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FORWARD 

This work concerns itself with some basic physical processes 

pertinent to the interstellar medium. Its assumptions are" guided by 

observational evidence to the extent possible. If a simplifying assumption 

becomes necessary, it is adopted only if a more realistic one is not 

expected to alter the qualitative nature of our conclusions. 

The internal structure and, in particular, the relative length of 

the sections of this dissertation is determined by three objectives. 

First, the work must be sufficiently self-contained. This is main-

ly for the benefit of a student of physics beginning his research on large-

scale interstellar phenomena involving the magnetic field. It accounts 

for the relatively lengthy but critical review of the literature in§ I 

through IV and in § VI. 

Second, all arguments presented must be related to the central 

theme (namely, the formation, equilibrium, and stability of interstellar 

clouds), which in turn bears on the process of star formation. It is 

hoped that this will render the manuscript a coherent exposition. 

Finally, enough original results must be explained clearly to 

provide stimulation for the specialist (theorist and observer) for further 

study of the subject matter (§ V and § VII). A special effort is made to 

interpret physically all formalism, assumptions, and conclusions. 
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Static Equilibria of the Interstellar Gas 

in the Presence of Magnetic and Gravitational Fields 

by 

Telemachos Charalambous Mouschovias 

ABSTRACT 

No exact self-consistent equilibrium calculations exist for 

(any model of) the system of the interstellar gas and the frozen

in magnetic field. On a large scale (",-1 kpc) this system is af-

fected by the vertical galactic gravitational field, while on a 

small scale (Nl pc) the self-gravitation of the gas comes into 

play and is responsible for the collapse of some clouds to form 

stars. We-determine accessible equilibrium states for the gas-

field system on both of these scales. In each case our main con-

clusions are summarized as follows. 

(i) Final equilibrium states of the gas-field system in the ga-

lactic gravitational field can be reached after a magnetic Ray-

leigh-Taylor instability develops. We show that the tension of 

the field lines will eventually stop their inflation. Even 

though we solve a time-independent problem, we connect a final 

state with the stratified initial equilibrium state by conserv

ing the mass-to-flux ratio in each flux tube of the system. A 

transition in time can therefore be made between them through 

continuous deformations of the field lines. 

Final states are lower in total energy than corresponding 

initial states. Their properties depend quantitatively on the 

Present address: Department of Astrophysical, Princeton University, 
Princeton, New Jersey 08540. 
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horizontal (but not so much on the vertical) wavelength of the 

initial perturbation. A striking feature of the final states is 

that the Bcale height of the gas increases (decreases) where the 

gas density increases (decreases). The characteristics of our 

final states are in agreement with observations in both our Gala-

xy and in M 81. 

(ii) We determine equilibrium states for massive interstellar 

clouds, whose electical conductivity is extremely high. Self-

gravity and the pressure of, the hot and tenuous intercloud medi-

um bind them, in general, against the disruptive effects of their 

internal pressure and magnetic stresses. The surface of a cloud 

is a free boundary determined by the requirement that there exist 

pressure balance across it. We find that a cloud becomes oblate 

with its major axis normal to the field lines. For a fixed mass 

(external pressure) the flattening increases as either the mag

netic field or the external pressure (mass) increases. For a 

given magnetic flux threading the cloud and a given mass (exter-

nal pressure), no equilibrium solutions exist if the external 

pressure (mass) exceeds some critical value. For example, for a 

background field of 3.54 microgauss and an intercloud pressure of 

1800 k deg/cm3, an H I cloud of temperature equal to 50 OK will 

collapse if its mass exceeds about 1320 solar masses. In this 

critical state, the surface density through the center of the 
. -3 -3 2 

cloud is in the range 10.6 JC 10 - 23.5 x 10 grams/em de-

pending on the orientation of the line of sight. 
K 

We determine the exponent K. in the relation Bc cC ~c 

. between the magnetic field and the gas density at the cloud cen-

. . 
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ter. It depends on the ratio of the.magnetic and gas pressures 

in the cloud. It is certainly smaller than 2/3 (isotropic con-

traction) and it decreases further the stronger the magnetic 

field. It is likely to be less than 1/2 for much of the life time 

of a cloud. 

An alternative mechanism capable of explaining large line 

widths in molecular clouds consists of oscillations of a (mag-

netic) cloud as a whole about equilibrium states such as the 

ones which we have calculated. 

We also discuss problems related to the formation of inter-

stellar clouds as well as star formation. Most significantly, we 

suggest that the observed inefficiency of the ~tar formation 

process cannot be attributed to the birth of an 0 7, or an earli-

er type star within a collapsing cloud, but can naturally be ex-

plained by magnetic effects in a contracting and, therefore, 

nonuniform cloud. 

(" -c- " 1 
/ .. /". 1. . ............. {, . ~' ........ "-........ . 

(S1gna\ure) i! 

Protessor George B. Field 

Dissertation Chairman 
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I. INTRODUCTION 

A. Motivation 

Undisputed observational evidence indicates a strong correlation in 

space between young stars and relatively dense concentrations of inter-

stellar matter (Baade 1944). This led to the hypothesis that stars are 

in fact born out of the surrounding matter. Since young stars are also 

seen to form predominantly in groups. it follows that they form either 

out of a single. massive condensation of interstellar matter that fragments 

while collapsing. or out of small-scale. low-mass structures within a 

large-scale condensation that undergo collapse almost simultaneously. 

The two processes need not be mutually exclusive. especially since ob-

servations show a hot and tenuOus interstellar medium in which there 

exist both cold "clouds" ranging in mass from several to a few thousand 

solar masses. as well as "cloud complexes" whose mass. combined with the 

6 mass of the embedded young stars, may be as large as 10 ~. Thus. if 

an interstellar cloud is presumed to be the entity that gives birth to 

stars. a theory of star formation must ultimately answer the following 

questions: 

i) How do individual interstellar clouds (with such a wide range 

of masses) and cloud complexes form? 

ii) Given a set of physical parameters sufficient to describe an 

interstellar cloud and its environment. 'what are the equilibrium states. 

if any, accessible to the cloud? 

iii) Under what conditions does an interstellar cloud evolve away 

from (or avoid altogether) its accessible equilibrium state(s), and can 

these,conditions be met in the interstellar medium? 

Although this is not a complete set of questions whose answers a theory 
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of star formation must provide. it is nevertheless a fundamental set insofar 

as it aims at an understanding of the basic mechanical. forces that 

govern the behavior of the interstellar medium as it relates to star 

formation. 

The interstellar medium is a complex system far from thermodynamic 

equilibrium. In it thermal, turbulent and ordered motions. radiation, 

cosmic rays. magnetic and gravitational fields store energies in comparable 

densities, thus rendering a detailed dynamical description a formidable 

task. The apparent complexities of the physical system necessitate 

idealizations in any theoretical description. Seemingly important features 

of the interstellar medium are isolated. abstracted and used as assumptions 

in mathematical models. whose predictions are then compared with observations. 

Discrepancies between predict;ons and observations lead to improvements of 

the original assumptions and. consequently. to a more accurate representation 

of the physical system. Models for the interstellar medium have gone through 

many such iterations. Yet. the above three fundamental questions concerning 

the formation. equilibrium. and stability of interstellar clouds and. 

ultimately. the process of star formation remain unanswered. 

B. Background and Perspective 

This paper undertakes to decipher the nonlinear interaction among 

gravitational, pressure, and magnetic forces under typical interstellar 

conditions. The gravitational instability of a uniform (non-equilibrium) 

gas was studied early in the twentieth century (Jeans 1928). The 

investigation of the equilibrium of an isothermal sphere, bounded by a 

constant external pressure and supported by internal pressure gradients 

against self-gravitation, provided us with much quantitative information 

such as the largest ("critical") mass that may still exist in equilibrium 
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at a given internal temperature and a fixed external pressure (Ebert 1955, 

1957; Bonnor 1956; McCrea 1957). Studies of the equilibrium in a direction 

parallel to the axis of symmetry of a gaseous, self-gravitating disk 

(Spitzer 1942; Ledoux 1951) were extended to include the effect of rotation 

and the growth of perturbations in the plane of the disk (Fricke 1954; 

Safranov 1960a, 1960b; Goldreich and Lynden-Bell 1965). But it was only 

recently that theorists paid due attention to the interstellar magnetic 

field, which for many years had been considered as an undesirable impediment 

to the processes of cloud collapse and star formation. At about the same 

time that E. N. Parker (1966) was demonstrating that the interstellar gas, 

which is partially supported by magnetic and cosmic-ray pressures against 

the galactic gravitational field, could be subject to a magnetic Rayleigh

Taylor instability that tends to accumulate the gas into clumps, Mestel 

(1966) and Strittmatter (1966) were obtaining criteria for the collapse 

of a cold, self-gravitating, magnetic cloud in a direction perpendicular 

to the field. Thus, the role of the magnetic field in the formation, 

equilibrium and stability of interstellar clouds was brought to the fore-

ground. The determination of equilibrium states for the highly conducting 

interstellar gas has been restricted to models mathematically tractable 

(Lerche 1967; E. N. Parker 1968a; D. A. Parker 1973), rather than models 

preserving the essential features of the interstellar medium not the 

least consequential of which is a magnetic field "frozen-in" the matter. 

In pursuit of an understanding of the interplay among gravitational, 

pressure and magnetic forces that may produce observable entities such 

as clouds and stars, we proceed on two fronts. First, we study these 

forces on a large scale. E. N. Parker's suggestion, that interstellar 

clouds may be nothing more than clumps of gas held in magnetic field 
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"valleys" by the vertical gravitational field of the Galaxy, is a 

reasonable possibility especially since (f) self-gravitation for most 

interstellar clouds is several orders of magnitude weaker than that 

required for binding, and (ii)observations show an intimate association 

between ,the interstellar gas and field. We, therefore, seek final 

equilibrium states for the gas-field-gravity system that Parker (1966) 

showed to be unstable. Our choice is between a brute-force numerical 

solution of the magnetohydrodynamic (MHO) equations and an elegant reduction 

and solution of the magnetohydrostatic (MHS) equations. We follow the 

latter path. It rewards us with an insight into the basic physics of the 

problem. The challenge is to incorporate the assumption of flux-freezing 

in a time-independent problem; and then to solve the resulting equ~tion(s) 

and compare the results with observations [see Mouschovias 1973, 1974 

(Paper 1); reprint attached]. Here. we shall extend the formalism of 

Paper I to include the cosmic-ray gas. Contrary to previous expectations 

(Parker 1968b), the cosmic rays may not inflate the field lines forever, 

that is, an equilibrium state of the gas-field-gravity system may still be 

possible in the presence of cosmic rays.' Second, we study the same forces 

on a (relatively) srnallscale--that of an individual interstellar cloud, 

held in a delicate balance by its internal pressure and a frozen-in field 

against self-gravitation and an external pressure, exerted by a hot and' 

tenuous inteY"cloud medium; the magnetic field threads both media, which 

are highly conducting. Presumably, such a cloud would give birth to 

stars upon collapse and fragmentation. We, therefore, obtain equilibrium 

states for a wide range of pertinent physical parameters and we determine 

"critical" values for them. Our endeavors on these fronts carry us a 

significant step forward in our quest for answers to the aforementioned 

three fundamental· questions. In both, our large-scale and small-scale 

studies, we discuss possible refinements of our work. 
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II. FORMATION AND EQUILIBRIUM OF NON-GRAVITATING INTERSTELLAR CLOUDS: 
SMALL-SCALE CONDENSATIONS 

A. Thermal Instability 

1. A Steady-State Model 

Spitzer's (1951) suggestion that the cold and dense interstellar 

clouds are in pressure equilibrium with a hot and tenuous intercloud 

medium gained new impetus because of important theoretical and observational 

developments. On theoretical grounds, Hayakawa, Nishimura and Takayanagi 

(1961) concluded that, if a sufficient flux of low-energy (1 - 100 Mev) 

cosmic rays is present, it can ionize and heat (by the produced secondary 

electrons) the interstellar clouds up to the observed temperatures. 

Field (1962) showed that a low-density, neutral intercloud medium can be 

maintained at a high temperature (_ 104 oK) by cosmic-ray heating, thus 

providing the pressure necessary for confining the interstellar clouds. 

On the other hand, Heiles (1968) found evidence for an intercloud medium 

with a density of 0.2 cm-3 and a velocity dispersion of 6 km/sec (implying 

an upper limit on its temperature of several thousand degrees). Subsequent 

work by Pikel'ner (1967), Field, Goldsmith, and Habing (1969), and Spitzer 

and Scott (1969) established that two thermally stable, nearly isothermal 

phases can exist in pressure equilibrium in the interstellar medium: a 

-3 4 0 hot, tenuous intercloud medium (n - 0.2 cm ,T - 10 K) and cool, dense 

2 -3 0 clouds (n - 10 cm ,T - 20 K). What is crucial to the theoretical 

establishment of the possibility of the existence of two stable phases 

is a heating mechani~m directly proportional to the gas density [for 

example, low-energy cosmic rays; soft X-rays (Bergeron and Souffrin 1971; 

Habing and Goldsmith 1971)] and a cooling mechanism proportional to the 

second power of the gas density (for example, collisional excitation 

followed by radiative de-excitation in spectral lines at which the medium 
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is optically thin). 

In this steady-state, two-phase picture of the interstellar medium, 

matter "condenses" from the intercloud to the cloud phase if the density 

of the nearly isothermal interc10ud gas increases beyond some critical 

value, thus causing a rise in pressure that cannot be maintained. The 

critical point marks the onset of a thermal instability (Field 1965) that 

proceeds almost isobarica11y and effects the transition from the tenuous 

to the dense phase. This transition (assumed to take place at a fixed 

degree of ionization) relieves the excess pressure so that the ambient 

pressure is maintained at the critical value (Field et al. 1969). If the 

actual pressure of the intercloud medium is below the calculated value, 

all interstellar matter must exist in the rarefied phase according to 

this model. Since 2l-cm observations have established the existence of 

cold, dense clouds (for example, Clark 1965; Hughes, Thompson, and 

Colvin 1971; Radhakrishnan et al. 1971) one must postulate that the 

intercloud pressure is at the critical point. Under this postulate and 

the assumption of hydrostatic equilibrium in the vertical gravitational 

field of the Galaxy, Field et al. (1969) estimate that 75 percent of the 

gas must be in the dense phase. 

As a "phase transition" occurs it is possible for electrons to re

combine onto hydrogen ions. Schatzman (1958) had studied an instability 

resulting from a reduction in pressure that accompanies the recombination 

process. Goldsmith (1970) and Defouw (1970), working independently, 

extended Field's thermal-instability criterion to account for a varying 

degree of ionization. Goldsmith followed the instability numerically 

(in one space dimension) and observed the details of the transition from 

the tenuous to the dense phase of this model of the interstellar medium. 
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Once again there exists a critical value of the gas density. Beyond 

this density, efficient radiative recombination of electrons onto 

protons causes a rapid decline in the .equilibirum temperature. Cosmic-

ray heating cannot keep pace with the rapid losses, and the pressure drops 

below its ambient value while the density continues to increase. Although 
• 0 

the new degree of freedom, that is, recombination, has altered the details 

of the process, the net result is a transition from the tenuous to the 

dense phase, as before. 

2. A Time-Dependent Model 

A thermal instability may also develop in a cooling (rather than a 

nearly isothermal) medium regardless of the particular value of the ambient 

pressure. The criterion for this instability was derived by Field (1965). 

If the interstellar medium is heated by sporadic supernova bursts, its 

subsequent cooling may be conducive to the formation of condensations. 

This idea is the basis of what is known as the time-dependent model of the 

interstellar medium (McCray and Schwarz 1971). Schwarz, McCray, and 

Stein (1972) worked out the details and pointed out the differences of 

this model from the steady-state one. They emphasize that, because the 

instability criterion depends on physical parameters (for example, cooling 

rate) which are functions of time in this case, the possibility arises 

that an initially growing perturbation may be damped at a later time, 

and vice versa. This is confirmed by their numerical calculations, in 

which they follow the time development of the instability in one space 

dimension. Mansfield (1973) followed the instability in a spherical 

geometry as well, having included heating due to ultraviolet photo-

emission of electrons from grains (Watson 1972). He also studied in a 

crude fashion the effect of a uniform magnetic field on the condensation 



-8- LBL-3602 

process. He found what Field (1965) and Goldsmith (1970) had already 

concluded, that. is, even a moderate magnetic field (~ I lJgauss) renders 

the thermal instability ineffective in all but one direction (parallel to 

the field). 

3. Criticism 

The truth or falsity of their assumptions aside, and other agreement 

or disagreement with observations notwithstanding, under the most favorable 

of conditions both the steady-state and the time-dependent models of the 

interstellar medium produce condensations with sizes ( ..... 0.01 pc to 

I four orders of magnitude smaller .- 0.1 pc) two to than the sizes of 

most of the observed interstellar clouds. Moreover, the predicted "cloud" 

masses fall short of the observed ones by at least as many orders of 

magnitude. Why condensations predicted by these models continue to be 

referred to as "typical" interstellar clouds (for example, Mansfield 1973) 

remains a puzzle to this author. 

A serious difficulty with the time-dependent model within its own 

assumptions was pointed out by Goldsmith (1972): if each region of the 

interstellar medium is indeed heated by a supernova explosion once every 

106 years, within this time interva~ density contrasts of less than four 

are produced because the longer wavelengths of a perturbation cool nearly 

isochorically. This is a direct consequence of the short cooling times 

typical of the interstellar medium (see below). 

In spite of their differences the two models are similar in that they 

employ a thermal instability for the formation of cool, dense sheets of 

1. Field (1970) recognized this difficulty: "If clouds actually form 
by thermal instability, it appears that small ones are initially favored". 
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gas in an otherwise uniform interstellar medium. This is the reason 

for which they cannot account for interstellar clouds such as the observed 
. / 

ones. Although perturbations with a broad range of wavelengths may grow 

at almost the maximum growth rate, these wavelengths have an upper bound 

determined by the fact (consistent with the force equation) that the 

"condensation mode" (Field 1965) evolves almost isobarically. This means 

that the upper bound on the fastest-growing wavelengths of a perturbation 

is approximately that distance within which a sound wave can establish 

pressure equilibrium in a time not exceeding the cooling time of the 

medium. Typical cooling times for the interc10ud medium are less than 

106 years and become shorter as the gas density increases (Spitzer 1968a; 

Jura and Oalgarno 1972). Therefore, with a sound speed smaller than 

10 km sec-I, the wavelengths that can grow at a rate near maximum will be 

less than 10 pc. Since the density of the intercloud gas is approximately 

0.2 atoms cm-3, the resulting condensation must have a size of about 0.01 

pc if it is to reproduce the observed cloud densities (~30 atoms cm-3) 

by one-dimensional compression along the magnetic field. 

Aiming at obtaining larger condensations, Goldsmith (1970) considered 

the growth of perturbations with wavelengths considerably larger than the 

fastest-growing ones. He chose ~ = 300 pc (corresponding to an e-folding 

time of about 107 years); but even so, the final condensation had an 

extent of only 0.13 pc (at T - 20 Ok) - still a dwarf cloud. At any rate, 

as we have already mentioned, shorter wavelengths that correspond to growth 

rates near the maximum one are favored by the instability. In addition, 

the thermal instability for a perturbation with a large enough wavelength 

to involve a sufficiently large mass will evolve more slowly than the 

magnetic Rayleiih-Taylor instability (see below), in which the magnetic 

field is instrumental (rather than a nuisance) in the formation of large 
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condensations. 

Schwarz et al. (1972) raised the point that inertial effects will 

maintain the flow and, therefore, a condensation will continue to grow 

for a long time after the instability shuts off. Valid as this pOint may 

be, it nevertheless is the case that the final size of a condensation 

does not usually exceed 1/2 of the wavelength of the perturbation that 

initiated the instability. Since the observed dimensions of clouds 

(for example, Heiles and Jenkins 1973, Heiles 1973) are often larger 

than the wavelengths which can grow with an e-folding time less than 107 

years, and since n .t 30cm-3, the thermal instability will not account for 

the formation of these condensations even if inertial effects are included. 

B. A Statistical Model 

The complexity of the interstellar medium and the apparent random

ness in the motion of clouds and in their distribution in space led Oort 

(1954) to suggest that a theoretical description of the interstellar 

medium must be statistical in nature. Once some low-mass clouds form, it 

is postulated that they collide inelastically and coalesce to form larger 

clouds. The process continues until a critical mass, corresponding 

to gravitational instability, is reached. The collapsing cloud presumably 

fragments and forms stars, the brightest of which ionize the remaining 

gas, thus generating conditions assumed to be appropriate for the forma

tion of second-generation, low-mass clouds. Field and Saslaw (1965) 

formulated these statistical ideas into a mathematical model. They made 

the following assumptions. (i) Only small clouds of the same ("unit") 

mass are created. (ii) All clouds have the same cross section and the 

same speed and are isotropically distributed in velocity. (iii) All 

collisions between clouds are inelastic, so that agglomeration is the 
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inevitable outcome. 

Despite the simplicity of its assumptions, the statistical model 

d " t t f 1 d (m-3/ 2) 1"n rough t "th pre 1C s a mass spec rum or c ou s agreemen W1 

observations. Because it invokes a binary collision process ultimately 

leading to star formation. the model provides a theoretical basis for 

Schmidt's (1959) empirical law, which states that the rate of depletion 

of gas because of star formation varies approximately as the second power 

of the gas density. [For an alternative theoretical foundation of a 

similar dependence of star formation on the gas density. see Mouschovias, 

Shu, and Woodward (1974), Paper II.] Another statistical calculation by 

Penston et al. (1969) predicts a maxwellian velocity distribution for 

-1/2 clouds and a mean speed varying as m • For the gurpose of this dis-

cussion, the important point is that the statistical model does account 

for a wide range of cloud masses provided, however, that upon its formation 

a "unit" cloud has mass of the order of 10 Me. This implies that a thermal 

instability cannot be responsible for its formation in the presence of 

the interstellar magnetic field (~3 lJgauss) because the instability can 

develop only along field lines -- see § -IIA2 above. 

Heiles (1973) questions the very foundations of the statistical model. 

He points to observational evidence that cloud velocities "are highly 

organized with respect to the [interstellar] magnetic field," and that 

"one gains the impression that the gas is moving along the magnetic field." 

He also questions, on observational grounds, the random distribution of 

clouds in space assumed by the statistical model. Clouds are often 

found in cloud complexes [see, for instance, Raimond (1966); Kerr (1968) 

and references therein]. and long filamentary structures aligned with the 

magnetic field are prominent features of the interstellar medium. It may 
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be, however, that the cl~ud model is valid within the cloud complexes 

themselves (van Woerden 1967). although Heiles doubts even that. 

Overwhelming observational evidence demonstrates not only that 

interstellar magnetic fields exist. but also suggests that magnetic 

forces are comparable to gravitational and pressure forces. Hence, it 

should not be surprising that models ignoring magnetic effects run into 

difficulties sooner or later. Before we discuss the role of the magnetic 

field in the formation, equilibrium, and stability of interstellar clouds, 

we turn to a critical review of the evidence for its existence. 
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III. EVIDENCE FOR THE INTERSTELLAR ~~GNETIC FIELD 

With very few exceptions, our knowledge of astrophysical objects and 

processes stems from analyses of radiation received at the earth. The 

interstellar magnetic field does not belong to the exceptions. Itmay 

be instrumental in the production of radiation, or it may modify radiation 

propagating through the region where the field exists. 

A. Synchrotron Radiation 

Synchrotron radiation is produced by highly relativistic electrons 

gyrating in a magnetic field. It is highly directional about the 

instantaneous electron velocity. so that the line of sight must lie in 

the plane of the electron's orbit if the radiation is to be observed at 

all. The radiation from an ensemble of electrons can be recognized by 

its power-law spectrum and by its high degree of linear polarization, 

with the electric field normal to the plane defined by the magnetic field 

and the line of sight (Ginzburg and Syrovatskii 1965; also. Bless 1968). 

On these grounds and on independent evidence for the existence of cosmic-

ray electrons with energies around I GeV (see review by Meyer 1969), the 

synchrotron mechanism accounts for a major fraction of the background 

radio continuum emission in our galaxy (for example. Spitzer 1968a and 

references therein; compilation of observations from 10 MHz to 400 MHz 

by Daniel and Stephens 1970). 

Observations of synchrotron radiation establish the existence of an 

interstellar magnetic field. But to deduce the magnitude of the field. 

one needs to introduce a number of dubious assumptions. the most common 

of which is equipartition between the energies stored in magnetic fields 

and in cosmic-ray protons. [At a given energy per particle. the number 

of cosmic-ray electrons is only about 2% that of the protons (Earl 1961; 
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Meyer and Vogt 1961).] Additional uncertainties enter in estimating the 

size of the emitting region. For instance, the extent of the emitting 

region at high Galactic latitude is still controversial, with some authors 

claiming that the background radio continuum is produced in a disk of 2 kpc 

thickness, and others preferring a radio "halo" having a diameter of 20 kpc 

or so (see discussion by Woltjer 1965). Others yet speak of a thin-disk 

and a fat-disk component of the nonthermal radiation (Mathewson, van der 

Kruit, and Brouw 1972). Even if the size of the emitting region is known, 

however, additional assumptions concerning its internal structure are 

necessary in order to estimate the strength of the magnetic field. [The 

measured intensity of the radiation at some frequency is proportional to 

the line integral (along the line of sight) of the product of the number 

density of relativistic electrons and some power of the perperidicular (to 

the line of sight) component of the magnetic field - this exponent is 

usually around 1.8.] 

Under the specter of the above uncertainties, large-scale magnetic 

fields ranging from 10 ~gauss to 50 ~gauss are deduced (Woltjer 1965; 

Davis and Berge 1968). Daniel and Stephens (1970) used the fluxes of 

cosmic-ray electrons and synchrotron radiation observed at the earth to 

deduce an energy spectrum for electrons with energies ~ 5 GeV (because the 

observed one has been modulated by the solar wind) and to show that this 

spectrum joins smoothly with the observed spectrum above 5 GeV (which does 

not suffer solar modulation) only if the magnetic field is in the range 

6 - 9 ~gauss. They assumed, however, that the region of emission was 

homogeneous. Their method will give larger fields if the size of the 

region of emission is reduced. There is evidence for enhancement of the 

synchrotron emission associated with spiral arms (for example, see Price 

1974 and referenc~s therein). On the other hand, since regions of strong 
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fields are overweighted ~f the cosmic-ray density is nearly uniform, 

the background interstellar field may actually be weaker than the one 

deduced by Daniel and Stephens. Weaker fields are supported by 

.observations of Faraday rotation (see below). 

B. Polarization of Starlight 

The polarization of light from distant stars (Hall 1949; Hiltner 1949) 

and its correlation with interstellar reddening led to the generally 

accepted hypothesis that it is produced by elongated dust grains aligned 

dynamically due to the presence of a magnetic field (Davis and Greenstein 

1951; Davis 1958; Miller 1962). The grains are presumed to be paramagnetic 

and to have a complex index of refraction. Jones and Spitzer (1967) used 

statistical ideas to arrive at the same conclusions. We reproduce the 

essence of their arguments here. 

In the absence of a magnetic field a prolate grain in kinetic equilibrium 

with the surrounding gas will have equal rotational kinetic energies about 

each of its principal axes. Since the angular momentum about each principal 

axis is proportional to the square root of the moment of inertia about 

that axis. a grain will tend to rotate mainly about an axis perpendicular 

to the axis of symmetry. In the presence of a magnetic field, the axis 

of rotation will tend to align with the direction of the field; other-

wise dissipation of angular momentum due to magnetic torques will ensue. 

Thus, the axis of synunetry (major axis) of the prolate grains will tend 
( 

to be perpendicular to the magnetic field. It is essential in these con-

siderations that the grain temperature be less than the gas temperature, 

so that the system will not be in thermodynamic equilibrium, that would 

destroy the alignment through collisions with gas atoms. The magnetic 

field needed to sufficiently orient the grains is of the order of 10 ~gauss 
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although a weaker field (1 llgauss) would do if the grains were ferro

magnetic (Jones and Spitzer 1967). 

A~ starlight propagates through interstellar space, the component of 

the electric field which is perpendicular to the major axis of the grains 

(and, therefore,. more or less parallel to the magnetic field) is less 

efficiently absorbed by these particles. Consequently, a map of the 

observed polarization vectors will also reveal the topology of the inter

stellar magnetic field. In order to obtain the magnitude of the field 

from extinction and polarization measurements, one must know the gas 

temperature and density and, in addition, such uncertain quantities as the 

shape, composition and temperature of the grains. Although our under

standing of the nature and evolution of interstellar grains is increasing 

rapidly (see review by Aannestad and Purcell 1973), it is wise to settle 

for obtaining the general topology, rather than the magnitude of the 

field by this method. We consider it very revealing that the field lines, 

as unveiled by polarization measurements, exhibit an orderly large-scale 

behavior, but have "waves" or "arches" over distances of a few hundred 

parsecs (Mathewson and Ford 1970; Davis and Berge 1968). Serkowski (1973), 

however, observed a field fluctuation over a scale of 0.3 pc in the direction 

of the star cluster Stock 2. On the other hand, reports of fields with 

magnitude as large as I mgauss (Beichman and Chaisson 1974) should be 

regarded as tentative until confirmed or refuted by some other method of 

measurement - especially since they depend on scaling laws relating the 

magnetic field and the gas density which our work shows to be incorrect 

(see § VB2c). 

c. Faraday Rotation 

It is well knowilthat a tenuous plasma becomes optically active (or, 
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birefringent) in the presence of a magnet~c field. Faraday rotation 

refers to the rotation of the plane of polarization of a 1:l.nearly-

polarized electromagnetic wave, or to the rotation of the major axis 

of an elliptically-polarized wave passing th!ough such a medium. The 

angle of rotation over a distance L is given by (Spitzer 1968a, p. 51) 

68 = R A2 
m (1) 

where the wavelength (A) is measured in meters, the electron density en ) 
e 

in cm-3, the magnetic field (B) in~gauss, and the distance along the line 

of sight (s) in parsecs. 
-+ 

The angle between B and the propagation vector, 

-+ • 
k, IS denoted by,. The sign convention is such that 68 is positive for 

right-hand rotation along the direction of propagation. The rotation 

measure is-denoted by R • m 

Since typical rotation measures for the interstellar medium fall in 

the range 1 - 100 rad m- 2, it is clear that Faraday rotation is negligible 

for optical wavelengths. In principle one can use optical polarization 

to establish a standard and then measure 68 for radio waves. Unfortunately, 

not many radio sources emit in the optic~l portion of the electromagnetic 

spectrum. To obtain ~ (see discussion by Davis and Berge 1968) one is 

forced to measure 68 for a least two ra4io wavelengths. However, because 

of .the indistinguishability of rotation angles differing by 11", and because 

the position angle of the plane of polarization at the source is not usually 

known, one must measure 68 at several wavelengths, plotting the observed 

position angles as a function of A2· and fitting a straight line through 

the points. In principle, several points differing by multiples of 11" 

must be plotted for each observation, and that set must be selected which 

fits·a straight line best. The slope of the line gives R , and its m 

extrapolation to A2 = 0 gives the position angle at the source. 
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Once the rotation measure is known, one may obtain the mean value 

of the magnetic field along the line of sight to the observed radio 

source only if the distance to the source and the interstellar electron 

density are known. To obtain the latter would have been very difficult 

without the discovery of pulsars. Regular signals from pulsars reaching 

the earth exhibit a dispersion effect (that is, a difference in the arrival 

time of the left-handed and right-handed circularly polarized modes) that 

can be precisely measured. This is given by 

6t.= ( e2 
3 I,dS ne) ).2 

2 1f me c 0 

where all units are in cgs. The dispersion measure, Om 
L 

- f 
o 

(2) 

ds n , is 
e 

obtained from a single measurement and it constitutes a direct measure of 

the column density of electrons along the line of sight. If Rm and Om 

are measured for the same source, one can obtain the mean value of the 

magnetic field along the line of sight, < B" > .- This is weighted by the 

electron density in the region between the source and the observer. (The 

contribution of the earth's ionosphere is taken into consideration.) Also, 

reversals in the direction of the magnetic field would produce cancellations 

in 66, so that the measured < BII'> would be smaller than the general inter

stellar field. Such irregularities in the field may be detected, however, 

if measurements of starlight polarization and Faraday rotation. are com-

bined, since the two methods measure two mutually orthogonal components of 

the magnetic field. 

