Title

A Merged 1,2 and 1,3 Asymmetric Induction Model Describing Lewis Acid-Mediated Diastereoselective Reactions of Chiral N-Sulfonyl Imines and Nucleophilic Alkenes

Permalink

https://escholarship.org/uc/item/3s66962z

Author

Lo, Anna

Publication Date

2022
Peer reviewed|Thesis/dissertation

A Merged 1,2 and 1,3 Asymmetric Induction Model Describing Lewis Acid-Mediated Diastereoselective Reactions of Chiral N -Sulfonyl Imines and Nucleophilic Alkenes

By

ANNA LO DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY
in

Chemistry
in the

OFFICE OF GRADUATE STUDIES
of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:
\qquad
Dean J. Tantillo

Neil E. Schore

Committee in Charge

DEDICATION

to Mom and Dad
献给我的父母
you are my everything没有你，那有我

The world to me was a secret，which I desired to discover． THE MODERN PROMETHEUS

ACKNOWLEDGEMENTS

It seems there are never enough words to describe the immense gratitude I feel for the following individuals I was fortunate enough to cross paths with throughout my education. Below, I will attempt to immortalize every kind interaction, good influence, and helping hand I received while in Davis.

To Jared T. Shaw - Thank you for your support as my research advisor and your decision to ultimately take me into your group. While in your group, I watched you endure the pressures of the chair's office, an unprecedented pandemic, and funding insecurity. I can truly say that even in the toughest of times, you always did your best to support me in my endeavors. I am eternally grateful to you for providing the space and mentorship for me at UC Davis to grow into a synthetic chemist.
To Dean J. Tantillo - You have been arguably the most integral part of my education. I would not be the chemist I am today had it not been for your mentorship and influence. I found myself completely alone when I moved across the country from New York City to arrive at UC Davis. In you, I found a kindred chemist and thinker. Thank you for the years of conversations, scientific and philosophical. Thank you for allowing me to be curious and creative. I will always remember your kindness and sanity, which I hope will allow me to endure any future hardships I may encounter.
To Neil E. Schore - Thank you for the lovely conversations about your family, trips, and love of music. Speaking with you, I am always reminded that there is more in life to enjoy than just my research accomplishments. You've taught me so many lessons during my time here at Davis, lessons I will not be quick to forget. Thank you for your warmth and unending optimism.
To Keith A. Woerpel - Keith, if you had not granted me an undergraduate position in your lab, I would not be where I am today. Thank you for nurturing my passion for synthetic organic chemistry. Thank you for lending your ear and intellect to all of my questions. Thank you for all the coffee runs. You have been and always will be the scientist I model myself after.

To the Shaw group, life has brought us together from all corners of the world and we will now be forever bonded through our shared experiences. Every experiment contained in this dissertation has been directly or indirectly made possible by the distribution of labor among all of my lab mates. And really, I would not trade the group for any other. Below, l'd like to highlight those l've worked more closely with over the years.

LCM - A brilliant chemist with the mind of an even more brilliant engineer. You taught me that there is always an engineering work-around to almost every problem in lab. MacGyver has nothing on you. Thank you for not turning your back on me, even when I switched out your hexanes bottle for toluene. Thank you for showing me the true meaning of mentorship.

SWL - "Do less." Is one of the best pieces of advice l've ever received in graduate school. Thank you for Phil Collins Friday, the Tahoe trips, BBQs, and for bringing much needed levity into lab.

CAD - A person I would trust with my life. Endlessly dependable. So diligent that when handling the purchasing of supplies, CAD would never allow the well to run dry and made the day-to-day operations in lab possible. I'll always remember the way you say salmon. Thank you for taking me to the emergency room when I stabbed my finger with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. Thank you for being a thoughtful and caring friend.

NYH - You're something special. Thank you for the co-dependent NMR trips, Reese's runs, and being my companion through the highs and lows of graduate school. Thank you for always making me check my work and think before I speak. I am a better chemist because of you. Thank you for being my person.

JS - You deserve the world and more. Thank you for embracing all of us with your kindness and good humor. Thank you (and AH) for all the pineapple cake every time you come back from Taiwan. Thank you for always encouraging me to be optimistic about my future.

DAG - You taught me to never wait on a chemical shipment if it can be synthesized in lab and the true meaning of leadership. DAG, you are the most relentless chemist I know,
and I will forever aspire to match your persistence and level of hard work. You are not just my colleague, but my friend.

GTW - There's really never a moment with you that l'm not laughing at something you just said. I thank you here for standing up for me, for helping me clean my lab while we listened to Adele, and for not calling the police when I almost hit that biker (and definitely backed into another car). The lab is in good hands with you, MWD and AH at the helm.

RAS, SWL, LCM, NPB, LAN, CAD, NYH, LWS, BDB, MG, JS, DAG, SND, JMR, GTW, MWD and AH - all of your initials have left their marks on me. I thank each and every one of you here for contributing to and upholding my one home away from home. The Shaw group past and present has meant so much to me. When I had no one, I knew I could at least turn to my colleagues for help.

Rose, Matthew, and Dylan - While we did not get to overlap much, it brings me great comfort to know that the future of the Shaw group is bright. If I could impart any advice, I would just say that the people working next to you, your lab mates, are your tribe here in graduate school. We owe one another kindness and acceptance to the best of our abilities, in an otherwise unforgiving world. We owe one another loyalty and compassion where it is called for. That is the only way this "gu" becomes a home.

To my collaborators - Professor Kendall Houk, Dr. Jason Fell, Matthew Duong, Martin Bravo, Barry Rich and Tony Moreno, thank you for your assistance with Chapter 1 of this dissertation.

Outside of lab, I have been fortunate enough to cultivate friendships I hope to nurture for a lifetime. Thank you first and foremost to Elizabeth "Liz" Lotsof who became my roommate in 2019. Thank you for the late-night chats, the spontaneous dinners, and for teaching me how to be an adult. Most importantly, thank you for taking care of me when I broke my ankle. I could not have asked for a better roommate and friend in this adventure we call life, and l'm excited to see what's next for us. Thank you to Erika Ripley,
who helped me both literally and metaphorically get back on my feet. By extension, I must thank my entire DnD group (Leslie, Andrew, Lucas, Lucas again, and Erika our DM) for preserving my sanity during an incredibly hard time. Thank you, Crystal Ye, for being my first lab sister and an enduring friend I hold dearly to this day. Thank you, Steven Merrill, for the coffee and good conversation. It's been a pleasure getting to know you and discussing the graduate school journey with you. Thank you, Yusef Ahmed, for your care and consideration. Your passion for chemistry inspires me and I know you will find success in whatever you do (even if you don't know it, know that I do). Finally, thank you Josiah Sánchez, for helping me pack my things while moving out and being my horror movie buddy.

My final acknowledgements go to my family. Mom, who sacrificed so much to immigrate here to provide a better life for me. Dad, who spent so many hours making my well-rounded education possible. My aunties, uncles, grandparents, and cousins, who all had a hand in raising me to become the person I am today. You are all the reason for my persistence and dedication in my education and career. Everything I do, I do for you.

LWS - Thank you for the pasta dinners, the garlic bread, the Starcraft II binges and for showing me documentaries I would never watch otherwise. Thank you for always checking in. For playing mahjong with my mom. For driving me in the mornings to get Starbucks when you and I were fully aware we had coffee at home. For buying spare ear plugs in case I can't sleep. For taking tremendous care of me in all ways, always. Thank you for being my teammate and my found family. I wouldn't trade you for anything else in the world.

A Merged 1,2 and 1,3 Asymmetric Induction Model Describing Lewis Acid-Mediated Diastereoselective Reactions of Chiral N-Sulfonyl Imines and Nucleophilic Alkenes

ABSTRACT OF DISSERTATION

The exploitation of resident stereogenic centers to construct new stereogenic centers is a powerful strategy employed in the synthesis of complex organic molecules. Although the influence of both α - and β-stereogenic centers on the diastereoselective addition of nucleophiles to aldehydes has been thoroughly studied, analogous studies of α - and β-substituted imines are sparse. This dissertation describes the comprehensive study of how inherent asymmetry impacts diastereoselective nucleophilic additions to α - and β-chiral N-sulfonyl imines. Chapter one discusses the development of stereodivergent Lewis acid-mediated nucleophilic additions to achiral N-sulfonyl imines. From this study, two sets of optimized and generalizable conditions were developed, allowing access to either syn or anti diastereomeric outcomes in >95:5 diastereomeric ratios. Chapter two discusses the diastereoselective Lewis acid-mediated nucleophilic additions to β-chiral N-sulfonyl imines. These reactions typically proceed through a six-membered chelate and result in anti-products. Experimental and computational evidence lead to the construction of a generalizable stereoelectronic model that predicts for the magnitude of selectivity observed based on conformational preferences of the substrate-Lewis acid chelate. These two chapters together constitute a complete study of how 1,2 and 1,3 asymmetric induction affect diastereoselective nucleophilic additions to chiral N sulfonyl imines.

TABLE OF CONTENTS

Chapter 1: Diastereoselective Nucleophilic Additions to α-Chiral N-Sulfonyl Aldimines
1.1 Introduction 1
1.1.1 Overview of 1,2 Acyclic Stereocontrol in Nucleophilic Additions to α-Chiral
Aldehydes 2
1.1.2 Overview of 1,2 Asymmetric Induction in Nucleophilic Additions to α-Chiral Imines
.. 11
1.2 Acyclic Stereocontrol in Nucleophilic Additions to α-Chiral N-Sulfonyl Aldimines 18
1.2.1 Substrate Synthesis 19
1.2.2 Optimization of Syn-selective Reaction Conditions 21
1.2.3 Optimization of Anti-selective Reaction Conditions 23
1.2.4 Substrate Scope 28
1.2.5 Discussion of Reaction Mechanism 30
1.2.6 Determination of Relative and Absolute Stereochemistry in Addition Products 35
1.2.7 Discovery of Silyl-Annulation Side Products 36
1.3 Conclusion 37
1.4 Experimental Section 38
1.5 References 57
Chapter 2: Diastereoselective Nucleophilic Additions to $\boldsymbol{\beta}$-Alkoxy \boldsymbol{N}-Sulfonyl
Aldimines
2.1 Introduction 66
2.1.1 Overview of 1,3-Asymmetric Induction in Nucleophilic Additions to β-Alkoxy
Aldehydes 67
2.1.2 Overview of 1,3-Asymmetric Induction in Nucleophilic Additions to β-Alkoxy Imines 77
2.2 The Role of 1,3-Asymmetric Induction in Diastereoselective Nucleophilic Additions to β-Alkoxy N -Tosyl Imines. 78
2.2.1 Substrate Synthesis 78
2.2.2 Lewis Acid-Mediated Nucleophilic Additions to β-Alkoxy Imines 88
2.2.3 Multi-Component Reactions (MCRs) of β-Alkoxy Aldehydes 95
2.2.4 Computational Exploration of Proposed Stereochemical Model 97
2.3 Conclusion 100
2.4 Experimental Procedures 101
2.5 Computational Methods and Results 134
2.6 References 148

Chapter 1:
 Diastereoselective Nucleophilic Additions to α-Chiral \mathbf{N}-Sulfonyl Aldimines

1.1 Introduction

Nucleophilic additions to α-chiral aldimines are stereoselective through 1,2asymmetric induction. While asymmetric induction effects on nucleophilic additions to α chiral aldehydes are well understood, the origins of diastereoselectivity in nucleophilic additions to α-chiral aldimines have been relatively underexplored. Establishing stereoelectronic models predictive of the diastereoselectivity of nucleophilic additions to sp^{2} carbon electrophiles can lead to more efficient synthetic planning of stereochemicallycomplex synthetic targets. In the case of nucleophilic additions to α-chiral aldimines, establishing a predictive model would allow for the stereo-controlled formation of carboncarbon bonds bearing nitrogen substituents. Our group endeavored to conduct a systematic investigation of how a-chiral substituents impact the stereoselectivity of Lewis acid-mediated nucleophilic additions. The results of this investigation led to the establishment of acyclic stereocontrol in α-chiral N-tosyl aldimines for a variety of nucleophilic additions. ${ }^{1}$

1.1.1 Overview of 1,2 Asymmetric Induction in Nucleophilic Additions to α-Chiral Aldehydes

Over the years, several stereoelectronic models have been proposed to generally rationalize the stereochemical outcomes of nucleophilic additions to α-chiral carbonyl
groups (Figure 1). The development of these models has supported the synthesis of various stereochemically complex targets. ${ }^{2-6}$ Any new stereoelectronic model describing nucleophilic additions to a-chiral imines would benefit from a clear understanding of the models that describe nucleophilic additions to the analogous aldehydes. Herein, I will provide a condensed overview of the prevailing stereoelectronic models for 1,2asymmetric induction as applied to α-chiral aldehydes. Some of these models will be referenced in the discussion of the experimental results procured for this chapter. For a more in-depth review of 1,2-asymmetric induction in aldehydes and imines, see the dissertation of my colleague, Dr. Lucas C. Moore (2019).

a-alkyl carbonyls

Cram's Rule

Felkin Model

Figure 1. Common stereoelectronic models describing 1,2-asymmetric induction.

1,2-asymmetric induction in nucleophilic additions to α-chiral carbonyls result in two possible stereochemical outcomes (Figure 2). The stereochemical preference (eyrthreo/threo, syn/anti, Felkin/anti-Felkin) is typically the result of inherent geometric preferences of the substrate and substrate interactions with reagents or solvents in the reaction. The magnitude of the stereochemical outcome is typically the result of how rigid those geometric preferences are. For consistency, syn and anti will be the terms used to
describe the two diastereomers resulting from nucleophilic additions to α-chiral electrophiles in this chapter.

Figure 2. Possible stereochemical outcomes of nucleophilic additions to α-chiral carbonyls.

1.1.1.1 Cram's Rule and The Felkin Model

Cram's rule was one of the earliest attempts at rationalizing the diastereoselectivity of nucleophilic additions to alpha chiral carbonyl compounds. Published in 1952, Cram's rule ${ }^{7}$ states:
"In non-catalytic reactions of the type shown, that diastereomer will predominate, which would be formed by the approach of the entering group from the least hindered side when the rotational conformation of the $C-C$ bond is such that the double bond is flanked by the two least bulky groups attached to the adjacent asymmetric center."

The accompanying reaction scheme shown in the original manuscript depicts a general α-chiral carbonyl compound with either carbon or hydrogen substituents proceeding to nucleophilic addition product (Figure 3). The rotational conformation of the $\mathrm{C}-\mathrm{C}$ bond can be depicted using Newman projection 1. The $\mathrm{C}=\mathrm{O}$ bond is flanked by the two least bulky substituents at the alpha chiral center and nucleophilic addition is predicted to occur
preferentially at the least sterically hindered side of the carbonyl (whichever side that may be), to furnish product. Cram argued that the most significant steric interaction that would inform the stereoselectivity of nucleophilic addition was between that of the $\mathrm{C}=\mathrm{O}$ (bound to Lewis acid) and the adjacent α-substituents.

Cram's Rule (1952)

Figure 3. Cram's rule describing nucleophilic additions to α-chiral carbonyls.

While Cram's rule correlated with the observed diastereoselectivities of several nucleophilic addition reactions to α-chiral carbonyl compounds, it became apparent that there were several flaws in the rule: (1) Cram's rule predicted an eclipsed conformational preference of the carbonyl electrophile rather than a presumably less torsionally strained staggered conformation and (2) Cram's rule assumed a 90° angle of the approach of the nucleophile to the carbonyl $\mathrm{C}=\mathrm{O}$ bond. Later reports would address the shortcomings of Cram's rule and provided stereoelectronic models that more closely aligned with experimental observations.

Felkin published an update to Cram's rule in 1968, which addressed some of the shortcomings of Cram's original rule, dubbed the Felkin model (Figure 4). ${ }^{8}$ The Felkin model argues that the electrophilic carbonyl compound would most favorably adopt a fully staggered conformation rather than an eclipsed conformation. In this staggered transition-
state structure, the nucleophile would still most likely approach from the least hindered side of the carbonyl and results in the same diastereochemical outcome that Cram's rule predicts. Felkin's conclusions were supported by experimentally determined diastereomeric ratios of reductions of various ketones. Cram's rule would predict a decrease in diastereoselectivity as the R group of the ketone increased in steric bulk (due to destabilization of the eclipsed conformer 1). In contrast, Felkin's experimental observations show an increase in diastereoselectivity with R group steric bulk that would be more consistent with a staggered conformation of electrophile resembling 2. Therefore, Felkin concluded that the more impactful steric interaction to minimize would center around the carbonyl R substituent, rather than that of the carbonyl. The major diastereomer predicted by the Felkin model is often referred to as the Felkin product. The minor diastereomer is comparatively referred to as the anti-Felkin product.

Felkin Model (1968)

Figure 4. The Felkin model describing nucleophilic additions to α-chiral carbonyls.

Both Cram and Felkin's initial assumptions on a 90° angle of approach by the nucleophile to carbonyl were questioned after observations made by Bürgi and Dunitz in 1974 revealed that the favored approach of a nucleophile to a carbonyl bond was most likely closer to 107° (Figure 5). ${ }^{9}$ This trajectory of nucleophilic approach is commonly
referred to as the Bürgi-Dunitz angle. While all of the stereoelectronic models describing nucleophilic additions to carbonyls published previous to the reports made by Bürgi and Dunitz did not consider the Bürgi-Dunitz angle, these models have since been modified later on to include a 107° angle of nucleophilic approach.

Figure 5. The Bürgi-Dunitz angle.

Considering Felkin's experimental observations, Cram's rule is unlikely to generally predict the anticipated diastereoselectivity of nucleophilic addition reactions to carbonyls. However, Cram's approach to the design of their model and the consideration of what steric interactions would be the most significant in informing the stereochemical outcome laid the groundwork for future stereoelectronic models. The fully-staggered conformation of the electrophile resembling 2 as described by Felkin is ultimately a closer-to-reality representation of these nucleophilic addition reactions.

1.1.1.2 The Cornforth Model and The Polar Felkin-Anh Model

Cornforth reported the first stereochemical investigation of nucleophilic additions to α-chloro carbonyl compounds in $1959 .{ }^{10}$ Cram's rule was informed mainly by nucleophilic additions to α-alkyl substituted carbonyls, while Cornforth's investigations had to consider the polar effects of an α-chloro substituent in addition to steric effects.

The presence of a polar group at the alpha position of a carbonyl was proposed to result in a nucleophilic addition transition state structure that resembles 3 (Figure 6). In 3, the α-chloro substituent is anti-periplanar to the carbonyl group and overall polarization of the carbonyl is minimized. Cornforth argued that the presence of the anti-periplanar α-chloro substituent would support the polarization of the $\mathrm{C}=\mathrm{O}$ bond during nucleophilic addition. The nucleophile's approach in this conformation would be guided by steric effects of the remaining two α-substituents. This would result in major diastereomer 4 for the depicted example. Since Cornforth published their initial report prior to Bürgi and Dunitz's crystallography experiments, the original Cornforth model does not incorporate a BürgiDunitz angle of approach.

Cornforth Model (1959)

Figure 6. The Cornforth model describing nucleophilic additions to a-chiral carbonyls.

Felkin included a clause for polar a-substituents in their original report of the Felkin model that differed from the Cornforth model, though both models result in the same stereochemical outcome. Rather than an anti-periplanar conformation of the α-chloro position to the carbonyl, the polar Felkin model proposed a 90° orientation of the α-chloro substituent to the carbonyl, though this proposal did not include specific selectivities to support it (Figure 7). Anh and Eisenstein would later, in 1977, make several key additions
to the polar Felkin model to rationalize this conformational preference and generalize this model for both ketones and aldehydes.

Anh and Eisenstein proposed orbital interactions played a major role in nucleophilic addition reactions to α-chiral carbonyls. ${ }^{11}$ A 90° orientation of the α-polar group in the transition state structure allows for optimal orbital overlap between the HOMO (developing o C-Nu bond) and LUMO ($\sigma^{*} \mathrm{C}-\mathrm{X}$) which they were able to confirm using theoretical studies. Furthermore, they were also able to incorporate the BürgiDunitz angle into their model which revealed that there would ultimately be a build-up of steric hinderance between the incoming nucleophile and staggered alpha substituents. Therefore, two conformations of α-chiral carbonyl can be considered (7, 8). Conformation 7 is ultimately more reactive to nucleophilic attack as it minimizes steric interactions between the incoming nucleophile and smaller R substituent. These additions to Felkin's original report would culminate in the polar Felkin-Anh model, which in parallel to the Cornforth model, describes nucleophilic additions to carbonyls with polar α-substituents.

Polar Felkin Model (1968)

6

Anh and Eisenstein (1973)
$\sigma_{\mathrm{C}-\mathrm{Nu}} \rightarrow \sigma^{*}{ }_{\mathrm{C}-\mathrm{x}}$

disfavored

Figure 7. The polar Felkin and polar Felkin-Anh model describing nucleophilic additions to α chiral carbonyls.

As both the Cornforth model and polar-Felkin-Anh model predicted for the same stereochemical outcome for nucleophilic additions to carbonyls with polar alpha substituents, it was a considerable challenge to distinguish between the two models from diastereoselectivity alone. Hoffmann, ${ }^{12}$ and Evans ${ }^{13} 14$ independently conducted impactful studies to examine the difference between the two models experimentally. They came to the conclusion that reactions run with nucleophiles bearing differentially substituted sp^{2} carbon centers (such as crotylsilanes) adhered more closely to the Cornforth model rather than the polar Felkin-Anh model. Prior to these studies, the scientific community seemed to have placed a larger preference for utilizing the polar Felkin-Anh model over the Cornforth model. But due to these efforts, it has become clear that the Cornforth model is still an applicable model in certain cases and should not be ruled out when predicting stereoselectivity of nucleophilic additions to α-chiral carbonyls.

1.1.1.3 The Cram Chelation Model

The Cram chelation model describes a preorganization of the carbonyl electrophile with a chelateable Lewis acid, forming a metallocycle or chelate resembling 9 (Figure 8). ${ }^{715}$ As the chelate locks the electrophile into a rigid conformation, the major product results from nucleophilic attack to the least sterically hindered side of the chelate ring. The magnitude of selectivity is typically high relative to that of selectivities predicted by conformationally free models such as the Cornforth and polar Felkin-Anh models. The Cram chelation model is applicable only in cases where the electrophile contains at least two Lewis basic sites (one of them being the carbonyl). It has been demonstrated that
electrophiles with Lewis basic substituents with sufficiently bulky and electronwithdrawing substituents (such as silyl-protected alcohols) are less prone to chelation with a Lewis acid. ${ }^{16}$ In the absence of chelation, one expects little selectivity or selectivity for the other diastereomer (as predicted by the Cornforth or polar Felkin-Anh models). The Cram Chelation Model (1959)

Figure 8. The Cram chelation model describing nucleophilic additions to α-chiral carbonyls.

Over the years, researchers have largely used the stereochemical outcomes of their experiments to guide whether or not chelation would be present under reaction conditions. In other words, the presence of an anti-Felkin or syn product is strongly associated with the presence of a chelateable reagent. Many instances of syn selectivity have been reported without an obvious chelateable reagent. A subset of these examples can be attributed to potential proton-chelation instead. As proton-activation of a carbonyl can occur catalytically, it is often times difficult to completely shut down chelation even when chelateable metals and Lewis acids are not used. For example, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and TMSOTf are common "non-chelateable" Lewis acids used in nucleophilic addition reactions to carbonyl compounds due to the presumed presence of only a single coordination site . However, both reagents are prone to hydrolysis, the byproducts of which can instead act as Brønsted acids. A small presence of Brønsted acid may have pronounced effects on the diastereoselectivity observed and therefore caution should
always be exercised when assessing the propensity for proton-chelation to impact reaction design and planning.

1.1.1.4 Models, A Summary

To a synthetic organic chemist, stereoelectronic models are the bedrock of our understanding of stereoselectivity and our ability to successfully predict stereochemical outcomes. Models by definition are imperfect, and as this part of the chapter has established, a model once proposed is a model that will one day fail and change. As my undergraduate research advisor would say, "models work until they don't". However, this should not discourage efforts in constructing models and revising and revisiting old ones. To establish a model is to learn how to break down reactions to smaller and smaller qualifiable interactions. The act of doing so allows the development of the requisite experiments to test the reaction's sensitivity to those interactions. Furthermore, it sharpens the chemist's instincts and enables one to scrutinize every reaction through the consideration of those interactions. Then, one can think further on how to exploit the qualified interactions to achieve one's synthetic means. A common theme in my thesis research is how to navigate along this exact sequence of events. Through continuous iterations of establishing new models and revising old ones, we get closer to chemical truth.

1.1.2 Overview of 1,2-Asymmetric Induction in Nucleophilic Additions to α-Chiral Imines

Nucleophilic additions to α-chiral imines are precedented. Reports have been published describing stereoselective nucleophilic additions to α-chiral N-alkyl, -aryl, -silyl and -carbamoyl aldehyde derived imines. The electronic nature of the N -substituent dictates the overall electrophilicity of the imine itself, therefore informing the scope of nucleophiles employed in the reaction. Imines with electron-donating N-substituents such as alkyl and aryl groups react best with anionic nucleophiles such as Grignard and alkyllithium reagents. Imines bearing electron-withdrawing groups as the N-substituent can react with soft nucleophiles in the presence of Lewis acids or Brønsted acids. The identity and stereochemistry of the α-carbon and its substituents, as expected, dictate the preference and magnitude of selectivity. Common obstacles to methodologies exploring nucleophilic additions to α-chiral imines involve imine reactivity, epimerization of the alpha carbon due to competing enamine formation, and even the isolation or synthesis of the imine substrate itself. To get around the latter issue, imines can often be formed in situ (through condensation of aldehyde and amine) and nucleophilic addition can occur under multi-component reaction conditions. In this section, an overview of the scope of nucleophilic additions to α-chiral imines will be discussed that are relevant to the project. This section will be organized by N-substituent, then syn and anti-selective reactions (and their rationalizations) will be discussed.

1.1.2.1 Additions to α-Chiral N-Alkyl and \boldsymbol{N}-Aryl Imines

The vast majority of nucleophilic additions to N -alkyl and N -aryl imines result in the syn product regardless of nucleophile employed (Figure 9). ${ }^{17-41}$ The types of nucleophiles
used in additions to N -alkyl and N -aryl imines are typically organometallic reagents. Due to the high nucleophilicities of these reagents, many reactions can occur in the absence of an additional Lewis acid mediator. The Lewis basic α-substituent is usually an alkoxy group, but can also be a protected amine group or silyloxy group. Generally, the highest syn-selectivities are observed with alkoxy α-substituents. Even in the absence of an external Lewis acid, many organometallic nucleophiles (such as alkyl-titanium reagents) may serve as mediators and chelateable reagents in their own right, resulting in the observed chelate-derived syn-selectivities. Reactions with alkyl-tin reagents, Grignard reagents and TMSCN can be sensitive to external Lewis acids used in the reaction. Overall, there are a variety of ways to optimize addition reactions to N -alkyl and N -aryl imines to achieve high syn-selectivity.

Figure 9. Nucleophilic additions to N-alkyl and -aryl α-chiral imines.

Anti-selectivity in nucleophilic additions to N -alkyl and N -aryl imines is rare but can be observed in substrates bearing multiple Lewis-basic substituents (such as α - and β alkoxy imines resembling 10 and 11) (Figure 10). ${ }^{18-22}$ Grignard addition to N-benzyl imine 10 results in predominantly anti-product. However, this anti-selectivity is not always reliable as the same Grignard addition to imine 11 results in predominantly syn-product. Reports of anti-selective nucleophilic additions to N-alkyl and N-aryl imines are not
accompanied by any rationalization of the observed selectivities. Therefore, it is difficult to propose one without more experimental evidence. One can reasonably conclude that the presence of other β-Lewis basic groups may interfere with the formation and presence of the five membered ring chelate (formed by Lewis acid association to the α-Lewis basic site) one would expect from the canonical Cram-chelation model, resulting in aberrant selectivity.

11
Figure 10. Divergent stereoselectivity in N-alkyl α, β-alkoxy imines.

While there are many reported nucleophilic additions to N -alkyl and N -aryl imines, there are major drawbacks to their utility in organic synthesis. One major drawback of using N-alkyl and N-aryl imines in reactions of this type is their lack of versatility (i.e. it is difficult to remove an alkyl or aryl group from a nitrogen). Another drawback is that full acyclic stereocontrol has not been achieved in the case of N-alkyl and N-aryl imines as anti-selective examples are rare and limited to certain substrates. Nevertheless, the nucleophilic scope of nucleophilic additions to N-alkyl and N-aryl imines is impressive, especially when compared to other N-substituted imines.

1.1.2.2 \quad Additions to α-Chiral \boldsymbol{N}-Silyl Imines

Similar to N-alkyl and N-aryl imines, N-silyl imines are reported to undergo nucleophilic substitution in the presence of organometallic reagents. Of the examples reported, only O -alkyl, ${ }^{23,24,42} \mathrm{O}$-silyl ${ }^{43} 4244$ and N -alkyl ${ }^{45}$ a-substituents were explored. Lewis acid activation is not always necessary. Reports of nucleophilic additions to N -silyl imines show that selectivity is variable (Figure 11). Ultimately, the highest levels of syn selectivity were observed with Grignard reagents or alkyl-lithium reagents. Reactions performed with Lewis acids did not show differing selectivities compared with reactions run without Lewis acids, demonstrating that a Lewis acid is not always necessary in nucleophilic reactions of this type. The Cram-chelation model was invoked to rationalize the syn selectivity observed in these cases. Conversely, allyl-Grignard additions to N -silyl imines led consistently to predominantly anti-products, even in the presence of chelateable Lewis acids (such as ZnBr_{2}). This anti-selectivity was never clearly rationalized by the reports studying these reactions, but was found to be consistent regardless of minor changes to substrate, temperature and solvents used.

Cainelli (1991, 1995)

Figure 11. Nucleophilic additions to N-Si α-chiral imines.

While the number of studies showcasing N-silyl imines are few, there are some major benefits of incorporating N-silyl imines to a synthesis. One of the benefits of using N-silyl imines is that facile removal of the N-silyl group can occur during the work up of the addition reaction, leading to free amine products in one step after nucleophilic addition occurs. Based on the limited reports using alkyl and allyl-based nucleophiles, some degree of acyclic stereocontrol with N-silyl imines is possible.

1.1.2.3 Additions to α-Chiral \boldsymbol{N}-Carbamoyl Imines

There are seven reported examples of stereoselective nucleophilic additions to α chiral N-carbamoyl imines (Figure 12).44, 46 47-51 The electron-withdrawing nature of the carbamate group on the imine render them reactive to nucleophilic additions by softer nucleophiles such as allylsilanes (in the presence of a Lewis acid). Anionic nucleophiles such as allyl-zinc reagents and enolates can add to N-carbamoyl imines in the absence of an external Lewis acid. The bulk of reactions with N-carbamoyl imines lean synselective. Anti-selective reactions have been reported in specific cases. Like N-silyl imines, N-carbamoyl imines are usually generated in situ prior to nucleophilic addition or generated through multi-component reaction conditions (involving the mixture of aldehyde precursor, amine and nucleophile in one pot). The synthetic utility of the addition products themselves is quite high as carbamoyl groups can be easily removed under mild conditions.

