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CONCENTRATION OF RANDOM GRAPHS AND

APPLICATION TO COMMUNITY DETECTION

CAN M. LE, ELIZAVETA LEVINA AND ROMAN VERSHYNIN

Abstract. Random matrix theory has played an important role in re-
cent work on statistical network analysis. In this paper, we review re-
cent results on regimes of concentration of random graphs around their
expectation, showing that dense graphs concentrate and sparse graphs
concentrate after regularization. We also review relevant network mod-
els that may be of interest to probabilists considering directions for new
random matrix theory developments, and random matrix theory tools
that may be of interest to statisticians looking to prove properties of net-
work algorithms. Applications of concentration results to the problem
of community detection in networks are discussed in detail.

1. Introduction

A lot of recent interest in concentration of random graphs has been gen-
erated by problems in network analysis, a very active interdisciplinary re-
search area with contributions from probability, statistics, physics, computer
science, and the social sciences all playing a role. Networks represent rela-
tionships (edges) between objects (nodes), and a network between n nodes
is typically represented by its n × n adjacency matrix A. We will focus on
the case of simple undirected networks, where Aij = 1 when nodes i and
j are connected by an edge, and 0 otherwise, which makes A a symmetric
matrix with binary entries. It is customary to assume the graph contains
no self-loops, that is, Aii = 0 for all i, but this is not crucial. In general,
networks may be directed (A is not symmetric), weighted (the entries of
A have a numerical value representing the strength of connection), and/or
signed (the entries of A have a sign representing whether the relationship is
positive or negative in some sense).

Viewing networks as random realizations from an underlying network
model enables analysis and inference, with the added difficulty that we often
only observe a single realization of a given network. Quantities of interest
to be inferred from this realization may include various network properties
such as the node degree distribution, the network radius, and community
structure. Fundamental to these inferences is the question of how close a
single realization of the matrix A is to the population mean, or the true
model, EA. If A is close to EA, that is, A concentrates around its mean,
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then inferences drawn from A can be transferred to the population with high
probability.

In this paper, we aim to answer the question “When does A concentrate
around EA?” under a number of network models and asymptotic regimes.
We also show that in some cases when the network does not concentrate,
a simple regularization step can restore concentration. While the question
of concentration is interesting in its own right, we especially focus on the
implications for the problem of community detection, a problem that has
attracted a lot of attention in the networks literature. When concentration
holds, in many cases a simple spectral algorithm can recover communities,
and thus concentration is of practical and not only theoretical interest.

2. Random network models

Our concenrtation results hold for quite general models, but, for the sake
of clarity, we provide a brief review of network models, starting from the
simplest model and building up in complexity.

The Erdős-Rényi (ER) graph. The simplest random network model is
the Erdős-Rényi graph G(n, p) [20]. Under this model, edges are indepen-
dently drawn between all pairs of nodes according to a Bernoulli distribution
with success probability p. Although the ER model provides an important
building block in network modeling and is attractive to analyze, it almost
never fits network data observed in practice.

The stochastic block model (SBM). The SBM is perhaps the simplest
network model with community structure, first proposed by [31]. Under
this model, each node belongs to exactly one of K communities, and the
node community membership ci is drawn independently from a multinomial
distribution on {1, . . . ,K} with probabilities π1, . . . , πK . Conditional on the
label vector c, edges are drawn independently between each pair of nodes
i, j, with

P(Aij = 1) = Bcicj ,

where B is a symmetric K ×K matrix controlling edge probabilities. Note
that each community within SBM is an ER graph. The main question of
interest in network analysis is estimating the label vector c from A, although
model parameters π and P may also be of interest.

The degree-corrected stochastic block model (DCSBM). While the
SBM does incorporate community structure, the assumption that each block
is an ER graph is too restrictive for many real-world networks. In particular,
ER graphs have a Poisson degree distribution, and real networks typically fit
the power law or another heavy-tailed distribution better, since they often
have “hubs”, influential nodes with many connections. An extension remov-
ing this limitation, the degree-corrected stochastic block model (DCSBM)
was proposed by [34]. The DCSBM is like an SBM but with each node
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assigned an additional parameter θi > 0 that controls its expected degree,
and edges drawn independently with

P(Aij = 1) = θiθjBcicj .

