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A Generalized Proportionate-Type Normalized Subband Adaptive 
Filter

Kuan-Lin Chen, Ching-Hua Lee, Bhaskar D. Rao, Harinath Garudadri
Department of Electrical and Computer Engineering University of California, San Diego

Abstract

We show that a new design criterion, i.e., the least squares on subband errors regularized by a 

weighted norm, can be used to generalize the proportionate-type normalized subband adaptive 

filtering (PtNSAF) framework. The new criterion directly penalizes subband errors and includes 

a sparsity penalty term which is minimized using the damped regularized Newton’s method. The 

impact of the proposed generalized PtNSAF (GPtNSAF) is studied for the system identification 

problem via computer simulations. Specifically, we study the effects of using different numbers 

of subbands and various sparsity penalty terms for quasi-sparse, sparse, and dispersive systems. 

The results show that the benefit of increasing the number of subbands is larger than promoting 

sparsity of the estimated filter coefficients when the target system is quasi-sparse or dispersive. 

On the other hand, for sparse target systems, promoting sparsity becomes more important. More 

importantly, the two aspects provide complementary and additive benefits to the GPtNSAF for 

speeding up convergence.

Index Terms—

PtNSAF; LMS; system identification; sparsity

I. Introduction

The classic least mean square (LMS) and normalized LMS (NLMS) [1]–[3] both show 

degraded convergence behaviors when the input signal is colored. This problem can be 

addressed by whitening the colored input using a family of conventional subband adaptive 

filters (SAFs) [4] where each subband utilizes an adaptive filter independently. However, 

they are known to suffer from the problem of aliasing and band-edge effects [4]. To address 

this issue, a family of new SAFs has been proposed in [5]–[7] where each subband error 

signal is normalized by the corresponding input power and aggregated to update the fullband 

filter taps. It has been shown that the family of new SAFs can be derived from three 

different perspectives: i) gradient descent on weighted subband errors [5], ii) polyphase 

decomposition [6], and iii) constrained subband updates [7]. These new SAFs are termed 

normalized SAF (NSAF) due to their identical behavior. Hence, the NSAF can be viewed as 

a subband generalization of the NLMS [8].
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In [9], the proportionate NLMS (PNLMS) was introduced to improve convergence behavior 

by intuitively assigning a step size proportional to the magnitude of the estimated coefficient 

to each filter tap. Unfortunately, PNLMS tends to slow down after initial fast convergence 

[10]. Many PNLMS variants were later proposed to address this convergence issue and 

[11] provides a good review. Among those variants, the pNLMS [12] has been proposed 

as a generalization of PNLMS and was derived by minimizing a modified mean squared 

error criterion regularized by the p-norm-like diversity measure. The p value can be chosen 

to promote different degrees of sparsity and the effectiveness has been verified in the 

application of adaptive feedback cancellation [13].

A family of proportionate NSAFs (PNSAFs) [14]–[17] has been proposed on top of NSAF 

to speed up the convergence of adaptive filters by simultaneously exploiting the sparse 

structure of the fullband filter taps and decorrelating the colored input signals. However, 

these PtNSAFs were proposed in an intuitive way and no theoretical convergence analysis 

was conducted. In [18], a zero-attracting PNSAF (ZA-PNSAF) was derived from an 

optimization criterion, yet, the proportionate matrix used does not have theoretical support 

and the ability to fit in with different degrees of sparsity. Besides, all these previous works 

use a decimation factor which is equal to the number of subbands in PNSAFs. Due to 

the nature of the proportionate matrix (function of current filter taps), an analysis with no 

decimation on PtNSAF is needed.

In this paper, we propose a generalized PtNSAF (GPtNSAF) which is derived utilizing a 

well posed optimization criterion reflecting the filtering objectives, as well as based on well 

founded optimization algorithmic principles. Furthermore, the proposed filtering structure 

can be operated on any decimation factor. We show that GPtNSAF is a generalization 

of the PtNSAF, proportionate-type affine projection algorithm (PtAPA), NSAF, PtNLMS, 

and NLMS. The effectiveness of the proposed adaptive filter is verified on different 

environments including quasi-sparse (compressible), sparse, and dispersive target systems 

via computer simulations.

