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ABSTRACT OF THE DISSERTATION

Multimodal Communication for Embodied Human-Robot Interaction

with Natural Gestures

by

Qi Wu

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2021

Professor Mohammad Khalid Jawed, Co-Chair

Professor Jungseock Joo, Co-Chair

Communication takes place in various forms and is an essential part of human-human

communication. Researchers have done a plethora of studies to understand it biologically

and computationally. Likewise, it also plays a significant role in Human-Robot Interaction

(HRI) in order to endow Artificial Intelligence (AI) systems with humanlike cognition and

sociality. With the advancement of realistic simulators, multimodal HRI is also a hotspot with

embodied agents in the simulation. Human users should be able to manipulate or collaborate

with embodied agents in multimodal ways, including verbal and non-verbal methods. Up

to now, most prior works with embodied AI have been focusing on addressing embodied

agent tasks using verbal cues along with visual perceptions, e.g ., using human languages as

natural language instructions to assist embodied visual navigation tasks. Nonetheless, non-

verbal means of communication like gestures, which are rooted in human communication,

are rarely examined in embodied agent tasks. In this dissertation, I contemplate on existing

research topics in embodied AI and propose to tackle embodied visual navigation tasks
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with natural human gestures to fill the deficiency of non-verbal communicative interfaces in

embodied HRI. It has the following contributions:

‚ To this end, I first develop a 3D photo-realistic simulation environment, Gesture-based

THOR (GesTHOR). In this simulator, the human user can wear a Virtual Reality (VR)

Head-Mounted Display (HMD) to be immersed as a humanoid agent in the same

environment as the robot agent and communicate with the robot interactively using

instructional gestures by sensory devices that can track body and hand motions. I

provide data collection tools so that users can generate their own gesture data in our

simulation environment.

‚ I created Gesture ObjectNav Dataset (GOND) and standardized benchmarks to eval-

uate how gestures contribute to the embodied object navigation task. This dataset

contains natural gestures collected from human users and object navigation tasks de-

fined in GesTHOR.

‚ To demonstrate the effectiveness of gestures for embodied navigation, I build an end-

to-end Reinforcement Learning (RL) model that can integrate multimodal perceptions

for the robot to learn the optimal navigation policies. Through cases studies with

GOND in GesTHOR, I illustrate that the robot agent can perform the navigation

task successfully and efficiently with gestures instead of natural languages. I also show

that the navigation agent can learn the underlined semantics of unpredefined gestures,

which is beneficial to its navigation.

By introducing GesTHOR and GOND as well as related experimental results, I aim to

spur growing interest in embodied HRI with non-verbal communicative interfaces toward

building cognitive AI systems.
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CHAPTER 1

Introduction

What we call meaning must be connected with the primitive language of gestures.

—Ludwig Wittgenstein [1]

Communication is an essential component in society for mutual understanding between

individuals or groups, and providing multi-component signals in multiple modalities resides

naturally in all animals [2], including humans. Human communicates not only with audio-

visual integration but also accompanied by non-verbal cues like gestures [3, 4]. Gestures play

a significant role in human-human communication. It contextualizes languages and serves

as an emblem to substitute or coexist with speech or text. Indeed, human communication

is rooted in fundamental cooperative gestures [5]. Gestures enhance human communication

in diverse forms of social settings, including interactive speech, expressing semantic signals,

and drawing the attention of recipients by disambiguating complex contextual information

and assisting speech with additional clues [6].

Communication is also one of the key features of autonomous robots and systems. Anal-

ogous to human-human communication, human-robot communication could also be realized

with multimodal cues [7, 8]. Natural human-robot communication, just like natural human-

human communication, would reply heavily on the natural languages, either verbally or

through text. Therefore, most existing communication interfaces assume that the artificial

agent and the human share joint attention with the only verbal exchange. However, a robot

could use various communication cues to conduct conversations with a human on the at-

tended object [9]. This is especially important for some collaborative or assistive human-robot
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systems where nonverbal means of communication, e.g ., gestures, are indispensable [9, 10].

Different from natural languages, which require dedicated attention and suffer from intermit-

tent conveyance, nonverbal cues, including body postures, eye gazing, and gestures, convey

messages in an immediate and intuitive manner and are less susceptible to interruptions. In

view of that, understanding how gestures are incorporated in HRI is crucial toward building

AI systems with humanlike reasoning and cognition.

With a paradigm shift from “internet AI” to “embodied AI” [11], there is a surge of

interest for HRI in simulated environments that faithfully replicate the real world. Those

simulators serve as virtual testbeds for their counterparts in reality and are more affordable

and salable compared with deploying the physical robots and objects. Therefore, we have seen

extensive studies on HRI conducted in different simulators, e.g ., Vision-Language Navigation

(VLN) [12], Embodied Question Answering (EQA) [13], Interactive Question Answering

(IQA) [14]. By instructing with multimodal cues, we see how the intelligent agents complete a

series of tasks and facilitate the understanding of HRI with learning or non-learning methods.

Despite the prosperity in HRI and embodied AI, most research tasks are only concerned

with verbal cues [12, 13, 15–24]. They boil down to transcode sequence-to-sequence natural

language instructions in visually grounded scenes. In the vision-language domain, there are

millions of speech audio datasets on the Internet for data-driven approaches. However, non-

verbal signals have not yet been well documented [25]. For the embodied navigation, rich

photo-realistic environments [26–30] sprout with the rapid development of Computer Vision

(CV) and Natural Language Processing (NPL). Researchers from the community have the

opportunity to conduct experiments with plenty of visual and verbal signals. However, there

lacks a comprehensive environment and dataset that accommodate non-verbal means of

communication despite the importance of non-verbal communication in HRI. Admittedly,

verbal cues arise naturally and constitute the primary communicative interfaces in human-

human and human-robot. Nevertheless, non-verbal means of communication should also

take a significant part in embodied AI for a transition to “cognitive AI” [7], where intelligent
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agents are capable of understanding human intents in multiple ways. We need an environment

where the human user and the robot could interactively communicate and a dataset with

natural human gestures that could be utilized for embodied navigation.

To illustrate the significance above of non-verbal communication in embodied AI, let

us take Fig. 1.1 as an example where the embodied human and robot are situated in a

virtual kitchen. In this example, a human intends to instruct the robot to navigate to the

target location or object in the scene. Previous works in embodied visual navigation with

language-based human interactions may require a lengthy text message, such as “go to the

second brown chair next to the big white table in the living room”. Of note, it is necessary

to include the keywords to avoid ambiguities. On the contrary, gestures allow the human to

express the intent in a simpler and more natural way, e.g ., pointing with a finger and saying

“go ther”, “clean her”, or “bring it to me”. The non-verbal cues contextualize the verbal

communications but are more immediate and succinct compared with using languages solely.

Since the target is attended by both the speaker (i.e., human) and the recipient (i.e., robot)

in the same space, sharing this joint attention [31] allows the multimodal message to be

interpreted correctly by the robot who infers the human intents by mutually understanding

the underlined semantics of gestures and languages.

Inspired by the above crucial observations, we intend to bring in nonverbal communication

cues [25, 32, 33] into the embodied AI learning, especially the embodied agent navigation

task—the most straightforward study of embodied AI that interacts with the environments

and other agents. Specifically, we aim to use gestures to communicate with an embodied agent

to navigate in a virtual environment. To provide gesture-based instructions for a navigation

task, the agent needs a photo-realistic simulation environment, and a human player needs

to be situated in the same scene to have the joint attention [31], and the agent requires

a learning framework to complete the assigned tasks. Although human gestures have been

widely adopted in human-robot systems to assist or collaborate with humans [34–38], prior

studies mostly predefine the gestures according to their meanings in our social interactions. In
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Go there Bring it to me

Clean here

“THERE”

“HERE”

Figure 1.1: Natural gestures can succinctly deliver complex semantic meaning in a phys-
ical space. A human user can instruct a robot or a virtual agent to complete a navigation task
by simply referring to a target location or object using gestures. The agent should infer the user’s
intent from the gesture.

their settings, gestures are tagged with determined labels regardless of the context changes.

However, natural gestures are diverse and context-dependent [39]. The cognitive agent should

learn to not only classify and cluster gesture patterns but reason why gestures are shown.

However, learning the semantics of gestures is astounding because gestures are so diverse

and context-dependent. Traditional machine learning methods are infeasible to figure out

the meaning of gestures in a huge space. There requires a comprehensive framework that

could address the variability and versatility of nearly-unlimited naturalistic human gestures

without a predefined set of recognizable gestures.

In this dissertation, we explicitly talk about how to address the aforementioned problems.

To support such a coexisting environment, we build our virtual environment with Oculus Rift,

Microsoft Kinect v2, and Leap Motion Controller, based on the existing room environments

from AI2-THOR [40]. Without defining any gestures and their meanings by ourselves, we

collected demonstrations from a group of volunteers who have diverse gesture preferences for

the same message to constitute our dataset. We also added learning modules supported by

RL so that the agent could use acquired information from the environment as well as gesture
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instructions to complete the navigation tasks. In our proposed framework, an agent should

therefore solve two tasks: multimodal target inference and navigation. Inferring the meanings

of human gestures and finding a path to the target location are two major goals of the agent,

which mutually help each other, i.e. learn to communicate and communicate to

learn. Details can be found in Chapter 3 and Chapter 4 as well as our publish paper [41].

This dissertation aims to explore the new dimension for embodied AI learning, which is

using a non-verbal communicative interface for human-robot interaction. We have made our

dataset and learning framework publicly available so that it can be utilized by the community.

This exploration could benefit the existing work with embodied navigation and other kinds

of learning and bring more possibilities for reasoning and understanding how humans and

robots could communicate with each other.
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CHAPTER 2

Background & Motivation

In this chapter, we will give a literature review on the prior works in the closely related

areas and show our motivation behind this dissertation. We focus on the following part:

in Section 2.1, we talk about why gestures are important and how gestures are applied to

multimodal communication. In Section 2.2, we review the development of HRI and how

gestures are incorporated in HRI. Lastly, in Section 2.3, we look at the progress of embodied

AI learning, including simulated environments, VLN, and RL for visual navigation.

2.1 Gestures in Multimodal Communication

Human communicates with the world inherently multimodal [42, 43] grounded in our sen-

sory systems. We use different channels to acquire information through various senses, e.g .,

reading texts or images through vision, listening to audio through hearing, and feeling the

temperature through touching. Exploration of multimodal communication has been a pivotal

topic in human cognition [44], and it has drawn attention from people from a plethora of

fields, e.g ., psychologists, sociologists, linguists, statisticians, and computer scientists. Be-

cause human exchanges language information primarily through face-to-face interactions,

we often share the joint attention for scene understanding [45], which could be explained

by both parties engaging in the communication both attending to the same object [46, 47].

Therefore, human speech is often accompanied or replaced by body language served as vi-

sual cues such as gestures, postures, eye gazes, and facial expressions [43] to manage this

joint attention in a multimodal way [48]. Evidently, gesture, as an unconventionalized and

6



(a) (b)

Figure 2.1: Different types of gestures used in our work. Two types of gestures are used in
this dissertation: (a) deictic or referential, where the human points with a finger, (b) metaphoric
or symbolic, where the human shows gestures in a rejective manner. Note that we have two types
of classification methods in regards to human-human communication [53] and human-robot com-
munication [54].

uncoded form compared with languages that have a definite symbol [49], is closely bonded

with human language development [50, 51].

To understand the importance of gestures, we need to first know how gestures are in-

volved in our communication. According to Susan [52], gestures contribute either directly

or indirectly in the process of understanding cognitive change. Susan suggests that, by con-

tributing indirectly, gestures can help the speakers to express their intents by displaying the

unspoken thoughts or ideas, e.g ., we often emphasize the key points by moving our hands

or arms in short strokes. The listener would be able to reckon on the gestures and associate

it with the context. In this dyadic communication, both the speaker and listener can benefit

from gestures in an active way of speaking and thinking interactively. Gestures can also play

in a direct way to take over speech and act as a whole representation, e.g ., we refer to a

target location by pointing with a finger instead of explicitly describing the context of the

location. This especially helps when verbal expression is not available or less convenient.

Following the terminology used by McNeil [53], gestures can be classified into 4 differ-
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ent types (1)deictics, (2)beats, (3)iconics, and (4)metaphorics. Deictics refer to the jointly

attended object by pointing toward it. Beats are repeated motions of hands or arms to

show the importance of the speech. Iconics are used to depict the concrete object, while

metaphorics can make abstract concepts visualized. Different types of gestures are of utmost

importance to co-occur with a speech in an assistive or representative manner. In this dis-

sertation, we focus on deictics (see Fig. 2.1(a)) and metaphorics (see Fig. 2.1(b)). Deictics

are the most straightforward way to use gestures as joint attention on the object, such as

pointing. This is what differentiates humans from wild animals in terms of gestures in the

sense of cooperative communication [39]. Metaphorics can be used to visualize abstract ideas.

They are both great candidates for gestures in embodied navigation which we will cover in

Section 2.3.