Additional constraints need to be imposed on θi for model identifiability;
see [34, 61] for options.

The latent space model (LSM). Node labels under the SBM or the
DCSBM can be thought of as latent (unobserved) node positions in a discrete
space of K elements. More generally, latent positions can be modeled as
coordinates in R

d, or another set equipped with a distance measure. The
LSM [30] assumes that each node i is associated with an unknown position
xi and edges are drawn independently between each pair of nodes i, j with
probability inversely proportional to the distance between xi and xj. If
latent positions xi form clusters (for example, if they are drawn from a
mixture of Gaussians), then a random network generated from this model
exhibits community structure. Inferring the latent positions can in principle
lead to insights into how the network was formed, beyond simple community
assignments.

Exchangeable random networks. An analogue of de Finetti’s theorem
for networks, due to Hoover and Aldous [32, 4], shows that any network
whose distribution is invariant under node permutations can be represented
by

Aij = g(α, ξi, ξj, λij),

where α, ξi and ξj are independent and uniformly distributed on [0, 1], and
g(u, v, w, z) = g(u,w, v, z) for all u, v, w, z. This model covers all the pre-
viously discussed models as special cases, and the function g, called the
graphon, can be estimated up to a permutation under additional assump-
tions; see [46, 25, 60].

Network models with overlapping communities. In practice, it is of-
ten more reasonable to allow nodes to belong to more than one community.
Multiple such models have been proposed, including the Mixed Member-
ship Stochastic Block Model (MMSBM) [3], the Ball-Karrer-Newman Model
(BKN) [7], and the OCCAM model [59]. MMSBM allows different mem-
berships depending on which node the given node interacts with; the BKN
models edges as a sum of multiple edges corresponding to different commu-
nities; and OCCAM relaxes the membership vector c under the SBM to have
entries between 0 and 1 instead of exactly one “1”. All of these models are
also covered by the theory we present, because, conditional on node mem-
berships, all these networks are distributed according to an inhomogeneous
Erdős-Rényi model, the most general model we consider, described next.
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The inhomogeneous Erdős-Rényi model. All models described above
share an important property: conditioned on node latent positions, edges
are formed independently. The most general form of such a model is the
inhomogeneous Erdős-Rényi model (IERM) [13], where each edge is inde-
pendently drawn, with P(Aij = 1) = Pij , where P = (Pij) = EA. Evidently,
additional assumptions have to be made if latent positions of nodes (however
they are defined) are to be recovered from a single realization of A. We will
state concentration results under the IERM as generally as possible, and
then discuss additional assumptions under which latent positions can also
be estimated reliably.

Scaling. We have so far defined all the models for a fixed number of nodes
n, but in order to talk about concentration, we need to determine how the
expectation Pn = EAn changes with n. Most of the literature defines

Pn = ρnP

where P is a matrix with constant non-negative entries, and ρn controls the
average expected degree of the network, d = dn = nρn. Different asymptotic
regimes have been studied, especially under the SBM; see [1] for a review.
Unless ρn → 0, the average network degree d = Ω(n), and the network
becomes dense as n grows. In the SBM literature, the regime dn ≫ log n is
sometimes referred to as semi-dense; dn → ∞ but not faster than log n is
semi-sparse; and the constant degree regime dn = O(1) is called sparse. We
will elaborate on these regimes and their implications later on in the paper.

3. Useful random matrix results

We start from presenting a few powerful and general tools in random ma-
trix theory which can help prove concentration bounds for random graphs.

