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ARTICLE OPEN

A Continuous Action Space Tree search for INverse desiGn
(CASTING) framework for materials discovery
Suvo Banik1,2, Troy Loefller1,2, Sukriti Manna 1,2, Henry Chan 1,2, Srilok Srinivasan 1, Pierre Darancet1, Alexander Hexemer 3 and
Subramanian K. R. S. Sankaranarayanan 1,2✉

Material properties share an intrinsic relationship with their structural attributes, making inverse design approaches crucial for
discovering new materials with desired functionalities. Reinforcement Learning (RL) approaches are emerging as powerful inverse
design tools, often functioning in discrete action spaces. This constrains their application in materials design problems, which
involve continuous search spaces. Here, we introduce an RL-based framework CASTING (Continuous Action Space Tree Search for
inverse design), that employs a decision tree-based Monte Carlo Tree Search (MCTS) algorithm with continuous space adaptation
through modified policies and sampling. Using representative examples like Silver (Ag) for metals, Carbon (C) for covalent systems,
and multicomponent systems such as graphane, boron nitride, and complex correlated oxides, we showcase its accuracy,
convergence speed, and scalability in materials discovery and design. Furthermore, with the inverse design of super-hard Carbon
phases, we demonstrate CASTING’s utility in discovering metastable phases tailored to user-defined target properties and
preferences.

npj Computational Materials           (2023) 9:177 ; https://doi.org/10.1038/s41524-023-01128-y

INTRODUCTION
The properties of a material, such as chemical, physical, thermal,
optical, and mechanical properties, are intimately tied to its crystal
structure, topology and/or microstructure. Design, discovery, and
structure-property relationships of structurally-distinct metastable
crystalline polymorphs have been a long-standing challenge in
materials science1,2. Crystal Structure Prediction (CSP)1,3–11

involves navigating through a vast configurational and composi-
tional space with high permutational variability, which makes it a
challenging search problem. Global optimization techniques have
been traditionally employed in such search problems to predict
optimal materials for inverse design applications6,9,10,12–15. Alter-
nate approaches were intuition-based and relied on empirical
schemes16. This not only limits the tractability of the problem but
is also very restrictive in terms of exploration.
In the past few decades, significant advancements in algorith-

mic development4 and implementation, particularly, in CSP, have
unraveled a new paradigm for predicting new materials that
display exotic properties2,4,5,17. Data-driven approachs3,7, simu-
lated annealing6,13, minima hopping18, and meta dynamics19,20

have been used with some success. For systems with smaller sizes,
even random sampling followed by atomistic relaxation produces
structures with stable configurations21,22. Metaheuristic techni-
ques such as evolutionary algorithm5,9,12,23, particle swarm10,14,15,
and basin hopping24,25, have subsequently been developed and
applied to a multifarious class of materials. This allowed a search
for the ground state structures based on the chemical composi-
tion and synthesis conditions. Not only have the crystal structure
prediction methods predicated new materials but many of these
theoretically predicted configurations have been experimentally
synthesized, bridging theory and experiment in design and
discovery26–29. More recently, artificial intelligence (AI) and
Machine Learning (ML) techniques have emerged as efficient

tools in mapping quantitative structure to property
relationship30–36.
The overall success of any crystal structure or topology

prediction methodology is widely dependent on the exploratory
nature and the convergence strength of the search algorithm. As
the dimensionality of the search space increases with either an
increase in crystal size or composition, navigating efficiently
through the search space with multiple local minima becomes
very challenging14. Also note that more accurate methods like
density functional theory (DFT)37,38 are computationally expensive
and the utilization of these methods in CSP necessitates an
algorithm with fast convergence. In this regard, ML has again led
to advances in the development of cheaper surrogate models to
represent the underlying materials’ physics and chemistry37,38.
Furthermore, we note that inverse design involves searching
across energy surface and configurational space that are
continuous in nature. Each local minima on the energy surface
represents a crystal structure (metastable state), as illustrated in
Fig. 1a, and can exhibit exotic properties. Our target solution
represents one such minima as highlighted by point ‘C’ in Fig. 1a.
The hills on the energy (and corresponding configurational)
surface are barriers that can be overcome with suitable thermo-
dynamic conditions such as for example, temperature, pressure,
composition, or their combinations. While we are interested in
reaching the target solution, it is also desirable to explore the local
minima or metastable states as well. This requires our search
algorithm to establish a balance between exploration and
exploitation. All sampling techniques12,15, especially in high
dimensional search space suffer from poor solution quality and/
or sluggish convergence owing to an exponentially increasing
volume and the number of local minima1. A possible solution to
this problem is learning from the explored part of the search
space and utilizing the knowledge for further exploration. This can
greatly improve the efficiency of the optimizer algorithm being
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used. Reinforcement learning (RL) with the ability to learn on the
fly from the current state of the system, and make decisions not
only based on the current state of the system, but, also, on the
history, can greatly aid in overcoming the so-called ‘curse of
dimensionality’.
RL-based approaches have achieved remarkable success in

solving problems with seemingly large intractable search space,
such as board games Chess, Shogi, and Go39,40, and more recently
in materials applications such as chemical synthesis planning41 or
drug discovery42–44. Most of the materials applications to this day
have been limited to discrete action spaces45 as shown in Fig. 1b,
including, for example, optimization of the geometry of lattice
defect31,32 described as a set of discrete positions on a finite
lattice. However, many real-world problems including several
grand challenges in materials discovery and design involve
decision-making and search in a rather continuous action space46

(Fig. 1c), which makes the optimization task harder. For example,
in the discrete action space as shown in Fig. 1b, moving from
defective configurations O to A can be attained via swap moves
on a discrete atomistic lattice to navigate via a finite number of
paths and reach the global minima at C. On the other hand, for the
same task in continuous action space, as shown in Fig. 1c, there
are infinite possible intermediate states and transition pathways
possible between any two states (crystal or configurations), such
as between O and A.
In this work, we introduce a scalable RL approach for structure &

topology prediction, design, and optimization. This framework,
entitled ‘Continuous Action Space Tree search for INverse desiGn’
(CASTING), employs a decision tree-based RL algorithm, i.e., Monte
Carlo Tree Search (MCTS)31,39,41. MCTS efficiently explores a high-
dimensional search landscape with multiple objectives by semi-
stochastically sampling (playouts) in the proximity of a node,
evaluating and learning its quality in a given search tree. It then
takes policy-based decisions to explore the regimes of the search
space (i.e., part of a tree) while striking a balance between
exploration and exploitation to efficiently reach the target
objective i.e., a configuration that maps to our desired material
properties. We demonstrate the accuracy, speed of convergence,
scalability, and applicability of our CASTING framework across a
spectrum of problems (from bulk to low-dimensional, single to
multiple components, and search space varying from unit to
several large supercells) in the domain of CSP and Design. To
assess scalability and speed of convergence, we begin with a
metal example such as Silver (Ag), with fewer polymorphs and a
smaller number of known local minima in its energy landscape.