Faraday rotation measures have also been obtained and analyzed for 

many extragalactic radio sources (Morris and Berge 1964; Gardner and 

Davies 1966; Gardner, Morris, and Whiteoak 1969; Wright 1973). These 

observations yield <ne BIl> rather than <BII> itself, since an inde

pendent determinatioJ'l of < ne > is not usually made. But the product 
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< ne BII> is very useful especially since extragalactic radio sources 

are distributed allover the celestial sphere. 

Wright (1973) recently analyzed the rotation measures from 354 extra-

galactic radio sources, and Manchester (1974) did the same for 38 pulsars. 

Their results are in good agreement, indicating a large-scale magnetic 

field directed toward 1 = 900 (both above and below the Galactic plane). 

The direction of the field is in fair agreement with that determined by 

,Appenzeller (1968) from interstellar polarization observations for stars 

. near the south Galactic pole. He found that the mean direction of the 

polarization vectors was 1 = 800
. According to these workers, the local 

helical field, which was suggested in order to explain the starlight 

polarization data (Hornby 1966; Mathewson 1968; Mathewson and Nicholls 1968; 

Mathewson 1969), is in conflict with the Faraday rotation observations. 

This resolves a long-standing theoretical dilemma: a nonvanishing magnetic 

field in the Galactic plane, having opposite directions above and below, 

implies that there exists a current sheet in the plane. 

The magnitude of the field determined from Faraday rotation measure-

ments lies in the range I - 3 ~gauss. Superposed on the general back-

ground field, both Wright and Manchester find field "irregularities" 

with field strength comparable to that of the background field. The 

typical scale of the "irreaularities" appears to be a few hundred parsecs. 

This is significant when combined with the interpretation of data on 

rotation measures of extragalactic radio sources given by Gardner, White-

oak, and Morris (1967). They found it necessary to assume that magnetic 

field lines protruded from spiral arms at least at some regions. However, 

they suggested that ~ flow was responsible for pulling the field lines 

away from the Galactic plane. In Paper I we attributed the arches in the 
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field lines observed in the solar neighborhood to the development of the 

magnetic Rayleigh-Taylor instability, and we argued that field lines are 

inflated only because gas is drained from their raised portions. 

D. The Zeeman Effect 

The splitting of the 21-cm line into three components in the presence 

of a weak.(on laboratory standards) magnetic field raises the possibility 

of studying the interstellar magnetic field in the most·direct manner. 

The frequency separation between the two shifted. or o. components of the 

line depends.only on the component of the magnetic field in the direction 

of propagation. and is given by 

./ 

e 8 cos, 
2 'II' m c 

e 
(3) 

The notation is the conventional one. If we neglect terms of order 

me/mp = 1/1836 « I, the split of the hyperfine~structure energy levels 

due to a weak magnetic field, 8, is given by he= ~B gF mp B. where 

is the Bohr magneton, mp is the azimuthal quantum number, 

and gF is the Land~ g factor. The orbital angular momentum vanishes in 

the ground state (1'" = 0), and g = [f" (f" + 1) + r(r + 1) - i"'(i'" + F 1)]/ 

f"'(f'" + 1) • 1 because j" = i" = 1/2. Since mp = O. ±l, eq. (3) follows. 

The subscripts +1 and -1 in eq. (3) refer to values of mF. Numerically, 

the split hv is equal to 2.8 Hz per ~gauss for propagation along the field 

(, = 0). Since line widths are typically measured in kHz, observations of 

the Zeeman effect in hydrogen are very difficult. and special techniques 

become necessary. [See Davis and 8erge (1968, pp. 762-765) for an 

excellent discussion and for the reason why the transverse Zeeman effect 

is even more difficult to detect.] As in the case of Faraday rotation, 

only the mean field along the line of sight is measured. However, fields 

measured through Zeeman observations may be indicative of conditions within 
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interstellar clouds rath~r than representative of the ambient interstellar 

fields (see below). 

Among the many attempts to observe t.he Zeeman effect in interstellar 

clouds, only few produced positive detections. Most measurements put 

only upper limits on the magnetic field, leaving even the direction of 

the field undetermined. Although observers and theorists generally agree 

that our knowledge of the interstellar field that resulted from Zeeman 

measurements is meager, we take much interest in the fact that both the 

few positive detections and the upper limits reveal fields consistently 

weaker than those expected on theoretical grounds. The usual argument 

is that, under the assumption that the magnetic field is frozen in the 

matter,2 the background interstellar field would be enhanced by a factor 

(nC/niC)2/3 during the formation of clouds (of density nc) through spherical 

contraction and condensation of the intercloud medium (of density n. ). 
I.C 

It follows that clouds with densities 30 - 1000 cm-3 should have fields 

in the range 85 - 300 ~gauss, with 100 ~gauss being a rather typical 

value. No such fields have been observed (see Verschuur 1971 and references 

therein). The few positive detections are summarized in Table I, which 

is taken from Verschuur (1974). 

Spherical, isotropic contraction has been taken so seriously that a 

straight line with slope equal to 2/3 has been frequently forced through 

points of log B versus log nc plots (for example, Verschuur 1970a), even 

2. The conductivity of the interstellar medium is given by 0_107 T3/ 2 

(Spitzer 1962), where T is the temperature. The dissipation time for 
the magnetic fiild over a characteristic scale L is T = 4 no L2/c2. 
Since T ~ 50-10 OK and L ~ 10 pc, then T > 1021 years! Therefore, 
flux-freezing is an excellent assumption. However, the motion of ions 
(and the field) through neutrals must be considered (Spitzer 1968a) for 
densities larger than ~108 cm-3 (Nakano and Tademaru 1972) -- see 
discussion in § VI below. 
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though a line with a slope of 1/3 ,would fit the (uncertain) data at 

least as well. We shall show in §VII that weak fields must be the rule 

rather than the exception, thus removing the discrepancy between observa-

tions and theoretical expectations. 

Atomic hydrogen is believed to be converted to molecular hydrogen 

in the densest clouds, in which many molecules were discovered (see 

reviews by Heiles 1971; Rank, Townes, and Welch 1971; Solomon 1973; 

Zuckerman and Palmer 1974). The magnetic field within the molecular 

(or, dust) clouds is expected to be relatively high, since the gas 

3 -3 density often exceeds 10 cm . The field may be measured through 

Zeeman observations on the l8-cm line of OH. One such measurement by 

2 Turner and Verschuur (1970) yielded an upper limit of about 10 ~gauss, 

which Heiles (1971) finds rather small compared to (popular) expectations. 

This contrasts sharply with the upper limit of 5 ~gauss obtained for 

another dust cloud (Verschuur 1970b) when the measurement was performed 

on the 21-cm line, which is seen in self-absorption. To reconcile the 

two, Heiles (1971) suggests that the hydrogen exists in a thin shell 

around the molecular cloud, so that the 2l-cm result does not reflect the 

physical conditions inside the dust cloud. This point is well taken. Yet, 

it is our view that the smaller field, even uncorrected for projection 

effects, may not be inconsistent with theoretical expectations based on 

our calculations of equilibria of self-gravitating, magnetic clouds. 

There are additional, indirect methods for obtaining the interstellar 

magnetic field (see Woltjer 1965; van de Hulst 1967; Davis and Berge 1968), 

but they yield such uncertain estimates that their discussion here is not 

warranted. They are based mainly on the virial theorem (for example, see 

Biermann and Davis 1960) applied to various regions of, or the entire inter-
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stellar medium. We shall discuss some of' the shortcomings of the· 

virial theorem in § VI (see also Meste1 1965). 
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IV. THEORETICAL DESCRIPTION OF LARGE-SCALE PHENOMENA IN 
THE INTERSTELLAR MEDIUM 

A. The Dynamical 'Equations 

1. A System of Thermal Gas, Magnetic Fields, and Gravitational Fields. 

We mentioned in § I that the interstellar medium is such a complex 

system that a complete theoretical description is impossible at present. 

However, the range and relative magnitude of some physical parameters of 

the system are such that the framework of a useful theoretical description 

may be specified. First. as we have already noted. the electrical conduc

tivity of the medium is so high (109 - 1013 sec-I) and the scales of 

interest are so large (1019 - 1022 em) that we may assume that the 

magnetic field is frozen in the ionized matter. Furthermore, the excellent 

coupling between electrons and ions on the one hand [wcoll . (e-i) 

_'10- 7 sec-I] and between ions and atoms on the other [weol!. (i-a) 

_10-9 sec-I] permits us to treat the three-component gas as a single, 

compressible fluid. 

When the phenomena of interest occur on relatively large scales 

(for example, formation of interstellar clouds, motion of clouds through 

the intercloud medium. cloud-cloud collisions, cloud collapse), one may 

specialize to very long-wavelength hydromagnetic disturbances. In this 

regime, in which an electron collides many times before it is forced to 

reverse its direction by the oscillating electric field of the disturbance, 

collective plasma effects become unimportant (wp _ 103 sec-I). Although 

collision frequencies are relatively large (compared to the frequency of 

-14 -1 the hydromagnetic wave, W - 10 sec), they are nevertheless much 
-1 . 

smaller than gyrofrequencies (wc - 10 sec for electrons). Hence, 

diffusion across the field (which would result from collisions between 
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opposite charges before a gyration is completed) may be neglected. In 

summary, we have the inequalities 

Wp »w »w 'II »w. C co. (4) 

For scales much larger than collision mean free paths we may also neglect 

viscosity and thermal conduction, and we may write the magnetohydrodynamic 

(MHO) equations appropriate for our system. 

We consider a conducting gas of density p, pressure P, and temperature 

T embedded in a magnetic field "8 and a gravitational field i. derivable 

from a potential~. Both the gas and the stars, whose density (p*) is 

known from observations, may contribute to ~. The gas has abulk velocity 

~. A current density r maintains the frozen-in field, which is derivable 

from a vector potential A. The entropy per gram of matter is denoted 

by 5, and;t, represents the net rate of energy loss (losses minus gains) 

per gram of matter. 

mass conservation: 

force equation; 

energy equation: 

ideal-gas law: 

flux-freezing: 

Poisson equation: 

Ampere's law: 

definitions: 

The MHO equations are 

dp + + 
dt p V • y, = 0 

d~ -t-
x B + + + 1-p -= - VP - pVlJI dt c 

p T d5 
dt = - p;l(p, T) 

P = ~ k T 
m 

at V x (; x B) at= 

V
2

lJ1 = 411'G (p* + p) 

g = -VlJI 

B = V x A 

5 = 1 k 
y-1 Iii 

-y 
R.n (P p) + const. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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In the above equations m is the mean mass 'perparticle; k is the Boltzmann 

constant; c is the speed of light in vacuum; and y = 5/3. The comoving 

time derivative is defined by dldt 
~ ~ _ alat + v • v. Spitzer (1962) gives 

a detailed discussion of some fine points in the assumptions behind the 

MHD equations. References already cited in § IIA discuss the loss function 

in the energy equation. 

2. The System with Cosmic Rays Included 

The dynamical effects of cosmic rays in the Galaxy have been the 

subject of intensive investigation for several years. A long series of 

important papers discuss the conditions under which cosmic rays, considered 

as a very hot, collisionless plasma, may be described in the W1D approxi-

mation. Three excellent reviews (Parker 1968~, 1969a; Lerche 1969) point 

out what phenomena are excluded when such a description is adopted, but 

they argue that the MHD description is the proper one for cosmic rays in 

the ~alactic environment. Our new approach to magnetohydrostatic (MHS) 

equilibrium configurations will shed light on the assumptions, on . which 

some previously derived consequences of the existence of cosmic rays in 

interstellar space are based. In particular, the conclusion that cosmic 

rays will inflate the interstellar magnetic field indefinitely (Parker 

1965a. 1968b) will be discussed critically in §VB5d. Here we draw from 

the reviews mentioned above and we summarize the MHD description of the 

cosmic-ray gas. 

In the absence of a magnetic field, the cosmic-ray pressure is main-

3 tained isotropic to within-l% by various rapidly growing (T - 10 years) 

relativistic micro-instabilities (for example, see Lerche 1969). In 

intr~ducing the magnetic field, we shall restrict our attention to very 

long-wavelength (much larger than gyroradii) hydromagnetic waves. In this 
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regime and for slow bulk ~otions (v 2« c2
), Parker argues that an cr . 

isotropic cosmic-ray pressure is a fair approximation in most astro-

physical situations even in the presence'of a magnetic field. It follows 

from this and the first law of thermodynamics that. under adiabatic 

conditions. 

dPcr 
--+ 
dt (

p + P cr) V • 
cr 2 c 

.. 
v = o. cr (IS) 

The quantity P denotes the mass density of cosmic rays. (The rate of , cr 

change of the total energy of cosmic rays in a volume element OV is 

d(p c2 oV)/dt = ~P d(oV)/dt. One then uses the relation d(oV)/dt = cr· cr 
.. .... 

oV V· v to derive eq. [15].) A relation between P and p is not cr cr cr 

simple if a collection of relativistic particles is considered. because 

each particle contributes to the speed of sound, 

C cr (d P /d ) 1/2 
- cr Per ' (16) 

in a manner that depends on its own Lorentz factor. YL = ~/moc2. But in 

the extreme relativistic case. we have the relation 

P
cr 

= 1 p c2 = p c~. 3 cr - cr cr 

Then, it follows that 

_d_.t_n_P.;;.cr;;;.. = _d_.tn_p..;:c,;;..r = ! d .tn ncr 

dt dt dt 3 

(17) 

(18) 

Because the cosmic rays and the thermal gas are tied to the magnetic 

.... .... 2 2 2 
field, their bulk velocities v and v (v ,v « c) will have equal cr cr 

components in a direction perpendicular to the field. In the long-wave-

.-length limit, the electric field (E) in a frame with respect to which the 

therma.l gas and the cosmic rays have velocities ~ and ~ , respectively. cr 

) 
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is given by ... 
vcr ... = ---. x B. 

c 
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(19) 

... ... 
Thus, an equation identical to (9), with v replaced by v , holds for cr 

the cosmic-ray gas as well. 

If the motion of the cosmic-ray gas along field lines is completely 

decoupled from that of the thermal gas (cf. Kulsrud and Pearce 1969), 

one may write the force equation for cosmic rays in a direction parallel 

to the field as 

(
p + Pcr ) (d(~cr)) = 
cr c2 .. dt /11 

... 
P V'I ,I,. cr 1..'1' (20) 

Actually, gravitational forces on cosmic rays are negligible and the 

last term may be left out of equation (20). To show this, we may compare 

the magnitudes of the last two terms of equation (20) and make use of 

equation (17): 
... 

pcrivil 1/11 161/11 
2 

Ipcr VI' 1/11 vescape 
= ~ 2 ~ 

« 1. 

IvU Pcrl c~rlvn pcrl c2 
Ccr cr 

The presence of cosmic rays introduces a "suprathermal mode" (Parker 1965b) 

in addition to t·he usual fast and slow hydromagnetic modes. It represents 

a sound wave in the cosmic-ray gas propagating along field lines with 

speed C (see eq. [17]). The suprathermal mode is independent of the two cr 

hydromagnetic modes except for propagation nearly normal to the field, 

in which case the fast mode collapses to zero and the suprathermal mode 

takes over. 

The nearly instantaneous communication of cosmic rays along field 

lines establishes pressure equilibrium in the cosmic-ray gas over 
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a distance L in a time L/C ::::: L/c. If L, is as large as I kpc, this time cr 
. lOll 1S ::::: sec. This is much smaller than the time scale of the hydro-

14 magnetic phenomena of interest to us here which is ~10 sec. We may 

therefore ignore the inertial effects of the cosmic-ray gas and we may 

write that 

P cr - 8". + 
V P cr I B = 0 (21a) 

as a further approximation to equation (20). Equation (21a) states that 

the cosmic-ray pressure is constant on a field line, but it does not 

determine its value, which is different for different field lines. In 

§VBsd we shall show how to calculate P at the position of any field line cr 

without reference to equations (IS) and (17). For ~ow, we note that 

equation (21a) will be exact at equilibrium insofar as the hot (T ~ 1013 oK) . . cr 

and tenuous (n - 10-10 cm- 3) cosmic-ray gas is not affected by the cr 

galactic gravitational field (g - 10-9 cm/sec2). 

It remains to specify how cosmic rays will modify the force equation (6) 

+ 
in a direction normal to B. Once this is done, the system of ~!D equations 

including cosmic rays will be closed. We write the force equation for 

cosmic rays in a direction normal to the field by neglecting the gravi-

tational term because of the reason given above: 

= (21b) 

where r is the current density due to cosmic rays alone. Because of cr 

eq. (2Ia), the term - ~Pcr may be replaced by - V Pcr in eq. (21b). The 

resulting equation must be combined with eq. (6) - the left-hand sides 

of tbe two equations must be added together, and so must the right-hand 

sides. We note~ however, that Pcr = 3 Pcr/c2 (see eq. [17]) is much 
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-10 smaller than Pi in a typical HI region P /p - 10 . Hence, we may cr , 

neglect the inertial term in eq. (2Ib), which is combined with (6) to 

yield 

d~ -+ 
p dt = - VP 

-+ 
VP cr 

-+ "t'"t') x s/c. pVIjI + (J + J cr 

Finally, eq. (11) undergoes the obvious modification 

-+ -+ -+ -+ 
V x B = (4 ~/c) (j + jcr)' 

(2lc) 

(2ld) 

The approximation expressed by eq. (2la) was also used by Shu (1974), 

who asserted that eq. (2la) is sufficient to categorize the cosmic-ray 

gas and that the system of MHO equations is closed without reference to 

eqs. (15), (17), and (18). In view of our remark above,narnely, that 

equation (2Ia) states that P is constant on a field line without specifying cr 

its value, it is clear that eqs. (15) - (18), which specify how P changes cr 

in time, are also needed in order to close the system of MHO equations. 

3. Approximations of the Energy Equation 

We have already noted that virtually all information received from 

the Galactic and extragalactic space comes in the form of photons. It 

is natural, therefore, that the energy equation is the most exhaustively 

studied one in astrophysics. In our work we shall focus on Newton's laws 

as supplemented by Maxwell's equations. The force equation, and in 

particular magnetic, pressure, and gravitational forces, will be the 

subject of our studies. All thermodynamics will be dumped into an 

equation of state P ~ pep). We shall assume an isothermal equation of 

state frequently and then we shall generalize our formalism to the 

case P = pep) without actually solving the more general problem. In 

view of the meager theoretical (as well as observational) understanding 
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of the phenomena which we shall study, we offer no apologies for this 

procedure. We shall discuss the priorities in refining our work at 

the end. 

We begin with the derivation of some (known) implications of flux 

freezing (eq. [9]), upon which we shall call later. 

B. Implications of Flux-Freezing 

1. Two-dimensional Geometry 

If ~ and it are confined to a plane (x,y) and all quantities are 

assumed independent of z, we may set Ax = Ay = 0 without loss of 

generality. Then we have that 

A =; A z z (x,y) - ez A(x,y). 

Since t may be written as 

it follows that 

.... -e x VA, z 

.... .... 
B • VA = 0, 

(22) 

(23) 
'-

(24) 

so that A(x,y) is constant on a field line. Moreover, we may write 

eq. (9) in terms of A as 

at - :: at v x B + Vt, (25) 

.... ....-!" 
where t is an arbitrary scalar function of x and y. Both A and v x 8 

.... 
-have z-components only. Therefore, Vt must vanish. 

By using (23) in (25) and expanding the vector triple product, we 

obtain 

aA - :: at 
........ .... 

-3 (v • VA) + VA z 
.... 

(e • v). z 
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-+ • v =0, we make use of (22) to find 

ez 
dA A aA -+ ± ' 
dt :: ez (at + v • VA) = O. 

LBL-3602 

(26) 

Hence, in addition to being constant on field lines, A is also a constant 

of the motion. In this geometry, the magnetic flu~ between two neighboring 

field lines, 'characterized by A and A '" oA, is equal to oA. So eq. (26) 

is a statement of conservation of magnetic flux through any surface co-

moving with the fluid. 

2. Three-dimensional Geometry with Axial Symmetry: A POloidal Field 

Conclusions similar to those described by eqs. (24) and (26) may also 

be derived in the case of a three-dimensional geometry with axial 

symmetry (all functions assumed independent of f). We let r be the 

(cylindrical) radial coordinate. Once again, eq. (25) follows. 
-+ 

Now A 

and ~ x 8 are in the azimuthal direction. 

:: ~ x (V x A) 

-+ 
Hence, V~ = O. We write 

-+ (27) 
= V · (~ . A) - (~ . V)A - (A . V)~ - A x (V x v). 

Since ; is in the (r,z) plane and A has only a f-component, the first term 

on the right-hand side of eq. (27) vanishes. The third term may be written 

as 

(28) 

-+ -+ 
The last term in (27) vanishes because V x v is in the f-direction. AI-

together, then, we have 

at. - = at 
or dJ. 

r dt = -A v r 
= -A dr 

dt 

-1 -t' r A v • r 
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We, therefore, conclude t.hat 

d(rA) 
dt 

dt 
dt 
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= 0, (29) 

where A = 'A~. Eq. (29) is a statement of flux conservation in the 

present geometry. It is easily shown directly that the magnetic flux 

through a contour, described by the equation r = constant, is equal to 

2 '1ft. Direct calculation also shows, by using eq. (13), that 

8 · Vt = 0, (30) 

so that t is constant on a magnetic surface. We see that flux-freezing 

in a three-dimensional geometry with axial symmetry implies relations 

similar to those in the two-dimensional rectangular geometry, except 

that t = rA replaces A. 
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V. FORMATION AND EQUILIBRIUM OF NON-GRAVITATING INTERSTELLAR 
CLOUDS: LARGE-SCALE CONDENSATIONS 

A. The Magnetic Rayleigh-Taylor (or. Magnetogravitational) Instability 

1. The Basic Physics of the Instability 

Parker (1966) argued on the basis of the virial theorem that the 

interstellar magnetic field is confined to the galactic disk only by 

the weight of the highly conducting interstellar gas. As long as the 

field lines are parallel to the galactic plane. an equilibrium state is 

possible. At any distance from the axis of galactic rotation. a gas 

element is acted upon by a centripetal force appropriate to that distance; 

this is the only force necessary to keep the gas element in orbit about 

the galactic center. In a direction perpendicular to the galactic plane, 

the gas is distributed in such a manner that, at each altitude, the forces 

due to its pressure gradients, aided by the magnetic-pressure gradients, 

balance the vertical gravitational forces. Self-gravitation of the gas 

is neglected in this picture because the mass in the form of gas is only 

a few percent of the mass in stars. 

Mathematical simplicity and observational evidence that the magnetic 

field is more or less parallel to the local spiral arm suggest the study 

of the nature of the equilibrium of the gas-field-gravity system in two 

dimensions. Horizontal distance is measured in a nearly azimuthal direction 

(x-axis), and the y-axis extends perpendicular to the g.alactic plane. All 

quantities are then assumed independed of z, the distance along a radial 

-direction in the galaxy. Some interesting effects appear when proper 

consideration is paid to the third (z) dimension (see Parker 1967a, 1967b; 

Shu 1974), but they do not alter the basic conclusions of the two-dimensional 

calculations even when new physics, such as differential rotation, is 
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introduced. 

In this two-dimensional geometry, Parker's stratified equilibrium state 

is synunetric about the x-axis because the galactic gravitational field 

exhibits such synunetry: 

~ 

g -

where Parker assumed that 

,.. 
-e g(y), 

y 

g(y) = -g(-y) = a positive constant. 

(31) 

(32) 

One, then, considers only the upper half plane. • -+ The magnetic fIeld, B, 

is assumed to point in the +x-direction everywhere. [The essence of the 

conclusions (see below) does not change when one considers the case in 

which g is a linear function of y (Parker.l~66).] Parker also assumed 

that the ratio, a, of the magnetic pressure to the gas pressure, P, is 

fixed in the initial state, that is, 

a = B2/8~ P = a constant. (33) 

In fact, Parker (1969a) argued on observational grounds that a is very 

nearly equal to unity. We shall return to this point below. 

The equation of state is taken as 

P = p e2 , (34) 

where e is the isothermal speed of sound in the gas. The force equation 

is nontrivial only in the y-direction, and it is written as 

Its solution 

P(y) -

dP 
(1 + a) dy = -Pg. 

(for y ~ 0) is 

82(y) [_A(y)]2 
8 n a - 32 wa H2 

2 = p(O) e exp(-y/H), 

(35) 

(36) 

where p(O) is the value of the gas density at y = 0, and the scale height H 
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is defined by 

H = (1 + a) 
2 C /g. (37) 

Parker (1966) introduces perturbations with wavelengths X and X 
x y 

in the x- and y-directions, respectively, and requires that the field 

line originally coinciding with the x-axis remain undeformed, as well 

as that the perturbations be bounded at infinity. A representative 

perturbation is written as 

cos(2 IT x/X). x (38) 

The quantity ~l is a positive constant much less than unity. He solves 

the linearized MHO equations and finds that the stratified ("initial") 

state is unstable, provided only that A and A simultaneously exceed x y 

some critical values, A and A , respectively (see eqs. [31] and [32] 
x .y 

of. Paper I). The existence of a lower limit on A for instability to 
x 

develop is understood on simple physical grounds. If A is very large, 
x 

the curvature of the field lines is small, and so is the tension. The 

vertical galactic gravitational field acquires a component along a de-

formed field line that induces gas motions, tending to drain matter from 

the raised portion of the field line. As gas gets "unloaded" from the 

inflated portion, the magnetic-pressure gradient remains unopposed there 

(where the tension is small) and, therefore, it causes an additional 

rise of the already inflated part. Hence, the situation is unstable. 

The physical origin of a critical wavelength in the y-direction is 

more obscure and, as far as we know, this point has not been discussed 

elsewhere. Parker's dispersion relation shows that if X < A, the . y y 

initial stratified state is stable even if A > A. To understand why x x 

this is so, we proceed as follows. First, we note that if A < ~ there 
y 



0'. o. ~. ) 8 J 
-37- LBL-3602 

is always a set of field.lines that are left undeformed by the perturba-

tion (38). They are located at y = n Ay/2, n = 1, 2, 3, •.• Above and 

below each of these special field lines '. the rest of the field' lines, that 

is, the deformed ones, curve in an opposite sense (see Fig. 1). As the 

instability progresses, this "synunetry" implies that the undeformed field 

lines will retain their special status. (Rigorously, ~Vy has the same 

y-dependence as the perturbation ~A; hence, it vanishes at the position 

of the special field lines.) Consider, then~ the first undeformed field 

line, at y = A /2. It acts as a natural "lid" to the system below it . Y 
which, in fact, contains most of the mass and energy of the entire system. 

Now, we recall that the instability is driven by (i) the galactic gravita-

tional field that causes the gas to slide down the deformed field lines; 

and by (ii) the magnetic-pressure gradients at the position of the "un-

loaded" portions of the field lines. The instability is opposed by (i) 

the increase in the field strength due to the compression that takes place 

at the position of the "valleys" of the field lines; and by (ii) the tension 

of the curved field lines. The gas-pressure gradients are neglected for 
3 

the purpose of this argument. If the first undeformed field line is too 

low, that is, if Ay is too small, the instability cannot develop because 

the volume available for the field lines to expand is restricted. As a 

matter of fact, if field lines do inflate in the usual manner,they will 

"pile up" close to the first undeformed field line in the region where 

inflation occurs. Consequently, the magnetic field will increase there, 

tending to suppress rather than to aid the instability. 

3. See Paper I § IV and § VIb for a more complete discussion of the 
energetics in ·the case of an isothermal transition. Pressure forces are 
important in determining final equilibrium states; after all, they are the 
only forces available to oppose the galactic gravitational field along 
field lines. 
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If Ay is large enough, the effects just described will remain the 

same qualitatively. But, because the "pile-up" of field lines occurs at 

a much higher altitude than before, the magnetic field was much weaker 

there in the first place. Therefore, the increase in the field due to 

the "pile-up" is not sufficient to suppress the expansionist tendencies 

of the magnetic-pressure gradients below, which remain virtually unopposed 

because of gas drainage from the inflated portions of field lines. On 

the basis of energy considerations, the increase in the magnetic energy 

due to the compression at the "lid" is considerably smaller than the 

decrease in magnetic energy resulting from the inflation of field lines, 

which originate from much lower altitudes. Incidentally,these considera-

tions provide a physical explanation for the fact that, for a given (unstable) 

A the growth-rate of the instability is maximum if A = ~ x· . y Clearly, if 

the first undeformed field line occurs at infinity (where B = 0), the 

magnetic field by itself does not initially act i,n the region of expansion 

so as to prevent the instability, which proceeds at a rate faster than 

it would if in this part of the system the field were acting so as to 

suppress it. 

2. Retrospect 

Altogether, the magnetogravitational instability involves motions tending 

to accumulate the gas into clumps at the position of valleys of the field 

lines. This led Parker (1966) to suggest that interstellar clouds form 

in this manner, and they are suspended by the field at the position of 

the valleys. Whether, in fact, these condensations will resemble the 

observed insterstellar clouds can be decided only if the final states for 

the instability are known. And these can be determined only by solving 

the nonlinear MHS equations with appropr~ate boundary conditions. In 
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Paper 1. we found such final states. In the process, we had to tackle 

several interesting theoretical questions. (i) How does one inClude 

the assumption that the magnetic field is frozen in the matter in a time-

independent problem, so that a connection between initial and final states 

may be made? Our method for doing this has potential and direct applications 

in such diverse research areas as pulsar magnetospheres, equilibria of 

high-beta plasmas, and steady (but non-uniform) fluid flow in the absence 

of magnetic fields if vorticity is conserved in the same sense that 

magnetic flux is. It is well known that vorticity (or, circulation) is 

conserved for barotropic fluids (Bjerknes' theorem). (ii) What is the 

appropriate "potential energy" of an isothermal (y = 1) plasma? Without 

an expression for the effective potential energy one would not know 

whether the calculated equilibrium states are higher or lower in energy 

than the initial (unstable) state. Finally, we developed an original 

procedure for solving the reduced MHS equations since neither analytical 

nor numerical methods for solving the equations were known. 