Theorem 3.1 (Bai-Yin law [6]; see [23] an for earlier result). Let M =
(Mij)

∞
i,j=1 be an infinite, symmetric, and diagonal-free random matrix whose

entries above the diagonal are i.i.d. random variables with zero mean and
variance σ2. Suppose further that EM4

ij < ∞. Let Mn = (Mij)
n
i,j=1 denote

the principal minors of M . Then, as n → ∞,

1√
n
‖Mn‖ → 2 almost surely. (3.1)

Theorem 3.2 (Matrix Bernstein’s inequality). Let X1, . . . ,XN be indepen-
dent, mean zero, n × n symmetric random matrices, such that ‖Xi‖ ≤ K
almost surely for all i. Then, for every t ≥ 0 we have

P

{
∥

∥

∥

N
∑

i=1

Xi

∥

∥

∥
≥ t

}

≤ 2n exp
(

− t2/2

σ2 +Kt/3

)

.

Here σ2 =
∥

∥

∥

∑N
i=1 EX2

i

∥

∥

∥
is the norm of the “matrix variance” of the sum.
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Corollary 3.3 (Expected norm of sum of random matrices). We have

E

∥

∥

∥

N
∑

i=1

Xi

∥

∥

∥
. σ

√

log n+K log n.

The following result gives sharper bounds on random matrices than ma-
trix Bernstein’s inequality, but requires independence of entries.

Theorem 3.4 (Bandeira-van Handel [8] Corollary 3.6). Let M be an n× n
symmetric random matrix with independent entries on and above the diag-
onal. Then

E ‖M‖ . max
i

(

∑

j

σ2
ij

)1/2
+

√

log n max
i,j

Kij ,

where σ2
ij = EM2

ij are the variances of entries and Kij = ‖Mij‖∞.

Theorem 3.5 (Seginer’s theorem [54]). Let M be a n×n symmetric random
matrix with i.i.d. mean zero entries above the diagonal and arbitrary entries
on the diagonal. Then

E ‖M‖ ≍ Emax
i

‖Mi‖2
where Mi denote the columns of M .

The lower bound in Seginer’s theorem is trivial; it follows from the fact
that the operator norm of a matrix is always bounded below by the Euclidean
norm of any of its columns. The original paper of Seginer [54] proved the
upper bound for non-symmetric matrices with independent entries. The
present statement of Theorem 3.5 can be derived by a simple symmetrization
argument, see [29, Section 4.1].

4. Dense networks concentrate

If A = An is the adjacency matrix of a G(n, p) random graph with a
constant p, then the Bai-Yin law gives

1√
n
‖A− EA‖ → 2

√

p(1− p).

In particular, we have

‖A− EA‖ ≤ 2
√
d (4.1)

with probability tending to one, where d = np is the expected node degree.
Can we expect a similar concentration for sparser Erdös-Rényi graphs,

where p is allowed to decrease with n? The method of [24] adapted by Feige
and Ofek [21] gives

‖A− EA‖ = O(
√
d) (4.2)

under the weaker condition d & log n, which is optimal, as we will see
shortly. This argument actually yields (4.2) for inhomogeneous random
graphs G(n, (pij)) as well, and for d = maxij npij, see e.g. [38, 17].
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Under a weaker assumption d = np ≫ log4 n, Vu [58] proved a sharper
bound for G(n, p), namely

‖A− EA‖ = (2 + o(1))
√
d, (4.3)

which essentially extends (4.1) to sparse random graphs. Very recently,
Benaych-Georges, Bordenave and Knowles [10] were able to derive (4.3)
under the optimal condition d ≫ log n. More precisely, they showed that if
4 ≤ d ≤ n2/13, then

E ‖A− EA‖ ≤ 2
√
d+ C

√

log n

1 + log(log(n)/d)
.

The argument of [10] applies more generally to inhomogeneous random
graphs G(n, (pij)) under a regularity condition on the connection proba-
bilities (pij). It even holds for more general random matrices that may not
necessarily have binary entries.

To apply Corollary 3.3 to the adjacency matrix A of an ER random graph
G(n, p), decompose A into a sum of independent random matrices A =
∑

i≤j Xij , where each matrix Xij contains a pair of symmetric entries of A,

i.e. Xij = Aij(eie
T

i + eje
T

j ) where (ei) denotes the canonical basis in R
n.