To date, researchers have attempted to understand gestures from different perspec-

tives spanning computer science, psychology, linguistics, and cognitive science. Early studies

rooted in the psychology of human-human interaction analyze the proxemics and kinesics of

gestures, studying the spatial and temporal characteristics [55, 56]. Those works use manual

behavioral coding procedures that are several decades old [57]. With the advancement of

computer vision and deep learning, we see more and more computational works with ges-

ture recognition or motion forecasting. In terms of gesture recognition, vision-based method

is the most prevalent with the Convolutional Neural Network (CNN) [58–62] either in 2D

or 3D. For motion forecasting, many approaches address the future poses prediction using

state-of-art deep neural networks and recurrent units [63, 64]. In this dissertation, unlike

other works contributing to gesture type classification [58], we don’t predefine gestures—we

want the embodied agent to uncover the semantics via the learning network. We hope the

human gestures collected will only have the spatial indication or conventional signals where

the intent and context are known to ourselves, and it is the agent’s task to reach “common

ground” [5]. We will cover more detailed gesture recognition technics in Section 2.2.

To pursue a data-driven approach to gesture understanding, it is also important to mea-
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sure and collect data with non-verbal communication information. There are many datasets

enclosing rich 3D body motion information acquired from videos or advanced motion capture

technics [65, 66]. A group of works in recent years also capture gesture datasets in a social

interactive setting [67]. Despite the prosperity of gesture datasets, there is no comprehensive

non-verbal dataset for embodied AI learning to our knowledge. We devise the motion capture

procedures to generate a dataset with both body motions and embodied tasks that could be

directly used in an embodied learning setup.

2.2 Human-Robot Interaction with Gestures

HRI has been intensively investigated in AI, Human-Computer Interaction, and robotics.

HRI systems can either use human supervisory controls or work in an automated way, which

help human complete routine tasks, reach inaccessible areas, or engage in social interac-

tions [68] in diverse settings like home, healthcare, education, manufacturing, agriculture,

mining, aviation, and so on [69]. We see teleoperated robots, which are directly and contin-

uously controlled by humans defined by Sheridan [70], work in a wide variety of situations

ranging from rehabilitation and surgery in healthcare to rescue tasks in disastrous hazards.

We have also noticed that semiautonomous or autonomous robots are being applied widely

from domestic to underwater to space [69, 71]. Those robots either work individually in a

single robot system or collaboratively as a multi-robot system [72]. We endow intelligent

robots or systems, humanoid or otherwise, with humanlike behaviors and expect one day

there will be fully autonomous robots like the famous movie character WALL-E.

As said, we are making more and more intelligent robots. In , we have the transition from

considering the robots as tools to making them our companions and teammates by assigning

them more cognitive and social meanings [73]. In other words, we witness dramatic changes in

human-robot communication as the dynamics of the human-robot interaction change. Early

human-robot communication could be addressed as Human-Computer Interaction (HCI).
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We operate a wide variety of media to control the robot directly or indirectly [74]. With

modern AI approaches, we are able to view the communication as a language-based mul-

timodal interaction [69], which makes it a mirror of human-human communication. Recent

advances in Machine Learning (ML) solutions, e.g ., NPL, promise to make the robot capable

of interpreting and responding to human languages [75]. However, using verbal cues merely

in HRI is not able to cover every aspect. Vocal communication is closely related to human

languages, which are developed through explicit social and cultural experiences and suffer

from the intricacies and ambiguities that are inherent in the real world [76]. These difficulties

hinder the development of NLP in vocal HRI.

Nonetheless, similar to nonverbal communication as inherited behaviors in human [77], we

could resort to the nonverbal communicative interface, e.g ., gesture-based interface, in HRI as

well. We have seen gesture or haptic control on robots via hand-wearable device [78] or HMD

in a VR or Augmented Reality (AR) setting [79], and it provides us with more dimensions to

contemplate on how we can manipulate robots in a more natural and multimodal way and

how robots can facilitate us collaboratively. Ideally, those interfaces should work seemingly

comparable to human-human team works. To understand how gestures influence human-

robot communication, we could connect it with the importance of gestures in human-human

communication as we have discussed in Section 2.1. Human understands gestures by acquiring

information with vision first and then processing the information with our cognitive systems.

Similar to how humans interpret gestures, we could also understand gestures in HRI from

those parts according to [80, 81]:

‚ Collections of raw gesture data by sensors

‚ Identification and tracking of gestures

‚ Interpretation of recognized gestures

‚ Robot reaction to gestures
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Collection of raw gesture data: Before the recognition part of gestures, the robot

needs to “see” the gesture. There are image-based and non-images-based approaches for

the perception of gestures [80]. The image-based method is inspired by how human beings

naturally see gestures. Optical cameras like single camera [82] or stereo camera [83] are

used for a robust construction of gestures. However, traditional optical systems suffer from

computational complexity and calibration difficulties [84]. With depth-sensing technologies

developing rapidly, depth sensors are favored in terms of gesture recognition. Compared with

traditional stereo cameras, depth sensors neglect the color information and simplify the data

to 3D depth information. It is a cheaper and easier solution for gesture recognition and less

prone to errors. However, because most depth sensors are resolution limited [80], it is usually

applied for body gesture recognition or hand gesture recognition in short distances. Non-

image-based approaches have also gained a lot of attention with different sensor technologies.

One branch is using wearable devices. Liu et al . [85, 86] has developed a glove-based system

to study human-object manipulation in AR and VR environments. Another branch is using

non-wearable devices. This type of technology does not need to directly contact the human

body and has the capability to get higher-precision hand gesture data in a short distance.

For example, Google has introduced Project Soli, which is a Radio Frequency (RF) signal-

based hand tracking system [87]. In a recent work by Li et al . [88], they utilize two different

sensors, Microsoft Kinect v2 and Leap Motion, to jointly integrate gesture data combining

both image-based and non-image-based approaches. Kinect v2 uses Time-of-Flight (ToF)

technology to capture body language, while Leap Motion is used to detect close-distance

hand gestures with IR light. Our data collection process is similar to the work presented

in [88], and we also want to use both of the sensors to provide holistic information on both

body and hand gestures.

Identification and tracking of gestures: The next step in a gesture recognition pro-

cess is how to detect gestural information in each frame and find the temporal difference

between frames. For gesture identification from raw data, it is natural to also use visual
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features. We could use check the color [89], local features [90], or shape and contour [91] on

a single image to identify a gesture. A recent trend of gesture identification also uses ML

algorithms to spot gestures with raw sensor data. Those methods usually do not need back-

ground removal and only reply to the learning algorithms [80]. For example, Tang et al . [92]

applies Random Decision Forest (RDF) in their 3D hand posture recognition systems. An-

other type of technology that has become extremely popular in recent years, especially with

the development of depth sensors, is utilizing skeleton models. As we may notice, it is unnec-

essary to identify or track every part of the part in order to interpret gestural information.

Point cloud information from depth sensors is largely redundant, and it can be simplified

to a skeleton model that provides the most valuable information. For example, some novel

works on recognizing sign languages adopt skeleton-based methods as their identification

systems [93, 94].

Interpretation of recognized gestures: The last but the most important step in the

gesture recognition process is how we interpret collected and tracked gestures. It reminds us

of how humans view gestures in the context of interactive communication. From the robot’s

point of view in HRI, this boils down to what humans are doing and why humans they are

doing it [54]. It is not practical to devise methodologies entirely based on the psychology of

human-human communication, and we should give more insights on the spatial and temporal

perspectives (i.e., proxemics and kinesics [56]) in regards of HRI to help the robot infer the

intent of human gestures.

To facilitate the understanding of gestures, there are a plethora of computational studies

on gesture recognition to study how gestures are incorporated as a part of the communication

system [58–62, 93–96]. In terms of understanding what humans are doing, we need to do

gesture classification. We could utilize different ML models to either classify gestures into

various categories. Different methods ranging from traditional learning algorithms like K-

Nearest Neighbors (KNN) [97], Hidden Markov Model (HMM) [98], and Support Vector

Machine (SVM) [99], to emerging deep learning techniques like CNN and Recurrent Neural
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(a) (b) (c)
Figure 2.2: Some typical predefined symbolic gestures. Humans use some conventionalized
signals in interactive communications [54]. Here are some examples: (a) We raise up our thumb to
someone who does a great job. (b) We show index and middle finger to mean victory. (c) We use
both hands to make a shape of heart to show love.

Network (RNN) [100] with increasing computation power. As to understand why humans

show a specific gesture, this requires the robot to be endowed with humanlike cognitive

intelligence. We have talked about gesture classification in Section 2.1 based on [53] with

respect to human-human communication. According to the prior work by Nehaniv et al . [54],

we could classify gestures in the context of HRI and human intents into those categories:

1) ‘Irrelevant’/Manipulative Gestures, 2) Side Effect of Expressive Behaviour, 3) Symbolic

Gestures, 4) Interactional Gestures, 5) Referential/Pointing Gestures. For symbolic gestures,

we use our conventionalized signals to classify gestures into different categories in order to

correctly interpret them (see examples in Fig. 2.2). For other types of gestures, we may need

to predict the human intent. For example, referential or pointing gestures are used to refer

to the target location or object of interest. Therefore, it is crucial for the robot to predict the

attended object or location from hand/finger motion [101] or eye gaze [102]. It is worth noting

that most of these approaches are based on a predefined gesture set with fixed meanings or

focus on gesture type classification [58], pose estimation [59, 60], or both [61, 62]. In contrast,

we let users use any natural gestures and demonstrate the agent can directly learn semantics

and underlying intents of these gestures.

Robot reaction to gestures. Interacting with human-aware behaviors for robots is

a challenging area in HRI [103]. This could be understood as how a robot should react

to gestures. Expressing their own intents is as significant as interpreting human intents
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for a socially interactive human-robot system. We have seen recent work in human-robot

communication seek to address this challenge in a variety of approaches, e.g ., the generation

of intent-expressive motion [104] and explicable task plans [105]. Nevertheless, a majority

of the work is focused on physical robots. Physical HRI affords high risk and cost, and

simulation could address such problem [106]. AR and VR are emerging in HRI, and they

are attractive to simulation human-robot behaviors. As a more affordable way to deploy

and train robots, many researchers choose to do extensive experiments in a VR environment

before moving to a physical device [85, 86, 106]. Our framework is also a VR-based HRI

system using Unity3D and Oculus Rift, and we hope that more extensive research could

be conducted under this framework. More information about simulation in HRI is covered

in Section 2.3, which is known as Embodied AI.

2.3 Embodied AI Learning

Embodied AI, which means “AI for virtual robots”, finds a tangible intelligent robot or

system that humans could interact with. Different from internet AI that learns from static

datasets of images, videos, and texts [107, 108], embodied AI is faithful that true intelligence

can emerge by interacting with the environment [109] egocentrically just as how humans sense

the world. Embodied AI is, therefore, at the intersection of vision, language, and reasoning

for an intelligent embodiment in simulation [11].

Echoing the idea in [7], we intend to bring “common sense” to embodied AI, i.e., we want

AI to not only have embodied physical abstraction but also possess humanlike cognition. Such

cognitive AI can have multimodal communication with the human in simulation, including

non-verbal means of interaction. Additionally, it should think more on why instead of how

in understanding human intent for HRI.

In this section, we build upon the most recent survey on embodied AI [11], which is the

most comprehensive survey that investigates embodied AI to the best of our knowledge, and
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include some most recent works to show an overall picture in this field. In Section 2.3.1,

we survey some most prevalent embodied AI simulators and benchmark them from different

perspectives. In Section 2.3.2, we review different research tasks on those existing simulators.

Finally in Section 2.3.3, we provide that how RL is applied for embodied AI learning. Addi-

tionally, we want to demonstrate how our work is related to the prior literature by reviewing

all aspects of embodied AI.

2.3.1 Embodied AI Simulators

To help the research in embodied AI, various simulated environments have spurred for the

community’s benefit (see Table 2.1). Different from the earlier environments like DeepMind’s

Arcade Learning Environment [124] or OpenAI Gym [125], which are designed for general

agents, they are of critical importance for research on the intelligence with an embodiment

where the agents have humanlike sensibility and consciousness. Those environments are

curated for different purposes in embodied AI, from benchmarking RL tasks in a simple 3D

game platform [110] to evaluating robotic manipulation tasks with fine-grained physics [126],

and we have seen a growing interest and effort in benchmarking advanced deep learning,

reinforcement learning, and robotics in a general-purpose platform.

In Table 2.1, we summarize the provisions of some most recent simulators for different

features in order to give a comprehensive look at the state-of-the-art embodied AI plat-

forms. This is a more thorough summary compared with existing surveys on embodied AI

simulator [11, 40, 118]. Despite BabyAI, which is designed uniquely for grounded language

learning with a 2D setting, most simulators are constructed in a 3D environment. Those 3D

environments are created from either synthetic scenes [40, 112–115, 118, 121, 127] or real pho-

tographs [26–28, 112, 113, 119]. For simulators with photorealism, they need real-world scans

with software in portable devices or depth sensors. They are literally a replica of the real

world and therefore retain higher fidelity, benefitting a Sim2Real transfer. There are existing

datasets scanned from real-world like SUNCG [122], Matterport3D [29], Gibson [27], and
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Replica [123]. In contrast, simulators without photorealism are generally built with game

engines like Unity3D or Bullet. They use objects from 3D assets like PartNet [128] and

Unity Asset Store. They need fewer resources and are more customizable compared with

world-based simulators.

Another important feature of a simulator is its physics. To mimic a realistic environment,

physical interactions between objects are also important for embodied AI to study interactive

navigation or language-based tasks. Several simulators have enabled simple or advanced

physics as a part of the environment using simulation engines like Unity3D or Bullet [40,

114, 115, 115, 118, 127]. Simple physics include rigid-body dynamics and kinematics. They

can simulation behaviors like collisions between objects [112]. Some simulators, e.g ., AI2-

THOR [40] and VRKitchen [116] provide both object interactions and object state changes

on top of that. Advanced physics, e.g ., soft-body dynamics, are more intricate. Simulators

like ThreeDWorld [118] are capable of emulating those complex physics in their environment.

