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OSCILLATING ABOUT COPLANARITY IN THE 4 BODY

PROBLEM.

RICHARD MONTGOMERY

Abstract. For the Newtonian 4-body problem in space we prove that any

zero angular momentum bounded solution suffers infinitely many coplanar
instants, that is, times at which all 4 bodies lie in the same plane. This result

generalizes a known result for collinear instants (“syzygies”) in the zero angular

momentum planar 3-body problem, and extends to the d + 1 body problem
in d-space. The proof, for d = 3, starts by identifying the center-of-mass zero

configuration space with real 3 × 3 matrices, the coplanar configurations with

matrices whose determinant is zero, and the mass metric with the Frobenius
(standard Euclidean) norm. Let S denote the signed distance from a matrix

to the hypersurface of matrices with determinant zero. The proof hinges on

establishing a harmonic oscillator type ODE for S along solutions. Bounds on
inter-body distances then yield an explicit lower bound ω for the frequency

of this oscillator, guaranteeing a degeneration within every time interval of
length π/ω. The non-negativity of the curvature of oriented shape space (the

quotient of configuration space by the rotation group) plays a crucial role in

the proof.

1. Results.

Consider the Newtonian 4 body problem in Euclidean 3-space. Typically, the
four point masses form the vertices of a tetrahedron. As the masses move about,
at isolated instants the tetrahedron which they form might degenerate so that all
4 bodies lie on a single plane. Must such co-planar instants always occur?

A solution is called bounded if the interparticle distances rab between the four
masses ma, a = 1, 2, 3, 4 are bounded for all time in the solution’s domain of defi-
nition.

Theorem 1.1. For the 4 body problem in 3-space, any bounded zero angular mo-
mentum solution defined on an infinite time interval suffers infinitely many coplanar
instants.

Theorem 1.1 follows directly from the finite time interval oscillation results of
Theorems 1.2 and 1.3 and Proposition 1.1 below, results which hold for the d+ 1-
body problem in d-dimensional Euclidean space. These results generalize the result
[12] for the case d = 2 of the planar three-body problem .

Write qa ∈ Rd, a = 1, . . . , d + 1 for the positions of the bodies. Typically, at
each instant the qa form the vertices of a d+ 1-simplex, meaning that their convex
hull has nonzero d-dimensional volume. At special instants this volume may vanish
by virtue of all bodies instantaneously lying on some affine hyperplane. We call
these degeneration instants. Write rab = |qa− qb| for the distances between bodies,
M = Σma for the total mass and G for the universal gravitational constant. G is
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2 RICHARD MONTGOMERY

included to get our units straight: GM/rab
3 has the units of 1/(time)2, the units

of a frequency squared.

Theorem 1.2. Consider any zero angular momentum solution to the standard at-
tracive (1/r potential) Newton’s equations for d+1 bodies in d-dimensional. Suppose
that along this solution the inter-body distances satisfy the bound

(1) rab ≤ c

Then, within every time interval of size 1
π ( c3

GM )1/2, this solution has a degeneration
instant.

Remark. Theorem 1.2 represents a quantitative improvement of the syzygy
estimates found earlier in the case d = 2 described above.

Necessity of zero angular momentum in even dimensions. The regular
simplex is a central configuration in all dimensions d. If the dimension d is even,
say d = 2k, then one can uniformly rotate the simplex in a way consistent with a
splitting of Rd into k two-planes to get a relative equilibrium solution to the d+ 1-
body problem in Rd which has nonzero angular momentum and never degenerates.
These even-dimensional analogues of the Lagrange rotating equilateral triangle il-
lustrate that for even dimensions d the hypothesis that the angular momentum be
zero is necessary in theorem 1.2.

General two-body type potentials.. There is nothing special about the
Newtonian 1/r potential in theorem 1.2. It is enough to have a sum of pair poten-
tials of the form

(2) V (q) = GΣa 6=bmambfab(rab(q))

where the individual two-body potentials fab are attractive. Specifically, assuming

(3) f ′ab(r) > 0, f ′′ab(r) < 0, for r > 0; lim
r→∞

f ′ab(r)

r
= 0.

is enough. Examples include the standard Newtonian 3-dimensional gravitational
potential fab(r) = −1/r and the power law potentials fab(r) = −kab/rα for positive
exponent α and positive constants kab. (We choose the units so that fab has units
1/(length).) Hypothesis (3) guarantees that the functions f ′ab(r)/r are positive
and strictly monotone decreasing so that for each c > 0 and pair ab we have that

rab ≤ c =⇒ f ′ab(rab)
rab

≥ δab :=
f ′ab(c)
c . Taking δ to be the minimum of these δab over

all pairs we get

(4) rab ≤ c for all pairs ab =⇒ 1

rab
f ′ab(rab) ≥ δ > 0 for all pairs ab.

Then, we have

Theorem 1.3. Consider the zero angular momentum Newton’s equations for N =
d + 1 bodies moving in Euclidean d-dimensional space under the influence of the
attractive potential (2) whose 2-body potentials satisfy hypothesis (3). Suppose that
along such a solution all its inter-body distances rab satisfy the bound rab ≤ c.
Then, in every time interval of size (GMδ)−1/2/π, this solution has a degeneration
instant. Here δ is as in implication (4) above, and M the total mass.

We now describe the key ingredients behind these Theorems.

Definition 1.1. Σ is the degeneration locus within configuration space – the set of
configurations for which the d+ 1 masses all lie on a single affine hyperplane.
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Σ is a (singular) hypersurface in the full configuration space which cuts it into two
disjoint congruent halves, the simplices having positive volume, and those having
negative volume. (The sign of the volume depends on the orientation of Euclidean
space and the ordering of the masses, which we fix once and for all. ) Write
sgn(det(q)) for the sign of the volume, defined for q /∈ Σ. For example, if d = 3,
then sgn(det(q)) is the sign of the triple product (q2 − q1) · ((q3 − q1)× (q4 − q1)).

Definition 1.2. The signed distance S(q) of a configuration q of d+1 point masses
in Rd is the distance from q to the degeneration locus relative to the mass inner
product (described in subsection 3.1.1), that distance being given a plus sign if the
signed volume of q is positive and a minus sign if negative. In symbols:

S(q) = sign(det(q))dist(q,Σ).

with S(q) = 0 if and only if q ∈ Σ.

In Prop. 6.1 below we prove that |S(q)| is the smallest singular value of a d× d
matrix representing q in the center-of-mass frame.

Proposition 1.1. [Main computation.] If S is smooth along a zero angular mo-
mentum solution q(t) to Newton’s equations then S(t) := S(q(t)) evolves according
to

S̈ = −Sg(q, q̇), with g > 0 everywhere .

If, moreover, all interparticle distances rab satisfy rab ≤ c then g ≥ GM/c3 for
the Newtonian (fab(r) = −1/r) potential case, and, more generally, g ≥ GMδ for
potentials of the form (2), with (3) in force and δ as per (4).

Acknowledgements: I would like to thank Alain Albouy, Gil Bor, Joseph
Gerver, Connor Jackman, Adrian Mauricio Escobar Ruiz, Robert Littlejohn, and
Rick Moeckel for useful discussions. This material is based upon work supported
by the National Science Foundation under Grant No. DMS-1440140 while the
author was in residence at the Mathematical Sciences Research Institute in Berkeley,
California, during the Fall 2018 semester.

2. Motivation and Main ideas.

Newton’s N-body equations in d-space are invariant under the isometry group
of the inertial Euclidean space, Rd, so we can push them down to form a system
of ODEs on “shape space”, by which we mean the quotient space of the N-body
configuration space by the isometry group of Rd. There are actually two shape
spaces, depending on whether or not we allow orientation reversing isometries. In
the body of this paper we will work on the “oriented shapes space” which arises
from taking the quotient with respect the group SE(d) of orientation-preserving
isometries. In appendix B we describe the relationships between these two shape
spaces.

We will speak of “downstairs” to mean we are working on the quotient and
“upstairs” to mean we are working on the original configuration space. Upstairs,
Newton’s equations have the form q̈ = −∇V (q). Downstairs, the equations have
precisely this same form provided that the total angular momentum is zero 1.

1If the angular momentum is non-zero there are additional ‘magnetic’ terms” in the equations

downstairs, meaning terms linear in velocities, and also additional equations involving ‘internal
variables” which represent instantaneous rigid body tumbling coupled to dynamics on the shape

space, these internal variables lying in co-adjoint orbits for SO(d).
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In writing down the downstairs zero-angular momentum Newton’s equations, the
acceleration q̈ is replaced by the covariant acceleration ∇q̇ q̇ where ∇ is the Levi-
Civita connection arising out of the the induced shape metric downstairs. This
shape metric, induced by the flat kinetic energy metric upstairs, is curved.

Robert Littlejohn [8] pointed out to me that the oriented shape space for d+ 1
bodies in Rd is homeomorphic to a Euclidean space. This topological fact is well
known for the case d = 2 of the 3 body problem in the plane where it has proven
to be of great utility. For higher d the fact has been known for some time amongst
certain statisticians and can be found in [5] and [6] . Although I do not use this fact
here, it is this single fact that inspired my faith that something like the theorems
in this paper might hold.

