimental measure-
ments of Alle et al. [5], obtained by high resolution
time-of-flight spectroscopy, and of Zecca et al. [35], who

analyzed previous experimental measurements ([3, 36]).
For reference, our grand total cross sections for selected
energies are also tabulated in Table I. The authors will
provide tabulated values for other cross sections upon re-
quest. As can be seen in Fig. 3, the most significant con-
tribution to the grand total cross section derives from the
elastic cross section, with vibrational excitation cross sec-
tions making a smaller contribution. With the exception
of a slight overestimate of the nonresonant background,
our calculated cross sections provide a good description
of the elastic cross sections and, hence, of the grand total
cross sections.

B. Dissociative electron attachment

The process of dissociative electron attachment to NO
studied in the present investigation takes place via the re-
action channel e+NO → O−(2P)+N(4S) , which is asso-
ciated with the 3Σ− resonance. Fig. 7 shows the dissocia-
tive electron attachment cross sections calculated using
the nonlocal potential model as described in Sec. IIA.
The numerical solution of the working equations of this
process was carried out using the finite-element DVR im-
plementation of ECS, as described in Sec. II B. The two
panels of Fig. 7 show that the cross sections increase by
several orders of magnitude as the vibrational state from
which the dissociation takes place increases. We can see
from these calculations that dissociative attachment pro-
ceeding from the vibrational ground state (not visible on
the scale of the figure) would lead to cross sections that
are too small to be detectable. However, dissociative at-
tachment arising from vibrationally excited states should
be measurable, provided the initial vibrational level is
sufficiently high. Table II lists maximum values of disso-
ciative attachment cross sections from each vibrationally
excited state and the electron energy at which this cross
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section peak is produced.

It is interesting to investigate the origin of this dra-
matic enhancement of the dissociative attachment cross
section with vibrational excitation. The clearest way to
display the physics of that enhancement is to view the
process via Eq. (21) which gives the cross section in terms
of the wave function, ψE , associated with the reverse pro-
cess in which an O− and N atom collide. The relevant
wave functions and the associated potential curves are
shown in Fig. 8 where it is particularly important to note
the role of the imaginary part of the resonance potential
curve. Vibrational wave functions of neutral NO are plot-
ted specifically for vibrational states ν = 0 and 15 in the
right panel. Also shown in this panel are three scattering
solutions of Eq. (22) for total energies given by Eq. (20)
of E = 0.1, 0.5 and 1.0 eV.

A key point is that close to the classical inner turning
points the scattering functions, ψE , appear suppressed
due to the imaginary part of the resonance potential,
−iΓ(R)/2. Thus there is no large peak in the scattering
wave function near the classical turning point, and the
enhancement of the cross section is not associated with

any simple classical effect.

Evaluation of the dissociative attachment cross section
using Eq. (21) requires the calculation the integral of the
product of the scattering function, ψE , and the entry am-
plitude from Eq. (6), φν . Recall that the entry amplitude
is proportional to the initial vibrational wave function of
the neutral multiplied by Γ(R). The left panel of Fig. 8
is an enlargement of a selected area of the right panel
that shows the entry amplitudes, φ0(R), φ15(R), associ-
ated with ν = 0 and 15. Also enlarged in this panel are
the scattering solutions, ψE . We can see that in the case
of low vibrational states, the product of a rapidly oscil-
lating scattering function, ψE , and a smooth vibrational
wave function (e.g., φ0(R)), will give a very small overall
integral. For higher vibrational states, φν oscillates with
a frequency closer to that of ψE , resulting in a larger
integral. In this way, the cross sections for dissociative
attachment are rapidly enhanced as the initial vibrational
quantum number, ν, increases. The resulting cross sec-
tions for dissociation proceeding from vibrational states
ν = 0 multiplied by a factor of 5000 (σDA(ν = 0)), and
ν = 15 (σDA(ν = 15)), are also shown in the left panel