More advanced features can support more complex embodied AI tasks, facilitating research

from more dimensions.

Despite the sprout of various simulators, we see the deficiencies in relating embodied AI

simulators with HRI, especially with non-verbal cues. There are many simulators with robotic

embodiment [40, 114, 120], but they are mostly concerned with visual navigation tasks and

neglect human factors. Although VLN [23] and EQA [13] tasks frame HRI in a language-based

setting, only verbal cues are considered. There are simulators with human interfaces that

allow HCI with non-verbal features. For example, VRKitchen [116] and ThreeDWorld [118]

both have VR-based human-centric interactions with the environment. Human operators

can use VR devices to pick objects or change object states. However, both of them are

human-centered. Even though ThreeDWorld has robotic embodiment, it does not take the

significance of the robot in the interactions, i.e., how robots understand human intents.

For this reason, we build our own simulator based on AI2-THOR [40] and extend current

embodied AI simulators with support for non-verbal HRI [41].
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2.3.2 Embodied Visual Navigation

2.3.1 covers all kinds of simulators which are the basics for conducting embodied AI ex-

periments. The motivation to build the aforementioned simulator is to raise awareness in

cognitive AI research with an embodiment. Humans learn to know everything mostly by

interacting with the surroundings with the sense organs to update our belief of the world.

Likewise, robots, or intelligent agents in a general sense, also require perception, interaction,

communication with the whole world as a result of sensorimotor actuations [129]. From an

embodied AI viewpoint, this boils down to different tasks commonly seen in robotics like

embodied navigation, embodied interaction, and embodied learning [11].

There is not a canonical taxonomy for embodied AI tasks yet from prior literature. We can

group the tasks in four main types which are visual exploration, visual navigation, embodied

question answering, and visual interaction, echoing a similar classification in [11]. Visual

exploration is a primitive yet important task for embodied AI [130–133]. It is task-agnostic,

and the agent needs to move around in an open environment to collect information for

downstream tasks [134]. Visual navigation. The objective is often considered as the coverage

of the unseen environment [130] or building the internal model of the environment through

the exploration [133]. Contrary to visual exploration, Visual navigation is accompanied by

a determined task, either a point, an area, or an object [135]. The agent is required to

reach the proximity of the target by navigation in an unknown environment. This poses

more challenges on the agent as it needs to understand the environment semantically via

different modalities [12, 21, 28, 136–140]. Embodied question answering (EQA) is to perform

Question Answering (QA) in an embodied setting [13]. The agent needs to harness a variety of

its AI capabilities, such as visual perception, language grounding, and cognitive reasoning,

to complete the QA along with some concurrent tasks like navigation. Visual interaction

refers to tasks that require the agent to interact with the environment [30, 126]. The task is

often manifold that the agent seeks to complete a series of tasks in order to reach the end

goal through interactions with objects. Both EQA and visual interaction want the agent to
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Visual Exploration Visual Navigation

Embodied Question Answering Visual Interaction

Go to the 
round table

What’s the color of 
that table

Brown!

Bring that table 
to me

Figure 2.3: Different research tasks in embodied AI. This is a visualization for four main
types of embodied AI research. In this example, visual exploration is target-agnostic, and the robot
needs to build a representation of the room. For the other tasks, the robot is given a target table
and asked to either navigate to the target, answer a question concerning the target, or interact with
the target.

“interact” in general, either with objects or humans, making the learning task more onerous

and challenging. See Fig. 2.3 for a visualization on different tasks.

In this dissertation, we will focus on the visual navigation task, which is the most funda-

mental task for embodied AI. As seen in Fig. 2.3, EQA and visual interaction are often down-

stream tasks of visual navigation, i.e., the agent must find the target in order to complete

the subsequent tasks. Animals are capable of exploring unseen environments and pursuing
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distant objects even in a cluttered environment. Navigation is also of central importance

to mobile intelligent systems [135] to adapt to a new environment before proceeding with

advanced behaviors [141]. Hence, constructing an intelligent agent in a simulator that can

successfully and efficiently navigate to the target is pivotal for embodied AI as well.

According to the recent surveys on embodied navigation [135, 142], visual navigation can

be classified into PointGoal, ObjectGoal, and AreaGoal navigation based on the nature of

the goal. PointGoal navigation requires the agent to navigate to a specific location. Object-

Goal and AreaGoal navigations task the agent to navigate to a semantically labeled target

object or area. Notably, PointGoal and AreaGoal navigations provide spatial information,

and both ObjectGoal and AreaGoal provide semantic information. Among them, PointGoal

and ObjectGoal navigations are the most common tasks for embodied AI. Yet PointGoal

navigation has drawn much attention by incorporating different methods [28, 136, 143, 144],

e.g ., [136] utilizes a modular structure to update the confidence and belief of the world while

moving toward the target. The task is rather simplified against other tasks. The target is

a point in space, often represented by a coordinate, and the focus is on episodic memory

construction for the unseen environment, similar to visual exploration. On the other side,

ObjectGoal navigation (or ObjectNav [142]) is defined as navigating to a specified object.

Beyond the skillsets possessed by PointGoal navigation, such as visual perception, episodic

memory construction, mapping, and planning, ObjectNav also requires cognitive reasoning

and semantic understanding, making it more challenging. Besides, since ObjectNav has a

concrete object as the target, it is considered as the upstream task for many downstream

tasks that are more complicated such VLN, EQA, and so on.

While ObjectNav has grown interested in the embodied AI community, it requires a

consensus on the task definition. [142] and [9] has made great contributions and led to a

convergence on ObjectNav. One ought to accurately define a high-level depiction of the task:

What do we consider as successful navigation? What is the embodiment for the agent? What

environments do we use? Those questions constitute a comprehensive understanding of the
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task, and we can test and evaluate our agents with the well-established definition. We will

cover more details in Section 4.2 with respect to our own problem.

Visual navigation boils down to a motion planning task in an unseen 2D or 3D envi-

ronment. From the point of view of traditional robotics, it can be decomposed into several

sub-tasks as mapping, localization, planning, and locomotion. In terms of mapping and plan-

ning, there are a plethora of works Simultaneous Localization and Mapping (SLAM) focusing

on building the metric map using geometric information [145]. Therefore, we could see some

visual navigation tasks solved with this non-learning method. For example, [140] adopts ad-

vanced algorithms from SLAM field to build the local map and localize the agent from the

depth sensor. Afterward, a D* Lite algorithm [146] is employed to accurately calculate an

optimal path from the previously built obstacle map and then use a proportional-integral-

derivative (PID) controller to generate discretized locomotions. The non-learning method

often requires the geometric scanning of the environment to reconstruct the space, which

means that extensive hand-engineering is involved and sub-tasks are necessary, making it

susceptible to sensor noises. In stark contrast, a learning method could exploit regularities

in the data and train a model in an end-to-end manner while preserving competitive perfor-

mance [143], leading to a consistent behavior even in downstream tasks. Thanks to the rapid

development of deep learning [147], a surge of interest in using learning-based methods is

found in the embodied AI community [12, 21, 28, 130–134, 136–140]. Learning can be done ei-

ther with an end-to-end model [122, 139], or with modular structures [136, 138]. Some works

also add auxiliary supervised or unsupervised tasks to assist the entire learning process, e.g .,

building an occupancy map and comparing it with the ground truth [133]. Besides, we see

humanlike knowledge like scene prior added to endow the agent with human awareness [148].

It is worth noting that, among all kinds of learning methods, RL, or specifically Deep Rein-

forcement Learning (DRL), is widely used for the navigation task. Embodied navigation does

not include clearly labeled or grouped features to be applied with supervised learning and

unsupervised learning. However, RL only concerns with state-action transitions and it helps
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us to complete AI-driven navigation tasks (refer to Section 2.3.3 for deeper dive on RL in

embodied navigation). Considering the pros and cons of learning and non-learning methods,

some works contribute to a hybrid solution that combines both approaches [136, 138]. For

example, Chaplot et al . [138] predict the high-level map with a Neural SLAM module and

generate low-level navigation policies with a classic pipeline.

Visual navigation with a target can be further integrated with other modalities like

perceptual inputs, language instructions, and audios to either facilitate finding the target

or build toward more complex tasks [11], such VLN [12], EQA [13], IQA [14], Audio-Visual

Navigation [149], and Visual Interaction [150]. From the most recent works, using verbal cues

is a hotspot in visual navigation, which can formulate the task as grounding the language

in sequence-to-sequence visual information. Language grounding is crucial for both parties

involved in communication to understand each other. Natural language, the most common

modality for human-human and human-robot communication, can realize the grounding in

various ways. For communication with robots, language can be interpreted from instruc-

tional commands to actions [151, 152]. For static images or texts, it can be either visually

grounded [153, 154] or text-based [155] Q&A. In our work, language grounding is replaced

by “gesture grounding;” we provide gestures as the new communicative interface. The agent

is tasked to learn by grounding human gestures into a series of actions and identifying target

objects.

Image captioning with large datasets [156] and Visual Question Answering (VQA) [153,

157] has made significant progress in vision and language understanding, which enables

visually-grounded language navigation agents to be trained. Many tasks following the VLN

framework [12, 13, 15–24] have been addressed and solved using end-to-end learning mod-

els, either in 2D world [117, 158, 159], 3D world [16, 160], or even photo-realistic environ-

ments [12, 19, 20, 23, 127]. Our work is built on the existing VLN framework but extended

by incorporating gestures as a new modality for communications.
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Agent Environment 
Action (A)

State (S)

Reward (R)

Figure 2.4: Schematic diagram of reinforcement learning. At each time step t, the agent has
a state representation of the environment. It selects an action and gets an updated state with a
numeric reward.

2.3.3 Reinforcement Learning for Embodied Learning

As we have discussed in Section 2.3.2, instead of using traditional path-planning approaches [161]

to compute a route to the goal location, the embodied AI community has recently focused

more on end-to-end learning for training navigation policies, especially with RL. In RL, The

agent needs to learn a policy to maximize the cumulative reward by interacting with the

environment. Compared with other machine learning methods, such as supervised learn-

ing [162], RL benefits from simple reward definitions and easy implementations. As a result,

RL becomes the core of many learning frameworks [12, 27, 28, 136, 139, 148].

RL has become popular in recent years because of the human-level performance on Atari

games [163] and the success of AlphaGo [164]. More and more researchers in embodied AI

community are also devoted to applying RL in mapping, planning, and reasoning. Rein-

forcement learning is a Markov Decision Process (MDP) [165]. The agent interacts with the

environment with discrete time steps, t “ 0, 1, 2, 3.... For every time step t, we consider the

setting of a finite-horizon discounted MDP:

M :“ pS,A, p, r, γq, (2.1)

where S is a finite state space, A is a finite action space, pps1|s, aq is the transition

function, r : S ˆA ˆ S Ñ r0, 1s is the reward function, and γ P p0, 1q is a discount factor. A
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state is called Markovian iff it has the following characteristics:

ppst`1|st, atq “ ppst`1|st, at, st´1, at´1...s1, a1q, (2.2)

which indicates that the next state st`1 is only dependant on the previous state st. At

step t, the controller observes a state st and selects an action at P Ast according to a policy

π, which maps a state to an available action (see Fig. 2.4 for a schematic illustration).

The environment then transits to a new state st`1 with probability ppst`1|st, atq and the

controller receives an instant reward rpst, at, st`1q. Given a policy π : S Ñ A, we define its

value function V π : S Ñ as:

V π
psq :“ Eπ

„ 8
ÿ

t“0

γtrpst, at, st`1q|s0 “ s

ȷ

, (2.3)

where the expectation is taken over the trajectory following π. The objective of RL is to

learn an optimal policy π˚ such that its value (on any state s P S) is maximized over all

policies, i.e.,

@ π, s P S : V ˚ :“ V π˚

psq ě V π
psq. (2.4)

A policy π is said to be ϵ-optimal if it achieves near-optimal value for every state, i.e.

@ s P S : V πpsq ě V ˚psq ´ ϵ. The action-value function (or Q-function) of a policy π is

defined as

Qπ
ps, aq :“

ÿ

s1PS
pps1

|s, aq ¨
`

rps, a, s1
q ` γV π

ps1
q
˘

. (2.5)

The optimal Q-function is denoted by Q˚ :“ Qπ˚

. By Bellman Optimality Equation, we

have:
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V ˚
psq “ max

aPAs
Q˚

ps, aq “ max
aPAs

ÿ

s1PS
pps1

|s, aq ¨
`

rps, a, s1
q ` γV ˚

ps1
q
˘

. (2.6)

RL algorithms can be grouped into three categories: value-based method, policy-based

method, and actor-critic method [141]. The value-based method aims to estimate the value

function at a given state according to Eq. (2.3), and the agent selects an action with the

maximum state-action value. Q-learning [166] is widely used as a value-based RL algorithm.

It updates Q through the Bellman formula:

Qi`1ps, aq “ Eπ
rRt ` γmaxQipst`1, at`1q|st, ats, (2.7)

where Q is guaranteed to converge to its optimal value Q˚ when i Ñ 8 [167]. Traditional

Q-learning updates the state-action value with the following equation [165]:

Qpst, atq Ñ Qpst, atq ` αrrt ` γmax
a

Qpst`1, aq ´ Qpst, atqs. (2.8)

In Eq. (2.8), rt`γmaxaQpst`1, aq is the target value, and rt`γmaxa Qpst`1, aq´Qpst, atq

is the Temporal Different (TD). α is the learning rate to have a stable update on the Q

value based on the TD. This is a bootstrapping way to update the Q value. There are

also methods to update Q with Monte Carlo methods or a combination of them (n-step

bootstrapping) [165]. TD learning has higher bias and lower variance, while Monte Carlo

methods incur higher variance and low bias.