Not only is the oriented shape space homeomorphic to a Euclidean space, but it
is smooth at most points. The points where it fails to be smooth are those shapes
of corank 2 or higher. (The locus of such points has codimension 4.) Here we use
the following terminology

Definition 2.1. The corank of a configuration q = (q1, . . . , qd+1), or of its cor-
responding shape, is the codimension of the smallest affine subspace in Rd which
contains all d + 1 of the vertices q1, . . . , qd+1. The rank of a configuration is the
dimension of this smallest affine subspace.

We continue to write Σ for the degeneration locus, either upstairs or downstairs.
Downstairs, in oriented shape space, Σ is a totally geodesic hypersurface, at least at
its smooth points. (This is a bit strange since Σ is not totally geodesic upstairs. For
example, when d = 3, imagine connecting two quadrilaterals which lie in different
planes by geodesics, i.e. straight lines between vertices. The resulting curve in
configuration space is non-degenerate at most instants.) To see the total geodesy
downstairs, select any orientation reversing isometry R, for example, in the case
d = 3, a reflection about the xy plane. Downstairs R is an isometry of shape space
whose fixed point set is precisely Σ. A general theorem in Riemannian geometry
now implies that Σ is totally geodesic. In terms of Newton’s equations, this ‘total
geodesy’ is basically the assertion that, for example for the case d = 3, that a
configuration which initially lies in a plane, and all of whose velocities initially lie
in that plane, will remain in that plane for all time.

Heuristics. Proposition 1.1 asserts that the signed distance S from Σ behaves
qualitatively like a one-dimensional harmonic oscillator, oscillating around S = 0.
The physical intuition behind this phenomenon was pointed out to me by Mark
Levi many years ago. The potential is invariant under isometries so descends to a
function downstairs. How to interpret this potential downstairs? Write Σab ⊂ Σ
for the binary collision locus rab = 0. One computes that rab(s) = µabdist(s,Σab)

where dist(s,Σab) is the distance from s to Σab and where µab =
√
M/mamb.

Consequently, re-interpreted downstairs, formula (2) for the potential asserts that
a point s in shape space is subjected to the force of an attractive potential exerted
by the

(
d
2

)
sources Σab, all of which lie in the “hyperplane” Σ. So, of course, the

shape is always attracted to Σ! And as long as the shape’s “vertical’ kinetic energy
is not too large, it will always return to cross Σ, oscillating forever back and forth
across the attracting ‘hyperplane’ Σ.

Choice of S versus signed volume. In [12], in proving Theorem 1.1 for
the case d = 2, I used a function z in place of the S of proposition 1.1. This z was
the signed area of the oriented triangle normalized by divided it by the moment of
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inertia I that the triangle would have if all masses were assigned the value 1. The
obvious generalizations zd of this z to d > 2, namely a normalized signed volume,
did not work out. All my attempts at proving a version of proposition 1.1 for such
a function in place of S failed. The function z2 satisfies a kind of monotonicity
relation with respect to geodesics orthogonal to Σ which fails for zd, d > 2 and this
monotonicity was required to get positivity of g in Proposition 1.1. The need for
such a relation led to introducing S. After the fact, one observes that the identity
z = S/

√
I holds for equal masses when d = 2, and fails for d > 2.)

Key ingredients to the proof. The proof of Proposition 1.1 relies on four
key facts .

• Fact 1. S satisfies the Hamilton-Jacobi equation ‖∇S‖ = 1 wherever S is
smooth. This fact implies that the integral curves of the gradient flow of S
are geodesics.
• Fact 2. The shape metric is everywhere non-negatively curved.
• Fact 3. There is a close relationship between the sign of the second funda-

mental form of distance level sets ( the {S = t}’s) from a totally geodesic
submanifold (Σ = {S = 0} ) and the sign of the curvature of the ambient
space within which the level sets lie. This relation is detailed on p. 34-37
of Gromov [4] and recalled below as proposition 4.1.
• Fact 4. (Theorem 6.1). The singular locus of S has codimension 2. This lo-

cus, denoted Sing(S) below, consists of all points at which S is not smooth.

3. Set-up and Reduction.

The proofs of all of our theorems hinge on Proposition 1.1 which is a computation.
We achieve the computation by exploiting the relations between Newton’s equations
at zero angular momentum as expressed upstairs on the usual configuration space
and downstairs on shape space. The process of pushing the equations downstairs is
referred to as “reduction”. Our reduction procedure is a metric reduction, putting
kinetic energy to the fore, as opposed to the oft-used symplectic reduction. The
two reduction procedures are formally equivalent but the metric approach makes
out computation tractable. In this section we go through the reduction for the case
d = 3. At the end, in subsection 3.3, we describe the small changes needed for the
set-up of reduction for higher d.

Write M(k,m) for the space of k×m real matrices. The configuration space for
the 4 body problem in R3 can be naturally identified with the space M(3, 4). To
do so, think of the four vectors q1, q2, q3, q4 ∈ R3 which define the positions of the
four bodies as column vectors and place them side-by-side to form the 3× 4 matrix

(5) q =
(
q1 q2 q3 q4

)
∈M(3, 4).

The translation subgroup R3 acts on M(3, 4) by qa 7→ qa+b, b ∈ R3, a = 1, 2, 3, 4,
which in matrix terms is

(6) q 7→ q + (b, b, b, b)

The quotient of M(3, 4) by this action can be identified with the matrix space
M(3, 3). This identification depends on choosing a basis for the 3-dimensional
subspace x1 + x2 + x3 + x4 = 0 of the mass label space R4, or, what is the same
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thing, a choice of “Jacobi vectors”. The results are independent of this choice 2.
See Appendix A for details. The rank of a configuration becomes the rank of the
representing matrix so that the degeneration locus is

Σ = {q ∈M(3, 3) : det(q) = 0}.

3.1. Oriented Shape Space. Rotations of R3 act on bothM(3, 4) and its translation-
quotient M(3, 3) by

q 7→ gq, g ∈ SO(3).

Definition 3.1. The oriented shape space Sh = Sh(3, 4) is the topological quotient
space M(3, 3)/SO(3). The quotient map M(3, 3) → Sh(3, 4) will be denoted by π.
The projection of a configuration q ∈M(3, 3) will be called “the shape” of q.

Remark. The group of orientation-preserving isometries of R3, denoted SE(3),
is made up of the translations (R3) and the rotations (SO(3)). We can naturally
identity Sh with the quotient M(3, 4)/SE(3), by using reduction in stages: first
quotient by translations R3 to get M(3, 3) and then by rotations SO(3) to get to
Sh. The projection M(3, 4)→ Sh will also be denoted by π.

Recall that the action of a group G on a set Q is called free if gq = q =⇒ g = id.
It is well-known (see for example Prop 4.1.23 of [1]) that the free action of a compact
Lie group G on a smooth manifold Q yields a quotient Q/G which is itself a smooth
manifold with the quotient map Q→ Q/G being a smooth projection. The action
of SO(3) on M(3, 3) is free on the open dense subset of M(3, 3) consisting of
matrices of rank 2 and 3, i.e. on the planar and spatial configurations. Moreover,
M(3, 3) is stratified by rank. The rank 3 matrices form an open dense subset whose
complement is the singular hypersurface Σ. The rank 2 matrices form the generic
points of Σ , the points at which it is smooth. The rank 1 points, i.e. the collinear
configuratins, have codimension 4 = 2 ∗ 2 in M(3, 3). See for example, [3] for
this computation. There is only one rank 0 matrices, namely the 0 matrix which
represents total collision. . Hence we get

Proposition 3.1. Let U ⊂M(3, 3) denote the set of rank 2 and 3 matrices, hence-
forth referred to as “generic configurations”. Then the restriction of π : M(3, 3)→
Sh(3, 4) to U gives the space of rank 2 and 3 shapes within Sh(3, 4) a smooth struc-
ture in such a way that this restricted projection is a smooth submersion. Moreover
this restricted projection π : U → π(U) gives U the structure of a principal SO(3)
bundle. The complement of U has codimension 4 within M(3, 3).

3.1.1. Newton’s Equations. To write down Newton’s equations for the motion of
the 4 bodies, we need the potential and the choice of masses. We have written
down the potential (eq (2)). The choice of masses ma > 0 for each body defines an
inner product 〈·, ·〉 on M(3, 4) called the “mass metric” or “kinetic energy metric”
according to

1

2
〈q̇, q̇〉 =

1

2
Σ4
a=1ma|q̇a|2.

2Usually the quotientM(3, 4)/R3 is identified with the codimension 3 linear subspace ofM(3, 4)

obtained by fixing the center of mass to be zero. There is a mass independent way to form the

identification of the quotient with M(3, 3) which is more useful for our purposes. This alternative
perspective, due to Albouy and Chenciner REF, is is reviewed in an appendix. It is equivalent to

fixing the center-of-mass, once masses are chosen.
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We use the absolute value symbol for the usual norm in our Euclidean inertial R3.
When we interpret q̇ ∈ M(3, 4) to represent the velocities of the four bodies then
the above expression is the usual expression for the total kinetic energy. Newton’s
equations can now be written

(7) q̈ = −∇V (q)

where the gradient ∇V is computed using the mass inner product: dV (q)(δq) =
〈∇V (q), δq〉.