Figure 12. Nucleophilic additions to N-carbamoyl α-chiral imines.

1.1.2.4 Additions to a-Chiral \boldsymbol{N}-Sulfonyl Imines

Nucleophilic additions to N-sulfonyl imines are precedented and there are a handful of reports that assess the diastereoselectivity of these reactions. ${ }^{34,45,52-54} 55,56$ Reetz and Walsh reported that nucleophilic additions to $\alpha-N$-benzyl substituted imines were generally anti-selective for a variety of nucleophiles employed (Figure 13A). This set N-sulfonyl imines apart from the other chiral imines that were discussed in this section, and made them attractive substrates to study due to their unusual reactivity. Recent reports by Marek have also shown that syn-selectivity is possible through the utility of allyl-zinc reagents with a-chloro imines and unexpectedly, in the base-mediated anhydride Mannich reaction (AMR) published by our group with α-alkoxy and $\alpha-N-H-C b z$ N-tosyl imines (Figure 13B). In the latter example, the absence of an obvious chelateable reagent made it difficult to rationalize the high syn-selectivities observed. Nonetheless, syn-selectivity in α-chiral N-tosyl imines seemed more elusive than antiselectivity as a whole. The selectivity-trends surrounding α-chiral N-sulfonyl imines are
the most difficult to rationalize given the stereoelectronic models proposed for α-chiral aldehydes. Therefore, they provide an interesting model-system to explore and perhaps the investigation of N -sulfonyl imines could lead to new stereoelectronic models.

A

Figure 13. A) Nucleophilic additions to N-sulfonyl α-chiral imines. B) Unexpected syn-selectivity in base-mediated AMR.

1.2 Acyclic Stereocontrol in Nucleophilic Additions to a-Chiral \boldsymbol{N}-Sulfonyl Aldimines

The Shaw group's interest in establishing acyclic stereocontrol in nucleophilic additions to α-chiral N-sulfonyl imines was sparked by the unexpected selectivity observed in the base-mediated AMR of N-sulfonyl imine and homophthalic anhydride. In the absence of an obvious chelateable reagent, high syn-selectivity was observed. Faced with this unexplained selectivity preference as well as the lack of overall studies focused
on acyclic stereocontrol in α-chiral N-sulfonyl imines, we set out to develop conditions that would allow predictive access to both syn and anti-addition products. Establishment of acyclic stereocontrol in this case will allow for more streamlined synthetic planning of stereochemically complex nitrogen-containing targets.

1.2.1 Substrate Synthesis

To probe the atypical selectivity exhibited in previous work, imines 18 and 19 were selected as model systems for optimization studies due to their synthetic accessibility and complementary structures (Figure 14). The α-chiral aldehydes 16a and 16b were synthesized from (-) ethyl-L-lactate and (+)-L-mandelic acid and then converted to N -tosyl imines via amidosulfones 17a and 17b. Methyl- and phenyl-substitution at the alpha position allowed for direct comparison of selectivity trends as steric bulk increased vicinal to the reactive center.

Figure 14. Representative routes for substrate synthesis.

While there are other methods of synthesizing imines from aldehydes, we chose the above method involving the isolation of an amidosulfone precursor because amidosulfones could be stored as chalky solids for long periods of time without significant decomposition. Additionally, the conversion of amidosulfone to imine is relatively facile. Procedurally, amidosulfone can be dissolved in dichloromethane and shaken with saturated aqueous sodium bicarbonate for one minute. Once the layers are separated and the organic layer is concentrated in vacuo, imine can be procured and used the same day with no need for further purification. α-Chiral aldimines themselves are difficult to store for long periods of time as they are prone to hydrolysis or enamine formation. Therefore, experiments using aldimines were carried out the typically the same day they were produced.

Optimized reaction conditions were later applied to other α-chiral imine substrates that were accessed in a similar fashion to imines 18 and 19 (Figure 15). All imines were derived from their analogous aldehyde precursors through an amidosulfone intermediate. The aldehydes themselves were typically synthesized from commercially available alpha chiral carboxylic acid derivatives using literature precedented procedures. Of the imines that were successfully synthesized, four were used in the published study. Several imines that were mechanistically interesting or synthetically valuable such as imines 23-25 could not be isolated using our synthetic route. The amidosulfone precursors to imines 23-25 could not be accessed through our protocol.
successfully synthesized imines

20

21

22
failed to isolate using synthetic route

Figure 15. Imines synthesized (and attempted to be synthesized) from synthetic route.

1.2.2 Optimization of Syn selective Reaction Conditions

Optimization of syn-selective reaction conditions was achieve through an extensive Lewis acid screen with model imine 18 (Table 1). In the screen, several Lewis acids were used in nucleophilic addition reactions involving imine 18 and either allyltrimethylsilane or the silyl enol ether of acetophenone. These nucleophilic alkenes were selected as they led to homoallylic amines or ketone products which could serve as functional handles for subsequent reactions. Furthermore, these two nucleophiles represented different nucleophilicities according to Mayr, ensuring that the optimized reaction conditions will be general for a variety of nucleophiles, strong or weak.

Table 1. Lewis acid screen on imine 18.

		M		$\xrightarrow[\text { Temperature }]{\text { Lewis Acid, } \mathrm{CH}_{2} \mathrm{Cl}_{2}}$			
Entry ${ }^{\text {a }}$	R	Y	M	Lewis Acid	Temperature ${ }^{\text {b }}$	syn:antic ${ }^{\text {c }}$	
1	H	CH_{2}	TMS	ZnBr_{2}	-78	94:6	90 ¢
2	H	CH_{2}	TMS	ZnBr_{2}	23	96:4	82 ¢
3	H	CH_{2}	TMS	FeCl_{3}	0	80:20	48 D
4	H	CH_{2}	TMS	ZnCl_{2}	0	80:20	$85 \sim \stackrel{\circ}{\circ}$
5	H	CH_{2}	TMS	AlCl_{3}	0	80:20	$\stackrel{\text { ® }}{ }$
6	H	CH_{2}	TMS	AlCl_{3}	-78	77:23	93*
7	H	CH_{2}	TMS	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	-78	67:33	88*
8	H	CH_{2}	TMS	$\mathrm{Sc}(\mathrm{OTf})_{3}$	0	62:38	91
9	H	CH_{2}	TMS	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	0	56:44	-
10	H	CH_{2}	TMS	$\mathrm{La}(\mathrm{OTf})_{3}$	-78	48:52	67
11	H	CH_{2}	TMS	$\ln (\mathrm{OTf})_{3}$	23	41:59	56
12	H	CH_{2}	TMS	$\mathrm{Cu}(\mathrm{OTf})_{2}$	0	36:64	86
13	H	CH_{2}	TMS	$\mathrm{Mg}(\mathrm{OTf})_{2}$	23	31:69	71
14	H	CH_{2}	TMS	MgBr_{2}	23	-	-
15	H	CH_{2}	TMS	$\mathrm{Zn}(\mathrm{OTf})_{2}$	23	-	-
16	Ph	\bigcirc	TMS	ZnBr_{2}	-78	100:0	-
17	Ph	0	TMS	AlCl_{3}	-78	100:0	-
18	Ph	0	TMS	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	-78	75:25	53
19	Ph	\bigcirc	TMS	TiCl_{4}	-78 to 23	-	-
20	H	CH_{2}	SnBu_{3}	TMSOTf	-78 to 23	85:15	n.d.
21	H	CH_{2}	SnBu_{3}	TMSOTf	-78 to 23	5.15	n.d.
22	H	CH_{2}	SnBu_{3}	TfOH (10 mol\%)	-78 to 23	85:15	n.d.

[^0]Most of the Lewis acids screened for these reactions resulted in predominantly the syn diastereomer of product. Reactions with ZnBr_{2} were notable in their ability to consistently lead to syn-products in high selectivities and clean conversion (Table 1, entries 1, 2 and 16). Reactions run with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, a non-chelateable Lewis acid, surprisingly also gave modest amounts of syn selectivity (entries 7, 9 and 18). Reactions run with $\mathrm{MgBr}_{2}, \mathrm{Zn}(\mathrm{OTf})_{2}$ and TiCl_{4} would fail to give product and typically resulted in uninterpretable NMRs of the crude reaction mixture (entries 14, 15 and 19). From these
results, we concluded that ZnBr_{2} would be the optimal Lewis acid used in syn-selective nucleophilic addition reactions moving forward. Temperatures of these reactions would be kept as low as possible to favor higher conversions without compromising selectivity.

1.2.3 Optimization of Anti selective Reaction Conditions

Compared to optimization of syn-selective reaction conditions, optimization of highly anti-selective reaction conditions proved more difficult to achieve. Known nonchelateable Lewis acids are fewer in number than chelateable Lewis acids. Our Lewis acid screen already demonstrated that reactions run with commonly used nonchelateable Lewis acid $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ gave preferably syn-selectivity (or was otherwise unselective). Reactions run with TMSOTf, another commonly used non-chelateable Lewis acid also gave high syn-selectivity (Table 1, entry 20). This selectivity was later investigated through proton-scavenger experiments with 2,6 ditert-butylpyridine which resulted in no reaction (Table 1, entry 21). This experiment suggested that reactions with TMSOTf were Brønsted acid mediated through trace TfOH which may result from hydrolysis of TMSOTf. In the presence of a Brønsted acid, α-chiral imines such as 18 can chelate with a proton. The resulting selectivity would be chelate-derived, or syn, as in the case with the products of other reactions run with chelateable Lewis acids. The ability of a proton to chelate is not unprecedented and as Brønsted acid mediated reactions can occur catalytically, i.e. even a small amount of Brønsted acid could interfere with the selectivity of a reaction that is meant to be Lewis acid mediated. All of these factors made the optimization of anti-selective reaction conditions a complex endeavor. ${ }^{51}$

1.2.3.1 Temperature Effects of BF3•OEt2 Mediated Reactions

Our initial Lewis Acid screen revealed sensitivity of BF3•OEt2 mediated reactions to temperature (Table 1, entry 7 and 9). More reactions were run with imines 18 and 19 with allyltrimethylsilane, methallyltrimethylsilane and silyl enol ether of acetophenone to further explore temperature effects (Table 2 A and 2 B). The selectivities collected from these experiments show an upward trend in anti-selectivity with higher temperatures. While one expects subtle variances in selectivity due to temperature changes, the large swings in selectivity, and sometimes complete inversion of selectivity observed from -78 to room temperature suggest that there may be major changes in mechanism between reactions run at lower temperatures and reactions run at higher temperatures.

Table 2. Temperature effects on nucleophilic reactions with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ on imines 18 and 19.

1.2.3.2 Solvent Effects of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}-$ Mediated Reactions

Next, we considered solvent effects by running nucleophilic addition reactions with $\mathrm{BF}_{3} \cdot \mathrm{OEt} 2$ with a variety of solvents (Table 3A and 3 B). Chloroform, toluene, acetonitrile, diethyl ether and n-hexane were chosen due to their range of properties such as polarity and Lewis basicity. Solvent screens revealed that reactions run in toluene and chloroform gave higher anti-selectivity than reactions run in other solvents. While chloroform and toluene have little in common as far as chemical properties, this selectivity was consistent across two imines and two nucleophiles. Reactions run in acetonitrile conversely gave better syn-selectivity than other solvents.

Table 3. Solvent effects (and their dielectric constants, epsilon or ε) on nucleophilic reactions with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ on imines 18 and 19.

1.2.3.3 Highly Anti-selective reactions run with $\mathrm{Cu}(\mathrm{OTf})_{2}$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$

We continued with our efforts to reach synthetically useful amounts of antiselectivity in nucleophilic addition reactions of α-chiral N-sulfonyl imines by exploring reactions run with $\mathrm{Cu}(\mathrm{OTf})_{2}$ (Table 4). $\mathrm{Cu}(\mathrm{OTf})_{2}$ previously gave encouraging levels of anti-selectivity in our Lewis acid screens. Reactions with $\mathrm{Cu}(\mathrm{OTf})_{2}$, toluene at room temperature gave 80:20 selectivity for the anti-product (Table 1, entry 2). Unfortunately, these conditions were not generalizable to other nucleophiles such as methallyltrimethylsilane 27 and silyl enol ether of acetophenone 28 (Table 4, entry 3, 4, 5).

Through temperature and solvent screens, we felt that we had reached the limit of selectivity that $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ could provide. By further manipulating temperature effects, we arrived at the highest anti-selective diastereomeric ratio yet for the project (Table 4, entry 6). While reactions run at -20 degrees in chloroform with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ worked well with nucleophiles 27 and 28, diastereomeric ratios for allylations still proved lacking. A major breakthrough in the project was finally reached when we switched allylating reagents from allyltrimethylsilane 27 to a potassium allyltrifluoroborate salt 29 (Table 4, entry 9). This gave us superior anti-selectivity for allylation reactions in particular. Subsequent addition reactions were run with 18 -crown-6 to maximize solubility of the allylating reagent and thus, yield. With this breakthrough, we were finally able to settle on $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ reactions run in chloroform at $-20^{\circ} \mathrm{C}$ as the optimal conditions for anti-selective nucleophilic addition reactions to N-tosyl imines.

Table 4. Optimization of anti-selectivity on imines 18.

${ }^{a}$ syn:anti ratios determined by integration of ${ }^{1} \mathrm{H}$ NMR spectra of unpurified reaction mixtures

1.2.4 Substrate Scope

Through extensive reaction optimization, two sets of generalizable conditions were developed for stereoselective nucleophilic additions to α-chiral N-sulfonyl imines (Table 5). Imines 18-21 all led to addition products using the optimized reaction conditions. Reactions with ZnBr_{2} in dichloromethane run at $-78^{\circ} \mathrm{C}$ led to syn-selectivities of up to >95:05 diastereomeric ratios for a variety of imines and nucleophiles. Conversely, reactions run with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in chloroform at $-20^{\circ} \mathrm{C}$ led to comparably high levels of antiselectivity. Anti-selectivity of allylation reactions can be improved by switching to potassium allyltrifluoroborate as the allylating reagent.

Table 5. Acyclic stereocontrol in α-chiral N-tosyl imines.

Imines 18 and 21 show how alpha substituents can be manipulated in order to achieve specific stereochemical outcomes. α-Alkoxy imines like imine 18 can easily lead to high levels of syn-selectivity using the conditions reported. On the other hand, ZnBr_{2} reactions run with α-silyloxy imine 21 result in poor syn selectivity. This was expected, as silyloxy substituents are poor Lewis bases and less likely to chelate. α-Silyloxy substituted imine 21 performs better in anti-selective reactions, however, and lead to significantly higher levels of anti-selectivity under reported conditions when nucleophile 29 is used. The optimal substrates for syn-selective nucleophilic additions are α-alkoxy substrates and the optimal substrates for anti-selective nucleophilic additions are α-silyloxy
substrates. Notably, benzyloxy and silyloxy α-substituents in addition products can later be removed using established chemistry, making their specific presences inconsequential in the context of a synthetic route.

1.2.5 Discussion of Reaction Mechanism

Throughout this project, the Shaw group worked tightly with the Houk group (University of California, Los Angeles) to elucidate the mechanistic origins of observed selectivities. Any experimental observation of interest and hypothesis developed to rationalize selectivities were computationally explored using DFT methods by Dr. Jason Fell, a former graduate student in the Houk group. Together, we sought to use experimental and computational methods to establish a predictive stereoelectronic model (akin to the Cram chelation model or polar-Felkin Anh model) that would describe nucleophilic additions to α-chiral imines.

Syn-selective reactions run with ZnBr_{2} and Bronsted acid, were computationally explored. Fell determined the binding affinity of ZnBr_{2} to imine 18 using DFT methods and the B3LYP57, 58 functional. Geometry optimizations were performed with the 6-31(d) basis set. The LANL2DZ ${ }^{59}$ pseudopotentials were utilized for heavier elements such as Zn and Br. These computational parameters have been previously reported to adequately describe similar systems. ${ }^{6061}$ Fell found chelate structures of truncated-imine 18 with a favorable energy of binding for both ZnBr_{2} and proton (Figure 16). The presence of these chelates are most likely responsible for the syn-selectivites observed with reactions run with ZnBr_{2} and TMSOTf. Furthermore, comparisons of binding energies of 43 and 44
show that proton chelation is more energetically likely in the case of N-Ts imines compared to aldehydes. Nucleophilic addition likely proceeds through the Cram-chelation model to produce syn-addition products on such chelates.

44
Figure 16. Binding affinities for ZnBr_{2} and H^{+}on truncated imine and aldehyde.
Anti-selective reactions run with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ were also computationally examined by Fell. Compared to syn-selectivity, which is typically and reliably achieved through the presence of a chelate, anti-selectivity was less straight-forward to explain. Literature precedent and the variable selectivities we observed with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in our studies suggested to us that there were a variety of reactive intermediates that could be in play. Fell's computational results confirmed these suspicions as he found three reactive intermediates that were all energetically accessible from one another (less than 3 $\mathrm{kcal} / \mathrm{mol}$) at various temperatures (Figure 17). Reactive intermediate 45 is the most traditional of the three, arising from coordination of BF_{3} to the nitrogen of the imine. The
conformational preferences of this intermediate in the transition-state structure of nucleophilic addition would ultimately determine the selectivity preference of the products. Reactive intermediate 47 is characterized by a second molecule of BF_{3} potentially bound to the alpha alkoxy substituent of the imine. Reetz had proposed a reactive intermediate similar to 47 in their investigations of nucleophilic additions to beta alkoxy imines. Finally, the last and most unexpected intermediate was that of 46 , a BF_{2} chelate that could potentially result from the disproportionation of 45 and a second molecule of BF_{3} to furnish $\mathrm{BF}_{4}{ }^{-}$and 46. The possibility of reactive intermediate 46 is enlightening as it is likely an intermediate that would lead to syn-products through the Cram-chelation model.

18

47

$$
\Delta G\left(+25^{\circ} \mathrm{C}\right)=-5.4
$$

$$
\Delta G\left(-20^{\circ} \mathrm{C}\right)=-6.7
$$

$$
\Delta G\left(-78^{\circ} \mathrm{C}\right)=-9.6
$$

$$
\begin{aligned}
& \Delta G\left(+25^{\circ} \mathrm{C}\right)=-2.3 \\
& \Delta G\left(-20^{\circ} \mathrm{C}\right)=-3.6 \\
& \Delta G\left(-78^{\circ} \mathrm{C}\right)=-6.7
\end{aligned}
$$

$$
\begin{aligned}
& \Delta G\left(+25^{\circ} \mathrm{C}\right)=-0.8 \\
& \Delta G\left(-20^{\circ} \mathrm{C}\right)=-4.2 \\
& \Delta G\left(-70^{\circ} \mathrm{C}\right)=-9.7
\end{aligned}
$$

Figure 17. Possible reactive intermediates in BF_{3} mediated nucleophilic addition reactions to N Ts imines.

As all three reactive intermediates were relatively close to one another in energy, we would need to calculate transition state structures if we want to determine the reactive intermediate that most likely led to the products we observed. Dr. Fell was able to find
productive transition state structures for only intermediates 46 and 47. Surprisingly, reactive intermediate 45 led to high-energy transition states that were deemed energetically unproductive relative to that of the other possible transition states (Figure 18).

A comparison of the lowest energy transition states leading from intermediates 46 and 47 provided an experimentally consistent rationalization of our observed selectivites. From intermediate 46, TS-1, which leads to the syn-product, was favored over antiaddition transition states. From intermediate 45, TS-2, which leads to the anti-product, prevailed over any syn-selective transition states. TS-2 depicts a conformer in which the two strongest dipoles of the molecule are directed antiperiplanar to one another, resembling the conformation depicted in the Cornforth-Evans model. With intermediates 46 and 47 relatively close in energy, Curtin-Hammett principles would dictate that the major diastereomer of product would arise from the lower energy transition-state structure. At lower temperatures, TS-1 was the favored transition state structure compared to TS-2 and rationalizes the syn-selectivity observed at lower temperatures for imine 18 and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. At higher temperatures, $\mathrm{TS}-2$, is calculated to be lower in energy, rationalizing the high anti-selectivity observed when we increased the temperature of reactions run with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Figure 18. Calculated TS's for reactive intermediates 45-47.
The collaboration between the Shaw and Houk groups allowed for the first proposal of a BF_{2} chelate formed by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and imine. While the calculations performed only pertain to alpha chiral N-sulfonyl imines, the possibility of a BF_{2} chelate should be considered in other systems as well. There are two previous reports of unexplained syn-selectivity in nucleophilic additions to imines using $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} .{ }^{33}$ It is possible that there will be future instances of unexpected syn-selectivity that can also be rationalized by a BF_{2} chelate. Moving forward, we have at least presented evidence that $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ should not be considered as only a non-chelateable Lewis acid. There are aspects of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ reactivity that have yet to be uncovered.

1.2.6 Determination of Relative and Absolute Stereochemistry in Addition Products

Determination of relative stereochemistry of products was completed through Xray crystallography and NMR correlations (Figure 19). One of the early goals of this project was to establish the identity of diastereomers to determine whether or not a reaction was syn or anti-selective. Fortunately for this project, many of the nucleophilic addition products were crystalline. Due to the high diastereoselectivity of the reactions, separated diastereomers of addition products were fully characterized. Solids were recrystallized in 20 mL scintillation vials typically using ethyl acetate and hexanes as solvents. Occasionally, diethyl ether and dichloromethane recrystallizations at cold temperatures were also performed to produce adequate crystals for recrystallizations. Relative stereochemistry of the addition adducts that were not crystalline were determined through NMR correlation or chemical derivatization.

Figure 19. Nucleophilic addition products characterized by X-ray crystallography.

Determination of absolute stereochemistry was also completed for imine addition product 30a using chiral-HPLC (Figure 20). We were curious whether or not our synthetic route to access imine and subsequent imine addition conditions would affect the enantiointegrity of the alpha stereogenic center. Our original synthetic route which utilized sodium
hydride and benzyl bromide to brominate the alpha hydroxy substituent resulted in erosion of stereochemistry at the alpha carbon. Reaction conditions for benzylation were revised. The new conditions using silver (II) oxide and benzyl bromide showed that no erosion of the alpha chiral center occurred. Furthermore, the subsequent steps of the synthetic route as well as the nucleophilic addition conditions themselves did not seem to affect the alpha stereogenic center. We concluded that, using our synthetic route and addition conditions, whatever enantiopurity of starting material used to make imine would be preserved using this method.

(-) ethyl L-lactate
12 68\% 97:03 e.r.

Figure 20. Determination of absolute stereochemistry using enantiomeric ratios measured by chiral HPLC.

1.2.7 Discovery of Silyl-Annulation Side Products

Nucleophilic allylations using allyltrimethylsilane and ZnBr_{2} resulted in small amounts of silyl-annulation products 49 and 50 (Figure 21). These silyl annulation products were typically isolated in under 5% yield and were determined to not impact significantly the yield of the target homoallylic amine. Similar silyl-annulation products
have been reported in the past for allylations, typically at low temperatures, with carbonyl electrophiles and even N -boc imines. At the time of our publication, there were no preexisting reports of an N -Ts silyl-annulation product. There were a couple of attempts to optimize for the silyl-annulation product by switching to bulkier silyl-nucleophiles, which demonstrated a greater propensity to form annulation products in analogous systems. These efforts ultimately did not result in significantly more annulation product in our system.

Figure 22. Silyl-annulation product formation from imines 18 and 19.

1.3 Conclusion

In conclusion, acyclic imine stereocontrol was achieved in nucleophilic additions to alpha alkoxy N -Ts imines through the application of either ZnBr_{2} or $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as a Lewis acid mediator. Experimental and computational evidence were used in tandem to construct a stereoelectronic model to explain the diastereoselectivity of addition reactions.

Syn-products resulted from preorganization of imine substrate into a chelate by ZnBr_{2}. Anti-products likely result from a Cornforth-Evans like conformation of Lewis acidsubstrate complex in the transition state. Experimental and computational evidence gathered also suggest that $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ is not as reliable of a non-chelateable Lewis acid as originally assumed and the possibility of the formation of a BF_{2} chelate should not be ignored. In the absence of a BF_{2} chelate, our results also demonstrate that N-Ts imines are sensitive to proton-chelation. A proton-chelate is currently the most likely explanation for the unexplained selectivity observed in the AMR.

1.4 Experimental

Unless otherwise specified, all commercially available reagents were used as received. All reactions using dried solvents were carried out under an atmosphere of argon in oven-dried glassware with magnetic stirring. Dry solvent was dispensed from a solvent purification system that passes solvent through two columns of dry neutral alumna. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired at ambient temperature using Varian600 (600 and 151 MHz , respectively), or Bruker-400 (400 and 100 MHz , respectively) spectrometers, as indicated. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane or referenced to residual solvent (${ }^{1} \mathrm{H} \mathrm{NMR:} \mathrm{CDCl}_{3} \delta 7.26 .{ }^{13} \mathrm{C}$ NMR: $\mathrm{CDCl}_{3} \delta 77.16$) on the δ scale, multiplicity (appar = apparent, $\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, sext $=$ sextet, $\mathrm{m}=$ multiplet $)$, coupling constants (Hz), and integration. High-resolution mass spectra (HRMS) were acquired on
a Thermo Electron LTQ-Orbitrap XL Hybrid mass spectrometer on positive ESI mode. Melting points were obtained on an EZ-melting apparatus and were uncorrected. Liquid chromatography was performed using forced flow (flash chromatography) of the indicated solvent system silica gel (Fisher, 40-63 $\mu \mathrm{m}$) packed in glass columns.

General Procedure A: Syn-selective additions to imines

A solution of imine (1.0 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ was added to solid ZnBr_{2} (1.1 equiv) and cooled to $-78^{\circ} \mathrm{C}$. Nucleophile (1.1 or 1.5 equiv) was then added. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ overnight (16-20 h). The mixture was diluted with EtOAc and allowed to warm to ambient temperature. The resulting mixture was passed through a pad of silica (EtOAc rinse) and concentrated in vacuo.

General Procedure B: Anti-selective additions to imines

To a solution of imine (1.0 equiv) in dry $\mathrm{CHCl}_{3}(0.1 \mathrm{M})$ cooled to $-20^{\circ} \mathrm{C}$, nucleophile (1.1 or 1.5 equiv), then $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (1.1 equiv) were added. The mixture was stirred at $-20^{\circ} \mathrm{C}$ overnight (16-20 h). A solution of $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{Et}_{3} \mathrm{~N}(1: 1: 1 \mathrm{v} / \mathrm{v}$, pre-cooled to -20 ${ }^{\circ} \mathrm{C}$) was added, then the resulting mixture was diluted with EtOAc and allowed to warm to ambient temperature. The solution was passed through a pad of silica (EtOAc rinse) and concentrated in vacuo.

General Procedure C: Anti-selective additions with allyIBF3K and 18-crown-6

A solution of imine (1.0 equiv) in dry $\mathrm{CHCl}_{3}(0.1 \mathrm{M})$ was added to a mixture of allylBF $\mathrm{CH}_{3} \mathrm{~K}$ (1.5 equiv) and 18 -crown- 6 (1.5 equiv) and cooled to $-20^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was added dropwise. The mixture was stirred at $-20^{\circ} \mathrm{C}$ overnight (16-20 h). A solution of $\mathrm{CH}_{3} \mathrm{OH}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{Et}_{3} \mathrm{~N}\left(1: 1: 1 \mathrm{v} / \mathrm{v}\right.$, pre-cooled to $\left.-20^{\circ} \mathrm{C}\right)$ was added, then the resulting mixture was diluted with EtOAc and allowed to warm to ambient temperature. The solution was passed through a pad of silica (EtOAc rinse) and concentrated in vacuo.

N-((2S,3S)-2-(benzyloxy)hex-5-en-3-yl)-4-methylbenzenesulfonamide (30a)

Using general procedure A, imine 18 (169 mg, 0.532 mmol$), \mathrm{ZnBr}_{2}$ ($132 \mathrm{mg}, 0.585 \mathrm{mmol}$), and allyITMS (127 $\mu \mathrm{L}, 0.798 \mathrm{mmol})$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.3 \mathrm{~mL})$ to afford $\mathbf{3 0 a}$ (140 $\mathrm{mg}, 73 \%$) as a 95:05 mixture of diastereomers. The major isomer was isolated by flash column chromatography (05:95 to 30:70 EtOAc:hexanes) as a colorless crystalline solid (melting point: $\left.78.3-81.6^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ $-7.26(\mathrm{~m}, 7 \mathrm{H}), 5.56-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (d, J = 11.6 Hz, 1H), $4.33(d, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(q d, J=6.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.17$ (m, 1H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.1,138.2,138.1,134.2,129.5,128.4,127.8,127.7$,
127.0, 118.0, 73.9, 70.8, 57.6, 36.7, 21.5, 15.9; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$360.1628, found 360.1630.

N-((2S,3R)-2-(benzyloxy)hex-5-en-3-yl)-4-methylbenzenesulfonamide (30b)

Using general procedure C , imine 18 ($82.9 \mathrm{mg}, 0.261 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(36 \mu \mathrm{~L}, 0.287$ mmol), allylBF $3 \mathrm{~K}(58 \mathrm{mg}, 0.392 \mathrm{mmol})$, and 18 -crown $-6(104 \mathrm{mg}, 0.392 \mathrm{mmol})$ were combined in $\mathrm{CHCl}_{3}(2.6 \mathrm{~mL})$ to afford 30b ($81.2 \mathrm{mg}, 86 \%$) as a $11: 89$ mixture of diastereomers. The major isomer was isolated by flash column chromatography (15:85 $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ hexanes, $\mathrm{R}_{\mathrm{f}}=0.18$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.72-7.66$ (m, 2H), 7.32 (q, J = 7.1, $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ (s, 3H), 7.22 (s, 2H), 5.54 (dq, J = 16.2, 7.6 $\mathrm{Hz}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, \mathrm{J}=8.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{tt}, \mathrm{J}=8.5,4.9 \mathrm{~Hz}$, $1 H), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dt}, \mathrm{J}=13.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.3$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2,138.2,138.0,134.0,129.5,128.4,127.6$, 127.5, 127.2, 118.2, 75.8, 70.9, 57.1, 33.9, 21.5, 15.8; AMM (ESI-TOF) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$360.1628, found 360.1627.

N-((2S,3S)-2-(benzyloxy)-5-methylhex-5-en-3-yl)-4-methylbenzenesulfonamide

 (31a)Using general procedure A, imine 18 ($150 \mathrm{mg}, 0.473 \mathrm{mmol}), \mathrm{ZnBr}_{2}$ ($117 \mathrm{mg}, 0.520 \mathrm{mmol}$), and methallylTMS ($91 \mu \mathrm{~L}, 0.520 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL})$ to afford 31a ($111 \mathrm{mg}, 63 \%$) as a $94: 06$ mixture of diastereomers. The major isomer was isolated by flash column chromatography (0:100 to 50:50 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.75-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 4 \mathrm{H}), 4.71$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.34$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{qd}, J=6.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{tdd}, J=8.2,6.7,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.41 (s, 3H), 2.34 (dd, $J=13.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (dd, $J=13.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$, $1.10(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.2,141.8,138.4,138.2$, 129.6, 128.5, 127.9, 127.8, 127.2, 114.2, 73.8, 71.0, 55.6, 40.1, 21.8, 21.6, 15.7; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 374.1784$, found 374.1784.

