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Abstract

Although clonal selection by genetic driver aberrations in cancer is well documented, the ability of

epigenetic alterations to promote tumor evolution is undefined. We used 450k arrays and next-

generation sequencing to evaluate intratumor heterogeneity and evolution of DNA methylation

and genetic aberrations in chronic lymphocytic leukemia (CLL). CLL cases exhibit vast

interpatient differences in intratumor methylation heterogeneity, with genetically clonal cases

maintaining low methylation heterogeneity and up to 10% of total CpGs in a monoallelically

methylated state. Increasing methylation heterogeneity correlates with advanced genetic subclonal

complexity. Selection of novel DNA methylation patterns is observed only in cases that undergo

genetic evolution, and independent genetic evolution is uncommon and is restricted to low-risk

alterations. These results reveal that although evolution of DNA methylation occurs in high-risk,

clinically progressive cases, positive selection of novel methylation patterns entails coevolution of

genetic alteration(s) in CLL.

INTRODUCTION

The impact of genetic events on the development and progression of cancer has been clearly

demonstrated through the use of murine genetic tumor models and through the association of

recurrent mutations and genomic aberrations with clinical outcome. Epigenetic differences

are vast between tumor and perceived normal tissues, as well as between patients, typically

involving thousands of loci in a particular genome (1). Epigenetic patterns between various

normal cell types are highly divergent, and are key in determining cell phenotypes and

function (2, 3). Although several oncogenes and tumor-suppressor genes are found to have

recurrently altered epigenetic states in tumors, which contribute to the cancer cell

phenotype, a direct, causative role for the bulk of epigenetic alterations is unclear. Recent

tumor genome–sequencing efforts have uncovered mutations affecting numerous genes with

known epigenetic functions in cancer (reviewed in ref. 4), which further support an

important role for epigenetics in cancer development.

Evolution and resulting genetic tumor heterogeneity are currently under investigation for

many malignancies, as they may explain acquired resistance to therapies. Pronounced

intratumor genetic variation has been recently appreciated for solid tumors (5–7), acute

leukemias (8, 9), and chronic lymphocytic leukemia (CLL; refs. 10, 11). In comparison with

other cancers, CLL offers several advantages to study epigenetic heterogeneity and

evolution of tumor cell populations. First, CLL is a malignancy that possesses a mature,

differentiated cellular phenotype that is epigenetically stable throughout the disease course,

even following treatment (12). CLL tumor samples can be obtained at near-complete purity,

and allow for the assignment of tumor subpopulations to the original founder cell via the

unique rearrangement of the B-cell receptor. Finally, the epigenetic patterns in CLL are

consistent between peripheral blood and lymph node compartments (12), allowing for the
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overall tumor cell population to be represented upon sampling. Furthermore, evolution of

genetic alterations in CLL is found to occur in patients with poor prognostic markers and to

be associated with inferior outcome (13).

Epigenetic alterations, such as DNA methylation, have the potential to add complexity to the

tumor cell population. Loss of epigenetic stability resulting in tumor heterogeneity has been

recently described to frequently occur in cancer (14, 15). Studies of the CLL methylome

have revealed an abundance of genes and other genomic regions that display altered DNA

methylation states (16, 17), including methylation markers of high prognostic significance

(18, 19). Despite the high frequency and importance of epigenetic alterations, the

contribution of DNA methylation patterns to heterogeneity and evolution of tumor cell

populations, and their relationship to genetic evolution, is currently undefined.

RESULTS

CLL Retains a Large Quantity of Allele-Specific Methylation

Global DNA methylation was evaluated in 68 CLL samples and 11 healthy donor B- and T-

cell samples using Illumina human 450k BeadChip analysis. All samples were purified to

>99% by CD19+ or CD3+ selection for B or T cells, respectively. To mitigate the influence

of allele- and sample-specific variation in genomic sequence, all probes overlapping non

unique sequences, single-nucleotide polymorphisms (SNP), and sample-specific copy-

number alterations (CNA) were removed from all the 450k methylation profiles (see

Methods). Although all CLL and healthy donor samples display an enrichment of CpG

methylation values in the ranges of 0% to 20% (mainly CpG islands) and 80% to 100%

(mainly gene body, intergenic CpGs, etc.) as observed previously (17), CLL samples display

a distinct third peak of intermediate methylation values centered around 50% (Fig. 1A). The

prominence of this peak is highly variable between CLL samples and it is not observed in

healthy donor B- or T-cell samples. As diploidy is largely maintained in the genome of CLL

cells (11), we hypothesized that the intermediate peak may be the result of allele-specific

methylation (ASM). To test this possibility, we performed bisulfite sequencing (BS-seq)

targeting differentially methylated regions (DMR) of imprinted gene clusters as well as non-

imprinted regions where intermediately methylated (40%–60%) CpGs were identified.

Twenty-eight amplicons were sequenced, including two imprinted domains as controls, in

20 CLL and four healthy donor B-cell samples with a median read depth of ~3,800 reads.

Average CpG methylation determined by BS-seq was highly correlated with 450k β-values

(R2 = 0.93; Supplementary Fig. S1). Twenty-three amplicons contained sufficient SNP

frequency to assign alleles.