The mass inner product induces an inner product on the translation reduced
configuration space M(3, 3) by declaring the projection M(3, 4) → M(3, 3) to be
a metric projection. Equivalently, we can view M(3, 3) as a subspace of M(3, 4)
by fixing the center of mass to be zero, and then take the restricted inner product.
(Again, see appendix A.) We can choose a basis for the 1st R3 factor of M(3, 3) =
Hom(R3,R3) such that the inner product becomes

〈q, q〉 = Tr(qtq),

namely, the inner product on matrices for which the matrix entries form an or-
thonormal linear coordinate system. Such a basis corresponds to a choice of nor-
malized Jacobi vectors. See Appendix A. So done, Newton’s equations have precisely
the form, eq (7) when written on M(3, 3).

3.2. Reduced Newton’s equations. We push Newton’s equations and the ki-
netic energy metric down to shape space. For this purpose it will be helpful to keep
in mind the following generalities.

Metric projections and Riemannian submersions. Whenever we have a
metric space M with distance function dM and an onto map π : M → B we can try
to define a metric dB on B by dB(b1, b2) = dM (π−1(b1), π−1(b2)), or, in English,
the distance between points downstairs is the distance between their corresponding
fibers upstairs. When this construction works we say that π : M → B is a metric
projection or submetry. If B = M/G is the quotient of M by the action of a
compact Lie group acting on M by isometries and π is the quotient projection then
the construction always works. If, in addition, M is a manifold whose metric dM
comes from a Riemannian metric and if the G-action is free so that the quotient
map π is a smooth submersion with smooth B, then the induced distance function
dB also arises as the distance function of a Riemannian metric on M . In this case
π : M → B is a Riemannian submersion which has the following infinitesimal
meaning. The ‘vertical space” Vq ⊂ TqM through q ∈ M is defined to be the
kernel of dπq; equivalently, it is the tangent space at q to the fiber π−1(s) = Gq
through q. Define the “horizontal space” Hq to be the orthogonal complement to
the vertical: Hq = V ⊥q . Then the restriction of dπq to Hq is a linear isomorphism.
Declaring this linear isomorphism Hq → TsB to be an isometry induces an inner
product on TsB, and this inner product is independent of the point q ∈ π−1(s)
since G acts isometrically on M . Distance minimizers between fibers upstairs are
geodesics in M orthogonal to the fibers. From this follows the well-known fact that
geodesics orthogonal to fibers at one point are orthogonal at every point, and that
the geodesics downstairs in B are precisely the projections of horizontal geodesics
upstairs.
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In this way, starting from the mass metric on M(3, 4) or M(3, 3), we get a metric
on Sh = Sh(3, 4) which is Riemannian at the generic shapes (those of rank 2 or 3)
and over these points is such that π : M(3, 3)→ Sh is a Riemannian submersion.

To push Newton’s equations down to Sh we must understand the dynamical
meaning of being horizontal in M(3, 3). In [11] (or [15]) I compute that q̇ is or-
thogonal to the SO(3) orbit through q if and only if the total angular momentum
J(q, q̇) of the pair (q, q̇) is zero. The expression for J as a function on TM(3, 4) =
M(3, 4) ×M(3, 4) is J(q, q̇) = Σmaqa ∧ q̇a for M(3, 4), and is the same when re-
stricted to TM(3, 3) viewed as subspace of TM(3, 4). Recall that J is conserved for
any potential of the form of eq (2), that is to say J(q(t), q̇(t)) = J(q(0), q̇(0)) along
solutions q(t) to Newton’s equations. Now let ∇ be the Levi-Civita connection for
the shape metric. Observe that since the potential is SE(3) invariant it also defines
a projection on Sh. We will use the same symbol V for the potential upstairs and
downstairs. We have

Lemma 3.1. Any zero angular momentum solution to Newton’s equations passing
through generic (i.e. rank 2 and 3) points of M(3, 3) projects to a curve γ in shape
space which satisfies

∇γ̇ γ̇ = −∇V (γ(t)).

Conversely, the horizontal lift of any such solution is a zero-angular momentum
solution to Newton’s equations upstairs.

Regarding ‘horizontal lift” see, again [11] or chapter 13 of [15].
Proof. This theorem is a general fact, holding for any Hamiltonian of the form

kinetic plus potential on any manifold endowed with the smooth free action of a Lie
group which keeps both the kinetic (metric) and potentials invariant. For a proof
see for example, [15].

The special case when V = 0 will be useful below.

Lemma 3.2. Any zero angular momentum straight line q + tv in M(3, 3) projects
to a geodesic in Shape space Sh(3, 4). Conversely, the horizontal lift of any geodesic
in Sh(3, 4) is a zero-angular momentum straight line in M(3, 3). The geodesic is
parameterized by arc length if and only if ‖v‖ = 1.

3.3. Set-up for general dimension d. Going from d = 3 to general d. The
configuration space for N bodies in Rd is the space M(d,N) of d×N real matrices.
Its quotient by the translation group of Rd forms an M(d,N−1) once a basis for the
hypersurface x1+x2+ . . .+xN = 0 of the mass-label is chosen. Again see Appendix
A. In our case of N = d+1 we thus get the translation-reduced configuration space
M(d, d) of square matrices. The degeneration locus Σ is given by {q : det(q) = 0}.
Shape space is Sh(d, d + 1) = M(d, d)/SO(d) = M(d, d + 1)/SO(d). Proposition
3.1 holds with ‘rank 2 and 3’ replaced by ‘rank d− 1 and rank d.

Introducing masses puts an inner product on the mass label space, and so on
M(d, d + 1) and on its translation quotient M(d, d). The masses also allow us to
identify M(d, d) as a linear subspace, rather than a quotient space, of M(d, d+ 1),
namely as the subspace of center-of-mass zero configurations. An orthonormal
basis for the hypersurface Σxi = 0 is equivalent to a choice of normalized Jacobi
vectors and relative to these coordinates the mass-induced inner product structure
on M(d, d) is standard : 〈q, q〉 = tr(qtq) = Σi,jq

2
ij , (This is the inner product whose

associated norm is called the Frobenius norm). Relative to this inner product the
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rotation group SO(d) acts isometrically by left multiplication and the action leaves
the potential invariant and so the metric and the zero-angular momentum Newton’s
equation push down to the quotient shape space Sh(d, d + 1) = M(d, d)/SO(d).
The reduction lemmas 3.1 and 3.2 for this reduced dynamics hold as stated, upon
replacing ‘3’ by ‘d’ in the obvious places.

4. The prooof of prop 1.1: signed distance as an oscillator.

We proceed to differentiate S along a solution arc which does not pass through
any singular point of S. We have

Ṡ = 〈∇S, γ̇〉
so that

S̈ = 〈∇S,∇γ̇ γ̇〉+ 〈∇γ̇∇S, γ̇〉(8)

= 〈∇S,−∇V 〉+ 〈∇γ̇∇S, γ̇〉(9)

We estimate each term of this last equation separately, showing that each term has
the form −Sg with g ≥ 0. We verify that the ‘g’ for the first term is always positive
and satisfies the stated bounds when rab ≤ c.

First term, 〈∇S,−∇V 〉. At smooth points of S, the integral curves of the
vector field ∇S are geodesics orthogonal to the level sets of S, and in particular to
the level set S = 0 which is the degeneration locus Σ. This fact holds true generally
for the signed distance function from a hypersurface on any Riemannian manifold,
and is closely related to the fact that signed distance satisfies the Hamilton -Jacobi
equation: ‖∇S‖ = 1.

We proceed in the special case of d = 3 for this paragraph, for simplicity. The
geodesics in M(3, 3), or in shape space, are the projections of straight lines q+ tv in
M(3, 4) for which (q, v) ∈M(3, 4)×M(3, 4) has zero total angular momentum and
zero total linear momentum. See lemma 3.2 above. (Zero linear momentum arises
from working on M(3, 3) ⊂ M(3, 4) by identifying it with the zero center-of-mass
configurations. Alternatively, having zero linear momentum is equivalent to the
assertion that the velocity v is orthogonal to the translation action.) The parameter
t is arclength provided 〈v, v〉 = 1. Now the smooth points q of the degeneration
locus Σ are the planar points. In order for a geodesic to be perpindicular to Σ at
such a q we must have that v is perpindicular to all δq ∈ TqΣ. By rotating, we
may assume that the 4 vertices of q lie in the xy plane which we will denote by
“R2”. Then any variation δq = (δq1, δq2, δq3, δq4) with δqa ∈ R2 represents a planar
variation of q and hence a tangent vector to Σ at q. Since

〈δq, v〉 = Σma(δqa) · va
and since the δqa are arbitrary vectors in R2, we see that our tangent vector v must
have all 4 of its component vectors va perpindicular to R2, which is to say, along
the z-axis. But then, along our geodesic the squared inter-body distances are

(10) r2ab = |qa + tva)− (qb + tvb)|2 = rab(0)2 + t2|va − vb|2

where the cross term is zero since qa, qb lie in R2 while va, vb are orthogonal to R2.
For general d, equation (10) continues to hold for a geodesic orthogonal to the

degeneration locus. Indeed, the only real difference between the proof above for
d = 3 and the proof for d > 3 is notational. Now the qa, representing a point on
the degeneration locus, can be taken to all lie in a fixed affine hyperplane of Rd so
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that the variations δqa, a = 1, . . . N = d + 1 can be taken to be arbitrary vectors
tangent to the correspoding linear hyperplane Rd−1. As a consequence the va all lie
in the one-dimensional orthogonal to this Rd−1 and the computation is the same.