N-((2S,3R)-2-(benzyloxy)-5-methylhex-5-en-3-yl)-4-methylbenzenesulfonamide (31b)

Using general procedure B , imine 18 ($164 \mathrm{mg}, 0.517 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(70 \mu \mathrm{~L}$, 0.568 mmol), and methallylTMS ($136 \mu \mathrm{~L}, 0.775 \mathrm{mmol}$) were combined in $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ to
afford 31b (136 mg, 70\%) as a 90:10 mixture of diastereomers. The major isomer was isolated by flash column chromatography (0:100 to 30:70 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.70$ (d, 2H), 7.32 (ddd, J = 13.3, $7.7,5.9 \mathrm{~Hz}, 3 \mathrm{H}$), 7.25 $-7.21(\mathrm{~m}, 4 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{qd}, \mathrm{J}=6.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dtd}, \mathrm{J}=9.0,5.6,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 143.2,141.6,138.5,137.9,129.5,128.3,127.7,127.6,127.4,114.3$, $75.9,71.2,55.6,37.8,21.8,21.6,15.8$; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 374.1784$, found 374.1784 .

N-((3S,4S)-4-(benzyloxy)-1-oxo-1-phenylpentan-3-yl)-4-methylbenzenesulfonamide (32a)

Using general procedure A, imine 18 (169 mg, 0.532 mmol$), \mathrm{ZnBr}_{2}$ ($132 \mathrm{mg}, 0.585 \mathrm{mmol}$), and 1-phenyl-1-trimethylsiloxyethylene ($164 \mu \mathrm{~L}, 0.798 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.0 mL) to afford 32a (213 mg, 91\%) as a $>95: 05$ mixture of diastereomers. The major isomer was isolated by flash column chromatography (0:100 to 30:70 EtOAc:hexanes) as a colorless crystalline solid (melting point: $\left.107.3-110.1^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.81-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 7 \mathrm{H})$, $5.19(q, J=5.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{tt}$,
$J=7.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (dtd, $\mathrm{J}=8.2,6.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.02$ (dd, J $=17.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.4, 143.4, 138.0, 137.7, 136.5, 133.5, 129.7, 128.7, 128.5, 128.2, 128.0, 127.9, 127.3, 74.6, 71.0, 54.6, 41.2, 21.7, 16.1; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+$ $\mathrm{H}]^{+} 438.1734$, found 438.1728 .

N-((3R,4S)-4-(benzyloxy)-1-oxo-1-phenylpentan-3-yl)-4methylbenzenesulfonamide (32b)

Using general procedure B , imine 18 ($132 \mathrm{mg}, 0.416 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(57 \mu \mathrm{~L}, 0.458$ mmol), and 1-phenyl-1-trimethylsiloxyethylene ($120 \mathrm{mg}, 0.624 \mathrm{mmol}$) were combined in $\mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ to afford $\mathbf{3 2 b}(262 \mathrm{mg}, 72 \%)$ as a $>95: 05$ mixture of diastereomers. The major isomer was isolated by flash column chromatography (0:100 to 30:70 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($599 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.71$ $-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (dd, $J=6.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (d, $J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{p}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}$, $J=17.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=17.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.0,143.4,137.9,137.6,136.6,133.5,129.7,128.6$,
128.4, 128.2, 127.82, 127.77, 127.2, 75.6, 71.0, 54.7, 37.9, 21.6, 16.3; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 438.1734$, found 438.1736.

N-((1S,2S)-1-methoxy-1-phenylpent-4-en-2-yl)-4-methylbenzenesulfonamide (33a)

Using general procedure A, imine 19 ($241 \mathrm{mg}, 0.793 \mathrm{mmol}), \mathrm{ZnBr}_{2}$ (196 mg, 0.872 mmol), and allyITMS (189 $\mu \mathrm{L}, 1.19 \mathrm{mmol})$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ to afford 33a (212 $\mathrm{mg}, 77 \%$) as a >95:05 mixture of diastereomers. The major isomer was isolated by flash column chromatography (10:90 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (599 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.06(\mathrm{~m}, 4 \mathrm{H}), 5.61(\mathrm{ddt}, \mathrm{J}=$ $17.1,10.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.40(\mathrm{p}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{dt}, J=14.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, 2.08 - $1.97(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.8,137.6,137.4,133.9,129.3$, 128.3, 127.8, 127.2, 127.0, 118.4, 82.6, 58.2, 57.1, 36.1, 21.5; AMM (ESI-TOF) m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$346.1471, found 346.1478.

N-((1S,2R)-1-methoxy-1-phenylpent-4-en-2-yl)-4-methylbenzenesulfonamide (33b)

Using general procedure C , imine $19(124 \mathrm{mg}, 0.410 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(56 \mu \mathrm{~L}, 0.451$ mmol), allylBF 3 K ($91 \mathrm{mg}, 0.616 \mathrm{mmol}$), and 18 -crown-6 ($163 \mathrm{mg}, 0.616 \mathrm{mmol}$) were combined in $\mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ to afford 33 b ($128 \mathrm{mg}, 90 \%$) as a $>95: 05$ mixture of diastereomers. The major isomer was isolated by flash column chromatography (10:90 to 20:80 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, \mathrm{~J}=7.8$ Hz, 2H), $7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.16$ (d, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.45$ (ddd, J = 17.4, 14.9, 7.4 Hz , $1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}$, 1 H), 3.42 (tq, J = 7.8, $3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.18 (d, J = $1.4 \mathrm{~Hz}, 3 \mathrm{H}$), $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{dt}, \mathrm{J}=15.8$, 8.2 Hz, 1H), $2.00(\mathrm{td}, \mathrm{J}=13.8,12.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 143.3$, $138.2,138.0,134.4,129.6,128.6,127.9,127.3,126.8,118.1,84.8,58.4,57.8,32.8,21.6 ;$ AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 346.1471$, found 346.1472.

N-((1S,2S)-1-methoxy-4-methyl-1-phenylpent-4-en-2-yl)-4-

methylbenzenesulfonamide (34a)

Using general procedure A, imine 19 (202 mg, 666 mmol$), \mathrm{ZnBr} 2$ ($165 \mathrm{mg}, 732 \mathrm{mmol}$), and methallylTMS (176 $\mu \mathrm{L}, 999 \mathrm{mmol})$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.6 \mathrm{~mL})$ to afford $\mathbf{3 4 a}$ ($178 \mathrm{mg}, 74 \%$) as a 95:05 mixture of diastereomers. The major isomer was isolated by flash column chromatography (10:90 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=5.3,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.17-7.08(\mathrm{~m}$,
$4 \mathrm{H}), 4.75(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(q d, J=7.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{dd}, \mathrm{J}=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.38(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{dd}, \mathrm{J}=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $142.9,142.0,137.9,137.6,129.4,128.3,127.7,127.2,127.0,114.5,82.1,57.5,56.6$, 40.6, 21.9, 21.6; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 360.1628$, found 360.1629 .

N-((1S,2R)-1-methoxy-4-methyl-1-phenylpent-4-en-2-yl)-4methylbenzenesulfonamide (34b)

Using general procedure B , imine 19 (159 mg, 0.524 mmol), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(71 \mu \mathrm{~L}, 0.577$ mmol), and methallyITMS (138 $\mu \mathrm{L}, 0.786 \mathrm{mmol}$) were combined in $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ to afford 34b (147 mg, 78\%) as a 85:15 mixture of diastereomers. The major isomer was isolated by flash column chromatography (10:90 EtOAc:hexanes) as a colorless crystalline solid (melting point: $\left.86.3-89.8^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR (599 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, \mathrm{~J}=$ 8.0 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), $7.29(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ (ddt, J = 11.2, 7.4, 3.4 Hz, 1H), $3.19(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{dd}, \mathrm{J}=$ 14.3, 10.8 Hz, 1H), 1.90 (dd, J = 14.4, 3.7 Hz, 1H), 1.26 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\mathbf{~ 1 4 3 . 4 , ~ 1 4 1 . 6 , ~ 1 3 8 . 3 , ~ 1 3 8 . 1 , ~ 1 2 9 . 6 , ~ 1 2 8 . 6 , ~ 1 2 7 . 8 , ~ 1 2 7 . 4 , ~ 1 2 6 . 6 , ~ 1 1 4 . 3 , ~ 8 4 . 5 , ~ 5 7 . 9 , ~}$
57.0, 36.2, 21.6, 21.4; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 360.1628 , found 360.1629 .

N -((1S,2S)-1-methoxy-4-oxo-1,4-diphenylbutan-2-yl)-4-methylbenzenesulfonamide (35a)

Using general procedure A, imine 19 ($170 \mathrm{mg}, 559 \mathrm{mmol}), \mathrm{ZnBr}_{2}$ ($189 \mathrm{mg}, 838 \mathrm{mmol}$), and 1-phenyl-1-trimethylsiloxyethylene ($126 \mu \mathrm{~L}, 615 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.6 mL) to afford 35a (118 $\mathrm{mg}, 50 \%$) as a 95:05 mixture of diastereomers. The major isomer was isolated by flash column chromatography (0:100 to 30:70 EtOAc:hexanes) as a colorless crystalline solid (melting point: $\left.132.9-135.4^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(599 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.86(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}$ $=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{tt}, \mathrm{J}=7.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, \mathrm{J}=17.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, \mathrm{J}=$ 17.2, 4.0 Hz, 1H), 3.17 (s, 3H), 2.31 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.7,142.8$, $137.9,136.8,136.6,133.6,129.4,128.7,128.5,128.2,127.8,127.0,126.8,82.9,57.6$, 55.8, 41.3, 21.6; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$424.1577, found 424.1572.

N-((1S,2R)-1-methoxy-4-oxo-1,4-diphenylbutan-2-yl)-4-methylbenzenesulfonamide (35b)

Using Using general procedure B, imine 19 ($124 \mathrm{mg}, 0.410 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(56 \mu \mathrm{~L}, 0.451$ mmol), and 1-phenyl-1-trimethylsiloxyethylene ($92 \mu \mathrm{~L}, 0.451 \mathrm{mmol}$) were combined in $\mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ to afford 35b ($105 \mathrm{mg}, 61 \%$) as a $95: 05$ mixture of diastereomers. The major isomer was isolated by flash column chromatography (0:100 to 30:70 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.53$ (td, $J=8.2,4.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.27$ (s, 3H), $7.22-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dq}, J=10.6,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.33$ (ddd, $J=16.8,6.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.02-2.90(\mathrm{~m}$, 1H), 2.34 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ 197.5, 143.3, 138.3, 138.2, 136.8, 133.0, 129.5, 128.46, 128.43, 127.90, 127.87, 127.0, 126.7, 84.6, 56.7, 55.9, 38.2, 20.5; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 424.1577$, found 424.1576.

N-((2S,3S)-2-(benzyloxy)-1-phenylhex-5-en-3-yl)-4-methylbenzenesulfonamide (36a)

Using general procedure A, imine $\mathbf{2 2}$ ($143 \mathrm{mg}, 0.363 \mathrm{mmol}$), $\mathrm{ZnBr}_{2}(90 \mathrm{mg}, 0.400 \mathrm{mmol})$, and allylTMS ($87 \mu \mathrm{~L}, 0.545 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.6 \mathrm{~mL})$ to afford $\mathbf{3 6 a}$ (117 $\mathrm{mg}, 74 \%$) as a 93:07 mixture of diastereomers. The major isomer was isolated by flash column chromatography (10:90 to 30:70 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.16(\mathrm{~m}, 10 \mathrm{H}), 7.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 5.36 (td, $J=16.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.85(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J$ $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.80$ (dd, $J=13.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=13.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.23(\mathrm{~m}$, $1 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta=143.4,139.0,138.9,138.5$, 134.6, 129.6, 129.4, 128.2, 128.2, 127.9, 127.5, 126.9, 126.1, 117.0, 80.8, 72.0, 55.3, 36.1, 35.0, 20.5. AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 436.1941$, found 436.1946.

N-((2S,3R)-2-(benzyloxy)-1-phenylhex-5-en-3-yl)-4-methylbenzenesulfonamide

 (36b)Using general procedure C , imine $22(91 \mathrm{mg}, 0.231 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(32 \mu \mathrm{~L}, 0.254 \mathrm{mmol})$, allylBF 3 K ($51.3 \mathrm{mg}, 0.347 \mathrm{mmol}$), and 18 -crown- $6(91.7 \mathrm{mg}, 0.347 \mathrm{mmol})$ were combined in $\mathrm{CHCl}_{3}(2.3 \mathrm{~mL})$ to afford 36b ($79 \mathrm{mg}, 78 \%$) as a $92: 8$ mixture of diastereomers. The major isomer was isolated by flash column chromatography (0:100 to 20:80

EtOAc:hexanes, $\mathrm{R}_{\mathrm{f}}=0.35$ in 20:80 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{cd}_{3} \mathrm{cn}\right) \delta 7.49(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07$ (m, 2H), $5.65-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=10.1,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.31(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{td}, J=7.1,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.31-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=13.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ $(\mathrm{s}, 3 \mathrm{H}), 2.39-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=143.3$, 143.2, 138.6, 138.4, 135.0, 129.6, 129.3, 128.4, 128.2, 127.7, 127.5, 126.8, 126.3, 116.8, 81.7, 71.7, 55.2, 36.5, 33.4, 20.6. AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+$ $\mathrm{H}]^{+} 436.1941$, found 436.1941.

N-((2S,3S)-2-(benzyloxy)-5-methyl-1-phenylhex-5-en-3-yl)-4-

methylbenzenesulfonamide (37a)

Using general procedure A, imine 22 ($143 \mathrm{mg}, 0.363 \mathrm{mmol}$), $\mathrm{ZnBr}_{2}(90 \mathrm{mg}, 0.400 \mathrm{mmol})$, and methallylTMS ($96 \mu \mathrm{~L}, 0.545 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.6 \mathrm{~mL})$ to afford 37a (101 mg, 62\%) as a $>95: 05$ mixture of diastereomers. The major isomer was isolated by flash column chromatography (10:90 to 30:70 EtOAc:hexanes) as a colorless crystalline solid (melting point: $\left.101.0-105.4^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, 2H), $7.44-7.15(\mathrm{~m}, 10 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 1 \mathrm{H})$,
$3.45-3.34(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{qd}, J=13.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{dd}, J=13.7,8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, \mathrm{J}=13.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 143.4, 141.8, 138.4, 138.3, 138.1, 129.7, 129.6, 128.5, 128.5, 128.2, 128.0, 127.3, 126.4, 114.0, 79.7, 72.7, 52.7, 40.5, 36.6, 21.6, 21.3. AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 450.2097$, found 450.2093.

N-((2S,3R)-2-(benzyloxy)-5-methyl-1-phenylhex-5-en-3-yl)-4-
methylbenzenesulfonamide (37b)

Using general procedure B , imine $22(187 \mathrm{mg}, 0.475 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(117 \mu \mathrm{~L}, 0.950$ mmol), and methallylTMS (125 $\mu \mathrm{L}, 0.712 \mathrm{mmol}$) were combined in $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ to afford 37b (137 mg, 64\%) as a 90:10 mixture of diastereomers. The major isomer was isolated by flash column chromatography (0:100 to 20:80 EtOAc:hexanes, $\mathrm{R}_{\mathrm{f}}=0.38$ in 20:80 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38$ (d, $\mathrm{J}=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 4 \mathrm{H}), 4.69(\mathrm{~d}, J=$ $25.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.09(\mathrm{~m}$, $1 \mathrm{H}), 2.91(\mathrm{dd}, J=13.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=13.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.32-$ $2.19(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=143.1,141.4,138.3,137.7$, 136.6, 129.4, 129.3, 128.6, 128.3, 127.8, 127.7, 127.3, 126.5, 114.6, 81.3, 73.0, 52.8,
37.5, 36.9, 21.5, 21.0. AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 450.2097, found 450.2093 .

N-((3S,4S)-4-(benzyloxy)-1-oxo-1,5-diphenylpentan-3-yl)-4-
methylbenzenesulfonamide (38a)

Using general procedure A, imine 22 ($143 \mathrm{mg}, 0.363 \mathrm{mmol}$), $\mathrm{ZnBr}_{2}(90 \mathrm{mg}, 0.400 \mathrm{mmol})$, and 1-phenyl-1-trimethylsiloxyethylene ($112 \mu \mathrm{~L}, 0.545 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.6 mL) to afford $\mathbf{3 8 a}$ ($93 \mathrm{mg}, 49 \%$) as a 95:05 mixture of diastereomers. The major isomer was isolated by flash column chromatography (0:100 to 30:70 EtOAc:hexanes) as a white crystalline solid (melting point: $\left.137.5-139.8^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.71(\mathrm{dd}, J=15.7,7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-$ $7.10(\mathrm{~m}, 8 \mathrm{H}), 7.05(\mathrm{dd}, J=14.4,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 5.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=11.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{dd}, \mathrm{J}$ $=17.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=17.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{qd}, J=13.8,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.36$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=198.2,143.5,138.0,137.7,137.6,136.2,133.5$, $129.8,129.5,128.6,128.5,128.5,128.3,128.2,128.0,127.3,126.5,80.5,73.3,52.6$, 41.3, 37.8, 21.7. AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]+514.2047$, found 514.2042.

N-((3R,4S)-4-(benzyloxy)-1-oxo-1,5-diphenylpentan-3-yl)-4-

methylbenzenesulfonamide (38b)

Using Using general procedure B , imine 22 ($187 \mathrm{mg}, 0.475 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(117 \mu \mathrm{~L}$, 0.950 mmol), and 1-phenyl-1-trimethylsiloxyethylene (107 $\mu \mathrm{L}, 0.523 \mathrm{mmol}$) were combined in CHCl_{3} (5.0 mL) to afford 38b ($156 \mathrm{mg}, 64 \%$) as a $90: 10$ mixture of diastereomers. The major isomer was isolated by flash column chromatography (100:0 to 25:75 EtOAc:hexanes, $\mathrm{R}_{\mathrm{f}}=0.31$ in 25:75 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{td}, J=$ 7.3, 1.4 Hz, 1H), $7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 6 \mathrm{H})$, 7.10 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (dd, $J=6.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}$, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.36$ (dd, $J=17.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=14.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=198.9,143.3,138.0,137.6,137.1,136.3,133.4$, $129.6,129.5,128.5,128.5,128.3,128.1,127.9,127.7,127.1,126.4,81.2,73.1,53.3$, 37.9, 37.5, 21.5. AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$514.2047, found 514.2039.

N-((2S,3R)-2-((tert-butyldiphenylsilyl)oxy)hex-5-en-3-yl)-4-
 methylbenzenesulfonamide (39b)

Using general procedure C , imine $20(89.3 \mathrm{mg}, 0.201 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(27 \mu \mathrm{~L}, 0.221$ $\mathrm{mmol})$, allylBF3K (44.6 mg, 0.302 mmol), and 18 -crown-6 ($79.7 \mathrm{mg}, 0.302 \mathrm{mmol}$) were combined in $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$ to afford $39 \mathrm{~b}(70.6 \mathrm{mg}, 72 \%$) as a $>95: 5$ mixture of diastereomers. The major isomer was isolated by flash column chromatography (15:85 EtOAc:hexanes, $\mathrm{R}_{\mathrm{f}}=0.26$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ - 7.61 (m, 2H), $7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44$ (dtd, $J=16.6,7.2,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36(\mathrm{dt}, J=15.2,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.55-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H})$, $4.92(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{qd}, J=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (tdd, $J=7.2,5.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}$, $9 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta=143.1,137.8,135.8,135.8$, $134.0,133.7,133.1,129.9,129.7,129.5,127.7,127.5,127.1,118.1,71.0,58.7,33.8$, 27.0, 21.5, 19.5, 19.3. AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 508.2336, found 508.2332.

$N-((2 S, 3 R)-2-((t e r t-b u t y I d i p h e n y l s i l y l) 0 x y)-5-m e t h y l h e x-5-e n-3-y l)-4-$ methylbenzenesulfonamide (40b)

Using general procedure B , imine $20(207 \mathrm{mg}, 0.445 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(100 \mu \mathrm{~L}, 0.889$ $\mathrm{mmol})$, and methallylTMS (117 $\mu \mathrm{L}, 0.667 \mathrm{mmol})$ were combined in $\mathrm{CHCl}_{3}(4.5 \mathrm{~mL})$ to afford 40b (165 mg, 71\%) as a >95:5 mixture of diastereomers. The major isomer was isolated by flash column chromatography (15:85 EtOAc:hexanes, $R_{f}=0.48$ in 20:80 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{q}, J=6.6,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{dt}, J$ $=13.6,6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.70-4.53(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{dt}, J=8.4,5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.17(\mathrm{q}, ~ J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 4 \mathrm{H}), 2.17(\mathrm{dd}, J=14.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}$, $3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1,141.5$, $137.5,135.9,133.8,133.4,129.9,129.7,129.5,127.7,127.6,127.3,114.0,70.7,57.1$, 37.9, 27.0, 21.5, 19.3, 18.8. AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 522.2493, found 522.2482.

N-((3R,4S)-4-((tert-butyldiphenylsilyl)oxy)-1-oxo-1-phenylpentan-3-yl)-4methylbenzenesulfonamide (41b)

Using general procedure B , imine $20(304 \mathrm{mg}, 0.647 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(159 \mu \mathrm{~L}, 1.29$ mmol), and 1-phenyl-1-trimethylsiloxyethylene ($146 \mu \mathrm{~L}, 0.712 \mathrm{mmol}$) were combined in $\mathrm{CHCl}_{3}(6.5 \mathrm{~mL})$ to afford 41b (177 mg, 47\%) as a $>95: 5$ mixture of diastereomers. The major isomer was isolated by flash column chromatography (0:100 to 20:80

EtOAc:hexanes, $\mathrm{R}_{\mathrm{f}}=0.33$ in 20:80 EtOAc:hexanes) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.40(\mathrm{q}$, $J=7.7 \mathrm{~Hz}, 5 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.05(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, \mathrm{J}=17.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}$, $J=17.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 0.96$ (apparent $\mathrm{s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=198.4,143.3,137.5,136.6,135.9,135.8,133.7,133.4,133.0,130.0,129.8,129.7$, 128.6, 128.1, 127.8, 127.6, 127.2, 71.1, 56.3, 38.1, 27.1, 21.6, 20.1, 19.3. AMM (ESITOF) m / z calculated for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{SSi}^{+}[\mathrm{M}+1]^{+} 586.2442$, found 586.2432.

1.5 References

1. Moore, L. C.; Lo, A.; Fell, J. S.; Duong, M. R.; Moreno, J. A.; Rich, B. E.; Bravo, M.; Fettinger, J. C.; Souza, L. W.; Olmstead, M. M.; Houk, K. N.; Shaw, J. T., Acyclic Stereocontrol in the Additions of Nucleophilic Alkenes to α-Chiral N-Sulfonyl Imines. Chem. Eur. J. 2019, 25 (52), 12214-12220.
2. Florence, G. J.; Morris, J. C.; Murray, R. G.; Vanga, R. R.; Osler, J. D.; Smith, T. K., Total Synthesis, Stereochemical Assignment, and Biological Activity of Chamuvarinin and Structural Analogues. Chem. Eur. J. 2013, 19 (25), 8309-8320.
3. Han, H.; Smith, A. B., Total Synthesis of (-)-Secu’amamine a Exploiting Type li Anion Relay Chemistry. Org. Lett. 2015, 17 (17), 4232-4235.
4. Huang, S.; Liu, D.; Tang, L.; Huang, F. F.; Zhang, J.; Wang, X., Total Synthesis of (+)-7-Epi-Tarchonanthuslactone Via a Chelation-Controlled Mukaiyama Aldol Reaction. Syn. Comm. 2015, 45 (10), 1240-1247.
5. Mori, S.; Nakamura, M.; Nakamura, E.; Koga, N.; Morokuma, K., Theoretical Studies on Chelation-Controlled Carbonyl Addition. Me2mg Addition To α - And Beta-Alkoxy Ketones and Aldehydes. J. Am. Chem. Soc. 1995, 117 (18), 5055-5065.
6. Paterson, I.; Ward, R. A.; Smith, J. D.; Cumming, J. G.; Yeung, K.-S., The Total Synthesis of Swinholide A. Part 3: A Stereocontrolled Synthesis of (-)-Pre-Swinholide A. Tetrahedron 1995, 51 (34), 9437-9466.
7. Cram, D. J.; Elhafez, F. A. A., Studies in Stereochemistry. X. The Rule of "Steric Control of Asymmetric Induction" in the Syntheses of Acyclic Systems. J. Am. Chem. Soc. 1952, 74 (23), 5828-5835.
8. Chérest, M.; Felkin, H.; Prudent, N., Torsional Strain Involving Partial Bonds. The Stereochemistry of the Lithium Aluminium Hydride Reduction of Some Simple OpenChain Ketones. Tetrahedron Lett. 1968, 9 (18), 2199-2204.
9. Bürgi, H. B.; Dunitz, J. D.; Lehn, J. M.; Wipff, G., Stereochemistry of Reaction Paths at Carbonyl Centres. Tetrahedron 1974, 30 (12), 1563-1572.
10. Cornforth, J. W.; Cornforth, R. H.; Mathew, K. K., 24. A General Stereoselective Synthesis of Olefins. J. Chem. Soc. 1959, (0), 112-127.
11. Nguyen Trong, A.; Eisenstein, O.; Lefour, J. M.; Tran Huu Dau, M. E., Orbital Factors and Asymmetric Induction. J. Am. Chem. Soc. 1973, 95 (18), 6146-6147.
12. Hoffmann, R. W.; Metternich, R.; Lanz, J. W., Stereoselective Syntheses of Alcohols, Xxiv. Synthesis of 2,6-Dideoxy-L-Hexoses. Liebigs Ann. Chem. 1987, 1987 (10), 881887.
13. Evans, D. A.; Siska, S. J.; Cee, V. J., Resurrecting the Cornforth Model for Carbonyl Addition: Studies on the Origin of 1,2-Asymmetric Induction in Enolate Additions to Heteroatom-Substituted Aldehydes. Angew. Chem. Int. Ed. 2003, 42 (15), 1761-1765.
14. Cee, V. J.; Cramer, C. J.; Evans, D. A., Theoretical Investigation of Enolborane Addition to A-Heteroatom-Substituted Aldehydes. Relevance of the Cornforth and Polar Felkin-Anh Models for Asymmetric Induction. J. Am. Chem. Soc. 2006, 128 (9), 2920-2930.
15. Reetz, M. T., Chelation or Non-Chelation Control in Addition Reactions of Chiral Aand B- Alkoxy Carbonyl Compounds [New Synthetic Methods (44)]. Angew. Chem. Int. Ed. 1984, 23 (8), 556-569.
16. Mengel, A.; Reiser, O., Around and Beyond Cram's Rule. Chem. Rev. 1999, 99 (5), 1191-1224.
17. Alcaide, B.; Almendros, P.; Cabrero, G.; Ruiz, M. P., Stereoselective Cyanation of 4-Formyl and 4-Imino-B-Lactams: Application to the Synthesis of Polyfunctionalized Γ Lactams. Tetrahedron 2012, 68 (52), 10761-10768.
18. Badorrey, R.; Cativiela, C.; Díaz-de-Villegas, María D.; Díez, R.; Gálvez, José A., Stereodivergent Addition of Allylmetal Reagents to Imines Derived from (R)-2,3-Di-OBenzylglyceraldehyde by Appropriate Selection of Metal and Double Stereodifferentiation. Eur. J. Org. Chem. 2002, 2002 (22), 3763-3767.
19. Badorrey, R.; Cativiela, C.; Díaz-de-Villegas, Maria D.; Díez, R.; Gálvez, José A., Study of the Reactions between Vinylmagnesium Bromide and Imines Derived from (R)-Glyceraldehyde - the Key Step in the Stereodivergent Synthesis of Conveniently