Then apply Corollary 3.3 to the sum of mean zero matrices Xij − p. It is
quick to check that σ2 ≤ pn and obviously K ≤ 2, and so we conclude that

E ‖A− EA‖ .
√

d log n+ log n, (4.4)

where d = np is the expected degree. The same argument applies more
generally to inhomogeneous random graphs G(n, (pij)), and it still gives
(4.4) when

d = max
i

∑

j

pij

is the maximal expected degree.
The logarithmic factors in bound (4.4) are not optimal, and can be im-

proved by applying the result of Bandeira and van Handel (Theorem 3.4) to
the centered adjacency matrix A−EA of an inhomogeneous random graph
G(n, (pij)). In this case, σ2

ij = pij and Kij ≤ 1, so we obtain the following

sharpening of (4.4).

Proposition 4.1 (Concentration of inhomogeneous random graphs). Let
A be the adjacency matrix of an inhomogeneous random graph G(n, (pij)).
Then

E ‖A− EA‖ .
√
d+

√

log n, (4.5)

where d = maxi
∑

j pij is the expected maximal degree.

In particular, if the graph is not too sparse, namely d & log n, then the
optimal concentration (4.3) holds, i.e.

E ‖A− EA‖ .
√
d.
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This recovers a result of Feige-Ofek [21].
A similar bound can be alternatively proved using the general result of

Seginer (Theorem 3.5). If A is the adjacency matrix of G(n, p), it is easy

to check that Emaxi ‖Ai‖2 .
√
d+

√
log n. Thus, Seginer’s theorem implies

the optimal concentration bound (4.5) as well. Using simple convexity ar-
guments, one can extend this to inhomogeneous random graphs G(n, (pij)),
and get the bound (4.5) for d = maxij npij, see [29, Section 4.1].

One may wonder if Seginer’s theorem holds for matrices with indepen-
dent but not identically distributed entries. Unfortunately, this is not the
case in general; a simple counterexample was found by Seginer [54], see [8,
Remark 4.8]. Nevertheless, it is an open conjecture of Latala that Seginer’s
theorem does hold if M has independent Gaussian entries, see the papers
[52, 56] and the survey [57].

5. Sparse networks concentrate after regularization

5.1. Sparse networks do not concentrate. In the sparse regime d =
np ≪ log n, the Bai-Yin’s law for G(n, p) fails. This is because in this case,
degrees of some vertices are much higher than the expected degree d. This
causes some rows of the adjacency matrix A to have Euclidean norms much
larger than

√
d, which in turn gives

‖A− EA‖ ≫
√
d.

In other words, concentration fails for very sparse graphs; there exist outly-
ing eigenvalues that escape the interval [−2, 2] where the spectrum of denser
graphs lies according to (3.1). For precise description of this phenomenon,
see the original paper [35], a discussion in [8, Section 4] and the very recent
work [9].

5.2. Sparse networks concentrate after regularization. One way to
regularize a random network in the sparse regime is to remove high degree
vertices altogether from the network. Indeed, [21] showed that for G(n, p),
if we drop all vertices with degrees, say, larger than 2d, then the remaining
part of the network satisfies ‖A−EA‖ = O(

√
d) with high probability. The

argument in [21] is based on the method developed by [24] and it is extended
to the IERM in [38, 17].

Although removal of high degree vertices restores concentration, in prac-
tice this is a bad idea, since the loss of edges associated with “hub” nodes
in an already sparse network leads to a considerable loss of information,
and in particular community detection tends to break down. A more gentle
regularization proposed in [36] does not remove high degree vertices, but
reduces the weights of their edges just enough to keep the degrees bounded
by O(d).

Theorem 5.1 (Concentration of regularized adjacency matrices). Consider
a random graph from the inhomogeneous Erdös-Rényi model G(n, (pij)), and
let d = maxij npij.
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Consider any subset of at most 10n/d vertices, and reduce the weights
of the edges incident to those vertices in an arbitrary way, but so that all
degrees of the new (weighted) network become bounded by 2d. For any r ≥ 1,
with probability at least 1−n−r the adjacency matrix A′ of the new weighted
graph satisfies

‖A′ − EA‖ ≤ Cr3/2
√
d.