For this system, we also conduct a performance analysis of our
framework, varying different hyperparameters. We then extend
our approach to predict the covalent system Carbon, which
exhibits a diverse range of metastable states and polymorphs. All
previously mentioned applications pertain to bulk (periodic)
systems. Our exploration then extends beyond bulk systems as
we investigate dimensionality effects on our workflow. Primarily,
we explore two different classes of systems: a 0D (cluster) single-
component system, such as gold (Au) for representative sizes, and
2D binary systems such as C-H (Graphane) and Boron Nitride (h-
BN) to obtain their global minima. To explicitly explore composi-
tional variance-induced metastability, we employ CASTING to
explore the compositional space of doped Neodymium Nickel
Oxide (NNO), focusing their impact on representative electronic
property such as bandgap. Finally, by employing CASTING, we
predict super-hard phases of carbon, highlighting its applicability
in inverse design.

RESULTS
Crystal structure optimization
To perform a crystal structure optimization, we represent the
configuration or the crystal as either periodic (bulk) or a low
dimensional crystal by specifying a set of lattice parameters, basis
atoms, and/or atomic compositions of its species. We treat the
above-described problem as optimization of the lattice para-
meters (a, b, c, α, β, γ), the number of basis atoms (n), its positions,
and atomic compositions of its species. Thus, any crystal structure
is represented as a vector with six lattice parameters, and three
times the number of atom coordinates (x, y, z) with chemical
species belonging to each coordinate. MCTS spawns a tree with
each node containing a point in the parameter space being
searched for and obtains a score indicating the potential to find a
promising structure nearby. The root node is initially assigned to
random points in the parameter space or seeded with previously
known configurations as shown in Fig. 2a. To sample a node
nearby by perturbing the configurations, we implement different
perturbation moves. Mainly four types of perturbation (Fig. 2b)
moves are used (a) ‘Add atom’ (retaining the composition), (b)
‘Remove atom’ (retaining the composition), (c) ‘Mutate lattice’
(mutation of lattice parameters) and (d) ‘Mutate atom’ (mutation
of atomic coordinates). Note that for the mutation of lattice
parameters and coordinates we employ a hypersphere perturba-
tion scheme (refer to methods section). The radius of the
hypersphere is gradually reduced using a gaussian ‘Depth scaling’

Fig. 1 Schematic illustration of the nature of the search space (discrete vs. continuous) in materials applications. a depicts the typical
potential energy landscape of materials with different metastable polymorphs at local minima. b depicts a discrete action space with defects
movement as actions32. Moving from a high energy defect configuration situated at O to a relatively stable polymorph at A consists of finite
movement in the defect configurational space where navigating the PES involves finite steps with a discrete jump in energy. c Crystal
structure optimization represents a continuous action or search space problem with infinite possibilities of moving an atom giving a large
number of pathways to navigate from high energy polymorph at O to local minima at A.
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function (refer to methods section & supplementary Fig. 1b). Also
note that the moves that change dimensionality (i.e., size of the
system) such as ‘Add atom’ or ‘Remove atom’ are done for only
one composition unit. For instance, in Graphane (with a C:H ratio
of 1:1), a supercell with 10 atoms (5C atoms and 5 H atoms),
performing an ‘Add atom’ move would entail adding one C and
one H atom, while performing a ‘Remove atom’ move would
involve eliminating one C and one H atom to maintain the C:H
composition during the search. This helps maintain a parent-child
correspondence for a given node (some degree of similarity
between the parent and child). Initially, the probabilities of
selecting each move are assigned an equal value. However, it
should be noted that these probabilities may need to be biased
for specific applications. For example, for fixed atomic systems
such as non-periodic clusters, mutation moves are given higher
priority over moves that add or remove atoms. The target
objective such as cohesive energies per atom (although any target
property computed using Molecular Dynamics (MD) and/or
Density Functional Theory (DFT) can be used) of the structures
are computed after local atomistic relaxation with the LAMMPS47

package and the electronic properties such as band-gap were
computed using the VASP48 package.
The optimization with MCTS primarily involves four stages

starting from a point in parameter space (root Node) and
branching out by sampling new parameter sets (crystal config-
urations) as shown in Fig. 2a. The first stage involves expanding a
node (‘Expansion’) by sampling new offspring nodes from it by
using perturbations (Add atom, Remove atom, Mutate, etc.). Then
it is the ‘Simulation’, where the search learns a qualitative score for
selected offspring nodes by carrying out random playouts. A
playout is basically random exploration near a parent node in the

search space by spawning new offspring from it, that are not
radically different from the parent but inherits some of its traits
instead (refer to method section). From the overall quality of these
offsprings, a measure of a qualitative score of a parent node is
obtained. Learnings are then backpropagated (‘Backpropagation’)
to the root node for updating the score of the tree. And a
“Selection” and further “Expansion” are carried out thereafter. Note
that modified MCTS follows a UCB (Upper Confidence Bounds)
(Eq. 2) policy for the selection of a node (refer to method section).
The search is conducted till the termination criterion is reached. All
the sampled configurations are then mapped according to their
stability and potentially good samples are selected based on
filtering descriptors30,49.

The CASTING framework
Figure 3a, b provides an overview of the CASTING framework
developed in this work. It has 6 modules that require input from
the user. These include (1) The definition of the optimizer (2)
selection of target properties to be predicted (3) objective
definition or scoring function (4) definition of the crystal system
including types of species and number of components (5)
simulator or evaluator for the target property (MD or Ab-initio
packages) and (6) output options for data analysis and information
extraction. An additional ‘Outputs & Monitor’ module provides
visualization options for the end user (Fig. 3). The first section
requires the user to select the optimizer of choice (RL approach
such as MCTS or evolutionary such as GA) and set corresponding
hyperparameters that are required with it. In this study, we focus
on MCTS as our primary optimizer although we make some
limited comparisons to a genetic algorithm-based search in

Fig. 2 MCTS working as crystal structure optimizer. a Workflow showing the various stages of MCTS deployed as a crystal structure
optimizer constructing a tree search starting from a random or a relaxed configuration as a single node. b Four different types of perturbation
move imparted on a crystal structure in a node as an offspring crystal is created from a parent. c ‘Depth Scaling’ scheme, implemented as
decreasing radius of hypersphere as the depth of the search tree increases.
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selected cases. The tree hyperparameters that require explicit
input from the user are the number of ‘Head expansion’, the
number of ‘Playouts’, ‘Exploration constant’, a ‘Depth Scaling’
parameter, and the maximum depth of the tree (refer to methods
section for details). The target properties that need to be
optimized are specified next. The properties can be energetics-
based (potential energy, enthalpy, free energy), mechanical
(elastic, phonon), electronic (band structure, density of states),
and/or thermal (thermal conductivity) to name a few. In this work,
we primarily use energy (and elastic moduli) as our target
property. Selection of objective function is a crucial step and is
entirely dependent on the choice of the optimizer. With MCTS, we
use the Upper Confidence Bound (UCB) (Eq. (2)) as the objective
function (refer to methods section). The ‘UCB’ itself requires the
‘exploit’ or the ‘reward’ (e.g., configurational energy) to be defined.
Additionally, the weights on each ‘exploit’ may be required in the
case of multi-objective optimization. Next, the crystal parameters
are to be specified. This includes a range for the number of atoms
in the simulation cell, lattice bounds range, lattice angle range,
chemical species and compositions, and minimum allowed
interatomic distance. These parameters define the search space,
size, and dimensionality of the optimization. In cases where the
bounds are not known upfront, it is advisable to set large initial
bounds for the search, allowing it to explore configurations that
meet other constraints, such as minimum interatomic distance
criteria (refer to supplementary note 1 for additional details). After
the target properties, crystal system, and objective function are
defined, the user needs to provide corresponding packages for
atomistic and electronic calculations (e.g., LAMMPS & VASP
package for MD and DFT respectively, are used in this study).
This part also contains the simulation settings and parameter flags
associated with these property evaluation packages. Finally, the
‘Output options’ is for the post-processing section. The user
defines the additional outputs such as data formats, visualization
monitors, termination criteria, and other metrics that can be used

for a quantitative understanding of the quality of a search. There is
an additional ‘Outputs & Monitor’ section which provides the user
with the flexibility to monitor on the fly, search attributes such as
current objective status, tree size, node content, sampled
configuration, etc.