Now look at the negative of the potential in the gravitational case:

U = −V = GΣ
mamb

rab

along our geodesic. Each individual term mamb

rab
is strictly decreasing or constant in

t2. Indeed d
dt

1
rab(t)

= − t|vab|2
rab(t)3

= −S |vab|2
rab(t)3

, since S = t as long as the geodesic is

the unique minimizer to the degeneration locus. Summing, we obtain

〈∇S,−∇V 〉 = 〈∇S,∇U〉 = −Sg1
with

g1 = GΣmamb
|vab|2

rab(t)3
> 0

as desired.
If each rab is bounded above by c, we have that g1 ≥ G

c3 Σmamb|vab|2. But,

if Σmava = 0, we find that ‖v‖2 = Σmamb|vab|2/M (“Lagrange’s identity”) and
since we have that ‖v‖2 = 1 (since t is arclength) it follows that Σmamb|vab|2 = M
which yields g1 ≥ GM/c3, which completes the proof for the gravitational case.

In the case of a general potential satisfying hypothesis (2), (3) we get that
d
dtfab(rab) = f ′ab(rab)

d
dt (rab(t)) = f ′ab(rab)(tv

2
ab)/rab = S( f

′(rab)
rab

)(vab)
2. Summing,

we get 〈∇S,−∇V 〉 = −Sg1 with g1 = GΣmamb(
f ′(rab)
rab

)(vab)
2 > 0. Under the

boundedness assumption, eq (4) yields that f ′(rab)
rab

> δ for all pairs a, b and the
lower bound for g1 proceeds exactly as in the previous paragraph.

QED for Term 1.
Second term,〈∇v∇S, v〉. For a fixed shape p, p /∈ Sing(S)

v 7→ Qp(v, v) := 〈∇v∇S, v〉, v ∈ TpSh

is a quadratic form on the tangent space TpSh. We will show that Qp(v, v) =
−S(p)Hp(v, v) where Hp ≥ 0 is a positive semi-definite quadratic form.
The trick for achieving this inequality is to recognize the quadratic form Qp as
being essentially the second fundamental form of the equidistant hypersurface Σt
from Σ which passes through p, namely

Σt := {S = t}; where t = S(p)

and then to use a relation between the sign of such second fundamental forms and
the sign of the ambient curvature.

Take v = ∇S in Qp(v, v). Differentiate the identity 〈∇S,∇S〉 = 1 with respect
to v to see that 〈∇v∇S, v〉 = 0, so that Qp(v, v) = 0.

Take v ⊥ ∇S. Then v is tangent to Σt while ∇S is the unit normal N to Σt.
Recall that second fundamental form to a hypersurface V with unit normal vector
field N is the quadratic form Π(v, v) = v 7→ 〈∇vN, v〉 defined for vectors v tangent
to V . It follows that for Qp(v, v) = Πp(v, v) for v ⊥ ∇S is the second fundamental
form Πp of the hypersurface Σt at the point p ∈ Σt. Summarizing:

Qp(v, v) =

{
0 for v ‖ ∇S
Πp(v, v) for v ⊥ ∇S
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We recal some facts about the second fundamental form Π of a hypersurface.

• (1) A hypersurface is totally geodesic if and only if Π = 0.
• (2)Replacing the choice of unit normal N to the hypersurface by its negative
−N replaces Π by its negative −Π.

Our hypersurface Σ is totally geodesic, as mentioned earlier in ‘heuristics’. In-
deed, Σ is the fixed point set of an isometric involution i : Sh → Sh and fixed
point sets of isometric involutions are always totally geodesic. This isometric invo-
lution i, called “reflection about Σ”, is implemented by the nontrivial element of
the two-element group O(d)/SO(d). Any orientation reversing orthogonal trans-
formation R ∈ O(d) realizes this nontrivial element and acts on shape space by
sending the shape s = π(q) to i(s) = π(Rq). Now i∗S = −S from which it follows
that i∗∇S = −∇S, and thus, using item (2) above, that i∗Q = −Q. It follows that
we can write Q = −SH where i∗H = H. It remains to show that H is positive
semi-definite.

A necessary detour into curvatures.

Definition 4.1. A hypersurface is convex relative to the choice of normal N if
Π ≥ 0 for this choice of normal, and concave relative to N if Π ≤ 0 for this choice
of normal.

Example 4.1. The boundary of a convex domain having smooth boundary in Eu-
clidean space is convex in the above sense provided we use the outward pointing
normal.

Let M be a Riemannian manifold and V ⊂ M a hypersurface in M , together
with a choice of unit normal N along the hypersurface. Then close to V we have
the family Vs,−ε < s < ε of nearby equidistant hypersurfaces formed by travelling
along the geodesics tangent to the unit normal N for a distance s. By flowing along
these geodesics we also have diffeomorphisms

φs : V → Vs.

Write Π0 for the second fundamental form of V relative to N and Πs for that of
the equidistant Vs. Recall that we say that M is “non-negatively curved” if its
sectional curvatures are all positive or zero, and “non-positively curved” if all of
its sectional curvatures are all negative or zero. The following basic relationship
between extrinsic and intrinsic curvature. is found on p. 34-37 of [4].

Proposition 4.1. (See figures 1). If the ambient curvature of the Riemannian
manifold M is non-negative and if the hypersurface V ⊂M is concave with respect
to the choice of unit normal N for V , then its positive equidistants Vs, s > 0 are at
least as concave as V : φ∗sΠs ≤ Π0 ≤ 0 for s > 0.

If the ambient curvature of M is non-positive and if the hypersurface V ⊂ M
is convex with respect to N , then its positive equidistants Vs, s > 0 are at least as
convex as V : φ∗sΠs ≥ Π0 ≥ 0 for s > 0.

End of proof for the 2nd term. By the O’neill formula for curvature [17]
(see Cor. 1, eq (3), p. 466), the base space B of a Riemannian submersion is
non-negatively curved provided its total space Q has zero (or positive) curvature.
Applying this to π : M(d, d) → Sh we get that Sh is a non-negatively curved
manifold at all smooth points. (Indeed the sectional curvature of a two-plane in
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TpSh which is spanned by orthonormal vectors v, w ∈ TpSh is σ = 3
4‖Fp(v, w)‖2

where F is curvature of the Riemannian submersion when viewed as a principal
SO(d)-bundle. Lemma 2, p.461 of [17] describes the relation between the A occuring
there within cor. 1, eq (3), ant the curvature.)

By proposition 4.1 and the fact that Σ = Σ0 is totally geodesic at each smooth
point, we have that each Σs, s > 0 is concave relative to ∇S, which is to say that
Qp ≤ 0 for S > 0. It follows that H ≥ 0 and by symmetry, as above, we have that
Q = −SH with H a positive semi-definite form, as desired.

QED for the second term and the proof of proposition 1.1.

 

I

f

convex

I

1

Concave Is 0

Figure 1. The relation between the sign of the sectional curva-
tures and convexity of equidistant hypersurfaces to a totally geo-
desic submanifold. The left figure depicts an equidistant from a
geodesic in the hyperbolic plane (ambient curvature −1. The right
figure pictures an equidistant from a geodesic on the sphere (ambi-
ent intrinsic curvature 1). The first equidistant is convex relative
to the normal while the second is concave.

5. Proofs of Theorems

We prove theorems 1.1, 1.2 and 1.3 by strengthening proposition 1.1:

Proposition 5.1. Regardless of whether or not S is smooth along the zero angular
solution γ to Newton’s equations, the composition S ◦γ is a convex function of t for
S > 0 and a concave function for S < 0. If γ is bounded with bounds rab ≤ c then
S◦γ(t) = 0 for at least one time t in each time interval of length ∆t = π(c3/GM)1/2,
in the Newtonian potential case and length π(GMδ)−1/2 for the general potential
case as per hypothesis (2), (3) and (4).

Proof of Proposition 5.1 .
We first consider the case when S is smooth along γ, treating the general case

as a limit of the smooth case.
If S is smooth along γ then proposition 1.1 asserts that S̈ = −Sg with g > 0 and

smooth. The convex/concave properties of S ◦ γ follow immediately. In case the
bounds on the rab are in force then we know that and g ≥ ω2 = GM/δ with δ as per
hypothesis (2), (3) and (4) in the case of general two-body potential and δ = 1/c3 in



OSCILLATING ABOUT COPLANARITY IN THE 4 BODY PROBLEM. 13

the particular case of the Newtonian potential. Compare our differential equation
for S to the oscillator equation S̈ = −Sω2. The solutions of the later, being
S = Asin(ω(t− t0)), have successive zeros t0, t1, . . . spaced regularly at increments
of length π/ω. By the Sturm comparison theorem, between any two of these zeros

lies a zero of our S. Since 1/ω =
√
δ/GM this yields the result for the smooth

case.
For the general case, it will suffice to know that set of points at which S fails

to be smooth has codimension 2. We call this the singular set of S and denote it
by Sing(S). This assertion regarding the codimension of Sing(S) is theorem 6.1 of
the next section.