However, Q-learning is a tabular RL solution. It is not feasible when the state and action

space are continuous or large. Therefore, function approximation is used as a representation

for the Q table, e.g ., a neural network. We can hence write Qps, aq as Qps, a|θq, where θ is the

parameter for the Q network. This leads to the transition in RL from table-based Q-learning

to DRL. This idea is first introduced in [163], where they use a deep learning network with
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two convolutional layers as the function approximator of Q value.

Instead of indirectly computing the optimal policy, the policy-based method targets

directly modeling and updating the policy. The parameterized policy can be written as

πpa|s, θq, where θ is the policy network parameters. In order to maximize the expected re-

turn ErRts, we need to perform the gradient ascent on the objective function:

Jpθq “ Eπ

„ˆ T
ÿ

t“1

Gt∇θlogπθpat|st, θq

˙ȷ

, (2.9)

where T is the horizon and Gt denotes the return from time t. If the return is estimated by

Monte Carlo methods, this policy gradient is called REINFORCE. In vanilla policy gradient,

Gt is often replaced by Aπθpst, atq, where A is the advantage function with Aps, aq “ Qps, aq´

V psq.

The actor-critic method is a hybrid version of value-based and policy-based methods,

which combines the advantages of both of them. For the actor-critic architecture, the actor-

network chooses the action while the critic network evaluates the action taken at the current

time step. The following is one option to implement the actor-critic approach:

Jpθq “ Eπ

„ˆ T
ÿ

t“1

Qps, a|wq∇θlogπθpat|st, θq

˙ȷ

, (2.10)

where w is the parameter for the value network. We update both the policy parameters

with Eq. (2.10) and the value parameters with the TD error as shown in Eq. (2.8).

RL can be either on-policy or off-policy. On-policy algorithms learn the optimal policy

that is carried out by the agent that explores the environment. For instance, DeepQ-Learning

(DQN) in [163] is off-policy. It has a replay buffer that collects previous trajectories of the

agent to reduce the correlation between samples. In contrast, in the off-policy method, the

agent explores a different policy than the learned one. Vanilla policy gradient is on-policy

since the policy learned is directly used for the value iterations.
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Of note, the aforementioned algorithms are reward-driven. The goal of them is to max-

imize the discounted accumulative rewards. However, this is challenging when the reward

is sparse (e.g ., a reward is given only when winning or losing the game), and it can be

astounding to shape the reward. One feasible solution to mitigate the problem is to use

Imitation Learning (IL). IL, or Learning from Demonstration (LfD) [168], tries to encourage

the agent to learn the optimal policy by following or imitating human demonstrations. In

IL, the problem boils down to getting the optimal policy π˚ with unknown reward functions

Rps, aq by the experts’ demonstrations (also known as trajectories)

τ “ ps0, a0, s1, a1, ...q. (2.11)

There are multiple ways to implement IL. The simplest form is Behavior Cloning (BC),

where the agent learns to imitate the expert behavior in a supervised manner, and the loss

function is defined as the difference between learned and demonstrated policies. We can also

use Direct Policy Learning (DPL) to iteratively update the policy while having access to an

expert at training time. For example, Dataset Aggregation (DAgger) [169] trains the actual

policy on all the previous training data. Another approach is called Inverse Reinforcement

Learning (IRL). As the name suggests, this method estimates the parameterized reward

function θps, aq inversely from the expert policy.

In embodied AI learning with RL, the actor-critic method is more favored than the

other methods in recent publications [12, 27, 28, 136, 139, 148]. Versatile experiments have

testified the effectiveness of actor-critic RL algorithms, such as DQN [163], Asynchronous

Advantage Actor-Critic (A3C) [170], PPO [171], and Soft Actor Critic (SAC) [172]. Although

the navigation task in embodied AI is manifold, the basic RL formulation is very similar. In

short, the agent needs to learn how to navigate with sparse rewards by interacting with the

environment. The state S includes the egocentric visual perceptions, including color images,

depth images, or even segmented images [26, 28], which constitutes the most important
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part of the agent observations. High-performance neural networks in CV can be used to

preprocessor encode the visual information. There are also other states available to the agent,

e.g ., target object semantic labels that are static, or language instructions that are either

static [12] or dynamic [14]. As to the agent’s actions, it depends on the embodiment of the

agent. If the agent is considered as a point mass, the actions are as simple as moving forward

and turning left/right [173]. If the agent has intricate robotic embodiment and fine-grained

movements, the actions are more complex, e.g ., the agent needs to move its arm to interact

with an object [126]. For the rewards, intuitively, a positive reward should be assigned when

the agent successfully navigation to the target or complete a task. However, this reward is

sparse, and only a very small portion of the possible states contribute to the success criteria.

Therefore, reward shaping is often necessary to make the learning sample-efficient [174].

Also, some studies use IL to pretrain the policy network as a bootstrapping in RL using

data aggregation methods [17, 136]. This helps the agent to warm up before learning and

mitigate the scarcity of rewards. There are also datasets generated as expert demonstrations

(e.g ., expert atomic actions to complete procedural tasks [30, 116]) to facilitate research on

IL-boosted embodied learning.

In this dissertation, we choose PPO [171] as the RL learning algorithm. PPO is an off-

policy actor-critic method. It uses a clipped objective function to ensure that the updated

policy does not deviate from the old one too much. Embodied visual navigation suffers

from sudden state changes, leading to rewarding fluctuations. PPO can help maintain stable

improvements on the policy and resolve the fluctuation issue. For this reason, PPO is one of

the most popular RL methods for embodied navigations [28, 41, 137, 139, 175].
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Name Year 3D photo-realistic
Environment
Configura-
tion

Physics Actionable
Simulation
Engine

HRI

DeepMind Lab [110] 2016 Yes No
Customized
environ-
ment

No No
Quake II
Arena

No

VizDoom [111] 2017 Yes No
Based on
Doom

No No ZDoom

MINOS [26] 2017 Yes Yes
SUNCG,
Matter-
port3D

No No - No

AI2-THOR [40] 2017 Yes Yes
120 syn-
thetic
rooms

Yes Yes Unity3D No

HoME [112] 2017 Yes Yes SUNCG Yes No Bullet No

House3D [113] 2018 Yes Yes SUNCG No No OpenGL No

VirtualHome [114] 2018 Yes No
6 hourse-
holds

Yes Yes Unity3D No

Habitat [28] 2019 Yes Yes
Matterort3D,
Gibson,
Replica

No No Magnum No

CHALET [115] 2019 Yes No
58 rooms,
10 hourses

Yes Yes Unity3D No

VRKitchen [116] 2019 Yes No 16 Kitchens Yes Yes Unreal4 No

BabyAI [117] 2019 No No
19 levels of
complexity

No No - No

ThreeDWorld [118] 2020 Yes No
Customized
environ-
ment

Yes Yes Unity3D No

iGibson [119] 2020 Yes No Gibson Yes Yes Bullet

SAPIEN [120] 2020 Yes No
Customized
environ-
ment

Yes Yes PhysX No

ActionNet [121] 2020 Yes No
Based on
AI2-THOR

Yes Yes Unity3D No

GesTHOR [41] 2021 Yes No
Based on
AI2-THOR

Yes Yes Unity3D Yes

Table 2.1: Summary of embodied AI simulators. We compare different simulators with sev-
eral selected features. 3D: if the environment is built in 3D (otherwise 2D). photo-realistic: if it
uses world-based scene (otherwise game-based scene). Physics: if it allows basic physics features
(otherwise there is no physics). Actionable: if objects in the environment can be interacted (oth-
erwise objects are non-interactable). In environment configuration, some simulators use existing
world-based datasets like SUNCG [122], Matterport3D [29], Gibson [27], and Replica [123].
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CHAPTER 3

GesTHOR: Simulation Framework for Interactive

Embodied Agent

In this chapter, we introduce our simulation framework for the interactive embodied agent,

GesTHOR, and present its novelty compared with other simulators. Fig. 3.1 is an overview

of the framework. It is organized in three sections: In Section 3.1, we briefly talk about our

initiatives creating this framework on top of Chapter 2. In Section 3.2, we discuss the key

components in GesTHOR. Lastly, in Section 3.3, we touch on our GOND in regards to why

and how we generate it.

3.1 Introduction

As the research in multimodal communication and embodied AI proceeds, the intersection of

two fields emerges and raises interest in both communities. Zhu et al . [7] call for a paradigm

shift to cognitive AI systems with humanlike common sense, and this shift also takes place

with embodied AI. The most important modality for the embodied agent is vision, which is

the basis for almost all embodied AI systems, just as how imperative vision is for humans.

However, human uses different senses to perceive the world, and a humanlike agent should

also be capable of fusing various sensory information. To this end, multimodal inputs are

injected into the learning process of the embodied agent. Language instructions are most

commonly used as one of the multimodal cues in numerous works [12, 13, 16, 19, 20, 22, 23,

117, 158–160, 176–178] with NPL technologies to ground them as machine-readable features.
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External
Communicator

(d)
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Turn Left

Turn Right

Stop

(b)

Learning
Models

(e)

States

Rewards
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Unity

Python

Figure 3.1: Overview of GesTHOR. (a) Scenes and the (b) learning agent are built in Unity.
The agent can perform four actions: move forward, turn left, turn right, and stop. (c) It receives
several sensory inputs, including RGBD images, target semantic labels, and human gestures. Unity
contains (d) an external communicator that can communicate with the (e) RL learning model in
PyTorch. The learning model receives states and rewards from the communicator and sends back
chosen actions.

Other modalities such as semantic scene priors [148], Object Relation Graph (OGR) [179],

and audio signals [175, 180] are used to equip the agent with human-level knowledge to help

explore in seen and unseen environments. Notwithstanding the breakthrough in multimodal

embodied AI, non-verbal communications are scarce. We claim that HRI with non-verbal

cues is also important for embodied AI in both physical and simulation environments. In

view of that, we propose a new framework, GesTHOR, for both simulations with embodied

agent and interactions with learning objectives. We hope GesTHOR can help researchers in

embodied AI in a new horizon.
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3.2 Simulation Environment

3.2.1 Environment Overview

To build our simulation environment that supports multimodal HRI, we need several charac-

teristics: (1) Photo-realistic: Sim-to-real (or sim2real) transfer is the bridge that connects

embodied AI and robotics, and photorealism is a necessity for successful sim2real trans-

fer [181, 182] by reducing the extra workload on domain adaptation. Besides, the develop-

ment of computer graphics can render high-quality 3D assets that are built upon real-world

objects, and game environments like Deep Mind Lab [110] and VizDoom [111] are no longer

popular. (2) Interactive: This feature distinguishes our work from other frameworks. De-

spite the number of simulators for embodied AI, most of them focus only on visual richness

and object physics. According to Table 2.1, there are many simulators that support object

interactivity [40, 114–116, 118–120] so that either the user or the agent can manipulate the ob-

ject. However, none of them pays attention to the interactivity between humans and agents.

Our environment is human-robot-interactive. (3) Customizable: One of the problems in

current embodied AI research is the reproducibility of the result. The simulator should be

customizable and compatible with different methods.

Taking those features into account, we choose AI2-THOR [40] as the starting point to

build our simulation environment. AI2-THOR is a simulator built on the Unity3D game

engine. It contains a diverse collection of 3D objects crowdsourced or created from scratch.

Those objects have photo-realistic textures and are actionable. From Table 2.1, AI2-THOR

has the most diverse environment configuration. It has 120 room-sized 3D scenes from 4

categories (kitchen, living room, bedroom, and bathroom) and over 100 categories with

thousands of unique object instances. It has been widely used for different visual naviga-

tion tasks [30, 139, 140, 148, 150]. Currently, AI2-THOR has three different environments for

different tasks: 1) iTHOR [40] for object interaction; 2) RobotTHOR [173] for sim2real

transfer; 3) ManiuplaTHOR [126] for atomic robotic manipulation. We name our simula-
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Figure 3.2: The humanoid agent and robot agent. The humanoid agent is manipulated via
sensory devices and has the whole body movement. The robot agent is controlled by users via a
Python API and has some basic robotic embodied motions.

tion environment GesTHOR to mean Gesture-based THOR and extend current AI2-THOR

environments. Because of its popularity, we think making AI2-THOR as the basis of our

simulaiton environment should help others using the same simulator adapt their work to our

environment.

3.2.2 Agent Embodiment

There are two types of agents in our environment: humanoid agent and robot agent (see Fig. 3.2).

Their details are explained below:

Humanoid agent. The humanoid agent has human appearances and embodied rep-

resentations (see left of Fig. 3.2), similar to the avatars used in VRKitchen [116] and Vir-

tualHome [114]. It is created using a humanoid avatar in Unity and can generate realistic

human actions. Users can either control the agent by creating C# scripts in Unity or using

Oculus Rift, Kinect v2 and Leap Motion Controller (LMC) jointly. The humanoid agent

can therefore exhibit interactive gestures, such as gazing, body posture, and pointing, to
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communicate with the robot agent, and the user could experience this VR-based interac-

tion by controlling the agent. This agent can be used to simulate a human-in-the-scene [41]

learning environment to study HRI. We will elaborate on the details of the VR interface

in Section 3.2.3.

Robot agent. The robot agent has the robotic look and actuation (see right of Fig. 3.2).