A question asked frequently is: Why should one seek equilibrium 

states for (any model of) the interstellar medium, especially since one 

knows in advance that this system is a highly complex dynamical one? 

First, for the practically-minded skeptic, we point out that the e-folding 

time for the magnetogravitational instability (_107 years) is smaller 

than other relevant time scales, such as the passage through two successive 
. 8 

spiral shock waves (-10 years) •. Our equilibrium states, then, are 

referred to as "final" in the sense that they can persist for almost 108 

years -- before they might be modified by the general decompression that 

takes place downstream from a galactic shock (see Paper II). If the in-

stability is triggered regularly (for example, by spiral density shock 
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waves), one may hope to observe such configurations in the interstellar 

medium of our own, as well as of other, spiral galaxies. On the other 

hand, if the instability is active today, one might observe gas motions 

consistent with the final states. There are more general theoretical 

reasons for which a knowledge of equilibrium states of any system is very 

useful, but these are best dealt with in the context of self-gravitating 

interstellar clouds (see § VIII). 

We now summarize the main features and predictions of our equilibrium 

solutions, after we settle an important question bearing on the very 

existence of final equilibrium states. 

B. Final States for the Magnetogravitational .Instability 

1. Do Final States Really Exist? 

We Gould offer our calculated final states as a proof of the 

existence of such states for the idealized system under consideration. 

We would nevertheless prefer to understand their existence on the basis 

of first principles. After all, it has been argued in the literature on 
-

intuitive grounds that such states should not exist! What prevents the 

field lines from expanding indefinitely while the gas slides down into 

every thinner clumps of matter at the position of the valleys? In answering 

this question we distinguish two cases. 

a. A <~. A finite vertical wavelength of the initial perturbation 
y 

implies that a set of field lines is left undeformed. In particular, the 

first undeformed field line acts as a natural "lid" on the part of the 

system below. The "lid" by itself would prevent the unlimited expansion 

of the field lines. For this reasoning to be correct it must be verified 

that'the y-component of the velocity always (not just initially) vanishes 

at the undeformed, field lines. This calculation has not been attempted. 

. -
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But it seems reasonable t:hat, once the field lines have deformed in an 

opposite sense above and below each undeformed field line, it would take 

a finite amount of energy to reverse tha·t trend. In the apsence of a 

continuing source of Rgitation this may happen only if a flow of energy 

occurs from the shorter to the longer vertical wavelengths of the spectrum 

of the initial perturbation. Eventually, then, that state will prevail 

that is characterized by >. = 00. For, if this "mode mixing" ceaSes at 
y 

some A < 00, we would have illustrated the point that a final state y 

with a finite>. is possible. So, we turn to the second case. y 

b. A = 00. Will the field lines inflate forever in this case? y 

We suggest that they will not. The increasing curvature of the field 

lines, both at the position of the valleys and at the "wings" (where 

inflation occurs) 'of a condensation, will eventually stop the expansion. 

To. show this, we consider two initially neighboring field lines character-

ized by A and A + !J.A. Since the field lines are held down at the position 

of the valleys by the weight of the gas, we focus our attention at the 

peaks of the two field lines (points a and b of fig. 2). Specifically, 

we consider them after they have moved further apart because of the 

general inflation of the field lines. We denote by h the distance between 

points a and b. Since!J.A is fixed by flux conservation, the mean magnetic 

field in the space between a and b varies as 

-1 
a: h • (39) 

The expansi¥:e tendencies of the magnetic field are due to the pressure 
+ 2 . -1 

force -V~ B 18n acting in the +y-direction in this region. Since alay - h , 

it follows that 

-3 
h • (40) 
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We must now compare the variation of the disruptive force given by 

eq. (40) with the variation of the confining force (tension) due to the 

curvature of the field lines. The tension is 
2 A A 

+B (3s/os)/4n, where s 

is a unit vector tangent to a. field line. We also have that 

13;/3sl = (radius of curvature)-l = A -1 for highly deformed field lines. 
x 

Therefore, in the space between a and b we obtain the relation 

2 
~ B- -1 -2 A a:: h • 

x 
( 41) 

A comparison between eqs. (40) and (41) reveals that the magnetic-pressure 

gradients (disruptive) decrease with altitude faster than the tension of 

the field lines (confining). Hence, the inflation of field lines will 

eventually stop. 

The gas, of course, contributes its share in limiting the inflation of 

the field lines. This is done both by holding the field lines down with 

its weight at the position of the valleys and by resisting unlimited 

compression along field lines due to its finite temperature. At equilibrium, 

2 the gas density varies with altitude, y, as exp[-g y(x,A)/C ] along a field 

line characterized by the value A of the magnetic potential. Thus, the 

field does not turn into an exact vacuum field at any finite altitude. 

2. Some Features of the Final States 

In Paper I we presented three final states having the same vertical 

but different horizontal wavelengths, and we discussed their features in 

detail. We had taken a = 1 in the initial state, a value which Parker 

(1969a) finds reasonable on observational grounds. We suggested that 

final states represented "large-scale" condensations of the interstellar 

gas in valleys of the field lines. The scale, of course, is determined 

from Parker's (1966) instability criterion, if the interstellar medium 

has ever existed in the stratified stateM But Parker had suggested that 
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horizontal wavelengths as small as 10 pc and as large as 1000 pc could 

grow. The critical wavelength in the horizontal direction is given by 

A = x 
4 'II' H 

(2a + 1)1/2 
a > o. (42) 

Therefore. A is expected to be several times larger than the initial x 

scale height H. whjch is about half the scale height of a typical final 

state. Since observations reveal a scale height - 102 pc today. wavelengths 

smaller than a few hundred parsecs will not grow. even when cosmic rays 

are included (see § VBSd below). unless a is unusually large. This is 

the origin of our terminology "large-scale condensations". 

The following are some of the main characteristics and implications 

of our final states. 

a. Scale Height 

i. Gas. 

Compared with that of the corresponding initial state. the scale 

height of the gas in a final state increases at the position of the 

valleys. where the field is compressed (see isodensity contours of 

figs. 2a. 2b and 2c of Paper I). This is so because matter accumulates 

in the valleys mainly due to motions along field lines rather than due 

to a vertical compression. On the other hand. the scale height of the 

gas decreases at the wings of the condensations. For wavelengths within 

* 20\ of the wavelength corresponding to the maximum growth rate. the 

scale height of the gas at the valleys is 1.S-2.7 times that at the 

wings. The observed "high latitude gas" in the Galaxy may be nothing 

more than the high altitude matter indicated by the rise in the iso-

density contours of figures 2a. 2b and 2c of Paper I. This is in 

contrast with the traditional interpretation of the high latitude gas as 
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matter raised by inflated field lines during the development of the mag-

netogravitational instability. A significant amount of matter is not raised 

by inflated field lines. Field lines inflate only because. (and only as 

fast as) gas can drain away from their raised portions. (When all is 

settled, at any point in the region where inflation occurred, the density 

in a final state is smaller than that in the initial state.) If the magnetic 

pressure gradient remained undiminished during the expansion process, it 

might be able to lift a significant amount of matter to higher altitudes. 

It is the case, however, that expansion takes place at the expense of 

the forces that initiated it; that is, magnetic energy is released during 

the expansion. Matter which was originally at large y's travels down 

steeper field lines. It may,therefore. reveal itself as relatively 

rapidly falling gas above large-scale condensations in the interstellar 

medium. Since the e-folding time of the magnetogravitational instability 

is - 107 years. the high altitude gas would be depleted by now unless 

some mechanism replenishes it. We shall suggest that the mechanism which 

periodically triggers the instability may also be responsible for re-

plenishing the high altitude gas (see § V8Se below). No additional 

assumptions are necessary. 

ii. Magnetic Field. 

Fig. 3 exhibits the variation of the field. Bf(x.y).with y, 

at x = 0 (valley) and at x = X :: AX/2 = 15 C2/g (wing) of the final 

state of fig. 2c of Paper I (hereafter referred to as state c). On the 

same graph we plotted the field of the initial state. B. (y). for comparison. 
1 

All values are normalized to Bi(y = 0). It is evident that although the 

field at the valley. Bf(O.y). starts out larger than the field at the 

wings, Bf(X.y). it decreases more rapidly. For y ~ 3 C2/g. it becomes 



o 0 7 
,:",45- LBL-3602 

smaller than Bi (y). Also, for y ~ 5 C
2/g, it is smaller than Bf(X,y). 

The scale height of the field at the valley has decreased to about 2.9, 

and at the wings to about 3.5 compared to that of the stratified initial 

state, in which it was equal to 4.0 (units of c2/g). Thus, the individual 

scale heights of the gas and field change in the same direction at the 

wings of a condensation and in opposite directions at the valleys, where 

matter accumulates. Since observations of synchrotron radiation indicate 

a scale height of the field larger than that of the gas, our solutions 

suggest that the .radiation may be produced mainly at the wings of the 

condensations. We shall return to this point when we consider cosmic 

rays (§ V8Sd) . 

The above dependence of Bf(O,y) and BfCX,y) on y is a direct 

consequence of flux conservation. The total magnetic flux between the 

x-axis and y = y :: Ay/2 ~ CD is fixed. Therefore, the areas under the 

curves Bf(O,y) and Bf(X,y), 0 s y s Y, must be equaL Since BfCO ,y) 

exceeds Bf(X,y) for small y, it must decrease below BfCX,y) beyond some 

finite value of y. 

b. Gas density. 

The reflection symmetry about the ealactic plane implies that the field 

line originally coinciding with the x-axis will always do so during the 

development of the instability. We recall that g has only a vertical 

component and that magnetic,forces do not act along field lines. Con
I 

sequently, the gas density will be uniform along the x-axis, even though 

its value will be different, in general, in the initial and final states. 

Will Pf(x.y=O) be much larger than p.(O)? . 1 

It has been a tacit assumption in all work on the magnetogravitational 

instability that the final central (that is, x = O. Y = 0) density of a 

condensation will be much larger than p. CO). Even star formation resulting 
1 
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from a very large increase in gas density-at the valleys has been 

contemplated. Yet. our solutions show that the final density on the x-axis 

is smaller than. and within a few percent of, its value in the stratified 

initial state. This is so because if the density increases at the valleys, . ~-

where vertical compression takes place. the resulting increase in pressure 

is unopposed along the x-axis. Therefore. matter has to move out of the 

compression regidn (along the x-axis) to relieve the pressure gradients. 

The fractional increase of the cross-section of a flux tube at y - 0 

is larger at the wings than the fractional decrease taking place at the 

valleys. Therefore, the mean gas density in the tube will drop. But 

since the density must be uniform on the x-axis, it will always be equal 

to the mean density there. Thus. the density on the' x-axis in a final 

state will be smaller than that in the corresponding initial state. This 

decrease in density is very small because the deformation suffered by a 

field line neighboring the x~axis is small. _ This effect is seen clearly 

in fig. 4, which shows Pf(x=O,y) and Pf(x=X,y) for state c, and p. (y). 
1 

The dependence of the density on y at any x is indicated by the 

isodensity contours of figs. 2a, 2b, and-2c of Paper I. 

A directly observable quantity in those external galaxies which are 

seen nearly face-on is the column density of the gas if the gas is 

predominantly neutral, or the "emission measure" if the gas is mainly 

ionized. Our solutions predict a contrast between the maximum and minimum 

values of these quantities in the range 1.4 : 1 to 3.0 : 1 for wave-

lengths wi thin ±20% of the one corresponding to tho:: maximum growth rate 

(see fig. 3, Paper I). (In the case of ionized gas, a fixed degree of 

ionization is assumed throughout the system.) The curves for the emission 

measure may represent those for the column density within at most 18% 
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be~ause Pfvarics nearly ~xponentially with y at a fixed x, at least for the 

first few scale heights, where most mass is found. Thus, the integrals 
. 2 

- I dy Pf(x,y) and Em (x). :: f dy Pf(x,y), normalized to those of the 

initial state, will (almost) differ by a multiplicative constant:::::: 1. 

c. The ratio (a) of the magnetic pressure to the gas pressure. 

We assumed that a = I everywhere in the initial state and we determined 

final equilibrium states some of which were discussed in Paper I. Parker 

(1969a) interprets the observations as suggesting a value of a. close to 

unity. One uses the observed values of H, C, and g in eq. (37) in order 

b . 4 to 0 taln a. This is misleading conceptually. The e-folding time of 

the magnetogravitational instability is about 107 years. Therefore, 

observations carried out today will reveal values for H characteristic 

of some final state rather than of the assumed initial state. We have 

seen that the scale height of the gas varies typically by a factor of 2 

in going from the midplane (x = 0, y > 0) to the wings of a condensation. 

In a final state (for example, state c) a varies considerably with 

position even though it was taken equal to unity everywhere in the initial 

state. At x • O. it decreases rapidly with y from its maximum value of 2 

(see fig. 5), while at x = X, the opposite is true. Such a quantity as 

an "average" a is meaningless. Since observations may give only a mean 

value of the field and of the gas density along a line of sight, the most 

one may extract from observations is the quantity 

a (43) 

4. If g is taken as a linear function of y (as is actually the case for 
the first on~ or two scale heights in our galaxy), the mean value of g 
over the first scale height must be used. If cosmic rays are inCluded, 
eq. (37) is replaced by equation (50), with the quantity e given by 
eq. (48).· The point of our argument does not change by these considerations. 
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Faraday rotation measurements give < B II> weighted by the number density 

of thermal electrons along the line of sight. Observations of synchrotron 

radiation may give <B!·8> weighted by the llLllDber density of relativistic 

electrons. To obtain B itself, some assumption concerning the structure of 

the emitting region is necessary, [Note that a is not the same as the 

"average" a defined by < a > = V-I f dV a(x,y), where dV is a volume 

element.] Thcquantity a (not a itself) is near unity, indicating a 

large-scale "equipartition" between the energies in magnetic fields and 

in random motions of gas. Biermann and SchlUter (1951) advocated such 

large-scale equipartition on theoretical grounds (see also Parker 1969a, 

1969b). 

It should be unnecessary to remark that eq. (43) does not imply the 

relationB2 
« P; unfortunately, this relation is often used and justified 

"on observational grounds." Neither observations nor our calculations 

(see fig. 5) imply that a itself is constant in the interstellar medium 

today. 

3. Dependence on the Assumed Initial State 

We have used as an initial state the stratified state suggested by 

Parker (1966) in order to keep contact with previous work on the subject. 

We do not suggest that the interstellar medium must have existed in such 

a state. As emphasized in Paper I. our final states depend on the initial 

state only in that they have the same mass-to~flux ratio in their various 

flux tubes. If this ratio may be obtained from observations, our formalism 

and method of solution of the MHS equations can be used to determine 

equilibrium states of the gas and field in the galactic gravitational 

field without reference to any particular initial state and without 

reference to the magnetogravitational instability. 

. . 
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4. Comparison with Observations 

LBL-3602 

In Paper I we compared the calculated final states with observations 

in the solar neighborhood. We argued that the topology of the magnetic 

field, the distribution of the interstellar gas, and the observed gas 

motions can be understood in terms of. and can be taken as evidence for, 

the magnetogravitational instability. The sun is located at an estimated 

distance roughly equal to ~ /3 from the "center" of the. large-scale 
x 

o condensation observed at 1 = 40. A second large-scale condensation is 

located at 1 = 2500 at a distance - 2 ~ /3 from the sun. The horizontal x 

separation between the "centers" of these two condensations is ~ = 1/2 kpc. 
x 

The observed gas motions indicate that matter is still sliding down 

the deformed field lines. Note that if the sun's l~cation were equi-

distant from the two condensations, zero velocities would be predicted 

at a latitude b - 900 because a line of sight at b - 900 would intersect 

all field lines at right angles. With the sun's position as described 

above, however, the maximum velocities are expected to be observed at 

b - 900 because for these latitudes the line of sight forms the smallest 

attainable angle with highly deformed ffeld lines .. At intermediate and 

low latitudes, gas sliding toward a valley of the field lines from both 

sides will reveal itself in both positive and negative velocity (with 

respect to the velocity of the center of the condensation arising due to 

the rotation of the Galaxy as a whole). Because field lines close to 

the Galactic plane do not deform ve.ry much, low latitude local gas is 

expected to exhibit smaller velocities than the high latitude gas. 

which is falling freely through large distances. 

Clearer evidence for the magnetogravitational instability is expected 

in spiral galaxies seen nearly face-on if spiral density shock waves 
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trigger the instability. Rots (1974) observed the column density of 

hydrogen along the spiral arms of M81 with a resolution of 400 x 800 

pc. As his figure 12 shows, the spiral arms are broken up into many 

clumps of matter at fairly regular intervals of about 1 kpc; this is 

in accordance with our expectations based on the development of the 

magnetogravitational instability in an interstellar medium in which 

a ..., 1 (see Papei- II). Typically, the observed ratio of the maximum to 

the minimum column densities is somewhat less .than 2, as predicted by 

fig. 3 of Paper I. Since the observations were performed along a theo

retical spiral, rather than through the actual maxima of hydrogen 

emission, the full contrast in column densities between maxima and 

minima is not revealed in all cases. (Also, not all condensations are 

well resolved.) A repetition of the experiment with this particular point 

in mind ~nd with a better resolution would be very useful. 

To model a particular condensation one must know how its mass is 

distributed among its flux tubes. Until high resolution observations 

of the gas and field may yield information on that matter, any comparison 

with observations will, of necessity, be of a semi-quantitative nature. 

Our calculated final states predict that the interstellar medium, at least 

along spiral arms, would exhibit the following characteristics: 

i) The gas will be broken up into clumps of matter at fairly 

regular intervals larger than a few hundred parsecs. For (l -1, the most 

likely separation is in the range 500 pc - 1000 pc, the lower limit being 

allowed by the fact that the observed scale height may be twice that of 

the initial state. 

ii) The contrast in column densities between maxima and 

minima will be roughly in the ratio 2 : 1. A similar contrast is expected 
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between maxima and minima of the emission measure if the gas is pre-

dominantly ionized. 

iii) There will be an intimate association bet,,\een the inter-

stellar gas and field. Yet, the scale height of the gas is maximum 

where that of the field is minimum (that is, at the valleys) and vice versa. 

Further consequences of the development of the magnetogravitational 

instability along spiral arms are discussed in Paper II. In particular, 

we suggest that. cloud complexes, giant H II regions, and gravitationally 

unbound 08 stellar associations may have their origin in the triggering 

of this instability by spiral density shock waves. 

5. R.efinements 
+ 

Although we formulated (and described a method for solving) a very 

general problem in Paper I. the particular solutions presented may be 

restricted by some simplifying assumptions made. First, the gravitational 

field of the galaxy was assumed independent of y, the altitude above the 

galactic plane. Second, the magnetic pressure was taken equal to the 

gas pressure (that is, Q • 1) in the initial state. Third, the gas 

temperature in a final state was assumed to be the same as that of the 

corresponding initial state. Fourth, the initial state was taken as the 

(unstable) equilibrium state proposed by Parker (1966). Fifth, the effect 

of cosmic rays on the final equilibrium states was neglected. . How would 

our final states be modified if each of these assumptions is relaxed? 

We argue that changes will be of a quantitative, rather than a qualitative, 

nature - contrary to Parker's (1968b) suggestion that cosmic rays pre-

clude final equilibrium states. 

a. A gravitational field varying with altitude. 

The vertical component of the Galactic gravitational field, g(y), 
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deduced from observations of the motion of K giant stars, is plotted 

against y in fig. 6, taken from Oart (1965). For altitudes smaller than 

two scale heights, g(y) increases almost linearly from 0 to 5 x 10-9 

2 cm/sec. For the next 10 - 15 scale heights, g(y) increases only by an 

additional factor of 2. -2 It must decrease as yeventually. So, our 

solutions might be expected to change at least close to the Galactic 

plane and at very large altitudes because g(y) cannot be approximated 

by a constant there. In the region where g increases with y, one might 

expect the new final states to have field lines somewhat more deformed 

compared to those of the constant g case. This is so because a gas element 

is heavier the higher it is along a deformed field line, so that drainage 

of gas into valleys is likely to be more efficient. On the other hand, 

the almost vanishing g close to the Galactic plane will give rise to 

small gravitational forces that can be balanced by small pressure gradients 

along the slightly deformed field lines. Thus, gas drainage into valleys 

might be less efficient at small altitudes than it was in the constant 

g case. 

The inverse~sq~are~dependence of g on y at very high altitudes 

indicates that the deformation of field lines in this region may be much 

less than before. 

On the basis of these intuitive arguments one might speculate on the 

expected dependence of the magnetic field and the gas density on position; 

but one's intuition cannot substitute for quantitative calculations. We 

shall. therefore. refrain from further speculations. If and when 

observations allow the determination of the mass-to-flux ratio in the 

flux tubes of the system, solution of eqs. (IO)and (12) of Paper I with 

a more realistic g will be necessary (and straightforward). Then a 
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detailed, quantitative comparison with observations would be possible. 

b. Alpha I arger than un i t y . 

In Paper I and in § V82 above. we pointed to observational evidence 

suggesting that the critical horizontal wavelength for the magneto-

gravitational instability is a few (3 or 4) hundred parsecs. The 

horizontal wavelength corresponding to the maximum growth rate is about 

twice as large. Since the horizontal "width" of a condensation is in 

the range A /4 - A /2 (see Paper I, § VIa), it is clear that the magneto-x x 

gravitational instability accounts most naturally only for condensations 

2 larger than 10 pc. Thus, we have two proposed mechanisms for cloud 

formation: (i) the thermal instability. which can account for dwarf 

clouds of dimension ~ 10-1 pc; and (it) the magnetogravitational 

instability that can produce giant condensations of dimension > 102 pc. -
What, then, is responsible for clouds of intermediate [or, "standard" 

(see Spitzer 1968a)] size? 

Equation (42) shows that, if a » 1, the critical horizontal wave-

length (Ax) for the magnetogravitational instability becomes comparable 

to, or smaller than, the combined scale height (H) of the gas and field 

in the initial state. It might be tempting to suggest that this is the 

manner in which "standard" clouds form, namely. that the magnetogravitational 

instability develops in a cold gas for which a >~ 1. There are some 

difficulties with this picture. First, Faraday rotation observations 

yield a large-scale magnetic field of a few microgauss. So, one does 

not have the freedom of achieving large a's by aS~llMing a much strong~r 

field. An additional restriction on a and the gas temperature (T) is 

imposed by the requirement that H remain reasonably close to the scale 

height observed today. For H to remain nearly fixed while a and T vary, 
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one must have the approximate proportionality (see eq. [37]) 

-2 -1 a ~ C ~ T . (44) 

Since the magnetic field must also remain nearly fixed, we have the 

additional relation 

(45) 

Combining relations (44) and (45), we obtain 

P ~ T. (46) 

Equation (46) states that, in order for alpha to increase appreciably, 

the interstellar gas must cool nearly isochorically. In § IIA2, we 

discussed the possibility that standard clouds might form through the 

development of a thermal instability in an interstellar medium cooling 

isochorically. We concluded ~hat much smaller condensations are favored 

7 for times less than - 10 years. We now ask: if indeeq, large Ct.' s are 

achieved because of isochoric cooling, would the magnetogravitational 

instability account for standard clouds? 

We may obtain a hint on the nature of the answer to this question 

if we compare the tension of the field lines with the galactic gravitational 

force exerted on the gas. Since wavelengths smaller than H are now 

favored (see eq. [42]) we may write for the radius of curvature of a 

typical field line R - A =~, where K is a positive constant smaller than 
x 

unity. Then the ratio of the tension of the field lines to the gravitational 

force is 

182 (3;/3s)1 
4 11' P g 

I 
= 

4 11' R pg 

where we made use of the equation H ~ Ct. 

, (47) 
4 11' K:H Pg 

2 C /g for Ct. » 1. Equation (47) 
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suggests that, even if the horizontal wavelength is as large as the scale 

height (that is, K = 1), the tension of the field lines might prevent 

large deformations. Hence, final equilibrium states are expected to have 

field lines only slightly deformed. The deformation would be smaller for 

smaller wavelengths. As a consequence, the density contrast between the 

valleys and the wings of a condensation is unlikely to be very large, 

casting doubt on the original proposition that the case a » 1 might 

produce standard interstellar clouds. Yet, this possibility (and 

especiaily the case a > 1) should not be dismissed without an exact 

equilibrium calculation. 

We note in passing that Heiles (1968) found an abnormally small number 

of clouds with masses 24 - 280 Me. This "gap" may not be unrelated to 

the gap in wavelengths that separates the realms of thermal and magneto-

gravitational instabilities. 

c. A non-isothermal equation of state. 

The result discussed in § VB2b. that the gas density is uniform along 

the x-axis, might be a consequence of the assumption that the gas is iso-

thermal. Suppose then that some other equation of state. such as P = P (p), 

is used. The gas pressure must still be uniform along the x-axis because 

there are no other forces available to sustain any pressure gradients. 

We must, therefore, have that V P = (dP/dp) V p = O. Clearly, the x . x 

possibility now arises that there may be density variations along the 

x-axis. The necessary and sufficient condition is that dP/dp = 0 for 

some ("critical") value of Pi that is, a "phase transition" (an increase 

in density at a constant pressure) must take place. 

If such "phase transitions" (see also § HAl) are permitted, two new 

effects may appear. The first one is that small elements of dense gas 
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may form (by a thermal instability) and b~ collected in the vallcys 

because they "see" an external potential well (see Table 2, Papcr I), 

into which they may fall by sliding along field lines. If small-scale 

condensations form, or pre-exist, in the interstellar medium in which the 

magnetogravitational instability develops, they will be accelerated 

along deformed field lines giving rise to ordered motions of interstellar 

matter. There exists observational evidence for such motions (see § lIB). 

The second effect that may appear due to a general equation of state is 

that forced (or, driven) "phase transitions" may occur as the gas 
) 

accumulates in valleys of the field lines. Such transitions may not 

suffer from the limitations of the thermal instability. In particular, 

the (short) cooling time of the interstellar gas need not. determine the 

range of most unstable wavelengths, which will be appropriate to the 

magnetogravitational rather than the thermal instability. The rate of 

forced "phase transitions" will be limited by the speed with which gas 

slides down the deformed field lines. This may be comparable to the speed 

of sound in the intercloud medium; that is, about 10 km/sec. Several hundred 

parsecs of intercloud medium may undergo such transition within a few 

times 107 years. Under these circumstances, p may be much larger than in 

the isothermal case at the position of the valleys. How much denser the 

condensations may become can be answered only by solving the problem 

formulated in Appendix A of Paper I. 

Appealing as the above scenario may be, the difficulty still remains 

that if a flux tube close to the x-axis is only slightly deformed, then 

only a small increase in density (if any) will result. Therefore, for a 

"phase transition" to occur close to the galactic plane, the gas density 

in the initial state must be close to the critical value. Although this 
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cannot be excluded from ~bservations, such an assumption would severely 

restrict the theoretical appeal of the original, general proposition, 

that the magnetogravitational instability might lead to denser condensations 

if a non-isothermal equation of state is used. 

d. The effect of cosmic rays. 

L Modification of the instability criterion. 

In his stability analysis of the stratified initial state 

Parker (1966) studied the effect of cosmic rays by assuming that 

S :: P /P = a constant. (48) cr 

The cosmic rays tend to destabilize the system. On the one hand they 

increase the initial growth rate of an unstable perturbation, and on the 

other hand they decrease the critical wavelengths for the instability. 

The new instability criterion. is 

). > A' 4 H [ ay .. J 1/2 
(49a) - n t 2(1+a+8-y) (l+a+8) X X ay 

). A' (). ) :: A' (1 -
2 -1/2 

(49b) > l.I ) , y y x x 

where l.I = A~ tAx < I, and the combined ("total") scale height of the gas, 

field, and cosmic rays in the stratified initial state is given by 

Ht = (1 + a + S) C
2/g. (50) 

The quantity y is defined by y = d in P/d in p. (Note that eqs. [49a] 

and [49b] reduce to eqs. [31] and [32] of Paper I if y = I and S = o. 

Parker [1969a] argued on observational grounds that S is close to unity.) 

It is straightforward to understand why the cosmic-ray gas has 

a destabilizing effect. Under small-amplitude deformations of the field 

lines the volume of a flux tube remains fixed in the special geometry 

under consideration (Parker 1966; Ames 1973). From the discussion of 
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§ IVA2, it follows that not only is the cosmic-ray pressure constant on 

a field line, but it is also a constant of the motion for small-amplitude 

disturbances. As field lines defor~ in order to equalize their pressure 

along field lines, some cosmic rays "squirt out" of the valleys, where 

the cross section of flux tubes decreases. Then the already inflated 

portions of field lines expand further not only because of the magnetic 

forces there (see § VAl), but also because of the gradient of the cosmic-

ray pressure normal to the field lines. With the additional driving force 

due to cosmic rays the instability proceeds at a faster rate. Also, 

because cosmic-ray pressure gradients aid the magnetic pressure forces 

against the tension of the field lines, smaller horizontal wavelengths 

may become unstable. 

ii. Formulation of an equilibrium problem. 

In our calculations of final equilibrium states of the gas and 

field in a galactic gravitational field, we ignored cosmic rays consistently. 

We did so for several reasons. First, the study of the nonlinear inter-

action between magnetic, gravitational and pressure forces is involved 

enough without additional complications. Second, uncertainties in the 

origin and in the rate of production and "destruction" (or, loss) of cosmic 

rays render any adopted relation between Pcr and ncr that is supposed 

7 to remain valid for about 10 years a matter of faith or personal bias 

as much as a matter of "observational evidence." Finally, the cosmic 

rays are not necessary for driving the magnetogravitational instability. 

The physics of the instability and of the final equilibrium states be-

comes better understood if complications are introduced in some hierarchical 

order of importance. 

Parker (1965a, 1968b) suggested that the presence of cosmic 
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rays precludes the existence of equilibrium states. If such,is the 

case, the practical importance of our solutions would be reduced con-

siderably. They would represent only the states toward which the system 

may tend after the "bubbles" of cosmic rays and magnetic fields may break 

off and leave the galactic disk, as described by Parker. 

[Nevertheless, the predictions made on the basis of the equilibrium states 

(§ VB2) would still be the only ones available for an interstellar medium 

in which the magnetogravitational instability develops.] Clearly, Parker's 

arguments warrant a critical evaluation. 

The conclusion that cosmic rays may cause an unlimited inflation 

of the field lines depends crucially on two assumptions. First, some 

field lines protrude from the surface of a conductin'g galactic disk into 

!. vacuum region. Second, a copious supply of cosmic rays within the disk 

keeps their pressure fixed in all protruding flux tubes ~ all times. The 

first assumption does not apply to the problem at hand: the gas density 

decreases exponentially with altitude, and there is no "surface" with 

protruding field lines. As for Parker's second assumption, it is very 

difficult to determine with direct arguments whether in a real galaxy the 

cosmic-ray pressure is a constant of the motion. It is clear, however, 

that the cosmic-ray pressure within a flux tube, which undergoes considerable 

7 expansion in 10 years (the e-folding time for the magnetogravitational 

instability), will decrease unless a source supplying cosmic rays 

copiously in this flux tube is avai.1ab1e. Although such sources might 

be available close to the Galactic plane, it is doubtful that they exist 

at altitudes larger than a scale height. An examination of figs. 2b and 

2c of Paper I shows that these are the altitudes at which the highly 

deformed flux tubes lie. These flux tubes are the first whose expansion 
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will be limited by the iacreasing curvature of the field lines~ possibly 

leading to equilibrium states. 