Applications of CASTING
The application of the CASTING framework involves a collection of
pertinent and challenging problems within the realm of CSP and
design. Among the various problems we have explored, we also
conduct a comparison of the speed of convergence, accuracy of
the best solution, and sampling quality achieved using our RL
approach against traditional structure prediction methods, such as
genetic algorithm (GA)9,12 basin hopping24,25, and random
search22. It’s important to note that different runs with the
CASTING framework involved varying sets of hyperparameters. A
typical strategy for obtaining these hyperparameters is discussed
in Supplementary note 2, along with the hyperparameters
used for different searches, which are included in Supplementary
Table 1.

Exploring the scalability of CASTING framework using an
example of metal polymorphs
Silver (Ag) is a well-studied metal and is known to have only a few
metastable polymorphs (e.g., hcp, fcc, etc.) with the fcc as the
most stable or ground state in its bulk form. We utilize Ag as a
representative test case to evaluate the scalability of our frame-
work. Any structural search performed with a decision tree such as
MCTS primarily depends on the two aspects of the search
parameters. (a) specifications of the crystal parameters (size, lattice
parameters), and (b) hyperparameters that control the construc-
tion of the tree.
We first explore the impact of the crystal input parameters on

the performance of our RL approach. Given that the solution is

Fig. 3 Schematic depicting the workflow of the CASTING framework for performing inverse design. a User interface for specifying various
IO settings leading to a different set of operations at the front-end of CASTING. These include (01) Defining the type of optimizer (02) Selection
of properties to be predicted (03) Objective definition (04) Definition of the crystal system or configuration, (05) Evaluators (MD or Ab-initio
packages) for computing the rewards or score, and (06) Output options. An additional ‘Outputs & Monitor’ module is available for
visualization. b Additional input options associated with each of the operations specified at the front end in (a)—this includes (01) MCTS
search and associated hyperparameters (02) target properties to be computed (03) single or multiple objectives (04) single or multicomponent
or types of species (05) classical MD or electronic structure simulator to evaluate properties.
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known (i.e., the lattice petameters and atomic coordinates of
ground state fcc structure), we set the search bounds of the lattice
parameter in terms of percentage deviation (δ) from its stable
counterpart. For example, a deviation in the bounds by 30%
means a lattice vector range of [0.7*l,1.3*l], where l is the lattice
vector of the pure fcc for a given size of supercell. We first start
with a 4-atom search to test the typical convergence profile of the
MCTS optimizer and compare it with a purely random search with
local minimizations of the configurations to get an idea of the
qualitative threshold (Fig. 4a). We use an EAM type empirical
potential50 and set the lattice parameters bounds deviation(δ) to
be 30% (Refer to supplementary Table 1 for the hyperparameters).
A LAMMPS simulation package was used for the evaluation of the
structural property (energy). We find that allowing atoms to
approach closer during the search (i.e., specifying a lower value for
allowed minimum inter-atomic distance criteria) allows the RL to
explore the search space more exhaustively (through high energy

regimes and overcome energy barriers) and helps in overall
convergence.
Figure 4a shows that our MCTS search reaches the optimal

solution in fewer evaluations compared to the random sampling
—the solution quality with MCTS is also better i.e., lower in
configurational energy. The stacking of the final predicted
structure corresponds to an fcc fingerprint. The energy difference
of the final solution from MCTS to that of the pure fcc is negligible
(≪1meV). Since we are growing a tree of finite size while
exploring search space, it is expected that a significant change in
the search space size (area) might affect the performance of the
search (Fig. 4b). We define a search area to be the magnitude of
vector cross product between the upper and lower bound of the
lattice parameters vectors. To test this dependence, we spawn 3
trees using the same root node with different head expansions (h)
and depth (d) (Fig. 4b). For a tree with less width (head expansion)
(h= 5, d= 12), with the increase in the search area, the
performance drops rapidly since the size of the tree is not

Fig. 4 Exploring the performance and scalability of CASTING framework using an example metal polymorph. a Comparison of the speed
of convergence and difference in energy from the best available solution (Agfcc) between random sampling and MCTS optimizer for four atom
system of Ag. b Performance of the MCTS optimizer (for different sizes of tree) for the problem in (a) as the area of the search space changes.
c Effect of dimensionality on the predicted crystal structure for different system sizes. d Distribution energy difference (from fcc) (meV/atom)
of the best solution obtained (in 20,000 iterations) for six independent trials on different sizes of the system with increasing lattice parameter
bounds (δ) from a relaxed orthogonal supercell Ag (fcc). e Structural variation for the different minima obtained from the independent trials
(as in (d)) in terms of changes in lattice parameters (from a relaxed orthogonal fcc supercell) and atomic stacking (difference from a pure fcc)
for different sizes and lattice parameter bounds (δ).
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adequate to cover the entire search space. As the width of the tree
increases (h= 10, d= 12) the performance becomes much better
for lower value areas of the search space. However, we do notice a
general decline in the performance, with an increase in the search
space area. This is because, in a continuous actions space, an
increment in the search space area introduces innumerable
configurational possibilities in the energy landscape. While it also
increases the possibility of finding a better solution, a greater
number of iterations are required to explore it. At the same time, it
is also obvious that a shallow tree (less depth) (h= 10, d= 6) also
results in poor performance. As the tree depth increases, the
search mostly exploits branches with promising nodes in the tree.
A shallow tree restricts the search from exploitation, resulting in
delayed or no convergence at all.
We next test the scalability of the CASTING workflow by testing

the convergence speed and the energy per atom difference for
convergence towards a unit cell of fcc (4 atoms), a supercell of
2*2*2(32 atoms), a supercell of 3*3*3 (108 atoms), and a supercell
of 4*4*4 (256 atoms). The width and the depth of the search tree
are kept fixed (h= 10, d= 12). We also select a wide range of the
search bounds deviation (δ) from 10 to 30% deviation for testing.
We perform six independent trial searches (initializing the root
node of the tree at different points in search space) for each of the
cases with the maximum number of iterations kept at 20,000. For
the best solution from each of these trials, the distribution of
energy difference from its fcc supercell counterpart, and the
corresponding difference of the structure in terms of lattice
parameters and stacking have been shown in Fig. 4d, e. To
determine the similarity of the atoms to that of an fcc stacked
lattice we used bond order-based parameters based descriptor
(Q2, Q4, Q6)51 (cutoff 3 Å) and coordination number (CN) while the
difference in lattice parameters are calculated using ‘l1’ norm of
the scaled lattice parameter vector ([a, b, c, α, β, γ]) with respect to
the lattice parameter vector of the reference fcc structure. One can
note that the fcc motif (displayed in green color, Fig. 4) is
determined using CNA51 (Common Neighbor Analysis) method.
It can be observed that for each of these sizes, there is an

