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ABSTRACT  

Nonlinear guided waves have been studied extensively for the characterization of micro-damage in plate-like structures, 
such as early-stage fatigue and thermal degradation in metals. Meanwhile, an increasing number of studies have reported 
the use of nonlinear acoustic techniques for detection of impact damage, fatigue, and thermal fatigue in composite 
structures. Among these techniques, the (relative) acoustic nonlinearity parameter, extracted from acousto-ultrasonic 
waves based on second-harmonic generation, has been considered one of the most popular tools for quantifying the 
detection of nonlinearity in inspected structures. Considering the complex nature of nonlinearities involved in composite 
materials (even under healthy conditions), and operational/environmental variability and measurement noise, the 
calculation of the relative acoustic nonlinearity parameter (RANP) from experimental data may suffer from considerable 
uncertainties, which may impair the quality of damage detection. In this study, we aim to quantify the uncertainty of the 
magnitude of the RANP estimator in the context of impact damage identification in unidirectional carbon fiber 
laminates. First, the principles of nonlinear ultrasonics are revisited briefly. A general probability density function of the 
RANP is then obtained through numerical evaluation in a theoretical setting. Using piezoelectric wavers, continuous sine 
waves are generated in the sample. Steady-state responses are acquired and processed to produce histograms of the 
RANP estimates before and after the impact damage. These observed histograms are consistent with the predicted 
distributions, and examination of the distributions demonstrates the significance of uncertainty quantification when using 
the RANP for damage detection in composite structures. 

Keywords: acoustic nonlinearity parameter, uncertainty quantification, nonlinear guided waves, statistical modeling, 
carbon fiber, nondestructive evaluation, structural health monitoring 
 

1. INTRODUCTION  
Composite materials have been widely used in aerospace and transportation industries. Although endowed with merits 
like high strength-to-weight ratio, corrosion resistance, and flexibility in design, these materials may suffer various 
forms of damage that are invisible or difficult to identify, primarily due to their susceptibility to foreign object impacts.1 
For example, low-velocity impacts, such as tool dropping during the manufacturing and servicing stages, may result in 
hidden damage inside the structure. Typical types of impact damage range from indentation and matrix micro-cracks to 
ply delamination and fiber breakage. Similarly, cyclic loadings, both mechanical and thermal, may also lead to matrix 
cracking and interlaminar damage that require early attention. 

Over the last few decades, many nondestructive evaluation (NDE) methods and structural health monitoring (SHM) 
systems have been developed for damage detection in composite structures. Among them, acousto-ultrasonic techniques, 
such as guided wave testing, have been particularly popular, featuring fast and omnidirectional wave propagation and 
strong penetration throughout the inspected structure. However, majority of the past efforts in using guided wave testing 
has been focused on analyzing linear property variations caused by structural damage. As discussed in many other 
works,1,2 these classical techniques may not be appropriate to apply to inhomogeneous materials, and specifically to 
structures whose damage size is on the same order of magnitude of the probing wavelength, which is usually the case for 
c o m p o s i t e 
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materials (e.g. matrix micro-cracks from impact damage). 

On the other hand, nonlinear ultrasonic tools, such as nonlinear guided waves, have demonstrated their higher 
sensitivities to micro-defects that are common in composite materials. Aymerich and Staszewski3 and Meo et al.4 used a 
technique called nonlinear elastic wave spectroscopy (NEWS) to evaluate impact damage in composite structures. In 
parallel, Ciampa et al.1 employed the second-harmonic generation mechanism of acousto-ultrasonic waves to calibrate 
material and damage-induced nonlinearities in a composite laminate, through finite element simulation and experiments. 
Pieczonka et al.5 also studied the effectiveness of second-harmonic generation and compared it to local defect resonance 
(LDR) when assessing the imaging quality of impact damage. Li et al.6 then used the relative acoustic nonlinearity 
parameter (RANP) extracted from second-harmonic Lamb waves to detect fatigue damage due to cyclic thermal loading 
in a composite panel. 