In what follows we shall assume that the total n~mber (rather 

than tp.e pressure) of cosmic rays in each flux tube remains fixed (or at 

least quasi-steady) ~ver 107 years ~ so, and we shall explore the con-

sequences of this assumption. Since protons whose energies exceed a few 

Gev contribute most of the cosmic-ray energy. we consider all cosmic rays 

as highly relativistic and we relate their pressure. mass density, and 

number density by (see eqs. [16] - [18]) 

p - p C2 
cr - cr cr = b 

4/3 
ncr ' (51) 

where b is a positive constant. 

We may proceed in a manner identical to that of § VBl to prove 

the following equilibrium theorem. If the magnetic field lines ~ held 

down ~ the ~ in two regions separated El.~ horizontal distance Ax,then 

!. quasi-steady number of cosmic rays in each flux tube will not cause an 

unlimited inflation of the field lines in the space between the two.~ 

condensations. The tension of the field lines eventually exceeds the 

cosmic-ray pressure gradients. 

-2 Equation (41) shows that the tension force varies as h . The 

cosmic-ray pressure varies as 

+4/3 
a: n 

cr 
a: V-4/ 3 a: h-4/ 3 (52) 

so that its gradient normal to the field lines is 

(53) 

Therefore, the ratio of the (confining) tension of the field lines to the 

(expansive) cosmic-ray forces varies as 
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(54) 

revealing that the inflation of field lines will eventually stop (qed). 

A "typical" field line in a final equilibrium state is expected 

to deform in such a manner that its radius of curvature, R, is comparable 

to the horizontal wav~length of the mangetogravitational instability cor-

responding to the maximum growth rate, that is, R - A ..... I kpc. Only then 
x 

will the tension of the field lines stop the inflation. Thus, the above 

equilibrium theorem would provide for a fat radio disk of half-thickness 

- I kpc in a quasi-steady state. 

"The compression of the field at the valleys of the field lines 

might lead one to expect that the synchrotron emission will be larger 

there than in the wings of a condensation. We recall, however, that the 

maximum field at the valleys is larger than that at the wings by less 

than a factor of 2, and that B decreases with y faster at the valleys than 

at the wings (for example, see fig. 3). When this is combined with our 

suggestion that, at equilibrium, cosmic rays will "squirt out" of the 

valleys in order to equalize their pressure along field lines, it follows 

that the expected contrast in synchrotron emission between valleys and 
\, 

wings will be reduced and, perhaps, even be inverted (in galaxies seen 

nearly face-on, of course). Quantitative estimates may be "obtained by 

solving the equilibrium problem which we now formulate. 

We collect the MHS equations describing the system consisting 

of a highly conducting, isothermal gas, a large-scale magnetic field, 

and a hot and tenuous (pcr + 0, Ccr + ~) cosmic-ray gas in a (known) 

galactic gravitational field (see § IVA): 

(55) 
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B · vp = 0 (56} cr 

P = p C2 
(57) 

P = b n4/3 (58) cr cr 

V x B = (4 ~/c) 
~ 

(59) J 

B = V x A • (60) 

Note that the quantity r has a contribution from the cosmic rays (see 

eqs. [21c], [21d], and [65]). We are faced with a system of six equations 

with seven unknowns! Even worse, of the six equations only five express 

relations among the seven unknowns; eq. (56) merely states that P is cr 

constant on a field line, that is 

= P (A); cr (61) 

but it does not specify the value of this constant, which is different on 

different field lines. In going from the MHD to the MHS equations we 

have lost some equations, which are satisfied identically for static 

conditions with no bulk motions. These are eq. (5), expressing conservation 

of mass for the thermal gas, and eqs. (9) and (19), which describe the 

assumption that the thermal gas and the cosmic ray gas are tied to the 

magnetic field. To solve the MHS equations one must relate first P and Pcr 

on the one hand with B (or, A) on the other. Ad hoc assumptions have been 

made by other workers at this point (for example, Parker 1968a, 1968b). 

We shall proceed in a methodical manner, as in § II of Paper I. 

We adopt the two-dimensional geometry us~d by Parker (1966) -

see § VAl, and Paper I. We define a scalar function of position, q(x,y), 

by 

(62) 
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and we write eq. (55) in·terms of A. q. and P as cr 

= 2"'" ..... 
exp(-~/C ) Vq + VP cr 

LBL-3602 

'..... . By taking the inner product of both sides of eq. (63) with B and by 

using eqs. (24) and (56) we find that 

2 P exp(~/C ) = q = constant on a field line = q(A). 

(63) 

(64) 

If we consider the components of both sides of eq. (63) in a direction 

normal to the field, it follows that 

i = 
C 

(65) 

= 

Now we may write eq. (59) in terms of, A, q, and Pbyusing eqs. (60) cr 

and (65): 

v2 A(x,y) = -4 [dq(A) 
11' dA 

dP cr(A)] 
dA (66) 

The solutions of eq. (66) represent equilibrium states of our 

system. To obtain such solutions one needs to know q(A) and PcrCA). Since 

neither of these functions is a constant of the motion in the nonlinear 

flow associated with the magnetogravitational instability, it is not 

legitimate to calculate (or to specify) q(A) and Pcr(A) in some initial 

state and then proceed to det,ermine a final state characterized by the 

same q(A) and Pcr(A). Both functions can and must be calculated from 

first principles given the manner in which field lines are loaded with 

thermal and cosmic-ray particles. 

A final equilibrium state is accessible to the system evolving 

away from the stratified initial state only if it has the same mass 

and the same number of cosmic rays as the initial state in each of its 
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flux tubes. If we can formulate mathematically these two conservation 

laws and incorporate them into the MHS equations, it will be possible for 

a solution of eq. (66) to represent a final state that can be reached 

f~omthe stratified initial state through continuous deformations of the 

field lines under flux-freezing; the missing link will have been provided 

and the system of equations (55) - (60) will have been closed. 

We calculated q(A) in § lIb of Paper 1. It is given by 
2 X 

q(A) = ~ d:lA) / f dx ay~~,A) exp [- 1/I(~iA) J (67) 

o 

where X :: A /2, and all other symbols have their usual meaning. The x 

integration is performed over x along a field line characterized by the 

value A of the magnetic potential. Since the mass-to-flux ratio, dm/dA, 

is a constant of the motion, we were permitted to calculate it in the 

initial state (see eq. [16] of Paper I). It is 

dm(A) 
dA = 

2 X P .. (0) 
1 (68) 

where the ("total") scale height. Ht • is given by eq. (SO). Note that 

eq. (36), which relates P, B. and.A in the initial state, is slightly 

modified by the presence of cosmic rays. It becomes 

2 2 
pry) :: B. (y) [-A(y)] _ 

8 w a - 32 w a H~ 
Pcr(Y) 

B 
b = i 

(69) 

We may now calculate Pcr(A) in a similar manner. The total 

number of cosmic rays, 6N • in a length A of a flux tube [A, A + 6A] cr. x 

is, by definition, 
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I 
y(x,A+6A) 

dx 
y(x,A) 
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dy(x,A) n [x,y(x,A)]. cr . (70j 

We consider x and A as the independent variables. Since the integration 

over y is performed with x fixed, we may change variables from y to A by 

using the relation 

dy= dA (3yjaA). (71) 

We eliminate ncr in favor of Pcr by using eq. (58) and we perform the 

trivial integration over A to find that 

[

p (A)]3/4 +X 
6Ncr (A) = c~ 6A I_x dx 

3y(x,A) 
3A 

Solving eq. (72) for P and taking the limit 6A + dA we obtain cr 

3y(x,A) ] 4/3 
dx 3A 

(72) 

(73) 

The quantity dNcr/dA is easily calculated from the initial state since it 

is a constant of the motion (by assumption). We have 

6Ncr n . (y) A 6y cr ,l. . x 
Tt::- = B.(y) 6y 

1 

2 X n . (y) [- r = cr,l. 
2 HtABi(O) Bi (0) 

2 X ncr,i(O) 
exp(-3y/4 "t) [- 2 "~ Bi (0) r1 

= B. (0) 
1 

2 X n . (0) 
[ A t2 [ A r crzl = Bt(O) - 2 Ht Di(O) - 2 Ht Si(O) 

Thus, we may write 

dN (A) 2 X n . (0) 
[ A r'2 cr cr,l 

(74) dA = B. (0) - 2 Ht Bi(O) 
1 
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where the relations expressed by (69) have been used repeatedly. 

Equations (67) and (73) state that the functions q(A} and 

Pcr(A), although constant along a field ·line, respond to ~hanges in the 

shape of field lines (and in the volume of a flux tube). They are pre

scriptions of how to calculate q and P at equilibrium if the distribution cr 

of mass and cosmic rays in the various flux tubes is known now or was 

.known at arty time in the past. 

The thermal gas and the cosmic-ray gas differ in an important 

way. Since the cosmic rays are not subject to the gravitational field 

of the galaxy, the gravitational potential does notal'pear in eq. (73). 

Although this expression for P is valid only at equilibrium, the ~ cr 

expression may be used in a time-dependent problem if the speed of sound 

(Ccr) in the cosmic-ray gas i: considered ~ infinite (see discussion in 

§ lVAl). Then, as A(x,y,t) changes in time because of deformation of the 

field lines, the cosmic-ray pressure equalizes "instantaneously" along a 

field line and its new value is determined only by the (new) "specific" volume 

of a flux tube, as shown by eq. (73). 

Altogether, to find equilibrium states for our system, eqs. (66), 

(67), and (73) must be solved simultaneously under appropriate boundary 

conditions, such as those used in Paper I. We shall not solve this 

problem here, although the method used for solving the problem in the 

absence of cosmic rays may be used in this case as well with only a trivial 

modification. 

We remark that the cosmic rays contribute a current density, 

jcr' that acts in a direction opposite that of jgas (at least for a con

figuration close to the stratified initial state). This is seen as follows. We 
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may write from eq. (69) that 

P . (A.) cr.1. 1. 
2 = B p. (0) C 1. 

9 
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Also, in the presence of cosmic rays eq. (15) of Paper I is 

q.(A.) = p.(O) C
2 

1. . 1. 1. 

2{a + B) 
[- 2 H B~(O)/A.] 

t l, 1. 

(75) 

(76) 

Equations (75) and (76) show that dP ./dA. and dq./dA. have opposite cr. 1. 1. 1. 1 . 

signs (A. is negative everywhere); hence, j and j do so as well (see 1. gas cr 

eq. [65]). This is in conformity with one's intuition that cosmic rays 

should tend to expand the field lines and weaken the magnetic field. 

e. A non-equilibrium initial state 

The calculated final equilibrium states have a mass-to-flux ratio 

in each of their flux tubes characteristic of Parker'S (1966) stratified 

initial state. We alluded in § VB3 that the magnetogravitationa1 in-

stability may develop in a rather different initial state. In fact, if 

spiral density shock waves (Fujimoto 1966; Roberts 1969; Shu et ale 1973; 

Woodward 1973) trigger the instability. the initial state is likely to be 

a non-equilibrium one even if the interstellar medium in the region be-

tween spiral arms could be represented by Parker's initial state. The 

study of spiral structure and galactic shocks is beyond the scope of this 

work (for an excellent qualitative exposition of our present day knowledge 

on this subject see Shu [1973]). 

For the purposes of this discussion it is sufficient to state that the 

existence of a small-amplitude spir~l density wave in the stellar disk of 

a galaxy may induce a shock front in the interstellar medium extending 

several ki10parsecs along the x-axis in the geometry which we have been 

2 using. The width of the shock layer along the z-axis is -10 pc. The 
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contrast in gas density between the postshock and preshock regions is 

usually less than 10 (even in the absence of a magnetic field) and is 

achieved within _106 years (for example. see Shu etal. 1972). Because 

the e-folding time for the magnetogravitational instability is ....., 107 

years, if galactic shocks are responsible for triggering the instability 

one must consider as an initial state a'non-equilibrium state representative 

of conditions in the postshock region before vertical readjustment takes 

place. Since we have determined final equilibrium states by solving the 

MHS equations in a dimensionless form with a of the initial state being 

the only free parameter in the equations (see Appendix C of Paper I). 

our results (for which a = 1) will change only insofar as in the post-

shock region a may become different from unity. What the value of a 

is in the interarm region is not known in reality. It seems reasonable 

to assume, however. that a is only a fraction of unity there; otherwise 

the magnetogravitational instability would develop with ~x ....., 1 kpcand 

would lead to condensations such as the ones which we have calculated 

and which have not been observed in the interarm region (at least not yet). 

The cornp~ession in tne galactic shock will increase such a weak a by 

the same factor ( ~ 10) as the gas density (see below). So, a is expected 

to be somewhat larger than 1 in the postshock region. This will lower 

the critical wavelength for the instability (see eq. [49]) - and will 

introduce a perturbation in the z-direction with wavelengths well below 

the range of the disruptive effects of differential rotation. The in

stability may be initiated in this manner. 

We claimed in § VB2ai that the mechanism which periodically triggers 

the magnetogravitational instability also replenishes the high altitude 

gas in the Galaxy. A simple calculation illustrates this point. We ignore 
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the magnetograviational instability and the effect of cosmic rays and 
... 

we take B to be parallel to the x-axis. as before. We consider a plane, 

isothermal shock in the (x.y)-plane with z > 0 being the unshocked region. 

The gravitational field is that given by eqs. (31) and (32). In the un-

shocked region (state 1) the equilibrium quantities are 

PI (y) = Pl (0) exp( -Y/"l) (77a) 

B1 (y) = B1 (0) exp(-y/2 "1) (77b) 

A1(y) = -2 "1 B1 (0) exp( -y/2 "1) (77c) 

"1 • (1 + all C2/g (77d) 

a l = 2 2 
B1 /S 'II' PI C = a constant. (77e) 

If adjustments in the vertical (y) direction are ignored for the 

moment. the (n~n-equilibrium) quantities behind the shock (state 2) will 

be related to those of state 1 by 

P2(y) = K PI (y) (7Sa) 

B2(y) = K B1 (y) (7Sb) 

A2(y) = K Al (y) (7Sc) 

"2 = "1 (7Sd) 

a2 = K a1 • (7Se) 

Equation (7Sb) follows from B2/P2 = BI /P 1• which is valid for one- ( 

dimensional compression (for example. see Spitzer 1965a). and eq. (7Ba). 

To arrive at eq. (7Bc) one simply uses the definition B = dA/dy for this 

geometry. Equation (7Sd) states that we have not allowed vertical re-

adjustment yet, while eq. (7Be) follows from (7Sa) and (7Sb) and the 

definition of u. The constant K is in the range (1. 10) and is determined 
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by the parameters of the'gas flow in galactic shocks. With the field 

lines assumed to remain straight, the increase in 0 indicated by eq. (78e) 

will lead to an expansion in the vertical direction. AfteT sueh an 

expansion takes plac~ the equilibrium quantities (state 3) may be written 

as 

P3(y) z: P3(0) exp(-yl"3) (79a) 

83 (y) = 83(0) exp( -y/2 "3) (79b) 

A3 (y) lI: -2 H3 83 (0) exp(-y/2 H3) (7ge) 

H3 
2 (79d) = (1 + 0 ) C Ig 3 

2 2 (7ge) 0 3 • 83 /S w P3 C • 

Because mass (per unit length along z) is conserved in going from 

state 2 to state 3, we must have that 

• 
J dy P

2
(y) 

o 

Using eqs. (7Sa) , (77a), and (79a) we .. y perform the integrations to 

find the r&lation 

(SO) 

Since flux (per unit length along z) is also conserved in the transition 

from state 2 to state 3, we may write that 

or that 
(81) 

·FrOll eqs. (SO) and (S1) we obtain 

(S2) 
• 
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from which it follows that 

(83) 

We would like to determine B3(0) in terms of K and quantities 

characteristic of state 1 only. First we substitute the definitions of 

"1 and "3 (eqs. [77d] and [79d]~ respectively) in eqs. (80) and (81). The 

result is 

(84) 

and 

2 [8 n Pl(O) + 81 (0)] 
K 

PI (0) 

8 n P3(0) + 83
2(0) 

8
3

(0). 

(85) 
P

3
(0) 

where 

P = p C2 
n n • 

n = 1,2,3. (86) 

We solve eq. (8S) for P
3

(0) and substitute in (84) to obtain. after some 

algebra. the quadratic equation for 83 (0): 

B~(O) B1(0) + 83(0) 8 n P1(0) - K[8 n Pl(O) + 8~(0)]Bl(0) = O. 
(87) 

Reinstituting ai' we find for the roots of (87) 

(88) 
1 • +--2 a 1 

where only the positive root was kept because the ratio 83(0)/81(0) must 

be positive. 
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Using eqs. (81), (82), and (83) we find the following relations 

between the quantities of states 1 and 3: 

(89) 

We note that 

(90) 

that is, H3 = HI. This is as it should be since in the absence of a 

magnetic field the scale height is determined only by the temperature of 

the gas and the gravitational field. On the other hand we have that 

lim 
Ie+l 

when there is no compression there is no change. 

The limit of very strong fields is of interest. We find that 

= 1/2 
Ie , 

showing that the increase in the scale height that would result, if 

(91) 

(92) 

vertical relaxation without "buckling" of the field lines took place, 

varies only as the square root of the initial increase in gas density. 

For a reasonable range of parameters, that is, 

3 :5 Ie :5 10 and. 

eq. (89) yields that 

= 1. 25 - 2. s. (93) 

This·is the basis of our suggestion that galactic shocks not only may 

trigger the magne~ogravitational instability, but they may also replenish 
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the high altitude interstellar gas. Of course, if 'this is the manner 

in which the instability is initiated, the field lines will deform and 

gas will drain into the valleys of the field lines at the same time that 
• 

a general vertical expansion may take place., The instability may proceed 

at a faster rate bec8;use of the external driving force 'provided by virtue 

of the fact that the initial state (state 2) is not an equilibrium one. 

The magnetic stresses, that led to the onset of the instability in the 

first place, are relieved by the inflation of the field lines with the 

result that the mean magnetic field along' the x-axis behind the shock 

increases much less than eq. (78b) would predict. This may have some 

bearing on the predictions of the intensity of synchrotron radiation in 

spiral arms (see Paper II). 
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VI. SELF-GRAVITATING INTERSTELLAR CLOUDS 

A. Non-Magnetic Clouds: A Summary 

The calculations of Bonnor (1956) and Ebert (1955, 1957) on bounded, 

iSbthermal, gaseous spheres led to a criterion for gravitational collapse. 

The total Mass (M) of a cloud must exceed a critical value, which is a 

function of the cloud temperature (T) and the external pressure (P ), 
o 

namely, 

M > 
P ) 1/2 

o 

(94) 

where the isothermal speed of sound in the cloud is 

The quantity k is the Boltzmann constant. ~ is the. mass of a hydrogen 

atom, and ~ is the mean mass per particle in units of~. To account 

for the cosmic abundance of helium. one takes 

= 1.27 in H I clouds (nHe/nH = 0.1); (96a) 

= 2.33 in molecular clouds (nHe/2nH2 = 0.1). (96b) 

[Often we shall not distinguish among molecular. dark and dust clouds, 

to which we shall refer collectively as "dense clouds". Their relatively 

high densities and masses and their low temperatures ensure that they 

are self-gravitating. Their differences (for example, see Zuckerman and 

Palmer, 1974) are not relevant in the present discussion.] For conditions 

typical of H I clouds (T ~ SOOK) and of dark clouds (T ~ lOOK), and for 

a "standard" intercloud pressureS (P ~ 1800 k), we find that 
o 

S. The precise physical parameters of the intercloud medium (see § IIAl) 
are more important in the context of the present discussion than they 
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740 Me for H I clouds; (97a) 

8.8 Me for dark clouds. (97b) 

Since individualH 1 clouds with masses larger than 103 M are rare e 
(Spitzer 1968a), one might conclude that the upper limit on cloud masses 

is set by the Bonnor-Ebert critical mass. Then, clouds observed to have 

masses larger than Mc must, of necessity, be collapsing: Observations 

relate a different story. Massive H I clouds may not even be self-gravitating 

because they are not usually dense enough. In those cases in which 

gravitation is important, turbulence and magnetic fields could aid in 

supporting a cloud, so that masses larger than Mc may not be collapsing 

(Meste~ 1965; Spitzer 1968b). But even if the Bonnor-Ebert predictions 

were in perfect agreement with observations of H I clouds, the conclusions 

drawn would be very misleading. The scarcity of atomic-hydrogen clouds 

3 with masses larger than 10 Me has a plausible explanation unrelated to 

gravitational collapse. Massive clouds may become dense enough to shield 

their interiors from ultraviolet radiation, thus allowing atomic hydrogen 

to be converted to molecular hydrogen on the surfaces of grains (for details 

of this process see Solomon and Wickramasinghe 1969; Hollenback and 

S.(contd) were in our discussion of non-gravitating condensations. Direct 
observational evidence sets a lower limit on the intercIoud temperature 
(> 10000K)on the grounds that the intercloud medium is not seen in 
21-cm absorption (for example, see Clark 1965), although Colvin 
et al. (1970) and Hughes et al. (1971) find somewhat smaller lower 
limits (300 - 8000K). An upper limit (~ 4000 o K) is set by the 
measured widths of 21-cm emission lines (Heiles 1968). However, 
Field (1973) used the observations of Radhakrishnan et al. (1971), 
which show no line widths less than 8 km/sec, to conclude that the inter
cloud temperature is ~ 8000 o K. He also noted that observations of 
extinction in the solar neighborhood indicate that the density of 
dust in the intercloud medium is < 1% of that in clouds. Assuming 
that the dust-to-gas ratio is fix;d, he arrived at a density for the 

. intercloud gas ~ 0.2 cm- 3• This yields P ~ 1600 k, a value not far 
from the "standard" one, which was deriveS theoretically (for 
example,' scc" Spitzcr and Scott 1969; Field et a1. 1969; Hjcllming 
et al. 1969) . 
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Sal peter 1971; 1101 lenback, Werner and Salpeter 1971). As a consequence, 

a large fraction of the total mass of such clouds may be inaccessible 

to 21-cm obser~ations. 

Indeed. observational evidence (direct and indirect) has showl! that 

hydrogen in dense clouds is mainly in molecular form and that nil is in 
2 

3 4-3 the range 10 - 10 cm in most cases (see reviews by Carruthers 1970; 

Heile~ 1971; Zuckerman and Palmer 1974). Other typical parameters of 

dark clouds arc M ~ 100 Me' D(diameter) ~ 1 pc. 0v (velocity dispersion) 

6v (full line width at half maximum power/2.3) ~ 0.4 km/sec and. as 

mentioned above. T ~ lOoK. The discrepancy between observations and the 

Bonnor-Ebert predictions is more serious in this case: observed typical 

(not maximum) masses are at least a factor of 10 larger than M. If indeed c 

some dark clouds have temperatures as low as 5°K (Heiles 1971). the dis-

crepancy between observed and predicted masses will be at least as large 

as a factor of 40. 

The possible presence of turbulence in dense clouds cannot by itself 

eliminate the discrepancy. It may increase by at most a factor of 2 the 

effectiveness of the thermal energy in balancing the gravitational energy 

in the virial theorem because supersonic turbulence dissipates rapidly in 

shocks (for example, see Mestel 1965). In terms of eq. (94), M may inc 

crease by at most a factor of 4. If the measured line widths are attributed 

solely to turbulent velocities, the resulting Mach numbers are usually 

larger than 2. Even if the scale (L) of a turbulent element were as 

large as the radius ~f a dark cloud, the dissipation time (L/ov) would be 

less than or equal to the free-fall time (Mestel and Spitzer 1956; Field 1973). 

One is left with the disquieting responsibility of specifying how turbu-

lence is regenerated over such a short time scale. 
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The problem of finding a suitable means of supporting a dense cloud 

against self-gravitation is alleviated if one postulates that such clouds 

are not in equilibrium. Bulk radial motions (collapse or expansion) have 

been invoked to explain the large widths of spectral lines in dense clouds 

(Shu 1973b; Liszt et a1. 1974; Goldreich and K\',an 1974; Scoville and 

6 Solomon 1974). Expansion may take place after a cloud collapses and 

the newborn stars form H II regions. In general, the pressure of an H II 

region exceeds that of the surrounding neutral matter, whose density is 

comparable to that of the H_ II region but whose temperature is consider-

ably lower. [An excellent review of the dynamics of the expansion of 11 II 

regions is given by Spitzer (1968a, 1968b).] Since the expansion of 

clouds follows star formation in their interiors, expansion is not relevant 

to the problem at hand, namely, the determination of critical values for 

the physical parameters of a cloud that may lead to formation of stars in 

the first place. We shall find below that the Bonnor-Ebert critical mass is 

indeed an underestimate because of the presence of magnetic fields. Thus, 

some of the dense clouds which are now thought to be collapsing may not 

be doing so. But even if all dark clouds are collapsing, the argument that 

this would imply an unsavory high rate of conversion of interstellar 

matter into stars may be invalid because star formation may be an inef-

ficient process (see § VIIF3). 

In order to include the magnetic field properly in the picture, we 

must reexamine the assumption of flux-freezing because the length scales 

which concern us here are two to three orders of magnitude smaller than 

those relevant in the discussion of § V. 

6. The subject of providing a theoretical explanation for the observed 
line widths is very controversial. We shall discuss it in § VII in 
the light of our equilibrium solutions for self-gravitating, magnetic 
clouds. 
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B. Flux-Freezing in Dense Clouds 

Although the decay time of the magnetic field due to Ohmic losses 

17 in cool, dense clouds (T - lOoK, L - 1 pc) is longer than 10 years 

(see fonnula in § IIID, footnote 2), the diffusion of the ionized component 

and the field through the neutral matter may be important (Mestel ~nd 

Spitzer 1956)~ The characteristic diffusion time over a scale L is 

'[ ~ 

D 
L (98) 

-+ -+. I Iv. - V 
1 n 

-+ -+ 
where v. - v is the relative velocity between ions and neutrals. In a 

1 n 

quasi-steady state, this is estimated by balancing the magnetic forces, 

which drive such motion because they act directly only on the ionized 

matter, with the drag provided through collisions with the neutral matter: 

1
-+ -+ 1 -+ 2 2 A I p. v. - v h = 1~1l (8 /8n) + 8 as/4nas. 

1 1 n 5 .1. 
(99) 

In eq. (99), the magnetic force has been decomposed into a pressure part 

and a tension part in the usual manner. The quantity 't is the "slowing
s 

down" time for an ion (usually carbon in H I clouds, and hydrogen in dense 

clouds) in a field of neutrals (predominantly hydrogen). It is given by 

(see Spitzer 1968a, p. 92) 

1 -= 

= 

m 
n 

m. 
1 

m n 
m. 

1 

I 

(100) 

where 0in is. the ion-neutral collision cross-sect~on and vin (-C) is the 

mean random speed of neutrals relative to the ions. Thus, the diffusion 

time becomes 
L n. n m 

1 n n 

I-v (B
2
/8n) + 

.1. 

O. v. 
In In (101) 
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Spitzer (1968a, p. 2·40) calculates '0 for an infinite cylinder of gas 

thr.eaded by a magnetic field parallel to the axis of symmetry. He assumes 

that the density is uniform and that magnetic forces balance the gravita-- . 
tional forces in the 1 ateral direction. The result is 

o iH v ill n. . -2 1 (1 (102) TO = x x + 4 n~l/nH) . 
2'IT G mH nH 

With T = 50 0 K (that is, - == 1 105 em/sec), 12 ') 10- 14 viH 
x m. = ~l' °iH == .. x 

1 

2 and accounting for the cosmic abundance of helium, this is em , 

( 103) 

Since ni/nH ~ 5 x 10-4 in H I clouds, it follows that TO ~ 3 x 1010 years. 

Hence, diffusion may be neglected. 

The degree of ionization in dark clouds is probably somewhat smaller 

than 10-5 ; if it were larger, long-range Coulomb collisions between electrons 

and H2CO molecules would excite the 6-cm line of H2CO and, thus, would 

quench the anomalous cooling of this line -- contrary to many observations 

(see, for example, Zuckerman and Palmer 1974). In typical (T - lOOK) dark 

8 clouds, therefore, the diffusion time may become as small as 10 years. 

This is still much larger than free-fall times at typical dark-cloud 

densities (Tff 106 years). We may, therefore, stU-l assume that the 

magnetic field is frozen in the matter. 

Nakano and Tademaru (1972) calculated in detail the degree of ioniza

tion in dense clouds of uniform density. At nH > 103 cm-3, for the massive, 

spherical cloud which they considered (M = 104 ~), ions are contributed 

by hydrogen due to ionization by cosmic rays and 40K radioactivity, and 

by heavy elements due to ionization by X-rays with energy greater than 

1 kev. They concluded that, in a collapsing cloud, the diffusion time for 
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the magnetic field becomes comparable to the free-fall time if nH ::: 2 x 109 

-3 
cm This is a significant result, but it is valid only as an ordcr-

of-magnitude estimate because (i) spherical contraction is an unlikely 

possibili~y··in the presence of a magnetic field; (ii) a self-gravitating 

(let aside a collapsing) cloud cannot possibly maintain a uniform density; 

and (iii) it is not clear ~ priori that the tension of the field lines 

(which was neglected) will be smaller than the magnetic pressure gradients 

in a highly compressed cloud with a frozen-in field connected smoothly to 

the field of the surrounding medium. At any rate, the question of how In 

the first place a cloud can contract to such a high density in the 

presence of a frozen-in field (and. possibly. rotation) is still one of 

the outstanding theoretical problems associated with star formation. It 

is this pre-collapse stage that interests us here. 

C. MagnetiC Clouds: Background 

1. The Problem of Angular Momentum and "t-1agnetic Braking" 

If an interstellar cloud of typical dimensions rotates as slowly 

as to have always the same face turned toward the Galactic center 

8 (period ~ 2 x 10 years). it is impossible to contract axisymmetrically 

to stellar sizes while conserving its angular momentum. If that happened, 

the star that would form would have a period of rotation of about 5 minutes 

and the centrifugal forces would exceed the gravitatiQnal forces by about 

three orders of magnitude (Spitzer 1968a. p. 231). 