optimal bounds deviation (δ), for which the search gives the best
performance (less variation in final energies and very close to the
target) (Fig. 4d). Also note that as we move higher either in size of
the system or the bounds deviation (δ), there is a tendency to
achieve solutions that have vastly different lattices from the
orthogonal supercell, but atoms are stacked in an fcc motif (Fig.
4e) with energies extremely close to the target solution. The effect
is more prominent with changes in bounds deviation (δ). These
primarily are two contributing factors for MCTS obtaining these
degenerate solutions, (1) With an increase either in size or
dimension(size) of bounds deviation (δ), the search constraints get
lighter allowing atoms to arrange themselves in fcc motif while
not having an orthogonal lattice (2) With an increase in the
bounds, the corresponding area of the search space also increases,
which allows MCTS to explore higher energy regimes of the search
space (refer to Supplementary Fig. 2c) causing it to find these
energetically close degenerate solution while severely delaying
the final stages of the convergence (reaching to the exact
orthogonal structure). There is also a dependency on the size of
the tree as discussed earlier. For example, with 4 atoms at
δ= 10%, the atom can only arrange themselves in an orthogonal
fcc unicell, thus the best solution is obtained. With δ= 20%, the
atoms do not have the flexibility of getting degenerate solutions,
and also the size of the tree relatively is large for a given search
space area. Hence the search could not get to solutions within
fixed iterations (20,000) and the energy distribution is wide (Fig.
4d). For δ= 30%, the degeneracy can be seen, thus the energy
distribution becomes much better owing to these solutions.
Similar nonmonotonicity in performance can be observed for the
other sizes too. The overall performance, for the given size of the
tree (h= 10, d= 12) is optimum at δ= 30%, for all the

dimensionalities (system sizes). Note that with the increased
dimensionality (Fig. 4d), the best solution obtained by MCTS for
each case has a range of energy difference <0.15 meV, indicating
the ability of the MCTS optimizer to scale to the dimensionality as
high as 774 (256 atoms * 3 cartesian coordinates + 6 lattice
parameters) while maintaining a considerable solution accuracy.
While for a random search, the performance deteriorates
considerably (refer to Supplementary Fig. 2b).
Next, we explicitly explore the different tree hyperparameters

and analyze their effect on the convergence and overall sampling
quality as shown in Fig. 5. The maximum number of iterations was
kept at 2000 and the starting point (root node) of the search was
kept the same for all cases. The number of atoms range was fixed
at 4 atoms and a bounds deviation (δ) of 30% was maintained. In
Fig. 5a, we show the effect of the increasing head expansions for
the tree construction on the overall sampling and convergence of
the search. The head expansion of the MCTS is somewhat
comparable to generating an initial population in the evolutionary
approaches. To start with, one would want to have minimal
sampled points that cover the search space uniformly. Further
branching out from those points helps the search to converge
faster. Too many head expansions will generate redundant points
in the same regions of search space causing the MCTS to explore
unnecessarily more before reaching a converged solution result-
ing in an energy distribution with a high mean (Fig. 5a) and a
typical slower convergence. The converse is true for a very smaller
number of head expansions which might cause the search to get
stuck in a certain region of the search space and may completely
obstruct its convergence. However, with a very large number of
evaluations, all the searches, irrespective of the head expansion
value, are eventually expected to converge (refer to supplemen-
tary Fig. 2d. We next look at the effect of playouts (Fig. 5b).
Playouts are basically random perturbations on a node to get a
quantitative idea of how likely a node is to yield a good offspring
upon further exploration. From the perspective of sampling, it is
evident that there is an optimum for the number of playouts
required. Too much of a playout will unnecessarily increase the
number of iterations thus resulting in a slower convergence and
too less of a playout might result in incomplete knowledge
regarding any given node leading it to converge at a slower pace
as well.
The exploration constant is another crucial parameter for the

UCB (refer to methods section—Eq. (2) setting as well as an
important parameter that controls the exploration of the tree. For
too small of an exploration constant, the tree will greedily pick the
nodes with good objective value only making the search confined
to a certain region of the search space (Greedy Search). This can
have an adverse effect on overall convergence. On, the other
hand, selecting a too large constant will make the search to be
effectively random. So, a proper selection of exploration constants
can help the search to converge efficiently in relatively few
numbers of expensive objective function evaluations (Fig. 5c). The
final hyperparameter that we explored the effect of is the ‘depth
scaling’. For any MCTS search, as the depth of the tree increases
the parameters at the nodes are expected to be closer to the
converged solution than that of a node residing at a higher depth.
This is also indicating that the search is moving towards an
exploitative phase and thus a scaling of the sampling window is
necessary. Otherwise, it might deviate the search from moving
towards convergence. We use a gaussian type depth scaling
scheme (refer to methods section, Supplementary Fig. 1). From
Fig. 5d, we refer to that there is a slightly slower convergence for
both higher and low values of ‘a’. A low value of ‘a’ causes the
search to become too much exploitive at a shallow depth of the
tree. Since it samples only degenerate solutions in a small region
of the search space while a high value of ‘a’ prevents it from being
exploitive in a tree with high depth when it is required to do so.
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Exploring the diverse metastable states and polymorphs of
carbon using CASTING
We next explore another system which has a high degree of
metastability i.e., has many local minima in its energy surface.
Carbon is known to have a diverse range of allotropes, in terms of
size, property, and structural diversity. This makes it a suitable test
system for benchmarking the sampling quality, accuracy, and
speed of convergence of the CASTING framework. Since it is
already known that graphite and diamond (at high pressure) are
the two most stable allotropes, we set them as our target solution.
We start with 3 different search cases (a) CASTING (b) genetic

algorithm (GA)9 (c) random search with local minimization of the
structures (Fig. 6a)—the atom number is in the range [2,10], lattice
vector range [2 Å, 8 Å], and lattice angle range [600,1200]. The Tree
hyperparameter settings are given in the Supplementary Table 1.
The empirical LCBOP52 potential along with the LAMMPS
simulation package for local minimization of the configurations
and calculation of energy.
From the results of three independent trials (Fig. 6b, d) and the

best solution for each case (Fig. 6a), it is very clear that the MCTS
optimizer in the CASTING framework not only converges faster to
the solution Fig. 6d (The ‘convergence iterfactor’ is the normalized
number of iterations taken for the convergence of the search), but

Fig. 6 Comparison of structure prediction for carbon polymorphs with an empirical potential model52. a Best Convergence of MCTS, GA,
and random sampling out of four independent trials. b Mean the best solution obtained for MCTS, GA and random sampling. c Typical energy
distribution of the sampled configuration during an independent run for MCTS and GA optimizer and their overall uniqueness. d Average
iteration factor for convergence for different optimizer algorithms used.