All imprinted CpGs demonstrated a difference of >75% methylation between alleles; thus,

this value was used for the definition of ASM in other amplicons (Fig. 1B). ASM can be

readily observed in CLL samples. To determine the overall ASM composition of the

intermediate peak on 450k profiles, 450k methylation values were plotted in comparison

with the methylation difference between alleles in the 10 CLL samples most prominently

displaying the intermediate peak (Fig. 1B). This comparison reveals that 85% of 450k values

between 40% and 60% methylation (in non-imprinted regions) are monoallelically

methylated in these samples, demonstrating that the bulk of the CLL-specific intermediate
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peak results from ASM. Although healthy donor lymphocyte samples show values between

40% and 60%, only 0.4% of nonimprinted CpGs in healthy B cells exhibit ASM. Analysis

of the patterns of CLL-specific ASM reveals that neighboring CpGs possess ASM on

opposite alleles at random within individual amplicons (Supplementary Fig. S2). This is in

contrast with the imprinted regions where methylation always occurs solely on the same

allele (in both healthy and CLL cells), indicating that the majority of CLL-specific ASM

does not signify imprinting. This complex pattern of stable allelic methylation has been

suggested to likely occur via active demethylation (20). Moreover, this feature also suggests

that ASM in CLL may be distinct from the large partially hypomethylated domains observed

in other cancers (14, 21).

Genomic features associated with allele-specific CpG methylation (ASM-CpG) in CLL were

analyzed by 450k arrays in the 10 CLL samples in which ASM was most prominently

observed. On average, only 20% of the ASM-CpGs are found within CpG islands and 31%

in the vicinity of gene transcriptional start sites, and thus are more similar in their genomic

distribution to CpGs generally found to be fully methylated than those found to be

unmethylated (Fig. 1C). Indeed, 78% of the CLL ASM-CpGs are fully methylated in the

healthy donor B cells, suggesting that ASM in CLL mostly results from loss of methylation

on one allele (Supplementary Fig. S3). This bias toward the allele-specific loss of

methylation is consistent in comparisons with the other B-cell subtypes, including naïve

CD5+ and memory-type B cells. Furthermore, ASM does not occur in patient-matched non-

CLL leukocytes (Supplementary Fig. S4). In contrast to CpGs in low or high methylation

ranges, the ASM state of individual CpGs shows a very low (2.7%) recurrence in CLL

samples (Fig. 1C). Although the bulk of ASM seems to occur by chance, some ASM may

recur nonrandomly between the samples (Supplementary Fig. S5). A Gene Ontology survey

of all genes enriched for ASM (>25% of CpGs/gene equaling an average of ~10% of genes

annotated per Gene Ontology group) revealed no significant enrichment of ontology terms.

Of the 2.7% recurrent CpGs, 28% are located within known imprinted regions and 58% also

display ASM in healthy B cells. After censoring these CpGs, only 0.4% of overall ASM in

CLL is recurrent and potentially disease-specific.

The prevalence of ASM-CpGs in 450k profiles is highly variable between individual CLL

samples (Fig. 1A and D). To estimate the levels of genome-wide ASM, the proportion of

enriched intermediate CpG methylation values was determined by extrapolating a

hypothetical curve connecting fully methylated and unmethylated distributions (see

Methods; Fig. 1D). Using this method, we estimate that genomic monoallelic methylation

ranges broadly from 2% to 10% of total CpGs in CLL (Fig. 1E). Healthy lymphocytes are

estimated to possess <1% monoallelic methylation, consistent with other genome-wide

assessments (22, 23). To validate and further explore ASM on a genome-wide level, ASM

was assessed in whole-genome BS-seq (WGBS) data of two CLL samples and three healthy

B-cell subtypes (17). The prevalence of ASM-CpGs was found to be approximately 6- to 8-

fold higher in CLL samples relative to healthy B-cell subtypes (Supplementary Fig. S6).

Furthermore, the number of ASM-CpGs determined by WGBS is closely proportional to the

estimated amount by 450k analysis in the different CLL samples (Fig. 1E). In comparing

450k ASM estimations in other cancers (17, 24–27), CLL retains 3- to 5-fold more ASM

(Fig. 1F). Together, these results suggest that ASM in CLL is first due to a monoallelic loss
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of methylation before or during the establishment of the CLL founder clone, followed by

high-fidelity maintenance methylation, which preserves methylation patterns in cis

throughout subsequent generations of cells.

Methylation Heterogeneity in CLL

To investigate the basis for the high degree of variation in ASM between CLL samples, we

hypothesized that the degree of ASM reflects intrasample heterogeneity of DNA

methylation patterns. In a diploid cell, CpG methylation values are restricted to three states

(methylated, unmethylated, and monoallelically methylated). If a population of cells

maintains a stable, clonal pattern of methylation, values derived from a sample containing

large numbers (usually >1.0 × 107) of cells will also be restricted to these three discrete

ranges of CpG methylation values. As all CpGs found within CNAs have been removed

from the analysis, methylation values that occur between these discrete ranges can be caused

only by a disparate CpG methylation state between cells within the sample. The total amount

of CpGs that fall outside the expected ranges can thus be used to estimate the overall level of

methylation heterogeneity in a given sample. This approach of elucidating intrasample

heterogeneity has been used previously in conjunction with the HELP genome-wide

methylation assay (28). Here, intrasample methylation heterogeneity is calculated by

summing all values between 20% and 80% methylation subtracted by the amount of

estimated genomic ASM (see Methods). Figure 2A displays the area of the 450k

methylation value density plots used to define methylation heterogeneity in two CLL

samples showing different levels of heterogeneity and in healthy donor B- and T-cell

samples. Methylation heterogeneity values for all samples are displayed in Fig. 2B . Because

of the polyclonal nature of healthy B- and T-cell populations, healthy donor lymphocyte

samples would be anticipated to display methylation heterogeneity, as subtypes of B and T

cells exhibit distinct, genome-wide patterns (17, 29). Indeed, healthy donor B- and T-cell

samples display a relatively higher level of methylation heterogeneity. B cells extracted

from lymph nodes display higher methylation heterogeneity levels compared with peripheral

blood B cells, likely due to the high degree of B-cell diversification that occurs within

germinal centers. Interestingly, methylation heterogeneity values in CLL are not normally

distributed (Anderson–Darling test, P < 0.001), with a group of cases clustering below the

median (12.5%) level of methylation heterogeneity. The non-normal distribution and median

value is comparable with an additional CLL 450k dataset (P < 0.001; ref. 17). For this

reason, this median methylation heterogeneity value is used to distinguish low and high

methylation heterogeneity groups for subsequent analysis.