Protected, Enantiopure Syn- and Anti-2-Amino-1,3,4-Butanetriol Derivatives. Eur. J. Org. Chem. 2003, 2003 (12), 2268-2275.
20. Badorrey, R.; Cativiela, C.; Díaz-de-Villegas, M. D.; Gálvez, J., Stereocontrolled Synthesis of All Four Stereoisomers of Fully Protected 2-Amino-3-Hydroxypentanoic Acid from Imines Derived from D-Glyceraldehyde. Tetrahedron 1999, 55 (49), 1414514160.
21. Badorrey, R.; Cativiela, C.; Díaz-de-Villegas, M. a. D.; Gálvez, J. A., Asymmetric Synthesis of (2r,3s)-4-Halo-3-Benzyloxy-2-(N-Methoxycarbonyl-NBenzylamino)Butyronitriles as Precursors for the Synthesis of B-Hydroxy-A-Amino Acids. Tetrahedron: Asymmetry 2000, 11 (4), 1015-1025.
22. Badorrey, R.; Cativiela, C.; Díaz-de-Villegas, M. a. D.; Gálvez, J. A., Study of the Lewis Acid-Promoted Addition of Silylenol Ethers to Imines Derived from Glyceraldehyde. Tetrahedron Lett. 2003, 44 (51), 9189-9192.
23. Cainelli, G.; Giacomini, D.; Galletti, P.; Quintavalla, A., Diastereoselectivity in the Allylation of N -Trialkylsilylimines of O -Protected (2s)-Lactal - Some Unexpected Results. Eur. J. Org. Chem. 2002, 2002 (18), 3153-3161.
24. Cainelli, G.; Giacomini, D.; Treré, A.; Galletti, P., Acyclic Stereocontrol in the Addition of Trimethylsilyl Cyanide to N-Substituted Imines of (2s)-Lactic Aldehyde. Tetrahedron: Asymmetry 1995, 6 (7), 1593-1600.
25. Cativiela, C.; Día-de-Villegas, M. D.; Gálvez, J.; García, J., Diastereoselective Strecker Reaction of D-Glyceraldehyde Derivatives. A Novel Route to (2s,3s)- and (2r,3s)-2-Amino-3,4-Dihydroxybutyric Acid. Tetrahedron 1996, 52 (28), 9563-9574.
26. Cativiela, C.; Díaz-de-Villegas, M. D.; Gálvez, J., Diastereoselective Strecker Reaction of Imines Derived from D-Glyceraldehyde. A New Route to B-Hydroxy-AAmino Acids. Tetrahedron Lett. 1995, 36 (16), 2859-2860.
27. Franz, T.; Hein, M.; Veith, U.; Jäger, V.; Peters, E.-M.; Peters, K.; von Schnering, H. G., Simple and Versatile Synthesis of Optically Active 1,2-Amino Alcohols by Grignard Addition to N,O-Dibenzylglyceraldimine and -Lactaldimine. Angew. Chem. Int. Ed. 1994, 33 (12), 1298-1301.
28. Kaseda, T.; Kikuchi, T.; Kibayashi, C., Enantioselective Total Synthesis of (+)-(S)Dihydroperiphylline. Tetrahedron Lett. 1989, 30 (34), 4539-4542.
29. Lee, Y.-T.; Jung, C.; Myeong, I.-S.; Lee, S.-H.; Kim, J.-S.; Ham, W.-H., Stereoselective Allylation of A-Hydroxy Aldimines and Its Application to the Formal Synthesis of (-)-B-Conhydrine. Tetrahedron 2018, 74 (4), 506-511.
30. Liu, K.-G.; Yan, S.; Wu, Y.-L.; Yao, Z.-J., Synthesis of 4-Azido-4-DeoxyNeu5,7,8,9ac42en1me. A Key Intermediate for the Synthesis of Gg167 from D-Glucono- Δ-Lactone. Org. Lett. 2004, 6 (13), 2269-2272.
31. Liu, K.-G.; Zhou, H.-B.; Wu, Y.-L.; Yao, Z.-J., Synthesis of a New Stable Conformationally Constrained 2,7-Anhydrosialic Acid Derivative. J. Org. Chem. 2003, 68 (24), 9528-9531.
32. Miniejew, C.; Outurquin, F.; Pannecoucke, X., A-Phenylselanyl Imines: Preparation of B-Phenylselanyl Amines and Original Synthesis of Allylaziridines. Tetrahedron 2005, 61 (2), 447-456.
33. Myeong, I.-S.; Jung, C.; Ham, W.-H., Synthesis of Syn-Vicinal Diamines Via the Stereoselective Allylation of Acyclic Chiral A-Amino Aldimines. Tetrahedron Lett. 2019, 60 (3), 235-239.
34. Reetz, M. T.; Jaeger, R.; Drewlies, R.; Hübel, M., Stereoselective Synthesis of Vicinal Diamines. Angew. Chem. Int. Ed. 1991, 30 (1), 103-106.
35. Saha, S.; Roy, S. C., Titanocene(lii) Chloride Mediated Radical Induced Allylation of Aldimines: Formal Synthesis of C-Linked 4'-Deoxy Aza-Disaccharide. J. Org. Chem. 2011, 76 (17), 7229-7234.
36. Shimizu, M.; Kawamoto, M.; Niwa, Y., Highly Stereocontrolled Access to a Tetrahydroxy Long Chain Base Using Anti-Selective Additions. Chem. Comm. 1999, (12), 1151-1152.
37. Taguchi, T.; Kitagawa, O.; Suda, Y.; Ohkawa, S.; Hashimoto, A.; litaka, Y.; Kobayashi, Y., Synthesis of 3,3-Difluoro-2-Azetidinones and 2,3-Dideoxy-2,2-Difluoro-3-Amino-Sugars through the Reformatsky Reaction of Difluoroacetate with Imine. Tetrahedron Lett. 1988, 29 (41), 5291-5294.
38. Trost, B. M.; Xie, J.; Sieber, J. D., The Palladium Catalyzed Asymmetric Addition of Oxindoles and Allenes: An Atom-Economical Versatile Method for the Construction of Chiral Indole Alkaloids. J. Am. Chem. Soc. 2011, 133 (50), 20611-20622.
39. van Delft, F. L.; de Kort, M.; van der Marel, G. A.; van Boom, J. H., Use of a Novel A-Hydroxyethylating Reagent in the Stereoselective Synthesis of Lincosamine. J. Org. Chem. 1996, 61 (5), 1883-1885.
40. Veith, U.; Schwardt, O.; Jäger, V., Concise Synthesis of Deacetylanisomycin and 2Substituted Analogues from N,2-O-Dibenzyl-L-Threose Imine1. Synlett 1996, 1996 (12), 1181-1183.
41. Venkataiah, M.; Fadnavis, N. W., A Novel Stereoselective Synthesis of (-)-BConhydrine from (R)-2,3-O-Cyclohexylidine Glyceraldehyde. Tetrahedron 2009, 65 (34), 6950-6952.
42. Poisson, J.-F.; Normant, J. F., Comparative Study of the Diastereoselective Addition of Allenyl Zinc Reagents to A-Alkoxy (or Silyloxy) Aldehydes and Imines. A Straightforward Synthesis of Amino Alcohols from Imines. J. Org. Chem. 2000, 65 (20), 6553-6560.
43. Cainelli, G.; Giacomini, D.; Mezzina, E.; Panunzio, M.; Zarantonello, P., N-Metallo Imines: A New Approach to A-Amino Alcohols from Aldehydes. Tetrahedron Lett. 1991, 32 (25), 2967-2970.
44. Delgado, O.; Heckmann, G.; Müller, H. M.; Bach, T., Synthesis and Configurational Assignment of the Amino Alcohol in the Eastern Fragment of the Ge2270 Antibiotics by Regio- and Stereoselective Addition of 2-Metalated 4-Bromothiazoles to A-Chiral Electrophiles. J. Org. Chem. 2006, 71 (12), 4599-4608.
45. Reetz, M. T.; Hübel, M.; Jaeger, R.; Schwickardi, R.; Goddard, R., Stereoselective Synthesis of A,B-Diamino Nitriles from Amino Acids. Synthesis 1994, 1994 (07), 733738.
46. Veenstra, S. J.; Schmid, P., One-Pot Synthesis of Protected Homoallyl Amines. Tetrahedron Lett. 1997, 38 (6), 997-1000.
47. Liautard, V.; Desvergnes, V.; Itoh, K.; Liu, H.-w.; Martin, O. R., Convergent and Stereoselective Synthesis of Iminosugar-Containing Galf and Udp-Galf Mimicks: Evaluation as Inhibitors of Udp-Gal Mutase. J. Org. Chem. 2008, 73 (8), 3103-3115.
48. Giri, N.; Petrini, M.; Profeta, R., Reactivity of Chiral A-Amidoalkylphenyl Sulfones with Stabilized Carbanions. Stereoselective Synthesis of Optically Active 1Aminopyrrolizidine. J. Org. Chem. 2004, 69 (21), 7303-7308.
49. Chronowska, A.; Gallienne, E.; Nicolas, C.; Kato, A.; Adachi, I.; Martin, O. R., An Expeditious Synthesis of an Analogue of (-)-Steviamine by Way of the 1,3-Dipolar Cycloaddition of a Nitrile Oxide with a 1-C-Allyl Iminosugar. Tetrahedron Lett. 2011, 52 (48), 6399-6402.
50. Foresti, E.; Palmieri, G.; Petrini, M.; Profeta, R., Highly Diastereoselective Addition of Nitromethane Anion to Chiral A-Amidoalkylphenyl Sulfones. Synthesis of Optically Active A-Amino Acid Derivatives. Org. Biomol. Chem. 2003, 1 (23), 4275-4281.
51. Ella-Menye, J.-R.; Dobbs, W.; Billet, M.; Klotz, P.; Mann, A., Unexpected 1,2 Syn Diastereoselectivity in the Three-Component 'Aza Sakurai-Hosomi' Reaction. Tetrahedron Lett. 2005, 46 (11), 1897-1900.
52. Laws, S. W.; Moore, L. C.; Di Maso, M. J.; Nguyen, Q. N. N.; Tantillo, D. J.; Shaw, J. T., Diastereoselective Base-Catalyzed Formal [4+2] Cycloadditions of N-Sulfonyl Imines and Cyclic Anhydrides. Org. Lett. 2017, 19 (10), 2466-2469.
53. Concellón, J. M.; Rodríguez-Solla, H.; Bernad, P. L.; Simal, C., Addition Reactions of Chloro- or lodomethyllithium to Imines. Synthesis of Enantiopure Aziridines and BChloroamines. J. Org. Chem. 2009, 74 (6), 2452-2459.
54. Stanton, G. R.; Norrby, P.-O.; Carroll, P. J.; Walsh, P. J., Chelation-Controlled Addition of Organozincs to A-Chloro Aldimines. J. Am. Chem. Soc. 2012, 134 (42), 17599-17604.
55. Stanton, G. R.; Göllü, M.; Platoff, R. M.; Rich, C. E.; Carroll, P. J.; Walsh, P. J., Synthesis of Chiral N-Sulfonyl and N-Phosphinoyl A-Halo Aldimine Precursors. Advanced Synthesis \& Catalysis 2013, 355 (4), 757-764.
56. Vabre, R.; Island, B.; Diehl, C. J.; Schreiner, P. R.; Marek, I., Forming Stereogenic Centers in Acyclic Systems from Alkynes. Angew. Chem. Int. Ed. 2015, 54 (34), 99969999.
57. Becke, A. D., Density-Functional Thermochemistry. lii. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652.
58. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988, 37 (2), 785-789.
59. Hay, P. J.; Wadt, W. R., Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82 (1), 270283.
60. Champagne, P. A.; Houk, K. N., Origins of Selectivity and General Model for Chiral Phosphoric Acid-Catalyzed Oxetane Desymmetrizations. J. Am. Chem. Soc. 2016, 138 (38), 12356-12359.
61. Grayson, M. N.; Krische, M. J.; Houk, K. N., Ruthenium-Catalyzed Asymmetric Hydrohydroxyalkylation of Butadiene: The Role of the Formyl Hydrogen Bond in Stereochemical Control. J. Am. Chem. Soc. 2015, 137 (27), 8838-8850.

Chapter 2:

Diastereoselective Nucleophilic Additions to $\boldsymbol{\beta}$-Alkoxy N-Sulfonyl Aldimines

2.1 Introduction

Lewis acid-mediated allylations of β-alkoxy aldimines are stereoselective and result in anti-1,3 amino alcohol precursors through 1,3-asymmetric induction. ${ }^{1}$ While there have been reports of nucleophilic addition reactions to β-alkoxy aldehydes resulting in high anti-selectivity, the origin of this selectivity is usually superficially discussed. Our group's investigations of nucleophilic additions to α-chiral N-tosyl imines revealed unexpected differences in reactivity between aldimines and their analogous aldehydes (Chapter 1). Based on these differences in reactivity, we sought to further explore how asymmetric induction affects diastereoselectivity in nucleophilic additions to β-alkoxy N-tosyl aldimines. To conduct this investigation, synthetic routes were devised to access a wide variety of β-alkoxy aldehydes and N-tosyl imines. Two methods of Lewis-acid mediated allylations were developed to access anti-1,3 amino ethers in synthetically practical yields and diastereoselectivities (Figure 1). ${ }^{1}$ Anti-1,3 amino alcohols are commonly found structural motifs in biologically active synthetic targets. ${ }^{2,3}$ Then, using computational methods, the resulting stereoselectivity trends were used to construct a generalizable stereoelectronic rationale and model for the stereoselectivities observed. This model allows for the consideration of relative ground-state energies of six-membered ring chelates as a predictor for the magnitude of diastereoselectivities observed.

1,3 Asymmetric Induction

Figure 1. Nucleophilic additions to β-alkoxy imines result in anti-1,3 amino alcohol precursors.

2.1.1 Overview of 1,3-Asymmetric Induction in Nucleophilic Additions to β -

Alkoxy Aldehydes

Nucleophilic additions to β-alkoxy aldehydes have been previously reported and are often highly diastereoselective for the anti-diastereomer of product. Models describing the observed diastereoselectivity can either be cyclic or acyclic in nature depending on the reagents employed (Figure 2). When chelateable reagents are used, antidiastereoselectivity may be rationalized through a six-membered ring chelate reminiscent of the chelate depicted in the Cram chelation model. When Lewis acids or reagents with only one coordination site available are used, a handful of acyclic stereoelectronic models have been proposed to rationalize the ensuing anti-selectivity. There are isolated cases of syn-selective nucleophilic additions to β-alkoxy aldehydes, though they are vastly fewer in number relative to that of anti-selective nucleophilic additions. In this section, an overview of extant stereoelectronic models describing diastereoselective nucleophilic additions to β-alkoxy aldehydes will be presented to provide context for our investigations of β-alkoxy aldimines.

Figure 2. Extant stereoelectronic models describing nucleophilic additions to β-chiral aldehydes.

Like in nucleophilic additions to α-chiral carbonyls, nucleophilic additions to β alkoxy aldehydes can result in two possible stereochemical outcomes (Figure 3). A clear understanding of the inherent geometric preferences of β-alkoxy aldehydes and analogous electrophiles is integral to predicting the stereochemical preference (syn or anti) of the reaction. The magnitude of the stereochemical outcome, whatever that may be, is related to how rigid those geometrical preferences are. It is important to note that while the inherent asymmetry of β-chiral carbonyls is one carbon further away from that of α-chiral carbonyls, the selectivity is usually very high and more than synthetically practical (e.g. $>95: 5$ d.r.). The competitive influence of 1,3 -asymmetric induction in β alkoxy carbonyls suggests that the strength of asymmetric induction is not always a function of the proximity of a stereogenic center to the reaction center of the molecule.

Figure 3. Possible stereochemical outcomes of nucleophilic additions to β-alkoxy aldehydes.

2.1.1.1 The Chelation Model

Nucleophilic additions to β-alkoxy carbonyls may lead to anti-products in high diastereoselectivities through the use of chelateable reagents. In the presence of a chelateable reagent, a six-membered ring chelate may form from coordination of the substrate to chelateable reagent (1, Figure 4). Nucleophiles would preferentially attack the six-membered ring chelate from the least sterically hindered side of the ring, leading to anti-product. It is notable that, compared to the five-membered ring chelate described in the Cram chelation model, the six-membered ring chelate formed from β-alkoxy carbonyl and chelate-able reagent is theoretically more conformationally flexible. Yet, the diastereoselectivities resulting from β-alkoxy carbonyls is nevertheless high. This implies that the six-membered ring chelate should have a high degree of preference for one major conformer, though the identity of this conformer is usually not speculated upon in accompanying reports of diastereoselectivities.

Chelation Model

$R^{1}=$ alkyl or aryl
$X=$ alkoxy or silyloxy

1

 $+$

Figure 4. Chelation-derived diastereoselectivity in nucleophilic additions to β-alkoxy aldehydes.

Reetz reported high anti-selectivities for several titanium (IV) chloride mediated additions to β-benzyloxy aldehydes and was the first to invoke a six-membered ring chelate as the origin of their observed selectivities. ${ }^{4}$ Prior to Reetz's report, stereocontrol in nucleophilic additions to β-alkoxy carbonyls proved elusive as Grignard reagents,
organolithium reagents and cuprate reagents all failed to give useful stereoselectivity. This was in stark contrast to their performance in nucleophilic additions to α-chiral carbonyls in which they were able to chelate effectively.

Reetz demonstrated that titanium-mediated nucleophilic additions of substituted and unsubstituted allylsilanes and enol ethers resulted in anti-products with greater than 90:10 diastereoselectivities in most cases (Table 1). Selectivities were rationalized through the presumed presence of a titanium chelate which Reetz depicted initially as chair-like conformer 2, which bears an equatorial β-alkyl substituent. Selectivities did not increase dramatically with β-substituent bulk, although there is a subtle upward trend in diastereoselectivity with nucleophilicity of reagents used (e.g. entry 12 and entry 13). Subsequently, Reetz also examined the effects of other Lewis acids (e.g. Mg-, Sn-, Aland Zr -based reagents) on diastereoselectivity. ${ }^{5}$ Reetz's results showed that the effects of 1,3 -asymmetric induction in β-alkoxy aldehydes were sensitive to the chelateable reagent involved. Specifically, the identity of the metal in the Lewis acid would have pronounced effects on the magnitude of chelate-derived stereoselectivity.

Table 1. Lewis Acid-Mediated Nucleophilic Additions to β-Alkoxy Aldehydes.

Subsequent to Reetz's report, Heathcock and Keck also published accounts of chelate-derived selectivity in nucleophilic additions to β-alkoxy aldehydes with allylsilanes ${ }^{6,7}$ and allyltributylstannane. ${ }^{8}$ Heathcock determined that SnCl_{4} was also an effective Lewis acid mediator and resulted in moderate to high levels of anti-selectivity in nucleophilic additions to β-alkoxy aldehydes (Figure 5). Keck provided spectroscopic evidence to further support the existence of a chelate in $\mathrm{TiCl}_{4}, \mathrm{MgBr}_{2}$ and SnCl_{4} mediated reactions. ${ }^{9}$ These congruent observations all support the invocation of chelate-derived selectivity in Lewis acid mediated allylations of β-alkoxy aldehydes.

Figure 5. SnCl_{4}-mediated nucleophilic additions to β-alkoxy aldehydes.

More recently, Evans reported on the chelating ability of methylaluminum chloride reagents in Mukaiyama aldol additions to α - and β-chiral aldehydes. Compared to other Lewis acids screened for this reaction, $\mathrm{Me}_{2} \mathrm{AICl}$ and MeAlCl_{2} provided the highest levels of anti-selectivity (Figure 6A). Evans speculated for the first time on the conformation of the six-membered chelate formed from β-alkoxy aldehyde and methyl-aluminum chloride Lewis acids. Specifically, Evans theorized that the six-membered ring chelate 7 may resemble either boat-like conformer 8 or half-chair-like conformer 9 (Figure 6B). Computational studies revealed that the boat-like conformer 8 was lower in energy than conformer 9 . Nucleophilic addition to the sterically less hindered side of $\mathbf{8}$ would result in the observed major diastereomer. However, due to the specialized reactivity of methylaluminum chloride reagents compared with traditional Lewis acids, there is no guarantee that other Lewis acid mediated reactions would lead to the same boat-like chelates methylaluminum chloride reagents do.

Entry	Lewis acid	R	Yield (\%)	anti:syn
1	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	Bn	75	$87: 13$
2	SnCl_{4}	Bn	83	$47: 53$
3	TiCl_{4}	Bn	87	$89: 11$
4	$\mathrm{Me}_{2} \mathrm{AlCl}^{2}$	Bn	73	$81: 19$
5	MeAlCl_{2}	Bn	88	$79: 21$
6	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	TBS	84	$88: 12$
7	SnCl_{4}	TBS	86	$79: 21$
8	TiCl_{4}	TBS	64	$81: 19$
9	$\mathrm{Me}_{2} \mathrm{AlCl}^{10}$	TBS	62	$88: 12$
10	MeAlCl_{2}	TBS	92	$94: 6$

Figure 6. A) Tabulated diastereoselectivities of Mukaiyama aldol additions to aldehyde 5. B) Conformational models describing nucleophilic additions to six-membered ring chelates.

2.1.1.2 The Cram-Reetz Model

Cram proposed the first open-chain acyclic model describing anti-selective nucleophilic additions to β-chiral ketones in 1968 (Figure 7). ${ }^{10}$ Alkyl-lithium and alkylGrignard nucleophilic additions were carried out in the presence and absence of titaniumand aluminum-based Lewis acids. Cram's ketone substrates contained β-alkyl groups of differing sizes [i.e. Rs (small) vs Rm_{M} (medium) vs R_{L} (large)]. The stereoselectivities that resulted from these nucleophilic additions were all quite mild ranging from completely unselective to up to $76: 24$ selectivity for product 11. Based off of their observed selectivities, a model was proposed. This model was built upon the minimization of torsional strain in the ketone substrate and resembles the fully-staggered conformation 10. In conformation 10, nucleophilic addition would occur preferentially at the least sterically demanding face of the ketone resulting in major diastereomer 11.

Reetz modified Cram's acyclic model in their own investigations of nucleophilic additions to β-chiral aldehydes bearing β-alkoxy groups. ${ }^{5}$ Reetz found that in addition to $\mathrm{TiCl}_{4}, \mathrm{SnCl}_{4}, \mathrm{AICl}_{3}$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ mediated nucleophilic addition reactions all possessed moderately high anti-selectivity. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, unlike the other Lewis acids used, is unique in that it is monodentate. Chelation was determined by Reetz to be unlikely in reactions run with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and an acyclic model resembling 13 was proposed to rationalize the observed major diastereomer. In 13, the BF_{3} coordinated aldehyde would possess a strong dipole moment that is minimized by an anti-periplanar-like orientation of the β alkoxy C-O bond. In this conformation, nucleophilic addition would still be guided by steric effects resulting in the anti-diastereomer. The minimization of dipoles in 13 resembles
conformational arguments proposed by Cornforth for nucleophilic additions to α-chiral aldehydes bearing α-polar substituents.

Cram (1967)

10
(11:12) 50:50-76:24

$$
\mathbf{M}=\mathrm{Mg} \text { or } \mathrm{Li}
$$

$$
\mathrm{Nu}=\mathrm{CH}_{3}, \mathrm{Ph}
$$

Reetz (1967)

Figure 7. Separate acyclic models described by Cram and Reetz describing nucleophilic additions to β-chiral carbonyls.

2.1.1.3 The Evans Model

Evans reported a comprehensive investigation of 1,3-asymmetric induction effects in aldol reactions of metal enolates and enolsilanes to β-chiral aldehydes in 1994 (Figure 8). ${ }^{11}$ In this investigation, Evans was able to assess the impacts of enolate identity and β-substituents on the stereoselectivity of nucleophilic additions. Through the investigations of 3-methyl-2-butanone derived enolate additions, Evans noted that antiselectivity was particularly pronounced in Lewis acid mediated silyl enol ether addition reactions compared to reactions conducted with other metal enolates. Evans also observed diastereoselectivity was highest with a β-alkoxy substituent and that
diastereoselectivities were generally lower for nucleophilic additions for other Osubstituents such as OAc and OTBS.
Evans (1996)

Entry	R^{1}	X	R^{2}	Yield (\%)	anti:syn
1	$i-\mathrm{Pr}$	OPMB	t-Bu	82	$89: 11$
2	$i-\mathrm{Pr}$	OPMB	$i-\mathrm{Pr}$	91	$92: 8$
3	$i-\mathrm{Pr}$	OPMB	CH 3	89	$91: 9$
4	$\mathrm{CH}_{2} \mathrm{Bn}$	OPMB	$i-\mathrm{Pr}$	87	$81: 19$
5	$i-\mathrm{Pr}$	OTBS	$t-\mathrm{Bu}$	79	$84: 16$
6	$i-\mathrm{Pr}$	OTBS	$i-\mathrm{Pr}$	84	$80: 20$
7	$i-\mathrm{Pr}$	OTBS	CH_{3}	87	$93: 7$
8	$\mathrm{CH}_{2} \mathrm{Bn}$	OTBS	$i-\mathrm{Pr}$	90	$73: 27$
9	$\mathrm{CH}_{2} \mathrm{Bn}$	OAc	$i-\mathrm{Pr}$	79	$43: 57$
10	$\mathrm{CH}_{2} \mathrm{Bn}$	Cl	$i-\mathrm{Pr}$	84	$83: 17$

15

Figure 8. The acyclic Evans model describing nucleophilic additions to β-chiral carbonyls.

Evans proposed a slightly revised version of the Cram-Reetz model which resembles structure 15. Nucleophilic addition to the least sterically hindered side of 15 results in the major diastereomer observed. According to Evans, the Cram-Reetz model suffered from a staggered-conformation of the C 1 and C 2 carbons which was shown to be less favorable than a Felkin-like staggered arrangement. In the Evans model, the β carbon is rotated perpendicular to the aldehyde $\mathrm{C}=\mathrm{O}$ bond. This allows for a fully "staggered" conformation which the Cram-Reetz model lacks. Evans proposed that in addition to alleviation of torsional strain, the most stable conformer 15 also possesses
favorable electrostatic interactions between the β-oxygen substituent and the activated carbonyl. Evans would later publish computational evidence to support the validity of 15 as a low-energy, and therefore relevant, conformation of substrate. ${ }^{12}$

2.1.1.4 The Issue of Syn-Selectivity

Syn-selective nucleophilic additions to β-chiral aldehydes are few and far between. So far, the investigations and models discussed in this chapter have largely been dominated by anti-selective nucleophilic addition reactions. Due to the sparsity of synselective nucleophilic additions in the literature for β-chiral aldehydes, one can only assume that syn-selectivity remains elusive through 1,3-asymmetric induction alone. In fact, many routes that target syn-diols will generate the anti-products first and perform a Mitsunobu reaction to achieve the syn-product rather than optimizing reaction conditions to produce adequate amounts of syn-product directly. There is a simple reason for why acyclic stereocontrol (e.g. the development of conditions to access all possible stereoisomers through one reaction) is harder to achieve in the case of β-chiral aldehydes relative to alpha chiral aldehydes. Whereas one could leverage chelating or non-chelating conditions to access either syn or anti stereochemical outcomes of nucleophilic additions to α-chiral aldehydes, both the chelate and non-chelate models describing nucleophilic additions to β-chiral aldehydes lead to the same diastereomer of product. Therefore, it is unlikely that any method to develop a syn-selective nucleophilic addition reaction to β chiral aldehydes and other analogous electrophiles would involve a simple change in a mediating reagent.

2.1.2 Overview of 1,3-Asymmetric Induction in Nucleophilic Additions to β -

Alkoxy Imines

Compared to nucleophilic additions to β-alkoxy aldehydes, nucleophilic additions to β-alkoxy imines are far fewer in number. A literature search revealed only two reports published prior to the initiation of this project within our group (Figure 9). One report investigated additions to isopropyl-substituted imine ${ }^{13}$ and the other investigated additions to phenyl-substituted imine. ${ }^{14}$ The former report noted anti-selectivity in allylations using a variety of allylating reagents. Syn-selectivity was achieved through the employment of a chiral auxiliary substituent on the imine nitrogen and reactions with 9BBN. While this syn-selectivity is indeed synthetically practical, the resulting N-alkyl amine product would be unsuitable for subsequent deprotection and derivatization. The latter report demonstrated that reactions employing diethylzinc and ZnCl_{2} resulted in the alkylation of imine $\mathbf{1 6}$ to produce 17 in 75% yield and $>97: 3$ selectivity for the anti-product. Both reports proposed chelation resulted in the major diastereomer observed.

Yamamoto (1985)

Hou (1998)

Figure 9. Known nucleophilic additions to β-alkoxy imines.

2.2 The Role of 1,3-Asymmetric Induction in Diastereoselective Nucleophilic Additions to Beta Alkoxy N-Tosyl Imines

My previous studies of diastereoselective nucleophilic additions to α-chiral N-Ts imines led to the further exploration of nucleophilic additions to β-chiral N-Ts imines. The initial goals of this investigation were to conduct a comprehensive investigation of β alkoxy imines, the kind that was absent so far in literature, as well as pursue the possibility of acyclic stereocontrol for nucleophilic additions to N -Ts imines by leveraging our understanding of nucleophilic additions to α-chiral imines. The completion of these goals would allow for access to 1,3 amino alcohol precursors which are a common motif in biologically active targets. Furthermore, as was in the case of our previous study, a better understanding of imine substrate asymmetric induction effects will allow for more efficient synthetic planning in synthetic efforts to target nitrogen-containing natural products or drug candidates.

2.2.1 Substrate Synthesis

Several β-alkoxy aldehydes and aldimines were synthesized for this study (Figure 10). Before embarking on the synthesis of β-alkoxy imines, we initially assumed that the conditions developed for α-alkoxy imines could be applied directly to the synthesis of beta alkoxy imines with minimal changes. Throughout the development and execution of synthetic routes to access β-alkoxy imines, it became apparent that β-alkoxy imine synthesis required different approaches from that of α-chiral imines. Synthesis of β-alkoxy aldehydes and consequently, the imines themselves, are complicated by a variety of
factors. β-alkoxy groups of an ester, aldehyde or imine, are primed for elimination under basic and acidic conditions. These substrates may also undergo retro-Claisen, retro-aldol and retro-Mannich reactions respectively. The variety of side-products possible from each synthetic step of a route often complicated analysis of crude reaction mixtures. An account of how these obstacles were overcome for substrates employed in this study is presented in this part of the chapter. Failed substrates are also discussed.

General synthetic sequence used to access imines from aldehydes

Successfully synthesized imines

18, $\mathrm{R}=\mathrm{CH}_{3}$
19, $\mathrm{R}=n$ - Bu
20, $\mathrm{R}=i-\mathrm{Pr}$
21, $R=P h$

Failed to isolate using general synthetic route

Figure 10. Successful and failed imine substrates derived from their analogous aldehydes using general synthetic route.

2.2.1.1 Synthesis of Imine 18

For this investigation, a model substrate 18 was chosen based off of ease of synthetic access and comparability to previous studies published with β-alkoxy aldehydes. 18 can be accessed from its analogous aldehyde using methods developed for α-alkoxy imine synthesis described in Chapter 1. There were many published synthetic routes to access 18 from a number of commercially available starting material. Furthermore, its analogous aldehyde was a commonly used substrate in the previous
reports investigating nucleophilic additions to β-alkoxy aldehydes discussed earlier in the chapter and so nucleophilic additions to imine 18 would be highly informative. This substrate would help to build foundational knowledge of the new terrain through a onevariable change (NTs instead of O) from what is known in the literature.

While there are several ways of accessing 18 from literature precedent, synthetic routes were explored until the most practical route emerged. Attempts to utilize a route analogous to the synthetic route described for α-chiral aldehydes were met with significant challenges from the very beginning. Benzylation of commercially available β hydroxy ester 27 using sodium hydride produced a mixture of $\mathbf{2 8}, \mathbf{2 9}$, and $\mathbf{3 0}$. It was concluded that under basic alkylating conditions, β-hydroxy esters are prone to elimination by deprotonation of α-hydrogens to produce α, β-unsaturated side products and benzyl alcohol resulting in 28. The presence of benzyl ester $\mathbf{3 0}$ suggests that elimination in this case has downstream effects that complicate alkylation of β-hydroxy esters under basic conditions. While 29 and 30 could proceed in the synthetic route to access aldehyde, using previously employed LiAlH_{4} reduction and IBX oxidation, a significant amount of benzyl alcohol (from the reduction) and subsequently benzaldehyde upon oxidation rendered this route impractical as extensive purification would be required.

Figure 11. Attempts to access aldehyde 33 from starting materials 27 and 31.

Our initial route was abandoned in favor of a new route which started with homoallylic alcohol 31. Upon benzylation and Lemieux-Johnson oxidation, aldehyde precursor 33 was obtained. While the yield was modest, there was enough material to attempt amidosulfone formation and subsequent imine isolation, which were both successful (though poor yielding partially due to the small scale of the reactions). Although the Lemieux-Johnson oxidation is a reliable reaction and near quantitative in yield, it involves the use of OsO4 which is highly toxic. Milder ozonolysis condition were used in place of the Lemieux-Johnson oxidation and although aldehyde was produced, purification of the aldehyde was required as incomplete conversion was observed and PPh_{3} used during the quenching of the reaction created unnecessary waste in the form of triphenylphosphine oxide.

The last and final route to access aldehyde 33 (and subsequently imine 18) was determined to be the most practical. Starting from commercially available diol 34, benzylidene acetal formation and regioselective ring opening ${ }^{15}$ with DIBAL gave access to monobenzylated alcohol 36. Alcohol 36 was oxidized to aldehyde 34 using IBX.

Notably, lower temperatures and shorter reaction times should be used in IBX oxidations of alcohols resembling 36 as over-oxidation to carboxylic acid was observed when the original temperature of $105{ }^{\circ} \mathrm{C}$ was applied. Amidosulfone formation was successful for this substrate in up to 70% yield.

Figure 12. Final route to access imine 18.

2.2.1.2 Synthesis of Imine 22

At the onset of the project, another model imine substrate 22 was selected as an additional point of comparison with imine 18. Imine 22 bears α-chirality through a methyl substituent at the alpha position. However, it still retains an alkoxy group beta to the imine which should allow for the formation of a six-membered ring chelate. Compared with imine 18, imine 22 should reveal the importance of the alkyl substituent's placement around the six-membered ring chelate under favorable chelating conditions. Due to the presence of an α-chiral carbon, it should also reveal whether or not 1,2 asymmetric induction plays a role in the stereoselective outcome of nucleophilic additions to α-chiral β-alkoxy imines. Furthermore, imine 22 is derived from aldehyde 39, another commonly used β-alkoxy substrate from previous literature.

