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a b s t r a c t 

As the development of micro/nanoelectromechanical devices continues at a fast pace, there is a grow- 

ing need to bridge the gap between material behavior at the atomic and molecular levels and material 

behavior at length scales relevant to most engineering and industrial applications. Since stress is one of 

the most fundamental quantities in continuum mechanics (CM), it is desirable to introduce stress meth- 

ods that are applicable to both continuum and discrete systems, such as those modeled by molecular 

dynamics (MD). Thus, the objective of this study was to demonstrate how a traction vector-based stress 

method that is compatible with CM can be used to examine MD systems of crystalline solids undergo- 

ing small lattice distortion. In the bulk of face-centered-cubic (FCC) and body-centered-cubic solids, the 

traction vector-based atomic stress definition used in this study is shown to be equivalent to the classi- 

cal energy-based virial stress that is commonly used for small deformations and low temperatures, i.e., 

negligible thermal vibration. However, contrary to the virial stress, the components of the present atomic 

stress diminish in the region close to a free surface, consistent with the traction-free boundary condition. 

The validity of the stress method developed herein is demonstrated by MD results of the bulk modulus 

of FCC copper, the surface tension of an FCC solid, and the subsurface stress field of an FCC half-space 

indented by a rigid flat punch. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The rapid growth of various nanotechnology and nanoscience

sectors has generated high interest in the development of mechan-

ics approaches applicable to the atomic scale, where continuum

mechanics (CM) does not hold. For example, fracture mechanics

within the framework of continuum theory has been reported to

break down at the nanoscale ( Shimada et al., 2015 ), atomic-scale

surface roughness has been shown to greatly affect the contact

area, stresses, friction force, and lateral contact stiffness predicted

by CM theory ( Luan and Robbins, 2005 ), and contact deforma-

tion predicted by CM differs significantly from that obtained with

atomistic models in the presence of surface adhesion ( Solhjoo and

Vakis, 2015 ). Nevertheless, developments in advanced microanaly-

sis techniques and effective computational methods have enabled

material characterization and modeling of physical phenomena at

the atomic scale. Particularly, molecular dynamics (MD) has been

proven an efficient computational method for analyzing atomic-

scale deformation, fracture, and phase changes in solids. For in-

stance, atomistic dynamic simulations of single-crystal plasticity

have provided insight into the limits of dislocation-mediated plas-

ticity in body-centered-cubic (BCC) tantalum ( Zepeda-Ruiz et al.,
∗ Corresponding author. 
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017 ) and large-scale MD simulations have been performed to

lucidate temperature- and stress-induced martensite-austenite

ransformation in equiatomic titanium-nickel shape-memory al-

oy ( Chen et al., 2018 ). Various computational methods for in-

erfacing large-scale MD simulations with CM models have been

sed to obtain continuum parameters, e.g., deformation gradient

nd Cauchy stress, from MD systems by minimizing the differ-

nce between identical quantities at the scales of MD and CM

odels ( Zhang et al., 2015 ), or to recover crystal defects, i.e.,

islocations, twin boundaries, and stacking faults ( Sansoz, 2011 ;

tukowski et al., 2010 ), from the particle-position trajectories in

D models ( Stukowski, 2012 ). New computational techniques have

een developed for large-scale atomistic simulations of crystalline

olids, including multiscale modeling of structurally-graded ma-

erials wherein constitutive material parameters extracted from

D simulations are used to calibrate material processes at the

esoscale by applying discrete dislocation dynamics and then in-

roduce the predicted grain size-dependent stress-strain relations

nto the crystal plasticity parameters of finite element-based CM

odels ( Saether et al., 2014 ). 