In the aforementioned studies, the effectiveness of second-harmonic guided waves, particularly that of the RANP 
extracted therein, has been illustrated in damage detection in composites. However, inherent to the use of any signal 
feature for damage identification is some associated uncertainty. For instance, the RANP of Lamb waves is known to be 
highly sensitive to damage-induced nonlinearities in plates. Nevertheless, this sensitivity may be compromised by 
various types of noise: operational, environmental, measurement, and computational.7 Moreover, the sources of 
nonlinearities in a composite laminate are largely multifold: even in the material’s healthy state, features like voids and 
imperfect bonding between plies may significantly augment the noise effect. Consequently, when interpreting damage 
detection results, compromised RANP estimates may either produce false alarms (Type I errors) when there is no 
damage, or missed calls (Type II errors) when damage is indeed present. Therefore, it becomes highly necessary to 
understand the uncertainty involved in RANP estimates, and form a probabilistic framework under which a detection 
decision can be made from statistical inference. 

The primary objective of this paper is to propose a statistical model to quantify the uncertainty of RANP estimates of 
nonlinear ultrasonic waves in composite materials, with and without the introduction of impact damage.  In order to do 
so, the principles of nonlinear guided wave propagation are briefly revisited. Then, an analytical model is established 
and a general probability density function of RANP is obtained through numerical evaluation. Experimental validation is 
performed on a unidirectional carbon fiber plate using piezoelectric wafers. Continuous sine waves are generated as 
input, and steady-state signals are acquired and processed to produce RANP estimates. Observed histograms and 
predicted distributions of the RANP before and after the introduction of impact damage are compared. The quantified 
uncertainties of RANP estimates for the two material conditions may provide a level of confidence for damage state 
identification.  

 

2. NONLINEAR LAMB WAVES 
2.1 Relative acoustic nonlinearity parameter 

Lamb waves are one type of guided waves that propagate in thin plates, characterized as in either symmetric or 
antisymmetric modes. Unlike bulk waves, Lamb waves are multimodal and dispersive in nature, usually with several 
modes propagating at the same time with different velocities.  

Damage detection techniques based on nonlinear Lamb waves generally refer to scenarios where extra frequency bands, 
other than the fundamental (excitation) frequency, are found in the acquired Lamb wave signals. Second-harmonic 
generation specifically refers to the formation of second harmonics in the acquired frequency spectrum, due to nonlinear 
variations of material properties (i.e., small-scale damage, and typically quadratic in nature) encountered by the probing 
waves. Theoretically, the generation of second harmonics can be considered a first-order perturbation to the linear elastic 
response.6 As a result, the solution to the nonlinear wave equation consists of two parts: the fundamental mode at the 
excitation frequency ω, plus the perturbed second harmonic mode at 2ω. The amplitudes of the two modes are related by 
the so-called acoustic nonlinearity parameter, or β, defined as 

,                                                                                 (1) 2
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where A1 and A2 are the amplitudes at ω and 2ω, respectively; k is the wavenumber, x is the propagation distance, and γ 
is a function depending on wave parameters and medium properties,8 which does not vary with respect to the health 
condition of the structure. Based on this equation, the degree of second-harmonic generation (hence the degree of 
nonlinearities in the inspected structure) may be determined. Normalizing β at a fixed k and x (while γ remains 
unchanged), Eq. (1) may be simplified into 

 ,                                                                                  (2) 

which defines the RANP, as the parameter for damage detection employed in this paper.  

2.2 Cumulative second harmonic generation 

Due to the multimodal and dispersive natures of Lamb waves in plate structures, their second harmonic effect is usually 
very weak. However, there exist certain conditions under which the fundamental wave mode is accompanied by 
cumulative second harmonic generation as propagation distance increases. In principle, by using the mode expansion 
approach, the second harmonic wave field of Lamb waves can be regarded as the superposition of a series of double-
frequency wave modes.9 Generally, the contribution from each double-frequency mode to the second harmonic wave 
field depends on its phase velocity in relation to that of the fundamental mode. If the fundamental mode and a particular 
double-frequency mode share the same phase velocity, and provided with non-zero power flux, internal resonance occurs 
and energy can be transferred from the fundamental mode to the second harmonic continuously as it propagates. Other 
double-frequency modes would decay rapidly due to material attenuation. Thus, by selecting a specific excitation 
frequency that enables internal resonance, cumulative second harmonics can be generated, which may ensure higher 
signal-to-noise ratio for damage detection purposes. Note that, most of the time, the occurrence of internal resonance 
also guarantees group velocity matching.10 

The dispersion curves for a unidirectional carbon fiber/epoxy plate [0]8 (thickness: 1.588 mm, tensile modulus in the 
fiber direction: 120.66 GPa, density: 1410 kg/m3) are displayed in Figure 1. According to the internal resonance 
conditions described above, the (S1, S2) mode pair is identified as an eligible combination for cumulative second 
harmonic generation. The S1 mode, excited at 1.460 MHz, features a phase velocity of 9,294 m/s and a group velocity of 
9,265 m/s, both of which match the corresponding values of the S2 mode at 2.920 MHz. 