12

of Fig. 8 as a function of the total energy E.
Another noticeable characteristic of the calculated dis-

sociative attachment cross sections is the change in their
shape with the decrease of the threshold energy onset
with increasing vibrational levels. This feature can be
understood by taking into account the fact that the bar-
rier penetration factor introduced in our equations will
affect the cross sections only at electron energies with mo-
menta k that are lower than the local momentum k(R) in
Eq. (7). As the energy of the vibrational level from which
the dissociation takes place increases, the threshold en-
ergy, and thus the incident electron momentum needed
for the the dissociation to occur, decreases. At ν >∼ 15,
the introduction of the barrier penetration factor gives
rounded shape to dissociative attachment cross sections
near threshold, whereas the cross sections from lower vi-
brational states are unaffected by the barrier penetration
factor.

IV. DISCUSSION

We have presented electron-NO elastic and vibrational
excitation cross sections for incident electron energies be-
tween 0 and 2 eV. These calculations were performed us-
ing a nonlocal potential model to describe the nuclear dy-
namics, together with a set of resonance potential curves
that are more accurate than what we had previously
employed [12]. The complex-valued potential curves
were obtained by combining large-scale configuration-
interaction calculations for the resonance positions with
fixed-nuclei, complex Kohn calculations for determining
the resonance lifetimes. The resulting low-energy scat-
tering cross sections are dominated by shape resonance
contributions associated with the 3Σ−, 1∆ and, to a
lesser extent, 1Σ+ states of NO− and display pronounced,
overlapping boomerang structures that give irregularly
shaped vibrational excitation cross sections.

The inclusion of “barrier penetration factors” in these
calculations, in both the entry and exit amplitudes, en-
forces the correct threshold behavior in the resonant cross
sections for vibrational excitation and removes the spuri-
ous threshold peaks that were seen in earlier boomerang
calculations. However, in contrast to what was seen in
earlier experiments [8], we do not find a complete su-
pression of the lowest few peaks in cross sections for ex-
citing higher vibrational levels, but instead find encour-
agingly good agreement with the recent experiments of
Allan [9, 13].

We have also investigated dissociative electron attach-
ment to NO via the 3Σ− negative ion resonance which
gives ground state N(4S) + O−(2P). Our results show
that the dissociative attachment cross sections in this
channel that originate from the ground vibrational state
of NO are extremely small, as confirmed by several ex-
perimental studies [17–20]. However, the dissociative at-
tachment cross section is predicted by these calculations
to increase by several orders of magnitude when the dis-
sociation takes place from vibrational excited states of
NO. We predict that dissociative attachment cross sec-
tions producing ground state atomic products should be
measurable starting from vibrational levels above approx-
imately ν = 10.
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TABLE I: Calculated e−-NO grand total cross sections
(GTCS) as a function of energy. Cross sections are in units
of 10−16 cm2 and energies are in eV.