Atomistic simulations of a rigid tip indenting a copper sub-

trate have shown that the resulting elastic stress field bears

ome similarity to that predicted by classical Hertz theory ( Leng

t al., 20 0 0 ). MD simulations have been used to investigate the

ndentation and scratching behavior of crystalline aluminum

https://doi.org/10.1016/j.ijsolstr.2020.02.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2020.02.003&domain=pdf
mailto:kyriakos@me.berkeley.edu
https://doi.org/10.1016/j.ijsolstr.2020.02.003
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 Komanduri et al., 20 0 0 ) and single-crystal copper ( Belak and

towers, 1992 ), as well as single and cyclic indentation of metal-

ike substrates by a diamond-like tip ( Komvopoulos and Yan, 1997 ).

n addition, several MD studies have provided insight into various

hase change and deformation phenomena, such as the diamond-

o-amorphous phase transformation occurring in the near-surface

egion of indented crystalline silicon ( Kallman et al., 1993 ), the

ndentation and cutting of Lennard–Jones (LJ) crystalline solids

 Hoover et al., 1989 ), the stress field in a metallic substrate in-

ented by a hard ball or diamond tool ( Belak and Stowers, 1990 ,

992 ), the formation of a dislocation in an LJ solid due to a pen-

trating atom with the dislocation movement coinciding with that

redicted by plastic indentation analysis ( Yan and Komvopoulos,

998 ), the dependence of the friction coefficient on the size, shape,

nd orientation of a sliding diamond tip ( Yang and Komvopou-

os, 2005 ), and the pseudoelastic behavior of nickel-titanium alloy

nder various monotonic and cyclic loading conditions ( Srinivasan

t al., 2018 ; Wang et al., 2017 ). 

Despite of the important insight into atomic-scale deformation

nd phase change phenomena provided by the foregoing studies

nd others dealing with deformation processes at the atomic level,

cale bridging between MD and CM analyses remains challeng-

ng, hindering the simultaneous study of physical processes at the

tomic and continuum levels. Specifically, because stress is one of

he most fundamental quantities in CM, it is essential to introduce

 stress definition applicable to both continuum and discrete sys-

ems. The most common stress definition in discrete-particle sys-

ems is the virial stress, which is derived from the generalization

f the virial theorem ( Clausius, 1870 ) for gas pressure and the so-

ution of the spatial equation of balance of momentum. The virial

tress consists of two components: a kinetic component depending

n the atomic particle mass and velocity and a potential compo-

ent depending on the interatomic forces and atom positions ( Tsai,

979 ). Based on a general stress theorem for quantum mechanical

ystems ( Nielsen and Martin, 1985 ), an equivalent stress formula

as derived for systems in which the total potential energy is only

 function of interatomic distance ( Vitek and Egami, 1987 ). A stress

efinition slightly different from the virial stress has also been

sed to compute stress components at different surfaces ( Cheung

nd Yip, 1991 ); however, it was argued that the stress field of a

ynamically deforming atomistic particle system that is equivalent

o a continuum system depends only on the interatomic forces and

hat the kinetic component of the virial stress generally results in

rroneous stress interpretation ( Zhou, 2003 ). Moreover, it has been

easoned that the virial stress represents an atomistic definition

f stress that is equivalent to the continuum Cauchy stress, pro-

ided spatial and temporal averages are computed in an Eulerian

eference frame ( Subramaniyan and Sun, 2008 ). In the absence of

he kinetic component, the virial stress is equivalent to the atomic

tress in solids subjected to homogeneous deformation ( Born and

uang, 1954 ) under the assumption that the strain energy is equal

o the change in total interatomic potential energy of the system,

.e., the summation of the two-body interatomic potentials of all

tom pairs. This stress definition is equivalent to the virial stress

t a temperature of 0 K. 

Stress definitions equivalent to that of the classical virial stress

 Born and Huang, 1954 ) have been adopted in several atomistic

tudies. For example, MD simulations were performed to exam-

ne the atomic stress field in a gold substrate due to the adhesion,

anoindentation, and detachment of a nickel tip ( Landman et al.,

990 ). Leng et al. (20 0 0) used MD simulations to determine the

tress distribution in a face-centered-cubic (FCC) copper substrate

ue to contact with a rigid copper-like tip and obtained results

imilar to those derived from classical Hertz theory for purely elas-

ic deformation. However, the nonzero normal and shear stresses

t the free surface predicted in the foregoing study are inconsis-
ent with the traction-free boundary condition, suggesting that this

tomic stress definition is incompatible with the Cauchy stress def-

nition in the neighborhood of a free surface. 