Signal Model:

Before deriving the proposed adaptive filter, we define some useful notations and the signal 

model in Fig. 1. H ∈ ℝN × M is an M-channel analysis filter bank matrix where each of the 

analysis filter is of length N and each column of H is a band-pass filter, i.e., H = [h1 h2 

⋯ hM]. e(n) = e(n) e(n − 1) ⋯ e(n − N + 1) T ∈ ℝN is the fullband error vector where e(n) 

is the error in the fullband at time n. U(n) = u(n) u(n − 1) ⋯ u(n − N + 1) ∈ ℝL × N is the 

fullband input data matrix where u(n) = u(n) u(n − 1) ⋯ u(n − L + 1) T ∈ ℝL is the fullband 

input vector. eb(n) = e1(n) e2(n) ⋯ eM(n) T = h1
Te(n) h2

Te(n) ⋯ hM
T e(n) T = HTe(n) ∈ ℝM is 

the subband error vector where ei(n) ∈ ℝ is the error in the ith subband at time n. 

Ub(n) = u1(n) u2(n) ⋯ uM(n) = U(n)H ∈ ℝL × M is the subband input data matrix where 

ui(n) = ui(n) ui(n − 1) ⋯ ui(n − L + 1) T ∈ ℝL is the input vector at the ith subband which 

can be computed by ui(n) = U(n)hi. Typically, we require L ≥ M to avoid the 

overcomplete representation of the input signal and the singularity introduced by the 
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correlation matrix of the subband input data matrix [7]. Next, by defining the fullband 

desire vector as d(n) = d(n) d(n − 1) ⋯ d(n − N + 1) T ∈ ℝN where d(n) = uT(n)s0 + v(n), 

we are able to expand the fullband error vector as e(n) = d(n) − UT(n)s(n). s0 ∈ ℝL

denotes the target system and v(n) ∈ ℝ is the system noise. s(n) = s1(n) s2(n) ⋯ sL(n) T ∈ ℝL

is the adaptive filter taps at time n. Finally, we define the proportionate matrix 

W(n) = diag w1(n), w2(n), ⋯, wL(n) ∈ ℝL × L as a positive definite matrix which promotes 

the sparse structure of s(n + 1); it takes the adaptive filter s(n) at current time n 

as its input; hence, W(n) is given in each iteration. In Fig. 1, w(n) ∈ ℝL is defined 

as w(n) = w1(n) w2(n) ⋯ wL(n) T . Finally, s ∈ ℝL is the adaptive filter which is an 

optimization variable.

II. The Proposed Generalized Proportionate-Type Normalized Subband 

Adaptive Filter

In this section, we propose a novel optimization criterion and the derivation for the 

GPtNSAF which exploits the structures of the input signal and the underlying unknown 

(target) system. We find that the PtNSAF, PtAPA, NSAF, PtNLMS, and NLMS are all 

special cases and can be obtained by using different settings of the hyperparameters in 

GPtNSAF. We focus on the derivation where there is no decimation. One can easily show 

that the proposed adaptive filter can be readily extended to include an arbitrary decimation 

factor.

A. The Proposed Criterion: The Least Squares on Subband Errors Regularized by a 
Weighted Norm

Instead of minimizing the fullband squared error [19], we minimize the sum of the squared 

error in each subband with a sparsity penalty term. We propose the following cost function:

J(s) ≜ ∑
i = 1

M
ei(n, s) 2 + τ s

W−1(n)

2
(1)

where ei(n, s) ≜ hi
Te(n, s) = hi

T d(n) − UT (n)s  and we have used s W−1(n)
2

 to stand for the 

weighted norm squared sTW−1(n)s; this regularization term is designed to expedite the 

system identification process by introducing a weighted norm for filter taps. In this paper, 

we use the W(n) suggested in [12], [13], [19] for promoting different degrees of sparsity 

due to its theoretical support. Since the task of correctly identifying the underlying unknown 

system is more important than promoting the sparsity of the filter taps, the regularization 

parameter τ > 0 is set to a very small number. In order to find an LMS-like adaptation, we 

minimize the cost function (1) by using the damped regularized Newton’s method.

B. Deriving GPtNSAF

To proceed, we perform the affine scaling transform (AST) [20] on the optimization variable 

s:
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q ≜ W− 1
2(n)s . (2)

Applying (2) into (1) , the equivalent optimization problem 

minqJ(q) = ∑i = 1
M ei n, W

1
2(n)q

2
+ τ q

2

2
 in q domain can be easily solved. We define the 

a posteriori AST variable at time n as q(n ∣ n) ≜ W− 1
2(n)s(n) and the a priori AST variable as 

q(n + 1 ∣ n) ≜ W− 1
2(n)s(n + 1).