Proving concentration for this kind of general regularization requires dif-
ferent tools. One key result we state next is the Grothendieck-Pietsch factor-
ization, a general and well-known result in functional analysis [48, 49, 55, 50]
which has already been used in a similar probabilistic context [37, Proposi-
tion 15.11]. It compares two matrix norms, the spectral norm ℓ2 → ℓ2 and
the ℓ∞ → ℓ2 norm.

Theorem 5.2 (Grothendieck-Pietsch factorization). Let B be a k ×m real
matrix. Then there exist positive weights µj with

∑m
j=1 µj = 1 such that

‖B‖∞→2 ≤ ‖BD−1/2
µ ‖ ≤ 2‖B‖∞→2,

where Dµ = diag(µj) denotes the m×m diagonal matrix with weights µj on
the diagonal.

Idea of the proof of Theorem 5.1 by network decomposition. The argument
in [21] becomes very complicated for handling the general regularization
in Theorem 5.1. A simpler alternative approach was developed by [36] for
proving Theorem 5.1. The main idea is to decompose the set of entries
[n] × [n] into different subsets with desirable properties. There exists a
partition (see Figure 1c for illustration)

[n]× [n] = N ∪R ∪ C
such that A concentrates on N even without regularization, while restric-
tions of A onto R and C have small row and column sums, respectively. It
is easy to see that the degree regularization does not destroy the properties
of N , R and C. Moreover, it creates a new property, allowing for controlling
the columns of R and rows of C. Together with the triangle inequality, this
implies the concentration of the entire network.

n/d

n/d

n/2

n/2

N0

C0

R0

(a) First step

N0

C0

R0

N1

C1

R1

·
·
·

(b) Iterations

C

R
N

(c) Final decomposition

Figure 1. Constructing network decomposition iteratively.
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The network decomposition is constructed by an iterative procedure. We
first establish concentration of A in ℓ∞ → ℓ2 norm using standard probabil-
ity techniques. Next, we upgrade this to concentration in the spectral norm
‖(A − EA)N0

‖ = O(
√
d) on an appropriate (large) subset N0 ⊆ [n] × [n]

using the Grothendieck-Pietsch factorization (Theorem 5.2). It remains to
control A on the complement of N0. That set is small; it can be described as
a union of a block C0 with a small number of rows, a block R0 with a small
number of columns and an exceptional (small) block (see Figure 1a). Now
we repeat the process for the exceptional block, decomposing it into N1, R1,
and C1, and so on, as shown in Figure 1b. At the end, we set N = ∪iNi,
R = ∪iRi and C = ∪iCi. The cumulative error from this iterative procedure
can be controlled appropriately; see [36] for details.

5.3. Concentration of the graph Laplacian. So far, we have looked at
random graphs through the lens of their adjacency matrices. Another matrix
that captures the structure of a random graph is the Laplacian. There are
several ways to define the Laplacian; we focus on the symmetric, normalized
Laplacian,

L(A) = D−1/2AD−1/2.

Here D = diag(di) is the diagonal matrix with degrees di =
∑n

j=1Aij on

the diagonal. The reader is referred to [18] for an introduction to graph
Laplacians and their role in spectral graph theory. Here we mention just
two basic facts: the spectrum of L(A) is a subset of [−1, 1], and the largest
eigenvalue is always one.

In the networks literature in particular, community detection has been
mainly done through spectral clustering on the Laplacian, not on the ad-
jacency matrix. We will discuss this in more detail in Section 6, but the
primary reason for this is degree normalization: as discussed in Section 2,
real networks rarely have the Poisson or mixture of Poissons degree distri-
bution that characterizes the stochastic block model; instead, “hubs”, or
high degree vertices, are common, and they tend to break down spectral
clustering on the adjacency matrix itself.