The development of a route to access imine 22 was comparatively more straightforward than that of imine 18. Starting from symmetrical diol 37, mono-benzylation can
be achieved using silver (I) oxide and benzyl bromide in DCM. ${ }^{16}$ This reaction is solvent sensitive as significant di-alkylation was observed when THF was used as the solvent. Oxidation of alcohol 38 to aldehyde 39 proceeded clearly with no need for purification. Unfortunately, amidosulfone formation using standard conditions failed to yield product (e.g. precipitation did not occur which complicated the isolation of any solid amidosulfone). Several amidosulfone formation conditions were screened until it became clear that carrying out the reaction in a higher ratio of formic acid to water yielded isolable solids. Furthermore, while our experience in working with α-chiral amidosulfones suggested that this reaction benefits more from scale (e.g. larger scale saw greater yields of product), for aldehyde 39, reactions conducted at a larger scale would fail to produce solids. By dividing the starting material into smaller components and carrying out a set of smaller scale reactions, it ensured that amidosulfone would always form and be isolated. Our initial, failed, reaction was conducted at 3 mmol . All subsequent amidosulfone formation reactions were conducted at 2 mmol or lower scale. Finally, with amidosulfone in hand, access to imine 22 was granted using our previously developed conditions (saturated aqueous NaHCO_{3} and DCM).

Figure 13. Synthesis of imine 22.

2.2.1.3 Failed Syntheses of Imines 23 and 24

As we continued our investigations of β-alkoxy imines, α - and β-chiral imines 23 and 24 arose as mechanistically interesting substrates we could potentially target. Nucleophilic additions to imines 23 and 24 could provide a great deal of insight into the conformational preferences of a six-membered ring chelate, should it form. The two alkyl substituents placed at the α - and β-carbons of the imine were hypothesized to either have compounding or competing effects on the resulting stereoselectivity. Unfortunately, the very feature that made them mechanistically interesting to target also made them synthetically challenging to procure.

We first attempted to synthesize imine 23. Starting from commercially available β hydroxy ester 27, α-methylation was performed using LDA, HMPA and methyl iodide yielding one major diastereomer 40 and small, yet detectable amounts of the minor diastereomer by ${ }^{1} \mathrm{H}$ NMR. The crude reaction mixture was taken into a benzylation using basic conditions and significant retro-aldol was observed by analysis of the crude material. Benzylation using silver (I) oxide yielded relatively cleaner conversion to 41 though extensive flash chromatography was still required and the isolated yield was generally low. 41 isolated from this reaction was reduced with lithium aluminum hydride in THF which yielded alcohol 42 in 19% yield (over 3 steps). Oxidation with IBX at $80^{\circ} \mathrm{C}$ procured aldehyde 43 but as a 47:53 mixture of diastereomers. Presumably, the oxidation conditions epimerized whatever aldehyde was being formed in the reaction. Aldehyde 43 isolated from the above route as a mixture of diastereomers was sent into an amidosulfone formation reaction to assess the ability of either diastereomer to produce amidosulfone. This reaction was ultimately unsuccessful in producing isolable solids,
though it was unclear at the time whether or not the diastereomerically pure aldehydes would be more successful.

Figure 14. Synthesis of aldehyde 43.

The above route was modified slightly to avoid epimerization at the oxidation step and improve yields, which allowed for the accomplishment of the final route. As methylation using LDA and THF procured mainly single diastereomer of product ($>95: 5$ $\mathrm{dr})$, the rest of the route was designed to avoid epimerization of the α-stereogenic center and improve the yield of benzylation. LiAlH_{4} reduction of ester 40 proceeds cleanly to diol 44. However, acetal formation with benzaldehyde and $p-\mathrm{TsOH}$ yielded no product. Instead, benzylidene acetal formation was accomplished using the dimethyl acetal of benzaldehyde and p-TsOH in good yields. DIBAL ring opening of 45 was unsuccessful and instead $\mathrm{BH}_{3} \cdot \mathrm{THF}$ conditions were found in the literature to perform similar regioselective ring openings with catalytic $\mathrm{Cu}(\mathrm{OTf})_{2}$. Benzylated alcohol 42 was procured in good yields after flash column chromatography. Finally, DMP was found to be an effective oxidant and can used at lower temperatures. Switching oxidation conditions
seemed to avoid epimerization and aldehyde 43 was obtained as a single diastereomer. Unfortunately, our attempts to form amidosulfone with aldehyde 43 were all unsuccessful and later, we determined it to be unnecessary for the project.

The diastereoselective synthesis of aldehyde 52 was accomplished through the use of Evans auxiliary chemistry. Benzyl Evans auxiliary 46 can be acylated using literature reported conditions to procure 47. Using 47, an Evans aldol reaction was carried out using acetaldehyde, $\mathrm{TiCl}_{4}, \mathrm{NMP}$ and TMEDA at cryogenic temperatures to procure 48 with high diastereoselectivity (>95:5). The Evans aldol reaction took a significant amount of time to optimize as it is highly sensitive to temperature, reaction times and reagent purity. Deviation from the temperatures and reaction times employed in the reaction may result in much poorer yields and diastereoselectivities for the reaction. Similarly, all reagents should be freshly purchased and or distilled prior to execution of the reaction. Once 48 was procured, the auxiliary was cleaved with LiBH_{4}, leading to diol 49. Formation of the benzylidene acetal and ring opening with $\mathrm{BH}_{3} \cdot \mathrm{THF}$ and $\mathrm{Cu}(\mathrm{OTf})_{2}$ provided alcohol 51 in reasonable yields. Unfortunately, alcohol 51 often co-eluted with benzyl alcohol during column chromatography (a remnant from the benzylidene acetal formation step). MnO_{2} was often used to selectively oxidize the benzyl alcohol impurity present after ring-opening to enable easy purification of alcohol 51. Finally, a DMP oxidation was used to avoid epimerization and unnecessary flash column chromatography. Like with aldehyde 43, aldehyde 52 failed to provide amidosulfone products using the standard conditions within the lab.

Figure 15. Synthesis of aldehyde 52.

2.2.1.4 Syntheses of Other β-Benzyloxy Substrates

Several β-benzyloxy aldehydes (Figure 16) were synthesized with varying β-alkyl substituents to assess the steric impact of the β-alkyl group on diastereoselectivity. $\beta-n$ -Bu-, - i-Pr-, - t-Bu- and -phenyl-substituted aldehydes were synthesized using the same synthetic sequence from their respective commercially available β-keto esters. While the basic LiAlH_{4} conditions employed in the reduction of β-keto esters was low yielding, diols 54a-d were all isolated in sufficient quantities to continue in the route. Diols resembling 54 are incredibly difficult to purify due to streaking during flash column chromatography. Instead, most diols were sent directly into benzylidene acetal formation and subsequent regioselective ring-opening. Purification of 55 and 56 provided sufficiently pure alcohol for DMP oxidation. Once obtained, aldehydes 57a, 57b and 57c led to the formation of amidosulfone and consequently, imine. The t-Bu substituted 57d failed to produce amidosulfone.

Figure 16. Synthesis of aldehydes 57a-57d.

2.2.1.5 Synthesis of β-Silyloxy Aldehyde 26

A β-silyloxy substrate 26 was synthesized in order to assess the effects of chelation on diastereoselectivity (Figure 17). As bulky silyl groups such as TBDPS are known to disfavor chelation, the diastereoselectivity of reactions employing $\mathbf{2 6}$ should represent selectivity in the absence of a six-membered ring chelate. Known silyloxy aldehyde 26 was prepared according to literature procedure but like many of the other substrates, failed to produce amidosulfone using the general synthetic route described vide supra.

Figure 17. Synthesis of aldehyde 26.

2.2.2 Lewis Acid-Mediated Nucleophilic Additions to β-Alkoxy Imines

Our investigation of 1,3-asymmetric induction in Lewis acid mediated nucleophilic additions to β-alkoxy imines began with imines 18 and 23 using different nucleophiles and Lewis acids. Several allylating reagents and silyl enol ethers were employed in our studies to varying degrees of success. We hypothesized that should a six-membered ring
chelate form with these imine substrates and addition was successful, anti-products would predominate in the case of β-chiral substrates resembling 18 (Figure 18), though the magnitude of the stereoselectivity was still unknown. Nevertheless, the results of these studies would inform the mechanism by which the stereoselectivity would result, and provide insight as to what are the optimal conditions for achieving high diastereoselectivity in such reactions.

Figure 18. Nucleophilic attack on a six-membered ring chelate formed from β-chiral imines.

2.2.2.1 Lewis Acid-Mediated Nucleophilic Additions to Imine 18

Lewis acid mediated nucleophilic additions to imine 18 were mostly anti-selective as expected (Table 2). Several Lewis acids that were successful in addition reactions to α-chiral imines were employed in our initial Lewis acid screen. $\mathrm{AlCl}_{3}, \mathrm{SnCl}_{4}$ and $\mathrm{Cu}(\mathrm{OTf})_{2}$ stood out as Lewis acids that provided the highest yields and diastereomeric ratios of product for the reaction. Notably, reactions conducted with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and TfOH were both anti-selective though modest-yielding. In the case of TfOH , proton-chelation is most likely responsible for the observed anti-selectivity. Overall, the selectivities of these reactions are less sensitive to temperature and solvent effects (compared to reactions of α-chiral imines). Furthermore, allylations using potassium allyltrifluoroborate were poor yielding and less selective. Regardless of the conditions employed, anti-selectivity for allylations conducted with imine 18 capped out at around 80:20. One reaction with silyl enol ether of
acetophenone was attempted with SnCl_{4} and while the selectivity was marginally higher (87:13), the yield was quite poor.

Table 2. Nucleophilic Additions to Imine 18.

$\mathrm{H}_{3} \mathrm{C}^{\prime}$	 18					s
Entry	[M]	Lewis acid	Solvent	Temp (${ }^{\circ} \mathrm{C}$)	anti:syn ${ }^{\text {a }}$	yield $^{\text {b }}$
1	TMS	ZnBr_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	73:27	90\%
2	TMS	Znl_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	78:22	32\%
3	TMS	AlCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	81:19	96\%
4	TMS	SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	80:20	92\%
5	TMS	TiCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	78:22	41\%
6	TMS	TfOH	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	82:18	57\%
7	TMS	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	81:19	49\%
8	TMS	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	CHCl_{3}	-20	81:19	26\%
9	TMS	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	79:21	72\%
10	$\mathrm{BF}_{3} \mathrm{~K}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	CHCl_{3}	-20	68:32	13\%
11	Bpin	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	n.d.	n.d.
12	SnBu_{3}	AlCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	76:24	60\%
13^{c}	TMS	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	n.d.	n.d.

 ${ }^{b}$ Yields obtained by integration of ${ }^{1} \mathrm{H}$ NMR spectra with $1,3,5$-trimethylbenzene as the internal standard. ${ }^{c}$ Reaction run with 2.0 equiv. of 2,6-di-tertbutylpyridine.

2.2.2.2 Lewis acid-Mediated Nucleophilic Additions to Imine 22

Imine 22 was selected for nucleophilic additions to provide more insight on the conformational preferences on a six-membered ring chelate (Table 3). As imine 22 bears steric bulk closer to the electrophilic center of the molecule, selectivity should be higher if only steric crowding dictated the resulting selectivity. However, diastereoselectivities of reactions conducted with imine $\mathbf{2 2}$ were generally lower than that of reactions with imine 18. Furthermore, reactions conducted with $\mathrm{TfOH}, \mathrm{Cu}(\mathrm{OTf})_{2}$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ were all nonselective. Similarly, an addition reaction using methallyltrimethylsilane was unselective with AlCl_{3}.

Table 3. Nucleophilic Additions to Imine 22

Entry	[M]	Lewis-acid	Solvent	Temp (${ }^{\circ} \mathrm{C}$)	anti:syn ${ }^{\text {a }}$	yield ${ }^{\text {b }}$
1	TMS	ZnBr_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	68:32	80\%
2	TMS	Znl_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	29:71	6\%
3	TMS	AlCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	82:18	93\%
4	TMS	SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	71:29	32\%
5	TMS	TiCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	75:25	73\%
6	TMS	TfOH	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	50:50	95\%
7	TMS	FeCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-78 to 23	56:44	52\%
8	TMS	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20	60:40	88\%
9	TMS	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	CHCl_{3}	-20	50:50	92\%
10	$\mathrm{BF}_{3} \mathrm{~K}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	CHCl_{3}	-20	52:48	53\%

a anti:syn diastereomeric ratios determined by integration of ${ }^{1} \mathrm{H}$ NMR spectra of unpurified reaction mixtures. ${ }^{b}$ Yields obtained by integration of ${ }^{1} \mathrm{H}$ NMR spectra with 1,3,5trimethylbenzene as the internal standard.

2.2.2.3 Discussion of a Model that Rationalizes Observed Selectivities

Consideration of previously proposed models and observed experimental results allowed for the development of a working model describing Lewis acid mediated nucleophilic additions to β-alkoxy N-Ts imines. As mentioned above, the comparison of selectivities resulting from imine 18 and 22 suggest that a simple facial preference of a nucleophile to the least sterically hindered side of the chelate is an inadequate explanation for the observed selectivity. That is to say, for an otherwise flat six-membered ring chelate, one should see higher selectivity the closer the alkyl substituent (such as in the case with imine 22). This should also be true if the six-membered ring chelate embodies a boat-like conformation. Instead, the diastereoselectivities observed in reactions using imine $\mathbf{2 2}$ are generally lower than that of reactions using with imine 18.

A model that best captures the observed selectivities of this project is a model that depicts the six-membered ring chelate as a half-chair (Figure 19). In this model, two halfchair conformers are available to each chelate. For imine 18, these half-chair conformers are 60a and 60b. 60a is arguably lower in energy due to bearing a pseudo-equatorial alkyl substituent rather than an axial one. From these two half-chair conformers, four paths of nucleophilic approach can be considered. Two of the four would lead to higherenergy twist-boat products and therefore go through higher-energy transition-state structures. Of the remaining two, only one trajectory avoids steric interactions with the alkyl substituent. This trajectory of attack happens to most favorably occur with the lowerenergy conformer 60a and leads to anti-product for imine 18.

Figure 19. Nucleophilic attack on half-chair chelates formed from imine 18.

When applied to imine 22, the half-chair model reveals a potential explanation for the generally lower selectivities observed (Figure 20). A six-membered ring chelate 61 may be formed from imine 22. This chelate will also possess two half-chair conformers with relative energies dictated by the orientation of its substituents, 61a and 61b. In this case, 61a would be the presumed lower-energy conformer. Evaluation of the four modes of nucleophilic attack render two modes unfavorable due to the formation of twist-boat products. Of the remaining two, the least sterically hindered mode of attack would occur
on the higher energy conformer of chelate in order to lead to anti-product. Whereas in imine 18, steric effects and conformational preference of chelate are reenforcing, for imine 22, they are contradictory.

Figure 20. Nucleophilic attack on half-chair chelates formed from imine 22.

The consideration of six-membered ring electrophiles as half-chair conformers has been discussed before in the cases of six-membered ring iminium ions ${ }^{17} 18$ and oxocarbenium ions. ${ }^{19}$ The arguments proposed in our investigation aligns with those proposed in additions to iminium ions and oxocarbenium ions as nucleophilic trajectories are weighed against the formation of twist-boat products (similar to arguments proposed in the Fürst-Plattner rule ${ }^{20}$). As mentioned previously, Evans considered a half-chair conformer in their studies of dimethylaluminum chloride-mediated nucleophilic additions to β-alkoxy aldehydes. In Evans' investigations, their computational results showed that a half-chair-like conformer was less likely than a boat-like conformer and therefore they neglected to provide a half-chair conformational argument for their observed selectivities. As our own experimental observations seem to agree with a half-chair-like conformation of chelate, we attempted to further explore this hypothesis by investigating other imine substrates.

2.2.2.4 Discussion of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$-Mediated Reactions

$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$-mediated nucleophilic additions to β-chiral N-Ts imines provided an additional outlook to evaluate the acyclic models previously proposed to rationalize antiselectivity in the presence of mono-dentate $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. The anti-selectivity observed with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ cannot be easily explained by the Cram-Reetz model. A fundamental difference between an aldehyde and an N -Ts imine is the mode of coordination between the Lewis acid and the Lewis base. Coordination of a Lewis acid to an aldehyde occurs trans to the aldehyde substituent along the $\mathrm{C}=\mathrm{O}$ double bond. This is the fundamental assumption that the Cram-Reetz model and Evans model is based on. In N-Ts imines, Lewis acids must bond cis to the imine carbon substituent. This changes the direction of the major dipole moment of the molecule. In order to achieve the minimization of dipoles proposed by Reetz in the Cram-Reetz model, the $\mathrm{C}-\mathrm{O}$ bond of the β-alkoxy substituent would have to rotate $180^{\circ} \mathrm{C}$ from its orientation depicted in 13. The nucleophile would preferentially attack the least sterically-hindered face of the electrophile and result in the syn-product instead of the anti-product observed through a conformation resembling 63 (Figure 21). Our previous work described in Chapter 1 lends credence to the possibility of a BF_{2} chelate 64 which could be an alternative explanation for the anti-selectivity observed.

Figure 21. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ mediated nucleophilic additions to β-alkoxy imines.

2.2.3 Multi-Component Reactions (MCRs) of β-Alkoxy Aldehydes

A major obstacle in our investigation so far has been the formation of amidosulfone products and thus imine from the aldehyde substrates we were able to painstakingly synthesize. To overcome this obstacle, we considered the employment of multicomponent allylation conditions ${ }^{21,22}$ developed for aryl aldehydes and N - Cbz amine to β alkoxy aldehydes that were synthesized but could not be converted to imine. We did not consider using these conditions in our studies of α-chiral imines as a MCR involving aldehyde, amine and allylating agent would most likely involve an iminium ion in its reaction mechanism. In our investigations of α-chiral imines, iminium ions would result in high syn (or chelate-derived) selectivity through proton-chelation and that would inevitably interfere with acyclic stereocontrol. In this investigation, the presence of a possible protonchelate would not interfere as reactions conducted with chelate-control and the absence of chelateable conditions are both predicted to lead to the same diastereomer of product. By using MCR conditions to access allylated products, we can avoid issues with imine access due to the requisite amidosulfone formation step, thereby directly converting aldehydes to imine addition products.

2.2.3.1 Development of MCR Conditions

Using MCR conditions, homoallylic amines can be generated from the combination of tosyl amine, aldehyde and allylating agent in one pot through N-Ts imine formed in situ. To identify the optimal conditions for yield and selectivity, a Lewis acid screen was conducted (Table 4). Temperature and solvent effects were also assessed. Cu(OTf)2 was
identified as the ideal Lewis acid for this transformation as it gave no discernable side products resulting from direct addition of the aldehyde. However, application of proton scavenger 2,6-di-tert-butylpyridine in tandem with a $\mathrm{Cu}(\mathrm{OTf})_{2}$ mediated MCR resulted in no product (entry 12). This led us to conclude that reactions conducted with $\mathrm{Cu}(\mathrm{OTf})_{2}$ were likely Brønsted acid mediated through residual TfOH. Notably, MCRs carried out directly with TfOH did not proceed as cleanly as reactions carried out with $\mathrm{Cu}(\mathrm{OTf})_{2}$. In this case, $\mathrm{Cu}(\mathrm{OTf})_{2}$ appears to be a convenient source of catalytic TfOH , which somewhat benefits the reaction as opposed to using stoichiometric amounts of TfOH directly.

Table 4. Lewis Acid-Mediated Allylations of Aldehyde 33 Using MCR Conditions.

Entry	Lewis acid	Solvent	Temp (${ }^{\circ} \mathrm{C}$)	anti:syn ${ }^{\text {a }}$	\% addition to $33^{\text {a }}$
1	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	MeCN	0	60:40	5
2	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20	79:21	35
3	AlCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20	68:32	19
4	SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20	68:32	11
5	TiCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20	70:30	24
6	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20	82:18	-
7	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeCN	-20	60:40	-
8	$\mathrm{Cu}(\mathrm{OTf})_{2}$	PhMe	-20	80:20	-
9	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20	80:20	-
10	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	82:18	-
11	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	80:20	-
12^{b}	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	n.d.	n.d.
13	TfOH	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-20	75:25	4

${ }^{a}$ Determined by intergration of ${ }^{1} \mathrm{H}$ NMR spectra of unpurified reaction mixtures. ${ }^{b}$ Reaction run with 2.0 equiv. of 2,6 -di-tert-butylpyridine.

2.2.3.2 MCR Substrate Scope

The optimized MCR conditions developed were applied to all of the aldehyde substrates previously synthesized and resulted in successful conversion to each addition product. Substrates that could undergo direct addition (by imine isolation) and MCR led
to similar diastereoselectivities regardless of method employed. The presence of a silyloxy β-substituent as opposed to an alkoxy β-substituent has a pronounced effect on stereoselectivity most likely due to its added steric bulk disfavoring chelation. Unfortunately, reactions using aldehydes 23 and 24 were both non-selective, contrary to our initial hypothesis. Nevertheless, a subtle trend is apparent showing diastereoselectivity increases with β-alkyl substituent size (entries 2-6). These selectivities would now serve as points of correlation for computational studies.

Table 4. MCR scope.

${ }^{\text {a }}$ anti:syn ratios determined by intergration of ${ }^{1} \mathrm{H}$ NMR spectra of unpurified reaction mixtures. ${ }^{b}$ Yield obtained by intergration of ${ }^{1} \mathrm{H}$ NMR spectra with 1,3,5-trimethylbenzene as the internal standard.

2.2.4 Computational Exploration of Proposed Stereochemical Model

Diastereoselectivities gained from the MCRs we ran on several substrates provided an opportunity for us to explore the conformational preferences of six-membered ring chelate computationally. Proton-chelation through Brønsted acid mediation was
assumed for these reactions and therefore the identity of the chelate would be assumed to resemble 60 (where $[\mathrm{M}]$ is a chelateable proton). Our hypothesis describes two halfchairs possible for each substrate and as mentioned previously, each half-chair is assumed to lead to one diastereomer of product through Fürst-Plattner-like attack of the nucleophile. My approach to evaluating the validity of the half-chair model in describing nucleophilic additions to β-alkoxy imines was to compare the observed selectivities with the energy differences in half-chair conformers.

2.2.4.1 Description of Methods

Dr. Jason Fell and the Houk group's work in our studies of α-chiral imines informed the methods I chose to computationally evaluate the possibility of a proton chelate and examine relative energies of half-chairs 66-67. Binding energies, geometries and free energies were calculated for all species using Gaussian16 ${ }^{23}$ and the B3LYP ${ }^{24}$ density functional with a $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. $\mathrm{N}-\mathrm{Ts}$ imines were truncated to $\mathrm{N}-\mathrm{SO}_{2} \mathrm{CH}_{3}$ imines to reduce computational cost and time. These methods were previously applied in our studies of α-chiral imines and computational fidelity was preserved.

2.2.4.2 Results

Binding of proton and truncated imine 18 to form chelate 65 was determined to be energetically favorable (Figure 22). Optimization of chelate 65 (regardless of input geometry) resulted in a half-chair-like geometry, consistent with our hypothesis. So, proton-chelate 65 may exist as either half-chair-like conformer 66b or 67b. Assuming that
facial trajectory of nucleophilic attack is best described by Fürst-Plattner-like approach which avoids the formation of twist-boat products, the magnitude of diastereoselectivity observed is best represented by the overall energy difference between conformers 66b and 67b.

Figure 22. Calculated $\Delta \mathrm{G}_{\text {binding }}=\Delta \mathrm{G}(22)-\left(\Delta \mathrm{G}(12)+\Delta \mathrm{G}\left(\mathrm{H}^{+}\right)\right)$for proton-chelate.

The relative energy differences between each of the two half-chairs possible of every substrate was calculated using the methods described above (Figure 23). These differences in free energies were then plotted with the diastereomeric ratios of products observed. A correlation is apparent between the difference in calculated free energies and observed selectivity with tert-butyl substrate (entry 4) as the sole, significant outlier. The tert-butyl substituted chelate was unique in that the lower energy conformer 67 bears a pseudo-axial tert-butyl group. On this conformer, nucleophilic addition would occur on the same side of the tert-butyl substituent in order to avoid twist-boat product formation. This build-up of 1,3 diaxial strain causes conformer 67 to theoretically be less reactive. So while 67 is energetically competitive to conformer 66, the product ratios observed is more closely described by Curtin-Hammett principles wherein the product ratios are better correlated to transition-state energies as opposed to ground-state energies of the starting materials.

Figure 23. Computed free energies of 66 and $\mathbf{6 7}$ compared with observed selectivities.

2.3 Conclusion

To conclude, we have developed two allylation methods that result in anti-1,3 amino alcohols either from β-alkoxy imine or aldehyde starting materials. Experimental and computational results show that $\mathrm{Cu}(\mathrm{OTf})_{2}$ mediated allylations of β-alkoxy imines are preceded by formation of a proton-chelate that can adopt two half-chair-like conformations. The observed diastereoselectivity of addition to the chelate is influenced by stereoelectronic interactions between half-chair chelates and nucleophile, as well as the conformational preferences of the chelate itself. Although the results from the typically monovalent Lewis acid BF_{3} seem anomalous, they are consistent with the formation of a chelate structure through disproportionation to $\mathrm{L}_{2} \mathrm{BF}_{2}{ }^{+} / \mathrm{BF}_{4}{ }^{-}$, as was reported previously. The stereoelectronic considerations described herein resemble that of the Stevens model, previously proposed to rationalize stereochemical outcomes of addition to tetrahydropyridinium ions. Together, we have constructed a generalizable
stereoelectronic model describing nucleophilic additions to β-alkoxy imines, which will inform retrosynthetic planning of stereochemically complex nitrogen-containing targets.

2.4 Materials and Experimental Procedures

2.4.1 Materials and Instrumentation

Unless otherwise specified, all commercially available reagents were used as received. All reactions using dried solvents were carried out under an atmosphere of argon in ovendried glassware with magnetic stirring. Dry solvent was dispensed from a solvent purification system that passes solvent through two columns of dry neutral alumna. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired at ambient temperature using Varian-600 (600 and 151 MHz , respectively), or Bruker-400 (400 and 100 MHz , respectively) spectrometers, as indicated. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane or referenced to residual solvent (${ }^{1} \mathrm{H}$ NMR: $\mathrm{CDCl}_{3} \delta 7.26 .{ }^{13} \mathrm{C}$ NMR: $\mathrm{CDCl}_{3} \delta 77.16$) on the δ scale, multiplicity (appar $=$ apparent, $\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, sext $=$ sextet, $\mathrm{m}=$ multiplet), coupling constants (Hz), and integration. High-resolution mass spectra (HRMS) were acquired on a Thermo Electron LTQ-Orbitrap XL Hybrid mass spectrometer on positive ESI mode. Melting points were obtained on an EZ-melting apparatus and were uncorrected. Liquid chromatography was performed using forced flow (flash chromatography) of the indicated solvent system silica gel (Fisher, 40-63 $\mu \mathrm{m}$) packed in glass columns.

2.4.2 Experimental Procedures

2.4.2.1 Allylation Products

General Procedure $\mathrm{A}: \mathrm{Cu}(\mathrm{OTf})_{2}$ mediated allyl additions to imines

Aldehyde (1.0 equiv), p-toluenesulfonamide (1.0 equiv) and sodium benzenesulfinate salt (1.15 equiv) were combined in a $1: 1$ mixture of $\mathrm{H}_{2} \mathrm{O}$ and formic acid (0.66 M in solution). After stirring at room temperature for 72 hours, the resulting white precipitate is filtered and solids washed with hexanes and dried in vacuo. Amidosulfone is isolated as a mixture of inseparable diastereomers and a white, chalky solid, used without further purification.

Amidosulfone was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL} / \mathrm{mg}$ of amidosulfone) in a separatory funnel and shaken with aqueous saturated $\mathrm{NaHCO}_{3}(0.2 \mathrm{~mL} / \mathrm{mg})$ for one minute. The layers are separated and the organics dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford imine as a colorless oil. Imine is used without further purification. Representative spectra of imines 18, 19 and 22 are reported.

A solution of imine (1.0 equiv) and allylTMS (1.1 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ was cooled to $-20^{\circ} \mathrm{C}$ and then added to a flame-dried vial with pre-weighted solid $\mathrm{Cu}(\mathrm{OTf})_{2}(1.1$ equiv). The mixture was stirred at $-20^{\circ} \mathrm{C}$ overnight (16-20 h). The mixture was warmed to room temperature, then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}$. The layers were
separated, and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

General Procedure $\mathrm{B}: \mathrm{Cu}(\mathrm{OTf})_{2}$ mediated multicomponent allylations

A solution of aldehyde (1.0 equiv) and allyITMS (1.1 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ at room temperature was added to added to a flame-dried vial with pre-weighted solid $\mathrm{Cu}(\mathrm{OTf})_{2}$ (1.1 equiv) and $\mathrm{H}_{2} \mathrm{NTs}$ (1.0 equiv). The mixture was stirred at room temperature overnight (16-20 h). The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.
** Inseparable mixtures of allylation product diastereomers were resolved upon hydrogenation using General Procedure C and major diastereomer fully characterized.

General Procedure C: Hydrogenation of Allylation Products

A solution of allylation product (1.0 equiv) in MeOH (0.25 M) was added to a vial containing $10 \% \mathrm{Pd} / \mathrm{C}(500 \mathrm{mg} / \mathrm{mmol}$ starting material) sparged with an Ar atmosphere. The mixture was then sparged with H_{2} and stirred overnight under an H_{2} atmosphere. After the mixture was stirred at room temperature overnight, the vial was evacuated and backfilled with Ar. The resulting mixture was filtered over celite, washed with MeOH, and concentrated in vacuo.

N-((6R)-6-(benzyloxy)hept-1-en-4-yl)-4-methylbenzenesulfonamide (58b)

Using general procedure A, aldehyde $33(1.50 \mathrm{~g}, 8.41 \mathrm{mmol})$ is combined with p toluenesulfonamide ($1.44 \mathrm{~g}, 8.41 \mathrm{mmol}$) and $\mathrm{NaSO}_{2} \mathrm{Ph}(1.52 \mathrm{~g}, 9.25 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(13$ mL) and formic acid (13 mL) to afford amidosulfone (1.98 g, 50\%) as a white, chalky solid. Amidosulfone 10a (500 mg) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and shaken with saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ in a separatory funnel to procure imine 18 , used without further purification. Imine 18 (343 mg, 1.03 mmol$), \mathrm{Cu}(\mathrm{OTf})_{2}(410 \mathrm{mg}, 1.13 \mathrm{mmol})$, and allylTMS (179 $\mu \mathrm{L}, 1.13 \mathrm{mmol})$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ to afford $58 \mathrm{~b}(280 \mathrm{mg}, 72 \%)$ as a 82:18 mixture of diastereomers. Diastereomers were purified as a mixture using flash column chromatography (15:85 to 20:80 EtOAc:hexanes) and isolated as a colorless oil.