To confirm the accuracy of methylation heterogeneity estimations from 450k profiles, we

used BS-seq to determine the intrasample heterogeneity of methylation patterns in CLL and

healthy B-cell samples. For this, we used the calculation of epipolymorphism (EPM; ref.

15), which is a measurement of the observed consistency of a given pattern of methylation

within a small defined region of neighboring CpGs (3–6 CpGs) versus the expected, random

pattern. Low EPM values indicate that methylation patterns are similar between cells in a

population, whereas elevated EPM values reflect higher heterogeneity. We calculated EPM

from the BS-seq data generated on 20 CLL and four healthy donor B-cell samples. Healthy

donor B-cell samples demonstrate a low degree of pattern consistency, with all possible
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methylation states represented in proportions that would mostly be expected by chance (Fig.

2C). In contrast, most CLL samples demonstrate a higher degree of pattern consistency and,

in some amplicons, only a single dominant pattern (epi-allele) per allele. These consistent

methylation patterns are observed despite highly discordant methylation existing between

neighboring CpGs and between alleles (see also Supplementary Fig. S2B). Correlation of

intrasample methylation heterogeneity values with the average EPM across 25 amplicons

reveals a general agreement between the two methods (R2 = 0.86), although methylation

heterogeneity evaluations by 450k slightly underestimates the high intrasample

heterogeneity found by EPM in healthy donor samples (Fig. 2D).

Following confirmation of methylation heterogeneity estimations from 450k data, we first

asked whether the level of genomic ASM is dependent on the amount of methylation

heterogeneity in a given CLL sample. ASM and methylation heterogeneity exhibit a strong

inverse correlation in CLL (R2 = 0.66; Supplementary Fig. S7). By definition, the existence

of ASM requires an allelic CpG methylation pattern to be highly consistent in a given

population of cells (to fulfill the criteria of a 75% methylation difference between alleles).

Therefore, it is intuitive that higher levels of overall methylation heterogeneity reflect lower

levels of ASM, and indicates that variable methylation of ASM–CpG partially contributes to

the overall level of methylation heterogeneity in a sample. Despite acute myleogenous

leukemia (AML) and CLL possessing similar levels of methylation heterogeneity (Fig. 2B),

AML exhibits a much lower level of ASM. This implies that ASM and methylation

heterogeneity are not merely two measures of the same underlying phenomenon, and thus

the high level of ASM in CLL is a distinctive feature of the disease. Analysis of solid tumor

data yields consistently higher overall methylation heterogeneity levels in comparison with

CLL and AML. As the estimation of methylation heterogeneity is highly influenced by

sample purity, it is likely that the true levels of heterogeneity between tumor cells are

overestimated in these samples. Absolute tumor cell content in solid cancers ranges from

30% to 90% (30); however, glioblastomas possess >90% tumor nuclei in most samples and

display higher methylation heterogeneity than all CLLs investigated (Supplementary Fig.

S7). Together, these results reveal that CLL exhibits a high level of genomic ASM relative

to other leukemias and solid tumors, and that this distinctive feature is facilitated by—but is

not specifically a result of—a low overall level of heterogeneity in the disease.

Next, we investigated whether methylation heterogeneity is associated with disease-related

factors, such as prognostic indicators and patient outcome. First, we compared various

disease markers of high prognostic significance, including IGHV mutation status (31),

ZAP70 methylation (19), and cytogenetic profiling (32). Patients with an unmutated IGHV

gene, unmethylated ZAP70, and/or high-risk cytogenetics, including deletion of 11q and

17p, are generally associated with a more aggressive disease course. CLLs with above-

median methylation heterogeneity are more frequently IGHV unmutated and have low

ZAP70 methylation (Table 1). Samples that were taken after therapy also are found to

possess high methylation heterogeneity more frequently than samples from nontreated

patients. However, it is problematic to attribute treatment as a direct cause of high

methylation heterogeneity, as high methylation heterogeneity is associated with poor

prognosis and thus a greater likelihood of treatment. Indeed, patients with untreated CLL
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displaying an above-median methylation heterogeneity before therapy show a significantly

reduced (P = 0.006) time from sampling to their first treatment (Fig. 2E). This suggests that

epigenetic heterogeneity in the pretreatment window is associated with a more aggressive

disease course.