Concentration of Laplacians of random graphs has been studied by [47,
16, 51, 33, 26]. Just like the adjacency matrix, the Laplacian is known to
concentrate in the dense regime d = Ω(log n), and it fails to concentrate in
the sparse regime. However, the reasons it fails to concentrate are different.
For the adjacency matrix, as we discussed, concentration fails in the sparse
case because of high degree vertices. For the Laplacian, it is the low degree
vertices that destroy concentration. In fact, it is easy to check that when
d = o(log n), the probability of isolated vertices is non-vanishing; and each
isolated vertex contributes an eigenvalue of 0 to the spectrum of L(A), which
is easily seen to destroy concentration.

Multiple ways to regularize the Laplacian in order to deal with the low
degree vertices have been proposed. Perhaps the two most common ones
are adding a small constant to all the degrees on the diagonal of D [16],
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and adding a small constant to all the entries of A before computing the
Laplacian. Here we focus on the latter regularization, proposed by [5] and
analyzed by [33, 26]. Choose τ > 0 and add the same number τ/n to all
entries of the adjacency matrix A, thereby replacing it with

Aτ := A+
τ

n
11T (5.1)

Then compute the Laplacian as usual using this new adjacency matrix. This
regularization raises all degrees di to di+ τ , and eliminates isolated vertices,
making the entire graph connected. The original paper [5] suggested the
choice τ = ρd̄, where d̄ is the average node degree and ρ ∈ (0, 1) is a
constant. They showed the estimator is not particularly sensitive to ρ over
a fairly wide range of values away from 0 (too little regularization) and 1
(too much noise). The choice of ρ = 0.25 was recommended by [5] but this
parameter can also be successfully chosen by cross-validation on the network
[39].

The following consequence of Theorem 5.1 shows that regularization (5.1)
indeed forces the Laplacian to concentrate.

Theorem 5.3 (Concentration of the regularized Laplacian). Consider a
random graph drawn from the inhomogeneous Erdös-Rényi model G(n, (pij)),
and let d = maxij npij. Choose a number τ > 0. Then, for any r ≥ 1, with
probability at least 1− e−r we have

‖L(Aτ )− L(EAτ )‖ ≤ Cr2√
τ

(

1 +
d

τ

)5/2
.

In the next section, we discuss why concentration of the adjacency matrix
and/or its Laplacian is important in the context of community detection,
the primary application of concentration in network analysis.

6. Application to community detection

Concentration of random graphs has been of such interest in networks
analysis primarily because it relates to the problem of community detection;
see [22, 27, 1] for reviews of community detection algorithms and results. We
should specify that, perhaps in a slight misnomer, “community detection”
refers to the task of assigning each node to a community (typically one and
only one), not to the question of whether there are communities present,
which might be a more natural use of the term “detection”.

Most of the theoretical work linking concentration of random graphs to
community detection has focused on the stochastic block model (SBM),
defined in Section 2, which is one of the many special cases of the general
IERM we consider. For the purpose of this paper, we focus on the simplest
version of the SBM for which the largest number of results has been obtained
so far, also known as the balanced planted partition modelG(n, a

n ,
b
n). In this

model, there areK = 2 equal-sized communities with n/2 nodes each. Edges
between vertices within the same community are drawn independently with
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probability a/n, and edges between vertices in different communities with
probability b/n. The task is to recover the community labels of vertices from
a single realization of the adjacency matrix A drawn from this model. The
large literature on both the recovery algorithms and the theory establishing
when a recovery is possible is very nicely summarized in the recent excellent
review [1], where we refer the reader for details and analogues for a general
K (now available for most results) and the asymmetric SBM (very few are
available). In the following subsections we give a brief summary for the
symmetric K = 2 case which does not aim to be exhaustive.

6.1. Community detection phase transition. Weak recovery, sometimes
also called detection, means performing better than randomly guessing the
labels of vertices. The phase transition threshold for weak recovery was
first conjectured in the physics literature by [19], and proved rigorously by
[44, 45, 43], with follow-up and related work by [2, 40, 14]. The phase
transition result says that there exists a polynomial time algorithm which
can classify more than 50% of the vertices correctly as n → ∞ with high
probability if and only if

(a− b)2 > 2(a+ b).