Assuming the validity of this codimension theorem 6.1, let γ be a zero angular
momentum solution to Newton’s equations. Then, by using the smooth dependence
of solutions on initial conditions, we can find a family of solutions γε in M(d, d)
which avoids Sing(S) and converges in the uniform (C0) topology (or even Ck

topology for any k) to γ on compact time intervals as ε → 0. By lemma 1, each
S◦γε is convex wherever it is positive and concave wherever negative. The properties
of being convex or concave are closed in the C0-topology, i.e. the uniform limit of
convex functions is convex. Since S ◦ γε → S ◦ γ in the C0 topology our result
for the convexity / concavity of S ◦ γ follows. We proceed to the boundedness
implications. If the original γ satisfies rab(γ(t)) ≤ c, then its approximating curves
γε almost satisfy this bound, namely, they satisfy rab(γε(t)) ≤ c+o(1) as ε→ 0, since
they C0-converge to γ. Thus, by the preceding paragraph, each S ◦γε has a zero in
any interval of length ∆t = π/ω(ε) with ω(ε) = GM/δ(ε) and δ(ε) = δ(c+ o(1)) as
per eq (4) above. (Explicitly for the Newtonian case, δ(c+ o(1)) = 1/(c+ o(1))3.)
Since S ◦ γε → S ◦ γ we see that S ◦ γ must have a zero in every time interval of
length π/ω = π

√
δ/GM .

QED
Proof of Theorems. Theorems 1.2 and 1.3 follow immediately from proposi-

tion 5.1. Theorem 1.1 is the case d = 3 of theorem 1.2.

All that remains to do now in the way of proofs is to establish that the codimen-
sion of Sing(S) is 2.

6. Singular set of the signed distance and the Singular Value
Decomposition.

In this section we compute the codimension of Sing(S) ⊂M(d, d) (theorem 6.1).

6.1. Democracy group. SVD. The signed distance function S enjoys a larger
symmetry group than Newton’s equations. These additional symmetries form the
“democracy group” and are crucial to identifying Sing(S).

We saw in subsection 3.3 that the translation-reduced configuration space is the
space of square matrices M(d, d), that Σ ⊂M(d, d) is given by det(q) = 0 and that
by choosing an appropriate basis for “mass label space” we can insure that the mass
inner product agrees with the standard Euclidean inner product sot that the norm
squared of a matrix is tr(qtq) = Σi,jq

2
ij . By inspection, the action of O(d) × O(d)

on M(d, d) by

(11) q 7→ g1qg
t
2, g1, g2 ∈ O(d).
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is an isometric action which preserves Σ. It follows that |S(q)|, the distance from
q to Σ is invariant under this group action. The action does not quite preserve our
signed distance, since the O(d)’s can reverse orientation. Indeed

S(g1qg2) = ±S(q);± = det(g1)det(g1).

from which it follows that the action of SO(d)× SO(d) preserves S.
Terminology: Democracy group. The first, or left O(d) action (g1, in eq

(11)) is the usual action of rotations and reflections. The second, or right O(d) (g2,
in eq (11)) is called the “democracy group” since its action on the matrix space
corresponds to choosing new basis for the mass label space, so in essence, permutes,
or “democratizes”’ the mass labels.

The Singular Value Decomposition [SVD] from Matrix theory [?] is a normal
form theorem for this group action (11). This decomposition asserts that for any
q ∈M(d, d) there is a diagonal matrix x and matrices g1, g2 ∈ O(d) such that

(12) q = g1xg
t
2, [SV D1]

Moreover the gi can be chosen so as to force every nonzero entry of x to be positive,
and the diagonal entries to be listed in descending order, thus:

(13) x = diag(x1, x2, . . . , xd), x1 ≥ x2 ≥ . . . ≥ xd ≥ 0. [SV D2]

The diagonal x written in this form is unique. Its diagonal entries xi are called the
“ith principal values” of q. The x2i are the eigenvalues of both of the symmetric
operators qtq and of qqt.

Proposition 6.1. The distance function |S(q)| of q ∈M(d, d) to Σ is equal to xd
above, the dth (smallest) principal value of q.

We prove this proposition in the next subsection, below.
If we impose the constraint that (g1, g2) ∈ SO(d)× SO(d) when performing the

normal form computations, then we get the following ‘specialized’ version of the
SVD called the “pseudo-singular value decomposition” by [6] (see p. 361).

Proposition 6.2 (PsSVD). Given any q ∈ M(d, d) there is a pair (g1, g2) ∈
SO(d) × SO(d)) and a unique diagonal x = diag(x1, x2, . . . , xd) satisfying x1 ≥
x2 ≥ . . . ≥ xd−1 ≥ |xd| such that

q = g1xg2, gi ∈ SO(d).

Then
S(q) = xd

and sign(xd) = sign(det(q)) = sign(S(q)).

In words, the signed distance S is the last ‘signed’ singular value of q in the
pseudo-singular value decomposition.

Proof of Prop 6.2 assuming Prop 6.1. The value of det(q) cannot be
changed by acting on it by (g1, g2) ∈ SO(d)× SO(d)) and is equal to x1x2 . . . xd if
q = g1xg

t
2 with x = diag(x1, . . . , xd). Now use the SVD for q. If either one of the

elements gi of the SVD for q is in O(d) but not in SO(d) then we can premultiply
that element by diag(1, 1, . . . , 1,−1) ∈ O(d) to get a new gi ∈ SO(d) at the expense
of perhaps changing xd to −xd. Keeping track of the signs of det(q) and of S yields
that S(q) = xd, the last ‘special’ (or ‘signed’) singular value.

QED
Finally, here is the assertion we need to complete all our proofs.
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Theorem 6.1. The signed distance function S : M(d, d) → R is smooth at any
point q of M(d, d) whose smallest two principal values are distinct. The comple-
mentary set, the singular locus of S, is the set of matrices q whose dth and d− 1st
singular values are equal: xd−1 = |xd|. This locus is a semi-algebraic set of codi-
mension 2 within M(d, d).

6.2. A slice. The fact underlying the proofs of the propositions and theorems
just stated (theorem 6.1 etc) is that the linear subspace D ⊂ M(d, d) of diagonal
matrices is a global slice for our O(d) × O(d) action (eq (11)) on M(d, d). Recall
that the orbit of q ∈ M(d, d) under this action is the set {g1qgt2 : g1, g2 ∈ O(d)} ⊂
M(d, d) and that, from basic manifold theory, the orbit is a smooth submanifold.
The assertion that D is a slice for the action means a number of things

• (a) every O(d)×O(d) orbit intersects D
• (b) the orbit intersects D orthogonally
• (c) the intersection is transverse for generic orbit (i.e generic q)

Assertion (a) follows from the SVD.
Assertion (b) is a computation. Let ξ1 and ξ2 be skew symmetric matrices

representing elements of the Lie algebra of our O(d)’s, understood to represent the
derivatives of the gi along curves passing through gi = Id. Then the tangent space
to the orbit through x for x ∈ D of the orbit consists of all d× d matrices v of the
form

(14) v = ξ1x− xξ2.

One sees by direct computation that the diagonal entries of v are all zero, so that
v ⊥ D.

Assertion (c) follows by taking “generic” matrix to mean one all of whose prin-
cipal values are distinct, and then making a more detailed computation based on
the orbit tangent space equation (14). If we take ξ2 = −ξ1 in that equation and set
ξ = ξ1 then we compute that v is skew-symmetric with entries (xi + xj)ξij where
ξij are the entries of ξ. On the other hand, if we take ξ2 = ξ1 = ξ in eq(14) we
obtain that v is a symmetric matrix with entries (xj −xi)ξij . Now if the xi are the
distinct principal values, we have that xi ± xj 6= 0 for all i 6= j and it follows easily
from this we can obtain any skew-symmetric matrix as a v as per eq (14), and that
we can also obtain any symmetric matrix v which has zeros on its diagonal. Since
any matrix at all is the sum of a symmetric and a skew-symmetric matrix we see
that the tangent space to the orbit at a generic x consists of all matrices v with
zero entries on the diagonal, which comprises the orthogonal complement to D.

Proof of Proposition 6.1. As noted just after we introduced the action in
eq (11), the distance function |S(q)| is invariant under the O(d)×O(d) action:

|S(g1xg
t
2)| = |S(x)|.

Now det(x) = x1x2 . . . xd so that Σ∩D = {x1x2 . . . xd = 0} is the union of the d co-
ordinate hyperplanes xi = 0. The metric on M(d, d) is Euclidean in the entries, and
D is a d-dimensional linear space and in particular totally geodesic: any minimizing
geodesic connecting points of D is a line segment within D. This implies that for
x ∈ D the M(d, d)-distance of x to Σ equals the D-distance of x to Σ ∩D, that is
the distance as realized by line segments within D. It follows that the problem of
computing that distance is a problem in Euclidean geometry.
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To solve the problem, let us first fix attention to the case d = 3. Observe
that x1, x2, x3 are orthonormal linear coordinates on D. The Euclidean distance
of (x1, x2, x3) from the plane x1 = 0 is |x1|. Since Σ ∩D is the union of the three
planes x1 = 0, x2 = 0 and x3 = 0, we have that

|S(x1, x2, x3)| = mini|xi|.