The Relationship between Epigenetic and Genetic Heterogeneity

Next, we tested whether the methylation heterogeneity correlates with genetic heterogeneity

in CLL samples. To assess genetic heterogeneity, we postulated that biologically significant

subclonal populations would be identified by genomic events that have been shown to be

relevant to CLL biology. Thus, we assessed in each CLL sample: (i) the total number and

proportion of rearranged/mutated IGHV sequences by quantitative PCR (qPCR), Sanger, and

next-generation sequencing approaches; (ii) the frequency of recurrent somatic mutations in

the exons of TP53, NOTCH1, SF3B1, MYD88, KRAS, and BRAF by high-coverage 454-

based sequencing; and (iii) the proportional copy number of large (>1 Mb) genomic

aberrations by a nonbiased, genome-wide approach derived from 450k arrays (24) and by

targeting recurrent CNAs in chromosomes 11, 13, and 17 using Taq-Man qPCR. Finally,

FISH and karyotype data were also used to establish whether common CNAs were

monoallelic or biallelic. Using these quantitative data, the clone size that each mutation

and/or CNA represents was assigned in each sample. To designate a single value of genetic

heterogeneity to each sample, we identified from all available genetic data the mutation

and/or CNA clone size that would yield the most heterogeneous ratio of the two largest

clones. This value is termed here as the genetic clone ratio. Using this approach, 66 of 68

CLL samples were assigned a genetic clone ratio (Supplementary Table S1). Figure 3A

illustrates the determination of the genetic clone ratio in two CLL samples. We observe a

strong relationship between methylation heterogeneity and genetic heterogeneity, with

higher methylation heterogeneity values observed with increasingly heterogeneous genetic

clone ratios (Fig. 3B; P < 0.0001). Samples scored as biclonal (more than one primary

founder CLL population detected by IGHV rearrangements) were assessed separately and

were found to have high levels of methylation heterogeneity. These data indicate that

intrasample methylation heterogeneity is connected to the degree of genetic diversification

and relative proportions of subclonal populations.

To further investigate the relationship between epigenetic and genetic heterogeneity, we

focused on 28 CLL cases where samples were taken at two or more time points (median

difference of 29 months; range, 12–113). The mutation and/or CNA clone size for each

aberration per sample was determined. The degree of change between the time points for

each case was defined by the mutation/CNA showing the greatest difference. Representative

CLL cases showing <20% (no/low change) or >50% (large changes) in genetic clone ratios

are displayed in Fig. 4A and B, respectively. The difference in overall methylation was

measured by calculating the correlation between time points using the top 40k most variable

probes between time points in all serial cases. CLL cases without genetic evolution

demonstrate consistent methylation between time points, whereas cases that show high

genetic evolution also show widespread methylation changes over time.
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In total, 13 of 28 serial cases were observed to undergo a genetic change of >20% (Fig. 5A

and B). By defining a difference between groups by both the number of CpGs that differ by

>10% and the R2 value (see Supplementary Fig. S8 for a detailed description of group

dichotomization), 9 of 13 cases display evolution of methylation as defined by more than 5

× 103 differentially methylated CpGs and R2 < 0.95. The genetic aberrations that are

observed to evolve codependently with methylation involve a subset of recurrent mutations

and/ or CNAs. The majority of these aberrations (i.e., those involving TP53, SF3B1, BRAF,

del11q23, del17p13, etc.) have been previously described as subclonal cancer driver

mutations that are frequently associated with genetic evolution (11). Decrease or extinction

of some mutations/CNAs is found to occur, indicating that a potential hierarchy of

aberrations exists between subclonal populations. The four cases that do not show evolution

of methylation, yet show a >20% change in genetic clone ratio, specifically involve changes

detected solely at the 13q14 locus, hinting that some aberrations may not be linked to

methylation evolution. Epigenetic and genetic changes are highly codependent (Fisher exact

test, P < 0.001), as widespread epigenetic evolution independent of genetic evolution is not

observed.

Prediction and Outcome of Methylation Evolution

We next investigated whether evolution of DNA methylation is associated with prognostic

indicators or with specific genetic markers. Comparing the 9 serial cases that showed

methylation evolution versus the 19 cases that showed no/low evolution, we find a

significant enrichment of IGHV-unmutated and low ZAP70-methylated cases (P = 0.002;

Table 2). Intriguingly, those cases that showed a high level of methylation heterogeneity in

early sample time points predicted the occurrence of evolution (P = 0.002), supporting the

notion that high methylation heterogeneity may result from active evolution. Methylation

evolution is also associated with intervening treatment, as 8 of 9 evolving (vs. 7 of 19

nonevolving) cases received treatment between time points (P = 0.01); however, based on

the finding that high methylation heterogeneity predicts a shorter time to treatment (Fig. 2E),

it is likely that evolution provokes treatment in at least an equal manner to treatment

inducing evolution. The only mutation or CNA that was significantly associated with

predicting methylation evolution was TP53 (P = 0.03), although the general low frequency

of mutations in CLL necessitates a larger cohort of evolving cases for further testing.

Overall, the presence of a subclonal mutation/CNA (<80% clone size) predicted methylation

evolution (P = 0.04); whereas the presence of a clonal mutation did not, mirroring the

findings of predicting genetic evolution (11).

Next, we tested the association between methylation evolution and the response to first-line

therapy by comparing the presence of methylation evolution with the duration of the event-

free time window following first-line therapy. Treatment and death were included as

posttherapy events. All patients included were previously untreated upon first sampling and

subsequently treated with purine analog and/ or alkylating therapy (Supplementary Table

S1). Patients exhibiting methylation evolution experienced posttherapy events in a

substantially shorter time than those lacking evolution (Fig. 5C; median = 9 vs. 110 months;

P = 0.0001). Together, these observations demonstrate an association between methylation
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evolution and poor prognostic and genetic indicators, as well as a lack of a durable response

to therapy and a more aggressive disease course.