In CM analyses, the stress is defined by traction vectors, i.e.,

orces acting on unit areas ( Love, 1944 ). This approach may be ex-

ended to MD analyses by defining the atomic stress in terms of

he forces acting on a unit area. It has been proposed ( Scagnetti

t al., 1996 ) that the traction vector acting on an atom can be rep-

esented by the resultant vector of all interatomic forces whose

rajectories pass through a finite segment of a plane (on which the

iven atom is centered) divided by the segment area. Stress dis-

ributions that are both locally descriptive and relatively smooth

an be obtained with a plane size equal to five times the inter-

tomic spacing. However, defining a material plane that contains

 few atoms is hindered by numerical complexity introduced by

tomic thermal vibration. In addition, accounting for all of the in-

eratomic forces associated with the atoms lying on the particular

aterial surface is cumbersome. 

The objective of this study was to introduce a traction vector-

ased stress method that uses a geometrical plane rather than a

aterial plane to define the atomic stress and examine its equiv-

lence with energy-based atomic stress methods. It is shown that

he present stress definition is equivalent to that of the classical

irial stress in the bulk of FCC and BCC solids provided the in-

eratomic forces can be characterized by pair potentials and the

rystal structure is not grossly distorted. The validity of the stress

ethod introduced in this study is demonstrated by MD simula-

ion results of the bulk modulus of FCC copper, the surface tension

f an FCC solid, and the stress field of an FCC substrate indented

y a flat diamond tip. 

. Interatomic potential functions 

MD is an effective method for calculating instantaneous ma-

erial properties and analyzing atomic-scale deformation. In MD

nalyses, the atomic motion is described by Newton’s second law

nd the interatomic forces are determined from a two-body or

any-body potential function. The parameters of the interatomic

otentials are usually extracted by fitting the material parameters,

uch as elastic constants, phonon frequencies, and energy of va-

ancy formation ( Foiles et al., 1986 ; Eggen et al., 1992 ). A typical

wo-body potential describes the force acting between two atoms

 and j of the system as a function of their interatomic distance

 ij , that is, the force is independent of the position of other atoms.

hus, a two-body potential function ϕ can be mathematically ex-

ressed as 

 i j = ϕ( r i j ) . (1) 

If the force acting between atoms i and j is also affected by the

eighboring atoms, then it is described by a many-body potential

efined as 

 i j ... kl = ϕ( r i j , . . . , r kl ) . (2)

In the present analysis, a previously developed three-

imensional MD code of atomistic systems characterized by

wo-body potentials ( Komvopoulos and Yan, 1997 ) was modified

ccording to the objectives of this study. Although the stress

efinition used in the present analysis is for systems characterized

y two-body potential functions, it can also be applied to sys-

ems characterized by many-body potential functions with minor

odification. In the MD simulations, atomic interaction in an FCC

opper-like material is described by the Morse potential given by

( r i j ) = D e −2 α( r i j −r 0 ) − 2 D e −α( r i j −r 0 ) , (3)

here –D is the minimum value of the potential (well depth), r 0 
s the equilibrium bond distance corresponding to the well depth,
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Fig. 1. A 2D schematic illustration of the traction vector calculation at each atom 

of the system. The red dashed line represents the geometrical plane used to define 

the atomic stress. 
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and α is a parameter that controls the potential width (a smaller

α implies a deeper well). 

For the countersurface, which is modelled as a rigid diamond-

like tip, the interfacial potential that describes tip-substrate atomic

interaction is represented by an LJ potential given by 

ϕ( r i j ) = 4 ε 

[ (
σ

r i j 

)12 

−
(

σ

r i j 

)6 
] 

, (4)

where ε is the well depth (a measure of how strong is the attrac-

tion between atoms i and j ) and σ is the finite distance at which

the potential is zero. 