It is. however. possible for a cloud to contract indefinitely while 

conserving its angular momentum if non-axisynunetric configurations are 

attained (Weber and Shu are investigating this process using the tensor 

virial theorem). To illustrate this point. we consider a cloud which is 

initially spherical with density Pi' radius Rl • and is rotating uniformly 
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with angular veloci.ty °1, 2 2 Its angular momentum is J = 5 MRI 01 = 

811' 5 
IS PI RlOl , If it attains a rod-like shape of uniform density P

2
, 

radius r and length 1 (r « 1), it may rotate 

to its axis of symmetry with angular velocity 

about an axis perpendicular 
1 2 

02 such that J = 12 M1 02 = 

1I'r2 
~ P2 13 °2, The possibility arises that a cloud may contract without 

increasing its angular velocity (that is, 01 = °2), Then, p/P l = ~2 R~/r2 1
3 

and the density can increase arbitrarily as long as r remains much smaller 

than 1. However, such a sequence of events can take place only if it 

satisfies the additional local ,constraints imposed by the force equation, 

Furthermore, such contraction would involve considerable compression of 

the interstellar magnetic field no matter what the relative orientation . 
of j and B might be, It is, therefore, an unlikely possibility if the 

field is frozen in the matter, as the case seems to be, 

Since the magnetic field is expected to thread both a cloud and the 

intercloud medium, the rotation of a cloud twists the field lines and 
.. 

generates Alfven waves, that transport angular momentum. Mestel and 

Spitzer (1956) give the characteristic time for this process as roughly 

equal to the time it takes an Alfven wave (of speed vA) to travel across' 

the cloud (of radius Rat): 

(104) 

More recent observations and calculations indicate a gas density in the 

intercloud medium typically two orders of magnitude smaller than that 

in clouds. The tenuous intercloud gas will tend to transport angular 
.. 

momentum less efficiently than eq, (104) implies, while, if the Alfven 

speed in this medium is larger than in the cloud, it will tend to reduce 

T
J

. Ebert el al. (1960; see Spitzer 1968a, p. 243) consider the simple 
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case of the uniform rotation of a sphcrical cloud (of density p OR) about 

an axis aligncd with a uniform magnetic field, which threads both the cloud 

and the intercloud medium (of density p. ), which is initially at rest. 
1C 

The calculated decay time may be expressed as 

= (105) 

It must be emphasized that vA is the Alfv~n speed in the intercloud 

-3 medium (~ 15 km/sec at B = 3 ~gauss and n = 0.2 cm ). If ROt ~ 5 pc 

and p /p. ~ 102, then 't'J ~ 5 x 107 years, which is larger than the ot l.C 

-3 
cloud free-fall time by a factor of 4.2 (for not = 20 cm ). We note, 

however, that 't'J is considerably smaller in the case of dark clouds, which 

are usually surrounded by envelops of matter of comparable density. For 

an order of magnitude estima~e, we scale the magnetic field to dark-cloud 

3 -3 K densities ( - 2 x 10 cm ) according to the relation B ~ p , where 

1/3 ~ K s 2/3 (see § VIIF). Then, vA decreases by at most a factor of 

4.64 (for K = i/3, which is the worst case; if K > 1/2, vA will increase 

upon contraction). Since POR. _ Pic in this case and since Rat - 1 pc, we 

5 find that 't'J ~ 5 x 10 years. It is not surprising that dark clouds do 

not exhibit appreciable rotation. 

Even in the case of normal H I clouds, 't'J must be smaller than that 

given by eq. (105). The region of the intercloud medium which is directly 

affected by the rotation of the cloud has a radius r A > Rat ,-- eq. (105) 

contains the implicit assumption that r A = Rat' This is so because field 

lines neighboring the equator of the cloud bend as the cloud rotates and 

set the intercloud gas into a rotational motion. Equation (105) should 

be multiplied by a factor Rct/rA « I), where r A is the distance from the 

axis of rotation at which the intercloud medium has received information 
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about the cloud's rotation in a time t; that is, r A ~vA t. Within a 

6 time as small as 5 x 10 years, the intercloud mediuln within a radius 

of 75 pc from the cloud will be affected. There may exist an "Alfven 

cylinder", the surface of which rotates at a speed equal to vA' In such 

'" a case, and if corotation is established within the Alfven cylinder, we 

would have that Ret/rA = Vet IVA' where Vet is the speed of rotation at 

the cloud equator. Since observations limit Vet < 1 km/sec, 't
J 

may have been 

reduced by more than a factor of 15, down to a few times 106 years. This 

possibility warrants a more careful investigation in the future. 

It must also be emphasized that since observations show that the 

magnetic field is predominantly parallel to the Galactic plane, it is 

more likely that the axis of rotation of a cloud will be perpendicular 

to the field. With the field lines tied to the intercloud medium and 

the field frozen in the matter, corotation is unlikely in this case, and 

the magnetic braking of the cloud's rotation may be more effective than 

in the case in which j was parallel to B. It is possible that the magnetic 

field completely prevents the period of rotation of a cloud from falling 

below that of the Galactic rotation. so that there is nO relative rotation 

between the cloud and the field. If that is the case, the equator of a 

cloud of radius· 5 pc would rotate with a speed of only 0.16 km/sec. 

Observations do not exclude such motion. 

In summary: in the absence of a magnetic field, the angular momentum 

problem may be bypassed by non-axisymmetric contraction. This is an un-

likely evolutionary course in the presence of the interstellar field, 

which, however. may reduce the angular momentum of a cloud significantly 

in a time comparable to the free-fall time. Since flux-freezing appears 

to rest on solid foundations at least in the pre-collapse stage (and 
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possibly for some time after collapse sets in), the equilibrium and 

stability of magnetic clouds must be studied in greater detail. 

2. Non-Equilibrium Calculations 

a. Mestel's Spherical Model 

Mestel (1966) considered the spherical contraction of an iso-

thermal cloud out of abackgrolUld medium of uniform density, P., perme-
1 

ated by a uniform magnetic field B.. He assumed that the density at a 
1 

radius r is given by 

per) = p. + P 
1 C 

2 
exp [ - (r Ir 0) ] . (106) 

The quantity rOis a radius beyond which p decreases rapidly to its back-

ground value, and the central density p(O) ~ Pc if p »p .. 
• C 1 

Equation 

(106) is a legitimate assumption because this is not an equilibrium problem. 

The density having been specified, the magnetic field, which is assumed 

to be frozen in the matter during the spherical contraction, is uniquely 

determined. In spherical coordinates (r, e, ~), the field is given by 

B = + B. cose[p(r)lp.]2/3 , 
r 1 1 

Be = - B
1
. sine p (r) [p (r)] 2/3 P(r) p. 

1 

(107a) 

(107b) 

where per) is the mean density within a sphere of radius r. Mestel shows 

that near the center of the cloud (r « r
O
)' one has that p - p, so that 

the field is nearly uniform and equal to B.(p/p.)2/3. In the intermediate 
1 1 

region. 1 « rlrO « (Pc/P i)1/3, the field is almost radial (Be « Br) 

except at e ~ ~/2. At larger radii, rlrO 

field becomes uniform and equal to B .. 
1 

The nearly radial field, which is solely the result of the imposed 

spherical cOntraction, causes large "pinching" forces at the equator --

so much so that magnetic forces much exceed gravitational forces. Mestel 
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argues that, if this configuration is achieved through rapid, violent' 

contraction of the cloud, flux dissipation, reconnection and detachment 

,of field lines will take place at the equator. He points out, however, 

that preferential flow of matter along field lines might prevent such 

configuration from being reacheq. 

Perhaps the most significant result of this study is the derived 

criterion for lateral collapse. If the initial densitr., radius, and 

magnetic field satisfy the inequality 

P1·rO 1/2 
> (0.013/G) = B. 0.114 G- l /2, (108a) 

1 

the gravitational forces exceed the magnetic forces (at e = Tr/2) so that 

further contraction will ensue. Equation (108a) may be written in the 

alternative form 

==( M 2) =0.152G- 1/2. B, TrrO .t 1 crl . 
(lOSb) 

Evidently, eq. (l08b) does not specify a critical mass (unlike eq. [94]); 

it defines a critical ratio of the total mass and the total flux of the 

cloud. It may also be considered as defining a critical ("Mestel") 

surface density for a given background field, Bi' namely, 

== (~) = 0.152 G-
l
/

2 
B .. 

Tr rO crit. 1 

With B. measured in ~gauss, this is 
1 

= 1.75 x 
-3 10 . (B./3 ~gauss). 

1 

(l08c) 

If the background magnetic pressure is equal to the background gas pres-

sure (not an unreasonable assumption for the intercloud medium), that is, 

if a. = B~ /8 Tr P = 1, we may compare m.. with the Bonnor-Ebert critical o 10M 

surface density (see 'eq. [113] below). We find that 
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(109) 

This cannot be the case. One expects the critical surface density to be 

larger in the presence of a magnetic field. The sources of error are: 

(i) the collapse of the Bonnor-Ebert cloud is partly due to the external 

pressure, which was neglected in the magnetic case; (E) the internal prcs-

sure of the magnetic cloud was also neglected. On the other hand, Mestel's 

non-equilibrium configuration actually antagonizes the collapse because of 

the greater distortion suffered by the field lines compared to the case 

in which preferential flow along the field takes place. 

We note that the collapse criterion (eq. [108b]), in addition to being 

independent of the cloud temperature (by assumption), is also incomplete 

in the sense that it is a condition on the ratio of the total mass to the 
" 

total flux of the cloud. It is clear, however, that the manner in which 

matter is distributed among the various flux tubes is crucial. For instance, 

we consider a non-magnetic cloud on the verge of collapse according to the 

Bonnor-Ebert criterion. We introduce a magnetic field such that a flux ~B 

threads the cloud. If all field lines are confined to a thin shell at the 

surface of the cloud (while the interior is field-free), the cloud can still 

collapse. If, however, the same flux is distributed over a thin cylinder 

through the center of the cloud, collapse will be impossible. A complete 

criterion for the collapse of a magnetic cloud should depend on the mass

to-flux ratio in each of the flux tubes threading the cloud as well as on 

the cloud temperature and the external pressure. 

b.. Strittmatter's Spheroidal Model 

Strittmatter (1966) studied the contraction of a magnetic cloud 

through the scalar and tensor virial theorems (Chandrasekhar and Fermi 1953). 

The. tensor virial theorem shows that the magnetic field is somewhat more 

effective in preventing the collapse of a cloud than the scalar virial 
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theorem would indicate. In the case of·a highly flattened cloud, how-

ever, the two theorems give identical results. The critical mass of such 

a spheroid is (8/3n2)1/2 (= 0.52) times that of a sphere of the same mass 

and flux. 

Strittmatter assumed that the shape of the cloud remains spheroidal 

during contraction (the cloud is oblate with its axis of symmetry parallel 

to the magnetic field) and that the density and the magnetic field remain 

uniform inside the cloud. The density outside the cloud is assumed 

negligible and the magnetic field uniform at infinity. He required the 

continuity of only the normal component of the field across the cloud 

surface. (In the case of a dipole field, he showed that requiring conti-

nuity of the tangential component of the field increases the effectiveness 

with which the field provides support against gravity; specifically, the 

magnetic energy increases by about a factor of 2.) With the internal 

and external pressures neglected, no "equilibrium" is possible for a 

highly flattened cloud if 

or 

M 
11' r2 

o 

= ( 
40' ~)1/2 = 

27 11'4 

> m = 0.123 G- l / 2 B. 
S 1 

If we measure B. in ~gauss, eq. (llOb) becomes 
1 

-3 
mS = 1. 42 x 10 

0.123 G- l12 , (110a) 

(110b) 

The critical surface density is somewhat smaller than Mestel's (eq. [108c]). 

In view of the different methods employed to arrive at the two results, 

it is reassuring that they differ by only a factor of 1.26. Yet, it is 

disturbing that the non-magnetic Bonnor-Ebert calculat-i.JI1::: give a more 
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stringent criterion for collapse (see eq·. [109]). One suspects that 

exact equilibrium calculations will fair better in this respect. 

Strittmatter took great care in applying the virial theorem. How-

ever. because many misapplications are frequently made. a comment is in 

order (see also Mestel 1965, and Strittmatter 1966). 

c. A Comment on the Virial Theorem 

With the inertial term neglected. the virial"theorem expresses 

·a necessary (but not sufficient) integral condition which the various forms 

of energy present in the system must satisfy at equilibrium. By virtue 

of the fact that the details of the mechanical balance of forces are 

washed out. the virial theorem is particularly suited for the study of 
• I 

systems whose details are either not known or too complicated to study 

through the force equation. Almost by definition then. the time-inde-

pendent form of the virial theorem. which is strictly correct only for a 

system at equilibrium. is applied to simple non-equilibrium configurations 

thought to approximate the real system in an "average" sense. Quali-

tatively erroneous conclusions may be reached unless one proceeds with 

care. The calculation of the critical mass for gravitational collapse 

of a cloud in the presence of a magnetic field is a classic example where 

the virial theorem is misapplied. 

Consider a massive. spherical. isothermal cloud of uniform density 

threaded by a magnetic field which is uniform in all space. Let the 

cloud be embedded in a medium of uniform pressure and negligible density. 

If the mass of the cloud exceeds some critical value depending on the 

cloud temperature and the external pressure. the virial theorem will 

suggest that the cloud should collapse. This conclusion is independent 

of the magnitude of the magnetic field since the volume and surface 
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magnetic terms in the viTia I theorem cancel each other exactly -- this 

is as it should be because the magnetic force r x B/c vanishes everywhere 

for a uniform field. The field could very well have been of infinite 

strength! Clearly, a small contraction of the cloud normal to the field 

will bend the field lines and, for a strong field, will induce currents 

that will cease further lateral deformation -- contrary to the conclusion 

reached on the basis of the (misapplied) virial theorem. 

3. Equilibrium Calculations 

It is not an easy task to construct equilibrium configurations of 

magnetic clouds. Strittmatter (1966, p. 360) described the difficulties 

very eloquently: 

It ••• The absence of spherical symmetry renders the determination 

of the gravitational potential a matter of considerable complexity, 

unless the mass distribution is of a special form (e.g. a uniform 

spheroid or a set of spherical shells of constant density). A 

further complication is introduced by the requirement that the 

magnetic field link smoothly with an external force-free field. 

Equilibrium models are thus difficult to construct, homologously 

contracting models about equally SOi nonhomologous contraction 

is almost impossible to study in detail except in special non-

magnetic cases ... " 

These are the difficulties in solving the problem. In actuality, the 

greatest difficulty arises in formulating a well-posed, self-consistent 

problem including flux-freezing. Once a problem is posed, to obtain a 

solution by analytical, quasi-analytical, or numerical techniques (the 

search degenerating in that order) is usually only a matter of time. 

Before we pose and solve the complete problem, we summarize the few 
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existing equilibrium calculations. 

a. A Thin Disk with a Magnetic Field Parallel to its Axis 

The equilibriUm in a direction parallel to the axis of s~nmetry 

of an isothermal, gaseous, self-gravitating disk having an infinite radius 

and a density independent of radial distance (Spitzer 1942; Ledoux 1951; 

Spitzer 1968a) remains unaffected by the introduction of a uniform magnetic 

field parallel to the symmetry (z-) axis. Field (1969) considered the 

effect of a constant external pressure on the equilibrium in the z-

direction. He found that, as the surface density (m ) increases while s 

the external pressure (P ) remains fixed, the thickness of the disk (6z) 
o 

first increases, reaches a maximum 

6z 1.32 C
2 

0.53 C2 
= = max G P )1/2 (G P )1/2 

, 
(2 'IT 

0 0 

(111) 

and then decreases. The surface density at maximum thickness is 

m = 3.04 s,max ( 
Po ) 1/2 

2 'IT G 
= 1. 22 Co ) 1/2 (112) 

This "maximum" surface density that can still be in equilibrium at an 

external.pressure P is somewhat smaller than the corresponding Sonnoro 

Ebert value, which is 

= 10- 3 ( Po )1/2 1.92 x 
1800 k 

(
p ) 1/2 

1. 59 -2. 
G 

/ 
2. 

gmem. 

(113) 

The diameter, Dc' of a Bonnor-Ebert sphere at the verge of collapse is 

given by 

(GP )1/2 
o 

(114) 
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The fact that 6z < D and m ~ mBE reflects the effect of the max c s,max 

gravitational field due to the mass of the disk exterior to a radius 

R:I 6z /2. Although the-"critical" surface densities m and mSE max s,max 

are nearly equal, qualitatively different effects develop in each case 

if these values are exceeded. In the Bonnor-Ebert case, a sphere with 

surface density greater than mSE collapses, whereas in the one-dimensional 

geometry the thickness of the disk should merely decre~se. It is well 

known that one-dimensional collapse of an isothermal gas is impossible 

because the pressure force normal to a thin sheet increases as (6z)-I, 

while the gravitational force" is independent of 6z. 

Strictly one-dimensional calculations parallel to the magnetic field 

cannot possibly provide any information on magnetic.phenomena. So, Field 

(1969) explored the assumption that a disk of finite radius Ro R:I 6z will max 

actually collapse if 6z = 6z . This led to a critical mass smaller max 

than the Bonnor-Ebert value, given by eq. (94). That being impossible, 

the need to account quantitatively for the role of the magnetic field 

in the equilibrium of interstellar clouds became imperative. 

b. An Infinite Cylinder Aligned with the Magnetic Field. 

A cold. gaseous, infinite cylinder with a frozen-in field 

parallel to its axis may exist in mechanical equilibrium, in which the 

magnetic pressure gradients balance the gravitational forces in the radial 

direction. 

field. B .• 
1 

We consider an initially uniform density, p., and a uniform 
1 

After gravitational forces are "switched on", the equilibrium 

density is given by (see Field 1973) 

wher~ 

per) = p(O) JO(kr). 

k = 4nPi GI /2 
B. 

1 

(llS) 

(116) 
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Since the radius of the .cylinder is defined by JO(kR) = 0, it follows 

that 

R = 2.4/k 

= 2.4 
B. 

1 

411'p. 
1 

-1/2 G . ( 117) 

If we take B.= 3 lJgauss and p. = 2 x 10-24 gm/cm3 (~ the mean inter-
1 1 

stellar density), we find that 

R ~ 370 pc, CllB) 

a value too large to be of practical significance. Although larger values 

of p. will yield proportionally lower values of R, it is not legitimate 
1 

to proceed in that manner because the frozen-in field (8.) must increase 
1 

by the same factor as the density in eq. (117). On the other hand; 

smaller radii cannot be achieved by considering a finite cylinder and 

allowing compression along its axis followed by lateral contraction due 

to the increased gravitational forces. Field pointed out that a cylinder 

of finite length will transform into a disk under the effect of self-

gravitation. What, then, accounts for the apparent elongation of dark 

clouds along the field (Shajn 1955)? 

Of 31 clouds studied, Verschuur (1970a) finds that the relative angle 

between the field and the largest dimension of a cloud is less than 10° 

in 16 cases, less than 40° in 21 cases, and larger than 40° only in 10 

cases. It must be noted, however, that the field direction, with which 

the cloud elongation was compared, is that given by the theoretical model 

of Mathewson (1968) which is in conflict with the recent Faraday rotation 

observations of Wright (1973) and Manchester (1974) -- see discussion in 

§ IIIC. 

If a cloud is not self-gravitating, we can understand its possible 
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elongation along the field. especially if it is in a region in which 

the magnetogravitational instability develops. Under the action of the 

galactic gravitational field the cloud will be stretched along the magnetic 

field lines. Also. if conducting matter is deposited in a particular flux 

tube at a pressure higher than that of the ambient medium, it can expand 

more easily along the field than across it. If. however. a cloud is known 

to be self-gravitating and to be aligned with the magnetic field. and if 

no rotation about an axis normal to the field and no internal source of 

energy (for example. H II regions) are observed. rather than abandoning 

our faith in Newton's second law. we may have to re-:evaluate our ideas 

arid confidence in the methods used for inferring the direction of the 

interstellar magnetic field. 

c. An Axisymmetric Model without Flux-Freezing. 

D. A. Parker (1973) constructed equilibrium solutions for a 

self-gravitatin8. isothermal cloud (M = 103 Me' T = 7S 0 K) surrounded by 

a hot and tenuous H II region of pressure 2.37 x 1800 k. An axisymmetric 

magnetic field permeates both media and is both force-free and curl-free 

in the H II region and uniform at infinity. Solutions with B = 0.25. ... 
l.0. and 2.0 ~gauss are obtained. The normal and tangential components 

of the field are continuous across the cloud boundary. but the field is 

not frozen in the matter. Consequently. although a solution satisfies 

the MHS equations and the boundary conditions (and an ad hoc assumption7 

made in order to close the MHS equations). neither the magnetic flux 

threading the cloud nor the manner in which it is distributed can be 

7. D. A. Parker's assumption that ~ = f = const. in his eq. [13] can 
easily be shown to imply the requirement that the current density at 
equilibrium be given by j /c=-~rp. where p is the gas density; we use 
cylindrical coordinates ('. ,. z). This is too stringent a condition 
on the admissible solutions. 
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known before a solution is actually at hand. Even then, knowledge of 

the magnetic flux provides little useful information because the field 

can slip through the cloud, or the field lines may reconnect just to 

allow force balance if the cloud is thrown out of equilibrium. In fact, 

in some of D. A. Parker's equilibrium configurations, field lines close 

to the equator form closed loops already. Thus, the effectiveness of the 

magnetic field in preventing gravitational collapse cannot be quantified 

from such equilibrium calculatIons. 

The problem was formulated in spherical coordinates (r, e, </» in 

terms of the gravitational potential, 1jI, and the magnetic stream-function, 

[Th . f 2 " ) -1 / ~. e magnetIc ield is given by B = -(r SIne a~ ae, 
r 

Be = (rsine)-l a~/ar.] The method of solution was a variation of the 

"self-consistent field" iterative method of Ostriker and Mark (1968). A 

mathematical sphere is chosen so as to surround the cloud. The Poisson 

equation for IjI and the Poisson-like equation for ~ are solved within the 

sphere once an initial guess of the density and the cloud boundary is 

made. The force equation (actually, the Bernoulli constant) is then used 

to obtain a new density, thus permitting continuation of the iteration 

process. Solutions of the homogeneous equations outside the sphere are 

matched to the interior solutions so that the magnetic field is continuous 

across the boundary. Since the potentials are valid only within the sphere 

circumscribing the original cloud configuration, significant errors are 

introduced if the cloud becomes very flattened. Another source of in-

accuracy is the choice of spherical coordinates, \;;hich are not particularly 

suited for flattened objects. Nevertheless, the results do exhibit some of 

the qualitative features which are expected of magnetic clouds. 

"The cloud flattens along the magnetic field, the more so the stronger 
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the background field (8~~ is. The isodensity contours behave likewise. 

The choice of the initial parameters. however. is such that the magnetic 

pressure is negligible or small compared to the gas pressure in the sur-
• 

rounding medium. (In" our notation. ao - 82/8nP = 0.004. 0.064~ 0.256 
~ ~ . 

in Parker's three cases.) Therefore. it is not surprising that in the 

computed equilibrium states the magnetic field at the center of the cloud 

is amplified by as much as a factor of 9.48 in one case without the 

magnetic forces becoming dominant. As it can be deduced from the maximum 

ratio of central to surface densities (= 4.34) achieved in anyone of 

Parker'S solutions, the external pressure is playing a significant (but 

not dominating) role compared to self-gravitation -- see discussion in 

§ VII below. On the other hand. the internal pressure forces are comparable 

to gravitational forces but larger than the magnetic forces in the weak 

f~e1d (8~ = 0.25 ~gauss) case; pressure forces become more important in 

the case 8 = 2 ~gauss because of flattening. 
~ 

Parker found it necessary to exclude solutions with positive values 

of the arbitrary parameter). (see his eq. [13]) because the central magnetic 

field pointed in an opposite direction from that of B_ = e 8. In view of - z QD 

our remark above, that j ,/c = - ).rp (see footnote 7) .we can understand 

this phenomenon. It is clear that once B~ has been chosen to point along 

the +z-axis, j, must be positive (that is. r must point in the +,-direction); 

if j, is negative. Ampere's law implies that the field must be in the -z

direction at least on the axis of symmetry. Therefore. to preserve the 

direction of 8. the parameter). must be negative. 

D. A. Parker also considered uniform rotation (with angular velocity 

0) of the cloud about its axis of symmetry. which is aligned with the 

magnetic field. This is permissible because the density of the surrounding 
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H II region was assumed negligible. Al though corotation of the fie Id at 

infinity is not expected in practice, the results are instructive. As 

one could anticipate, rotation simply dilutes the gravitational potential 

only in the lateral direction by an amount r2 0.
2/2, giving rise to flatter 

clouds and to field lines which are less distorted than in the case with-

out rotation. 

We do not think that Parker's results support his conclusion that 

"the magnetic field exerts strong pinching forces in a narrow equatorial 

region" (D. A. Parker 1973, p. 64). His Tables V, VI, and VIII show that, 

at the. equator, the magnetic force is always smaller than the pressure 

force. The field lines formed neutral O-rings at the equator in some 

cases merely because flux-freezing, which would imply that the stream

function ~(r, z) is a single-valued function of r at a fixed z, was not 

imposed. 



0.' or .. " 
'.? V,' ••.•...• ! ~<" ' , .." U 

-97-

VII. NONHOMOLOGOUS CONTRACTION AND EQUILIBRIA OF 
SELF-GRAVITATING INTERSTELLAR CLOUDS EMBEDDED IN 

AN INTERCLOUD ~mDIUM: FLUX-FREEZING 

A. Formulation of the Problem 

1. The Equilibrium Equations 

LBL-3602 

The equilibrium of a self-gravitating. conducting. isothermal. 

gaseous cloud surrounded by an intercloud medium of qualitatively similar 

properties is described by the MHS equations: 

2 
V IjI = 411'G 

2 
)' Pk • k=l 

k = 1. 2; (119) 

(120) 

(121) 

(122) 

All quantities have their usual meaning. The subscripts 1 and 2 refer 

to the cloud and intercloudmedia. respectively. Unlike we did in § V. 

in this section we consider the gravitational forces due to the gas only 

(P. = 0 in eq. [10]). Cloud and intercloud matter does not coexist in the 

same region of space (formally, fl n f 2 .= 0, where f is the magnitude of 

anyone of the subscripted quantities in e~s. [119] - [122]). The two 

media interact through their gravitational and magnetic fields as shown 

in the above equations and, in general, through pressure forces on their 

common boundary (see below). We note that eqs. (119)-(122) constitute a 

system of six equations with eight unknowns. Flux-freezing and conservation 

of mass that would close the system have not been imposed yet. We shall 

incorporate these conservation laws in our equations properly in § VIIA2. 

It is convenient to introduce the magnetic vector potential, defined 

byeq. (13), that is, 

t = V X A, (123) 
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because Maxwell's equation 

Q . B = 0 (124) 

is then satisfied identically. 

We consider a three-dimensional geometry with axial symmetry about 

the z-axis. The z-axis may be thought of as running locally along a 

spiral arm and lying in the Galactic plane, although this is not essential. 

We use cylindrical coordinates (r, 4». z) throughout this .section. (To 

avoid confusion. we denote the position vector in spherical coordinates 

by ~ and its magnitude by I~I. which is distinguishable from the Cartesian 

coordinate x.) We choose the origin of coordinates at the center of the 

cloud so that there is reflection symmetry about the plane z = o. Then 

we may consider only the right-half plane z ~ o. 

With B being a poloidal ·and A a toroidal vector. the scalar function 

t(r, z), defined by 

t(r, z) :: r A4»(r. z) :: r A(r. z), (125) 

is both constant on a magnetic surface as well as a constant of the motion 

(see § IVB2, eqs. [29] and [30]). We may, therefore. use ~ to label the 

magnetic surfaces once and for all. The intersection of a magnetic surface 

with the (r, z)-plane is referred to as a field line. Note that the 

magnetic field may be written in terms of t as 

(126) 

and that the magnetic flux (ta) through a contour of radius r is given 

by (see § IVB2) 

(127) 

In each of the two media we define a scalar function of position, 
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k = 1, 2; ( 128) 

and we write eq. (119) in terms of ~ and qk as 

~ 2 -+-
jk v~/cr = exp(-ljI/Ck) Ilqk' k = 1, 2. (129) 

By what is now a familiar procedure, we may show that 

2 Pk exp(ljI/Ck) = qk = constant on a field line = qk(~)' k = 1, 2; (130) 

and that 

., k = 1, 2; (131) 

-t-where we have used the fact that Jk is toroidal, and we have defined 

jk = (j,)k· The me~ing of eqs. (130) and (131) is analogous to that 

of equations (8) and (9) of Paper I (see discussion following eq. [9] 

therein). 

Using eqs. (123) and (131), eq. (120) becomes 

2dqk 
-+- V A" . E 2 Il.)( )( = e. 4 1T r k=l exp(-ljI/Ck) d~ 

By expanding the left-hand side, we may write eq. (132) as 

1...l! ..!.. (rA») + a2 A - 41fr ~ e ("'jC2) dqk (~) 
~ ~ "" .... 2 - - .' U xp -", k d'" 
17.1,· r .Q~ 17 k=l .., 

(132) 

(133) 

This is to be solved simultaneously with eq. (122), which may be written 

in an expanded form as 

1 a ( aljl) + ~ r ar r ar. az 

(134) 
:41TGp. 

We have made use of eqs. (121) and (130) in eliminating Pk from the right

hand side of eq. (122). Equations (133) and (134) are coupled, nonlinear 

differential equations for 1jI and ~; the quantity qk(k = 1, 2) has yet to 

be determined as a function of t. We shall retain A, instead of ~, as 
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the dependent function in eq. (133) because it is convenient to work with 

a self-adjoint form of this equation -- transforming from A to ~ and 

vice versa through eq. (125) is a trivial matter. To complete the 

description of the cloud and intercloud media, we must calculate the 

functions qk(~) in a manner consistent with conservation of mass and flux. 

2. Calculation of the Functions qk(~)' k = I, 2. 

The cloud boundary may be specified uniquely by the function Zc~(~), 

which represents the projections onto the z-axis of the intersections of 

field lines and the cloud boundary (see fig. 7). This amounts to 

choosing a" coordinate system (z, ~), whose advantage will become evident 

short1y. Then, half of the mass (o~) of each medium in a flux tube 

between field lines characterized by ~ and ~ + 0 ~ is, by definition, 

Uk ( ~) r (z , ~+o ~) 

o~(~) = f dz f" dr 21fr Pk(r, z), k = I, 2. (135) 

~(~) r(z,~) 

Note that the integration over z is performed along the field line ~, 

between the limits 

and 

~(t) = 0, if k = 1; 

= Za.2.(~)J if k = 2 

if k = 1; 

= Z (~)J if k = 2. max 

If the system is ass1lmed periodic in z with wavelength Az' then 

(1 36a) 

(136b) 

Z = A/2. This would be the case if the contribution of the galactic max z 
gravitational potential were included in eq. (122). If the system extends 

to infinity, then Z = ~. " max 
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Since the integration over r is performed keepingz fixed (sec fig. 7), 

we may write 

dr = d~ ( ar / 3~) (137) 

and change variables from r to~. Using eqs. (121) and (130), we elimi-

nate Pk in favor of ~ and we perform the trivial integration over ~ in 

eq. (135). We then solve for qk(~) to find that 

c~ dmk ( ~) !fUk 
( ~ ) ar (z , ~) [.,. ( <1» ] 

dz r(z ,~) -7:--"--"- exp - 't'Ck~ , '. 
21T d~ L (~) ~. 

k (138) 
k = 1, 2. 

The quantity r(z,~) refers to the r-coordinate of the field line ~ at z. 

If we ignore conversion of one phase of matter into the otner, the 

functions qk(k = I, 2) are always given by eq. (138) in any equilibrium 

state of the system, since the mass-to-flux ratio, dn~/d~, in each flux 

tube is a constant of the motion for each phase. If this quantity were 

known either through observations, or through a complete theoretical 

understanding of the mechanism which creates the interstellar flux, a 

unique equilibrium configuration for a dense cloud could be calculated 

by solving eqs. (133), (134), and (13,8) simultaneously, subject to ap-

propriate boundary conditions (see below). 