Performing better than random guessing is the weakest possible guarantee of
performance, which is of interest in the very sparse regime of d = (a+b)/2 =
O(1); when the degree grows, weak recovery becomes trivial. This regime
has been mostly studied by physicists and probabilists; in the statistics
literature, consistency has been of more interest.

6.2. Consistency of community detection. Two types of consistency
have been discussed in the literature. Strong consistency, also known as
exact recovery, means labeling all vertices correctly with high probability,
which is, as the name suggests, a very strong requirement. Weak consistency,
or “almost exact” recovery, is the weaker and arguably more practically
reasonable requirement that the fraction of misclassified vertices goes to 0
as n → ∞ with high probability.

Strong consistency was studied first, in a seminal paper [12], as well as by
[43, 41, 29, 15]. Strong consistency is achievable, and achievable in polyno-
mial time, if

∣

∣

∣

∣

∣

√

a

log n
−

√

b

log n

∣

∣

∣

∣

∣

>
√
2

and not possible if
∣

∣

∣

√

a/n−
√

b/n
∣

∣

∣
<

√
2. In particular, strong consistency

is normally only considered in the semi-dense regime of d/ log n → ∞.
Weak consistency, as one would expect, requires a stronger condition than

weak recovery but a weaker one than strong consistency. Weak consistency
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is achievable if and only if

(a− b)2

a+ b
= ω(1)

see for example [43]. In particular, weak consistency is achievable in the
semi-sparse regime of d → ∞.

Partial recovery, finally, refers to the situation where the fraction of mis-
classified vertices does not go to 0, but remains bounded by a constant
below 0.5. More specifically, partial recovery means that for a fixed ε > 0
one can recover communities up to εn mislabeled vertices. For the balanced
symmetric case, this is true as long as

(a− b)2

a+ b
= O(1)

which is primarily relevant when d = O(1). Several types of algorithms
are known to succeed at partial recovery in this very sparse regime, includ-
ing non-backtracking walks [44, 40, 14], spectral methods [17] and methods
based on semidefinite programming [28, 42].

6.3. Concentration implies recovery. As an example application of the
new concentration results, we demonstrate how to show that regularized
spectral clustering [5, 33], one of the simplest and most popular algorithms
for community detection, can recover communities in the sparse regime of
constant degrees. In general, spectral clustering works by computing the
leading eigenvectors of either the adjacency matrix or the Laplacian, or their
regularized versions, and running the k-means clustering algorithm on the
rows of the n× k matrix of leading eigenvectors to recover the node labels.
In the simplest case of the balanced K = 2 model G(n, a

n ,
b
n), one can simply

assign nodes to two communities according to the sign of the entries of the
eigenvector v2(A

′) corresponding to the second smallest eigenvalue of the
(regularized) adjacency matrix A′.

Let us briefly explain how concentration results validate recovery from
the regularized adjacency matrix or regularized Laplacian. If concentra-
tion holds and the regularized matrix A′ is shown to be close to EA, then
standard perturbation theory (i.e., the Davis-Kahan theorem, see e.g. [11])
implies that v2(A

′) is close to v2(EA), and in particular, the signs of these
two eigenvectors must agree on most vertices. An easy calculation shows
that the signs of v2(EA) recover the communities exactly: the eigenvec-
tor corresponding to the second smallest eigenvalue of EA (or the second
largest of L(A)) is a positive constant on one community and a negative
constant on the other. Therefore, the signs of v2(A

′) recover communities
up to a small fraction of misclassified vertices and, as always, up to a per-
mutation of community labels. This argument remains valid if we replace
the regularized adjacency matrix A′ with regularized Laplacian L(Aτ ).
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Corollary 6.1 (Partial recovery from a regularized adjacency matrix for
sparse graphs). Let ε > 0 and r ≥ 1. Let A be the adjacency matrix drawn
from the stochastic block model G(n, a

n ,
b
n). Assume that

(a− b)2 > C(a+ b)

where C is a constant depending only on ε and r. For all nodes with de-
grees larger than 2a, reduce the weights of the edges incident to them in
an arbitrary way, but so that all degrees of the new (weighted) network be-
come bounded by 2a, resulting in a new matrix A′. Then with probability
at least 1− e−r, the signs of the entries of the eigenvector corresponding to
the second smallest eigenvalue of A′ correctly estimate the partition into two
communities, up to at most εn misclassified vertices.