3. Atomic stress analysis 

As mentioned earlier, the virial stress is defined for a volume v i 
that surrounds atom i and is given by ( Zhou, 2003 ) 

σ ab 
i = − 1 

v i 

∑ 

j � = i 

(
M i V 

a 
i V 

b 
i + F a i j r 

b 
i j 

)
, (5)

where a and b represent the axes of the coordinate system and

take values 1, 2, and 3, M i and V i are the atomic mass and veloc-

ity, respectively, F ij is the interatomic force, and r b 
i j 

represents the

scalar components of the distance vector r ij . The convention is that

a negative stress denotes attraction, whereas a positive stress de-

notes repulsion. Eq. (5) was also derived in an earlier study ( Vitek

and Egami, 1987 ) by using the general stress theorem for quantum

mechanical systems ( Nielsen and Martin, 1985 ). 

Another commonly used atomic stress definition ( Born and

Huang, 1954 ) was obtained by relating the elastic stress to the

interatomic potential function of a medium undergoing homoge-

neous deformation ( Egami and Srolovitz, 1982 ) under the assump-

tion the strain energy equals the change in total interatomic po-

tential energy of the system, i.e., the summation of the two-body

interatomic potentials of all atom pairs. Since the interatomic force

is defined as 

F a i j = − 1 

r i j 

dϕ 

d r i j 

r a i j , (6)

the stress acting on atom i can be written as 

σ ab 
i = 

1 

v i 

∑ 

j � = i 

(
1 

r i j 

dϕ 

d r i j 

r a i j r 
b 
i j 

)
, (7)

where r ij is the magnitude of the distance vector r ij and r ij 
a and r ij 

b 

are its scalar components in the directions a and b , respectively.

Since Eq. (7) is the same as the second term (potential compo-

nent) of the virial stress ( Eq. (5) ), the stress definitions given by

Eqs. (5) and (7) are equivalent when the temperature is equal to 0

K. 

In CM treatments, stress is defined by traction vectors, i.e., the

stress components are considered as forces acting on unit surface

areas. This concept was extended to the stress analysis of MD sys-

tems by introducing an approach that defines stress in terms of the

interatomic forces ( Scagnetti et al., 1996 ). The traction vector act-

ing on an atom was obtained as the sum of all interatomic forces

whose trajectories cross a finite plane of size equal to about five

times the interatomic spacing (on which the reference atom was

centered) divided by the plane surface area. However, defining a

material surface passing through a few atoms is numerically com-

plex because the surface does not remain planar due to thermal

vibration of the atoms. Hence, determining the interatomic forces

acting on the atoms of a material surface is nontrivial, especially

for edge and corner surface atoms. Therefore, a geometric plane

instead of a material surface was used in this study to determine

the traction vector acting on each atom of the system. 
Fig. 1 provides a two-dimensional (2D) schematic description

f the calculation of the traction vector T i ( e 2 ) acting on atom i and

ssociated with a planar surface defined by a unit normal vector

 2 . For simplicity of plotting, the cutoff distance used in the fig-

re is equal to 1.75 a l , where a l is the lattice distance, although a

arger cutoff distance (e.g., ≥2.5 a l ) may be needed in real applica-

ions for accurate stress analysis. The red dashed line represents a

lanar surface shifted above atom i by a distance equal to one-half

f the atomic plane distance (i.e., 0.25 a l ) so that no atom crosses

he surface as a result of thermal vibration. Only the interatomic

orces whose trajectories cross the plane surface (the atoms con-

ected by solid lines in Fig. 1 ) are included in the calculation of

he traction vector. Due to the periodicity of the crystal structure,

he dimension of the planar surface is an integer multiple of a l . Al-

hough a smaller surface area is locally more descriptive, a larger

urface area yields relatively smoother stress distributions. The pla-

ar surface was also shifted below atom i by a distance equal to

.25 a l and the same procedure was repeated. Finally, the traction

ector acting on atom i was calculated by averaging the resultant

ractions on the two planar surfaces placed above and below atom

 . For each atom, three traction vectors associated with orthogo-

al directions e 1 , e 2 , and e 3 , which are aligned with the [100],

010], and [001] crystal directions, were computed and the local

tress was directly calculated from the components of the obtained

raction vector. When calculating the stress of atoms close to the

oundaries, the planar surface may extend outside the structure.