Fig. 5 Effect of tree hyperparameter on the sampling, convergence, and solution quality of Ag polymorphs. a Shows the convergence and
energy distributions for different head expansions. b Shows the convergence and energy distributions for different playouts used. c Shows the
convergence and energy distributions for different head expansions used. c Shows the convergence and energy distributions for different
head exploration constants used. d Shows the convergence and energy distributions for different depth scaling factors ‘a’ used.
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the quality (the energy per atom) is also better (Fig. 6b). We also
compare the property (energy per atom) distribution of the
configurations sampled using MCTS and GA optimizers (Fig. 6c).
Clearly, MCTS tends to sample more configurations in the lower
energy range as compared to GA, but the overall uniqueness of
the sampled configurations is less as compared to the GA (Fig. 6c).
This is indicative of the fact the MCTS tends to sample more
similar polymorphs near the global minima to reach the absolute
best solution (exploitive) since most of the PES of empirical52

potentials have degenerate solution of the same structure
(Graphite in our case) with a very minute difference in energy.
Which sometimes hinders more exploratory type search algo-
rithms such as GA to reach the absolute solution. On the other
hand, the GA has a slight upper hand in terms of sampling more
diverse polymorphs because of its exploratory nature.
Note that the MCTS can also be made exploratory in nature by

incrementing the exploration constant ‘C’ in the UCB (Eq. (2) in
method section). By implementing the same for the Carbon
polymorphs, we search with our CASTING framework for
metastable phases of Carbon polymorphs at different external
pressure ranging from 0 to 120 GPa. To find out the unique ones
amongst the multiple different structures sampled with MCTS, we
adopt a two-step method. Our solution contained a lot of variants
of graphite polymorphs. Therefore, we first apply a graph neural
network-based characterization workflow30 to isolate the 2D
layered polymorphs from bulk structures. Next, we filter out the
unique ones from the bulk configurations using order parameters
(Q2, Q4, Q6)51+ CN feature representation of the bulk configura-
tions and an unsupervised agglomerative clustering53 technique
(refer to supplementary note 3). From the ISOMAP representa-
tion54 feature vectors of the unique bulk polymorphs (Fig. 7), the
MCTS optimizer not only sampled a large number of (~1.2 K)

diverse metastable polymorphs but also across a wide energy
window (~1 eV). Also, note that MCTS managed to sample the
diamond structure (Fig. 7 configuration 1) that exists at higher
energy value as compared to the global minima graphite. In the
phase diagram of carbon55, the graphite polymorph is stable at
regular thermodynamic conditions whereas the diamond poly-
morph exists under extreme pressures, which, makes the diamond
polymorph metastable at regular thermodynamic conditions.
Since there are exponentially many local minima introduced as
the overall energy window of the search increases1, thus
discovering diamond becomes difficult. In general, the GA-based
structural search converges for bulk56 systems but typically
requires more evaluations to converge compared to the MCTS.
It is also worth mentioning that, in terms of computational time
associated with the searches (GA and MCTS), the bottleneck lies in
the method used for property evaluations (e.g., DFT or MD).
Having searches with costly estimators necessitates the search to
converge with fewer evaluations to save computational time (refer
to the supplementary note 4 and Supplementary Fig. 3 for
computational time comparison).

Beyond bulk or periodic systems—exploring dimensionality
effects on CASTING’s search performance
Low dimensional materials with their high surface to volume ratios
present a unique opportunity to tap into properties that cannot be
attained in the bulk form17,57. As the dimensionality of the atomic
particles enters the regime of non-periodicity, the additional
abundant surface (nanoclusters, layered materials), weak van der
Waals interaction between the layers (2D) leads to electronic
changes58, that begins to play a dominant role in displaying exotic
electronic and optical properties having potential in a multitude of
applications such as semiconductor electronics57,59–61, transport62,

Fig. 7 Structural diversity of sampled Carbon(C) polymorphs using CASTING. ISOMAP representation of Order Parameters (Q2, Q4, Q6) and
Coordination Number) Based feature vectors of bulk metastable polymorphs of Carbon(C) sampled using CASTING framework with LCBOP52

interatomic potential across a range of external stress spanning from 0 to 120 GPa.
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biotechnology63, medicinal applications64, systems with mechan-
ical responses65, etc. Like any atomistic system, the complexity of
predicting low dimensional metastable phases increases with the
size of the system. For zero-dimensional clusters, the variability in
atomic packing25, a wide energy landscape (from gaseous phase
to condensed), and presence of isomorphism makes it challenging
to efficiently explore the search space. While for layered two-
dimensional materials, a weak van der Waals interaction, variability
in coordination environment makes it possible to form numerous
local minima that are hard to explore but with potential of having
desired properties of interest. It is also worth mentioning that the
existing knowledge of the nanoparticle structures does not reach
the atom-level resolution from experiments66. Traditional diffrac-
tion techniques are more suitable for periodic crystalline
structures. Thus, for decent accuracy of prediction, comparison
of data from multifarious techniques is required66. In this regard,
CASTING can provide a unified platform for predicting global and
local minima of these low dimensional systems to bridge this gap
between theory and experiments.

0D—exploring the size dependent diversity in Gold (Au)
nanoclusters
We start by employing CASTING for the search of global minima of
gold (Au) nanoclusters. Au nanoclusters due to their versatile
applicability, have drawn significant attention over the
years61,67–69. Computationally, most of the global minima of these
nanoclusters of different sizes have been extensively explored70.
Yet due to their relevance in modern-day material science61, the
optimization of these nanoclusters is of great interest. In this work,
we use Sutton-Chen (10-8)71 interatomic potential to recover the
known global minima of gold (Au) nanoclusters70 having 13
Atoms, 20 atoms, and 40 atoms respectively. Figure 8a shows the
convergence of the MCTS optimizer for the 3 representative sizes
of clusters used in this study. The tree hyperparameters for all the
cases of search (refer to Supplementary Table 1) kept being the
same. A LAMMPS package was used for the local minimization of
the atomic configurations. For the 13-atom cluster which is known

to have an icosahedron structure as the global minima, the MCTS
optimizer takes ~150 evaluations to converge to the solution
which is considerably less. As their dimensionality increases with
an increase in size, the iteration taken by the MCTS optimizer to
converge to the global optimum also increases expectedly. For the
system with 20 atoms, it takes ~300 iterations to reach the global
minimum, while for the system with 40 atoms, MCTS requires
~20,000 evaluations to achieve the optimal solution. We also
compare the global minima obtained by MCTS (Fig. 8b) with the
known global minimas70 for each of the sizes in terms of their
structural features (pairwise interatomic distances in Fig. 8c). From
Fig. 8c it can clearly be seen that, apart from being similar in terms
of energy, MCTS optimized structures obtain identical structural
similarity to their known counterparts. The overall results display
the efficacy of the CASTING workflow in successfully scaling down
from the bulk system to 0D systems while acknowledging the fact
that the cluster systems are more difficult to optimize than their
bulk counterpart because of additional degrees of freedom.