Now, we consider the damped regularized Newton’s method for the update rule on 

minimizing J(q), i.e., q(n + 1 ∣ n) = q(n ∣ n) − μ ∇q
2J(q(n ∣ n)) + 2δI −1∇qJ(q(n ∣ n)) where μ > 

0 is the step size for adaptation and δ > 0 is a regularization parameter. The gradient of J(q) 

is given by

∇qJ(q(n ∣ n)) = − 2W
1
2(n)Ub(n)eb(n) + 2τq(n ∣ n) . (3)

Next, the Hessian is given by

∇q
2J(q(n ∣ n)) = 2W

1
2(n)Ub(n)Ub

T(n)W
1
2(n) + 2τI . (4)

Therefore, the update rule on q domain is given by

q(n + 1 ∣ n) = I − μτ
δ + τ [I − Ψ(n)] q(n ∣ n) + μW

1
2(n)Ub(n)Φ(n)eb(n) (5)

where we have applied the Woodbury matrix identity to avoid large matrix inversion (L-by-

L) in the damped regularized Newton’s method and

Ψ(n) ≜ W
1
2(n)Ub(n)Φ(n)Ub

T(n)W
1
2(n) . (6)

Notice that the inverse of the regularized weighted subband correlation matrix, i.e.,

Φ(n) ≜ (δ + τ)IM + Ub
T(n)W(n)Ub(n) −1

(7)

is an M-by-M matrix inversion (L ≫ M in most cases). Converting q back to the s domain, 

we have

s(n + 1) = I − μτ
δ + τ [I − Ψ(n)] s(n) + μW(n)Ub(n)Φ(n)eb(n) . (8)

Finally, setting τ → 0+ leads to the update rule for the GPtNSAF: s(n + 1) = s(n) + μg(n) 

where
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g(n) = W(n)Ub(n) δIM + Ub
T(n)W(n)Ub(n) −1eb(n) . (9)

C. Special Cases of the GPtNSAF

1. PtNSAF: By selecting H as the set of eigenvectors for the 

weighted correlation matrix UT(n)W(n)U(n), we have the PtNSAF: 

g(n) = ∑i = 1
M ei(n)

uiT(n)W(n)ui(n) + δ
W(n)ui(n).

2. PtAPA: By choosing H = I, we have the PtAPA: g(n) = W(n)U(n) [δIM + 

UT(n)W(n)U(n)]−1e(n). Obviously, the APA is directly followed by setting W(n) 

= I.

3. NSAF: Based on PtNSAF, setting W(n) = I gives the NSAF: 

g(n) = ∑i = 1
M ei(n)

uiT(n)ui(n) + δ
ui(n).

4. PtNLMS: Setting M = N = 1 yields H = 1 ∈ ℝ, thus we get the PtNLMS: 

g(n) = e(n)
uT(n)W(n)u(n) + δ

W(n)u(n).

5. NLMS: Based on PtNLMS, setting W(n) = I gives the NLMS: 

g(n) = e(n)
uT(n)u(n) + δ

u(n).

III. Simulation Results

We study the convergence performance of the proposed GPtNSAF and some of its special 

cases including PtNSAF, NSAF, PtNLMS, and NLMS in a system identification scenario via 

computer simulations.

A. Experimental Setup

The impulse responses (IRs) of the target systems are shown in Fig. 2. The input signal is a 

first order autoregressive (AR) process defined by u(n) = ρu(n − 1) + x(n) where ρ = 0.9 and 

x(n) is a zero mean and unit variance white Gaussian noise. In the simulations, we discarded 

the first 2000 samples of u(n) to make sure the stationarity of the AR process. The system 

noise v(n) is a zero mean white Gaussian noise with variance σv2 = 10−3 which gives −30 dB 

noise level (Jmin). The length of the adaptive filter L = 256 was set to the same size as in Fig. 

2 and all taps were initialized by 0.

The analysis bank H is a cosine-modulated pseudo-quadrature mirror filter (QMF) bank. We 

maintain the same transition bandwidth of the analysis filters for M = 2, 4, 8 so that the 

comparison is fair. Therefore, the length of the analysis filter N goes up with the number of 

subbands M. For M = 1, 2, 4, 8, we use N = 1, 16, 30, 60, respectively.

We used the sparsity promoting proportionate matrix
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wi(n) = si(n) + c 2 − p, i = 1, 2, ⋯, L (10)

suggested in [12], [13], [19] so that we were allowed to adjust the degree of promoting 

sparsity by a single scalar p ∈ [1.0, 2.0] and a regularization parameter c > 0.

The mean squared error (MSE) at time n is defined by J(n) = E |e(n)|2  where E[ ⋅ ] denotes 

the mathematical expectation. The MSE curves were obtained as the ensemble average over 

1000 Monte Carlo runs and normalized to start from 0 dB. For all MSE simulations, we used 

μ = 0.2
M , δ = 10−6, and c = 10−3.