3. Approximate Description of the Intercloud Medium 

The preceding formalism gives a general description of the inter-

cloud medium. It takes account of the self-gravitation of the intercloud 

gas and it does not assume that the magnetic field is either force-free 

or curl-free. We shall not solve this general problem in this paper, al-

though its solution is straightforward. As we shall see in § VIIF, there 

may be a need for the solution of this problem. Nevertheless, it seems 
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senseless to proceed in that direction without understanding first the 

effect of the following, somewhat simplified description of the intercloud 

medium on the equilibrium of a dense cloud. 

Observations indicate that the intercloud medium is rather hot and 

tenuous compared to interstellar clouds (see § IIAI and footnote 5 in 

§ VIA). We shall, therefore, assume that 

(139a) 

and 

(139b) 

Consequently, the intercloud medium is unaffected by the graviational field 

of the cloud and the intercloud pressure is constant along field lines. 

If we assume uniformity at infinity, it follows that 

Po = P2 = constant (140) 

everywhere, and eq. (128) yields 

qo - q2 = Po' (141) 

so that 

(142) 

Thus, the contribution of the interc10ud medium to the right-hand sides of 

eqs. (133) and (134) vanishes. The assumed poloidal field and uniformity 

at infinity render the rarefied (eq. [139a]) intercloud medium not only 

force-free, but current-free as well. In this approximation, the intercloud 

medium simply confines a dense cloud through pressure forces and exerts 

magnetic stresses at the cloud surface. Care must now be taken so that no 

infinite forces appear across the cloud surface. 

4. Continuity Conditions Across the Cloud Boundary 

a. Gravitational Field .. 
We write· the Poisson equation in terms of g as (see eq. [12]) 



o u -~ u 6 

-103- LBL-3602 

~ ~-

V • g = - 41TG p. (143) 

~ 

To show continuity of the component of g normal to the cloud surface, we 

integrate over the volume of a "pill-box" of height h and surface liS, 

parallel to the cloud surface, and we use Gauss' theorem to find 

[g ] liS = - 41TGp liS h/2. 
n 

We take the limit h ~ 0 to obtain that 

[g ] = O. 
n 

(144) 

~ 

One proves the continuity of the component of g tangent to the cloud 

surface by first noticing that eq. (12) implies that 

~ ~ 

V )( g = o. (145) 

An integration over an elemental surface having two sides parallel and 

two normal to the cloud surface and conversion into a line integral fol-

lowed by the usual limiting process yields 

(146) 

That the gravitational potential is also continuous across the cloud 

surface follOWS from 

~ ~ ~ ~ 

d~ = V~ • dx = - g • dx (147) 

and an integration over a path with one end-point just 'inside and the 

second end-point just outside the cloud surface. Use is then made of 

eqs. (144) and (146) to obtain 

[IP] = O. (148) 
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b. Gas Pressure 

The pressure of the intercloud medium is constant every-

where (see eq. [140]). If we let s denote distance along field lines, we 

may write the component of the force equation parallel to B as 

ap as = + p ~I ' ( 149) 

where gil = - aljJ/ as. There exists a jump in the right-hand side of eq. (149) 

-+ 
across the cloud boundary, but it is finite because g is continuous (see 

eqs. [144] and [146]) and [p] is bounded and equal to the cloud density 

at the surface, PS. Therefore, 

[P] = 0 

and we have as a consequence that 

p 
o 

Ps = -2 
C 

1 

(ISO) 

(IS 1) 

Note that in deriving the condition (150) we made no assumption whatsoever 

about the angle at which field lines intersect the cloud boundary. 

c. Magnetic Field 

Our fomulation of the problem in terms of the magnetic 

vector potential, rather than the magnetic field itself, guarantees the 

-+ 
continuity of the component (B ) of B normal to the cloud surface (see 

n 

eqs. [123] and [124]). 

To show that the tangential component of 8 is also continuous, we 

first write the force equation as 

-+ ( 8
2 

) - V P + 8'11' + o . 

We now take the dot product of the left-hand side with o~, an infinitesimal 
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displacement from one side of the boundary to the.other. In the limit 

6; + 0, ~e find [recall that 6( ) = 6; • f( )] 

(152) 

where we have used the continuity of g across the boundary and the fact 

that the jump in the gas density is finite. Because of eq.(150), it 

follows that 

(153) 

Since B2 = B2 + Bt
2 (where B

t 
is the component of the field tangent n an an 

to the cloud surface) and [B ] = 0, eq. (153) implies that 
n 

d. The Function q(~). 

(154) 

It follows from the definition of qk (eq. [128]) and 

eq. (141) that the discontinuity of q ( = ql within and q2 outside the 

cloud) across the cloud surface is given by 

(ISS) 

which is finite. 

An important point must be evident by now. The formulation of the 

problem in terms of potentials, rather than the fields themselves, led to 

differential equations which have built-in all the necessary continuity 

conditions across th~ properly defined (by eq. [151]) cloud boundary. 

Hence, we do not need to solve the full equations within the cloud, the 

homogeneous equations outside, and then match the two solutions. It is 

now possible to solve the ,equations over a large region (which could be 
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infinite) surrounding the cloud and the relevant part of the intercloud 

medium. First we must specify the boundary conditions. 

5. Boundary Conditions 

Since Ais a vector with only a ~-component and since we assumed 

axial symmetry, we must have that 

A(r = 0, z) = 0; (156) 

otherwise its direction at r = 0 would not be uniquely defined. Reflection 

symmetry about the plane z = 0 implies that 

aA(r,z) 
3z 

z = 0 

= O. (157) 

We require that 8 be uniform at infinity and equal to e B. In practice, z <XI 

"infinity" can be the surface of a large cylinder of radius Rand half-

height Z, such that Rand Z are ,much larger than the size of the cloud. 

Then we may write 

A(R, z) = B R/2 
00 

(158) 

and 

A(r, Z) = B r/2. 
<XI 

(159) 

Once we have a solution at hand, we may easily investigate the effect of 

varying Rand Z. (Instead of eq. [159] we could use periodic boundary 

, conditions equally well, in which case 3A/ 3z Iz=z=O' This would be the 

case if we considered the effect of the galactic gravitational field.) 

Without the following being an independent boundary condition, we 

note that the total flux (divided by 2n) through the large cylinder of 

radius R is given by 

2 
ttotal = Bao R /2. 
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We also assume that on the surface of the large cylinder, centered 

about the cloud, the gravitational potential is that due to a point mass 

equal to the mass of the cloud (M) and located at the origin of coordinates, 

that is, 

HR, z) = - GM (160) 

and 

1jI(r, Z) - -
GM ( 161) 

Since the next term in a multipole expansion of the gravitational potential 

is the quadrupole one, the error due to this approximation is of order 

(R./R)2 in the case R = Z, where R. is a representa~ive dimension of the 
1 1 

cloud. We simply have to choose a large enough R for sufficient accuracy. 

The assumed reflection symmetry about the plane z = 0 implies that 

31jI(r,z) I = 0 • 
az z = 0 

(162) 

Since the r-component of the gravitational field must vanish on the z-

axis (this follows directly from eq. [14.3] by application of Gauss' theorem), 

we must also have that 

atH~z) I 
c;u. = 0 • 

r = 0 
(163) 

Having specified the boundary conditions, our problem is well-posed. We 

may solve it provided that we know the mass-to-flux ratio in each flux 

tube threading the cloud. To estimate this quantity, we shall make use 

of a reference state of the system. 
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B. A Reference (Non-Equilibrium) State 

The rnass-to-flux ratio (dm/d~) in a dense cloud may be obtained from 

high-resolution (albeit nonexistent) observations of the d'.i.stribution of 

mass and flux within ~uch a cloud. We hope that in the time elapsed since 

the publication of Paper I, where we pointed out how crucial the quantity 

dm/d~ is in determining the accessible states (and, in part, the dynamics) 

of the interste lIar gas, observers are putting some effort in this direction. 

In the meantime, we are forced to estimate dm/d~ for a dense cloud relying 

mainly on a "principle of avoidance." Our estimate must be such that it 

avoids contradicting either any physical law, or whatever meager observa-

tional evidence might exist. 

There is such a state readily available and, in fact, overused. 

Virtually all estimates of clpud parameters have relied on the assumptions 

that a cloud is spherical, of uniform density and, wherever a magnetic 

field is involved, it is also taken as unifcrm throughout. Clearly, this 

is not an equilibrium state for a self-gravitating, magnetic cloud. We 

shall use this state to calculate the mass-to-flux ratio both because it 

is a simple one and also because we would ,like to illustrate how different 

from this an equilibrium state actually is, even though the two have the 

same mass and the same flux. We assume that the mass-to-flux ratio of 

our system is the same as that of a spherical cloud of mass M, radius R., 
1. 

uniform density p. and permeated by a uniform magnetic field B.. The 
~ 1. 

quantities p. and B. are not fundamental and we shall assume no particular 
~ ~ 

values for them. However, R. determines dm/d~ in this geometry (see 
~ 

below). We easily obtain the various quantities in this state. 

Half the cloud mass = M/2 ~ (2 w/3) p. R~ 
1. 1. 

Total flux through the cloud = wR~ B. = 2 w ~ n • 
~ 1. ' c~ 

(164) 

(165) 

'. 
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We also have that 

A.(r) = B. r/2, 
1 1 

(166) 

so that 

2 
~(r) = Bi r /2 = ~B(r)/2 w. (167) 

The gravitational potential and field are continuous across the surface 

and are given by 

ljI. = - 4w G p. (3R~ ~ I"tI2). 
I~I :s; R. j (168a) 

1 3 1 1 

4w G 
R~ 

1 I~I ~ R. j (l68b) = - p. 
3 1 I~I 1 

and 

g = _ 4w G p. I~I I~I :s; R. j (169a) 3 1 1 

411' R~ 
1 I~I ~ R., (l69b) ,= - 3' G Pi 
1~12 

, 
1 

where I~I is the radial distance in spherical coordinates (I~I, e, ~). 

The function q is 

, = p , 
o 

< R.; 
1 

I~I > R. j 
1 

(170a) 

(170b) 

where ljI. is given by eqs. (168a, l68b), C is the isothermal speed of 
1 

sound in the cloud (we dropped the subscript since this is the only C 

present), and P is the intercloud pressure. As usually, we consider an o 

isothermal equation of state 

2 P. = p. C . (171) 
1 1 

We note that q. cannot be expressed as a function of ~. alone. This is 
1 1 
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as expected because the reference state i~ not an equilibrium one. 

We now calculate the mass-to-flux ratio in each flux tube. It is 

zero outside the cloud by assumption (see eq. [139a]). We have that 

1 2" mass in (r, r+or) :tSm = 21T p. 
1 

= 21T p. r tSr (R~ 
1 1 

and that 

r+or 

f 
r 

flux in (r, r + tSr) - o~B = 21T r or Bi . 

So, we recall eq. (127) to find 

olt = B. r or. 
I 

dr r 

(172) 

(173) 

(174) 

Neither 0 m norolt bear the subscript "i" (standing for "initial" state) 

because both quantities are constants of the motion by mass and flux 

conservation. Since the field lines are straight and parallel to the z-

axis, t is a function of r alone and we may combine eqs. (172) and (174) 

to obtain the desired quantity dm/dt: 

dm(tl 
p.R. 

(1 __ It_ y/2 
21T I I t :S tot = -s:-dt tot I 

(175) 
= 0, t ~ Itot; 

where tol is given by eq. (165). 

Before solving our equations, we write them in a dimensionless form. 

C. The Dimensionless Problem 

We measure the magnetic field in units of its value at infinity. B .• 
I 

and the gas density in units of its value in the spherical reference state, 

p ••. The unit of length is chosen as C/(41TG p.)l/2, which is related to 
1 I 

the Jeans length in the reference state. Then the unit of time is fixed 

.. 
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by specifying the unit o( speed as C, the isothermal speed of sound in the 

cloud. It follows that the units of various quantities of interest are: 

1/2 {A} = CB. / (4'1rG p.). , 
1 1 

3 3/2 {M} = p. C / l4'1rG P.) , 
1 1 

{dm/d~} 

·1. The Basic Equations 

2 
{~} = C B./~'lrG p., 

1 1 

1/2 
= p. C/B. (4'1rG p.) . 

1 1 1 

(176) 

In dimensionless form, our fundamental eqs. (133), (134), and (138) 

become 

= 

1 a t 21) + 
a2lP 

az2 r ar ar 

Zeg, (~) 

q(~) = dm(~) / J 
2'11' d~ 0 

1 

= Po' outside, 

where (see eq. [175]) 

dm(~) = 2'11' R 
i dt 

__ 1_ r 

2a. 
1 

dq(~) 

d~ 

0, outside; 

= q(t) exp(-lP), 

= 0, outside; 

exp(-lP), inside; 

(177) 

inside; 

(178) 

dz r(z,~) ar(z,~) exp[-Hz,t)], inside; 
at 

(179) 

(180) 

and ai is the (const~nt) ratio of the magnetic-to-gas pressures inside the 

cloud in the reference state, that is, 

2 a. _ B./8'11' P •• 
111 

(181) 

The terms "inside" and "outside" stand for "inside the cloud" and "out-

side the cloud", respectively. 
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2. Boundary Conditions 

It is straightforward to put the boundary cond~tions, expressed by 

eqs. (156)-(163), in dimensionless form. The result is 

A(r = 0, z) = 0 ( l82a) 

A(R, z) = R/2 (182b) 

A(r, Z) = r/2 (182e) 

aA(r,z) = 0 (182d) 
3z z = 0 

a1jl(r,z) = 0 (182e) 
ar r=O 

a1jl(r,z) = 0 082f) 
az z = 0 

1jI(R, z) = - (182g) 

(l82h) 

The dimensionless form of eq. (151), which specifies the location of the 

cloud boundary, is 

( 183) 

3. The Reference State 

We write in dimensionless form some of the parameters calculated 

from the reference state for later convenience (see eqs. [164] - [170]): 

3 M/2 = 21f R./3, 
1 

A. = r/2, 
1 

2 = R. /2, 
1 ttotal = R2/2 

t. = r2/2 
1 

(184) 

(185) 
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1/1. = - (3 R~ 1~12)/6, r s R. ; 
1. 1. 1. 

= - R~/31~1 , r ~ R. 
1. 1. 

(186) 

q. = exp(I/I.), I~I S R.; 
1. 1. 1. 

= P I~I > R .. 
0 1. 

(187) 

We express, for later reference, the initial gravittltional energy 

(W ) of the cloud and the magnetic energy (W ) inside the cloud in units g m . 

of the cloud thermal energy (U). In terms of our dimensionless parameters, 

we find the following ratios: 

= (2/15) R~ 
1. 

(187::t\) 

and 

W / U = (2/3) a., m .1.. 
(187-8) 

which provide a rough measure of the relative strength of gravitational, 

magnetic and pressure forces (cf. § VIC2c). 

4. Free Parameters 

It is clear that there are three free parameters in the .equations, 

namely, ai' Po,andRi . We may understand this on physical grounds. The 

Bonnor-Ebert (non-magnetic) problem had only one free parameter related 

to the characteristic Jeans length. Such a dimensionless length is ex-

pected to appear in our case as well. A second free parameter expressing 

the relative strength of the magnetic and gas pressures in the intercloud 

medium at infinity must also exist. Let it be 

2/ a = B. 8n P • 
01.0 

(188) 

If the distribution of mass in the flux tubes threading the cloud (that 

is, if the function dm/d~) were known through a detailed understanding 
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of the mechanism respons~ble for the generation of the interstellar field, 

the above two free parameters would be sufficient to categorize an 

equilibrium state of the system. Neither observations nor theoretical 

considerations can determine dm/d~ at present. Hence, in reality, our 

problem contains two free parameters and a free function. It is only 

because of the simplifying assumption, that the system developed from an 

"initial" uniform state through continuous deformations of the field lines 

(under flux-freezing), that the free function may be specified by only one 

additional parameter. 

For completeness, we note that if we had chosen as units of length 

and.density the quantities C2/(4nGP
o
)I/2 and Po/c2 , respectively, ao 

would have replaced a. in eq. (177) and P would have been replaced by 
~ 0 

unity in eq. (179). However, R. would not have been sufficient by itself 
~ 

to specify dm/d~j specification of the density of the reference state, Pi' 

would have been necessary (see eq. [175]). We choose to work with the set 

(a., P , R.) rather than (a , P;' R;). The external pressure P is 
~ 0 ~ 0 ... ... 0 

directly related to forces at the cloud boundary; we may obtain equilibrium 

solutions in which the cloud has expanded or contracted relative to the 

reference, spherical state by simply choosing Po < 1, or Po > 1. re

spectively, if gravity is weak. 

By definition, the parameters a , a., o ~ 
and Po are re lated :. 

Altogether then, the free parameters are R. and any two of the three 
~ 

quantities in eq. (189). 

D. Method of Solution 

(189) 

There were no analytical or numerical methods available to solve the 

simpler problem of Paper I. We could not expect that there would be any 
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for the present problem .. Equations (177) and (178) are formally similar 

(but not identical) to eq. (Cl) solved in Paper L A similar approach 

suggests itself. However, we now face the complication that eqs. (177) 
• 

and (178) must be solved simultaneously. To complicate matters further, 

the cloud boundary is not known in advance; it must, therefore, be treated 

as a free boundary. We found that no amount of advanced knowledge of 

mathematical and numerical techniques could help us. A method based on 

simple physical thinking worked. Its underlying ideas are as follows --

for further details, see Appendix A. 

Guess a gravitational and a magnetic potential .1jI and A, respectively, 

(and, therefore, a gravitational and a magnetic field). Distribute the 

. matter in the various flux tubes within a (guessed) cloud boundary in such 

a manner (consistent with the conservation of the ·mass-to-flux ratio) that 

gravitational and pressure forces are in exact balance along field lines. 

In general, this distribution of matter will not be consistent with the 

guessed IjI or with the guessed cloud boundary. Calculate, therefore, the 

new IjI and the new cloud boundary implied by the new distribution of matter. 

Use the latest 1jI and the latest distribution of matter to calculate the 

current density necessary to balance all forces in a direction perpendicular 

to field lines. This current density will not, in general, be consistent 

with the guessed set of field lines [~(r, z) = rA(r, z)]. It (and the 

latest 1jI) must, therefore, be used to determine a new set of field lines. 

The entire process is repeated until the distribution of matter, the 

gravitational field, the current density, and the magnetic field are all 

mutually consistent and pressure equilibrium across the cloud boundary 

is satisfied. 

In practice, the above iterative method of solution is unlikely to 

converge. It is necessary to introduce two independent relaxation para-
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meters (see Appendix A). which provide a quantitative measure of how 

much better or worse the potentials of one iteration are compared with 

those of the previous iteration. In addition. to avoid violent oscillations 

of the cloud boundary. we introduced a third relaxation parameter. We 

shall refer to our method of solution as a "relaxation iterative pro-

cedure" (RIP) ()r. more specifically, as a "triple-relaxation iterative 

procedure" (TRIP) indicating the number of reiaxation parameters involved. 

E. Equilibrium States 

1. A Preview of the Resul ts 

To span the entire three-parameter space of solutions is not only 

impossible. but also senseless. Physical considerations can limit the 

parameter space from the outset. Moreover. the behavior of solutions be-

yond a certain range of values of each of the three free parameters seems 

to introduce no new features. 

The first physical consideration stems from our stated interest in 

star formation. Irrespective of the mechanism that may bring a cloud to 

a critical state. self-gravitation must become important if a cloud is to 

collapse. We. therefore. exclude from our present study the cases in which 

the mass-to-flux ratio is so small that gravitational forces play only a 

minor role in the equilibrium of a cloud. Nevertheless. we used these 

cases to test the accuracy of TRIP. A small enough R. represents this 
~ 

class of cases. (Recall that the mass of the cloud is proportional to 

R~ while its flux varies as R~; so. M/~ ft «R.). Given an ~. and a P 
~ 1. CA. ~ ~ ~ 0 

(see eqs. [181]. [171] and the unit of pressure in eq. [176]). we choose 

Ri small enough so that the equilibrium state is one of pure pressure 

balance between the cloud and the intercloud medium. The initial cloud 

boundary expands or contracts along field lines according to whether 
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Po < 1 or Po > 1, respectively; the magnetic field remains uniform every

where. The location of the boundary may easily be calculated analytically. 

We found that the computed and calculated states differed by at most 1%. 

(For a more detailed discussion of numerical matters, see Appendix A.) 

Although some of these states represent a prolate (or, filamentary) dis

tribution of matter about the magnetic field (which simply provides a 

rigidity to a filament with respect to changes in its shape) and may have 

some relevance to the interstellar medium (see discussion in § VIC3b), we 

shall discuss them no further in this work. 

To study the effect of gravitational forces on the equilibrium states, 

we fixed Q. and we chose PSI. Thus, with the intercloud pressure 
1 0 

initially smaller than the cloud pressure, a cloud may contract with re-

spect to the spherical reference state only as a result of self-grayitation. 

The larger Ri is. the more the cloud contracts. until an increase of Ri 

by as little as =::: 1% yields no more solutions. for a given Q. and P • 
1 0 

we shall refer to such a state as a "critical" state for gravitational 

collapse. realizing that the true critical mass for the given flux and 

the given external pressure may actually"be a few percent larger than 

the values determined in this manner -- if an equilibrium state is too 

close to the critical one. numerical noise may set it into collapse. 

We studied the effect of the external pressure by fixing Q i and Ri 

to such values that the cloud was hardly self-gravitating, and then we 

kept increasing P above unity. Gravitational forces came into play o 

before long. There is. however. an important diff~rence between equilibrium 

states with small and those with large external pressure that allows us 

to determine whether a dense cloud formed by slow accretion of matter or 

by an increase in the intercloud pressure (see § VIIF). If high resolution 

observations determine the detailed distribution of matter within a dense 
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cloud. our solutions suggest that we may discriminate between these two 

mechanisms of dense cloud formation on the basis of that observational 

evidence alone. 

The useful range of free parameters with which we shall concern our-

selves here is 

0.2 S a. S 1.0. 
~ 

0.5 S Po S 4.9. (190) 

For most pairs of parameters (a .• P ) studied. we kept increasing R. until 
~ 0 1 

a critical state was determined. The value a. = 1.0 is already large enough 
~ 

to reveal the behavior of solutions with a. »1. Although eq. (189) and 
~ 

the range of values shown in eq. (190) imply that 0.04 S a S 2.0. we only 
o 

studied in detail those cases for which 0.1 S ao S 2.0. These values of 

ao are certainly representative of conditions in the intercloud medium as 

observations and theoretical considerations indicate at present. 

The following are a few of our general conclusions to be discussed 

below. In all critical states determined. the cloud mass exceeds the 

Bonnor-Ebert value for a cloud of identical temperature and external pressure. 
, 

A cloud flattens alo~g the field before reaching a critical state; it is 

flatter the stronger the field. It is also flatter the larger the inter-

cloud pressure. Compared to its value in the reference state. a often 

decreases in the equatorial plane because of flattening. This suggests 

that the effect of the cloud pressure on the nonhomologous contraction and 

collapse of a cloud cannot be neglected. unlike the case of homologous 

contraction. Spherical contraction of a cloud as a whole in the presence 

of an interstellar field of reasonable magnitUde has but an academic 

significance. So does homologous contraction. 

The Bonnor-Ebert calculations have shown that a critical state is 

characterized by a ratio of the central-to-surface density always equal 
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to 14.3 regardless of the cloud temperature and the intercloud pressure. 

Our solutions show that the critical ratio p/PS increases as Po decreases; 

it also increases as a. increases. There are good physical reasons for 
1 

this behavior and we shall discuss them below. 

We now examine some of the equilibrium stateS in more detail. We 

use the dimensionless variables of § VIle throughout. unless we note other

wise. We shall give a few examples in dimensional form at the end, where 

we shall also provide general conversion formula& and scaling laws. 

2. Dependence onR
i 

For a fixed pair of parameters (ai • Po)' we determined equilibrium 

states for different values of R .. This situation corresponds to a study 
1 

of a collection of spherical clouds of constant (but unspecified) temper-

ature, of uniform (but unspecified) density embedded in an intercloud 

mediwn, whose pressure. is some fixed multiple ~ 1) of the initial cloud 

pressure, and threaded by a uniform (but unspecified) magnetic field. 

Each cloud has a different radius. We then release the clouds to reach 

mechanical equilibriwn.We discard the ones with small enough radii for 

self-gravitation to be unimportant and we discuss representative ones 

among those which did not collapse. 

We take the magnefic pressure to be initially half of the cloud 

pressure (a. a 0.5) and the intercloud pressure to be somewhat smaller 
1 

than the cloud pressure (Po = 0.9). If it were not for self-gravity, a 

cloud with these parameters would expand along field lines. Figures Sa, 

Sb, and 8c exhibit three equilibrium states characterized by three dif-

ferent values of Ri' namely. 2.5, 2.7, and 2.8, respectively. Increasing 

R. further by 2% gave no solution; the cloud collapsed for a large number 
1 

of choices of relaxation parameters. The state R.= 2.8 will be referred 
1 
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to as a critical state. Each ordinate represents radial distance from 

the axis of sYllunetry (z-axis), while each abscissa represents distance 

from the center of the cloud along the axis of symmetry. For ease in 

comparing an equilibrium state with the uniform reference state, we 

labeled both axes in units of R., the initial radius of the cloud in each 
1 

of the three cases. The curves bearing arrows represent fie ld lines; each 

is labeled by its r-coordinate in the corresponding ref~rence state, in 

which field lines were straight and equidistant. The solid, oblate curves 

are isodensity contours and are labeled by the value of the density at 

equilibrium (in units of the uniform density, p., of the spherical refer-
1 

ence state). The spacing (~p) between successive isodensity contours is 

fixed so that the distance between them is inVerselrproportional to the 

mean pressure gradient in the interval. The outermost curve represents 

the cloud boundary (p = Po there). The dashed curves represent contours 

of equal magnetic-field strength. To avoid repeating the awkward term 

"equal-magnetic-field-strength contours", we shall refer to these curves 

as "isopedion", contours. 8 Figures 8a, 8b, and 8c (and all similar figures 

below) show only the inunediate neighborhood of the cloud in each case be-

cause at distances larger than about 2R. from the cloud center the field 
1 

is virtually uniform and within a few percent of its value at infinity. 

One may take as a measure of the degree of flattening of a cloud the 

quantity 

f = z /r - max max' (191) 

where z is the maximum extent of the cloud alor.Jthe z-axis and r max max 

is the equatorial radius of the cloud at equilibrium. The flatter the 

8. Tlje term "i~opedion" (pronounced Isap'edeon) derives from the Greek 
isos + pedion and translates literally into "of equal field [strength]." 
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cloud. the smaller f is .. Several qualitative features of the solutions 

become evident by examination of figures 8a. 8b. and 8c. 

As R. increases. the cloud contracts further and further (compared 
~ '. 

with its corresponding spherical initial state). The magnetic field im-

pedes contraction in the lateral direction. The flattening increases with 

increasing R. and so does the central density and the central magnetic 
~ 

field. The isodensity contours are oblate.' indicating the relative ease 

with which mass can slide along field lines than across them under flux-

freezing. In fact. the isodensity contours are more oblate near the cloud 

center than they are at the bowldary -- the more so the larger Ri is. The 

magnetic field strength has a maximum at the cloud center and a minimum at 

exactly the position of the equator (B. = 0.912, 0.793, and 0.753, 
m~n 

respectively. for each of the states of fig. 8). This is a general property 

of the solutions. 

From the isodensity and the isopedion contours of each equilibrium 

state. one may estimate the ratio of the magnetic and gas pressures by 

using the expression 

In the equatorial plane (z = 0). af has a maximum at r = O. On the contrary. 

af increases as z increases while r is kept fixed. The former behavior 

of a f reflects the relative ease with which matter slides along field 

lines, the most deformed of which occur at (very roughly) r ~ 0.6 R .. 
~ 

The increase of af with z is mainly due to the "unlo.ading" of matter from 

the outlying portions of field lines under the action of the gravitational 

field of the cloud. 

As Ri i~creases (and the gravitational forces become stronger), af 

at the cloud center increases. In all cases. the general behavior of af 
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within the cloud is as described in the preceding paragraph. We note 

that af at the cloud center has decreased below a. in each of the three , 1 

states of fig. 8 (by 20.9%, 13.4%, and 0.1%, respectively). However, this 

is by no means a general phenomenon. If a i is chosen small enough, afCO,O) 

K is expected to increase because then 8f (0,0) ex: Pf(O,O) , where K :::.. 2/3, 

1/3 so that af(O ,0) ex: Pc (We shall discuss the exponent I<: below . We have 

verified that af(O,O) increases somewhat above a i in the case a i = 0.2.) 

In figures 9a, 9b, and 9c, we plotted the dimensionless column (or 

surface) density of each of the above three states as a function of position. 

Column densities for two orientations of the line of sight are shown in 

each figure. (i) With a line of sight parallel to the axis of symmetry, 

an observer would see the column density af(r) as he moves a telescope 

beam away from the cloud center. (ii) If the line of sight lies in the 

equatorial plane, one would observe the column density af(z) for a similar 

motion of the beam. [The subscript f signifies a "final" (that is, equi-

librium) state.] The column density a. of the corresponding spherical 
1 

reference state is shown in each figure for comparison. [The subscript i 

signifies the reference ("initial") state.] We now compare figs. ga, 9b, 

and 9c. 

As Ri increases, the peak column density af(r = 0) increases, reflect

ing the larger lateral compression of the field by the stronger gravitational 

forces. Yet, the maxima of the curves af(r) are relatively flat because 

the magnetic field resists compression in a direction normal to the field 

lines. At equilibrium, the fraction of the cloud mass found at large 

radii is relatively small; in particular, it is smaller than that predicted 

by the uniform initial state. The departure of the column density af(r) 

of an equilibrium state from that of the corresponding uniform state is 
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solely due to compression normal to the field lines; one-dimensional 

contraction parallcl to the field does not increase·o(r). 

The surface density as a function of z, 0f(z), shows a higher as 

well as sharper maximum than 0f(r), indicating a larger compression 

parallel to field lines. The maximum value of(z = 0) increases as Ri does; 

so does the ratio ofCz = O)/af.(r = 0), which provides another mcasure10f 

the flattening of the cloud. At equilibrium, a conside~ably smaller 

fraction of the cloud mass exists away from the cloud center along the 

axis of symmetry than it did in the corresponding uniform state. 

Figure 10 exhibits the functions q(¢l) in each of the three states 

under consideration; they are plotted against the normalized flux ~/¢let. 

Since all three states have the same (l. and P , each. curve is labeled only 
~ 0 

by the value of Ri of the corresponding initial state. Note that ¢lei 

is different in each state because it depends on R. (see eq .. [184]). As 
~ 

R. increases, the curve q(¢l) suffers a downward shift. This is so because 
~ 

q depends exponentially on the gravitational potential (which becomes 

more negative as Ri increases) and only linearly on the pressure (see 

eq. [128]). 