2D—exploring the global minima of two-dimensional Boron
Nitride (h-BN) and Graphane (CH)
We next test the performance of the CASTING workflow in
sampling two-dimensional (monolayer) systems with a rich
compositional degree of freedom such as hexagonal Boron Nitride
(h-BN) and Graphane (C-H). h-BN is an exceptional insulator with a
direct wide bandgap of ~5–6 eV72–74. Being insulating and
transparent, it has the potential of becoming an exceptional
substrate for the synthesis of Graphene74,75 and is thus also
referred to as ‘white graphene’72. The h-BN has covalently bonded
Boron (B) and Nitrogen (N) atoms that crystalizes in a hexagonal
P63/mmc space group. On the other hand, Graphane is the
hydrogenated version of conductive semi-metal Graphene76. It is a
fully saturated sp3 hydrocarbon with a 1:1 stoichiometry of C:H.
Unlike Graphene, Graphane lacks the Dirac cone and also has an
indirect bandgap of ~5.4 eV77, hence behaving like an insulator.
Still, its discovery, and structural attributes78 have unraveled new
paradigms in design of new semiconducting counterparts77 with

Fig. 8 Convergence with size-dependent diversity in nanoclusters of Gold (Au). a The convergence of MCTS optimizer for the sampling of
gold (Au) nanoclusters of different sizes (13, 20, and 40 atoms). b It shows the global minima obtained by MCTS for each case. c Comparison of
the global minima obtained by MCTS to that of known Sutton-Chen global minima70 in terms of pairwise distance between the atoms for 13,
20, and 40 atoms respectively.
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exotic electronic properties. From the structural perspective,
Graphane has two known conformations are of Chair and Boat
type78 with Chair (P3m1) being the global minima. For both
systems, the knowledge of the various intermediate and key
transition states can not only unravel crucial aspects of metast-
ability but may also prove insights into the synthesis of these and
other similar systems77—we deploy CASTING to explore the
search for the monolayer h-BN and the chair polymorph of
Graphane.
We use an extended Tersoff74 type potential to model the

interactions between B & N atoms and the popular AIREBO
potential79 for C & H atoms. We search for the unit cell of both
h-BN and chair polymorph of Graphane. We conduct our search
for the same number of atoms in the unit cell and keep the
deviation in the lattice parameter (δ) from the known global
minima to be 20%. Figure 9a–d shows the convergence of the
MCTS optimizer with the number of relaxation evaluations of
LAMMPS for h-BN and Graphane respectively. The total number of
evaluations taken by the MCTS optimizer to converge to the
global minima for h-BN is around ~3 K while that for Graphane is
~2.5 K. The target solution reaches the exact energy per atom
value compared to its reference counterpart for both cases (Fig.
9a, d). We also compare the global minima of h-BN obtained by
MCTS (Fig. 9c) to the known global minima80 in terms of pairwise
interatomic distances. The excellent match indicates that CASTING
has achieved perfect accuracy structurally. A similar observation is
seen in the case of the Graphane search (Fig. 9e, f). In addition to
having more degrees of freedom, the compositional space adds
more challenges to the optimization problem due to the inclusion
of multiple species. Note that the increased diversity in the 2D
conformations and a richer polymorphism also make it harder to
reach the global minima for any search algorithm. This presence of
multiple local minima in low dimensional systems translates into a
higher number of iterations for MCTS to converge to the solution
when compared to the bulk systems.
In Fig. 10, we further compare the performance of the CASTING

workflow in predicting 2D polymorphs, such as Hexagonal Boron

Nitride (h-BN), and the global minima of Au nanoclusters (13
atoms) with commonly used optimizers for crystal structure
prediction, namely GA, Basin Hopping24,25, and Random search.
Starting with the performance comparison for the prediction of
global minima of h-BN, as shown in Fig. 10a, MCTS exhibits faster
convergence to a global minimum compared to GA and Random
search. The MCTS optimizer demonstrates improved convergence
speed and solution accuracy. Similarly, for cluster optimization, the
original methodology utilized for obtaining the global minima of
Au nanoclusters is Basin Hopping. Thus, we compare the
performance of MCTS with Basin Hopping and Random Search
(Fig. 10b). Although all searches typically converge to a solution,
given the small dimension of the search space, the error
magnitude is in the range of ~10−8. However, MCTS outperforms
both Basin Hopping and Random search in terms of the final
solution quality, as their performance saturates beyond ~2000
evaluations.

Exploring the compositional space of doped neodymium
nickelate (NNO) using CASTING—elucidating the correlation
between metastability and resistance states
We next deploy CASTING to explore an even more complex
compositional landscape of a multi-component system, i.e.,
perovskite nickelates doped with hydrogen, and elucidate the
relationship between metastability in doped NNO and their
resistance states. Perovskite nickelate systems such as Neody-
mium Nickel oxide (NNO) can exhibit electronic properties that
have immense potential in a multitude of applications81,82. The
ground state NNO (NdNiO3) is an orthorhombic perovskite
structure with Ni atom bonded to O atom forming a corner-
sharing NiO6 octahedra80. A strongly correlated system NNO,
however a metal at room temperature (refer to supplementary
Fig. 4(a)), the addition of electron donors (H) in the lattice changes
electrical conductivity extensively82. This makes it an exceptional
candidate for being applicable in brained inspired computing82,83.
Additional donated protons from H interstitials to the Ni not only
impact its resistivity severely but also induces a complex potential

Fig. 9 Exploring 2D polymorphs with CASTING. a The convergence of MCTS optimizer for the sampling of Hexagonal Boron Nitride (h-BN).
b It shows the global minima of h-BN obtained by MCTS. c Comparison of the global minima obtained by MCTS to that of known global
minima of h-BN in terms of pairwise distance between the atoms. d The convergence of MCTS optimizer for the sampling of Graphane (CH).
e This shows the global minima of Graphane obtained by MCTS. f Comparison of the global minima of Graphane obtained by MCTS to that of
known global minima in terms of pairwise distance between the atoms.
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energy surface with a plethora of local minima (metastable states).
Additionally, there are two inequivalent O sites in the NNO
lattice80 providing permutational variability towards the location
of H atoms. This makes it hard to locate the optimal position of the
hydrogen (dopant) atoms in the lattice in search of favorable
metastability for resistive switching. The task tends to become
more challenging with an increasing concentration of dopants as
the number of possible metastable states tends to grow
exponentially.
To begin with, we select four concentrations of hydrogen

doping 0.25H, 0.5H, 0.75H, and 1H per Ni atom respectively (Fig.
11a). We assume that there will be distortions in the NNO lattice
upon insertion of H in it, the symmetry of the fundamental NNO
lattice does not get broken even after ionic relaxation in VASP. So,
during the sampling, we do not apply any external perturbation to
the NNO lattice instead we move the H atoms through the lattice
by perturbing its location. This allows us also to find possible
locations or H sites in the lattice that alters the electronic structure
by creating new eigenstates (Fig. 11b). A VASP package was used
for structure relaxation and electronic calculation (refer to

supplementary note 5 for details). It is intuitive that with the
increase in the concentration of doping the possibility of having
unique metastable states increase drastically. This can also be
observed in Fig. 11a. From the t-SNE (t distributed stochastic
neighbor embedding) plot of SOAP49 feature vector representa-
tion of the structures having a doping concentration of 0.25H (Fig.
11a), the distinction of the polymorphs in the feature space is not
very conspicuous. As the doping concentration increase, the
number of discrete and diverse polymorphs tends to grow. It is
also very interesting, that the polymorphs having a doping
concentration less than 1H, tend to show similar metallic behavior.
As the doping concentration reaches 1H, the energy eigenstates
vanish near Fermi energy (Fig. 11b) indicating a semiconducting
behavior of the polymorphs. The trend persists for almost all the
polymorphs sampled at this concentration. This application
demonstrates the flexibility of our CASTING towards accurately
performing tasks that go beyond simple crystal structure
prediction while targeting specific properties of interest in
complex material science problems.