B. Studying M and W(n) in GPtNSAF

We aim to show that the benefits of increasing the number of subbands M and incorporating 

the proportionate matrix W(n) are complementary and additive for fast convergence. Fig. 

3 shows the MSE curves of GPtNSAF using sparsity promoting proportionate matrix with 

different p values for M = 1, 2, 4, 8. According to the convergence behaviors in Fig. 3, the 

best p values on each target system are consistent across different numbers of subbands. 

Therefore, we suggest p ∈ [1.2, 1.5], p ∈ [1.0, 1.2], and p ∈ [1.8, 2.0] for quasi-sparse, 

sparse, and dispersive target systems, respectively. Notice that the convergence speed is 

significantly improved for all target systems as the number of subbands increases. However, 

the performance gain is saturated at M = 8. This is mainly due to the design of the analysis 

filter bank in which we did not emphasize on any particular bands. Instead, the spectrum is 

equally divided by the cosine-modulated pseudo-QMF bank.

In Fig. 4, we use the suggested p values for M = 1, 2, 4, 8. By increasing the number 

of subbands, the MSE curves with colored input signal approach the ideal case, i.e., the 

GPtNSAF with M = 1 using white input signal which is equivalent to the propotionate-type 

NLMS with white input.

Fig. 5(a) compares the convergence behaviors of GPtNSAF and its special cases for 

the quasi-sparse target system of Fig. 2(a). One interesting finding here is that NSAF 

outperforms PtNLMS in terms of the convergence speed on the whole signal duration 

and even for the initial stage. This indicates that the benefit of increasing the number of 

subbands is larger than promoting fullband sparsity in the time domain when the target 

system is quasi-sparse. Besides, PtNSAF and PtNLMS have slower convergence rate when 

they reach steady state. Note that the convergence speed of NSAF does not slow down but 

PtNSAF and PtNLMS do.

On the other hand, promoting sparsity is more important than increasing the number of 

subbands for sparse target systems according to Fig. 5(b). In this case, PtNLMS outperforms 

NSAF. Still, we observe the same degraded convergence behavior after the fast converence 

for PtNLMS. For the dispersive case in Fig. 5(c), the PtNLMS and PtNSAF almost reduce to 

NLMS and NSAF, respectively. Note that p = 1.8 yields W(n) ≈ I.
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Lastly, Fig. 5 shows that PtNSAF approximates GPtNSAF under different degrees of 

sparsity since the magnitude responses of the analysis filters do not significantly overlap. 

To sum up, GPtNSAF yields the best convergence speed than the others as we expected 

under all cases.

IV. Conclusion

A generalized PtNSAF is proposed to further improve the convergence speed based on 

directly minimizing subband errors with a sparsity penalty term. Different adaptive filters 

including the PtNSAF, PtAPA, NSAF, PtNLMS, and NLMS can be obtained by choosing 

the corresponding hyperparameters of GPtNSAF. The benefits of increasing the number 

of subbands and promoting different degrees of sparsity of the estimated filter coefficients 

are compared under various environments. The simulation results show that the proposed 

GPtNSAF is suitable for identifying quasi-sparse, sparse, and dispersive systems under 

colored excitation. At the cost of inverting a small matrix, the proposed GPtNSAF is 

superior than its special cases in accelerating the convergence.
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Fig. 1: 
Block diagram of the GPtNSAF.
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Fig. 2: 
(a), (b), and (c) are three different IRs (target systems) of length L = 256 with different 

degrees of sparsity. (a) is a measured acoustic feedback path IR. (b) and (c) are artificial IRs. 

Notice that the IRs in (a), (b), and (c) have the same energy.
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Fig. 3: 
The MSE curves of GPtNSAF using sparsity promoting proportionate matrix with different 

p values for M = 1, 2, 4, 8. The target system for (a), (d), (g), and (j) is in Fig. 2(a); (b), (e), 

(h), and (k) is in Fig. 2(b); (c), (f), (i), and (l) is in Fig. 2(c). For the sake of comparing the 

different W(n), M, and target systems which have different degrees of sparsity, we visualize 

these MSE curves with the same number of input samples here.
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Fig. 4: 
The MSE curves of GPtNSAF using sparsity promoting proportionate matrix with the 

suggested p values for M = 1, 2, 4, 8. Note that the curve for M = 8 in (b) is overlapped with 

the ideal case.
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Fig. 5: 
The comparison of convergence behaviors for GPtNSAF and its special cases in the 

quasi-sparse, sparse, and dispersive target systems of Fig. 2. We use different p for the 

proportionate matrix but the same M = 8 for NSAF.
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