Using general procedure B, known aldehyde 33 (256 mg, 1.496 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}$ (595 $\mathrm{mg}, 1.64 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{NTs}(256 \mathrm{mg}, 1.496 \mathrm{mmol})$ and allylTMS ($238 \mu \mathrm{~L}, 1.496 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) to afford 58 b ($246 \mathrm{mg}, 44 \%$) as a $78: 22$ mixture of diastereomers. Diastereomers were purified as a mixture using flash column chromatography (15:85 to 20:80 EtOAc:hexanes) and isolated as a colorless oil.

Major: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (dd, $\left.\mathrm{J}=8.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.43-7.21(\mathrm{~m}, 7 \mathrm{H})$, $5.66-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, \mathrm{J}=54.9,13.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}$
$=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{ddd}, \mathrm{J}=9.2,6.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.49$ $(\mathrm{m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dt}, \mathrm{J}=12.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dt}, \mathrm{J}=14.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.58$ $-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.2,1.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 143.1, $138.9,133.6,129.2,128.5,127.9,127.1,117.9,71.8,70.5,64.1,50.7,40.8,39.8,20.8$, 19.3, 15.3.;

Minor: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.43-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{dd}, \mathrm{J}=6.2$, $1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2,138.3,133.3,127.7,127.2,119.5$, 73.0, 70.0, 51.8, 41.0, 39.3, 21.5, 19.5.

AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]+374.1790$, found 374.1784

N-((2R,4R)-2-hydroxyheptan-4-yl)-4-methylbenzenesulfonamide (S1)

Using general procedure C, allylation product 58b (412 mg, 1.10 mmol) and $10 \% \mathrm{Pd} / \mathrm{C}$ (396 mg) were combined in $\mathbf{M e O H}(4.4 \mathrm{~mL})$ to afford $\mathbf{S} 1$ as a mixture of diastereomers. The major diastereomer anti-S1 was isolated and purified using flash column chromatography (30:70 to 60:40 $\mathrm{Et}_{2} \mathrm{O}$:hexanes) and isolated as a white solid (178 mg, $54 \%):{ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.70(q, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{p}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.37 (ddp, J = 26.7, 13.7, $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.74(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 143.4,138.0,129.6,127.0,63.8,51.2,43.8,37.9,23.4,21.5,18.7,13.7 . ;$ AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 286.1477$, found 286.1471 .

N-((6R)-6-(benzyloxy)dec-1-en-4-yl)-4-methylbenzenesulfonamide (58c)

Using general procedure A, aldehyde 57a (112 mg, 0.508 mmol) is combined with p toluenesulfonamide ($87 \mathrm{mg}, 0.508 \mathrm{mmol}$) and $\mathrm{NaSO}_{2} \mathrm{Ph}(100 \mathrm{mg}, 0.559 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}$ (0.77 mL) and formic acid $(0.77 \mathrm{~mL})$ to afford amidosulfone ($199 \mathrm{mg}, 74 \%$) as a white, chalky solid. Amidosulfone was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and shaken with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ in a separatory funnel to procure imine 19 , used without further purification. Imine 19 ($125 \mathrm{mg}, 0.334 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(38 \mathrm{mg}, 0.334 \mathrm{mmol})$, and allylTMS ($38 \mathrm{mg}, 0.334 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.3 \mathrm{~mL})$ to afford $58 \mathrm{c}(102 \mathrm{mg}, 74 \%)$ as a 83:17 mixture of diastereomers. Diastereomers were purified as a mixture using flash column chromatography (5:95 to 20:80 EtOAc:hexanes) and isolated as a colorless oil.

Using general procedure B, aldehyde 57a (134 mg, 0.610 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}$ (221 mg, $0.610 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{NTs}(104 \mathrm{mg}, 0.610 \mathrm{mmol})$ and allylTMS ($70 \mathrm{mg}, 0.610 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.4 mL) to afford 58 c ($138 \mathrm{mg}, 55 \%$) as a $78: 22$ mixture of
diastereomers. Diastereomers were purified as a mixture using flash column chromatography (5:95 to 20:80 EtOAc:hexanes) and isolated as a colorless oil.

Major: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.21(\mathrm{~m}, 7 \mathrm{H}), 5.67-5.47$ $(\mathrm{m}, 1 \mathrm{H}), 5.30(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-4.88(\mathrm{~m}, 3 \mathrm{H}), 4.55-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.29$ $(m, 1 H), 3.62-3.42(m, 2 H), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.37$ $-1.07(\mathrm{~m}, 4 \mathrm{H}), 0.92-0.82(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1,138.4$, $138.1,133.6,129.5,128.5,127.9,127.7,127.2,118.6,76.2,70.9,50.8,39.5,37.7,32.6$, 27.0, 22.8, 21.5, 14.0;

Minor: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.44-3.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 143.2,137.9,133.3,128.4,127.8,127.6,118.9,70.1,51.7,39.3,38.3,33.0,26.8$.

AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]+416.2254$, found 416.2249

N -((6R)-6-hydroxydecan-4-yl)-4-methylbenzenesulfonamide (S2)

Using general procedure C, allylation product 58 c ($116 \mathrm{mg}, 0.280 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}$ (224 mg) were combined in $\mathrm{MeOH}(1.1 \mathrm{~mL})$ to afford S 2 as a $70: 20$ mixture of
diastereomers. Anti-S2 was isolated and purified using flash column chromatography (10:90 to 30:70 EtOAc:hexanes) and isolated as a colorless oil ($55 \mathrm{mg}, 60 \%$). Relative stereochemistry of major diastereomer was assigned based on NMR correlation to S1. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.16-$ $5.04(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 3.51-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.20(\mathrm{~m}$, $10 \mathrm{H}), 1.09(\mathrm{qt}, J=14.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.93-0.80(\mathrm{~m}, 3 \mathrm{H}), 0.76-0.67(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.3,138.1,129.6,127.1,67.7,51.2,41.9,37.9,37.1,27.9$, 22.7, 21.5, 18.8, 14.1, 13.8; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 328.1941, found 328.1939.

N-((6S)-6-(benzyloxy)-7-methyloct-1-en-4-yl)-4-methylbenzenesulfonamide (58d)

Using modified general procedure A, aldehyde 57b (140 mg, 0.678 mmol) is combined with p-toluenesulfonamide ($116 \mathrm{mg}, 0.678 \mathrm{mmol}$) and $\mathrm{NaSO}_{2} \mathrm{Tol}(113 \mathrm{mg}, 0.746 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.03 \mathrm{~mL})$ and formic acid (1.03 mL) to afford amidosulfone ($199 \mathrm{mg}, 74 \%$) as a white, chalky solid. Amidosulfone was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and shaken with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ in a separatory funnel to procure imine $20(195 \mathrm{mg}$, 56%) used without further purification. Imine 20 (111 mg, 0.309 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}$ (112 $\mathrm{mg}, 0.309 \mathrm{mmol})$, and allylTMS ($35 \mathrm{mg}, 0.309 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ to afford 58d (56 mg, 4\%) as a 89:11 mixture of diastereomers. Diastereomers were purified
as a mixture using flash column chromatography (5:95 to 20:80 EtOAc:hexanes) and isolated as a colorless oil.

Using general procedure B, aldehyde 57b ($78 \mathrm{mg}, 0.379 \mathrm{mmol}$), Cu(OTf)2 ($137 \mathrm{mg}, 0.379$ mmol), H_{2} NTs ($65 \mathrm{mg}, 0.379 \mathrm{mmol}$) and allylTMS ($43 \mathrm{mg}, 0.379 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ to afford $58 \mathrm{~d}(56 \mathrm{mg}, 37 \%)$ as a $81: 19$ mixture of diastereomers. Diastereomers were purified as a mixture using flash column chromatography (5:95 to 20:80 EtOAc:hexanes) and isolated as a colorless oil.

Major: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 - 7.13 (m, 7H), $5.66-$ $5.49(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.41-$ $4.29(m, 1 H), 3.57-3.46(m, 1 H), 3.46-3.35(m, 1 H), 2.40(s, 3 H), 2.25-2.10(m, 1 H)$, $2.09-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.86-0.73(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right)$ ס 143.1, 138.6, 138.2, 133.5, 129.5, 128.4, 127.9, 127.2, 118.6, 80.7, 71.3, 51.0, 39.5, 33.1, 29.2, 21.5, 18.6, 16.2;

Minor: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.19(\mathrm{q}, ~ J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,138.5,137.9,133.3,128.4,127.7,127.6,127.6$, 127.2, 118.8, 81.4, 70.5, 52.0, 39.1, 33.7, 29.7, 18.1, 16.5.

AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 402.2097$, found 402.2106

N-((4R,6S)-6-hydroxy-7-methyloctan-4-yl)-4-methylbenzenesulfonamide (S3)

Using general procedure C, allylation product 58d ($56 \mathrm{mg}, 0.139 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}$ (111 mg) were combined in MeOH (0.56 mL) to afford S 3 as a 80:20 mixture of diastereomers. Anti-S3 was purified using flash column chromatography (10:90 to 30:70 EtOAc:hexanes) and isolated as a pale yellow oil ($9 \mathrm{mg}, 5 \%$). Relative stereochemistry of major diastereomer was assigned based on NMR correlation to S1. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.c^{c d c l} 3\right) ~ \delta ~ 7.77(d, J=8.4 ~ H z, 2 H), 7.30(d, J=8.0 ~ H z, 2 H), 4.87(d, J=9.7 H z, 1 H), 3.69-$ 3.57 (m, 1H), $3.50-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.43$ (ddd, $J=14.1$, $10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{dd}, \mathrm{J}=10.5,6.8 \mathrm{~Hz}$, $6 \mathrm{H}), 0.73(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3,138.1,129.6,127.1$, $72.3,51.3,38.3,37.9,33.7,21.5,18.8,18.6,17.7,13.8$; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 314.1784$, found 314.1788

N-((6S)-6-(benzyloxy)-7,7-dimethyloct-1-en-4-yl)-4-methylbenzenesulfonamide (58e)

Using general procedure B, aldehyde 57d ($80 \mathrm{mg}, 0.362 \mathrm{mmol}$), Cu(OTf) $)_{2}(132 \mathrm{mg}, 0.362$ $\mathrm{mmol}), \mathrm{H}_{2} \mathrm{NTs}(62 \mathrm{mg}, 0.362 \mathrm{mmol})$ and allylTMS ($41 \mathrm{mg}, 0.362 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.45 \mathrm{~mL})$ to afford $58 \mathrm{e}(66 \mathrm{mg}, 44 \%)$ as a $89: 11$ mixture of diastereomers. Diastereomers were purified as a mixture using flash column chromatography (5:95 to 20:80 EtOAc:hexanes) and isolated as a colorless oil.

Major: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.24(\mathrm{~m}, 7 \mathrm{H}), 5.63-5.46$ $(m, 1 H), 5.09-4.92(m, 1 H), 4.85(d, J=17.1 H z, 1 H), 4.72-4.47(m, 3 H), 3.61-3.50$ $(\mathrm{m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=8.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.90(\mathrm{~m}$, 1H), $1.56-1.44(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.4,139.4$, 138.4, 132.9, 129.7, 128.3, 127.2, 127.2, 119.2, 84.7, 74.8, 51.4, 39.8, 36.7, 36.1, 26.4, 26.2, 21.5.

Minor: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.00$ (dd, $J=8.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{ddd}, J=14.5,7.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(151 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 143.2,138.9,137.9,129.6,127.4,127.3,119.3,73.8,51.9,38.6,36.3,29.7$.

AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]+416.2254$, found 416.2244

N-((4R,6S)-6-hydroxy-7,7-dimethyloctan-4-yl)-4-methylbenzenesulfonamide (S4)

Using general procedure C, allylation product 58e ($35 \mathrm{mg}, 0.084 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}$ (67 mg) were combined in $\mathrm{MeOH}(0.3 \mathrm{~mL})$ to afford S 4 as a $90: 10$ mixture of diastereomers. Major diastereomer anti-S4 was purified using flash column chromatography (10:90 to 30:70 EtOAc:hexanes) and isolated as an amorphous solid (7 $\mathrm{mg}, 25 \%)$. Relative stereochemistry of major diastereomer was assigned based on NMR correlation to S1.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J$ $=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.25(\mathrm{~m}$, $5 \mathrm{H}), 1.20-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 10 \mathrm{H}), 0.75(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.3,138.2,129.6,127.1,75.2,51.5,37.9,35.4,34.5,25.6,21.5,18.9,13.8 ;$ AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]+328.1941$, found 328.1945

N-((1S,3R)-1-(benzyloxy)-1-phenylhex-5-en-3-yl)-4-methylbenzenesulfonamide

 (58f)Using modified general procedure A, aldehyde 57 c ($206 \mathrm{mg}, 0.859 \mathrm{mmol}$) is combined with p-toluenesulfonamide ($147 \mathrm{mg}, 0.859 \mathrm{mmol}$) and $\mathrm{NaSO}_{2} \mathrm{Tol}(168 \mathrm{mg}, 0.945 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.30 \mathrm{~mL})$ and formic acid (1.30 mL) to afford amidosulfone ($390 \mathrm{mg}, 83 \%$) as a white, chalky solid. Amidosulfone was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ and shaken with saturated aqueous $\mathrm{NaHCO}_{3}(37 \mathrm{~mL})$ in a separatory funnel to procure imine 21 (182 mg,
65%) used without further purification. Imine 21 (173 mg, 0.439 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}$ (159 $\mathrm{mg}, 0.439 \mathrm{mmol})$, and allylTMS ($50 \mathrm{mg}, 0.439 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.4 \mathrm{~mL})$ to afford 58f as a >95:5 mixture of diastereomers. The crude material was purified using flash column chromatography (5:95 to 20:80 EtOAc:hexanes) and isolated as a colorless oil (108 mg, 57\%).

Using general procedure B, a solution of aldehyde 57 c ($168 \mathrm{mg}, 0.7 \mathrm{mmol}$) and allylTMS ($88 \mathrm{mg}, 0.77 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ at room temperature was added to a flame-dried vial with pre-weighted solid $\mathrm{Cu}(\mathrm{OTf})_{2}(243 \mathrm{mg}, 0.77 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{NTs}(120 \mathrm{mg}, 0.7$ mmol). The mixture was stirred at room temperature overnight (16h) to afford 58 f as a mixture of diastereomers (92:8 dr). The crude material was purified by flash chromatography (30:70 diethyl ether: hexanes) and isolated as single diastereomer anti$58 f(205 \mathrm{mg}, 76 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.76-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 9 \mathrm{H}), 7.24-7.16$ (m, 2H), 5.55 (dddd, J=16.5, 10.2, 8.3, 6.1 Hz, 1H), 5.19 (d, J=8.6 Hz, 1H), $5.05-4.97$ $(\mathrm{m}, 1 \mathrm{H}), 4.91(\mathrm{dq}, J=17.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=10.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{qd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.14$ (m, 1H), $2.04(\mathrm{dt}, J=14.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{ddd}, J=14.9,10.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.51$ (m, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CDCl_{3}) $\delta 143.2,141.8,138.3,138.0,133.4,129.6$, 128.6, 128.5, 128.2, 127.8, 127.8, 127.2, 126.4, 118.8, 78.1, 77.3, 77.2, 77.0, 76.7, 70.6, 50.8, 42.4, 39.2, 21.5. $\mathrm{AMM} \mathrm{m} / \mathrm{z}$ calcd $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{Na})+458.1760$, found 458.1757

N-((5S,6R)-6-(benzyloxy)-5-methylhept-1-en-4-yl)-4-methylbenzenesulfonamide (58g)

Using procedure B, a solution of aldehyde 43 (168 mg, 0.7 mmol) and allyITMS (109 mg, $0.95 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.6 \mathrm{~mL} 0.1 \mathrm{M})$ at room temperature was added to a flame-dried vial with pre-weighted solid $\mathrm{Cu}(\mathrm{OTf})_{2}(313 \mathrm{mg}, 0.86 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{NTs}(148 \mathrm{mg}, 0.86$ mmol). The mixture was stirred at room temperature overnight (16 h). The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford $\mathbf{5 8 g}$ as a $51: 49$ mixture of diastereomers. The crude mixture was purified by flash chromatography (30:70 diethyl ether:hexanes) to afford a colorless oil (200 mg, 60\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.69(\mathrm{dd}, \mathrm{J}=8.1,4.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.43-7.23(\mathrm{~m}, 13 \mathrm{H}), 5.56(\mathrm{ddt}, \mathrm{J}=17.1,10.7,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.22(\mathrm{~m}, 1 \mathrm{H}), 5.00-4.87(\mathrm{~m}, 3 \mathrm{H}), 4.61(\mathrm{dd}, \mathrm{J}=11.5$, $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.37(\mathrm{~m}, 3 \mathrm{H}), 2.44(\mathrm{~s}$, $2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.03(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{td}, \mathrm{J}=7.5,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.16(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{dd}, \mathrm{J}=7.1,4.6 \mathrm{~Hz}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.2,143.0,138.8,138.3,138.3,137.5,134.8,133.9,129.5$, 129.4, 128.5, 128.4, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 118.8, 117.3, 77.2, 76.1,
$70.6,70.0,55.4,54.3,41.7,41.6,36.4,35.1,21.5,21.5,16.8,16.2,12.7,11.5$. AMM m/z calcd $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})+388.1941$, found 388.1938.

N-((5R,6R)-6-(benzyloxy)-5-methylhept-1-en-4-yl)-4-methylbenzenesulfonamide

 (58h)Using procedure B, a solution of aldehyde 52 ($50 \mathrm{mg}, 0.260 \mathrm{mmol}$) and allyITMS (0.041 $\mathrm{mL}, 0.260 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.6 \mathrm{~mL}, 0.1 \mathrm{M})$ at room temperature was added to a flame-dried vial with pre-weighted solid $\mathrm{Cu}(\mathrm{OTf})_{2}(94 \mathrm{mg}, 0.260 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{NTs}(44$ $\mathrm{mg}, 0.260 \mathrm{mmol}$). The mixture was stirred at room temperature overnight (16 h). The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford 58h as a 67:33 mixture of diastereomers. The crude mixture was purified by flash chromatography and the major diastereomer, anti-58h was isolated as a colorless oil (7 mg, 7\%): ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.22(\mathrm{~m}, 8 \mathrm{H}), 5.88(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{ddt}$, $J=17.1,10.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.90(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (qd, J = 6.3, 2.4 Hz, 1H), 3.33 (ddd, J = 12.6, 7.2, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (s, $3 H), 2.36-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{dt}, \mathrm{J}=14.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{ddt}, \mathrm{J}=10.7,7.2,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

б 143.0, 138.7, 138.3, 134.2, 129.6, 128.8, 128.2, 128.0, 127.2, 118.1, 74.3, 70.5, 57.1, 39.3, 37.9, 21.7, 16.5, 11.5. AMM m/z calcd $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}^{+}(\mathrm{M}+\mathrm{Na})^{+} 388.1946$, found 388.1941.

The major product's anti configuration was determined through derivatization which is described below:

N-((2R,3R)-2-hydroxy-3-methylheptan-4-yl)-4-methylbenzenesulfonamide (S5)

Using general procedure \mathbf{C}, the major product of $58 \mathrm{~h}(82 \mathrm{mg}, 0.210 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}$ (100 mg) were combined in $\mathrm{MeOH}(1 \mathrm{~mL})$ to afford S 5 as a single diastereomer. S 5 was purified using flash column chromatography (30:70 to 60:40 Et2O:hexanes) and isolated as an amorphous solid (50 mg, 83\%): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78$ - 7.71 (m, 2H), $7.29(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{qd}, \mathrm{J}=6.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dq}$, $J=8.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.11(\mathrm{~m}, 4 \mathrm{H}), 1.09-0.97$ $(\mathrm{m}, 1 \mathrm{H}), 0.76(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) \cdot{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.3,138.7,129.7$, 127.2, 66.7, 57.5, 41.2, 35.6, 21.7, 21.6, 18.6, 14.2, 10.1.; AMM (ESI-TOF) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 300.1633$, found 300.1636 .

4-methyl- N -((3R,4S)-3-methyl-2-oxoheptan-4-yl)benzenesulfonamide (S6)
S5 (21 mg, $0.0728 \mathrm{mmol}, 1.0$ equiv), derived from the major product of 58 h , was combined with DMP ($37 \mathrm{mg}, 0.0874 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL}, 0.1 \mathrm{M})$ in a flame dried 20 mL vial and stirred overnight (16 h) at room temperature to afford S6. The crude material was purified using flash chromatography (10:90 to 20:80 EtOAc:Hexanes) to afford S6 as a colorless oil ($14 \mathrm{mg}, 69 \%)$: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \delta 7.75(\mathrm{~d}, \mathrm{~J}=7.8$ Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), $5.25(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{td}, \mathrm{J}=6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78(\mathrm{dq}, \mathrm{J}=10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{dq}$, $J=14.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 0.74(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(151$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.2,143.3,138.9,129.7,127.1,56.1,49.2,35.7,29.9,21.7,19.5,13.9$, 13.7.; AMM (ESI-TOF) m/z calculated for $\mathrm{C} 16 \mathrm{H} 25 \mathrm{NO} 3 \mathrm{NaS}+[\mathrm{M}+\mathrm{Na}]+321.1374$, found 321.1337.

S6's relative configuration, and thus the identity of the major diastereomer of 58h was determined through transformations of anti-59 (with known relative configuration), to S6
through a procedure described below. The ${ }^{1} \mathrm{H}$ spectrum of the ketone derived from anti17 matched S6: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \delta 7.75(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=7.9$ Hz, 2H), $5.25(d, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{td}, \mathrm{J}=6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dq}, \mathrm{J}=10.0,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{dq}, \mathrm{J}=14.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.06$ (d, J = 7.4 Hz, 4H), $0.74(t, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

N-((6R)-6-((tert-butyldiphenylsilyl)oxy)hept-1-en-4-yl)-4methylbenzenesulfonamide (14h)

Using general procedure B, known aldehyde 26b (71 mg, 0.218 mmol), $\mathrm{Cu}(\mathrm{OTf})_{2}$ (86 mg , $0.239 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{NTs}(40 \mathrm{mg}, 0.239 \mathrm{mmol})$ and allylTMS ($38 \mu \mathrm{~L}, 0.239 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL})$ to afford 58 a as a $54: 46$ mixture of diastereomers. Diastereomers were purified and isolated as a mixture (79 mg, 70\%) using flash column chromatography (20:80 EtOAc:hexanes) as a colorless oil.

Mixture: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 7.85-7.59(\mathrm{~m}, 6 \mathrm{H}), 7.53-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.32(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, \mathrm{J}=6.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.57-5.39(\mathrm{~m}$, $1 \mathrm{H}), 5.08-4.86(\mathrm{~m}, 2 \mathrm{H}), 2.32-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.36(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1,138.2,138.1,134.2,129.5,128.4,127.8,127.7,127.0,118.0,73.9$,
70.8, 57.6, 36.7, 21.5, 15.9; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{30} \mathrm{H}_{3} \mathrm{NO}_{3} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 522.2498, found 522.2497

Major: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.66(\mathrm{~h}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (dtt, $\mathrm{J}=11.5,8.1,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.

Minor: ${ }^{1} \mathrm{H} \delta 3.98(\mathrm{td}, J=6.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{td}, J=7.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.09$ ($\mathrm{s}, J=1.6 \mathrm{~Hz}, 9 \mathrm{H}$), $0.83(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$).

Upon hydrogenation using General Procedure C, 58a was converted to fully characterized S1 in 19\% yield.

$N-((2 R, 3 R)$-1-(benzyloxy)-2-methylhex-5-en-3-yl)-4-methylbenzenesulfonamide (anti-17)

Using general procedure A, aldehyde $39(112 \mathrm{mg}, 0.508 \mathrm{mmol})$ is combined with p toluenesulfonamide ($87 \mathrm{mg}, 0.508 \mathrm{mmol}$) and $\mathrm{NaSO}_{2} \mathrm{Ph}\left(100 \mathrm{mg}, 0.559 \mathrm{mmol}\right.$) in $\mathrm{H}_{2} \mathrm{O}$ (0.77 mL) and formic acid (0.77 mL) to afford amidosulfone ($199 \mathrm{mg}, 74 \%$) as a white, chalky solid. Amidosulfone was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and shaken with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ in a separatory funnel to procure imine $\mathbf{2 2}$, used without further purification. Imine 22 ($137 \mathrm{mg}, 0.416 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.077 \mathrm{~mL}, 0.624 \mathrm{mmol})$, and allylBF 3 K ($92 \mathrm{mg}, 0.624 \mathrm{mmol}$), 18 -crown- 6 ($165 \mathrm{mg}, 0.624 \mathrm{mmol}$) were combined in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.1 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ for 24 h to afford 59 as a $52: 48$ mixture of diastereomers. Diastereomers were purified as a mixture using flash column chromatography (30:70 to 40:60 $\mathrm{Et}_{2} \mathrm{O}$:hexanes) in 53% yield (143 mg). Anti-59 was separated and characterized as a white solid.

Anti-17: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 7 \mathrm{H}), 5.56$ $-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.84(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{qd}, \mathrm{J}=6.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, $2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.4,138.7,137.1,133.9,129.4,128.4,127.7,127.6,127.1,118.2,73.2$, 72.1, 56.5, 38.4, 36.1, 19.9, 14.9. Minor: AMM (ESI-TOF) m / z calculated for $\mathrm{NaC}_{21} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$374.1790, found 374.1784.

2.2.4.2 Aldehyde Synthesis

General Procedure D: Reduction of Beta-Keto Ester and Benzylidene Acetal Formation

Beta-keto ester (1.0 equiv) was added dropwise to a flame-dried round bottom flask containing a suspension of $\mathrm{LiAlH}_{4}\left(3.0\right.$ equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(0.3 \mathrm{M})$. The mixture was then allowed to stir at room temperature overnight (12-20 h). Then the mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched using the Fieser workup: $\mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{~mL} / \mathrm{g}\right.$ of $\left.\mathrm{LiAlH}_{4}\right)$ was slowly added; the reaction was allowed to stir for 15 min at $0^{\circ} \mathrm{C} .10 \% \mathrm{NaOH}\left(1 \mathrm{~mL} / \mathrm{g}\right.$ of $\left.\mathrm{LiAlH}_{4}\right)$ was slowly added; the reaction was allowed to stir for another 15 min at $0^{\circ} \mathrm{C}$. Finally, $\mathrm{H}_{2} \mathrm{O}(3$ mL / g of LiAlH_{4}) was added; the reaction was allowed to stir for 30 min at room temperature. After $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added, the mixture was filtered over celite, washed with $\mathrm{Et}_{2} \mathrm{O}$, and concentrated in vacuo to afford a colorless oil. The resulting crude oil was used without further purification.

The crude diol (1.0 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{M})$ in a round bottom flask. To the solution was added benzaldehyde (1.2 equiv), $\mathrm{p}-\mathrm{TsOH}$ (0.1 equiv), and MgSO_{4} (2.0 equiv). The mixture was then allowed to stir at room temperature overnight (16-22 h). The mixture was then filtered over celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting filtrate was washed with $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine. The organic layer was then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo, affording a pale yellow oil.

General Procedure E: $\mathrm{Cu}(\mathrm{OTf})_{2}$ Acetal Opening

Acetal (1.0 equiv) and $\mathrm{BH}_{3} \bullet$ THF (1.0 M, 5.0 equiv) were added to a flame-dried round bottom flask. The resulting mixture was stirred at room temperature for 10 minutes before adding $\mathrm{Cu}(\mathrm{OTf})_{2}$ (0.1 equiv). The mixture was allowed to stir at room temperature until
complete consumption of starting material occurred (1-3 h), as indicated by TLC. The mixture was then cooled to $0^{\circ} \mathrm{C}$. NEt_{3} (1.0 equiv) was slowly added, followed by MeOH (44.5 equiv). The resulting mixture was concentrated in vacuo, affording a colorless oil.

General Procedure F: Dess-Martin Oxidation of Benzylated Alcohol

Dess Martin periodinane (1.2 equiv) was added to a solution of benzylated alcohol (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$. The resulting mixture was allowed to stir at room temperature for 1 h . The reaction was quenched with sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and $\mathrm{Et}_{2} \mathrm{O}$, then allowed to stir for an additional 10 minutes or until all of the solid dissolved. The organic layer was washed with sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}$, then sat. NaHCO_{3}, then $\mathrm{H}_{2} \mathrm{O}$, and brine. The organic layer was then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo, affording a colorless oil.

33

(R)-3-(benzyloxy)butanal (33)

Known aldehyde 33 was prepared according to previously reported procedure. ${ }^{25}$
Spectral data matches previously reported data. ${ }^{26}{ }^{1} \mathrm{H}$ NMR (599 MHz , Chloroform-d) δ
$9.78(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.59(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.6$
Hz, 1H), $4.07(p, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddt}, J=16.4,7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dt}, J=16.4$,
3.2 Hz, 1H), 1.29 (dd, $J=6.2,1.5 \mathrm{~Hz}, 3 \mathrm{H})$.

(4R)-4-butyl-2-phenyl-1,3-dioxane (55a)

Using general procedure D, commercially available ethyl 3-oxoheptanoate ($1.5 \mathrm{~mL}, 9.54$ $\mathrm{mmol})$ and $\mathrm{LAH}(1.086 \mathrm{~g}, 28.62 \mathrm{mmol})$ were combined in $\mathrm{Et}_{2} \mathrm{O}(31.8 \mathrm{~mL})$. The resulting crude oil ($1.121 \mathrm{~g}, 8.48 \mathrm{mmol}$), benzaldehyde ($1.04 \mathrm{~mL}, 10.18 \mathrm{mmol}$), p-TsOH•H2O(161 $\mathrm{mg}, 0.848 \mathrm{mmol})$, and $\mathrm{MgSO}_{4}(2.042 \mathrm{~g}, 16.96 \mathrm{mmol})$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.5 \mathrm{~mL})$ to afford 55a. 55a was purified using flash column chromatography (1:99 to 20:80 EtOAc:hexanes) and isolated as a pale yellow oil ($607 \mathrm{mg}, 29 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.58-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{dd}, \mathrm{J}=$ 11.3, 5.0 Hz, 1H), 3.95 (td, J = 11.9, 2.6 Hz, 1H), $3.87-3.76$ (m, 1H), $1.88-1.62$ (m, $2 \mathrm{H}), 1.60-1.28(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, Acetone-d) $\delta 201.3$, 139.1, 128.1, 127.4, 127.2, 81.7, 73.1, 45.6, 35.4, 25.5; AMM (ESI-TOF) m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$221.1536, found 221.1539

3-(benzyloxy)heptan-1-ol (56a)

Using general procedure E, benzylidene acetal 55a (599 mg, 2.71 mmol), $\mathrm{BH}_{3} \bullet$ THF (15.1 $\mathrm{mL}, 13.59 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OTf})_{2}(98 \mathrm{mg}, 0.271 \mathrm{mmol})$, were combined to afford 56a. 56a was purified using flash column chromatography (5:95 to 50:50 EtOAc:hexanes) and isolated as a colorless oil (396 mg, 66\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.24$ (m, $5 \mathrm{H}), 4.59(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.58(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{~s}$, $1 \mathrm{H}), 1.88-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.42-1.23(\mathrm{~m}, 5 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta 138.5,128.5,127.9,127.7,78.6,70.9,60.8,35.9,33.1,27.3,22.9,14.1 ;$ AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]+223.1693$, found 223.1697

3-(benzyloxy)heptanal (57a)

Using general procedure F, alcohol 56a ($364 \mathrm{mg}, 1.64 \mathrm{mmol}$) was combined with DMP ($834 \mathrm{mg}, 1.97 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.4 \mathrm{~mL})$ to produce aldehyde 57 a ($274 \mathrm{mg}, 76 \%$). Compound 8b was used without further purification in subsequent reactions. ${ }^{1} \mathrm{H}$ NMR of known compound $\mathbf{8 b}$ matched with previously reported data. ${ }^{27}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.80(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{qd}, J=8.6,7.6,4.1 \mathrm{~Hz}, 5 \mathrm{H}), 4.57(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.89(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=16.3,7.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (ddd, $J=16.3,4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{dtd}, J=$ $14.7,10.2,8.1,5.6 \mathrm{~Hz}, 4 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 3 \mathrm{H})$.