n this case, only the surface area inside the structure was con-

idered in the stress analysis. To eliminate the effect of noise in-

uced by atomic thermal vibration, the traction vectors were av-

raged over a number of time steps. Because of the randomness

f thermal vibration, the atomic forces whose trajectories crossed

he edges of the planar surfaces were included in the traction vec-

or statistical calculation for 50% of the corresponding time steps,

hereas the forces whose trajectories crossed a corner of the pla-

ar surfaces were used in the statistical calculation of the traction

ector for 25% of these time steps. As shown below, the present

tress is equivalent to the classical virial stress in the bulk of

CC and BCC crystalline solids; however, contrary to the classi-

al virial stress, the out-of-plane stress components obtained with

he present stress definition diminish at traction-free boundaries.

 limitation of the proposed stress method is that the deforma-

ion must be relatively small so that the crystal structure is not

rossly distorted; otherwise a planar surface may not be defined.
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Fig. 2. Examples showing the number of atom pairs N b 
i j 

that generate interatomic forces of the same magnitude and direction as the force F a 
i j 

acting between atoms i and j 

and passing through a finite plane: (a) N 2 
i j 

= 4 , (b) N 2 
i j 

= 3 , (c) N 1 
i j 

= 1 , and (d) N 2 
i j 

= 2 . The red dashed line represents the geometrical plane used to define the atomic stress. 
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he accuracy of the calculated stress may decrease if the crystal

tructure is severely distorted and/or high stress gradients develop

n the deformed solid. 

While the energy-based and traction vector-based stress ap-

roaches differ in derivation, it will be shown that under certain

onditions they are equivalent. From Eqs. (6) and (7) it follows that

he stress acting on atom i is given by 

ab 
i = − 1 

v i 

∑ 

j � = i 
F a i j r 

b 
i j . (8) 

Considering small deformation of a single-crystal material with

 lattice distance a l , the volume v i associated with an atom is given

y v i = a l 
3 /4 (FCC material) or v i = a l 

3 /2 (BCC material). Therefore,

q. (8) can be rewritten as 

ab 
i = − 1 

a l 
2 

∑ 

j � = i 
F a i j 

r b 
i j 

a l / 4 

( FCC material ) (9a) 

nd 

ab 
i = − 1 

a l 
2 

∑ 

j � = i 
F a i j 

r b 
i j 

a l / 2 

( BCC material ) . (9b) 
Let’s define

 

b 
i j ≡

r b 
i j 

a l / 4 

( FCC material ) (10a) 

nd 

 

b 
i j ≡

r b 
i j 

a l / 2 

( BCC material ) . (10b) 

For a given plane with dimensions a l × a l and normal vector e b 
 b = 1, 2, or 3) and negligibly small thermal vibrations, it can be

hown that N 

b 
i j 

represents the number of atom pairs with inter-

tomic forces of magnitude and direction the same as those of the

orce F ij acting between atoms i and j and intersecting the plane

urface. Fig. 2 shows examples of the calculation of N 

b 
i j 

for a 2D

CC crystal structure. As shown in Fig. 2 (a), N 

2 
i j 

= 4 . In the trac-

ion vector-based approach, all forces generated by the four atomic

airs shown in this figure are included in the stress calculation,

hereas in the energy-based approach only the interatomic force

etween atoms i and j is included in the stress calculation. This

s because only the forces applied to atom i are used in Eq. (8) to

alculate the atomic stress. Figs. 2 (b) and (c) show examples where
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Fig. 3. Initial atomic configuration of an FCC solid. Sequential atomic planes are 

colored green and blue for clarity. 