Before discussing the dependence of solutions on the external pressure, 

we point out that the critical state of fig. 8c has pc/PS = 15.9, a value 

larger than the Bonnor-Ebert critical ratio. We shall return to this 

point in discussing some general conclusions. 

3. Dependence on Po 

How do the properties of equilibrium states ~ary as we increase P o 

while keeping (l. and R. fixed? A series of solutions which differ only 
~ ~ 

in Po corresponds to equilibrium states of an initially spherical cloud 

of uniform (but unspecified) density, of constant (but unspecified) 
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temperature and of a fixed initial radius, threaded by a uniform (but 

unspecified) magnetic field which differ only by the value of the external 

pressure. We shall not discuss the case in which the intercloud pressure 

is smaller than the internal (cloud) pressure so that the cloud acquires 

a prolate shape by expanding along field lines. We choose R. small enough 
1 

(= 2.4) so that gravitational forces are initially weaker than (internal) 

pressure forces (see eq. [187-A]), and we take as before a. = 0.5. 
1 

Figures lla, lIb, and llc represent equilibrium states with P = 1.9, 
o 

2.9, and 3.9, respectively. We could not obtain a solution with P = 4.9. o 

The isodensity and isopedion contours and the field lines are labeled as in 

figs. 8a, 8b, and 8c. Figures lla, lIb, and llc reveal the following vari-

ation of physical parameters as P increases. (i) The cloud contracts in 
o 

such a manner that its oblateness increases. The degree of flattening (see 

eq. [191]) is f = 0.47, 0.40, and 0.34, respectively. (ii) The central 

density as well as the ratio of central density and surface density also 

increase (pc = 7.32, 13.2, 31.1, and pc/PS = 3.85, 4.55, 7.97). (iii) The 

central magnetic field is' enhanced further, while, on the contrary, the 

minimum value of the field at the cloud equator decreases (B. = 0.791, mIn 

0.557, 0.370). (iv) The ratio of the magnetic and gas pressures at'the 

center increases [af(O, 0) = 0.39, 0.45, 0.53], whereas at the equator it 

decreases [af(r , 0) = 0.165, 0.053, 0.017]. It is still the case that - max 

at a distance of about 2R. from the cloud center the magnetic field is 
l. 

nearly uniform and within a few percent of its value at infinity. The 

above dependence of the physical parameters of the cloud on P can be 
.0 

understood on physical grounds. 

That the cloud should become flatter as the external pressure in-

creases follows from the fact that along field lines the only opposing 

force is due to (internal) pressure gradients, while in the lateral direction 
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magnetic forces come into play. The increase in the central magnetic 

field and gas density with incre~sing Po has as a primary cause the 

inevitable compression associated with the larger external pressure and 

as a secondary cause the stronger gravitational field, which the primary 

compression gives rise to. However, the increase in the ratio of the 

central-to-surface gas densities is a secondary effect entirely due to 

the presence of gravitational forces; such an increase in pc/PS does not 

appear if self-gravity is unimportant, in which case the (dimensionless) 

density is uniform inside the cloud and equal to P. Finally, the increase o 

of af with Po at the cloud center is partly due to gravity. 

If R. is very small (so that gravitational forces are negligible), an in
I 

crease in P results in a compression of the cloud along field lines. As o 

a consequence, af decreases everywhere inside the cloud (unless a
i 

« 1). 

It is also reasonable that af at the equator should decrease as the 

external pressure increases. This is a consequence of (i) the equality 

of (the dimensionless) Ps and Po at equilibrium, and (ii) the decrease 

in B. (at the equator) which accompanies the larger distance between the min 

field line just attached to the cloud equator and those outside the cloud 

(which have no mass loaded on them, so that they cannot but be "left behind" 

as the cloud contracts). 

Figures l2a, l2b, and l2c exhibit the surface densities corresponding 

to the states of figs. lla, lIb, and llc, respectively. The curves are 

labeled as in figs. 9a, 9b, and 9c. It will suffice to remark that the 

variation of the surface densities crf(r) and Gf(z) with Po is qualitatively 

similar to their variation with R. (discussed in § VIIE2 above), except 
I 

that the maxima are now higher and sharper -- a consequence of the larger 

compression caused by a larger Po' 
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The variation of q with ~ for each state of fig~ 11 is of interest 

and is shown in fig. 13. Since a. and R. are the same for all three states, 
1 1 

each curve is labeled with the value of Po in that state. Note that <I>c£ is 

the same for all three states now (contrast fig. 10}. As P increases, 
o 

a downward shift takes place as discussed in connection with fig. 10. The 

shift is larger at the center of the cloud than at the equator. This is 

so because of the exponential dependence of q on the gr~vitational potential, 

which, upon compression, becomes considerably altered (more negative) at 

the cloud center but not so much at the equator. The increase of the 

slope of q(~), as Po increases, implies larger current densities and 

stronger magnetic forces (see eq. [131]) and is a result of the relatively 

large deformation suffered by field lines. 

4. Dependence on a i 

With P = 0.9 and R. = 2.5, we obtain equilibrium states for a. = 0.2, o 1 1 

0.5, and 1.0. This situation corresponds to a study of the equilibrium 

states of an initially spherical cloud of uniform (but unspecified) density, 

of constant (but unspecified) temperature, threaded by a uniform (but 

unspecified) magnetic field and of a fixed initial radius as the ratio 

of the magneti~-to-gas pressure at infi~ity increases (see eq. [189]) from 

0.222 to 0.556 to 1.111. We chose Ri such that the initial gravitational 

energy of the cloud was smaller than the thermal energy but not negligible; 

specifically, Iw I/u = 0.83 (see eq. [187-A]). The value of P was taken g 0 

somewhat smaller than unity to eliminate compression due to the external 

pressure. 

We have already discussed "the state with o. = O.S (see figs. 8a and 
" 1 

9a).' Figures 14a and14b exhibit the isodensity and isopedion contours 

and the field lines of the equilibrium states characterized, respectively, 



o o " ~I iJ a 
-127- LBL-3602 

bya. = 0.2 and 1.0. By comparing figs. l4a, 8a, and 14b, we conclude 
1 

the following as a. increases. (i) The cloud becomes flatter -- especially 
I 

the interior isodensity contours. (ii) The central density decreases 

(pc/ps = 6.31,3.82,3.14). (iii) The central magnetic fleld also de

creases, while its minimum value at the equator increases (B. - 0.834, . mIn 

0.912,0.943). (iv) Compared to its value in the initial state, the 

ratio of the magnetic-to-gas pressure decreases as a. increases 
I 

[af(O,O)/ai = 1.20, 0.79, 0.64], whereas its minimum value at the equator 

increases [af(r ,OJ/a. = 0.77,0.92, 0.99]. max 1 
(v) The' larger a., the 

I 

closer the distance from the cloud center at which the magnetic field 

reaches its value at infinity within a few percent. 

We note that the cloud boundary changed by somewhat less than 10% as 

a. increased by a factor of 5, and that readjustment took place mainly in 
1 

the lateral direction. This ~s so because we had chosen R. such that 
1 

gravitational forces did not dominate the pressure forces. Thus, the 

field lines of the equilibrium state with a. = 0.2 were not very deformed 
1 

in the first place. By increasing a. (and, therefore, the relative strength 
1 

of the magnetic field), the field lines straightened out. But the re-

suIting redistribution of matter was not large enough to alter significantly 

the gravitational field at the boundary which is (almost) determined by 

the total mass only. Yet, the redistribution of matter that accompanies 

the straightening of field lines affects significantly the gravitational 

forces near the center (recall eq. [143] and Gauss' law). This is evidenced 

by the decrease of p (and B ) by a factor of two as we go from the state c c 

of fig. l4a to that of fig. l4b. 

It is significant that the ratio af(O,O)/ai was larger than unity 

in the case a. = 0.2 and smaller than unity in the other two cases. This 
1 
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implies that in the proportionality B a: pK the exponent is greater than 
c c . 

1/2 if <l. is small and smaller than 1/2 otherwise. We are beginning to 
1 

get a handle on the exponent K, which other workers have routinely been 

taking as 2/3. 

The changes in the surface densities 0f(r) and of(z) as Cti increases 

are obtained by comparing figs. ISa,·9a, and ISb (corresponding, respectively, 

to the equilibrium states of figs. 14a, Sa, and 14b). It is clear that, 

as <l. increases, the surface density through the cloud center decreases 
1 

due to the smaller compression. Further comments on these figures would 

be redundant in view of our detailed discussion above. 

In fig. 16, we plotted q(~) for the three states of figs. l4a, Sa, 

and 14b. The curves are labeled with the values of Ct .. As Ct. increases, 
1. 1 

the curve q(~) shifts upward and becomes steeper. The shift is larger at 

the equator (~/~ n = 1.0) because P is fixed and 1jI, which is negative 
c~ 0 

everywhere, increases (see eq. [12S]); at the center, the increase in W 

is partly compensated by the reduced gas pressure. 

F. Discussion of Results and Comparison with Observations 

Under the assumption that the magnetic field is frozen in the matter, 

we have determined equilibrium states which can be reached by isothermal, 
, 

self-gravitating, magnetic interstellar clouds contracting nonhomologously 

from an initially uniform, spherical state and surrounded by a hot and 

tenuous intercloud medium. Even though we solved a time independent problem, 

we were able to make a connection between an initial and a final state by 

conserving the mass-to-flux ratio (dm/d~) in each flux tube of the system. 

We emphasized, however, that, if the function dm/d~ were known either from 

theoretical considerations or from observations, our method would determine 

a unique equilibrium state for each cloud if the pressure and the magnetic 
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field of the intercloud medium are known .. 

1. Some General Conclusions 

The physical parameters of an equilibrium state show large departures 

from those of a corresponding uniform, spherical state. Equilibrium states 

are characterized by oblate isodensity contours, the more so the stronger 

the initial magnetic pressure relative to the gas pressure and the larger 

the thermal pressure of the external medium. It is not 'difficultto obtain an 

enhancement of the colunm density through the center of a cloud by an 

order of magnitude even for the moderate range of parameters for which 

we presented solutions (see, for example, fig. l2c). The mass density, 

p, may easily vary by more than an order of magnitude between the center 

and the surface of a cloud (for example. see fig. 8e and. even better. 

fig. 19a below). The ratio pc/PS in a critical state is larger, the larger 

a. and the smaller Pare -- in fig. 19a. this ratio is equal to 23. Since 
~ 0 

cloud masses are usually estimated by assuming a spherical shape and a 

uniform density. they may be overestimates. If a cloud is observed to 

have a more or less circular cross section. it does not follow that its 

dimension parallel to the line of sight is nearly equal to the observed one. 

a. The Slope of 10gB versus logp c c 

An invaluable contribution to our u~derstanding of the formation 

of interstellar clouds by contraction from a more diffuse state of matter 

with a frozen-in field may soon be made by more accurate observations of 

the Zeeman effect in colecular clouds. We mentioned in § IIID that the 

somewhat uncertain data for H I clouds shows a correlation between 10g8 

and lo~. We also pointed out that. although Verschuur (1970a) drew a 

straight line of slope 2/3 through the data points, a line with a slope 

of 1/3 would fit the uncertain data at least as well. We used our 



-130- LBL-3602 

equilibrium solutions to predict what such a slope should be. 

Figure 17 is a master plot ona log-log scale of the ratio, B /B., c 1 

of the central magnetic field and its initial (uniform) value against the . 
ratio, p /p., of the corresponding values of the gas density. Each value 

Cl 

of u. gives rise to a different curve. Three curves are shown (for a. 
1 1 

0.2,0.5, and 1.0). To obtain the curve labeled (a. =) 0.2 we used 
1. 

thirteen (13) equilibrium states. The curve a. = 0.5 represents thirty 
1 

(30) equilibrium states, and that with a i = 1.0 fourteen (14) states. The 

scatter of points about each curve was scarcely larger than its thickness. 

For each value of u., two states differing only in R. are located in 
1. 1. 

such a manner that the state with the larger R. is higher up along the 
1 

curve (representing a larger central field and a larger density). Simi-

larly. two states differing only in P fallon a curve of constant a. o 1 

in a way that the state with the larger P is located higher up along the o . 

curve. States which have the same R. and P but different a. fallon a 
1 0 1 

nearly straight line with slope roughly equal to I -- one may ~heck this 

for the three states of figs. 14a, Ba, and l4b. The dashed curve is a 

line with slope 2/3, representing isotropic contraction. 

It is clear that, as u. increases, to produce a particular enhance-
1 

ment of the magnetic field a considerably larger central density is re-

quired. It is important to note that the slope of each curve varies along 

its length; it is smaller the smaller the density enhancement. As we have 

seen in subsection E above, smaller density contrasts result from small R. 
1. 

corresponding to weak gravitational forces. Therefore, the above variation 

of the slope of each curve conforms with the reasonable expectation that, 

until gravitational forces become strong enough, contraction due to an 

increase in the external pressure proceeds mainly along field lines. Since 
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most H I interstellar clouds are not self-gravitating, as evidenced 

by their low densities, whatever their formation mechanism, it must be 

effective over very large distances along field lines. [For a cylinder 

of intercloud matter (n. ::::; 0.2 cm-3) of radius 5 pc to contain a mass 
1C 

of 300 Me' it must have a length of about 710 pc.] 

Beichman and Chaisson (1974) measured an apparent Zeeman splitting 

in the l665-t-'Hz line of the 2II3/2 , J = 3/2 ground state of 011, which pro

duces a splitting of 3.27 Hz per mi11igauss (Radford 1961). They reported 

a field of about 3 mgauss. The authors themselves caution, however, that 

the interpretation of their observation is inconclusive because the observed 

circular polarization may originate in two different regions of maser 

action moving with different radial velocities within their beam width. 

[As it was earlier pointed out by Heer (1966), circular polarization may 

result from saturation effects in a maser amplifier with energy levels 

similar to those of OH.] Clearly, further observations are necessary to 

settle this issue. Whatever the observations may show, the theoretical 

justification provided by Beichman and Chaisson for their result is in 

error. They took 104 .5 cm- 3 as a known density of the Orion molecular 

cloud and argued that, since the interstellar magnetic field is 3 ~gauss 

at a density of about 1 cm- 3, a density of 104 . 5 cm-3 implies a field 

of about 1 mgauss according to the "law" B a: p2/3. As we have just seen, 

the exponent (K) is more likely to be less (perhaps even much less) than 

1/2. Even a magnetic field weaker by one or two orders of magnitude than 

the one which these authors claimed to have measured would certainly have 

been able to make further contraction proceed nonhomologous1y and non-

isotropically -- thus decreasing K from their assumed value of 2/3. We are 

not suggesting that large magnetic fields are impossible to achieve. We 



-132- LBL-3602 

are proposing, however, that such fields will be found in highly fl attcncd 

9 6 9-3 clouds of very high density (10 - 10 cm for 1/3$ K $ 1/2). 

Unless the magnetic field is initially very weak Ca. < < 1), the 
1 

formation of a cloud will enhance the field according to a relation 

K B ex: p , where K is a positive function less than 2/3 that varies slowly c c 

as the contraction proceeds. Since fig. 17 shows that K is likely to be 

1/2 or less, it follows that a at the cloud center may ~emain constant 

or even decrease upon contraction. We have also seen that, in the equa-

torial plane, a decreases with distance from the cloud center. This 

likely constancy or decrease of a upon contraction would have profound 

effects on the further evolution of a cloud as it relates to star formation. 

In particular, it follows from the work of Chandrasekhar and Fermi (1953) 

on the Jeans instability in a uniform medium that the mininrum scale LJ 

that can collapse in a direction normal to the field is 

( 193) 

= (1 + 2a). 

With a decreasing upon contraction and flattening, the possibility of frag-

mentation, which cannot occur during spherical isotropic contraction, 

arises (see also subsection F4 below). The effect will be more pronounced 

the larger a is initially. Since stars form predominantly in groups, 

fragmentation must be predicted by any theory of star formation. Fig. 17 

reveals only the rudiments of such a process; it would be very useful to 

extend it to include larger enhancements of the central field and gas 

9. Recall that, in all cases which we studied, the stronger graVity was, 
the flatter the isodensity contours became -- especially near the 
cloud center. 
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density hyconsidering larger values of P . 
. , • 0 

One might think that, because the above discussion is based on the 

assumption that the cloud remains isothermal during contraction, the con-

elusions reached would be qualitatively different if the cloud is al19wed 

to cool and thereby increase Q. This is not so. If indeed the cloud cools, 

the effectiveness of the internal pressure in balancing self-gravity along 

field lines is reduced. Further flattening ot the cloud is inevitable which 

will tend to decrease the value of Q. In fact, from our present and 

previous considerations, it seems that a self-adjusting mechanism is 

operative that maintains Q close (if not smaller than) its initial value. 

b. Correlation between the External Pressure and the Central Density. 

The deduced correlation between the external pressure and the 

density at the cloud center (see figs. lla, lIb, and llc) while Q. and 
1 

Ri.are kept fixed is shown in fig. 18 as a critical state is approached. 

The states plotted have Q. = 0.5 and R. = 2.4. The plotted values of P 
1 1 0 

range from 1.1 to 3.9. This yielded densities in the range [4.1, 31.1]. 

As in the case of fig. 17, the scatter of points about the solid line was 

negligible. We reported in § VIIE3 that the state with P = 4.9 collapsed. o 

A state with P = 4.0 yielded a central density of about SO, but we have o 

not included it in fig. 18 because it collapsed for a slightly different 

choice of relaxation parameters. Apparently, not only are we Close to 

the critical state. but the parameters of the equilibrium states close 

to the "plateau" of fig. 18 are very sensitive to P. This is reassuring o 

for the following re~30ns. 

The non-magnetic Bonnor-Ebert calculations showed a similar dependence 

of the central density on the external pressure. In fact, for each value 

of Po two equilibrium states were possible: an extended one .and a compact one. 
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That is , a plot analogous to that of fig. 18 reached a maximum for some 

Pc and then decreased for larger values of pc. The branch of the curve 

with a negative slope represented unstable states: to maintain a larger 

central density, a smaller external pressure was required. The region of 

increasing P with increasing p represented stable configurations. o c 

We tried to determine one of the possible unstable equilibrium states, 

but our iterative procedure repeatedly led to collapse. This, together 

with the fact that fig. 18 is the analogue of the stable branch of the non-

magnetic equilibrium states, are taken as strong indications (although not 

a proof) that our iterative scheme can pick out only physically stable 

equilibrium states. Unlike the case treated in Paper I, no unstable 

equilibrium state can be determined by analytical means which we could 

then use to test our 'above assertion. 

The Bonnor-Ebert calculations showed that the maximum of the curve 

10gPo versus logpc occurs at lower values of Po as the mass of a cloud 

increases. This reflects the effect of the stronger gravitational forces 

due to the larger mass. The analogous phenomenon occurs in our case. For 

example, the critical state of fig. 8c, which is characterized by the 

same Q. as the states of fig. 18, has P = 0.9 and R. = 2.8 and, therefore, 
1 0 1 

a mass larger by a factor (2.8/2.4)3 ~ 1.6. Since its central density 

is 14.3, if we attempt to plot it on fig. 18 it would fall slightly below 

the horizontal axis and certainly leftward of the peak of the solid curve. 

The qualitative effect of varying Q. is to shift the curve of fig. 18 
1 

to the left for a larger Q. and to the right for a smaller one. This is 
1 

so because the same external pressure causes a smaller compression and, 

therefore, a smaller central density the larger Q. is. 
1 
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c. The Ratio pc/PS' 

We have seen that the ratio P IPS increases as R. or P increases, c 1 0 

while it decreases if a i increases. At a critical state, however, pc/PS 

increases as a. increases or as P decreases. This is intuitively clear. 1 . 0 

A larger a. implies stronger magnetic forces, which can be overcome only 
1 

by stronger gravitational forces arising from a, denser central core. Simi-

larly, a weak external pressure does not aid the gravita~iona1 forces against 

the magnetic forces; to overpower the latter, a larger central condensation 

is required. Yet, this dependence of P IPS on P is, in part, arti ficial. c 0 

If P < 1 the cloud boundary would expand, provided that gravio 

tational forces were not present, so that pressure balance across the 

surface would be achieved. Even if gravitatiomll forces are present, it 

is a well-known result that the radius of an isothermal (non-magnetic) 

cloud would tend to infinity as P -+ O. In the magnetic case, the polar o 

radius of the cloud will do so because the magnetic forces vanish along 

the axis of symmetry. The extent of the cloud normal to field lines will 

be limited because of flux-freezing. Since gravitational forces will main-

tain some degree of central concentration, the ratio pc/PS will increase 

as Po (= Ps in our dimensionless variables) decreases. In this sense, 

this result is artificial. One can see this formally by integrating the 

force equation (149) from the center of the cloud to its surface along 

the axis of symmetry to obtain the dimensionless result: 

Zmax(PS) 

Pc = Ps + J ds P gs' (194) 

o 

Although Pc may decrease as Po decreases, if we divide. through by Ps as 

the ~atter tends to zero, pc/PS will keep increasing. 

In spite of its "artificiality", the ratio p/PS is useful. If 
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it is measured to be large, one can deduce that the pressure of the 

external medium is small. Since, as we have seen in § VIA (footnote 5), 

only an upper limit on the intercloud pr~ssure is known, a by-product of 

obtaining an accurate density distribution within a dense cloud will be 

an implied range of values for the intercloud pressure. To illustrate 

this point further, we present a critical state with Po = 0.5 and a i = 1.0 

in fig. 19a and its usual column densities in fig. 19b. 

The radius R. is equal to 3.20. A state with R. = 3.21 collapsed for 
1 1 

different sets of relaxation parameters; hence, we refer to the state with 

R. = 3.20 as a critical state. The isodensity contours reveal that there 
1 

is a very oblate central core of relatively high density and a fairly 

extended envelop of relatively low density; the ratio 

(One may contrast the state of fig. llc characterized 

pc/PS is equal to 23.0. 

by P = 3.9.) The 
o . 

same effect is noted in the column densities of fig. 19b, where the curves 

afCZ) and Of Cr) fall fairly rapidly at first and then a "knee" appears 

before they fall to zero at the boundary -- contrast fig. 12c. Clearly, 

there is a qualitative, as well as a quantitative, difference between 

states with large and states with small external pressure. One can utilize 

this difference to make a statement on the mechanism responsible for the 

formation of dense interstellar clouds. 

There are two alternative possibilities. (i) A cloud grows by 

slow accretion of matter (mainly along field lines) until self-gravitation 

becomes dominant. Cii) A rise in the external pressure increases the 

central density and ~hereby enhances the strength of the gravitational 

forces. Our solutions suggest that, at least in principle, one may dis-

tinguish between the two mechanisms from high-resolution observations of 

the distribution of matter within a dense cloud. The first mechanism will 
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produce an extended envelop of relatively (compared to the core) low 

density with a more or less cylindrical boundary. whereas the second 

mechanism will give rise to no such envelop and, in addition, will produce 

a cloud boundary more closely resembling in shape the interior isodensity 

contours. We remark that extended envelops appeared in equilibrium states 

even when a. was small, as long as P was small, although in these cases 
1 0 

the cloud boundary was nearly spherical. 

One might think that the ratio pips = 23.0 in the critical state 

of fig. 19a exceeds the Bonnor-Ebert critical value mainly because of the 

"artificial" reason cited above. It is useful. therefore. to calculate 

P I'P. where P is the mean density of the cloud. This ratio is expected C . 

to undergo a slower increase as P decreases. We recall that in the o 

Bonnor-Ebert critical state this is 

(p/p) = 5.7B. 
BE 

In the (magnetic) state of fig. 19a, we find that 

(195) 

(196) 

The effect of the magnetic field is still to increase this critical ratio. 

d. Critical States 

Critical states are equilibrium states on the verge of gravita-

tional instability. They are useful because they set theoretical upper 

limits on several observable cloud parameters (see § VI). We have pre-

sented only two such states, those of figs. Bc and 19a, characterized by 

Cai = 0.5, Po = 0.9, Ri = 2.B) and Cai = 1.0, Po = 0.5, Ri = 3.20). 

respectively. We also alluded, in discussing fig. 18, that there is a 

critical state somewhat more compact than that of fig. llc. The physical 

quantities of a critical state depend on two of our three free parameters --
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the constraint of being on the verge of collapse removes one parameter. 

We detennined most critical states by fixing Cl. and P and increasing R. 
1 0 1 

until no further solutions could·be found. Physically. this corresponds 

to the situation in which the ratio of the magnetic and gas pressures at 

infinity as ~ell as the cloud density are kept fixed while the cloud radius 

increases (thus. including proportionally more mass than it does flux). 

Quite generally. for a fixed Cl •• smaller values of R. may collapse 
1 1 

as P increases. For a fixed P • larger values of R. are required for o 0 1 

collapse as Cl. increases. The fonner behavior simply states that as the 
1 

external pressure contributes more to the contraction of the cloud. smal-

ler masses become able to collapse. The latter behavior states that 

larger masses are required for collapse if magnetic forces become stronger. 

Since the values of Cl. and P are not known in reality. we shall confine 
1 0 

ourselves to a discussion of the physical parameters of a single critical 

state, that of fig. 19a, in a dimensional form. The conversion formulae 

that follow may be used to find the dimensional parameters of any other 

state presented. When observations provide us with the necessary informa-

tionon dm/d~ and P • it will be worth returning and extending this diso 

cussion. 

2. Returning to the World of Dimensional Quantities 

Dimensionless quantities are indispensable in solving a problem. but 

often their numerical values have a meaning only for the particular author 

and a few devoted readers. It is iJ!lperative that at least one example be 

provided in dimensional form. We choose the cricical state of figs. 19a 

and 19b because Cl. = 1.0 and P = 0.5, yielding Clo = 2.0. a value close to 
1 0 

what we currently believe as representative of conditions in a spiral arm 

behind a galactic shock (see Paper II, § II). It is. however. impossible 
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at present to decide whether the value a.. = 1.0 is representative of 
. 1 

conditions which would prevail if we (mentally) took a dense cloud and 

expanded it in such a way that the field lines straightened out while its 

density became uniform (see also discussion below). To know the value 

of a. requires a detailed knowledge of how dense clouds form -- an open 
1 

question in theoretical astrophysics. Under the additional limitation 

that the true mass-to-flux ratio of a dense cloud may be very different 

from the assumed simple function (see § VIIS), we proceed with our example. 

We let TSO denote the cloud temperature (T) in units of SOaK and 

PIS denote the intercloud pressure (Pext ) in units of 1800 k deg/cm3. Then 

the isothermal speed of sound in the cloud is (see eqs. [9S] and [96]) 

C = 0.64 (TSO / ~)1/2 km/sec. 

Let P be defined by o 

P = P /p C2, o ext i • 

(197) 

(198) 

where p. is th~ uniform cloud density in the spherical initial state and 
1 

is related to the initial number density (ni ), including helium, by 

p. = n. ~ m. •• 
1 1 H 

(199) 

By solving eq. (199) for ni and using eqs. (197) -- careful with the 

units I -- and (198), we find that 

-3 em . (200) 

The number density of hydrogen is obtained from the total number density 

through division by 

n = 1.1 

= 1.2 

for H I clouds; 

for H2 clouds. 

(20la) 

(20Ib) 
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If the dimensional initial cloud radius is Ret' then 

= R. C/(4 n G p.)1/2 
~ ~ 

(202) 

where we have used eqs. (198) and (197) to eliminate p. and C, respectively. 
1 

To convert theoolurnn (or, surface) densities of and 0i of figs. 9, 

12, 15, and 19b to dimensional form, we need to multiply by the unit of 

density, p., and the unit of length,C/(4nGp.)1/2. We denote the dimension-
1 ~ 

al surface density by m and we easily find that. s 

ms = 0.54 x 103 (P IS/po)l/2 x ~:~( gm/cm2, (203) 
1 

where af and 0i are shown in the aforementioned figures. The (number) 

column density of hydrogen (not the total) is, Ot course, obtained from m s 
-1 through multiplication by (n llllJi) ,that is, 

N.H =2.3 x 1020 (P /P )1/2 x IS 0 ~ af! -2 cm , 
a. 

1 

and 

for molecular clouds. 

The mass of the cloud is given by 

Finally, from the definition of a. we obtain 
1 

2 1/2 
8

1
. = (S n p. Ca.) 

1 1 

1/2 = 2.5 (ai PIS/Po) llgauss. 

for H I clouds; (204a) 

(204b) 

(205) 

(206) 
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In solving our problem we expressed the density and the magnetic field 

in units of their initial values. So. to find their dimensional values 

in an equilibrium state, say at the cloud center, one simply takes the 

dimensionless values in that state and multiplies hy the results obtained 

from eqs .. (200) and (206). respectively. 

For the critical state of fig. 19a (a. = 1.0, P = 0.5, R. = 3.20) 
101 

and its corresponding initial state, we calculate the following values 

in the case of an H I cloud with T = 50 0 K and an intercloud medium with 

Pext = 1800 k deg/cm3. 

Initial State: 

• C = 

M = 
n. = 1 

R == cR. 

B. = 1 

0.57 

1320 

72 

5.2 

3.54 

km/sec 

Me (comp'are eq. [97a]) 

-3 -3 
(207) 

cm n. (H) == 65.4 cm 
1 

pc 

llgauss 
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The quantity NHCr = 0) denotes the column density of hydrogen when the 

line of sight is along the axis of symmetry, and NHCz = 0) when the line 

of sight lies in the equatorial plane and passes through the center of the 

cloud. The quantities m (r = 0) and m (z = 0) have a similar meaning. s s 

Since a telescope beam has a finite angular width, however, the observed 

column densities will be smaller than the maximum values. We therefore 

calCUlated. the ratio ~M = (total mass/area normal to the line of sight) 

for the above two orientations of the line of sight -- this is the quantity 

observed if the cloud lies entirely within the telescope beam. Values 

for other viewing angles will lie between these two. We find that 

3.9 x 10-3 s ~M s 5.7 x 10-3 gm/cm2. (209) 

The ratio of ~M and Mestel's critical value is (see eq. [lOBe]) 

1.9 s ~/~ s 2.B. (210) 

Indeed, equilibrium calculations, in addition to giving us the detailed 

structure of a cloud, have faired better than non-equilibrium calculations 

in predicting the parameters of a critical state. 

21 The maximum observed column density of atomic hydrogen is 3 x 10 

-2 cm (van Woerden 1967). OUr calculations indicate that such a cloud is 

not collapsing. The rest of the calculated physical quantities are either 

reasonable, or exceed the observed values -- a desirable result. We 

mentioned in § VIA, however, that the scarcity of H I clouds with masses 

larger than 1000 Me m~y be due to their conversion into molecular clouds. 

How, then, do our results compare with observed quantities in dense (dark 

or molecular) clouds? (Before leaving H I clouds, we note that the state 

of fig. llc corresponds to a mass of 1554 Me for the same "standard" para

meters as assumed above.) 
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We take T.= lOoK, appropriate to a dark cloud, and P = 1800 k 
ext 

3 deg/cm. The mass now becomes (see eq. [205]) only 15.7 Me' while the 

finalcentral and mean densities have increased to nc (H2) =.3.45 x 103 

-3 - -3 cm and n(H2) = 508 cm The calculated equatorial and polar radii of 

such a cloud are (see eq. [202]) r = 0.75 pc and z = 0.41 pc. Al-max max 

though the maximum density is well within the range of observed values 

3 4 -3' (10 - 10 cm ; see § VIA) and the predicted dimensions are in good agree-

ment with observations, the total mass (of this particular equilibrium 

state) is a factor of about 6 smaller than the observed values. In spite 

of the possibility that the observed values may be overestimites, as we 

remarked above, we do not think that that is the major source of discrepancy. 

whose sources are very likely to be the following. 