But this minimum is the 3rd singular value of x, namely x3 when the diagonal
values are listed as per the SVD. The same logic works for general d and yields
S(x1, . . . , xd) = mini|xi|, which is by definition the dth singular value of q. This
proves proposition 6.1.

Proof of Theorem 6.1. The case d = 2. We begin with the case d = 2 for
simplicity and intuition. The configuration space isM(2, 2). The degeneration locus
Σ = {det(q) = 0} is a quadratic cone of signature (2, 2) in the vector space M(2, 2).
The group O(2) × O(2) acts isometrically on the matrix space and the diagonal
matrices D form a global slice as described above. Write q = diag(x, y) ∈ D.
Then D ∩ Σ forms the “cross” xy = 0. Within the plane the distance function is
S(x, y) = sign(xy)min(|x|, |y|). See figure 6.2. The non-smooth locus of S is the
line x = y and x = −y corresponding to the matrices xI and xJ where I is the
identity and J = diag(1,−1) It now follows from symmetry that Sing(S) is the
union of two two-dimensional conical varieties intersecting at the origin, namely
RSO(2)I and RSO(2)J . Taken together this set is simply RO(2), since J ∈ O(2)
and det(J) = −1. If the masses are all equal then this singular locus corresponds
to the Lagrange points (equilateral triangles) with one cone corresponding to the
positively oriented Lagrange configurations (the north pole of the shape sphere)
and the other cone to the negatively oriented Lagrange configurations.




                                                                     y










                                                                                                                                   Sing(S)












S=-1.                                                     S=1
















x 
 
 
S=1                                                 S =-1

Figure 2. Equidistant curves to a cross xy = 0 have corners at
which the distance function |S| fails to be smooth. This picture
models the contours of S restricted to the diagonal slice D for
d = 2. The thin red diagonal lines indicate Sing(S) ∩D.
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The case d = 3. The diagonals are still a slice for the SO(3)×SO(3) action, and
S is invariant under this action. It follows that we can understand the singularity set
of S by looking at its behaviour on the diagonal matrices diag(x1, x2, x3). First,
suppose we are at a point where all xi > 0, and such that x1 > x2 > x3 > 0.
Then, S = x3 in a neighborhood of our point, which is clearly smooth. As we
move from this point towards Σ along a geodesic orthogonal to Σ, the value of
x3 = S steadily decreases until we hit x3 = 0 at which point S continues to
decrease, but smoothly. The equality S = x3 continues into the region x3 < 0
as long as x1 > x2 > |x3|. This phenomenon is invariant under permutations
of the coordinate indices. Indeed, restricted to D, we have that S(x1, x2, x3) =
xi where |S(x1, x2, x3)| = |xi| := mink|xk|. Thus the singular locus of S restricted
to D lies on the locus where |xi| = |xj | for some i 6= j. This locus is the union of 6
planes in D, so has dimension 2, or codimension 1, within D. (The singular locus
of the restriction of S to D is a bit smaller that the union of these planes, since we
do not need that all three principal values are distinct, but only the bottom, two,
i.e we only need x2 6= x3 if x1 ≥ x2 ≥ x3 ≥ 0 are the singular values.)

At first glance, one guesses that since the singular set has codimension 1 within
D, then it has overall codimension 1 within M(3, 3). This logic is wrong. Points
on the singular set of S are not generic with respect to the SO(3)× SO(3) action:
their symmetry type jumps. Orbits though points of Sing(S) have dimension 5 or
less, not 6 like the dimension of a generic point. (That the orbit through a generic
point of D is 6-dimensional is item (b) of ‘slice’ above.) Since S is invariant under
our group SO(3) × SO(3), so is its singular set, Sing(S). Thus the singular set
is the union of the orbits through the singular points of the restriction of S to D.
Sing(S) ∩D has dimension 2. If the orbit through any point of Sing(S) ∩D has
dimension 5 or less then the singular set itself has dimension at most 7 = 2 + 5.
Our space M(3, 3) has dimension 9, which yields the claimed codimension of 2.

It remains to establish that the orbits through points x ∈ Sing(S) ∩ D have
dimension 5 or less. The dimension of an orbit of Lie group action is the dimension
of the group minus the dimension of the isotropy subgroup of that point. Our group
has 6. We show that the isotropy group at such a point x has dimension at least
one. Write x = diag(x1, λ, λ) for such a singular point. Let g(t) be the rotation
about the 1st axis by t radians, and g(−t) its inverse. Clearly g(t)xg(−t) = x,
establishing that the isotropy group is at least one-dimensional, and hence the
orbit has dimension 5 = 6 − 1 or less. (A linear algebra computation, following
equation (14) , shows that this dimension is exactly 5 as long as x1 6= λ, but is
unneccessary here since all we need is that the codimension of Sing(S) is at least
2.) In case x = diag(x1, λ,−λ) with S(x1, λ,−λ) = λ so that |x1| ≥ |λ| ≥ 0, use
left multiplication by the matrix g1 = diag(−1, 1,−1) ∈ SO(3) to replace this x by
x = (−x1, λ, λ) which lies on the same orbit as the original x but now has the form
of the computation just made. Since the orbit is homogeneous its dimension does
not depend on where on the orbit we choose to compute dimension, and we arrive
again at the fact that its dimension is 5 or less.

The case d > 3. The proof is nearly identical to the case d = 3. Sing(S)∩D has
codimension 1, being contained in the union of the hyperplanes where xi = ±xj .
At a generic point of D, which is to say, off of these hyperplanes, the SO(d)×SO(d)
action is “almost free” : the orbit’s dimenison equals that of SO(d) × SO(d), as
per item (b) of being a slice above. At a typical point on one of these hyperplanes
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the isotropy algebra is again one-dimensional , consisting of rotations of the double
eigenvalue plane. (An “atypical” singular point would be one for which the three
smallest singular values are all equal and here the the isotropy algebra has dimension
at least 3.) Hence the codimension of Sing(S) is 1 + 1: 1 for the codimension
within D and 1 for the extra continuous symmetry dimension (isotropy) associated
to each such double “eigenvalue” diagonal matrix. (Sign discrepancies such as
xi = −xj 6= 0 are at first bothersome, but the trick we used in the previous
paragraph of multiplying by an element of SO(d) with ±1’s to change the entries
to xi = xj works as before. )

QED

7. Dynamical Vistas and Open Questions

Planar precursor.
The planar case of theorem 1.2 or 1.3 asserts that any bounded solution to the

planar three-body problem defined on the whole time line will suffer infinitely col-
inear instants. Colinear instances are also called “syzygies”. Non-collision syzygies
come in three flavors, 1, 2, and 3, depending on the mass in the middle. See figure
3. We can thus associate a syzygy sequence to such a solution. What syzygy se-
quences are realized? This question, still largely open, has motivated much work.
See for example [10], and also the closely related work in which braids (equivalent
to “stutter-reduced” syzygy sequences) rather than syzygy sequences are used for
the symbolic encoding [16], [19], [7] and references therein.
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Figure 3. The 3 types of generic collinear 3 body shapes.

Theorem 1.1 asserts that that any bounded solution to the spatial four-body
problem defined on the whole time line will suffer infinitely coplanar instants. The
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generic coplanar configurations divide into 7 types as per FIGURE 4. (We have
excluded as “non-generic” configurations for which three of the masses are collinear.
Binary collision configurations are thus excluded.) We now have a seven letter

Figure 4. The 7 types of generic planar 4 body shapes
.

alphabet for potential symbol sequences, in analogy with the syzygy sequences of
planar three-body dynamics.

Open questions for the four-body problem in space.
Q1. Are all possible symbol sequences in this 7-letter alphabet realized by a

bounded solution having zero angular momentum?
Energy and angular momentum considerations Bounded solutions for

the Newtonian N-body problem necessarily have negative energy. (As soon as
N > 2 there are negative energy solutions which are unbounded.) Hence the
following theorem (see [13]) represents a strengthening of 1.3for the case d = 2.
Theorem: every zero angular momentum negative energy solution to the planar
three-body problem which does not end and begin in triple collision hits the collinear
locus infinitely often.

We do not know a single bounded or negative energy solution of the 4-body
problem in space which never suffers co-planarities.

More Questions.
Q2. Do there exist negative energy collision-free solutions of the spatial four

body problem which are defined over the whole time line and which never suffer
coplanar instants ?

Q3. If the answer to Q2 is ‘yes’ then are any of these never-coplanar solutions
bounded?

Q4. If the answer to Q2 is ‘yes’ do any of these never-coplanar solutions have
zero angular momentum?
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In regards to these last two questions, Joseph Gerver has pointed out that there
are negative energy collision-free solutions which have no coplanar instants and are
defined over a time ray 0 ≤ t <∞. These solutions have nonzero angular momen-
tum. Take the rotating Lagrange equilateral solution for three of the bodies. Now
take the 4th body to be moving away from this triple along the line perpindiular to
the plane of the rotating triangle. If the three masses are equal then the situation is
symmetric and the 4th body will stay on this orthogonal line as it moves out. The
energy of the bound triple can be taken to be sufficiently small so that the overall
energy is negative while the 4th escaping body escapes hyperbolically to infinity.

Appendix A. Dispositions: Translation reduction done right.