 

3. PROBABILITY MODEL FOR RANP ESTIMATION 
According to Eq. (2), the nonlinearity of probing waves can be evaluated by estimating the RANP, once the amplitudes 
of the fundamental and the second harmonic modes are known. In practice, these two amplitudes are usually found from 
the 

 

 

 

 

 

 

 

 

 

 

2
2
1

A
RANP

A
=



 
 

 
 

 
 

 
        

                                             (a)                                                                                                             (b) 

Figure 1. Dispersion curves of carbon fiber/epoxy plate [0]8 with 1.588 mm in thickness: (a) phase velocities; and (b) group 
velocities, vs. frequency. Mode pair (S1, S2) is marked as the candidate for cumulative second harmonic generation.  

frequency spectrum of the wave signal after a fast Fourier transform (FFT). Therefore, following the definition of FFT, 
Eq. (2) can be rewritten as  

,                                                                           (3) 

where Y1r, Y1i, Y2r, and Y2i are the real and imaginary parts of the signal after transformation at ω and 2ω, respectively. 
For a given frequency component of the spectrum, the fundamental uncertainty in each of its real and imaginary parts is 
assumed to be a random variable that follows a statistically independent normal distribution. Meanwhile, these two 
normal distributions have the same standard deviation but different means: i.e., , , and 

, as the Fourier transform maps the same original time series onto two orthogonal domains without 
discriminating the transformation gain.  

Therefore, for the numerator in Eq. (3),  and , where  is the common standard 
deviation at the double frequency. Hence, the random variable X2 = A2 follows a Rice distribution, whose probability 
density function is given as   

,                                                       (4a) 

where I0(.) is the zero-order modified Bessel function of the first kind, and the parameter ν is found by 

.                                              (4b) 

Similarly, for the denominator of Eq. (3), we assume  and , where  is their common 
standard deviation at the fundamental frequency. To obtain its distribution, the denominator can be transformed as 

 ,                                                             (5) 

where the sum in the square bracket, denoted as X1, follows a noncentral chi-square distribution, whose probability 
density function is given by 

.                                             (6a) 

Since the degrees of freedom k = 2 in this case, Eq. (6a) retreats to 

  ,                                                         (6b) 

where λ is the noncentrality parameter calculated as 
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.                                                                        (6c)  

Since theoretically we have assumed the standard deviation is the same for both the real and imaginary parts, we may 
skip the transformation in Eq. (5) and arrive directly at Eq. (6b) as the probability density function for the variable , 

using a non-normalized noncentrality parameter. However, the condition of  may not hold precisely in the 

experiment; thus, Eq. (5) can be retained as a way to rescale the distribution for  by multiplying X1 by an adjusted 
variance. The same argument may apply to the Rice distribution for A2 as well. 

At this point, the corresponding probability density functions for both A2 and are obtained. Note that A1 is defined 
earlier as the amplitude of the fundamental frequency component, instead of the largest amplitude found across the 
spectrum. In other words, it is the magnitude of the signal at a fixed frequency in the spectrum (i.e., at the 
fundamental/excitation frequency). This distinction is vital, because the frequency of the largest amplitude may vary 
across signals, and the real and imaginary parts of this largest amplitude in each signal do not necessarily follow the 
normal distributions as assumed for a given frequency. Likewise, A2 is the amplitude retrieved at exactly twice the 
fundamental frequency, instead of the largest amplitude found in the neighborhood of the double frequency. Now, 
assuming these two random variables do not depend on each other from the perspective of signal processing, the joint 
probability density function of  and  may be written as 

.                                    (7) 

Therefore, the distribution of the ratio R = X2 / X1  is characterized as 

.               (8) 

Finally, substituting Eq. (7) into Eq. (8) yields 

,                                    (9) 

which does not have a further known closed-form solution. Instead, once the values of parameters , , and  are 
retrieved from experimental data, this integral can be numerically evaluated. Figure 2 below shows representative plots 
of the probability density function (pdf) and the cumulative density function (cdf) of the ratio R using arbitrary 
parametric values. The distribution of the RANP then can be obtained by scaling the horizontal and vertical axes for the 
pdf by an adjusted (average) .  
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Figure 2. The probability density function and cumulative density function of R, with λ = 0.6, σ2 = 1, and ν = 0.5. 