The physical robot used is LoCoBot, the same as the one in [173]. The physical robot is

equipped with an Intel RealSense RGB-D camera, and we are able to get the same physical

properties for the robot agent. Unity’s built-in camera component allows a 2D view of the

virtual space. It is attached to the eyesight of the robot agent at 1.5m from the ground with

a 90-degree field-of-view and provides real-time RGB images in the first-person view. The

resolution of the RGB images is 3ˆ224ˆ224, and each pixel contains scaled RGB values from

0 to 1. The depth image is extracted from the depth buffer of Unity’s camera view. It has a

size of 1 ˆ 224 ˆ 224, and each pixel value is a floating-point between 0 and 1, representing

the distance from the rendered viewpoint to the agent, linearly interpolated from 0m to

10m. The robot agent has a rigid capsule body with 0.3m radius and 1.5m height so that it

can detect collisions with environmental objects. The robot agent can execute simple robotic

actuation, including movements in 3D space, egocentric rotation, camera rotation (i.e., pitch,

yaw, roll), and crouch/stand. Users can control its behavior via a Python API as described

in [173]. This robot agent is able to exhibit fine-grained actions with the robot arm as shown

in [126]. Readers who are interested in the details can refer to that paper. The robot agent

3.2.3 VR Interaction Interface

3.2.3.1 Sensory Devices

VR is an essential technology for modern AI, where human handling is required in simulation.

The non-contact interactivity makes VR widely used in areas like education, military, surgery,

gaming, and so on. Extensive studies in VR have been conducted in HRI [106, 183]. For
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embodied AI, VR is also used as the human interface to interact with the objects [114, 116].

Unity3D game engine provides the ability to deploy across platforms and integrate third-

party resources, compatible with different sensory devices [88, 184]. It allows us to build an

interactive VR environment with gesture tracking functionality.

VR Headset: In our work, we use Oculus Rift (hereinafter referred to as Oculus) in

conjunction with the Unity3D engine to bring users a realistic experience in simulation. The

user can wear the Oculus HMD, and the two Oculus constellation sensors detect the rotations

of the headset with user height offset. After that, sensor data can be processed and sent to

Unity to update the head rotations of the humanoid avatar, thus changing the egocentric

view about the scene. The updated scene view is reflected back on the HMD so that the user

can be immersed in the simulation in real-time.

Gesture Tracking: After making a synchronous view connection between the user

and the humanoid agent, the next question is how to control the humanoid agent motions.

We follow the work of Li et al . [88] by incorporating two motion-sensitive devices, Microsoft

Kinect v2 (hereinafter referred to as Kinect) and LMC, for gesture recognition and data

collection. We didn’t adopt the method used by [116], where they use a pair of Oculus

controllers to track hand motions and calculate the body movements by Inverse Kinematics

(IK) solver. Oculus controllers only have a coarse capture of the hand motions, and the IK

solver is complex and prune to sensor noise. In contrast, Kinect and LMC can provide a

more accurate and stable recognition of human gestures. Many gesture recognition-based

studies have been conducted with the application of Kinect [185, 186] and LMC [187, 188].

Kinect works in mid and far ranges with body precision. Kinect is used to track overall body

movements but is incapable of capturing fine in-hand motions. LMC offsets the drawbacks

of Kinect providing fine-grained hand movements in short distances.

Device Arrangement: Fig. 3.3 illustrates the device arrangement. Users should stand

away from Kinect by 0.5m-2m for the best tracking quality. LMC is mounted on Oculus HMD.
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(a)

(c)(d)

(d)

(b)

Figure 3.3: Device arrangement for VR interaction in GesTHOR. The human player wears
an (c) Oculus headset with (b) LMC. (a) Kinect is placed 1.5m from the human player and 1.5m
above the ground. The screen displays (d) A humanoid agent that are mirroring the body and hand
movements.

During data acquisition, the human player is asked to wear the Oculus headset and face the

Kinect sensor within eligible tracking distance. It is worth mentioning that in order to track

the hand actions, especially finger actions, users need to move hands in front of LMC at a

distance between 30cm and 60cm for the best tracking accuracy. In Unity, a humanoid agent

(see Fig. 3.3d) mirrors players’ movements in real-time, including body composure and hand

motions.

3.2.3.2 User Interface

We provide a convenient toolkit for users to record and replay each program for their own

datasets. A program involves four elements: environment, human, robot, and instruction.

Environment encapsulates scene layouts and objects available. Human specifies the user

who perceives the environment and interacts with the robot. Robot tells all the information
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Attribute Value

Scene Kitchen 14
Target Object Chair
Target Position px, y, zq “ p1.5, 1.1, 2.3q

Human Position px, y, zq “ p2.4, 0.0, 4.6q

Human Rotation 90˝

Instruction “Go to this chair”
Audio audio.wav
Image image.jpg
Motion motion.csv

Table 3.1: Metadata of an example program. Each recorded program is connected with its
own metadata. The metadata can be used to retrieved the program details or replay the program
in Unity.

Body (tracked by
Kinect)

Hips, Upper Leg, Lower Leg, Foot, Spine, Chest, Upper Chest, Neck, Head,
Shoulder, Upper Arm, Lower Arm, Jaw

Hand (tracked by
LMC)

Hand, Thumb Proximal, Thumb Intermediate, Thumb Distal, Index Prox-
imal, Index Intermediate, Index Distal, Middle Proximal, Middle Interme-
diate, Middle Distal, Ring Proximal, Ring Intermediate, Ring Distal, Little
Proximal, Little Intermediate, Little Distal

Table 3.2: Tracked human body bones. Human body bones tracked by Kinect and LMC.

of the robot agent in the same scene with the humanoid agent. Lastly, instruction should

include what the human wants the robot to complete in terms of its observations, actions,

and objectives. This interface should helper uses simulate real human-robot communication

in multimodal ways.

Preparing the Scene: Since the user interface is intended to record embodied HRI

programs, it is important to provide plausible scenes and objects. All 120 rooms and objects

in iTHOR environment [40] can be used in our interface, and we allow users to choose their

own definition of the program. However, we do have restrictions for some tasks. For example,

for the object navigation task, target objects should be not be enclosed in a container. The

agent requires to “see” the target to make successful navigation. One can use the user’s

discretion to design the rule for generating the programs.
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Instruction: Go to this chair

Timeline

Human Motion in Reality

Human Motion in VR

Unity

1st person view (from Oculus)

3rd person view

Figure 3.4: Record human motions in a program.. This figure illustrates the process to record
human motions in a program with metadata saved in Table 3.1. The user follows the instruction
and gives a gesture to the robot agent (e.g ., pointing with a finger by the instruction“go to this
chair”). Human motions are synchronized in reality and VR.

y

z
x

y

z
x

Kinect

LMC

Body Skeleton

Hand Skeleton

…

95 joint angles

Unity Model

Figure 3.5: Human motion data processing. This is the workflow to process human motions.
Kinect and LMC have the raw data for body and hand skeletons, which store the coordinates of
tracked joints. They are fused by Unity SDKs and applied to the humanoid model. Unity keeps
track of 95 joint angles as the final output features.

Record a Program: Following the device setup as shown in Fig. 3.3, the user can

record a program with the sensory devices. The content of the program depends on the user’s

intent. In lieu of the multimodal features in GesTHOR, we allow information from multiple

channels to be recorded, including images, audios, and motions. These channels are saved as

37



separate files, and their locations, as well as other environmental messages, are recorded in a

metadata file. Table 3.1 is the metadata of an example problem. In this example, one needs

to instruct the robot to navigate to a target chair. He might point with a finger with a short

speech. He can choose to record the first-person view at each frame, the audio of the speech,

and the gesture motion. In terms of recording of a gesture motion, Fig. 3.4 demonstrates

the process. The user wearing a VR HMD is situated in the virtual environment and shows

a gesture. Kinect and LMC track the body and hand motions and get the raw coordinates

of tracked joints (see Fig. 3.5). Unity SDKs for Kinect and LMC handle raw data by fusing

body and hand collections and converting it to a vector of joint angles that can be applied to

the humanoid model in Unity. Unity humanoid avatar simplifies each connection point as a

hinge joint since each body part only has limited Degree of Freedom (DoF). This humanoid

character in Unity, therefore, is able to replicate the player’s motions in real-time.

Tracked human body bones are listed in Table 3.2. Their names align with names defined

by Unity HumanBodyBone enumeration. Notably, LMC tracks much more bones than Kinect

because of its higher precision. Our gesture collection differs from other works [184] by

including not only coarse body movement but also fine-grained finger motions. We argue

that body postures and finger configuration are both paramount in understanding gestures in

HRI, which has been testified for human-human communication [43]. Body conveys high-level

messages, e.g ., in which direction the target is, while hand transmits detailed information,

e.g ., where the target is in that direction.

Replay a Program: Our interface not only allows users to record and save programs

but also provides tools to replay any program. As shown in Fig. 3.6. When a program is

recorded, its metadata is dumped into a single file with all the information. The metadata is

the key to reconstructing the recording. For example, we can know the scene, objects, and

human/robot poses by referring to the metadata. We can even animate the humanoid agent

to reproduce the recorded human motion by scripting in Unity. The replay feature for a

program allows studies to emulate a human-in-the-scene case with the virtual world without
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Metadata

Figure 3.6: Replay a recorded program. Users can always replay the recorded program in Unity,
including scenes, objects, and human motions.

building the physical environments.

3.3 Gesture ObjectNav Dataset

In the previous section, we introduce our simulation environment and the VR! (VR!) in-

teractive interface. In this section, we talk about collecting data specifically for the object

navigation task, which is the most straightforward yet challenging task for embodied navi-

gation.

3.3.1 Implementation Details

Ideally, object navigation learning with gestures would take place in real-time, where a hu-

man player continuously observes an agent’s behavior and interacts with it such that the

agent can respond to the feedback immediately. Unfortunately, this “human-in-the-scene”

idealization is infeasible because the entire training process may take hundreds of thousands

of episodes. Therefore, we opt for using pre-recorded gestures to simulate real-time interac-

tions between the human player and the agent as closely and efficiently as possible, which

constitute our episodic Gesture ObjectNav Dataset—a dataset used for ObjectNav task with

natural gestures.
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Figure 3.7: Examples of referencing and intervention gestures. The first four columns are
referencing gestures, while the last one is an intervention gesture. Users perform different gesture
styles while pointing at various target objects in the scene. The top row shows the body movements
captured by Kinect, and the bottom row shows the hand configurations recorded by LMC.

For each episode, the users are provided with the environmental information, including

room type and room ID, target object type, target position, humanoid agent position, hu-

manoid agent rotation, robot agent start position, robot agent start rotation. There are two

types of gestures that humans can use: one is for referencing, and the other one is for in-

tervening. To record referencing gestures, a user is asked to communicate with the agent to

guide the direction to the target with a gesture. The user is given enough time to familiarize

the environment and come up with a natural gesture style. If ready, the user can show the

referencing gesture to the robot agent. We do not ask participants to use any specific gestures

such as pointing with a finger but encourage them to use any gestures as if they are talking

to another person. To record intervention gestures, the user is given a situation when the

robot agent needs a warning for his current movements. Therefore, the user can think of a

gesture in a rejective manner and show this gesture while facing the robot agent (i.e., waving

hands or crossing forearms). Note that intervention gestures are not recorded episodically.

They are saved as extra components in the dataset since they don’t rely on environmental

information. See Fig. 3.7 for examples of referencing the intervention gestures.
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Figure 3.8: Distribution of scene types in the train fold. This figure shows the number of
programs for different scene types for training.

Kinect and LMC recognize the gesture at 30 frames per second, and the real-time anima-

tions are displayed with the humanoid agent. At each frame, the transforms of all detected

body and hand joints are captured and converted to joint angles of the humanoid agent in

Unity as depicted in Fig. 3.5. Each user is given 100 frames to complete one gesture motion.

The gesture sequence, as well as the environmental information, is recorded as one episode in

the dataset. Each gesture sequence has exactly 100 time steps, although different sequences

have different idle leading or trailing times. We add this specification for easier processing

of the gesture features during model updates.

3.3.2 Dataset Statistics

AI2-THOR provides 120 scenes covering four different room types: kitchen, living room,

bedroom, and bathroom. We randomly split 30 scenes for each scene type into 20 training

rooms, five validation rooms, and five testing rooms. We have over 230,000 unique programs

for training (see Fig. 3.8) and 5,000 programs for validation and testing (250 programs for

each room). Every episode has a distinct referencing gesture and task definition. We also

have 20 different intervention gestures that can be used during the agent learning process.

Each program is defined by ps, o, po, ph, rh, pr, rr,mrq, where
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‚ s = the scene in GesTHOR,

‚ o = target object type,

‚ po = target position,

‚ ph = human position,

‚ rh = human rotation,

‚ pr = robot position,

‚ rr = robot rotation,

‚ mr = motion of referencing gesture.

One important aspect in GOND is that all gestures are natural. Naturalism is reflected

in several parts in the dataset: 1) Diversity. As shown in Fig. 3.7. Although the referencing

gestures need to provide directional cues, we can use different fingers or even the whole palm

to give the referential message. 2) Continuity. Each gesture should be a continuous motion.

A user usually starts from a natural standing pose, then proceeds to a leading pose, and

ends with a trailing pose. We claim that instead of treating gestures as static skeletons [93],

leading and trailing poses are also significant for a holistic understanding of gestures. The

learning agent should be able to uncover the semantics from each motion. 3) Imperfection.