4-isopropyl-2-phenyl-1,3-dioxane (55b)

Using general procedure \mathbf{D}, commercially available methyl isobutyrylacetate (1.0 mL , $7.03 \mathrm{mmol})$ and $\mathrm{LAH}(800 \mathrm{mg}, 21.08 \mathrm{mmol})$ were combined in $\mathrm{Et}_{2} \mathrm{O}(23.4 \mathrm{~mL})$. The resulting crude oil ($629 \mathrm{~g}, 5.32 \mathrm{mmol}$), PhCHO ($0.65 \mathrm{~mL}, 6.38 \mathrm{mmol}$), p-TsOH•H2O (101 $\mathrm{mg}, 0.572 \mathrm{mmol})$, and $\mathrm{MgSO}_{4}(1.28 \mathrm{~g}, 10.6 \mathrm{mmol})$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.32 \mathrm{~mL})$ to afford 55b as an 80:20 mixture of inseparable diastereomers. 55b was purified using flash column chromatography ($0: 100$ to 20:80 EtOAc:hexanes) and isolated as a colorless oil
($673 \mathrm{mg}, 46 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR of known compound 55b matched with previously reported data. ${ }^{27}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.28(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{ddd}, J=11.4,5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{ddd}, \mathrm{J}=$ 12.4, 11.3, 2.6 Hz, 1H), 3.52 (ddd, $J=11.3,6.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.53$ (dtd, $J=13.2,2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

3-(benzyloxy)-4-methylpentan-1-ol (56b)

Using general procedure E, benzylidene acetal 55b (673 mg, 3.26 mmol), $\mathrm{BH}_{3} \bullet$ THF (18.1 $\mathrm{mL}, 18.1 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OTf})_{2}(118 \mathrm{mg}, 0.326 \mathrm{mmol})$, were combined to afford 56b. 56b was purified using flash column chromatography (5:95 to 30:70 EtOAc:hexanes) and isolated as a colorless oil ($480 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR of known compound 56 b matched with previously reported data. ${ }^{28}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.32(\mathrm{~m}, 6 \mathrm{H}), 4.62$ (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{dt}, J=11.6,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{pd}, J=6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 3 \mathrm{H})$.

3-(benzyloxy)-4-methylpentanal (57b)

Using general procedure F, benzylated alcohol 56b (108 mg, 0.521 mmol) and DMP (265 $\mathrm{mg}, 0.626 \mathrm{mmol}$) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.2 \mathrm{~mL})$ to afford $\mathbf{5 7 b}$ ($78 \mathrm{mg}, 73 \%$). $\mathbf{5 7 b}$ was used without further purification. ${ }^{1} \mathrm{H}$ NMR of known compound 57b matched with
previously reported data. ${ }^{28}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.84$ (dd, $\left.J=2.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.60(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J=$ $8.5,5.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (ddd, $J=16.4,8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=16.4,3.9,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.06(\mathrm{dtd}, J=13.8,6.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $3 H)$.

4-(tert-butyl)-2-phenyl-1,3-dioxane (55d)

Using general procedure D, methyl 3-hydroxy-4,4-dimethylpentanoate (1.0 mL, 6.26 $\mathrm{mmol})$ and LAH ($712 \mathrm{mg}, 18.77 \mathrm{mmol}$) were combined in $\mathrm{Et}_{2} \mathrm{O}(20.9 \mathrm{~mL})$. The resulting crude oil ($629 \mathrm{mg}, 4.76 \mathrm{mmol}$), $\mathrm{PhCHO}(0.58 \mathrm{~mL}, 5.71 \mathrm{mmol}), \mathrm{p}-\mathrm{TsOH} \bullet \mathrm{H}_{2} \mathrm{O}(91 \mathrm{mg}, 0.476$ mmol), and $\mathrm{MgSO}_{4}(1.146 \mathrm{~g}, 9.52 \mathrm{mmol})$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.8 \mathrm{~mL})$ to afford 55d. 55d was purified using flash column chromatography (1:99 to 10:90 EtOAc:hexanes) and isolated as a colorless oil ($446 \mathrm{mg}, 32 \%$ over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53$ $-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=11.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{td}$, $J=11.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=11.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.41$ (m, 1H), $0.97(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.3,128.5,128.1,126.0,101.0$, 84.8, 67.3, 34.1, 25.7, 25.6; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 221.1536 , found 221.1540

3-(benzyloxy)-4,4-dimethylpentan-1-ol (56d)

Using general procedure E, benzylidene acetal 55d (297 mg, 1.35 mmol), $\mathrm{BH}_{3} \bullet$ THF (7.49 $\mathrm{mL}, 6.74 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OTf})_{2}(49 \mathrm{mg}, 0.135 \mathrm{mmol})$, were combined to afford $56 \mathbf{d}$. 56d was purified using flash column chromatography (5:95 to 50:50 EtOAc:hexanes) and isolated as a colorless oil (217 mg, 72\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 7.40-7.22(\mathrm{~m}$, $5 \mathrm{H}), 4.70-4.58(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{dd}, \mathrm{J}=9.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 1 \mathrm{H})$, $1.87-1.63(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.8,128.4,127.6$, 127.5, 85.9, 75.1, 61.0, 36.1, 33.6, 26.4; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{2}{ }^{+}$ [M + H]+ 223.1693, found 223.1694

3-(benzyloxy)-4,4-dimethylpentanal (57d)

Using general procedure \mathbf{F}, benzylated alcohol $56 \mathbf{d}$ ($172 \mathrm{mg}, 0.773 \mathrm{mmol}$) and DMP (393 $\mathrm{mg}, 0.927 \mathrm{mmol})$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.7 \mathrm{~mL})$ to afford 57 d . 57 d was purified using flash column chromatography (5:95 to 20:80 EtOAc:hexanes) and isolated as a colorless oil (153 mg, 90\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.22(\mathrm{~m}$, $5 \mathrm{H}), 4.61(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=6.8,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74-2.58(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, Acetone) $\delta 139.8,128.2,127.8$, 126.2, 100.8, 76.8, 66.6, 35.7, 31.4, 27.1, 22.4, 13.4; AMM (ESI-TOF) m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$221.1536, found 221.1540

2,4-diphenyl-1,3-dioxane (55c)

Using modified general procedure D, ethyl benzoylacetate ($2.0 \mathrm{~g}, 10.4 \mathrm{mmol}$) and LAH $(1.18 \mathrm{~g}, 31.0 \mathrm{mmol})$ were combined in $\mathrm{Et}_{2} \mathrm{O}(34 \mathrm{~mL})$. The resulting crude oil $(1.58 \mathrm{~g}, 10.4$ mmol), benzaldehyde dimethyl acetal ($1.74 \mathrm{~g}, 11.4 \mathrm{mmol}$), p-toluenesulfonic acid (177 $\mathrm{mg}, 1.04 \mathrm{mmol})$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(34 \mathrm{~mL})$ to afford 55 c .55 c was purified using flash column chromatography (5:95 $\mathrm{Et}_{2} \mathrm{O}$:hexanes) and isolated as a colorless oil (1.67 $\mathrm{g}, 67 \%$ over 2 steps). ${ }^{1} \mathrm{H} \mathrm{NMR}^{29}$ is consistent with literature: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{dd}, \mathrm{J}$ $=11.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{ddd}, J=11.5,4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.16(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.09$ (m, 1H), 1.83 (dtd, $J=13.4,2.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$.

3-(benzyloxy)-3-phenylpropan-1-ol (56c)

Using general procedure E, benzylidene acetal 55c (500 mg, 2.08 mmol), $\mathrm{BH}_{3} \bullet$ THF (10.0 $\mathrm{mL}, 10.0 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OTf})_{2}(38 \mathrm{mg}, 0.100 \mathrm{mmol})$, were combined to afford 56c. 56c was purified using flash column chromatography (30:70 EtOAc:hexanes) and isolated as a colorless oil (325 mg, 80\%). ${ }^{1} \mathrm{H} \mathrm{NMR}^{30}$ is consistent with literature: ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.25(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 4.58(\mathrm{dd}, J=4.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.87(\mathrm{~m}$, 1H)

3-(benzyloxy)-3-phenylpropanal (57c)

Using general procedure F, alcohol 56c (170 mg, 0.700 mmol$)$ and DMP ($328 \mathrm{mg}, 0.770$ $\mathrm{mmol})$ were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$ to afford 57 c . 57 c was used in subsequent reactions with no further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}^{31}$ is consistent with literature: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 12 \mathrm{H}), 4.50(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{ddd}, J=16.4,9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=16.5$, 4.2, 1.7 Hz, 1H).

Methyl (2R,3R)-3-hydroxy-2-methylbutanoate (40)

Using previously reported procedure: ${ }^{8}$ To a stirred solution of N, N-diisopropylamine (3.5 $\mathrm{mL}, 25.4 \mathrm{mmol}, 3.0$ equiv.) in dry THF (10 mL) was added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, 9.8 $\mathrm{mL}, 24.5 \mathrm{mmol}, 2.9$ equiv.) at $-78{ }^{\circ} \mathrm{C}$. After 30 min at $-78{ }^{\circ} \mathrm{C}$, (R)-methyl-3hydroxybutyrate ($1 \mathrm{~mL}, 8.6 \mathrm{mmol} 1.0$ equiv.) was added dropwise. The resulting mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, after which time methyl iodide $(3.13 \mathrm{~mL}, 50.82 \mathrm{mmol}$, 6.0 equiv.) was added. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for further 1.5 h after which time it was allowed to reach room temperature and aqueous $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ was added. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the organic layer was washed with brine (15 mL), dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude oil was purified by column chromatography on silica gel, eluting with $4: 1$ to $1: 1$
(cyclohexane/EtOAc) to furnish the desired compound as a pale yellow oil ($888 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}^{32}$ is consistent with literature. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.96-3.86(\mathrm{~m}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{p}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, 1.21 (d, J=7.2 Hz, 3H).

(2S,3R)-3-(benzyloxy)-2-methylbutan-1-ol (42)

Using modified general procedure D, ester 40 ($888 \mathrm{mg}, 67.0 \mathrm{mmol}$) and LAH (225 mg , 67.0 mmol) were combined in $\mathrm{Et}_{2} \mathrm{O}(16 \mathrm{~mL})$. Upon workup, the resulting crude oil (700 $\mathrm{mg}, 67.0 \mathrm{mmol}$), benzaldehyde dimethyl acetal ($1.12 \mathrm{~g}, 7.00 \mathrm{mmol}$), p-toluenesulfonic acid ($116 \mathrm{mg}, 6.70 \mathrm{mmol}$). The crude reaction mixture was purified using flash column chromatography (5:95 $\mathrm{Et}_{2} \mathrm{O}:$ hexanes) and the resulting benzylidene acetal was isolated as an inseparable mixture of diastereomers and colorless oil ($1.00 \mathrm{~g}, 77 \%$ over 2 steps).

Using general procedure E, benzylidene acetal ($820 \mathrm{mg}, 4.27 \mathrm{mmol}$), $\mathrm{BH}_{3} \bullet$ THF (21.0 mL , $21.0 \mathrm{mmol})$, and $\mathrm{Cu}(\mathrm{OTf})_{2}(77 \mathrm{mg}, 0.200 \mathrm{mmol})$, were combined to afford 42.42 was purified using flash column chromatography (30:70 $\mathrm{Et}_{2} \mathrm{O}$:hexanes) and isolated as a colorless oil (779 mg, 83\%). ${ }^{1} \mathrm{H} \mathrm{NMR}^{33}$ is consistent with literature: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.42-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.68(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-$ 3.56 (m, 2H), 3.51 (dq, $J=7.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 1.81(\mathrm{hd}, J=7.0,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.28(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

(2R,3R)-3-(benzyloxy)-2-methylbutanal (43)

Using general procedure F, alcohol 42 (168 mg, 0.860 mmol) and DMP (404 mg, 0.950 mmol) were combined in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.6 \mathrm{~mL})$ to afford 43.43 was used in subsequent reactions with no further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}^{34}$ is consistent with literature: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.74(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (d, J = 11.7 Hz, 1H), $3.81(p, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(p d, J=7.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=$ 6.2 Hz, 3H), 1.09 (d, J = 7.2 Hz, 3H).

(S)-4-benzyl-3-((2S,3R)-3-hydroxy-2-methylbutanoyl)oxazolidin-2-one (48)

Known compound 48 was prepared according to previously reported procedure. ${ }^{35}{ }^{1} \mathrm{H}$ NMR is consistent with literature. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.30(\mathrm{~m}, 3 \mathrm{H})$, $7.26-7.18(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{ddt}, J=9.4,7.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{qd}, J=7.0,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.28(\mathrm{dd}, J=13.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.76(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.

(2R,3R)-3-(benzyloxy)-2-methylbutan-1-ol (51)

48 ($1.17 \mathrm{~g}, 4.20 \mathrm{mmol}$) was dissolved in THF (42 mL) and $\mathrm{MeOH}(0.5 \mathrm{~mL})$. Lithium borohydride (2.0 M in THF, 6.30 mL) was added dropwise. The reaction was stirred overnight at room temperature and quenched with sat. sodium tartrate (30 mL). The
mixture was stirred for 2 hours at room temperature and then extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. Combined organics were dried over sodium sulfate, filtered and concentrated in vacuo to produce a crude colorless oil. The crude material was used without further purification and combined with benzaldehyde ($0.857 \mathrm{~mL}, 8.10 \mathrm{mmol}$), camphorsulfonic acid (293 mg, 1.26 mmol$)$ and magnesium sulfate ($1.52 \mathrm{~g}, 12.6 \mathrm{mmol}$) in DCM (42 mL). The reaction was stirred overnight at room temperature and then the solids filtered off. The filtrate was washed with sat. sodium bicarbonate and sat. sodium sulfite. The organic layer was dried over sodium sulfate, filtered and concentrated in vacuo to produce a colorless oil. The crude material was used without further purification and combined with $\mathrm{BH}_{3} \cdot \mathrm{THF}(1.0 \mathrm{M}$ in THF, 27.35 mL) in DCM (10 mL) and stirred at room temperature for 10 minutes. Then, copper triflate ($198 \mathrm{mg}, 0.547 \mathrm{mmol}$) was added and the reaction stirred for 2 hours. After 2 hours the reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and 1 equiv. of triethylamine and $\mathrm{MeOH}(5 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 30 minutes and concentrated in vacuo to produce a colorless oil. The crude oil was purified using flash chromatography (10 to 20\% EtOAc in Hexanes) to produce known compound 51 (120 mg, 63\% over three steps). ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}^{34}$ is consistent with literature: ${ }^{1} \mathrm{H}$ NMR (599 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.61(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.70 (ddt, $J=10.9,7.3,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{dt}, J=10.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 1 \mathrm{H})$, $2.00(\mathrm{tt}, J=7.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{dd}, J=6.4,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 3 \mathrm{H})$.

(2S,3R)-3-(benzyloxy)-2-methylbutanal (52)

Using general procedure F, alcohol 51 (120 mg, 0.618 mmol) and DMP ($314 \mathrm{mg}, 0.742$ mmol) were combined in $\mathrm{CH} 2 \mathrm{Cl} 2(6 \mathrm{~mL})$ to afford 52.52 was used in subsequent reactions with no further purification. $1 \mathrm{H} \mathrm{NMR}^{34}$ is consistent with literature: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.61(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{qd}, J=6.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(q d d, J=7.0,4.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

(R)-3-((tert-butyldimethylsilyl)oxy)butanal (26b)

Known aldehyde 26b was prepared according to previously reported procedure. ${ }^{1} \mathrm{H}$ NMR is consistent with literature. ${ }^{26}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{qd}, \mathrm{J}=8.6,7.6,4.1 \mathrm{~Hz}, 5 \mathrm{H}), 4.63-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.07-3.90(\mathrm{~m}, 1 \mathrm{H}), 2.70$ (ddd, $J=16.3,7.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{ddd}, J=16.3,4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.66(\mathrm{~m}$, $1 H), 1.66-1.52(m, 1 H), 1.37(q d, J=10.5,9.6,6.4 H z, 4 H), 0.97-0.89(m, 3 H)$.

(S)-3-(benzyloxy)-2-methylpropanal (39)

Known aldehyde 9 was prepared according to previously reported procedure. ${ }^{1} \mathrm{H}$ NMR is consistent with literature. ${ }^{36}{ }^{1} \mathrm{H}$ NMR (599 MHz , Chloroform- d) $\delta 9.72(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32 (dq, $J=15.8,7.7 \mathrm{~Hz}, 5 \mathrm{H}$), $4.52(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.60(\mathrm{~m}, 3 \mathrm{H}), 2.66(\mathrm{tdd}, J=7.1,5.3$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

2.5 Computational Methods and Results

All calculations were performed with Gaussian16. ${ }^{23}$ Gas-phase ground state geometries were optimized in vacuo using the meta-hybrid density functional B3LYP ${ }^{24,37}$ and the 6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. Vibrational frequencies were computed to determine if the optimized structures are minima on the potential energy surface corresponding to ground state geometry. We have atomically truncated the p-tolSO ${ }_{2}$ of the N-tosyl group to $\mathrm{H}_{3} \mathrm{CSO}_{2}$ for computational fidelity. We have performed a systematic conformational analysis of the initial imine reactants and the chelated intermediates and herein we report the lowest energy conformers for each species.

Cartesian Coordinates and Energies

All of the cartesian coordinates and sum of electronic and thermal free energies (Hartrees) correspond to B3LYP/6-31G(d,p)-optimized geometries.
H^{+}

Sum of electronic and thermal Free Energies $=-0.0100000$ Hartrees
H
0.00000
0.00000
0.00000

Imine (18)

Sum of electronic and thermal Free Energies $=-1145.838400$ Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-1.479624	2.059365	0.862294
2	1	0	-1.770219	2.561600	-0.065555
3	1	0	-1.083127	2.808989	1.555233
4	1	0	-2.376732	1.624350	1.307927
5	6	0	-0.425408	0.987434	0.581570
6	1	0	-0.158198	0.490729	1.529535
7	6	0	0.844222	1.599208	-0.035617
8	1	0	1.214631	2.428373	0.572747
9	1	0	0.570376	1.998126	-1.022713
10	6	0	1.935275	0.592819	-0.233907
11	1	0	1.661495	-0.352940	-0.713659
12	7	0	3.130270	0.840972	0.150979
13	16	0	4.283456	-0.397174	-0.226744
14	8	0	3.621048	-1.669985	-0.551918
15	8	0	5.245049	0.191177	-1.162670
16	6	0	5.067312	-0.552701	1.384502
17	1	0	5.892560	-1.255996	1.261311
18	1	0	5.436485	0.427462	1.685337
19	1	0	4.339413	-0.938323	2.098946
20	8	0	-0.862092	-0.005691	-0.348468
21	6	0	-1.742550	-1.006947	0.155076
22	1	0	-1.513405	-1.907173	-0.428534
23	1	0	-1.506771	-1.234851	1. 205082
24	6	0	-3.216377	-0.675845	0.011284
25	6	0	-3.690902	-0.047456	-1.147216
26	6	0	-4.129450	-1.042170	1.005674
27	6	0	-5.051650	0.210292	-1.304775
28	1	0	-2.982667	0.245945	-1.915959
29	6	0	-5.494003	-0.790737	0.846782
30	1	0	-3.772364	-1.527306	1.911382
31	6	0	-5.958021	-0.162653	-0.308943
32	1	0	-5.407034	0.700975	-2.206454
33	1	0	-6.191030	-1.079224	1.628314
34	1	0	-7.018163	0.037677	-0.433101

Conformer (66b)

Sum of electronic and thermal Free Energies = -1146.195110 Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-0.086112	4.123447	0.061313

2			-0.469383	4.398854	1.048272
3	1	0	-0.529162	4.788329	-0.686209
4	1	0	0.993092	4.291702	0.047660
5	6	0	-0.414548	2.668884	-0.255606
6	1	0	0.019349	2.393438	-1.229982
7	6	0	-1.939885	2.439473	-0.312451
8	1	0	-2.389881	3.036312	-1.112091
9	1	-2.403634	2.794750	0.622667	
10	6	0	-2.381531	1.022432	-0.476795
11	1	0	-3.344361	0.785318	-0.935887
12	16	0	-1.667944	0.031129	-0.075036
13	8	-2.127937	-1.708841	-0.442475	
14	8	0	-3.477833	-1.586891	-0.966253
15	6	0	-1.001214	-2.202907	-1.210419
16	1	0	-2.114913	-2.388325	1.215934
17	1	0	-2.368960	-3.445404	1.101071
18	8	0	-1.107090	-2.280915	1.622684
19	6	0	-2.869168	-1.876421	1.814314
20	1	0	0.077232	1.756144	0.742238
21	1	0	1.522671	1.591592	0.823783
22	6	0	1.946309	2.440156	1.368795
23	6	1.937284	1.581521	-0.192479	
24	6	0	-0.746905	0.295336	0.358504
25	6	0	1.778637	0.290285	1.534403
26	1	0	1.933014	0.255604	2.925878
27	6	0	1.798635	-0.912810	0.812281
28	1	2.104044	-0.960778	3.587220	
29	6	0	1.925341	1.183346	3.491454
30	1	0	1.965115	-2.131741	1.473869
31	1	0	2.710166	-0.898853	-0.271821
32	1	0	2.116819	-2.155333	2.863203
33	0	2.234405	-0.976451	4.664621	
34	2	2.002814	-3.054797	0.903421	
35	---				

Conformer (67b)

Sum of electronic and thermal Free Energies $=-1146.192942$ Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-2.747240	-0.717118	1.479819
2	1	0	-1.786725	-0.590128	1.989873
3	1	0	-3.145601	-1.703597	1.734875
4	1	0	-3.441396	0.026919	1.876709
5	6	0	-2.602002	-0. 573309	-0.035951
6	1	0	-3.577454	-0.737180	-0.512906
7	6	0	-1.619113	-1.602346	-0.636952
8	1	0	-1.740109	-1.647028	-1.732630
9	1	0	-1.837669	-2.612696	-0.276622
10	6	0	-0.164799	-1.333349	-0.443491
11	1	0	0.558049	-2.150546	-0.508004
12	7	0	0.316971	-0.153680	-0. 261187
13	16	0	2.132880	0.153178	-0.312116
14	8	0	2.685789	-1.189352	-0.369439
15	8	0	2.281007	1.143859	-1.358534
16	6	0	2.376680	0.890021	1.304623

17	1	0	3.439284	1.142058	1.354388
18	1	0	1.771401	1.795406	1.370282
19	1	0	2.120728	0.157396	2.070462
20	8	0	-2.103075	0.715950	-0.420780
21	6	0	-3.051781	1.819507	-0.420349
22	1	0	-3.523057	1.896847	0.565130
23	1	0	-3.826760	1.594652	-1.163346
24	1	0	-0.382989	0.626969	-0.266653
25	6	0	-2.300179	3.075785	-0.757009
26	6	0	-1.889369	3.949733	0.258013
27	6	0	-1.972031	3.368655	-2.087967
28	6	0	-1.165465	5.101628	-0.052093
29	1	0	-2.154452	3.738560	1. 291301
30	6	0	-1.245287	4.516916	-2.398218
31	1	0	-2.296083	2.701362	-2.882395
32	6	0	-0.841561	5.384282	-1.380223
33	1	0	-0.865195	5.782143	0.738650
34	1	0	-1.002306	4.740844	-3.432062
35	1	0	-0.284634	6.283701	-1.623557

Conformer (66c)

Sum of electronic and thermal Free Energies = -1264.065741 Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-1.502565	-0.871673	-0.205988
2	1	0	-1.364742	-1.078591	-1.279385
3	6	0	-0.984817	-2.089010	0.591193
4	1	0	-1.541903	-2.991317	0.320298
5	1	0	-1.166135	-1.936605	1.667180
6	6	0	0.472835	-2.375158	0.460681
7	1	0	0.859708	-3.389639	0.583098
8	7	0	1.333332	-1.449416	0.219575
9	16	0	3.095245	-1.827709	-0.119983
10	8	0	3.204784	-3.232469	0.235734
11	8	0	3.303944	-1.312643	-1.459846
12	6	0	3.878613	-0.769818	1.096362
13	1	0	4.953647	-0.917536	0.964026
14	1	0	3.606603	0.264853	0.877072
15	1	0	3.568781	-1.086008	2.092860
16	8	0	-0.640253	0.223389	0.160057
17	6	0	-0.742315	1.430526	-0.648226
18	1	0	-1.624208	1.995595	-0.332318
19	1	0	-0.864830	1.144786	-1.700838
20	1	0	0.924891	-0.488231	0.095235
21	6	0	0.525233	2.213191	-0.435813
22	6	0	0.609790	3.171954	0.581545
23	6	0	1.659081	1.940643	-1.216301
24	6	0	1.807136	3.847727	0.817570
25	1	0	-0.265649	3.393899	1.185730
26	6	0	2.859876	2.613454	-0.978057
27	1	0	1.600464	1.219872	-2.028823
28	6	0	2.933890	3.567212	0.040957
29	1	0	1.859506	4.597077	1.601021
30	1	0	3.724617	2.411813	-1.602913

31	1	0	3.861573	4.102888	0.217184
32	6	0	-2.987274	-0.588915	0.055545
33	1	0	-3.299520	0.209954	-0.627717
34	1	0	-3.556546	-1.474813	-0.255458
35	6	0	-3.346777	-0.201839	1.496317
36	1	0	-2.714620	0.634936	1.819127
37	1	0	-3.127657	-1.033284	2.181271
38	6	0	-4.826159	0.179879	1.650894
39	1	0	-5.053029	1.017374	0.978113
40	1	0	-5.452545	-0.657197	1.316144
41	6	0	-5.198059	0.558511	3.086818
42	1	0	-4.611096	1.414205	3.438162
43	1	0	-6.254924	0.829173	3.160338
44	1	0	-5.020600	-0.273346	3.777249

Conformer (67c)

Sum of electronic and thermal Free Energies $=-1264.064138$ Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-0.713367	3.250709	1.196126
2	1	0	-1.266645	2.477200	1.746944
3	1	0	0.255215	3.345804	1.699957
4	6	0	-0.447125	2.767193	-0.237559
5	1	0	0.014076	3.580725	-0.813962
6	6	0	-1.726975	2.340050	-0.989704
7	1	0	-1.521217	2.254796	-2.070227
8	1	0	-2.511223	3.097570	-0.901777
9	6	0	-2.305698	1.015031	-0.624896
10	1	0	-3.359054	0.801937	-0.823501
11	7	0	-1.609169	0.051774	-0.130325
12	16	0	-2.309171	-1.639939	0.044818
13	8	0	-3.711486	-1.447374	-0.284421
14	8	0	-1.397479	-2.468135	-0.717975
15	6	0	-2.083432	-1.896498	1.805337
16	1	0	-2.446735	-2.908373	2.003136
17	1	0	-1.019048	-1.826766	2.034632
18	1	0	-2.678324	-1.162598	2.349597
19	8	0	0.420686	1.621401	-0.268048
20	6	0	1.850578	1.869759	-0.175810
21	1	0	2.061955	2.462046	0.720852
22	1	0	2.147988	2.450872	-1.057417
23	1	0	-0.586634	0.250704	-0.006576
24	6	0	2.549652	0.541138	-0.120762
25	6	0	2.952056	0.001199	1.107713
26	6	0	2.774668	-0.188442	-1.296303
27	6	0	3.574357	-1.246499	1.160812
28	1	0	2.794682	0.567288	2.022677
29	6	0	3.392568	-1.436899	-1.243934
30	1	0	2.475301	0.228035	-2.254656
31	6	0	3.793041	-1.966674	-0.014963
32	1	0	3.897401	-1.650531	2.115246
33	1	0	3.570617	-1.991626	-2.159697
34	1	0	4.283557	-2.934256	0.024323
35	6	0	-1.450145	4.595877	1.288772
36	1	0	-2.447871	4.521300	0.833974
37	1	0	-0.904385	5.349402	0.704711

38	6	0	-1.605014	5.090758	2.734019
39	1	0	-0.610631	5.182141	3.189933
40	1	0	-2.141397	4.332641	3.320409
41	6	0	-2.340084	6.430276	2.830320
42	1	0	-3.351550	6.361404	2.415186
43	1	0	-2.430606	6.754344	3.870700
44	1	0	-1.808197	7.215857	2.283194

Conformer (66d)

Sum of electronic and thermal Free Energies $=-1224.770847$ Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-2.204013	-0.405502	-0.346073
2	1	0	-2.125455	-0. 525617	-1.438007
3	6	0	-1.842728	-1.751667	0.332921
4	1	0	-2.483521	-2.556524	-0.033584
5	1	0	-2.052525	-1.676246	1.413573
6	6	0	-0.430832	-2. 216910	0.239290
7	1	0	-0.199531	-3.284676	0.264449
8	7	0	0.572863	-1.416904	0.160682
9	16	0	2.280977	-2.052099	-0.105711
10	8	0	2.139949	-3.472633	0.167368
11	8	0	2.661653	-1.514458	-1.397414
12	6	0	3.132992	-1.201207	1.221187
13	1	0	4.176034	-1.520664	1.149533
14	1	0	3.052360	-0.125370	1.050806
15	1	0	2.702430	-1.513705	2.173023
16	8	0	-1.201554	0.535630	0.087223
17	6	0	-0.819120	1.601504	-0.833292
18	1	0	-1.535374	2.421215	-0.749915
19	1	0	-0.846257	1.222314	-1.862274
20	1	0	0.337018	-0.400950	0.125549
21	6	0	0.570464	2.045514	-0.455023
22	6	0	0.783945	2.724163	0.755729
23	6	0	1.665738	1.760558	-1.281479
24	6	0	2.069398	3.109439	1.131094
25	1	0	-0.061035	2.954962	1.398404
26	6	0	2.955019	2.152530	-0.908452
27	1	0	1.514331	1.244346	-2.225640
28	6	0	3.157457	2.825513	0.298002
29	1	0	2.223357	3.644013	2.063248
30	1	0	3.792852	1.941630	-1.565479
31	1	0	4.155911	3.143479	0.582399
32	6	0	-3.653149	-0.002846	0.021005
33	6	0	-4.666057	-1.003652	-0.567239
34	1	0	-5.683082	-0.685468	-0.324874
35	1	0	-4.589587	-1.048370	-1.659826
36	1	0	-4.552394	-2.019073	-0.176440
37	6	0	-4.009381	1.423392	-0.423298
38	1	0	-3.420164	2.174849	0.106042
39	1	0	-3.872488	1.560887	-1.501942
40	1	0	-5.061148	1.623305	-0.201457
41	1	0	-3.723015	-0.036161	1.117552