We follow the idea of “dispositions” described in Albouy-Chenciner [2] in order
to identify the translation quotient of configuration space with the matrix space
M(d, d) in a way which is independent of mass choices. We mostly stick to the
case d = 3. Then we introduce masses and work out how they yield an inner
product, choice of Jacobi vectors and the standard mass-dependent embedding of
M(d, d) back into configuration space. We strongly recommend [9], pp. 34-40 for a
down-to-earth perspective on this subject.

As per eq (5), we view the four position vectors qa, a = 1, 2, 3, 4, describing the
instantaneous positions of the four masses as column vectors and place them side
by side to form a 3× 4 which we can view as a linear operator,

q =
(
q1 q2 q3 q4

)
: R4 → R3

from the “mass label space” R4 to our inertial space of motions R3. Thus the ath
mass is located at the point

qa = q(ea)

where ea, a = 1, 2, 3, 4 is the standard basis of R4. Written out in tensor language,

q = Σqa ⊗ θa

where θa is the basis dual to ea.
We have identified the full configuration space with

M(3, 4) := Hom(R4,R3) ∼= R3 ⊗ R4∗.

A translation by b ∈ R3 acts on the position vectors qa as per the matrix represen-
tation of eq (6) which can be summarized in tensor language as

q 7→ q + b⊗Θ where Θ = Σaθ
a

since, in matrix terms Θ = (1, 1, 1, 1) so that b ⊗ Θ = b(1, 1, 1, 1) is the matrix all
of whose columns are b. Now b⊗Θ is zero on the 3-dimensional linear hyperplane:

L := ker(Θ) = {ξ ∈ R4 : Θ(ξ) := ξ1 + ξ2 + ξ3 + ξ4 = 0} ⊂ R4

from which it follows that the restriction of q to this subspace is translation invari-
ant.

Definition A.1. The translation reduction of q ∈M(3, 4) is its restriction qred :=
q|L : L→ R3, to L ⊂ R4. The 4-body translation-reduced configuration space is

Hom(L,R3) = R3 ⊗ L∗

and the translation-reduction map is

pr : Hom(R4,R3)→ Hom(L,R3); pr(q) = qred.
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Remark. Following this prescription we have no need of masses in order to
identify the quotient of configuration space by translations!

Notational Warning. Albouy-Chenciner [2] use the symbol D∗ for our L, so
that their translation-reduced configuration space is R3⊗D = Hom(D∗,R3). Their
D is our R4∗/(RΘ) = R4∗/(R(1, 1, 1, 1) which they call the space of dispositions.

Degeneration locus. The degeneration locus Σ coincides with those q for
which qred : L → R3 has rank less than 3. Indeed, a basis for L is formed by
e21, e31, e41 where eij = ei − ej . For example, e21 = (−1, 1, 0, 0). Now q(eab) =
qa − qb so relative to this basis, qred is represented by the 3 by 3 matrix(

q2 − q1 q3 − q1 q4 − q1
)

whose determinant is 6 times the signed volume of the tetrahedron whose vertices
are q1, q2, q3, q4.

Introducing masses. Once positive masses ma > 0 are chosen, we can form
the mass vector ~m = (m1,m2,m3,m4) ∈ R4. Please observe that

Θ(~m) = m1 +m2 +m3 +m4 := M > 0,

demonstrating that mass vector, together with the hyperplane L, spans R4. As a
consequence q ∈ Hom(R4,R3) is uniquely determined by its restriction qred to L
together with its center of mass :

qcm :=
1

Θ(~m)
q(~m) =

1

M
(m1q1 +m2q2 +m3q3 +m4q4) ∈ R3.

We see in this way that the usual ‘fixing the center of mass to be zero” way of
forming the translation quotient is equivalent to the Albouy method.

Mass inner product, Kinetic Energy, and Jacobi Vectors. The choice
of masses also defines a Euclidean inner product on R4∗ by declaring that 〈θa, θb〉 =
maδab. In symbols

ds2m = Σma(ea)2

where we are using the fact that the ea is the dual basis to θa.
Let V∗,W be real vector spaces. Choosing inner products on each of them induces

a canonical inner product on W ⊗ V∗ for which 〈w ⊗ θ, w ⊗ θ〉 = 〈w,w〉W〈θ, θ〉V∗
In our situation, W = R3 comes with its standard inner product and we just used
the masses to put an inner product on R4∗, so we now have a mass-dependent
inner product on M(3, 4) = R3 ⊗ R4∗. We call this inner product the “mass inner
product” or sometimes the “kinetic energy metric” since it is the inner product for
which half of the squared length of a vector is the kinetic energy. Indeed, the four
instantaneous velocity vectors of our 4 masses are obtained by differentiating q with
respect to time so as to form the velocity matrix q̇ = Σq̇a ⊗ θa. We compute

1

2
〈q̇, q̇〉 =

1

2
Σma|q̇a|2 = K(q̇)

which is the usual expression for the kinetic energy K. Here we have reserved the
absolute value sign for the usual norm in our Euclidean R3, as in |q1|2 = q1 · q1.

The mass inner product induces an inner product on our translation-reduced
configuration space Hom(L,R3) which is essential for the body of this paper. There
are several equivalent ways to arrive at this inner product. We will begin with the
isomorphism R4∗ → R4∗∗ = R4 induced by the mass inner product on R4∗. The
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isomorphism sends θa 7→ maea, a = 1, 2, 3, 4 and induces an inner product on R4

for which

〈ea, eb〉 =
1

ma
δab.

The isomorphism sends our basic “translation covector” Θ = Σθa ∈ R4∗ to the mass
vector ~m. Since Θ annihilates L it follows that the mass vector ~m is orthogonal to
L. Thus we get the orthogonal decomposition

R4 = L⊕ R~m.
We compute ‖~m‖2 = ‖Θ‖2 = Θ(~m) = M , the total mass. Now choose an or-
thonormal basis E1, E2, E3 for L ⊂ R4, and complete it by adding in ~m to form
the orthogonal basis E1, E2, E3, ~m for R4. Write the associated dual basis for R4∗

as ω1, ω2, ω3,Θ/M . Note that ωi(~m) = 0. Then the inner product on L∗ can be
defined by insisting that the restrictions of the ωi to L forms an orthonormal basis
for L∗. Since Hom(L,R3) = R3 ⊗ L∗ this defines an inner product, as desired.

Definition A.2. By a choice of Jacobi vectors we mean either an orthogonal basis
V1, V2, V3 for L relative to the mass inner product, or the image vectors q(Vi) of
this basis under q ∈ Hom(L,R3). By a choice of normalized Jacobi vectors we
mean either an orthonormal basis E1, E2, E3 for L or the image of this basis under
q ∈ Hom(L,R3). These Jacobi vectors are said to form an oriented basis if the
orientation they induce agrees with that induced on L by the standard basis for R4

together with the mass vector ~m.

To better understand the induced inner product on Hom(L,R3), observe that
given any basis ua whatsoever for R4, and its corresponding dual basis ωa for
R4∗ we can expand out any q ∈ M(3, 4) as q = Σq(ua) ⊗ ωa. If the basis is an
orthogonal one, i.e. a triple of ‘Jacobi vectors’ as per the definition above, then the
terms of this expansion are orthogonal relative to our mass metric, meaning that ,
‖q‖2 = Σ|q(ua)|2〈ωa, ωa〉. Applying these considerations to our orthonormal basis
E1, E2, E3 (or ‘normalized Jacobi vectors”) we find that

‖q‖2 = |X1|2 + |X2|2 + |X3|2 +M |qcm|2, with Xi = q(Ei), Ei orthonormal for L.

Exercise A.1. With q and Ei as above show that the norm squared of the trans-
lation reduction qred of q satisfies

‖qred‖2 = |X1|2 + |X2|2 + |X3|2, with Xi = qred(Ei).

We go a bit deeper into the last identity for the inner product after some more
examples around Jacobi vectors

Example A.1 (3 bodies in the plane.). To understand this definition we retreat to
the case of 3 bodies in R2 where Jacobi vectors are better known. The configuration
space is now Hom(R3,R2) where R3 is the mass label space and R2 represents the
inertial space in which the bodies move. Then e12 = (1,−1, 0) ∈ L and q(e12) =
q1 − q2, is the standard choice of first Jacobi vector. Take the mass vector to be
~m = (m1,m2,m3) ∈ R3 so that the associated mass inner product on the mass label
space R3 is given by 〈ea, ea〉 = 1/ma, a = 1, 2, 3. Then 〈e12, e12〉 = 1

m1
+ 1

m2
:=

µ2
1. If we write m12 = m1 + m2 then V2 = (−m1,−m2,m12) ∈ L. Compute

that 〈V2, e12〉 = 0. Scale V2 to U2 = 1
m12

(V1) = (−m1/m12,−m2/m12, 1). Then

q(U2) = q2 − (m1q1 + m2q2)/m12 is the standard expression for the second Jacobi
vector, and 〈U2, U2〉 = 1

m12
+ 1

m3
= µ2

2 is its normalization factor. The vectors
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E1 = 1
µ1
e12 and E2 = 1