Corollary 6.2 (Partial recovery from a regularized Laplacian for sparse
graphs). Let ε > 0 and r ≥ 1. Let A be the adjacency matrix drawn from
the stochastic block model G(n, a

n ,
b
n). Assume that

(a− b)2 > C(a+ b) (6.1)

where C is a constant depending only on ε and r. Choose τ to be the average
degree of the graph, i.e. τ = (d1+ · · ·+dn)/n. Then with probability at least
1 − e−r, the signs of the entries of the eigenvector corresponding to the
second largest eigenvalue of L(Aτ ) correctly estimate the partition into the
two communities, up to at most εn misclassified vertices.

As we have discussed, the Laplacian is typically preferred over the adja-
cency matrix in practice, because the variation in node degrees is reduced
by the normalization factor D−1/2 [53]. Figure 2 shows the effect of regu-
larization for the Laplacian of a random network generated from G(n, a

n ,
b
n)

with n = 50, a = 5 and b = 0.1. For plotting purposes, we order the nodes
so that the first n/2 nodes belong to one community and the rest belong
to the other community. Without regularization, the two leading eigenvec-
tors of the Laplacian localize around a few low degree nodes, and therefore
do not contain any information about the global community structure. In
contrast, the second leading eigenvector of the regularized Laplacian (with
τ = 0.1d̄) clearly reflects the communities, and the signs of this eigenvector
alone recover community labels correctly for all but three nodes.

7. Discussion

Great progress has been made in recent years, and yet many problems
remain open. Open questions on community detection under the SBM, in
terms of exact and partial recovery and efficient (polynomial time) algo-
rithms are discussed in [1], and likely by the time this paper comes out in
print, some of them will have been solved. Yet the focus on the SBM is
unsatisfactory for many practitioners, since not many real networks fit this
model well. Some of the more general models we discussed in Section 2
fix some of the problems of the SBM, allowing for heterogeneous degree
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Figure 2. Three leading eigenvectors (from top to bottom)
of the Laplacian (left) and the regularized Laplacian (right).
The network is generated from G(n, a

n ,
b
n) with n = 50, a = 5

and b = 0.1. Nodes are labeled so that the first 25 nodes be-
long to one community and the rest to the other community.
Regularized Laplacian is computed from A+ 0.1d̄/n11T.

distributions and overlapping communities, for instance. A bigger problem
lies in the fixed K regime; it is not realistic to assume that as the size of
the network grows, the number of communities remains fixed. A more re-
alistic model is the “small world” scenario, where the size of communities
remains bounded or grows very slowly with the number of nodes, the number
of communities grows, and connections between many smaller communities
happen primarily through hub nodes. Some consistency results have been
obtained for a growing K, but we are not aware of any results in the sparse
constant degree regime so far. An even bigger problem is presented by the
so far nearly universal assumption of independent edges; this assumption
violates commonly observed transitivity of friendships (if A is friends with
B and B is friends with C, A is more likely to be friends with C). There
are other types of network models that do not rely on this assumption, but
hardly any random matrix results apply there. Ultimately, network analysis
involves a lot more than community detection: link prediction, network de-
noising, predicting outcomes on networks, dynamic network modeling over



15

time, and so on. We are a long way away from establishing rigorous the-
oretical guarantees for any of these problems to the extent that we have
for community detection, but given how rapid progress in the latter area
has been, we are hopeful that continued interest from the random matrix
community will help shed light on other problems in network analysis.
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