DISCUSSION

CLL generally exhibits a remarkable stability of DNA methylation. Combining the findings

of others (12) with our findings, we demonstrated that CLL tumor populations maintain a

precise overall pattern of DNA methylation for many years of disease course. Furthermore,

as near-clonal patterns of methylation can be found in the cells of some patients, a perfect

maintenance of methylation states must occur from the initial, founding epigenetic patterns

associated with disease transformation. In these highly stable clones, the vast amount of

CpG methylation that occurs only on one allele in nearly all cells is likely a simple reflection

of the methylation status of the original founder clone. CLL arises in a relatively mature cell

type that has some hallmarks of memory-type B cells, which may contribute to its stability

phenotype compared with some other leukemias. It is tempting to draw a parallel between

the general indolent nature of the disease and the extreme stability of the epigenome in some

patients. Here, we also show that in contrast to the high stability of DNA methylation

generally observed in the disease, a subset of cases demonstrate elevated levels of

methylation heterogeneity. Above-median levels of methylation heterogeneity are associated

with poor prognostic indications, a shorter time to treatment, and greater subclonal genetic

diversification.

The association of IGHV mutation status and other prognostic markers with our findings

advocates the integration of DNA methylation heterogeneity and evolution, along with

associated genetic aberrations, into the established high/ low-risk subtype model of CLL

(Fig. 6). In this integrated view, ASM occurs in the founder malignant cell as a result of

monoallelic loss of methylation associated with B-cell maturation (17) and/or transforming

events. Establishment is also usually associated with the acquisition of recurrent CLL

founder mutation(s), such as trisomy 12, MYD88, and others (11). Highly stable, clonal

CLLs, which are much less likely to coevolve epigenetic and genetic changes, are typically

the IGHV-mutated/ZAP70 -methylated subtype. These cases generally exhibit low

methylation heterogeneity and require less immediate treatment. Evolution of methylation is

not observed to occur in the absence of newly acquired and actively selecting genetic

aberrations. In a minority of cases, a genetic change can be detected without an appreciable

change in methylation. In these cases, the observed change in 4 of 4 patients is solely a

change at the 13q14 locus, a common aberration in the low-risk CLL subtype. CLL cases

with above-median methylation heterogeneity, including all of those that display

methylation evolution, are associated with IGHV-unmutated/ZAP70 -unmethylated markers.

In this high-risk disease subtype, increasing methylation heterogeneity is associated with an

increasingly complex subclonal genetic architecture. In all cases that show methylation

evolution, a change in genetic architecture is observed. Evolving genetic aberrations in this

subset of cases involve known cancer driver genes, including TP53, SF3B1, BRAF, etc.

How does coevolution of epigenetics and genetics occur? There are two main (non–mutually

exclusive) hypotheses (Fig. 6). In the first, simultaneous acquisition, a novel mutation of a

cancer driver gene is acquired in a cell that fundamentally alters the biology of the cell in a
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way that involves changes to the epigenome. The second, stepwise acquisition, involves a

mechanism in which first there exists a low level of epigenetic instability producing

variation within the CLL population. When a cell from this population then acquires a novel

cancer driver mutation, the variant methylation pattern of the particular cell hitchhikes on

the subsequent subclonal expansion. This expansion then permits the detection of the altered

methylation pattern that would otherwise be detectible only on a single-cell level previous to

the expansion.

Why are epigenetic and genetic changes associated? A possibility one must first consider is

that they are mechanistically unrelated. In the stepwise acquisition scenario, it is possible

that epigenetic drift occurs independently of the stochastic acquisition of driver mutations.

Another possibility is that they are mechanistically linked. Associated genetic and

epigenomic states have been observed in several other cancers, including mutations in

IDH1/2 in gliomas (33) and myeloid malignancies (34), H3F3A in glioblastomas (24), and

BRAF in colorectal cancer (35). In most of these well-described associations, mutations

occur in genes with defined roles in epigenetic pathways (reviewed in ref. 4). However, a

direct causative connection to epigenetic regulation remains elusive. It stands to reason that

many recurrent, high-impact mutations, not known to directly involve epigenetic regulation,

also involve epigenetic deregulation as a part of their aberrant function. For example, the

deletion of chromosome 17p is associated with a loss of methylation at repetitive sequences

in CLL (36). The most judicious scenario places genetic events as the driving force behind

the subsequent evolution of a novel epigenetic state. However, one cannot exclude that

primary changes to the epigenome permit the acquisition of specific mutations, that is,

epigenetic silencing of key tumor-suppressors that would otherwise have resulted in

apoptotic cell death/senescence (37). Epigenetic drift may endow a subset of cells within the

population with the eventual attributes needed to escape negative feedback regulation by

tumor suppressors, allowing for a driver mutation to occur. Here, we observe that

epigenetic/genetic coevolution involves a spectrum of aberrations, implying a potentially

very broad and intricate interrelationship between the genome and epigenome. Using higher-

resolution techniques, future work will involve unraveling the relative contributions of

epigenetic versus genetic evolution to disease, and investigate whether monitoring DNA

methylation heterogeneity during disease course will benefit patients.

METHODS

CLL and Healthy Donor Lymphocyte Samples

Clinical and biologic characteristics of the 107 samples of patients with CLL and healthy

donor controls used for DNA methylation analysis are shown in Supplementary Table S1.