Fig. 4. Hydrostatic stress σ m versus dilatation strain εv for an FCC solid. 
N 

2 
i j 

= 3 and N 

1 
i j 

= 1, respectively, whereas Fig. 2 (d) shows an exam-

ple where N 

2 
i j 

= 2. In Fig. 2 (d), one-half of the interatomic forces

acting along the two solid lines crossing the edges of the plane sur-

face is included in the calculation of the traction vector acting on

atom i . As shown below, in the energy-based approach, the force

applied between atoms i and j is multiplied by N 

b 
i j 

. Therefore, the

effective force in the energy-based approach is equal to the sum

of the forces whose trajectories cross the a l × a l surface area in the

traction vector-based approach. 

The effective force acting on atom i obtained from the energy-

based approach is defined as 

F ab 
i ≡ −

∑ 

j � = i 
F a i j 

r b 
i j 

a l / 4 

= −
∑ 

j � = i 
F a i j N 

b 
i j ( FCC material ) (11a)

and 

F ab 
i ≡ −

∑ 

j � = i 
F a i j 

r b 
i j 

a l / 2 

= −
∑ 

j � = i 
F a i j N 

b 
i j ( BCC material ) . (11b)

If P i 
b 

is the set of all atom pairs with forces whose trajectories

cross the a l × a l surface area (defined by the normal unit vector e b )

associated with atom i , it follows that ∑ 

j � = i 
F a i j N 

b 
i j = 

∑ 

(k, j) ∈ P i 
b 

F a k j . 

Thus, the atomic stress is given by 

σ ab 
i = 

F ab 
i 

a l 
2 

= −

∑ 

(k, j) ∈ P i 
b 

F a 
k j 

a l 
2 

. (12)

Eq. (12) shows that, for FCC and BCC materials, the stress defini-

tions given by Eqs. (5) and (8) are equivalent to that derived from

the traction vector-based analysis, provided the material undergoes

small deformation and thermal effects are secondary. However, be-

cause the equivalence between the two stress definitions may not

hold in regions close to the boundaries (e.g., stress-free surfaces)

due to the lack of atoms at the outer sides of the system, the

equivalence is limited to the bulk of crystalline solids. It is also

noted that although the foregoing derivation is for FCC and BCC

solids, a similar approach can be followed for most other crystal

solids. 

4. Results and discussion 

In this section, the validity of the atomic stress method intro-

duced in the previous section is demonstrated in the light of MD

simulation results of FCC copper-like material with a l = 3.603 Å

and Morse potential parameters D = 0.3429 eV, r 0 = 2.866 Å, and

α = 1.3588 Å, and diamond tip with a l = 3.567 Å and LJ potential

parameters ε = 0.002413 eV and σ = 3.4 Å. These values of the pa-

rameters used in the Morse and LJ potential functions are quoted

from the literature ( Torrens, 1972 ; Komvopoulos and Yan, 1997 ).

Unless otherwise stated, in the following MD simulations, the size

of the planar surface used to define the atomic stress is 2 a l × 2 a l ,

the cutoff distance for atomic force calculation is 2.5 a l , and the

temperature is set at 0.3 K so that thermal effects are secondary,

thermal expansion can be ignored, and the atoms close to the

boundary can still reach equilibrium. The desired temperature was

maintained by directly scaling the atomic velocity and keeping the

total kinetic energy equal to (3/2) NkT , where N is the number of

atoms in the system, k is Boltzmann’s constant, and T is the tem-

perature. All of the simulations were performed with a modified

version of the classical MD code LAMMPs ( Komvopoulos and Yan,

1997 ). 
.1. Validation of the stress method 

.1.1. Bulk modulus 

The bulk modulus of single-crystal copper was obtained from

D simulations, using Eq. (12) to compute the hydrostatic stress

nd the change in lattice distance to calculate the volume change.