µ2
U2 are then an orthonormal basis for L, so “normalized

Jacobi vectors”. In the standard terminology, the normalized Jacobi vectors are
q(E1) = Z1 and q(E2) = Z2, and they yield the identity |qred|2 = |Z1|2 + |Z2|2.
After identifying R2 with C, we have (Z1, Z2) ∈ C2 and this coordinatization of the
reduced configuration space as C2 is the first step in forming shape space and the
shape sphere. See [14]

Example A.2. . [4 bodies in 3-space.] The three vectors

J1 = (1,−1, 0, 0), J2 = (0, 0, 1,−1), and J3 = (−p1,−p2, p3, p4)

form a basis for L ⊂ R4 for any choice of positive pi with p1 + p2 = p3 + p4 = 1.
Now suppose masses m1,m2,m3,m4 are given and set m12 = m1 + m2,m34 =
m3 +m4, p1 = m1/m12, p2 = m2/m12, p3 = m3/m34, p4 = m4/m34 Then J1, J2, J3
are Jacobi vectors – they are mass-orthogonal. Normalizing them we get the cor-
responding normalized Jacobi vectors Ei =

√
µiJi with normalization factors µi

defined by 1
µ1

= 1
m1

+ 1
m2
, 1
µ2

= 1
m3

+ 1
m4

, and 1
µ3

= 1
m12

+ 1
m34

. Then, if we set

ρi = q(Ei) ∈ R3, so that, for example, ρ1 =
√
µ1(q1 − q2), and if qcm = 0, then

‖q‖2 = |ρ1|2 + |ρ2|2 + |ρ3|2. Compare ([8], eqs (2.5), (2.6), pp 2036).

Returning to the Inner product...
The restriction-to-L map pr : Hom(R4,R3)→ Hom(L,R3) (see Definition A.1 )

implements the quotient of Hom(R4,R3) by the ‘translation subgroup” T = R3 ⊗
Θ ⊂ R3 ⊗ R4∗ = Hom(R4,R3). The choice of masses induces an inner product
on Hom(R4,R3) and thence on Hom(L,R3). The masses also induce an inclusion
Hom(L,R3)→ Hom(R4,R3) which is not present without the additional structure
of the masses. This inclusion and the inner product on Hom(L,R3) are so tightly
linked that they are almost the same thing.

We formulate all this in more intrinsic linear algebra terms. Suppose we have an
inner product space E endowed with a subspaces T. Then E/T is naturally endowed
with an inner product which makes π : E → E/T a ‘submetry’ as definied above.
Now consider the orthogonal complement T⊥ ⊂ E. Then the restriction of π to T⊥
is an isometry between T⊥ and E/T. Now apply these considerations to the case
that E = Hom(V,W), E/T = Hom(S,W) where S ⊂ V is a linear subspace of V
and where the projection map π is the map which sends q : V→W to its restriction
q|S : S → W. Then T ⊂ Hom(V,W) consists of those linear operators which are
zero on S. An inner product on V and W induces ones on all these spaces.

Exercise A.2. Show that, continuing with the above terminology, T⊥ consists of
those linear operations V → W which are identically zero on the orthogonal com-
plement S⊥ ⊂ V to S and that the induced isometric inclusion Hom(S,W) →
Hom(V,W) is the map which takes a linear operator qred : S→W and extends off
of S to obtain a map V→W equal to qred on S and identically zero on S⊥ ⊂ V.

Applying these considerations to our situation of L ⊂ R4 and qred ∈ Hom(L,R3)
we see that the mass induced canonical extension q = i(qred) of qred is obtained
by insisting that q(~m) = 0, since ~m is the normal vector to L relative to the mass
metric. But q(~m) = Mqcm. The mass-induced inclusion i : Hom(L,R3) →
Hom(R4,R3) of the translation-reduced configuration space into our orig-
inal configuration space Hom(R4,R3) is obtained by insisting that the
center of mass of the extension q = i(qred) is zero. Thus the process of
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using inner products to implement this inclusion amounts to the usual ‘center-of-
mass zero’ prescription for performing translation reduction. This inclusion i an
isometry onto its image, and we arrive in this way at a solution to exercise A.1
regarding the inner product on Hom(L,R3). Comparing the formulae we see that
the prescription for the inner product amounts to the equation that ‖q‖2 = ‖qred‖2
whenever qcm = 0.

Democracy Group; Linear isometries. Let us again suppose that V and
W are finite-dimensional real inner product spaces. Then W ⊗ V∗ = Hom(V,W)
inherits a canonical inner product for which the orthogonal groups O(V) and O(W)
act isometrically according to

q 7→ g1 ◦ q ◦ g−12 , for g1 ∈ O(W), g2 ∈ O(V).

Specializing to our situation, V = L ⊂ R4,W = R3, so that the 6-dimensional Lie
group O(L) × O(R3) ∼= O(3) × O(3) acts isometrically on our translation-reduced
configuration space Hom(L,R3). The g1 factor acting by left multiplication is the
usual action on a 4-body configuration by rotation. The g2 action is a bit more
mysterious. It is not a symmetry of Newton’s equations.

Definition A.3. The democracy group action is the action of O(L) on Hom(L,R3)
by q 7→ qg−12 .

To better understand the democracy group action, choose an orthonormal basis
for L, which is to say normalized Jacobi vectors E1, E2, E3. This choice induces an
isomorphism O(L) ∼= O(3). R3 comes with a standard basis u1, u2, u3 so we can
just write O(R3) = O(3). Relative to these two bases qrel : L→ R3 becomes a 3×3
matrix X with entries Xij = ui · q(Ej). In this way we identify

Hom(L,R3) = M(3, 3) := the space of all real three-by-three matrices.

The mass metric in these coordinates is simply the standard entry-wise Euclidean
structure: ‖qrel‖2 = tr(XtX) = Σi,jX

2
ij . Our O(L) × O(R3) action is simply

standard matrix multiplication by O(3)×O(3):

X 7→ g1Xg
t
2.

The degeneracy locus is

Σ = {X ∈M(3, 3) : det(X) = 0}.

and is mapped to itself by the O(3)×O(3) action, since det(g1Xg
t
2) = ±det(X).

The idea expressed by the terminology “Democracy group” is that a choice of
Jacobi vectors involves selecting out certain masses to play special roles. An element
of O(L) changes the basis, i.e the Jacobi vectors, and hence corresponds to choosing
different sets of masses for these roles. It permutes the mass labels. Indeed if all
the ma are equal, then the permutation group of the mass labels, i.e. of the basis
vectors ea for the label space R4, forms a subgroup of O(L). We owe the picturesque
name ‘democracy group’ to Littlejohn and Reinsch, [8].

Appendix B. Unoriented vs Oriented Shape Space

We describe the oriented and unoriented shape space and the relation between
them. For the generalN body problem in Rd the configuration space isHom(RN ,Rd)
and these shape spaces are the quotient spaces of the configuration space by the
groups SE(d) and E(d) respectively. The quotient E(d)/SE(d) is the two-element
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group (with nontrivial element generated by any orientation reversing isometry) so
that we expect that the natural map from oriented to un-oriented shape space will
be a 2 : 1 branched cover, branched over the degeneration locus Σ.

We form the quotient spaces in stages. We saw in the previous appendix how
the quotient of the configuration space by translations is Hom(L,Rd) ∼= M(d, d) in
case N = d + 1. It remains to quotient by the linear isometries, i.e. the rotations
SO(d) and rotations and reflections O(d). Thus oriented shape space becomes
M(d, d)/SO(d) while unoriented shape space becomes M(d, d)/O(d), where g ∈
O(d) or SO(d) acts on q ∈M(d, d) by q 7→ gq.

Unoriented shape space. The map q 7→ qtq ∈ Sym(d) realizes the O(d)
quotient. Here Sym(d) denotes the space of symmetric d × d matrices. When we
say “realizes the quotient” we mean that for q′, q ∈M(d, d) there exists a g ∈ O(d)
such that q′ = gq if and only if (q′)tq′ = qtq. This fact follows from a basic theorem
from representation theory. The matrix qtq is sometimes called the ‘Gram matrix’,
being a matrix of inner products of position vectors. Any matrix of form qtq is
positive semi-definite, and any positive semi-definite matrix s can be expresses as
s = qtq for some q ∈ M(d, d). (Take q =

√
s ∈ Sym(d) for example.). These

facts prove that un-oriented shape space is the “positive semi-definite cone”: the
closed convex cone of positive semi-definite symmetric matrices within Sym(d).
The boundary of the cone consists of those non-negative symmetric matrices whose
rank is not full and thus corresponds to the shape projection of our degeneration
locus Σ.

The map between. The map from oriented shape space to shape space maps
onto this shape cone, and forms a 2:1 cover branched along Σ. Indeed, an unoriented
nondegenerate simplex shape has precisely two oriented representative shapes, one
having positive volume, the other having negative volume, while a degenerate shape
in M(d, d)/SO(d) has precisely one representative in the unoriented shape space.

A bit of topology. Take two identical copies of a closed convex cone with
nonempty interior in any finite dimensional real vector space. Glue one copy to
the other along the boundary, using the identity map of the boundary as gluing
map. One checks without great difficulty that the result is homeomorphic to the
original vector space: we have ‘blown up’ or desingularize the boundary. These
general considerations may serve to convince the reader that oriented shape space
is indeed homeomorphic to the Euclidean space Sym(d)
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