CLL cases were selected to provide a balanced cohort for IGHV mutation status (28 of 68;

<98% identity), treatment status (19 of 68 untreated, 19 of 68 treated after sampling, 30 of

68 treated before sampling), and treatment response to first-line therapy (28 complete/partial

response, 13 stable/progressive disease). Furthermore, samples were enriched for the

presence of informative somatic aberrations. Thus, the cohort is not a true representation of

the general CLL population at large. FISH, IGHV mutation, and ZAP70 methylation analysis

was done as previously described (19, 32, 38). All patients gave informed consent.
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Isolation and Purification of CLL and Healthy Lymphocytes

All samples were obtained from whole blood, subjected to Ficoll-Isopaque density

centrifugation, and CD19+ B and CD3+ T cells were isolated by positive magnetic cell

separation (Miltenyi Biotec). Sorted cells were checked for purity by fluorescence-activated

cell sorting (FACS) with CD19/CD20 for healthy control samples and CD19/ CD20/CD5

for CLL samples (BD Biosciences). Following sorting, all samples with a CD19/CD20/CD5

purity <98% were subjected to additional sorting, and the average final purity of all sorted

samples was >99%. CLL samples with >100 × 106 WBC/µL were not subject to

purification. DNA was extracted from purified cells using the Qiagen DNeasy Kit (Qiagen)

and quantified using a ND-100 spectrophotometer (Thermo Scientific).

DNA Methylation Analysis Using 450k BeadChip Arrays

High-quality genomic DNA (500 ng) was bisulfite converted using the EZ DNA

Methylation Gold Kit (Zymo Research). The Infinium methylation assay was carried out as

described previously (39). Data from the 450k Human Methylation Array were normalized

by the Beta Mixture Quantile (BMIQ) method (40) using the RnBeads analysis software

package (41). Data are available at the European Genome–Phenome Archive

(EGAS00001000534). GenomeStudio (Illumina, Inc.) was used for CpG island and gene

segment annotation; repetitive sequence, segmental duplication, SNP, and imprinted DMR

annotation was obtained from the UCSC genome browser, version hg19. Estimation of

genomic ASM from 450k methylation frequency plots was calculated by first generating a

hypothetical third-degree polynomial curve that estimates the distribution without

intermediate methylation values (i.e., from unmethylated and fully methylated distributions)

with smooth connections at fixed departure points (matching the original function at these

departure points in the first derivative). Estimated ASM is the quantity of methylation values

above the hypothetical curve and below the actual density curve relative to all values

analyzed (multiplied by 100 for scaling purposes). Methylation heterogeneity was calculated

by measuring the quantity of methylation values below the hypothetical curve and between

20% and 80% methylation (again multiplied by 100). This methylation window represents

the range in which the greatest difference occurs between clonal CLL and healthy

lymphocyte (polyclonal) samples. Different variable and fixed methylation heterogeneity

window settings were tested and did not significantly change the relative order of

methylation heterogeneity sample values or the association of methylation heterogeneity

versus outcome (Supplementary Fig. S9). The reproducibility of estimated genomic ASM

and methylation heterogeneity values was confirmed by testing two independent samples in

two CLL cases; each sample was independently isolated and purified (Supplementary Fig.

S10). Because each CLL sample may have a unique CNA profile, in addition to censoring

all probes on chromosome arms 11q, 13q, 17p, and 12p+q in all 450k profiles, any CNA >1

Mb in size was censored in sample-specific manner. Censoring was matched between serial

samples. CNAs were detected using an algorithm for quantitative CNA detection based on

450k probe intensities (24). CLL 450k profiles were also censored for all nonunique

sequences, probes possibly containing SNPs, and sex chromosomes (totaling ~185K CpGs).

Additional CLL and healthy B-cell 450k/WGBS data, presented in Figs. 1, 2, and

Supplementary Figs. S3, S6, and S7, were obtained from previously published work (17),
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AML (25), glioblastoma (24, 26), renal clear cell carcinoma (26), colon adenocarcinoma

(27), and lung adenocarcinoma (26).

Analysis of ASM Using WGBS

WGBS data were obtained from the International Cancer Genome Consortium (http://

icgc.org). ASM–CpG were determined by identifying heterozygous SNPs using the Bis–

SNP algorithm (42) followed by determining the allelic methylation ratio of each CpG

within overlapping reads (minimum 8 reads per allele). The calculation of the ASM to

investigated CpG ratio required the ASM–CpG to have a P value smaller than FDR ≤ 0.05

and a methylation difference of at least 75%. CpGs were only considered if not overlapping

an SNP. All CpGs were filtered that are located in problematic regions (HISEQDEPTH,

REPEAT_MASKER, DUKE_EXCLUDED, and DAC_BLACKLIST tracks obtained from

the UCSC Genome Browser, hg19).

Targeted BS-seq and Analysis

Bisulfite-converted genomic DNA was amplified by standard PCR using barcoded primers

for patient sample identification. Primer sequences, SNPs, and 450k probes covered are

listed in Supplementary Table S2. Multiple PCR products from 12 × 2 samples were pooled

and sequenced using paired-end, 150-bp reads on a MiSeq sequencer (Illumina, Inc.).

Median read depth per amplicon per patient was ~3,800 high-quality reads. Debarcoded

reads were analyzed simultaneously for methylation and genotype using the Bis–SNP

algorithm (42). EPM analysis was performed as previously described (15) with

modifications. To normalize EPM values derived from amplicons with different numbers of

CpGs and variable average methylation content, expected EPM values were first generated

by random simulation of methylation patterns for amplicons containing three to six CpGs for

average methylation ranges of 20% to 80%. Spline curves derived from simulations were

used to adjust EPM for average methylation content of each amplicon in each sample using:

EPM = EPM observed + (1 − EPM expected). Amplicons with an average methylation <20% or

>80% were excluded from EPM analysis due to low complexity potential.