Although referencing gestures are directional cues, it is impossible to know the exact position

of the target directly. We allow noises in gesture motions and think this is part of the agent

learning process.

Table 3.3 shows all the object categories and Fig. 3.9 is the distribution of GOND w.r.t.

object types. We choose 38 object types from AI2-THOR from different scene types. Note

that some objects come from a specific scene type (e.g ., ToiletPaper can only appear in

Bathroom), and some objects can be found in multiple layouts (see Fig. 3.10(b) where chairs

appear in the kitchen, living room, and bedroom). Multiple object instances with the same

categories can also exist in the scene (see Fig. 3.10(a) where seven chair instances show

in the same living room), posing challenges for the object navigation task. We show the

distribution of object instances with the target category in Fig. 3.11. Of note, there are
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Scene Type Object Categories

Kitchen
Apple, Break, ButterKnife, Chair, Cup, DiningTable, Fork, Knife, Pa-
perTowelRoll, Plate, Potato, RemoteControl, SideTable, Spoon, Tomato,
Window

Living Room
ArmChair, Box, Chair, CoffeeTable, DeskLamp, DiningTable, FloorLamp,
Laptop, Newspaper, Plate, SideTable, Sofa, Television, TissueBox, Win-
dow

Bedroom
AlarmClock, Box, Chair, DeskLamp, Laptop, Poster, RemoteControl,
SideTable, Sofa, Television, TissueBox, Window

Bathroom
HandTowel, HandTowelHolder, PaperTowelRoll, Plunger, ShowerCur-
tain, ShowerDoor, SideTable, TissueBox, ToiletPaper, ToiletPaperHanger,
Towel, TowelHolder, Window

Table 3.3: Object categories in GOND for different scene types. The object categories are
selected from AI2-THOR as our navigation targets. Some objects are unique for a scene type, while
others can appear in different scene types.

Figure 3.9: Distribution of object types in the train fold. This chart shows the number of
programs for different object types for training.

around 30% programs in train, validation, and test sets that have multiple instances, which

is not a trivial object navigation task. Besides, we make sure that all the objects are visible

in the scene, not occluded by objects from the humanoid agent’s field of view and reachable

from the starting location of the robot agent. From Table 3.3, we know that furniture like

chairs and tables appear more frequently in the dataset because they exist in different scene

types and are easier to be recognized. This should align with human common sense since we

also interact with those objects more often in our daily communication.
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(a)

Chair

Chair

Chair

(b)

Kitchen

Living Room

Bedroom

Figure 3.10: Object diversity in our gesture dataset. We show the diversity of objects in
GOND from two aspects: (a) Multiple instances of the same categories in the same scene. (b) The
same object category in different scene types.

34.8% 29.7% 33.6%

Figure 3.11: Number of instances with the target category. We show the number of programs
for the different number of object instances with the target category in train, validation, and test
folds. The percentage in each fold with multiple object instances is also displayed on the plot.

Fig. 3.12 demonstrates the spatial diversity in GOND. Fig. 3.12(a) shows the geodesic

distance distribution between the robot’s initial position and the target position. Geodesic

distance measures the shortest-path distance in the environment [135]. This metric takes the

structural information into account and depicts the reachability to the target from the robot’s

perspective. We see that the geodesic distances distributes in different ranges with an average
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Figure 3.12: Spatial relationship in the scene. To illustrate the diverse spatial distribution in
our dataset, we show the histogram of (a) geodesic distance between robot and target and (b)
Euclidean distance between robot and human.

of 1.52m (1 unity in Unity represents 1.5). Fig. 3.12(b) shows the Euclidean distance between

the robot’s initial position and the human position. This tells us the distance between human

and robot when human shows the gestures. Human intends to behave differently when the

proximity to the robot changes, and our dataset captures a diverse collection of the distances

to ensure the variety of gestures.
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CHAPTER 4

Embodied Navigation with Natural Gestures

In this chapter, we will talk about the task we work on with the dataset introduced in Sec-

tion 3.3—an ObjectNav task with natural gesture instructions. After brief introduction on

the choice of our task in Section 4.1, we will start with the problem formulation (Section 4.2)

followed by the RL learning network (Section 4.3). Finally, we present our experimental re-

sults both quantitatively and qualitatively (Section 4.4).

4.1 Introduction

According to our literature review in Section 2.3.2, there is a diverse collection of tasks

for embodied intelligent agent (see Fig. 2.3 for some examples). They utilize various learn-

ing approaches and provide different benchmarks to evaluate the agent performance. By

interacting with the virtual world egocentrically and integrating numerous modalities like

image, depth and GPS, the agent acquires different skillsets like exploring [130–133], object-

finding [12, 21, 28, 136–140], and question-answering [13, 14, 157, 178, 189].

Notwithstanding the versatility and diversity of embodied AI tasks, there is a lack in

the exploration of non-verbal interactions. From a human perspective, our natural way of

communication is interwound with verbal and body language. For example, in Fig. 1.1, we

prefer to express our intent with a short sentence and a natural pointing gesture. From an

AI perspective, more communicative channels can help its generalization to unseen envi-

ronments. For example, when there are multiple instances of the target object type in the
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scene, it is cumbersome to describe the context verbally and ambiguous for the agent to

understand. What’s more, when adapted to a new environment, it is hard for the agent to

process new contextual information. To this end, we plan to conduct a thorough study with

the object navigation task and use natural gestures from GOND. We contemplate on prior

arts and quest for the following questions: Instead of using natural language, can we replace

the language grounding by gestures in a similar setting? Can we improve the performance

of navigation with gestures incorporated? Can the learning agent acquire the underlying

semantics of gestures, even when they are not predefined?

4.2 Problem Formulation

Our task can be grouped as an ObjectNav task [142]. In each training or evaluation episode,

we randomly select one program from the dataset. The robot agent and humanoid agent are

initiated at specified locations. Other environmental layouts should also be included in each

program of GOND. Note that there can be more than one instance of the target object type

in the same environment (see Fig. 3.11). Different from the criteria set up in [135] where the

agent is encouraged to navigate to the object instance that is closest to its starting position,

we have a specified target if there are objects with the same type in the scene. To complete

the task, the agent must navigate to the specified target instance. The embodied robot agent

has four available actions: turn left, turn right, move forward, and stop. Each turning action

results in a rotation of 15˝, and each forward action results in a forward displacement of

0.25m. An episode is deemed successful iff the following conditions are satisfied [142]:

‚ Proximity: The robot agent, which could be abstracted as a point mass, must stay

with a 2D Euclidean distance less than 1m from the target. For computation efficiency,

we also abstract the target as a point mass in its center. This value is chosen empirically

to ensure the navigation task is not trivial to the robot agent.

‚ Visibility: The object must also be within the agent’s field of view in order to succeed.
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We consider the robot agent has a field of view of 90˝. We enforce lenient criteria that

at least 1 pixel of the target should be within the observation frame.

‚ Awareness: It is important to know that the agent “understands” the human intents.

Therefore, the agent then needs to issue a termination (i.e., stop) action in the prox-

imity of the goal. We allow the agent to issue multiple stops in an episode but measure

success rates using different numbers of maximum stops (1-3). We allow an unlimited

number of stops in training; the agent needs to explore and learn after issuing incorrect

stops in earlier episodes.

An episode is terminated if the above success criteria are met or the maximum allowed time

step (which is 100 in our setup) is reached. The limitation on the number of steps encourages

the agent to complete the task efficiently and also leaves a margin for the agent to explore at

the start of exploration, considering that the average number of steps required to complete

an episode is around 20.

4.3 RL Learning Architecture

4.3.1 Learning Objective

We formulate our visual gesture navigation using DRL, specifically PPO. Our learning pro-

cess can be viewed as a Markov Decision Process (MDP). At each time step t, the agent

perceives a state st (i.e., a combination of the sensory inputs), receives a reward rt from the

environment, and chooses an action at according to the current policy π:

at „ πθpat|stq, (4.1)

where θ represents parameters for the function approximator of the policy π. PPO is an

actor-critic model. It uses the following objective to update the policy:
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LCLIP
pθq “ Eπ

„ T
ÿ

t“1

minprtA
π
t , clipprt, 1 ´ ϵ, 1 ` ϵqAπ

t q

ȷ

, (4.2)

where rt “
πθpat|stq

πθold
pat|stq

. rt measures the difference between the new policy and old policy. ϵ is a

hyperparameter that ensures that new policy will not deviate too much from the old policy,

leading to a rather stable policy update.

In our work, the advantage value in Eq. (4.2) is represented by the General Advantage

Estimation (GAE) [190]. Advantage can be estimated using either TD as shown in Eq. (2.8),

or Monte Carlo runs. However, the first one has a high bias, and the second one has a high

variance in value estimation. One solution as described in [190] is annealing between those

two by taking the exponential average of them. The advantage function is:

A
GAEpγ,λq

t :“
8
ÿ

l“0

pγλq
lδVt`1. (4.3)

Here, γ is the exponential weight discount, which trades off the bias variance. λ is the discount

factor for the future rewards. δVt`1 is the TD advantage estimate:

δVt`1 “ rt ` V pst`1|wq ´ V pst|wq, (4.4)

where w is the parameters for the value function approximator. To get AGAE
t , we have the

following relationship given a trajectory:

AGAE
t`1 “ δVt ` pλγqAGAE

t . (4.5)

Since our objective to maximize Eq. (4.2), it is identical to perform Stochastic Gradient

Descent (SGD) on the objective function to update the actor and critic network (i.e., θ and

w). See Algorithm 1 for the entire algorithm.
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Algorithm 1 PPO learning for the navigation agent

1: Parameters: ϵ, γ, δ.

2: Initialize policy network parameter θ and value network parameter w.

3: for k “ 1, 2, . . . do

4: for t “ 1, 2, . . . do

5: Collect a rollout τk on current policy πpθq until N time steps are reached.

6: Compute δVt with Eq. (4.4).

7: Compute AGAE
t with Eq. (4.5).

8: Do mini-batch SGD on Eq. (4.2) to udpate θ and w.

9: end for

10: end for

Hyperparameter Value

Rollout length 128
Update repeats 4
Learning rate (r) 0.0003

Clipping parameter (ϵ) 0.2
GAE [190] parameter λ 0.99
Discount factor (γ) 0.99

Table 4.1: Hyperparameters for training PPO agent. All hyperparameters are fine-tuned
empirically.

4.3.2 PPO Implementation

Our implementation is built on AllenAct [191], which is a flexible learning framework de-

signed uniquely for embodied AI research. It is supportive of different simulators and research

tasks. In our work, we make some modifications to the ObjectNav task in the AI2-THOR

environment from AllenAct. The learning network is implemented in PyTorch [192], and the

model is trained with four NVIDIA GeForce GTX 2080Ti GPUs. Each model is trained with

20 threads at 200 frames per second (i.e., 20 Unity instances are invoked, and the frame rate

takes all environments into account). The number of threads is selected empirically, with a

trade-off between the single instance frame rate and the total frame rate.

We implement our PPO algorithm with 128 steps in a single rollout and repeat the

mini-batch gradient update four times. The buffer size is 1280 to save rollouts for the policy

50



upate. We use Adam [193] as the optimizer for SGD with a learning rate of 0.0003 that

linearly decays to zero, and the maximum gradient norm is 0.5. We choose a discount factor

of 0.99, a GAE coefficient of 0.99, and a clipping ratio of 0.2. The detailed hyperparameters

for training PPO agent is listed in Table 4.1.

In terms of rewards, the agent receives a positive reward of `1 if it completes the navi-

gation successfully. Since we encourage the agent to reach the target object with a minimal

amount of steps, the agent receives a small time penalty of ´0.001 for each step. We further

add a collision penalty of ´0.005 for each collision detected; the collision penalty is added to

mitigate “sliding” behavior stated in [12]. If the agent stops in the wrong location, a penalty

of ´0.01 is added. This reward scheme should provide incentives to the navigation agent so

that it prefers exploration to exploitation at the beginning of the training (i.e., maximize

success rate), and allow the agent to gradually learn the optimal navigation policy (i.e.,

maximize efficiency). Although the reward is sparse, we allow multiple stop actions to make

a smooth learning curve.

4.3.3 Learning Network

We equip the embodied agent with different sensory modalities, and each of them feeds into

a part of the input network for the RL model. All layers in our network are followed by a

Rectified Linear Unity (ReLU) non-linearity function. Below we introduce these components

of the architecture.

Visual network: The backbone of the visual network is ResNet-18 [194] pre-trained

on ImageNet. It takes 224 ˆ 224 ˆ 3 RGB and 224 ˆ 224 ˆ 1 depth images as inputs. The

weights of all layers in the network except the last fully connected layer are frozen during

training to extract 512 ˆ 7 ˆ 7 features from the conv5 layer. These features are fed to 2

CNN layers with 1 ˆ 1 convolutions to reduce the number of channels from 512 to 64. The

output features are flattened and a fully-connected layer produces 512-dimensional visual
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feature vrgbt and vdeptht for RGB and depth perceptions respectively.

Gesture network: The raw input of the gesture network is a sequence with 100 time

steps and 95 features. Each feature represents the joint angles from the Unity humanoid

model, which are processed from the coordinates for tracked body and hand joints by Kinect

and LMC (see Fig. 3.5). The gesture input is flattened and encoded into a 512-dimensional

gesture feature gt.

Semantic network: In addition, we provide the target object category from a selected

set and pass it to an embedding layer of dimension 512 denoted as semantic feature mt. This

is equivalent to speech or text instructions from a user in prior work on interactive embodied

agent learning. Since our focus in this paper is the gesture, we simplify this part of the input

as a categorical variable (e.g ., a single word in a fixed vocabulary). Note that this vector

alone does not specify the target object location: There can be multiple instances of the

same object category in the scene, and the agent needs to infer which instance the human

player is referring to.