Conformer (67d)

Sum of electronic and thermal Free Energies $=-1224.772123$ Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	1.690540	-0.487441	-1.301660
2	1	0	2.067760	-1.223802	-2.023204
3	6	0	1.339356	0.801684	-2.092859
4	1	0	0.740842	0.543414	-2.983158
5	1	0	2.230229	1.296940	-2.486329
6	6	0	0.506941	1.802711	-1.367531
7	1	0	0.535501	2.859970	-1.642778
8	7	0	-0.320914	1.469467	-0.438474
9	16	0	-1.529617	2.673832	0.241948
10	8	0	-1.113426	3.929452	-0.359961
11	8	0	-2.810659	2.040068	-0.000230
12	6	0	-1.103638	2.611127	1.982454
13	1	0	-1.806496	3.283892	2.480892
14	1	0	-1.241613	1.589469	2.339538
15	1	0	-0.079872	2.964328	2.108831
16	8	0	0.490663	-0.994683	-0.688067
17	6	0	-0.271485	-1.968869	-1.462815
18	1	0	0.359104	-2.853705	-1.600907
19	1	0	-0.504943	-1.549783	-2.450686
20	1	0	-0.359515	0.440609	-0.223234
21	6	0	-1.525287	-2.288375	-0.701399
22	6	0	-1.528370	-3.306733	0.260932
23	6	0	-2.692271	-1.540971	-0.911972
24	6	0	-2.680226	-3.574185	0.999239
25	1	0	-0.630110	-3.896136	0.424570
26	6	0	-3.844312	-1.804969	-0.170623
27	1	0	-2.709635	-0.761258	-1.670119
28	6	0	-3.838129	-2.822562	0.785015
29	1	0	-2.677637	-4.371855	1.735319
30	1	0	-4.745349	-1.226323	-0.347089
31	1	0	-4.736683	-3.036475	1.355282
32	6	0	2.756564	-0.291088	-0.202679
33	1	0	2.356158	0.430247	0.525963
34	6	0	3.007748	-1.617906	0.529960
35	1	0	3.722457	-1.470200	1.343956
36	1	0	2.086624	-2.024134	0.951911
37	1	0	3.434275	-2.364058	-0.150483
38	6	0	4.070966	0.270336	-0.770509
39	1	0	4.466548	-0.372560	-1.565016
40	1	0	3.972783	1.284232	-1.170856
41	1	0	4.826434	0.313223	0.018155

Conformer (66e)

Sum of electronic and thermal Free Energies $=-1264.059615$ Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)

Number	Number	Type	X	Y	Z
1	6	0	-1.660198	-0.718083	-0.320890
2	1	0	-1.455318	-0.910610	-1.386093
3	6	0	-1.125858	-1.920049	0.496760
4	1	0	-1.596234	-2.851550	0.174685
5	1	0	-1.402023	-1.802560	1.557566
6	6	0	0.345532	-2.145322	0.498190
7	1	0	0.743717	-3.149679	0.662380
8	7	0	1.212443	-1.208974	0.338147
9	16	0	3.007325	-1.582467	0.189982
10	8	0	3.080474	-2.975807	0.597682
11	8	0	3.357843	-1.110983	-1.135499
12	6	0	3.653336	-0.488540	1.453650
13	1	0	4.737157	-0.630017	1.435200
14	1	0	3.399342	0.539930	1.187566
15	1	0	3.245293	-0.788545	2.419301
16	8	0	-0.857744	0.401083	0.107668
17	6	0	-0.708501	1.548381	-0.777934
18	1	0	-1.496571	2.271009	-0.553160
19	1	0	-0.816633	1.226116	-1.819631
20	1	0	0.823294	-0.254569	0.179007
21	6	0	0.653908	2.144150	-0.529280
22	6	0	0.899419	2.861652	0.652502
23	6	0	1.697734	1.961423	-1.446914
24	6	0	2.164688	3.388335	0.908769
25	1	0	0.092993	3.017164	1. 364007
26	6	0	2.965213	2.492433	-1.193297
27	1	0	1.518976	1.417168	-2.370500
28	6	0	3.199358	3.205907	-0.015916
29	1	0	2.340565	3.956221	1.817171
30	1	0	3.761192	2.356390	-1.918269
31	1	0	4.178827	3.634260	0.174155
32	6	0	-3.202302	-0.525547	-0.147154
33	6	0	-3.538254	-0.052113	1.278892
34	1	0	-3.012490	0.873748	1.526695
35	1	0	-4.612302	0.135380	1.364986
36	1	0	-3.286778	-0.799551	2.040009
37	6	0	-3.919108	-1.863406	-0.445034
38	1	0	-4.999189	-1.698294	-0.478707
39	1	0	-3.624948	-2.277165	-1.416854
40	1	0	-3.741631	-2.622077	0.323178
41	6	0	-3.722974	0.511333	-1.167609
42	1	0	-3.383564	1.525414	-0.949492
43	1	0	-3.426491	0.258713	-2. 191666
44	1	0	-4.816032	0.531062	-1.140728

Conformer (67e)

Sum of electronic and thermal Free Energies = -1264.060475 Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	1.682440	-0.451969	-1. 240089
2	1	0	1.989996	-1.138521	-2.037697
3	6	0	1.376496	0.913544	-1.920610

4	1	0	0.866011	0.734832	-2.882758
5	1	0	2.291944	1.447869	-2.184892
6	6	0	0.462442	1.851889	-1.211987
7	1	0	0.517292	2.925907	-1.406361
8	7	0	-0.473804	1.458026	-0.419802
9	16	0	-1.751951	2.614390	0.199364
10	8	0	-1.270916	3.908938	-0.254117
11	8	0	-2.997437	2.013007	-0.235653
12	6	0	-1.533042	2.419542	1.968138
13	1	0	-2.280669	3.069388	2.430353
14	1	0	-1.724251	1.377852	2.230159
15	1	0	-0.526390	2.740466	2.237369
16	8	0	0.469553	-0.949137	-0.641760
17	6	0	-0.216786	-2.019055	-1.359511
18	1	0	0.437220	-2.897099	-1.366564
19	1	0	-0.391508	-1.703517	-2.396360
20	1	0	-0.514219	0.421284	-0.260871
21	6	0	-1.510830	-2.292895	-0.648435
22	6	0	-1.569003	-3.243584	0.379019
23	6	0	-2.663550	-1.562856	-0.971961
24	6	0	-2.760269	-3.462394	1.069847
25	1	0	-0.682662	-3.819994	0.630371
26	6	0	-3.854437	-1.776283	-0.276971
27	1	0	-2.638896	-0.838769	-1.783267
28	6	0	-3.902665	-2.727482	0.743971
29	1	0	-2.799770	-4.209392	1.856340
30	1	0	-4.742939	-1.211765	-0.540966
31	1	0	-4.831415	-2.903689	1.277612
32	6	0	2.830319	-0.427314	-0.189491
33	6	0	2.526086	0.536688	0.971534
34	1	0	3.335343	0.502738	1.706303
35	1	0	2.451968	1.580271	0.638346
36	1	0	1.600754	0.263011	1.488259
37	6	0	2.988592	-1.859362	0.363351
38	1	0	3.229097	-2.569755	-0.435310
39	1	0	3.806687	-1.892566	1.088267
40	1	0	2.077940	-2.196795	0.863658
41	6	0	4.148096	-0.013525	-0.878063
42	1	0	4.980738	-0.129519	-0.178770
43	1	0	4.364203	-0.641085	-1.749541
44	1	0	4.151577	1.032902	-1.201059

Conformer (66f)

Sum of electronic and thermal Free Energies $=-1337.889244$ Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	1.788101	-0.019213	-0.941667
2	1	0	1.324752	-0.293462	-1.901832
3	6	0	1.880543	1.524957	-0.866181
4	1	0	2.479602	1.909997	-1.696958
5	1	0	2.421295	1.815761	0.048363
6	6	0	0.576868	2.252520	-0.833806
7	1	0	0.491983	3.274243	-1.211647
8	7	0	-0.489353	1.716983	-0.352280
9	16	0	-2.128680	2.525103	-0.476473

10	8	0	-1.804843	3.862878	-0.942553
11	8	0	-2.921291	1.573021	-1.231226
12	6	0	-2.606340	2.518834	1.251113
13	1	0	-3.601894	2.969263	1.281957
14	1	0	-2.646718	1.482084	1.592046
15	1	0	-1.895684	3.121482	1.817465
16	8	0	0.901517	-0.399220	0.128400
17	6	0	0.480342	-1.795550	0.143306
18	1	0	1.316353	-2.408097	0.491078
19	1	0	0.225345	-2.097375	-0.880444
20	1	0	-0.367867	0.728122	-0.009278
21	6	0	-0.711425	-1.882571	1.056405
22	6	0	-0.551594	-2.184734	2.414208
23	6	0	-1.994838	-1.597831	0.564918
24	6	0	-1.654223	-2.201879	3.268916
25	1	0	0.437659	-2.413448	2.801097
26	6	0	-3.098791	-1.609841	1.420426
27	1	0	-2.138443	-1.391860	-0.493670
28	6	0	-2.927588	-1.911112	2.774529
29	1	0	-1.521346	-2.448180	4.317620
30	1	0	-4.090793	-1.412412	1.025384
31	1	0	-3.786393	-1.936203	3.438141
32	6	0	3.155774	-0.660109	-0.849049
33	6	0	3.749138	-1.214225	-1.988297
34	6	0	3.847495	-0.680550	0.370394
35	6	0	5.025705	-1.773926	-1.914720
36	1	0	3.215003	-1.211455	-2.935394
37	6	0	5.118333	-1.247382	0.444032
38	1	0	3.382893	-0.271120	1.263508
39	6	0	5.710372	-1.790806	-0.699465
40	1	0	5.479568	-2.201278	-2.803010
41	1	0	5.647084	-1.266898	1.391743
42	1	0	6.701089	-2.230014	-0.640455
--2					

Conformer (67f)

Sum of electronic and thermal Free Energies $=-1337.885697$ Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-0.388055	2.807642	-0.149665
2	1	0	0.085222	3.644449	-0.681314
3	6	0	-1.730960	2.528912	-0.879983
4	1	0	-1.568695	2.536046	-1.970998
5	1	0	-2.449980	3.325830	-0.672855
6	6	0	-2.379901	1.212995	-0.612339
7	1	0	-3.463726	1.101705	-0.695166
8	7	0	-1.711407	0.147014	-0.341315
9	16	0	-2.512122	-1.504407	-0.271849
10	8	0	-3.927125	-1.185878	-0.358268
11	8	0	-1.788464	-2.279095	-1.259587
12	6	0	-2.049779	-1.999527	1. 388760
13	1	0	-2.453812	-3.006762	1.519498
14	1	0	-0.960376	-2.017888	1.454849
15	1	0	-2.501381	-1.308622	2.101251
16	8	0	0.398152	1.626327	-0.320880
17	6	0	1.823530	1.736831	-0.036346

18	1	0	1.957059	2.284062	0.901605
19	1	0	2.285101	2.306876	-0.851064
20	1	0	-0.672580	0.264338	-0.294621
21	6	0	2.371366	0.340671	0.057620
22	6	0	2.505341	-0.284712	1.305416
23	6	0	2.704896	-0.370170	-1.103223
24	6	0	2.967100	-1.599006	1.390967
25	1	0	2.270897	0.268369	2.211773
26	6	0	3.164097	-1.684376	-1.018712
27	1	0	2.614817	0.110644	-2.073804
28	6	0	3.294611	-2.299980	0.228166
29	1	0	3.087322	-2.069070	2.362299
30	1	0	3.428505	-2.224181	-1.922433
31	1	0	3.662549	-3.319151	0.293947
32	6	0	-0.596708	3.207348	1.304622
33	6	0	-0.855296	4.550081	1.607960
34	6	0	-0.579408	2.265832	2.341212
35	6	0	-1.109755	4.943406	2.921565
36	1	0	-0.851231	5.295756	0.816080
37	6	0	-0.824538	2.661184	3.657212
38	1	0	-0.340641	1.228794	2.125492
39	6	0	-1.096568	3.998508	3.949027
40	1	0	-1.305755	5.987527	3.143317
41	1	0	-0.794801	1.926842	4.456407
42	1	0	-1.285101	4.304898	4.972845
--					

Conformer (66g)

Sum of electronic and thermal Free Energies = -1185.485546 Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	0.834859	-2.619966	-0.233778
2	6	0	2.113871	-1.902667	-0.746867
3	1	0	2.110613	-1.969117	-1.850318
4	6	0	2.144771	-0.420647	-0.504581
5	1	0	3.107392	0.097223	-0.476833
6	7	0	1.097195	0.312469	-0.371623
7	16	0	1.203292	2.147304	-0.336270
8	8	0	2.634306	2.391013	-0.255793
9	8	0	0.370280	2.559610	-1.448334
10	6	0	0.392247	2.478356	1.227488
11	1	0	0.350359	3.567597	1.309560
12	1	0	-0.615992	2.058933	1.196039
13	1	0	0.996526	2.057396	2.031571
14	8	0	-0.283967	-1.828490	-0.672800
15	6	0	-1.579605	-2.144568	-0.086668
16	1	0	-1.431983	-2.612549	0.893572
17	1	0	-2.085855	-2.860185	-0.742146
18	1	0	0.184705	-0.199243	-0.459186
19	6	0	-2.353456	-0.858733	0.045879
20	6	0	-2.587746	-0.292808	1.306745
21	6	0	-2.811467	-0.190320	-1.099979
22	6	0	-3.275190	0.918675	1.422022

23	1	0	-2.255753	-0.812576	2.202249
24	6	0	-3.485712	1.024949	-0.986162
25	1	0	-2.644816	-0.626797	-2.081025
26	6	0	-3.719941	1.580287	0.274742
27	1	0	-3.477786	1.334229	2.404609
28	1	0	-3.839137	1.532196	-1.878051
29	1	0	-4.260562	2.517487	0.362850
30	6	0	3.417872	-2.543565	-0.229809
31	1	0	3.510159	-3.568750	-0. 588620
32	1	0	4.292202	-1.993146	-0.587855
33	1	0	3.446887	-2.559410	0.863802
34	1	0	0.858371	-2.614297	0.868464
35	6	0	0.731692	-4.056425	-0.737877
36	1	0	-0.195673	-4.515399	-0.387151
37	1	0	0.735212	-4.083194	-1.831681
38	1	0	1.554008	-4.670940	-0.364674

Conformer (67g)

Sum of electronic and thermal Free Energies $=-1185.485567$ Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	1.606414	-1.897221	-0.768419
2	6	0	2.606877	-1.159443	0.159349
3	1	0	3.624769	-1.347696	-0.202414
4	6	0	2.436502	0.328607	0.189449
5	1	0	3.277854	0.972756	0.456770
6	7	0	1.309402	0.911318	-0.029328
7	16	0	1.142710	2.733033	-0.093198
8	8	0	2.438760	3.203271	0.365923
9	8	0	0.610759	2.978189	-1.419794
10	6	0	-0.127269	2.968367	1.151110
11	1	0	-0.342855	4.040003	1.152792
12	1	0	-1.013205	2.403243	0.854209
13	1	0	0.263242	2.654095	2.119385
14	8	0	0.307528	-1.410278	-0.385398
15	6	0	-0.868870	-2.126482	-0.846030
16	1	0	-0.840519	-3.142460	-0.435606
17	1	0	-0.857623	-2.187004	-1.939424
18	1	0	0.518340	0.271099	-0.290627
19	6	0	-2.062987	-1.354954	-0.354538
20	6	0	-2.723405	-1.726666	0.822025
21	6	0	-2.486986	-0.210355	-1.046533
22	6	0	-3.793697	-0.969436	1.300430
23	1	0	-2.406245	-2.615960	1. 360188
24	6	0	-3.551586	0.552726	-0. 564488
25	1	0	-1.998802	0.071040	-1.977131
26	6	0	-4.205705	0.172372	0.610879
27	1	0	-4.308458	-1.273376	2.206400
28	1	0	-3.886431	1.425303	-1.117202
29	1	0	-5.044056	0.755842	0.978609
30	6	0	2.528740	-1.649222	1.634718
31	1	0	2.824714	-2.700435	1.666949
32	1	0	3.203428	-1.092486	2.290613
33	1	0	1.506922	-1.556455	2.007821
34	6	0	1.905358	-1.692653	-2.253944

35	1	0	1.853744	-0.637472	-2.540791
36	1	0	2.906064	-2.065419	-2.492047
37	1	0	1.199556	-2.246390	-2.876949
38	1	0	1.667954	-2.967646	-0.527795

Conformer (66h)
Sum of electronic and thermal Free Energies $=-1185.485234$ Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	1.903821	-3.541364	-0.573576
2	1	0	1.769962	-3.931263	0.438238
3	1	0	2.926256	-3.753139	-0.901458
4	1	0	1.231078	-4.084227	-1.241524
5	6	0	1.622927	-2.043351	-0.632392
6	1	0	1.644332	-1.716833	-1.684914
7	6	0	2.668542	-1.200562	0.144154
8	1	0	3.642719	-1.338599	-0.340696
9	6	0	2.387221	0.270042	0.106361
10	1	0	3.202027	0.992665	0.195426
11	7	0	1.195127	0.746501	0.017078
12	16	0	0.875078	2.541122	-0.171611
13	8	0	2.176796	3.136882	0.078886
14	8	0	0.172020	2.631823	-1.437255
15	6	0	-0.250445	2.803069	1.198659
16	1	0	-0.515568	3.862951	1.161520
17	1	0	-1.135536	2.183538	1.039185
18	1	0	0.265589	2.570382	2.130576
19	8	0	0.340777	-1.694675	-0.075823
20	6	0	-0.834982	-2.183332	-0.783534
21	1	0	-0.997238	-3.232534	-0.519850
22	1	0	-0.654302	-2.114671	-1.864029
23	1	0	0.434565	0.025927	-0.067608
24	6	0	-1.993713	-1.318792	-0.366442
25	6	0	-2.783014	-1.667206	0.736687
26	6	0	-2.253712	-0.117218	-1.042948
27	6	0	-3.815141	-0.829288	1.159410
28	1	0	-2.592788	-2.599565	1.261303
29	6	0	-3.284293	0.724645	-0.618045
30	1	0	-1.668308	0.151943	-1.919374
31	6	0	-4.064816	0.368428	0.485296
32	1	0	-4.428633	-1.113459	2.008491
33	1	0	-3.492649	1.640338	-1.163034
34	1	0	-4.876474	1.013466	0.807335
35	6	0	2.823933	-1.590033	1.643084
36	1	0	3.240744	-2.596113	1.711048
37	1	0	3.508344	-0.915411	2.164944
38	1	0	1.854044	-1.571313	2.143906

Conformer (67h)

Sum of electronic and thermal Free Energies $=-1185.484067$ Hartrees

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-0.731122	3.138963	1.381392
2	1	0	-1.252918	2.334277	1. 909757
3	1	0	-1.338421	4.045160	1.445627
4	1	0	0.202135	3.339240	1.912561
5	6	0	-0.445357	2.767655	-0.074385
6	1	0	0.024611	3.620668	-0.582250
7	6	0	-1.712671	2.402744	-0.896215
8	1	0	-1.372423	2.256600	-1.937655
9	6	0	-2.299933	1.062168	-0.569810
10	1	0	-3.355568	0.867416	-0.778319
11	7	0	-1.619116	0.073316	-0.104087
12	16	0	-2.339279	-1.615878	0.000287
13	8	0	-3.736531	-1.395729	-0.333451
14	8	0	-1.429599	-2.424755	-0.785527
15	6	0	-2.133736	-1.944172	1.751481
16	1	0	-2.509693	-2.958990	1.905733
17	1	0	-1.071023	-1.895568	1. 993532
18	1	0	-2.726290	-1.226057	2.318845
19	8	0	0.424519	1.629001	-0.175486
20	6	0	1.847960	1.864784	0.011177
21	1	0	2.014674	2.362430	0.972413
22	1	0	2.184377	2.532415	-0.791595
23	1	0	-0.595215	0.251691	0.032029
24	6	0	2.549000	0.536928	-0.034517
25	6	0	2.920679	-0.110326	1.150938
26	6	0	2.808522	-0.083617	-1.264364
27	6	0	3.546623	-1.356743	1. 108769
28	1	0	2.737436	0.371339	2.108501
29	6	0	3.429553	-1.330693	-1.307338
30	1	0	2.532875	0.416552	-2.189182
31	6	0	3.799276	-1.968085	-0.120422
32	1	0	3.845752	-1.844232	2.031476
33	1	0	3.634082	-1.800892	-2.263957
34	1	0	4.292145	-2.934634	-0.154925
35	6	0	-2.795031	3.497235	-0.901545
36	1	0	-2.355733	4.450966	-1.202958
37	1	0	-3.587875	3.258123	-1.615319
38	1	0	-3.248829	3.629185	0.083521

2.6 References

1. Lo, A.; Gutierrez, D. A.; Toth-Williams, G.; Fettinger, J. C.; Shaw, J. T., 1,3Asymmetric Induction in Diastereoselective Allylations of Chiral N-Tosyl Imines. J. Org. Chem. 2022, 87 (5), 2773-2778.
2. Lait, S. M.; Rankic, D. A.; Keay, B. A., 1,3-Aminoalcohols and Their Derivatives in Asymmetric Organic Synthesis. Chem. Rev. 2007, 107 (3), 767-796.
3. Palchykov, V. A.; Gaponov, A. A., Chapter Four - 1,3-Amino Alcohols and Their Phenol Analogs in Heterocyclization Reactions. In Adv. Hetercycl. Chem., Scriven, E. F. V.; Ramsden, C. A., Eds. Academic Press: 2020; Vol. 131, pp 285-350.
4. Reetz, M. T.; Jung, A., 1,3-Asymmetric Induction in Addition Reactions of Chiral .Beta.Alkoxy Aldehydes: Efficient Chelation Control Via Lewis Acidic Titanium Reagents. J. Am. Chem. Soc. 1983, 105 (14), 4833-4835.
5. Reetz, M. T.; Kesseler, K.; Jung, A., Concerning the Role of Lewis Acids in Chelation Controlled Addition to Chiral Alkoxy Aldehydes. Tetrahedron Lett. 1984, 25 (7), 729732.
6. Kiyooka, S.-i.; Heathcock, C. H., Acyclic Stereoselection. 20. High Diastereofacial Selectivity in the Stannic Chloride Mediated Reactions of Allylsilanes with Chiral Aand B-Alkoxy Aldehydes. Tetrahedron Lett. 1983, 24 (44), 4765-4768.
7. Heathcock, C. H.; Kiyooka, S.; Blumenkopf, T. A., Acyclic Stereoselection. 22. Diastereofacial Selectivity in the Lewis Acid Mediated Reactions of Allylsilanes with Chiral Aldehydes and Enones. J. Org. Chem. 1984, 49 (22), 4214-4223.
8. Keck, G. E.; Castellino, S.; Wiley, M. R., Dramatic Effects of Oxygen Substituents on 1,3-Asymmetric Induction in Additions of Allyltriphenylstannane To .Beta.-Alkoxy Aldehydes: A Chemical and Spectroscopic Investigation. J. Org. Chem. 1986, 51 (26), 5478-5480.
9. Keck, G. E.; Castellino, S., On the Origins of Stereoselectivity in Chelation Controlled Nucleophilic Additions To .Beta.-Alkoxy Aldehydes: Solution Structures of Lewis Acid Complexes Via Nmr Spectroscopy. J. Am. Chem. Soc. 1986, 108 (13), 3847-3849.
10. Leitereg, T. J.; Cram, D. J., Studies in Stereochemistry. Xxxvii. Open-Chain Models for 1,3-Asymmetric Induction in Stereospecific Addition Polymerization. J. Am. Chem. Soc. 1968, 90 (15), 4011-4018.
11. Evans, D. A.; Duffy, J. L.; Dart, M. J., 1,3-Asymmetric Induction in the Aldol Addition Reactions of Methyl Ketone Enolates and Enolsilanes to B-Substituted Aldehydes. A Model for Chirality Transfer. Tetrahedron Lett. 1994, 35 (46), 8537-8540.
12. Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G., A Stereochemical Model for Merged 1,2- and 1,3-Asymmetric Induction in Diastereoselective Mukaiyama Aldol Addition Reactions and Related Processes. J. Am. Chem. Soc. 1996, 118 (18), 43224343.
13. Yamamoto, Y.; Komatsu, T.; Maruyama, K., Enantiodivergent 1,2- and 1,3Asymmetric Induction in A- and B-Alkoxyimines Via Metal Tuning and Stereodifferentiation. J. Chem. Soc., Chem. 1985, (12), 814-816.
14. Hou, X. L.; Zheng, X. L.; Dai, L. X., Addition of Diethylzinc to Imines Promoted by Lewis Acid. Tetrahedron Lett. 1998, 39 (38), 6949-6952.
15. Tanaka, N.; Ogawa, I.; Yoshigase, S.; Nokami, J., Regioselective Ring Opening of Benzylidene Acetal Protecting Group(S) of Hexopyranoside Derivatives by Dibal-H. Carbohydr. Res. 2008, 343 (15), 2675-2679.
16. Bouzide, A.; Sauvé, G., Highly Selective Silver(I) Oxide Mediated Monoprotection of Symmetrical Diols. Tetrahedron Lett. 1997, 38 (34), 5945-5948.
17. Stevens, R. V., Nucleophilic Additions to Tetrahydropyridinium Salts. Applications to Alkaloid Syntheses. Acc. Chem. Res. 1984, 17 (8), 289-296.
18. Miura, T.; Nakamuro, T.; Miyakawa, S.; Murakami, M., A Syn-Selective Aza-Aldol Reaction of Boron Aza-Enolates Generated from N-Sulfonyl-1,2,3-Triazoles and 9-Bbn-H. Angew. Chem. Int. Ed. 2016, 55 (30), 8732-8735.
19. Ayala, L.; Lucero, C. G.; Romero, J. A. C.; Tabacco, S. A.; Woerpel, K. A., Stereochemistry of Nucleophilic Substitution Reactions Depending Upon Substituent: Evidence for Electrostatic Stabilization of Pseudoaxial Conformers of Oxocarbenium Ions by Heteroatom Substituents. J. Am. Chem. Soc. 2003, 125 (50), 15521-15528.
20. Fürst, A.; Plattner, P. A., Über Steroide Und Sexualhormone. 160. Mitteilung. 2a, 3aUnd 2β, 3β-Oxido-Chlolestane; Konfiguration Der 2-Oxy-Cholestane. Helv. Chim. Acta. 1949, 32 (1), 275-283.
21. Ella-Menye, J.-R.; Dobbs, W.; Billet, M.; Klotz, P.; Mann, A., Unexpected 1,2 Syn Diastereoselectivity in the Three-Component 'Aza Sakurai-Hosomi' Reaction. Tetrahedron Lett. 2005, 46 (11), 1897-1900.
22. Pasunooti, K. K.; Leow, M. L.; Vedachalam, S.; Gorityala, B. K.; Liu, X.-W., A General and Mild Copper-Catalyzed Three-Component Synthesis of Protected Homoallyl Amines. Tetrahedron Lett. 2009, 50 (24), 2979-2981.
23. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
24. Becke, A. D., Density-Functional Thermochemistry. lii. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652.
25. Florence, G. J.; Morris, J. C.; Murray, R. G.; Vanga, R. R.; Osler, J. D.; Smith, T. K., Total Synthesis, Stereochemical Assignment, and Biological Activity of Chamuvarinin and Structural Analogues. Chem. Eur. J. 2013, 19 (25), 8309-8320.
26. Ren, H.; Wulff, W. D., Total Synthesis of Sedum Alkaloids Via Catalyst Controlled Aza-Cope Rearrangement and Hydroformylation with Formaldehyde. Org. Lett. 2013, 15 (2), 242-245.
27. Harada, T.; Egusa, T.; Igarashi, Y.; Kinugasa, M.; Oku, A., Inter- and Intramolecular Differentiation of Enantiotopic Dioxane Acetals through Oxazaborolidinone-Mediated Enantioselective Ring-Cleavage Reaction: Kinetic Resolution of Racemic 1,3Alkanediols and Asymmetric Desymmetrization of Meso-1,3-Polyols. J. Org. Chem. 2002, 67 (20), 7080-7090.
28. Hiroyuki, I.; Hiroki, S.; Hideo, K.; Kiyoyuki, Y., Enantioselective Total Synthesis of Doliculide, a Potent Cytotoxic Cyclodepsipeptide of Marine Origin and StructureCytotoxicity Relationships of Synthetic Doliculide Congeners. Tetrahedron 1994, 50 (45), 12853-12882.
29. Merkley, N.; Warkentin, J., Thermolysis of a Spiro-Fused Oxadiazoline: The Carbonyl Ylide Cyclic Carbene Diradical Sequence. Can. J. Chem. 2002, 80 (9), 1187-1195.
30. Tatina, M.; Yousuf, S. K.; Aravinda, S.; Singh, B.; Mukherjee, D., Cyanuric Chloride/Sodium Borohydride: A New Reagent Combination for Reductive Opening of 4,6-Benzylidene Acetals of Carbohydrates to Primary Alcohols. Carbohydr Res 2013, 381, 142-5.
31. Hoffmann, R.; Brückner, R., Asymmetric Induction in Reductively Initiated [2,3]-Wittig and Retro [1,4]-Brook Rearrangements of Secondary Carbanions. Chemische Berichte 1992, 125 (6), 1471-1484.
32. Makrerougras, M.; Coffinier, R.; Oger, S.; Chevalier, A.; Sabot, C.; Franck, X., Total Synthesis and Structural Revision of Chaetoviridins A. Org. Lett. 2017, 19 (15), 41464149.
33. Bosse, K.; Marineau, J.; Nason, D. M.; Fliri, A. J.; Segelstein, B. E.; Desai, K.; Volkmann, R. A., Expanding the Medicinal Chemistry Toolbox: Stereospecific Generation of Methyl Group-Containing Propylene Linkers. Tetrahedron Lett. 2006, 47 (41), 7285-7287.
34. Skotnitzki, J.; Spessert, L.; Knochel, P., Regio- and Stereoselective Allylic Substitutions of Chiral Secondary Alkylcopper Reagents: Total Synthesis of (+)-Lasiol, (+)-13-Norfaranal, and (+)-Faranal. Angew. Chem. Int. Ed. 2019, 58 (5), 1509-1514.
35. Schläger, N.; Kirschning, A., Substrate-Controlled Stereoselectivity in the Yamamoto Aldol Reaction. Org. Biomol. Chem. 2012, 10 (38), 7721-7729.
36. Zanato, C.; Pignataro, L.; Hao, Z.; Gennari, C., A Practical Synthesis of the C1-C9 Fragment of Dictyostatin. Synthesis 2008, 2008 (14), 2158-2162.
37. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988, 37 (2), 785-789.

[^0]: ${ }^{a}$ Reactions run with 1.1 equiv. of Lewis acid and 1.5 equiv. of nucleophile.
 ${ }^{b}$ Reactions monitored by TLC and warmed to drive to completion within a uniform time-frame.
 ${ }^{c}$ Determined by integration of unpurified ${ }^{1} \mathrm{H}$ NMR.
 ${ }^{d}$ Determined using 1,3,5 trimethylbenzene as an internal standard.