ig. 3 shows the initial crystal structure of the copper-like MD

odel used in these simulations. A periodic boundary condition

as applied to all the free surfaces of the model. Because of this

oundary condition, the initial atom positions are the equilibrium

ositions. The hydrostatic stress σ m 

= ( σ 11 + σ 22 + σ 33 )/3 was cal-

ulated for different lattice distances. The variation of the lattice

istance affects both the hydrostatic stress and the volume. The

ulk modulus is defined as K = σ m 

/ ε v , where ε v is the dilatation

train defined by εv = ε11 + ε22 + ε33 . For the given deformation,

v = 3( a l − a 0 )/ a 0 , where a 0 is the lattice distance at zero hydro-

tatic stress. Fig. 4 shows the hydrostatic stress σ m 

as a function

f dilatation strain εv . The MD data show a perfect linear fit with

 slope K = 139.8 GPa, which is very close to the value (137.6 GPa)

uoted from the literature for single-crystal copper ( Kaye and Laby,

986 ). 
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.1.2. Surface tension 

Surface tension is a well-known phenomenon that can be

tudied by considering the shape of droplets and bubbles on solid

urfaces. This phenomenon is attributed to the cohesive forces

cting between molecules and atoms. Different from bulk atoms,

urface atoms are not fully surrounded by atoms and, therefore,

end to cohere more strongly to each other. Likewise, because

toms at solid surfaces lack neighboring atoms, they tend to

ohere to each other more strongly than bulk atoms. 

An MD model of a copper-like single-crystal structure with a

100) free surface, similar to that used in the MD simulation of

he bulk modulus ( Fig. 3 ), was used to simulate surface tension.

owever, in this simulation the periodic boundary condition was

pplied only to the four lateral surfaces of the model, while the

toms of the five bottom planes were fixed. The lattice distance

 0 in the original atomic configuration was selected to yield zero

tress components at all bulk atoms at a temperature of 0.3 K. The

riginal separation between all neighboring (100) atomic planes

as equal to 0.5 a 0 . This MD simulation comprised two stages:

n equilibrium stage consisting of 20,0 0 0 steps during which the

opper atoms reached equilibrium and a subsequent deformation

tage wherein the resulting stresses were calculated and averaged.

t the end of the equilibration stage, the distance between neigh-

oring atomic planes was found to slightly differ from the original

etting (0.5 a 0 ). 

Fig. 5 shows the distance d between adjacent atomic planes

ormalized by the initial lattice distance a 0 versus the number of

tomic plane n , where n = 1 corresponds to the atomic plane at the

urface. The distance between the two top atomic planes is equal

o ∼0.55 a 0 . The larger distance is attributed to the lack of balanc-

ng atoms from directly above, which, if existed, would have forced

hese atoms back to their originally assigned positions. The varia-

ion of the in-plane normal stress σ 11 normalized by D/r 3 
0 

with the

umber of atomic plane n (i.e., the distance from the top atomic

ayer) is shown in Fig. 6 . Because of symmetry, a similar trend
ig. 5. Dimensionless distance between neighboring atomic plane d / a 0 versus num- 

er of atomic plane n for an FCC solid with a (100) free surface. 

ig. 6. Dimensionless in-plane normal stress σ 11 /( D/r 3 0 ) versus number of atomic 

lane n for an FCC solid with a (100) free surface. 

g  

m  

F

t

as observed with the in-plane stress σ 22 . A tensile σ 11 stress de-

elops at the top four atomic planes, with the maximum tensile

tress occurring at the free surface. The tensile σ 11 stress decreases

harply with the distance from the free surface and eventually van-

shes at a depth corresponding to the fifth atomic plane. The shear

13 stress and the out-of-plane σ 33 stress were found to be nearly

ero throughout the structure, even close to the surface. Thus, the

resent stress definition correctly captures the existence of surface

ension. 

.2. Contact deformation 

MD simulation results of an FCC copper-like substrate indented

y a diamond tip are presented in this section. The initial atomic

tructures of the substrate and the indentation tip are shown in

ig. 7 . For simplicity, the diamond tip is modeled as a prismatic

igid punch with a flat end. Bulk atom interaction is described

y the Morse potential ( Eq. (3) ), whereas tip-substrate atom in-

eraction is described by the LJ potential ( Eq. (4) ). Similar to the

urface tension simulation, a periodic boundary condition was ap-

lied to the four vertical surfaces of the substrate, while all the

toms of the bottom planes were fixed. The surface separation and

ip-substrate interference are defined in Fig. 8 . To prevent severe

istortion of the substrate structure, the maximum interference

istance δ was set equal to 0.57 a 0 . This simulation comprised an

quilibrium stage with 20,0 0 0 time steps followed by an inden-

ation stage. The number of time steps used in the indentation

tage depends on the initial surface separation, interference dis-

ance, and indentation speed, which was fixed at 5 m/s in this sim-

lation. After the indentation stage, the stresses were calculated

nd averaged. 