4. EXPERIMENTAL VALIDATION 
The proposed probability model for the RANP is validated through experimentation on a unidirectional carbon 
fiber/epoxy laminate sample (made by ACP Composites, Livermore, CA). In the healthy condition of the structure, 
guided wave signals are acquired repeatedly, and from each signal a RANP estimate is calculated. A histogram of the 
RANP estimates can be plotted and compared to the predicted distribution. Then, impact damage is introduced to the 
smaple, and the measurement process is repeated. 

4.1 Healthy Condition 

As schematically shown in Figure 3, the sample measures 304.8 mm in length, and 152.4 mm in width; other material 
specifications as well as its dispersion curves have already been given in Section 2.2. Two circular piezoelectric lead 
zirconate titanate (PZT) wafers, 10 mm in diameter and 150 mm apart from each other, are surface-mounted on the plate 
to configure a sensing path along the fiber direction. An excitation frequency of 1.46 MHz is selected, according to 
Figure 1, for cumulative second harmonic generation, where the S1 mode can be excited in the sample as our desired 
fundamental mode (among other modes excited simultaneously at this frequency). In order to have output signals as 
stationary as possible, a continuous sinusoidal input signal, rather than windowed tone bursts that is frequently adopted 
in guided wave testing, is generated from a Tektronix CFG280 function generator. It is anticipated that this stationary 
input signal would lead to a steady-state response at the sensor, as a result of the superposition of all available guided 
wave modes in the structure, including the second harmonic S2 mode due to nonlinearities. Note that it has been 
assumed both the real and imaginary parts of the output signal at any frequency line follow normal distributions with the 
same standard deviation. Thus, the stationarity of output signals will directly determine the quality of the probabilistic 
modeling. 

The experiment setup is photographed in Figure 4, in which the input signal is amplified with a power amplifier (Krohn-
Hite Model 7602M) to 30 Vp-p before going into one of the PZT wafers chosen as the actuator. Output signals are 
acquired at the other PZT wafer using a National Instruments® PXI platform at a sampling rate of 25 MHz. Note that 
wave excitation and acquisition are performed separately by the function generator and the PXI, and the input signal is 
channeled to another oscilloscope for reading. This way, we may avoid persistent crosstalk in the output signal. 500 
acquisitions, each with a length of 16,384 points, are performed at random intervals, where uncertainties concerned may 
primarily come from measurement and computation. After FFT for each of the 500 signals, their frequency-domain 
statistics of interest are calculated and tabulated in Table 1. 

It can be seen from Table 1 that, at both frequencies, the standard deviations of the real and imaginary part are relatively 
close to one another with four significant figures, which is consistent with our assumption of same standard deviation. 
Consequently, this enables a more accurate scaling from X1, the normalized squared amplitude at the fundamental 
frequency, to using Eq. (5), using an average standard deviation such as  listed in Table 1. 

 

 

 

 

 

 

 

2
1A 1s



 
 

 
 

 
 

 

 

 

 

 
Figure 3. Schematic diagram of the carbon fiber/epoxy specimen. The impact site is near the middle of the sensing path. 

Table 1. Signal statistics after FFT of 500 acquisitions. 

FFT 
Frequency 

Real Part 
Mean 

μ1r 

Imag. Part 
Mean  

μ1i 

Real Part 
Std. Dev. 

 σ1r 

Imag. Part 
Std. Dev. 

 σ1i 

Average 
Std. Dev. 

σ1 
λ 

1.461 MHz 0.0080 -9.953×10-4 0.3894 0.3903 0.3898 4.297×10-4 

FFT 
Frequency 

Real Part 
Mean 

μ2r 

Imag. Part 
Mean  

μ2i 

Real Part 
Std. Dev. 

 σ2r 

Imag. Part 
Std. Dev. 

 σ2i 

Average 
Std. Dev. 