Actor and critic networks: Both the actor and critic networks are 2-layer MultiLayer

Perceptron (MLP). Each layer has 512 features. Their parameters are aforementioned θ and

w. The critic network outputs a single value as the estimation of the value function V pst|wq.

The actor-network outputs four logits as the log probabilities for the robot agent actions.

A logistic regression function is applied to get the probability distribution, and the robot

selects an action according to this distribution.

Note that vrgbt , vdeptht , gt, and mt are concatenated on the last dimension to get a 2048-

dimensional feature vector. There is a memory unit using Gated Recurrent Unit (GRU) [195]

after this combiner to encode and memorize the history of navigation. The GRU has two

layers with a hidden dimension size of 512. The 512-d feature produced by the GRU is

encoded by the actor and critic network separately to get the value and action. The overview

of our RL learning model is depicted in Fig. 4.1.
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RGB 224×224×3
depth 224×224×1

Gesture 100×95

object “bread”

ResNet18

Observation Combiner GRU

Encoder

Encoder
Value Action

RL Model

Environment

Figure 4.1: The RL learning model. Our model fuses perceptions from different sensory modali-
ties, and the actor-critic model samples an action in each step according to the updated policy and
send it back to the environment.

4.4 Experiments

We set up benchmarks to define object navigation tasks in GesTHOR with natural human

gestures and use the RL learning architecture introduced in Section 4.3 to evaluate the agent

navigation performance.

4.4.1 Evaluation Criteria

We evaluate our methods in GesTHOR environment with data points from GOND. AI2-

THOR provides 120 scenes covering four different room types: kitchen, living room, bedroom,

and bathroom. Each room has its own unique appearance and arrangements. We randomly

split 30 scenes for each scene type into 20 training rooms, five validation rooms, and five

testing rooms. We train each model for 5 million steps and evaluate them on each scene in

validation and test sets for 250 episodes and report the average results with three runs. For

evaluation on the test fold, we choose models with the best performance on the validation
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fold.

We use 2 metrics to evaluate different methods:

‚ Success Rate (SR): for the i-th episode, the success can be marked by a binary indicator

Si. The success rate is the ratio of successful episodes over completed episodes N:

SR “
1

N

N
ÿ

i“1

Si. (4.6)

‚ Success weighted by Path Length (SPL): this metric is proposed by Anderson et al . [135].

It measures the efficacy of navigation. SPL is calculated as follows:

SPL “
1

N

N
ÿ

i“1

Si

ˆ

li
maxppi, liq

˙

, (4.7)

where li is the shortest path distance from the agent’s starting position to the goal in

episode i, and pi is the actual path length taken by the agent.

‚ Distance to Success (DTS): this metric has been used for recently embodied navigation

work [175]. It has the following formulation:

DTS “ maxp0, |xa ´ xt| ´ dq, (4.8)

where xa is the agent location on evaluation and xt is the target location. d is the navigation

threshold (1.5m). Different from SPL, it evaluates the agent performance regardless of

success. It measures how close the agent is to the target at the end of the episode. DTS

works together with SPL to measure the efficiency of navigation.

It is worth noting that we allow multiple stop actions during training, so we evaluate SR, SPL,

and DTS under the different number of allowed stops as well. However, due to the nature of

object navigation, the agent performance at the first stop action is the most important to

us.
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We measure the performance of the following baseline models:

‚ Random: in addition to (1), the agent receives referencing gesture inputs.

‚ Vision Only : The agent only has the visual observations (i.e., RGB, and depth images)

at each frame. It is target-agnostic and therefore sets another baseline with only visual

exploration capability.

‚ Visual Semantic (VisSem): The agent uses both the visual networks and the semantic

network. The target category is provided as a semantic cue for the navigation agent to

identify the target.

We compare the baseline models with our own methods:

‚ VisSem+Referencing: In addition to the VisSem model, the agent receives referencing

gesture inputs. Referencing gesture is provided as a sequential semantic cue in the en-

tire navigation episode. We evaluate if referencing gestures can replace natural language

instructions to improve navigation performance.

‚ VisSem+Intervention : In addition to the VisSem, the agent receives rejective gesture

inputs when the forward direction forms an angle larger than 90 degrees between the agent

and the target. This also gives sequential semantic information to the agent.

‚ VisSem+Both: The agent uses both the referencing gestures and intervention gestures.

Intervention gesture is fed to the gesture network only if the agent moves incorrectly

according to the VisSem+Intervention model, and the referencing gesture is provided to

the agent for the rest of the time.

In our comparative setting, VisSem model does not use any gestures. While one may

expect that it should always underperform, this is only true if the agent has learned and

inferred the semantics of human gestures and incorporated the signals during navigation,

which is the focus of our evaluation. Again, this is not trivial because we do not predefine

the meaning of any gestures. Similarly, the intervention gestures are strong directive feedback

from the human user, but we evaluate how well the agent can infer its meaning and adopt

it in navigation.
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Methods SR (%) SPL (%) DTS (m)

Random 8.7 7.1 2.908
Vision Only 0.36 0.098 2.719

VisSem 15.2 9.1 2.419
+Referencing 19.2 11.5 2.313
+Intervention 41.0 24.8 2.004
+Both 49.2 28.7 1.976

Scene Prior [148] 35.1 15.5 -
SAVN [140] 40.9 16.8 -

Table 4.2: Navigation performance for baseline and our methods. All the metrics are the
results of the evaluations on the test set at the first stop. We note that referencing and interven-
tion gestures both boost the performance, of which intervention gesture is more effective. We also
compare our result with state-of-the-art works reported from [148] and [140].

4.4.2 Navigation Performance

Scene Types Methods
SR (%) SPL (%)

Train Validation Test Train Validation Test

Kitchen

VisSem 12.3 10.2 11.5 7.6 7.1 7.9
+Referencing 21.1 18.7 19.2 13.3 11.6 11.2
+Intervention 44.9 31.5 40.3 27.0 20.0 24.0

Living Room

VisSem 6.3 3.6 3.5 4.1 2.3 2.1
+Referencing 4.9 3.2 2.7 3.2 1.7 1.6
+Intervention 13.0 9.0 9.5 7.8 5.3 5.4

Bedroom

VisSem 15.2 9.1 8.7 9.1 5.3 5.4
+Referencing 43.5 10.7 15.4 28.3 6.6 10.5
+Intervention 42.4 22.4 20.4 27.5 13.8 11.9

Bathroom

VisSem 16.3 15.5 11.9 11.4 9.1 8.8
+Referencing 33.0 19.4 19.9 20.5 11.1 11.7
+Intervention 40.5 32.2 35.0 29.1 21.0 23.0

Table 4.3: Evaluation results for train/validation/test split with different scene types.
SR and SPL at the first stop are reported in this table. We compare models trained with referencing
gestures and intervention gestures against a baseline model.
˚ Reported from [148]. This method uses additional scene prior knowledge but not gestures.

Table 4.2 evaluates all the baseline models and our methods on the test set. Note that

all the scenes in testing are “new” to the navigation agent who is trained on a completely

different set. The generalization to unseen environments is the key ability for learning a good

model. Table 4.2 also puts a hard constraint on the number of stops to one to match the

state-of-art benchmarks [135]. We can see that Vision Only model performs poorly given that
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Scene Types Methods
SR (%) SPL (%)

1 Stop 2 Stop 3 Stop 8 1 Stop 2 Stop 3 Stop 8

Kitchen

VisSem 11.5 18.0 23.1 49.3 7.9 12.1 14.6 25.1
+Referencing 19.2 26.3 29.7 47.9 11.2 15.0 16.6 24.1
+Intervention 40.3 55.1 62.8 89.0 24.0 32.7 37.2 52.8

Living Room

VisSem 3.5 6.4 9.5 23.3 2.1 3.7 5.1 9.8
+Referencing 2.7 3.9 4.7 7.8 1.6 2.4 2.9 4.7
+Intervention 9.5 16.9 21.7 58.0 5.4 9.8 12.6 30.8

Bedroom

VisSem 8.7 15.3 18.4 31.0 5.4 9.5 11.2 17.0
+Referencing 15.4 18.7 20.2 31.9 10.5 12.4 13.3 19.2
+Intervention 20.4 27.9 33.5 51.2 11.9 16.3 19.5 29.7

Bathroom

VisSem 11.9 18.9 23.7 57.8 8.8 13.8 16.9 33.1
+Referencing 19.9 30.5 35.9 64.3 11.7 18.1 21.3 32.4
+Intervention 35.0 44.6 51.7 76.5 23.0 29.6 33.9 48.3

Table 4.4: Evaluation results for test scenes on four scene types with different number
of allowed stops (8 denotes infinite allowed stops). SR and SPL are presented. We compare
models trained with referencing gestures and intervention gestures against a baseline model.

no semantics are not provided, which aligns with our expectations. Compared to the VisSem

baseline model, we confirm that adding gestures can significantly improve the navigation

success rate as well as the efficiency over the baseline model. Of note, models trained with

intervention gestures outperform models trained with referencing gestures, both in SR and

SPL, demonstrating that intervention gesture is a more effective kind of gesture to commu-

nicate with the agent. It can be explained by the fact that the intervention gesture instructs

the agent in an online manner, which is a stronger signal compared with the referencing

gesture, which is presented in an offline way at the start of each episode.

Our model achieves the best performance when combining both the referencing and

intervention gestures. It indicates that similar to human communication, HRI in embodied AI

also benefits from more diversity in communication channels. We also compare our work with

some state-of-the-art methods reported in [148] and [140]. Yang et al . [148] uses oracle scene

prior knowledge graph to assist navigation, while Wortsmanet al . [140] learns to adaptively

update the model during both training and inference stages. Our best model outperforms

both methods.

Table 4.3 and Table 4.4 measure the navigation performance of models trained separately

for each scene type. They give a more thorough review of our model performance adapted
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Methods
SR (%) SPL (%)

1 2 3+ 1 2 3+

VisSem 20.2 18.9 8.0 6.1 7.0 4.3
+Referencing 21.1 19.8 13.5 7.9 8.3 6.4
+Intervention 49.2 41.1 32.2 17.7 16.7 11.1
+Both 55.2 47.5 36.5 19.4 20.3 11.4

Table 4.5: Navigation performance on multi-instance scenes. All the metrics are the evalu-
ations results on the test set at the first stop. All methods are evaluated with the different number
of target category instances in the scene.

specifically to different scene types. Table 4.3 shows the performance of different methods

when evaluated at the first stop. The result is similar to what we show in Table 4.2, further

asserting the effectiveness of two different gesture types in navigation. Table 4.4 shows the

performance at test scenes evaluated at a different number of stops. We should see that both

SR and SPL increase with the number of allowed stops, and the improvement of SR and

SPL with gestures is more evident in a lower number of allowed stops.

4.4.3 Ablation Studies

The previous section explains the agent performance from the navigation perspective, i.e.,

how the agent communicates to learn. It demonstrates that using additional gestural ob-

servations in the end-to-end RL model could greatly enhance its performance. Nonetheless,

another issue coupled with it is how the agent learns to communicate. It can be viewed as if

the agent understands the underlined semantics of gestures. To this end, we conduct a few

ablation studies from different perspectives to give further insights of our methods.

Multi-instance scene: As shown in Fig. 3.10(a), one of the main challenges for our

object navigation task is to find the object when there are multiple instances of the target

category in the same scene (we call it a multi-instance scene). According to a recent summary

about object navigation in embodied AI [135], almost all the navigation tasks select the

nearest object with the target category to the starting position as the target object. This

asks for the generalization ability on common objects for the agent. Instead, we ponder on
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Methods SR (%) SPL (%) DTS (m)

Random 8.7 7.1 2.908

VisSem 6.5 5.8 2.772
+Referencing 11.2 9.4 2.769
+Intervention 21.26 16.1 2.614
+Both 22.64 16.3 2.578

Table 4.6: Navigation performance in blind mode. All the metrics are the evaluations results
on the test set at the first stop. All methods are evaluated with visual information turned off.

working with instances instead of classes [142], and require the agent to learn to navigate

to a specified object from given modalities. An ablation study on multi-instance scenes is

shown inTable 4.5. We display the evaluation results for different models on the test set at

the first stop, with SR and SPL calculated with the different number of instances of the

target category. Intuitively, navigation performance should drop with a higher number of

instances due to the ambiguity on the target, and it is testified on the table regardless of the

methods. However, we observe that methods with gestures are less vulnerable to the number

of object instances, and the effectiveness of gestures is more noticeable with a higher number

of object instances. This demonstrates that the learning agent is able to locate the target

instance with the gestural and contextual information.

Blind mode: In this ablation study, we turn off all the visual perceptions for methods

during evaluation. We aim to find out if gestures can still give instructional cues even without

any visual contextual observations. We call this type of inference as blind mode. As shown

in Table 4.6, VisSem model performance drops inferior to the random baseline method, in-

dicating that the semantic label alone does not provide any useful guidance. Nevertheless,

agents with gestures can still navigate with performance better than the random model,

especially with the intervention gestures. It demonstrates that the semantic cues from gestu-

ral inputs are still useful for navigation without visual observations. Especially, referencing

gestures provide directional cues that can instruct the agent to at least move to a correct

area of interest. For intervention gestures, it provides online guidance that also leads the

agent to the proximity of the target object.
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Methods SR (%) SPL (%) DTS (m)

RGB+Semantic+Both 41.4 23.2 1.988
Depth+Semantic+Both 41.0 24.8 2.012
RGBD+Semantic+Both 49.2 28.7 1.976

Table 4.7: Ablation study on visual perceptions. We choose the VisSem+Both model and
change only the vision part. All the metrics are the evaluations results on the test set at the first
stop.