Normalized stress distributions along the surface line AA 

′ that

asses through the center of contact ( Fig. 7 ) are shown in Fig. 9 .

utside the contact region, σ 33 and σ 13 vanish, whereas σ 11 is

ensile due to the effect of surface tension. Within the contact re-

ion, both σ 11 and σ 33 are compressive, with the maximum nor-

al stresses occurring close to the contact edge, in qualitative
ig. 7. Initial atomic configurations of an FCC substrate and a prismatic diamond 

ip. Sequential atomic planes are colored green and blue for clarity. 
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Fig. 8. Definition of surface separation (top) and tip-substrate interference (bot- 

tom). 

Fig. 9. Distributions of dimensionless surface stresses σ ij /( D/r 3 0 ) ( i , j = 1, 2, or 3) ver- 

sus distance x 1 / a 0 along the line AA ′ passing through the center of contact ( Fig. 7 ) 

for a tip-substrate interference distance δ = 0.57 a 0 , where a 0 is the lattice distance 

of the undeformed structure. 

 

 

 

 

 

Fig. 10. Contours of dimensionless von Mises equivalent stress σ M /( D/r 3 0 ) on plane 

(AA ′ B ′ B) ( Fig. 7 ) for a tip-substrate interference distance δ = 0.57 a 0 , where a 0 is the 

lattice distance of the undeformed structure. 
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agreement with the classical solution of an elastic half-space com-

pressed by a rigid flat punch ( Johnson, 1985 ). The σ 13 stress is an-

tisymmetric and reaches a maximum near the contact edge. The

accuracy of the stresses close to the contact edge may be affected

by high stress gradients, localized lattice distortion, and thermal

noise, which were minimal in the present simulation. 
Fig. 10 shows contours of the von Mises equivalent stress σ M 

ormalized by D/r 3 
0 

on the plane (AA 

′ B 

′ B) ( Fig. 7 ). The atomic

tress is higher at the contact edge than at the center of contact.

he stress contours shown in Fig. 10 are similar to the 2D photo-

lastic fringe patterns generated in an elastic medium by an in-

enting rigid flat punch ( Johnson, 1985 ), except for the nonzero

urface stress outside the contact region, which is due to the ef-

ect of surface tension that is not captured in the CM analysis. 

. Conclusions 

A traction vector-based stress analysis for MD systems was in-

roduced in this study and its equivalence to an energy-based ap-

roach was proven for the bulk of FCC and BCC crystalline solids

ubjected to small deformation and thermal vibration. The validity

f the present stress method was verified by simulation results of

he bulk modulus, surface tension, and indentation stress field of

n FCC copper-like solid. Based on the presented analysis, simula-

ion results, and discussion, the following main conclusions can be

rawn from this study. 

(1) The atomic stress method of this study is applicable to both

FCC and BCC solids, including the region adjacent to the free

surface where the classical virial stress does not satisfy the

traction-free boundary condition. 

(2) The bulk modulus of an FCC copper-like material calculated

based on the present atomic stress definition is very close to

that quoted from the literature. 

(3) The phenomenon of surface tension is correctly captured by

the present stress method, confirming the development of

an in-plane tensile stress in the near-surface region of a

single-crystal solid, which is not captured by the classical

virial stress and CM analyses. 

(4) MD simulations of an FCC substrate with its (100) free sur-

face in contact with a prismatic flat diamond tip yielded a

subsurface stress field similar to that of classical CM contact
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analysis, with the exception of a nonzero normal stress out-

side the contact region of the MD model cuased by surface

tension. 
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