σ2 
ν 

2.922 MHz 4.598×10-5 -1.052×10-4 9.048×10-4 9.323×10-4 9.185×10-4 1.148×10-4 
  

Figure 5 shows the normalized histogram of RANP estimates from the 500 signals acquired in the healthy condition, 
superimposed with the predicted distribution defined by Eq. (9) using parameter values retrieved from the experiment 
(Table 1). As can be seen here, the histogram matches quite well with the prediction, which also validates the 
assumptions being made in deriving the distribution function. It is noteworthy that the predicted probability density 
function has an infinitely long tail extending to infinity, and in theory it does not have a well-defined order statistics. In 
contrast, the maximum RANP estimate obtained in the experiment is only 0.059. It is also important to point out that the 
predicted RANP distribution is derived purely from a signal processing perspective; thus, it is not restricted to the use for 
composite materials. 

 

 

 

 

 

 

 

 

 
Figure 4. Experiment arrangement for testing on the composite specimen. 



 
 

 
 

 
 

 
Figure 5. Histogram of RANP estimates from experiment in healthy condition vs. predicted distribution from Eq. (9). 

4.2 Damaged Condition 

A drop-weight impact test is performed with a 0.3-kg impactor, in order to introduce damage to the composite sample. It 
attempts to create internal damage to the material without significantly affecting the bonding conditions between the 
PZT wafers and the sample, which may otherwise alter the signal statistics to a great extent and reduce the repeatability 
of the experiment. By controlling the drop height of the impactor, the resulted impact energy is estimated to be 1.46 J. 
This level of energy may induce matrix cracking and minor delamination in carbon fiber laminates.3 After the testing, 
the sample is re-instrumented as described in Section 4.1, leaving all the measurement settings unchanged. 

Another set of 500 signals is acquired and processed with exactly the same algorithm. Figure 6 shows both the 
histograms and predicted distributions before and after the impact damage. To facilitate comparison, the two histograms 
are plotted with the same bins. It can be seen that the histogram in the damaged case has a fatter tail, extending much 
further to the right than the healthy one. This represents a greater probability of having a bigger RANP estimate relative 
to the healthy condition, which is intuitively consistent with the theory that increased nonlinearities (due to damage) will 
lead to an increased RANP estimate. Similarly, the two predicted distributions (blue dash-dotted line for the healthy and 
red dashed line for the damaged) also capture the above distinction. 

While the predicted distribution does not have a well-defined expectation value as mentioned earlier, the sample mean of 
RANP values from the healthy data is found to be 7.55×10-3, in comparison to 3.27×10-2 for the damaged case. With a 
333% difference between the means, still, it can be observed that the separation between the two distributions or 
histograms is not big enough to rely on a single RANP estimate to make the judgment. Especially for RANP values less 
than 0.02, there is a considerable overlap between the two distributions/histograms. In other words, given the data and 
the plots, we do not possess enough prior knowledge of the RANP, against which a clear-cut damage identification 
decision can be made. Plausibly, this conclusion is not unusual for many damage detection situations, where the change 
in our chosen damage parameter is not significant enough to infer the true presence or absence of structural damage. 
Consequently, uncertainty quantification of a damage parameter becomes an indispensable tool for us to better 
understand what an estimate could mean, which may provide a probabilistic framework, or a quantified level of 
confidence, for making our next damage identification decision.  



 
 

 
 

 
 

 
Figure 6. Histograms of RANP estimates and predicted distributions under healthy and impact damaged conditions.  

5. CONCLUSIONS 
In this study, the uncertainty of the relative acoustic nonlinearity parameter, a.k.a. RANP, of nonlinear guided waves is 
quantified for damage detection purposes. Under certain assumptions on the distributions of frequency-domain signals, a 
general probability density function for RANP estimates is derived. This distribution can be numerically evaluated once 
signal statistics from experiments are obtained. The predicted distribution is then applied to guided wave testing on 
unidirectional carbon fiber samples. Piezoelectric wafers are used for wave excitation and acquisition. A continuous 
sinusoidal signal at a chosen frequency is applied for wave excitation, enabling cumulative second harmonic generation 
in the material. Steady-state response is achieved and processed to extract necessary signal features. The histogram of 
the RANP estimates obtained matches well with the predicted distribution. Impact damage is then introduced to the 
sample, and the newly obtained RANP distribution exhibits a fatter tail to the right, showing a greater probability of 
having a larger RANP estimate relative to the healthy condition. This finding confirms the increased nonlinearities in the 
composite sample due to impact damage. Yet, it is found that the separation between the two distributions (before and 
after damage) is not significant enough to enable a confident decision making process based on individual RANP 
estimates. Thus, uncertainty quantification of RANP estimates in our model may serve as a probabilistic framework for 
making the next damage identification decision. 
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