Fig. 11 Exploration of the configurational space of hydrogen doped Neodymium Nickel Oxide (NNO) with CASTING framework. a Shows
the t-SNE (t distributed stochastic neighbor embedding) plot for SOAP feature representation of the sampled metastable polymorph at
different concentration of hydrogen doping and their corresponding band gap magnitudes. b the typical density of states of sampled
configurations at doping concentrations of 0.25H, 0.5H, and 0.75H, respectively.

Fig. 10 Comparison of the performance of CASTING with commonly used optimizers in crystal structure prediction. a Average
performance and standard deviation comparison (based on ten independent trials) between the MCTS optimizer, GA, and Random search for
predicting Hexagonal Boron Nitride (h-BN). b Average performance and standard deviation comparison (based on ten independent trials)
between the MCTS optimizer, Basin hopping, and Random search for predicting a nanocluster of Au (13 atoms).
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Inverse design of super hard phases of carbon through multi-
objective optimization with a surrogate evaluator
Super hard materials play a crucial role in a wide range of
applications29,84–86. Carbon can form two of the hardest known
materials: cubic diamond and lonsdaleite87,88. Traditionally,
diamond has been widely assumed to possess the highest
hardness among Carbon polymorphs. However, theoretical studies
have revealed that lonsdaleite, also referred to as hexagonal
diamond, can exhibit even higher hardness than diamond. We
employed CASTING and recovered the global minima of
hexagonal diamond, using an objective function comprises of
the bulk modulus (K), shear modulus (G) (evaluated using a graph
neural network (GNN) model called CGCNN34), and cohesive
energy (evaluated using empirical potential52). The CGCNN model
was trained on materials project data80. Based on the materials
project80 data, lonsdaleite was found to have a higher elastic
modulus compared to cubic diamond. Therefore, according to the
trained surrogate model CGCNN, the global minimum for
hardness is the hexagonal diamond (lonsdaleite).
CASTING converged to the global minima, the hexagonal

diamond, within ~6000 evaluations (Fig. 12a). During the search, it
sampled configurations with a wide range of bulk and shear
modulus (Supplementary Fig. 5a). It should be noted that
although the objective was not solely based on the energy,
CASTING sampled polymorphs that are energetically stable
(<−7 eV/atom). However, in Fig. 12c (and Supplementary Fig.
5b), for some of the energetically favorable configurations, the
bulk and shear modulus are lower, while there is also a region
(marked in a circle) with high bulk and shear modulus. Upon
zooming into the region (Fig. 12d), it can be observed that two of
the polymorphs having the highest objective value, the hexagonal
diamond and the cubic diamond, are present and form clusters
with similar variants. One noteworthy point here is that even
though the cubic diamond polymorph with the best objective

values in Fig. 12d has a slightly lower bulk modulus than the
hexagonal diamond counterpart, it is energetically more favorable.
This holds true for all the other cubic and hexagonal diamond
polymorphs. This further demonstrates the ability of the CASTING
framework to find configurations that are not stable (e.g.,
metastable hexagonal diamond) while targeting specific proper-
ties (elastic modulus), making it suitable for inverse design.

DISCUSSION
In summary, we introduce CASTING which is a workflow that
implements a continuous action space tree-based RL search
algorithm for CSP in a high-dimensional search space. We discuss
the important algorithmic modifications that are needed in the
MCTS to successfully apply it to continuous search space inverse
problems associated with structure and topology predictions. To
showcase the efficacy of the CASTING framework, we apply
CASTING to a wide range of representative systems—single-
component metallic systems such as Ag and Au, covalent systems
such as C, binary systems such as h-BN and C-H, and multi-
component perovskite systems such as doped NNO. Additionally,
we perform the inverse design of super-hard carbon phases using
multi-objective optimization. We demonstrate the scalability,
accuracy of sampling, and speed of convergence of CASTING on
complex material science problems. We discuss the impact of the
various RL hyperparameters on search performance. CASTING is
also deployed to sample stable and metastable polymorphs across
systems with dimensionality ranging from 3D (bulk) to low
dimensional systems such as 0D (clusters) and 2D (sheets).
Comparisons to other metaheuristic search algorithms such as
genetic algorithms, basin hopping, and random sampling are also
shown—the MCTS is demonstrated to have a superior perfor-
mance in terms of the solution quality and the speed of
convergence. We expect MCTS to perform well, especially for

Fig. 12 Inverse design of super hard phases of Carbon (C). a Evolution of the overall objective function with the number of evaluations for
the inverse design task. b Three phases of Carbon: Lonsdaleite, diamond, cubic diamond, and a metastable phase, which were sampled during
the optimization stages depicted in (a). c Shows the bulk modulus of the sampled configurations and their corresponding energy. d This
section provides a zoomed-in view of (c) and displays the two best configurations: cubic diamond (blue) and Lonsdaleite (orange), in terms of
the objective, and similar variants of the configurations forming clusters in the representation space.
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complex search landscape with multiple objectives, multiple
species, and multi-dimensional systems. Overall, we successfully
demonstrate the development and application of an RL techni-
ques such as MCTS for inverse materials design and discovery
problems related to structure and topology predictions.

METHODS
Monte Carlo Tree Search (MCTS) in continuous action space
Traditional vanilla Monte Carlo Tree Search (MCTS) has been
applied to many materials’ science problems32,89,90 involving
discreet spaces. But the continuous actions space adaptation for
crystal structure prediction requires additional modifications. We
have introduced the following to the MCTS to enable its
application for continuous search space problems. These include:

Enhanced exploration and degeneracy protection
When performing a search of a very large phase space there can
be a multitude of problems that arise which if not accounted for
will result in the optimizer spending iterations on unnecessary
solutions. In the case of crystal structure searches, there are two
problems that can arise owing to the degeneracy of the search
results. First, the optimizer can have two branches that initially
start at two different positions in the phase space, yet they will
converge into the same search location. This is effectively the
algorithm retracing its steps repeatedly. The second problem
which is more common in structural searches is that the natural
entropy of the atomic positions can create many degenerate
minima. For example, if one takes all the atoms in a structure and
simply translates it a few angstroms in one direction the energy of
the system has not changed (Translational invariance). As a result,
when performing these searches, one may find a different
parameter combination that results in an identical crystal
structure. This degeneracy translates into MCTS spending
computational cycles on solutions it has already seen before. We
define a uniqueness function on the exploration side of the node
selection rule to avoid degeneracies in the search space. For
situations where we simply wish to limit two branches from
approaching the same minima, we found a simple definition as
outlined below should suffice:

f ~rið Þ ¼ 1:5

1þPNpoints

j≠i δð ri � rj
�� ��Þ (1)