Energy GTCS Energy GTCS Energy GTCS
0.1000 0.8320 0.7354 19.4719 1.3709 21.3185
0.1127 3.2252 0.7481 22.3429 1.3836 21.4026
0.1254 20.5018 0.7608 26.9145 1.3963 21.5218
0.1381 0.3518 0.7735 31.2134 1.4090 21.5888
0.1508 0.06775 0.7862 30.1425 1.4217 21.5626
0.1635 0.1200 0.7989 25.5610 1.4344 21.4518
0.1762 0.2485 0.8117 22.0260 1.4471 21.2770
0.1889 0.4699 0.8244 20.2311 1.4598 21.0570
0.2016 0.7435 0.8371 19.6350 1.4725 20.8099
0.2143 1.0987 0.8498 19.7636 1.4852 20.5546
0.2270 1.5948 0.8625 20.3278 1.4979 20.3148
0.2397 2.3645 0.8752 21.1866 1.5107 20.1146
0.2525 3.7583 0.8879 22.3143 1.5234 19.9703
0.2652 6.9256 0.9006 23.8366 1.5361 19.8814
0.2779 18.7501 0.9133 25.9359 1.5488 19.8261
0.2906 61.2796 0.9260 28.1865 1.5615 19.7778
0.3033 10.1580 0.9387 28.9980 1.5742 19.7195
0.3160 3.1994 0.9515 27.5446 1.5869 19.6446
0.3287 2.2709 0.9642 25.3023 1.5996 19.5518
0.3414 2.3782 0.9769 23.4854 1.6123 19.4388
0.3541 2.8238 0.9896 22.2825 1.6250 19.3062
0.3668 3.4695 1.0023 21.6604 1.6377 19.1486
0.3795 4.3272 1.0150 21.5018 1.6505 18.9713
0.3923 5.5048 1.0277 21.7097 1.6632 18.7956
0.4050 7.2673 1.0404 22.2205 1.6759 18.6307
0.4177 10.2128 1.0531 23.0255 1.6886 18.4817
0.4304 16.1795 1.0658 24.1311 1.7013 18.3470
0.4431 30.1699 1.0786 25.3802 1.7140 18.2227
0.4558 44.1474 1.0913 26.2417 1.7267 18.1037
0.4685 23.2452 1.1040 26.2254 1.7394 17.9878
0.4812 11.6303 1.1167 25.4906 1.7521 17.8734
0.4939 8.2425 1.1294 24.4993 1.7648 17.7592
0.5066 7.3877 1.1421 23.5439 1.7775 17.6435
0.5193 7.4823 1.1548 22.7453 1.7903 17.5255
0.5321 8.0750 1.1675 22.1560 1.8030 17.4033
0.5448 9.0707 1.1802 21.8044 1.8157 17.2778
0.5575 10.5562 1.1929 21.7108 1.8284 17.1513
0.5702 12.8291 1.2056 21.8847 1.8411 17.0259
0.5829 16.5922 1.2183 22.3224 1.8538 16.9032
0.5956 23.2862 1.2311 22.9361 1.8665 16.7844
0.6083 33.4398 1.2438 23.5053 1.8792 16.6692
0.6210 36.5577 1.2565 23.8026 1.8919 16.5574
0.6337 27.3836 1.2692 23.7780 1.9046 16.4486
0.6464 20.3016 1.2819 23.5242 1.9173 16.3426
0.6591 17.1405 1.2946 23.1458 1.9301 16.2385
0.6719 15.9589 1.3073 22.7151 1.9428 16.1355
0.6846 15.7470 1.3200 22.2494 1.9555 16.0327
0.6973 16.0603 1.3327 21.8407 1.9682 15.9254
0.7100 16.7254 1.3454 21.5302 1.9809 15.8159
0.7227 17.7824 1.3581 21.3518 2.0000 15.6514
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TABLE II: Maximum values of calculated dissociative elec-
tron attachment cross sections (DACS) from vibrationally ex-
cited states (νi) of NO and energies of the incident electron
at which these cross sections are produced. Cross sections are
in units of 10−16 cm2 and energies are in eV.

νi Energy DACS
0 4.8548497 2.6921455×10−5

1 4.5945892 7.3894421×10−5

2 4.4144088 1.9972127×10−5

3 4.3743687 5.0167238×10−5

4 3.7737675 4.9256797×10−5

5 3.5535471 1.9656159×10−4

6 3.3733667 4.6051432×10−4

7 3.1731663 1.0852484×10−3

8 2.9329259 1.9636015×10−3

9 2.7127054 4.961709×10−3

10 2.5125050 1.4583266×10−2

11 2.3123046 3.6489216×10−2

12 2.1321242 7.3736554×10−2

13 1.9519439 0.12963221
14 1.7717635 0.20493259
15 1.6116032 0.2901275
16 1.4514429 0.36741663
17 1.3313226 0.42170441
18 1.2312224 0.44816816
19 1.2112024 0.45041918
20 1.2112024 0.43657256
21 1.2112024 0.42207784
22 1.2312224 0.41033554
23 1.2312224 0.3975291