Identification of Genomic Aberrations and Determination of Genetic Heterogeneity in CLL
Samples

Somatic genetic aberrations were assessed in 106 CLL samples. For each sample, the

sequence identity of the unique rearranged IGHV region was determined by genescan qPCR

followed by Sanger dye-terminator sequencing (38). Biclonality was defined by a CLL

sample exhibiting a minimum of three unique and fully recombined IGHV alleles, with a

minimum of two productive rearrangements. For samples with polyclonal chromatogram

profiles, PCR products were sequenced using MiSeq to determine the sequence and

proportion of subclones. The frequency of recurrent somatic SNVs in the exons of TP53,

NOTCH1, SF3B1, MYD88, KRAS, and BRAF was determined by 454-sequencing (ref. 43;

Roche). At least one mutation could be detected in 66 of 96 samples. All mutations were

considered to be heterozygous. The proportional copy number of large (>1 Mb) CNAs was

determined by a custom quantitative algorithm derived from 450k array raw data (24). The

proportional copy number of recurrent minimally deleted regions (MDR) in chromosomes
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11, 13, and 17 was further supported using TaqMan qPCR. Eight primer-probes were used

to amplify various regions within each MDR and compared with eight primer-probes

positioned at various genomic positions not affected by CNAs in all samples. CNAs could

be detected in 88 of 96 samples. FISH data on chromosomes 6, 8, 11, 12, 13, 14, and 17

were used to establish whether common CNVs were monoallelic or biallelic. In all,

quantitative SNV/CNA data could be determined for 93 of 96 samples.

Statistical Analysis

Associations between methylation heterogeneity, genetic heterogeneity, and clinical features

were assessed by the Wilcoxon rank-sum test, Fisher exact test, or the Kruskal–Wallis test,

as appropriate. Correlation calculations were performed by Pearson product-moment

correlation coefficient (R2). To test the significance of recurrence of ASM between samples

we constructed a test statistic which is the number of ASM–CpGs occurring in at least 8 of

10 samples, then an empirical P value was calculated on the basis of 10,000 permutations.

Time-to-event data were estimated by Kaplan–Meier analyses, and differences between

groups were assessed using the Mantel–Cox log-rank test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

Epigenetic alterations are pervasive in cancer and continually develop during disease

progression; however, the mechanisms that promote changes in the tumor epigenome at

large are currently undefined. The current work provides insight into the coevolution of

genetic and epigenetic aberrations and highlights the influential role of genetic

aberrations in the selection of novel methylation patterns.
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Figure 1.
Pronounced ASM in CLL samples. A, frequency distribution of CpG methylation values

from 450k profiles in CLL and healthy donor B- and T-cell samples. CLL displays a

prominent enrichment of methylation values centered around 50%. B, a scatterplot

comparing 450k methylation versus the percentage methylation difference between alleles

determined by BS-seq. CpGs from nonimprinted loci in CLL samples (blue dots), healthy B

cells (red dots), and imprinted loci (black Xs) are shown. The range of methylation

difference defined as allele-specific (>75% difference) is shown. C, genomic characteristics
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of CpGs separated into unmethylated (0%–20%), monoallelic (40%–60%), and biallelically

(80%–100%) methylated CpGs in clonal CLL samples. The proportion of CpGs associated

with CpG islands, gene segments, and recurrence within each methylation range is

displayed. D, methylation density plots of two CLL samples representative of high (CLL44)

and low (CLL112) monoallelic methylation, as well as a healthy donor B- and T-cell

samples, with the area used to estimate the overall proportion of genomic ASM highlighted.

E, a comparison of ASM in WGBS with the estimation by 450k. 450k methylation density

plots of one healthy B-cell sample and two CLL samples analyzed by 450k are shown (top)

along with the correlation between methods. NBC, naïve B cell; ncsMBC, non-class-

switched memory B cell. F, estimated ASM in all 68 CLL and healthy donor lymphocyte

samples. Individual values for CLL samples illustrated in D are indicated. Analysis of

downloaded 450k datasets (in gray) is included for comparison. CLL (17); AML (25);

GBM, glioblastoma multiforme (24); Renal, renal clear cell carcinoma (26); Colon, colon

adenocarcinoma (27); and Lung, lung adenocarcinoma (26). ICGC, International Cancer

Genome Consortium; TCGA, The Cancer Genome Atlas.
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Figure 2.
Variable intratumor heterogeneity of DNA methylation heterogeneity in CLL samples. A,

the proportion of 450k methylation values used to estimate the overall level of DNA

methylation heterogeneity in representative CLL and healthy donor samples. B, methylation

heterogeneity values show pronounced variation among CLL cases and collectively display

lower methylation heterogeneity than healthy donor samples as well as other solid tumors.

LN, lymph node; PB, peripheral blood. C, a representative example of targeted allele-

specific bisulfite-sequencing (surrounding the SNP rs365605) showing mostly clonal
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(CLL21, 44 and 86) and increasingly heterogeneous (CLL32, 112) methylation patterns

among CLL samples. Despite disordered methylation states between neighboring CpGs

(horizontal), many CLL samples display mostly clonal patterns indicated by a high

proportion of identical epi-alleles (vertical). Epipolymorphism (EPM) and overall 450k

methylation heterogeneity values are displayed; asterisks indicate ASM-CpGs. D,

correlation between methylation heterogeneity and the average EPM for 25 targeted regions

in 20 CLL and four healthy donor B-cell samples demonstrates an agreement between the

two methods. E, the duration of treatment-free survival from the time of sampling to first

therapy. CLL samples were segregated into two groups by the median methylation

heterogeneity value of all samples.
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Figure 3.
Epigenetic heterogeneity is associated with genetic heterogeneity in CLL samples. A,

quantitative assessment of the mutation/CNA clone sizes for various aberrations in two CLL

samples representative of different levels of genetic heterogeneity. Clone sizes for various

detected somatic aberrations (gray) are displayed for CLL48 and CLL109. For CLL48, all