δ ri � rj
�� ��� � ¼ 1 ri � rj

�� ��<rmax

0 ri � rj
�� �� � rmax

(

where rmax is the same rmax in the window depth scaling and |ri−rj| is
the distance between sample points i and j in the reduced
parameter space. Npoints is a count of the number of points
generated by other nodes in the tree which also fall into the same
area currently being searched by this node. This is a measure of the
number of points that ‘overlap’ into another node’s search area. The
goal of this is to deprioritize nodes that are searching in a space that
has already been searched by another node to prevent duplicate
searches. The final node selection rule used is very similar to the
classic UCT or UCB with a few key modifications which is called the
Upper Confidence Bound for Parameters or UCP91. Equation (1) thus
defines a uniqueness function on the exploration side of the node
selection rule to avoid degeneracies in the search space—in a tree
search operating in a continuous search space such as configura-
tional search, there is often a possibility of the different branches
converging to the same location in the search space which makes
the overall search algorithm sluggish. To avoid this, Eq. (1) is
effectively counting the number of points found within an area and
scales the uniqueness with the number of points found within the
same window. Since previously sampled points do not change their

position, one only must keep a running tally of the number of points
that have been sampled in the same area as a given node. This
means that one only must update this function by comparing
existing points to the newly added points which in practice is a very
fast operation. Note that the design of this function is to scale the
exploration side down toward 0 if the solutions are degenerate with
what has already been discovered by the tree. In addition, when a
node has a solution that is unique or located in a region that is
under-explored, the function will scale to a higher value which
promotes searches in these regions.
In reinforcement learning, the UCB (Upper Confidence Bound)

technique balances exploration and exploitation by selecting the
action with the highest estimated value and confidence bound. It
helps find a trade-off between exploring new actions and
exploiting known ones. Typical UCP is given

UCP θið Þ ¼ �min p1;p2; ¼ :pni ;
� �þ C � f ~rið Þ �

ffiffiffiffiffiffiffiffiffiffiffiffi
logNi

ni

s
(2)

Where θi represents node i in the MCTS structure, p is the reward for
a given playout (calculated using Evaluators as in Fig. 3), C is the
exploration constant, f ~rið Þ is the uniqueness criteria value for this
node, ni is the number of playout samples taken by this node and all
of its child nodes, and Ni is a similar value as ni except it is the parent
node’s playout count instead of this node’s. Note that f ~rið Þ is the
uniqueness function specifically introduced in our recent work and
is equal to 1 in traditional MCTS settings.) Eq. (2) essentially tries to
balance the search between those nodes in the tree which have
either returned the maximum reward (left term) or have not been
explored enough (right term). In contrast, the playout policy selects
random actions (from a node) until the simulated episode is over.
The reward is given as the best playout reward discovered as
opposed to the average since the algorithm tries to find the best
solution instead of the highest probability of winning like in many
other MCTS formalisms. One can note that the choice of ‘min’ in the
UCP indicates that the target property is being minimized. It can be
‘max’ (maximum of the node score) otherwise if the intention is to
maximize the score or property (e.g., hardness).

Adaptive sampling in playouts
In discrete space searches such as board games, playouts are
performed by randomly moving pieces to evaluate game scenarios
ending in a victory or a loss. In a continuous action space, there is
not a distinct ‘win’ scenario. Rather, playouts are viewed as a request
for additional random sampling around a given point. When a node
is selected for a playout, we perform random vector displacements
from the parameter set contained in the node. This is akin to a
random walk through the phase space that is guided by the MCTS
algorithm. To allow the reinforcement learning to properly
determine what path to take next, it is important to ensure that
the generated sample points are high in quality. There are a great
many stochastical traps that one can fall into depending on the
sampling method. One such problem is when generating a vector
that corresponds to a perturbation of the parameter space to create
a new playout. If one were to use simple distributions such as an
N-dimensional uniform, gaussian, etc., where each direction is
generated from its own distribution, independent of all other
variables, the probability of generating a large displacement
increases with the number of parameters. The probability of
generating a value between (−3σ, 3σ) for a 1-dimensional gaussian
is ~99%. For a 100-dimensional gaussian the probability of all values
being found within 3σ is 0.99100 which is simply around 30%. This
means the vast majority of vectors generated will have one or more
extreme values. This problem becomes even more extreme as a
larger number of parameters are introduced. As such better
generation schemes are needed when creating points in a high-
dimensional space. A simple and effective way to circumvent this is
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to generate a vector uniformly on the surface of an N-Sphere of
radius 1 and then uniformly pick the vector length. Since we pick
within a distance, R, which is a collective variable, one can show that
it is actually a biased distribution.Z rmax

0
dr ¼

Z rmax

0
JðrÞρðrÞdr

Where J(r) is the radial component of the Jacobian for the polar
coordinates and ρ(r) is the probability density function. For visual
simplicity, the normalization constant is neglected in this equation.
This of course assumes that the angular components have already
been fixed and thus integrated out. To have a distribution that is
uniform on r, the product of the probability density function and the
Jacobian must equal a constant. This of course implies

ρ rð Þ ¼ 1
J rð Þ

If we examine the radial component of the Jacobian for an
N-Sphere we find it is simply given by

J rð Þ ¼ rN�1

As such the probability density function regardless of the
number of dimensions must equal

ρ rð Þ ¼ 1
J rð Þ ¼

1
rN�1

This implies the probability distribution in Cartesian space is
given byZ r¼rmax

0

1
PN

i¼1 xi
2

� �ðN�1Þ=2 dx1dx2 ¼ dxN

Thus, regardless of the number of dimensions, there will always
be a reasonable probability of picking both large and small
displacement vectors. This allows the reinforcement learning
algorithm to determine the size of the vector needed to find a
better reward function.

Exploitation in continuous action space
To facilitate exploration in a continuous search space, we must allow
the algorithm to narrow in on a solution and eventually converge.
Using a constant maximum vector length is seen to find a decent
solution but remains highly inefficient. Too large a step size is no
better than a random search whereas too small requires several
node expansions to find a good solution. Additionally, within the
tree, there was little correlation between the information stored in a
node and the information stored inside its parent node. In a board
game MCTS algorithm, each node contains a ‘game state’ i.e., the
game piece’s positions on the board. A child node is related to its
parent by the fact that you can obtain the child’s position by moving
a single piece from the parent’s position. Restoring this correlation is
paramount to have the MCTS algorithm formalism make any logical
sense in addition to ensuring that its results are consistent.
We introduce a window scaling scheme (Fig. 2c). Initially, the

search space starts has bounds [α1,min, α1,max] and [α2,min, α2,max]
respectively. And the largest vector distance rmax, corresponding
to the sampling radius of the hypersphere that can be generated
is given as, r1. This radius is assigned to smaller and smaller values
with the increasing depth of the corresponding node in the MCTS
tree (Fig. 2c)). The reduction is done following a gaussian curve
using the equation

r ¼ rmax � exp �a � depth
maxdepth

� �2
� 	

; depth � maxdepth

0; depth � maxdepth

8<
: (3)

‘a’ is the tunable parameter. The telescoping window scaling
approach ensures that the algorithm is incrementally refining the
phase space. This allows the algorithm to initially make larger
scans of the phase space and as it finds interesting regions it is
allowed to zoom in on those regions and begin exploring in more
detail. Restoring the correlation between the parent and child
node in that a child node is a zoomed-in region around the
parent node, it gives the algorithm some direction such that the
algorithm is not simply performing a purely random walk, and it
also allows it to converge sufficiently close to an optimal solution
since it is making smaller and smaller adjustments as it expands
the tree depth.

DATA AVAILABILITY
The dataset of metastable Carbon polymorphs generated using the CASTING
workflow is available at https://github.com/sbanik2/CASTING. The reference struc-
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