Visual ablation: We have been considering the significance of gestures for the learning

process, but the agent navigates in a multimodal communicative manner. This visual ablation

study shows the importance of different visual modalities (see Table 4.7). We can see that

RGB or depth images alone render significantly lower navigation performance, indicating

that multiple modalities can help with the learning process.

4.4.4 Qualitative Results

To visualize the effectiveness of our methods, we show some qualitative results in Figs. 4.2

and 4.3. Fig. 4.2 compares our referencing gesture model against the baseline model with

visualized trajectories in different scenes and targets. It could be observed that in all scenes,

our referencing gesture model enables the agent to navigate to the target more intelligently,

while the baseline model often struggles to find the target and stop or takes a longer path to

find the target. Fig. 4.3 demonstrates how our intervention gesture model works to improve

navigation significantly. In this example, the agent rotates at the place where it faces back

to the target and is instructed with interventions gestures until the target is in its field of

view before making any movements. This indicates that our agent is able to understand and

react to the intervention gestures, resulting in much better navigation performance.
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Figure 4.2: Qualitative results with visualizations of trajectories for baseline (left) and
referencing gesture (right) models. Our agent can efficiently navigate to the target with the
help of gestures.

Figure 4.3: Qualitative results for the intervention gesture model. When the agent is back
to the target, it receives interventional gestures and could first rotate until it faces the target before
making any forward movements, thus increasing the navigation success rate and efficiency.
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CHAPTER 5

Conclusions & Discussions

5.1 Conclusions

In this dissertation, we propose to incorporate a non-verbal communicative interface, gesture,

into the embodied AI domain. We rethink how humans and robots could interact in simulated

environments and build a new framework for embodied visual navigation where human users

can give instructions to the autonomous agent using gestures.

In Chapter 2, we review studies about gestures in human-human communication and

human-robot communication. From the prior work, gestures play a crucial role in information

conveyance by assisting or substituting verbal interfaces in different ways. Notwithstanding

the advancement in the application of gestures in various fields of HRI, we should notice

that there is still scarcity in the embodiment of gestures. Previous work mostly focuses on

learning the semantics of gestures from static datasets like images or videos. However, we

realize that gestures should naturally occur with contextual information. It is astounding for

robots to understand gestures in a huge space with traditional machine learning. Therefore,

we propose to contextualize gestures with the embodiment.

In Chapter 3, we introduce our VR-based interactive learning environment, GesTHOR,

based on AI2-THOR in Unity3D game engine in order to bring gestures to embodied HRI.

We adopt the richful environment configurations of AI2-THOR and add interactive features

to this environment by including a humanoid agent and a robot agent. We have implemented

toolkits for users to act as the humanoid agent and collect gestural instructions in the VR
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environment using Oculus, Kinect, and LMC. Users can record programs with environmental

and gestural information. We also allow the recorded programs to be replayed in Unity to

emulate human-in-the-scene. This interface addresses the lack of embodiment for gestures

in HRI because gestures are defined with contextual clues. To demonstrate the effectiveness

of the VR interactive interface, we provide our gesture-based dataset, GOND, for studies

on object navigation tasks with our pre-collected referencing and intervention gestures. The

dataset contains a diverse collection of natural human gestures which users could utilize as

a new modality in the embodied navigation task.

In Chapter 4, we have defined object navigation tasks with gestural instructions with

GOND and designed an end-to-end deep reinforcement learning model for training and test-

ing. The agent is tasked to navigate to the proximity of the target object instance with the

specified category within the allowed steps. We develop our own methods with referencing

and intervention gestures and compare their navigation performance to a few baseline meth-

ods. Our experimental results and ablation studies show that the agent is able to interpret

human instructions with gestures and improve its visual navigation by a significant boost

on the evaluation metrics. We also conclude that interactive activities during agent task

execution can improve performance by showing quantitative and qualitative results.

While the main setting and experimental design of our study have been used in prior

works, to the best of our knowledge, our work is the first incorporating human gestures for

embodied agent learning and showing that the agent can learn the semantics of gestures

without supervision. Such agents and gesture-based interface will be very useful for collabo-

rative robots or virtual agents, and our simulator and dataset can benefit future research for

HRI via gestures or other means of non-verbal communication. Our GesTHOR environment

and GOND are released and publicly available for use in active studies in embodied AI.
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5.2 Limitations

Notwithstanding the promising work reported in this dissertation, there are a few limitations

in the following aspects:

i) We shall incorporate finer robotic actions and task planning in our framework. Cur-

rently, our robot agent is able to complete only navigation tasks, and amobility-to-manipulation

transition is yet unexplored. Human activities are intricate and involve not only motion plan-

ning but also fine-grained body control. It is, therefore, natural to devise an intelligent robot

to respond to gestures by employing more body parts. For instance, when we point to a

cup while uttering “pick up the cup”, the robot agent could use an embodied robotic arm

and hand to grab and hold the cup in the scene. Robot manipulation has been studied in

recent work [118, 126]. In view of their findings, we can see that it is not easy to have the

transition from mobility to manipulation. This is based on the advanced physics in the sim-

ulator and well-defined atomic actions. Our simulator has only low-level physics, e.g ., rigid

body collisions. To support higher-level interactions, simulation on the surfaces and forces

upon contact needs to be established. Besides, the robotic embodiment does not have hand

configuration, which means that grasping actions can only be abstracted by an end effector,

as what has been demonstrated in [126]. We should be aware that object grasping is a chal-

lenging area in the robotics community, and this functionality could be included in future

research.

ii) In our gestures-based dataset, GOND, all referencing gestures and interventions ges-

tures are single continuous motions as uncomplicated demonstrations of natural human ges-

tures. We excluded the multistage gesture motions, which could occur naturally in daily

activities. For example, for referencing gestures, instead of pointing to the target object di-

rectly, we can point to another location first as a sub-goal for the agent and then point to

the target. This gestural information indicates hierarchical path planning and can help the

agent in extremely difficult navigation tasks, e.g ., in an outdoor scene or clustered room.
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We have conducted experiments and testified that the simplistic natural gestures we defined

can be beneficial to the embodied navigation task, and we hope this can lay a solid ground

for studies on more complicated gestures.

iii) The referencing gestures and intervention gestures are designed as contextual-dependent

non-verbal cues to help the agent navigate. Although we include a diverse collection of ges-

ture styles in GOND, we believe deeper semantic messages can be discovered by the agent.

Let us take the intervention gestures as an example. The robot agent in our framework cor-

relates the intervention gestures with the environment and navigation policy by recognizing

a correct path. We expect the agent to turn or navigate in other directions rather than stay

on the current path to get closer to the target. However, human shows the intensity of the

intervention by changing, e.g ., the frequency of waving hands. In this case, the agent needs

to find out the manifold semantic information. When we wave at a fast pace, the agent

could interpret this as a strong signal to immediately stop and rotate. The case mentioned

here may sound astounding in the first place, but we believe as the robotic cognition system

evolves progressively, this challenge is worth exploring in later work.

iv) As shown in [41], the interactions between the humanoid agent and the robot agent

at the training stage are pre-recorded. Although they come from real embodied HRI of hu-

man users, the training is not strictly conducted with human-in-the-scene. This allows us

to deploy the training processes in scale since real-time interactions in training are infeasi-

ble. There is a trade-off between the speed of training and the authenticity of interactive

gestures. Apparently, all gestures are evaluated in the same dataset, and the generalization

and compatibility to online interactive gestures are still open to solutions. That being said,

we allow inference with the actual interactions between a human user and the robot agent.

Studies can start by evaluating the effectiveness of the learned models during the testing

stage.

v) We show the generalization of our navigation agent to unseen scenes in selected rooms

from AI2-THOR. Note that rooms used for training and evaluations share a similar syn-
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thetic style, although the layouts are different. Generalization to scenes with different styles

(e.g ., from indoor scenes to outdoor scenes) is not considered within the current framework.

In fact, the whole embodied AI community has been suffering from the transferability of

methods evaluated on different simulators due to the unstandardized simulation environ-

ments. We aim to simplify the setting of training and testing with the same set of indoor

scenes to effectively demonstrate the functionalities of gestures, but the ability to gener-

alize should also be considered as an important feature. In addition, the sim2real transfer

poses a more challenging task that we have not addressed. It is the key component in the

cross-section of robotics and embodied AI and bridges the gap between simulation and real

scenes. We encourage future research to be conducted to extend the generalization ability of

our framework.

The aforementioned limitations are the missing components in our current work. Yet,

there are other factors to be considered in the future, and we list the most important items

to inspire thoughts on the improvement of our framework.

5.3 Future Directions

Our work initiates the study on embodied HRI with gestures and can be outreached to many

different aspects. There are several directions to consider to extend the current research. We

provide visions specifically to the aforementioned limitations in Section 5.2.

i) One could extend our current object navigation task to multi-task object navigation

and manipulation. Aside from navigating to the target, the robot agent can be asked to

complete sub-tasks, e.g ., bring the object back and pick up the object. Different from the

most recent work in [30], which maps natural language actions to sequential actions, we

think non-verbal instructions can also be included in the process. It is worth noting that

our robot agent supports fine-grained robotic actions with a six DoF robotic arm so that

a more complex task can be implemented without additional efforts. We could extend the
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current action space to include the atomic actions from the robot arm as illustrated in [173]

to complete tasks like picking up and rearranging objects using the end effector. If hand

motions are required for grasping simulation, an embodied hand model can be integrated

with the current robot agent. Besides, our navigation methods could be integrated with

any complex tasks that are based on the object navigation task. We can have a modular

learning network that utilizes our current network as the first building block to give the

object semantic clues. We believe that deeper network works could also benefit learning with

sub-tasks. Grounding verbal and gestural instructions to low-level tasks are challenging and

thus may require a larger network to capture the huge input space. In addition, the intelligent

agent can also learn to communicate with gestures which in turn will help humans to utilize

even more diverse gestures to communicate with agents. We encourage future work to include

a humanlike robot agent with arms and hands to visualize the full-body gestures.

ii) As to the diversity and complexity of gestures, human gestures can be manifold that

contain procedural information. Our VR interactive interface supports tracking gestures

with unlimited styles, and users can easily define their own type of gestures. We can record

piecewise gestures and define tasks that correspond to the segmented information. Besides, we

could also inject more intricate gestural semantics. For example, as mentioned in Section 5.2,

users can express their willingness and emotions through gestures. Considering the increasing

variety of gestures, we need to endow the agent with more intelligent cognition to interpret

and react to gestures. In terms of the RL learning process, we can do reward shaping to

regularize the behavior of the robot agent. For example, in a scene with multiple tasks,

completing each individual task will receive partial positive rewards. This boils down to

carefully devising the learning objectives, which could be much different from the current

setup.

iii) There are two main limitations discussed in regards to the generalization of our

methods: generalization to novel gestures and scenes. As to unseen gestures, we understand

that evaluation with real-time interactive gestures is astounding. We can design a system that
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generates automated gestures given contextual information. For instance, given the target

location, room layouts, and the human position, a generative model can be used to synthesize

a humanlike gesture motion. This requires a large amount of gesture data to be collected in

order to get the most vivid reproductions. The crowd-sourcing technique is also a good way to

massively acquire the gesture data to improve the generalization ability. As to unseen scenes,

we are concerned with how to transfer scenes from one type to another or from simulation

to reality. Note that GesTHOR is highly customizable and compatible with many different

simulation environments, allowing our methods to be transferred to other scenes. Multiple

passes of training can be serialized on different scene types to consolidate the effectiveness

of gestures. Also, the sim2real transfer with non-verbal communicative interfaces can be

testified with physical robots. A Robot Operating System (ROS) interface can be easily

added in Unity to deploy the whole setup on the robot agent to the real world. The photo-

realistic feature of GesTHOR can help mitigate the difficulties in this transferring due to the

discrepancy from simulators to the real world. It is more convincing and promising to see

our methods work in both simulation and reality.

We provide our perspectives on the current limitations and provide guidance to improve

the framework. We hope our work would inspire and encourage more future work bridging

the gap for current limitations in embodied HRI.
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T. Mikolov, “Towards ai-complete question answering: A set of prerequisite toy tasks,”
arXiv:1502.05698, 2015.

[156] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: Lessons learned from
the 2015 mscoco image captioning challenge,” TPAMI, vol. 39, no. 4, pp. 652–663,
2016.

[157] K. Marino, M. Rastegari, A. Farhadi, and R. Mottaghi, “Ok-vqa: A visual question
answering benchmark requiring external knowledge,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

[158] H. Yu, H. Zhang, and W. Xu, “Interactive grounded language acquisition and gener-
alization in a 2d world,” arXiv:1802.01433, 2018.

[159] T. Cao, J. Wang, Y. Zhang, and S. Manivasagam, “Babyai++: Towards grounded-
language learning beyond memorization,” arXiv:2004.07200, 2020.

[160] K. M. Hermann, F. Hill, S. Green, F. Wang, R. Faulkner, H. Soyer, D. Szepesvari,
W. M. Czarnecki, M. Jaderberg, D. Teplyashin, et al., “Grounded language learning
in a simulated 3d world,” arXiv:1706.06551, 2017.

[161] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE Trans-
actions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.
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