variations fall within a range consistent with a clonal sample population possessing

monoallelic aberrations at 13q14, 17p13, and MYD88 and a single-copy gain of

chromosome 12. For CLL109, individual somatic variations occur at a frequency indicative

of intraclonal diversification, with the mutation clone size of the R625C mutation in SF3B1

representing approximately an even ratio of genetic clones. The most possible

heterogeneous ratio of all mutations/CNAs is designated as the genetic clone ratio for a

given sample. B, methylation heterogeneity levels of all CLL samples versus the genetic

clone ratio. Biclonal samples are also displayed.
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Figure 4.
Coordinated epigenetic and genetic evolution in 28 serial CLL cases. A, representative CLL

cases showing no/low change (Δ<20%) and (B) large change (Δ>50%) in genetic clone size

are displayed. The time elapsed between sampling is displayed above each panel. The

mutation/CNA clone size determined for each aberration is shown for both time points

(above); error bars indicate SD of technical replicates. Recurrent CLL aberrations, defined

by Edelmann and colleagues (44), are labeled in black, nonrecurrent CNAs in gray.

Differences in clone size between time points that would represent a change of <20%, 20%–
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50%, and >50% are illustrated by light blue, purple, and pink areas, respectively. For each

sample, the methylation values of the overall 40k most variable CpGs are used to calculate

the Pearson correlation coefficient (R2) between time points.
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Figure 5.
Evolution of DNA methylation versus genetic aberrations and event-free survival following

first therapy. A, correlation of genetic evolution (measured by the change in the genetic

clone ratio) with methylation evolution (measured by the number of differentially

methylated CpGs Δ>10%) in 28 serial CLL cases. Cases that show no/low methylation or

genetic evolution (black dots) and coevolving cases (red dots) are shown. Cases that show

only genetic evolution are colored gray. B, a summary of methylation and genetic evolution

in serial cases. The change in methylation (measured by the number of differentially

methylated CpGs and the Pearson correlation) and the change in the genetic clone ratio,

including the evolving genetic aberrations, are shown for each case. C, a comparison of the

duration of the event-free time window following first-line therapy between CLL cases with

high and no/low methylation evolution. Second treatment or death were used as posttherapy

events. Statistical analysis performed by Mantel-Cox log-rank test (P< 0.0001).
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Figure 6.
Scenarios involving epigenetic and genetic evolution in the two-disease subtype model of

CLL. CLL-initiating events include genome-wide hypomethylation, which produces a high

degree of ASM, and usually a somatic genetic event, which together are observed as clonal

aberrations at all time points. In the IGHV -mutated subtype, the genome-wide DNA

methylation pattern of the founder cell is maintained with relative high fidelity. Selection of

subclonal populations with widespread epigenetic changes is not observed. Genetic

evolution independent of methylation evolution is only rarely observed and frequently

involves a recurrent deletion that includes 13q14. All cases that exhibit a high degree of

methylation evolution are the IGHV-unmutated disease subtype and involve simultaneous

selection of genetic aberrations. Two possible (non-mutually exclusive) hypotheses for

coincident evolution are shown: (i) simultaneous acquisition, where the acquisition of a

genetic subclonal driver aberration directly affects the epigenetic state of the subclonal

founder cell, and (ii) stepwise acquisition, where a low level of epigenetic stability precedes

Oakes et al. Page 26

Cancer Discov. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the acquisition of a genetic subclonal driver, and thus a novel epigenetic pattern is

coselected with the genetic aberration. SHM, somatic hypermutation.
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Table 1

Comparison of methylation heterogeneity with patient characteristics and prognostic indicators

Low DNA methylation
heterogeneity no. (%)

High DNA methylation
heterogeneity no. (%) P

Patient characteristics

    Age at diagnosis (y ± SD) 55.8 ± 11.8 59.9 ± 10.6 n.s.

    Sex (female) 10 (33) 15 (48) n.s.

    Pretreatment (yes) 6 (19) 13 (42) 0.014

Prognostic indicators

    IGHV unmutated 8 (35) 11 (79) <0.01

    ZAP70 low methylation 7 (30) 9 (69) 0.024

    Cytogenetics (NK, sole −13q) 14 (61) 9 (69) n.s.

Abbreviation: n.s., not significant.
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Table 2

Summary table of prognostic and genetic markers in serial CLL cases (time point 1)

No/low evolution of DNA
methylationn = 19 (%)

High evolution of DNA
methylationn = 9 (%) P

Prognostic indicators

    IGHV unmutated 7 (37) 9 (100) 0.002

    ZAP70 low methylation 7 (37) 9 (100) 0.002

    High methylation heterogeneity 5 (26) 8 (89) 0.002

Cytogenetics

    Normal karyotype 4 (21) 2 (22) n.s.

    Del 13q14 12 (63) 6 (67) n.s.

    Del 11q23 4 (21) 1 (11) n.s.

    Del 17p13 3 (16) 1 (11) n.s.

    Del 6q 1 (5) 1 (11) n.s.

    Trisomy 12 3 (16) 1 (11) n.s.

Genetic mutations

    TP53 3 (16) 5 (56) 0.03

    SF3B1 4 (21) 3 (33) n.s.

    NOTCH 3 (16) 0 n.s.

    MYD88 3 (16) 0 n.s.

    BRAF 1 (5) 2 (22) n.s.

    KRAS 0 1 (11) n.s.

Mutation clone size

    Clonal (>80%) 7 (37) 1 (11) n.s.

    Subclonal (<80%) 5 (26) 6 (67) 0.04

    Any 11 (58) 7 (78) n.s.
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