(i) The simplifying assumption that a dark cloud has the same 

mass-to-flux ratio as some uniform reference state. We have already 

discussed the uncertainties accompanying the assumed dm/d~ as well as the 

values of a .. 
1 

(ii) Matter in the immediate neighborhood of a dense cloud is 

unlikely to have a negligible density. This would invalidate our assumption 

that the external medium is force-free. Although we had formulated the 

problem in subsections Al and A2 above without imposing this condition. 

we solved it only with the force-free approximation of the intercloud 

medium. When the parameters of this medium are better known, especially 

in the neighborhood of dense clouds, it will be worth solving the more 

general problem. An external medium which is not force-free is also 

likely to permit a larger lateral contraction of a cloud and, therefore, 

a larger enhancement of the, magnetic field. As long as the external 

medium is force-free, even with an external magnetic pressure small 
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compared to the interc10ud thermal pressu:re. enhancements of the field 

by more than an order of magnitude are difficult to obtain. 

(iii) If the galactic gravitational field is introduced. in which 

case the boundary condition of uniform field at infinity must be substituted 

by a more realistic. periodic boundary condition. the field lines in the 

intercloud medium will inflate in the manner described in § V. This will 

weaken the general intercloud field -- and it is the mean value of this 

field (not of a uniform one) along the line of sight which we measure as 3 

lJgauss . Thus. the ratio B /B will also increase. c ... 

(iv) 0 We have sought solutions with O.S s Po s 4.9. Since the di

mensionless quantity P is the ratio of the intercloud and the cloud o 

pressures in the uniform initial state and since we ~ssumed an isothermal 

transition from an initial to a final state. it might have been more 

appropriate to have chosen P > > 1. Dense clouds have relatively low 
o 

temperatures. Moreover. when (mentally) expanded to a uniform state (say. 

Ret increases by a factor of 2 or 3). their densities will drop by a 

factor 10 - 30. If they are in pressure equilibrium in their final states. 

then a P ~ 10 - 30 would describe conditions existing in the initial states. 
o 

Because of eq. (189) and since we have argued that Qo is roughly equal to 

unity. it follows that Q. ~ 20 would then be more appropriate for dense 
1 

clouds. As our results can show by a reasonable extrapolation. an equili-

brium state with such parameters will be highly flattened. Such configura-

tions are. in fact. observed at least within the Orion cloud complex (see 

Morris et ale 1974). 

3. Line Widths in Dense Clouds 

Supersonic turbulence as a source of the observed line widths in dense 

clouds has already been ruled out on the basis of its short life time (see 
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§ VIA). Motions associated with gravitational collapse could explain in 

a natural way the observed large line widths (see § VIA for references) 

if only some decrease in the line widths. takes place as one observes 

regions further from' the cloud center. One. can see why this is so as 

follows. A cold, spherical, non-magnetic, massive cloud would collapse 

under self-gravitation with a free-fall velocity 

(211) 

where M(I~I) is the mass inside the radius Ijl. If one assumes that the 

density is unifonn,it follows from eq. (211) that 

(212) 

In this picture, the line of sight going through the center of the cloud 

will detect the largest radial velocities, which, in turn, will produce 

the largest line widths. 

It is well known, however, that, if gravitational forces are present, 

a central condensation is inevitable. A density which decreases as l~' 

increases could give rise to a free-fall velocity that increases toward 

the cloud center. Equation (211) shows that this will be the case if p 

'
-+xl-2. falls off more rapidly than The observable implications of such 

a case would be that the center of a spectral line would be formed at the 

outermost layers of the cloud while the wings of the line would be produced 

at the cloud center. Observations show that the most intense radiation 

comes from the cente- of a cloud and that the center of a spectral line 

is more intense than its wings. This seems to suggest that the density 

l-+x,-2. must falloff less rapidly than 

Equation (212) is usually used in referring to collapsing clouds. 
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Then the argument is made (for example, see Morris et ale 1974) that 

because line widths do not vary much between the center and the boundary 

of a cloud, collapse cannot be taking place. This is erroneous because 

collapse may in fact be taking place in such a manner that 

(213) 

where k is a positive constant less than one. 

Zuckerman and Palmer (1974) also claim that the collapse hypothesis 

is ruled out by the high rate of star formation that would be implied if 

all dense clouds were collapsing. We remarked in § VI that· this is not 

so if star formation is not an efficient process. Observational evidence 

indicates that indeed star formation does not proceed with a 100 percent 

efficiency (see review by Shu 1973b). Massive clouds often contain lOS -

6 10 Me' while the mass of stellar clusters in the Galaxy is smaller than 

103 Mg. 
The traditional theoretical argument that has been advanced to support 

an inefficient star formation process is that, following star formation, 

the bulk of a massive cloud will be dispersed. A typical OS star, the 

51 argument continues, would emit about 10 ergs during its lifetime mostly 

in the ultraviolet. A type II supernova liberates a comparable amount of 

energy. This energy would seem sufficient to disperse a 105 Me cloud, 

whose (negative) gravitational energy is typically 1050 ergs. This argument 

is fallacious because kinetic energy is not conserved. One must consider 

the conservation of linear momentum in each element of solid angle during 

spherical expansion of the gas. In the case of a supernova (ejected mass 

m < 1 Me) and an 05 star, the velocities imparted to the gas of mass Mc 

(104 - 106 M ) . t' 1 8 are. respec Ive y, 
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v = (2 m E) l/Z' / M 
g,s c' 

~ 10-1 ml/2(I~S) lon/sec 
c 

(214a) 

and 

v g,* = E / c M c 

-3 (105 ) All 10 -;- km/sec, 

c 

(2l4b) 

where m and M measured in solar masses and E = 51 are 10 ergs. c Even for 

4 Mc as small as 10 Me' Vg is less or much less than the speed of sound in 

the gas. If star formation is an inefficient process, the cause must lie 

elsewhere. We shall offer a likely explanation belo~. Now we continue 

our discussion of line widths. 

Zuckerman and Evans (1974) have advanced an interesting argument 

against the collapse of dense clouds. In the presence of a large-scale 

contraction, in which velocity increases with distance from the cloud 

center, photons emitted from the far side of the cloud (for example, by 

CO molecules) are somewhat blue-shifted so that they are not absorbed by 

intervening matter. Thus, one "sees" through the entire cloud. A molecular 

species (such as H2CO) , however, that absorbs radiation emitted by H II 

regions found near the cloud center, must be located between the center and 

and the nearest edge of the cloud. Since the cloud is collapsing, by 

assumption,the absorbing species must be moving away from the observer. 

Consequently, absorption and emission lines within a single dense cloud 

must exhibit a relative shift in radial velocity. Since such a shift is 

usually smaller than one-fourth of the CO line width, Zuckerman and Evans 

interpret this as evidence against collapse. 
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The alternative prop,?sed by Zuckerman and Evans to explain the large 

line widths in molecular clouds is extremely unattractive. They suggest 

that 50% of the mass of a dense cloud exists in the outer 20% of the radius 

without explaining how that much matter can be supported against gravity 

at that distance ~~ whatever happened to Newton's second law? In addition, 

they assume that the cloud (M ~ 105 Me) is broken up into chunks of about 

103 Me and that it is the more or less random motion of these objects that 

is responsible for the observed line widths. How these objects avoid one 

another remains a mystery. Why they themselves do not collapse, since 

they more than satisfy the Bonnor-Ebert critical condition (see eq. [97b]), 

is left unanswered by the authors. 

An as yet unproposed mechanism may be able to account for the observed 

line widths in dense clouds: oscillations of a dense cloud as a whole 

about a stable equilibrium state such as anyone of the states which we 

have calculated. We have argued above that a self-adjusting mechanism is . 

operating in self-gravitating, magnetic clouds that tends to keep a close c 

to its initial value, <l.. We have also argued that it is reasonable that 
~ 

<li should be in the range 10 - 30, which implies a very flattened configu-

ration. Such a cloud can undergo oscillations that do not necessarily 

push it over the threshhold of gravitational instability. Two normal 

modes are obvious. 

(i) The cloud contracts both along its major and minor axes 

simultaneously; this mode could conceivably lead to collapse. 
r . 

(ii) The cloue expands along its minor axis (axis of symmetry) 

while it contracts in a direction normal to the field, and vice versa. 

Such oscillations cannot cause collapse -- recall that one dimensional 

compression along field lines due to self-gravity cannot proceed indefinitely. 
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The question is whether such oscillations can be maintained for times 

exceeding the free-fall time. A plausibility argument indicates that 

they can. The only significant damping mechanism is the dissipation of 

energy in hydromagnetic shocks. However, since the Mach numbers implied 

by observations are in the range 2 - 4, an Q. as small as 8 will suffice 
1 

to prevent the formation of such shocks. This possible mechanism for 

interpreting large line widths in molecular clouds certainly warrants a 

more careful future investigation. One could solve an initial value 

problem, in ,which some displacement or velocity is given to the cloud 

elements of an equilibrium state. We only remark here that an increase 

(temporary or permanent) of the intercloud pressure (say, due to passage 

through a spiral density wave) may set a dense cloud into such an oscil-

lation. 

4. Why is Star Formation Inefficient? 

Mestel (1965) pointed out that a collapsing cloud may fragment be-

cause of flattening -- recall that Strittmatter (1966) demonstrated that 

a highly flattened, uniform ellipsoid can collapse normal to the field if 

its mass is only about 1/2 that required for the collapse of a spherical, 

uniform cloud of the same mass and flux (see § VIC2b). This permits a 

cloud and all fragments to remain "strongly magnetic" (in Mestel's words) 

h h h 11 H . h h . [l t roug out t e co apse stage. owever. stars elt erave no magnetIC 

fields at all or very weak fields compared to those which would be implied 

if the interstellar field remained frozen in the matter. Therefore. at 

some stage of the star formation process, the field must either diSSipate 

or diffuse through the matter -- the latter being a more likely process 

(see § VI8). Mestel (1966) argued that. as a cloud contracts, the nearly 

oppositely directed field lines at the equatorial plane give rise to strong 
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"pinchint' forces that dissipate flux, reconnect field lines, and the 

magnetic field of a cloud is effectively detached from that of the back-

ground medium. We think that pinching forces are peculiar to Mestel's 

spherical, non-equilibrium model discussed in § VIC2a. Moreover, this 

sequence of events would lead to a rather efficient star formation --

contrary to observations. 

There is an alternative possibility. Our equilibr~um calculations 

support the idea that the cloud flattens. But, for this very reason, no 

pinching forces appeared in the equatorial plane. We think that, after 

collapse sets in and flattening proceeds further, the increasing curvature 

of the field lines will stop further lateral contraction of the outlying 

(but not the central) layers of a cloud near the equator. Thus, the 

field may not detach from the background. The criterion for this to .take 

place is that the tension of the field lines overwhelm gravity near the 

equator. Roughly, the tension is inversely proportional to the thickness 

of the cloud, and the gravitational force is inversely proportional to 

th d f h 'I d' 10 e secon power 0 t e equatorla ra IUS. Hence, contraction will 

stop in this region if only the ratio r2. Iz increases upon contraction. . max max 

This is not too stringent a condition. It is conceivable that a substantial 

fraction of the cloud mass is "left behind" while the cloud core engages 

in the exciting process of star formation. 

10. We are assuming here that the cloud is approximated by a thin disk of 
high central density and that it contracts through a sequence of quasi~ 
equilibrium configurations (see § VIII below). Since the intercloud 
pressure is fixed and the cloud isothermal and since pressure is 
continuous across the cloud surface (see eq. (ISO]), the gas density 
just inside the equator will remain fixed (see eq. [151]). This 
situation is substantially different from a contracting thin disk 
of uniform density throughout, in which case the gravitational force, 
pg , varies as (l/r4 z ) . In the latter J less realistic case, 
on~ would conclude fR~t ~~~e gravitational forces exceed magnetic 
forces, contraction would continue indefinitely. This erroneous 
conclusion i~ the norm in current thinking. 
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VIII. EQUILIBRIUM CALCULATIONS AND STAR FORMATION 

Star formation is a process for which. at least most directly, a 

gravitational instability is responsible. It is impossible to understand 

(not merely to simulate) the initiation of this process theoretically with-

out having some equilibrium state at hand on which one can perform a 

stability analysis. One may undertake a multitude of time-dependent 

numerical calculations with an infinite variety of initial and boundary 

conditions. such as a very large mass within a very small. fixed radius, 

that leave no alternative to a cloud (invariably assumed to contain no 

magnetic fields) but to collapse (see. for example. review by Larson 1973). 

What are often presented as very significant results of such calculations, 

for example. a high-density central core and an extended envelop in 

which p a: r -2. can in fact be deduced without resorting to lengthy. time

dependent numerical procedures. A central condensation is an inevitable 

consequence of the presence of gravitational forces .. Furthermore, the 

-2 variation of density as r sterns from the existence of a simple simi-

larity solution for the equations of motion (see Larson 1969). As for 

the remaining conclusions of such calculations. they have to be revised 

substantially when a magnetic field is present. 

The accessible equilibrium states of (a model of) the magnetic 

cloud-intercloud system. on both a large and a small scale. are not use-

ful merely for· performing stability analyses on them. Since their physical 

properties are usually determined by a small number of parameters (one in 

the large-scale problem of § V, and three in the small-scale problem of 

§ VII). it is possible to predict in advance of any numerical time

dependent calculation whether the initial conditions are such that any 

equilibrium states are accessible to the system. In the case of self-
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gravitating clouds. it is certainly true that. if the initial parameters 

are specified such that an accessible state is close to a critical one, 

transient (such as inertial) effects may lead to collapse. This, neverthe

less. enhances the usefulness of a knowledge of equilibriwnstates. rather 

than reducing it. Yet. equilibrium states are useful in a much more 

practical sense. 

First, they seem to exist on both the large and the small scales with 

which we concerned ourselves in this work. Second. as Mestel (1965) 

suggested. such a process as the free-fall of an interstellar cloud may 

be a rare phenomenon and that the rate of contraction may be limited first 

by the presence of magnetic fields. and. at a later stage. perhaps by the 

rate of diffusion of ions and the field through the neutral matter. In 

fact, Mestel (1965) suggests that star formation may proceed in a sequence 

of quasi-equilibrium configurations of strongly magnetic clouds. which 

'\ flatten and fragment. but never actually free-fall. 

Observations, of course, will ultimately decide whether our equili

brium calculations and their predictions have advanced our understanding 

of some of the processes (such as cloud formation. equilibrium. and 

stability) that are intimately related to the birth of stars. This is the 

way of science. 
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TABLE 1 

MAGNETIC FIELD OBTAINED FROM ZEEMAN SPLITTING OF THE 2J..-cm LINE 

Direction 

Taurus A 

Cassiopeia A 

Orion A 

M17 

R, 

(degrees) 

185 

112 

209 

IS 

b 
(degrees) 

-"6 

- 2 

-19 

- 1 

v 1 ·d(LSR) c ou 
(km/sec) 

+ 10 

+ 4 

- 38 

- 48 

+ "7 

+ 2 

+ 14 

*A negative value indicates a direction toward the observer. 

Field* 
(~gauss) 

- 3.5 ± 0.7 

- 1. 5 ± 0.9 

+18.0 ± 1.9 

+10.8 ± 1. 7 

-50 ± 15 

-70 ± 20 (?) 

+25 ± 10 

.. 
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LEGE~DS FOR FIGURES 

1. A typical perturbation of the field lines of Parker's (1966) stratified 

initial state (schematic). The system is periodic in x and extends 

to infinity in y. There is reflection symmetry a~>out the x-axis. 

Some field lines are left undeformed by the perturbation. Note that 

the deformed field lines curve in an opposite sense above and below 

each undeformed field line. 

2. Two field lines, A and A+~A, started out being close together in the 

stratified initial state. As expansion occurs at the "wings" (that 

is, at x = X) of a condensation, their peak-to-peak vertical separation, 

h, increases. The mean value of the magnetic field, B, between 

-1 points a and b varies as h . So, the magnetic-pressure force 

lis2/Bnl, which tends to inflate the field lines further, varies as 

h- 3• However, the tension of the field lines, IB2(a~;ds)I/41T, in 

-2 -1 the space between a and b varies as h A ,where the horizontal 
x 

wavelength Ax is fixed and s is a unit vector tangent to a field line. 

Thus, the field lines will not expand indefinitely. [Note that 

I as/asl = (radius of curvature)-l ~ 

3. Variation of the magnetic field with y at the valley (x = 0) and the 

wings (x = X) of the condensation of Fig. 2c of Paper I. The field 

of the stratified initial state (in which a = 1) is also shown for 

comparison. The field is normalized to its value on the x-axis in 

the initial state. The unit of length is C2/g. 

4. Variation of the gas density with y at the valley (x = 0) and at the 

wings (x = X) of the condensation of Fig. 2c of Paper I. The density 

of the stratified initial state (in which a = 1) is also shown for 

comparison. The density is normalized to its value on the x-axis 

in the initial state. The unit of length is c2/g. 
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5. The dependence of the ratio of the magnetic-to-gas pr~ssure on y 

at x = 0 and x = X in the equilibrium state of Fig.. 2c of Paper I. 

Note that a varies considerably with position even tkough it was 

equal to unity ~verywhere in the initial state. 

6. Vertical gravitational field of the Galaxy (taken from Dort, 1965). 

7. The geometry used in § VII. There is axial symmetry about the 

z-axis and reflection symmetry about the plane z = O. Instead of 

the cylindrical coordinates (r, z), it is often convenient to use 

the non-orthogonal coordinates (~,z), where 4>(r, z) is constant on. 

a magnetic surface (see Eq. [125]). For a fixed z, we effect the 

change of variables from r to 4> by dr = d~(ar/a4». The cloud boundary 

may be specified by the function Zct = Zcg,(4)). 

8a, 8b, 8c. Equilibrium sta~es characterized by the same a i (= 0.5) and 

P (= 0.9) but different R. (= 2.5, 2.7 and 2.8, respectively) --o 1 

see § vile for units. In each figure, we label both axes in units 

of the initial radius of the cloud, R.; the scale is the same for both 
1 

axes. The curves bearing arrows represent field lines; each is 

labeled by its r-coordinate in the initial state (see § VIIS), in 

which field lines are equidistant and parallel to the z-axis. The 

.solid, oblate curves are isodensity contours and they are labeled by 

the value of the density in units of the (uniform) density of the 

initial state~ The dashed curves are contours of equal magnetic-

field strength ("isopedion" contours). They are labeled by the 

magnitude of the field in units of the (uniform) field of the initial 

state. 

From the isodensity and isopedion contours of each figure, 

one may estimate a at equilibrium by using the formula af 
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9a, 9b, 9c. Column (or, surface) densities for the equilibrium states 

of figs. 8a, 8b, and 8c, respectively, for two orientations of the 

line of sight. In each figure, af(r) denotes the col~mn density as 

a function of distance from the (z-) axis of symmetry (the line of 

sight is parallel to the symmetry axis); af(z) is the column density 

as a function of z (the line of sight is parallel to the equatorial 

plane, z = 0); the column density of the corresponding uniform initial 

state is labeled by a .. For ease in comparing an equilibrium state 
1 

with the uniform initial state, the horizontal axes in each figure 

are labeled in units of the initial radius of the cloud, R.( =2.5, 
1 

2.7, 2.8, respectively, in figs. 9a, 9b, and 9cl. The unit of surface 

density is p. C/ (4 11" G p.) 1/2 -- see § VIlC. Note that, since the 
1 1 

magnetic field resists lateral compression, af(r) has a smaller 

and shallower maximum than af(z). The ratio af(z = O)/af(r = 0) may 

be taken as a measure of the degree of flattening of the cloud. 

10. The function q(t) for each of the equilibrium states of figs. 8a, 

8b, and 8c. The abscissa is labeled in units of the total magnetic 

flux (2 11" t ft) threading each cloud. Each curve is identified by 
c~ ----

the value of the cloud radius in the uniform initial state -- see 

§ VIIC for units. 

lla, lIb, Hc. Equilibrium states characterized by the same Q. (=0.5) arid 
. 1 

Ri (=2.4) but different Po (=1.9, 2.9, and 3.9, respectively). Iso

density and isopedion contours and field lines are denoted and labeled 

as in fig. 8. 

l2a, l2b, l2c. Column densities for the equilibrium states of figs. lla, 

lIb, and llc, respectively, for the same two orientations of the 

line of sight' as in fig. 9.· Notation and labeling of curves is as 

in fig. 9. 
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13. The function q(~) for each of the equilibrium states of figs. lla, 

lIb, and llc. Each curve is labeled by the value of Po in the 

corresponding state. 

l4a, 14b. Equilibrium states characterized by the same P (=0.9) and o 

R.C= 2.5) but different a. (=0.2 and 1.0, respectively). Fig. 8a 
1 1 

shows the equilibrium state with a. = 0.5 and the same P and R. 
1 0 1 

as the above two states. Notation and labeling of curves is as 

in fig. 8. 

lSa, lSb. Column densities for the equilibrium states of figs. l4a and 

l4b, respectively. For further details, see legend of fig. 9. 

16. The function q(~) for each of the equilibrium states of figs. l4a, 

8a, and l4b. Each curve is labeled by the value of a. in the 
1 

corresponding uniform initial state. Notation is as in fig. 10. 

17. Relation between the enhancement of the central magnetic field and 

that of the central density. Each curve is labe led by the value of 

Qi and represents many different equilibrium states (see § VIIFla 

for details). 

18. The external pressure (in units of the initial cloud pressure) plotted 

against the enhancement of the central density for a fixed value 

of Q. and R. (see § VIIFlb). 
1 1 . 

19a, 19b. A critical state and its colunm densities. The three para-

meters a., ,p , and R. have the values 1.0. 0.5. and 3.20, respectively. 
101 

The properties of this state are discussed in detail in § VIIF2. 
. . 
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APPENDIX A 

METHOD OF SOLlTfION 

A Triple-Relaxation Iterative Procedure (TRIP) 

and 

We write eqs. (177) and (178) formally as 

F(A) = Q(r, ~, 1jI; a.,R.) 
1 1 

L(l/I) = P(~, 1jI). 

(AI) 

(A2) 

where ~(r. z):: rACr. z). In eqs. (AI) and (A2), F and L are linear 

differential operators. and Q and p are nonlinear algebraic operators. 

Both Q and p vanish outside the cloud. whose boundary is defined by 

p[~(r.z~, 1jI(r, z)] = Po = a constant. (A3) 

The boundary conditions on A and 1jI are specified by eqs. (182a) - (182h). 

We note that A(r. z) satisfies Dirichlet boundary conditions on three 

sides of the rectangle (the "large cylinder" of § VilAS). whose corners 

are (0. 0). (0. Z), (R~ Z). (R. 0). and Neumann on the fourth. The 

potential 1jI(r. z) satisfies Dirichlet conditions on two adjacent sides 

and Neumann on the opposite two. 

Since each equation is formally similar (but: not identical) to 

eq. (el) of Appendix C of Paper I. we used a similar procedure to obtain 

a solution. The complication now is that eqs. (AI) and (A2) must be 

solved simultaneously. In addition. since neither ~ nor 1jI are known be-

fore a solution is at hand. the location of the cloud boundary (see eq. 
\ 
[A3]) cannot be determined until the problem is actually solved. It must. 

therefore. be treated as a free boundary. 

We start with an initial guess A(O), 1jI(0) and a cloud boundary 
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specified by a fUllction z!~)'(.(O), ~(O)) --seefig.7 -- which does not 

necessarily satisfy condition (A3). Note that p(O) is equal to unity in-

side the cloud and zerooutside'if the cloud boundary is initially spheri-

cal. We define a sequence 'of iterates by the recursion relations 

(M) 

O,'~ <I> (n) < 1 (AS) 

and 

(A6) 

o ~ e (n) < I, (A7) 

where n = 0, 1, 2, Th .. A(n+l) d (n+l) ., I' equant1 t1es * an ' ljI. are prov1s10na 

iterates and 4>(n), e(n) are the relaxation parameters at the nth iteration. 

Note that the right-hand side of eq. (A6) contains the latest iterate, 

ljI(n+l). We discovered that large oscillations of the cloud boundary during 

the first fewiterations (aconsequence of a bad initial guess) cari be 

avoided and convergence be speeded up considerably if we also undcrrelaxed 

the boundary itself by taking 

z(n+l) _ (n) Zen) + (1 _ x(n)) Z(n+l) 
c1 - X a1 ct· , 

o ~ X (n) < I, (AS) 

where we have simplifiedthe notation by omitting the arguments; a sub

script * onZ
C1 

means that the arguments are the starred quantities A 

and ljI in the indicated iteration. The physical meaning of eq. (AB) is 

that a slight violation of the conservation of the mass-to-flux ratio is 

allowed during the first few iterations. Without eq. (AB) , this conservation 

law is imposed exactly through eqs. (179) and (ISO). If, instead of 

choosing 



o. n y .~) 

-199- LBL-3602 

p(O) = 1, inside the cloud; 

= 0, outside the cloud· 

and a spherical cloud boundary, we chose an elliptical cloud boundary with 

semi-major axis equal to Ri and semi-minor axis Zi < Ri , convergence was 

further speeded up. In such a case, of course, p (0) must be mult ipl icd by 

R./Z. in order to maintain a mass-to-flux ratio appropriate to the spheri-
1 1 

cal reference state. 

We say that a solution is reached if the conditions 

and 

A(n+l) 
* 

II/I£n+l) _ I/I(n) , 

I/I~n+l) 

< £1 ' 

< 

< 

(A9) 

(AIO) 

(All) 

are satisfied simultaneously. The quant~ties £1 and £2 are small positive 

constants that can be chosen at will to achieve desired levels of accuracy. 

Similarly for £3' except that it depends on the local mesh size -- we 

employ a nonuniform mesh; see below. 

As in the problem solved in Paper I, we chose a set of field lines 

(IS - 30 within the cloud and at least 10 in the intercloud medium), 

I. and we fOllowed them from iteration to iteration 

until they settled down and the solution criterion (A9) - (All) was 

satisfied. We usually found solutions within a number of iterations vary-

ing from 3 to about SO (each taking less than 0.5 seconds of CPU time on the 

CDC 7600 computer),' depending on our initial guess and solution criteria. 
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However, we often forced .the program to continue for over 100 i terat ions 

in order to determine its asymptotic convergence properties. We determined 

that, with El = E2 = 0.01 - 0.02 and E3(~) S (half the local mesh size) and . 
the additional requfrement that eqs. (A9) - (All) be satisfied by severa 1 

successive iterations (usually 10), a solution was within one percent of 

that obtained with' much stricter solution requirements, which necessitated 

a number of iterations usua11y two or three times larger. 

Since any rapid variation of the functions in our equations is 

expected to occur within the cloud or in its inunediate neighborhood, we 

employed a nonuniform mesh such that at least 15 mesh points existed with-

in the r-extent and at least 10 within the z-extent of a cloud in the 

\ 
equilibrium state (not just the initial guess). On the other hand, as 

few as 10 mesh points would represent a region of the intercloud medium 

ten times larger than the initial radius· (R.) of the cloud with pract ically 
1 

the same accuracy as 30 mesh points, because of the smooth and very slow 

variation of the various functions there. It was essential, however, 

that the transition between the fine mesh and the coarse mesh be smooth. 

A smooth transition often made the difference between obtaining a solution 

within a relatively small number of iterations and not finding a solution 

at all. 

The calculation of the right-hand side of eq. (AI) was done in much 

the same way as that of the right-hand side of eq. (el) of Paper I. Once 

that is done, the right-hand side of eq. (A2) is obtained by simple 

multiplications and p.xponentiations (see eq. [178]). With Q and p known, 

the Poisson equation for ~ and the Poisson-like equation for A are solved 

by a fast direct method developed by Swarztrauber (1972). Since~ in ob-

taining Q we used substantia11y the same routines as in Paper I, the. 



o u o 6 ::; 

-201- LBL-3602 

accuracy may be expected to be comparable with that shown in Table 3; 

Paper I. That cannot, of course, be taken for granted. 1'0 test the 

accuracy of the present program we used values of R. small enough for 
l, 

self-gravity to be unimportant (we avoided large values of Po that would 

bring gravitational forces into play by compressing the cloud) and we 

compared the numerical solution with one that can be obtained very easily 

under these conditions through analytical means. They agreed to within 

one percent. This does not necessarily reflect .the accuracy of solutions 

obtained with a large R., or a large P. Since no exact equilibrium 
1 0 

solutions are known in the general case, 'we could only use as an indication 

of the accuracy of our program the following criteria. 
, 
(i}Doubling the number of mesh points in each direction changed 

a typical solution by at most one percent. 

(ii) Varying the values of R and Z (see § VIlAS) by a factor of 2 

produced changes of less than one percent in a solution. 

(iii) Forcing the program to continue for over 100 iterations altered 

a solution by at most 4 percent in the value of the central density (it 

depends exponentially on 1/1; see eq. [128]) while all other functions exhibited 

considerably smaller changes. 

(iv) A slight change in the values of the relaxation parameters 

changed the number of iterations required to reach a solution, but the 

solution itself changed by less than 2 percent. When this test was 

performed on a critical state, it sometimes collapsed because of numerical 

noise. 

The accompanying chart shows the flow of calculations in the pro

gram. Each "box" contains the function calculated at that poinf.The 

basic process or equation needed for that calculation is indicated by 



-202- LBL-3602 

information written by the arrows. When the arguments of a function are 

rand z, the values of the function are known at .the mesh points. When 

an argument is 4>, the function is known along field lines.. We found it 

both expedient and essential to use two interwoven meshes and to switch 

back and forth, through interpolations, at crucial points in the program. 

One mesh (r, z) is fixed. The second mesh (~, z) is defined at each 

iteration by the turrent pqsition of the field lines. In the chart we 

use the follwoing abbreviations for economy of space: 

FL = field line 

INTRPL = interpolate 

CIS = Cloud Boundary 

UR = underrelax 

SIn = Solution 

DERrV = take derivative 

INTGR = integrate 

rhs = right-hand side. 

We note that as long as Q and p are given whatever values they may 

inside the cloud and set equal to zero outside, eqs. (AI) and (A2) are 

solved over the "large cylinder" without additional regard to the location 

of the cloud boundary. Continuity of all physical quantities that must 

exhibit such property across the cloud boundary was proven in § VIIA4. 

(NOTE: Flow Chart is found on the following page) 
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• 



o 0 '. , 
:'1,:' , 

THE ASTROPHYSICAL JOURNAL, 192: 37--49, 1974 August 15 

67 

B1 

© 1974. The American Astronomical Society .. AII rights reserved. Printed in U.S.A. 

STATIC EQUILIBRIA OF THE INTERSTELLAR GAS IN THE PRESENCE OF MAGNETIC 
AND GRAVITATIONAL FIELDS: LARGE-SCALE CONDENSATlONS* 

TELEMACHOS CH. MOUSCHOVIAS 

Physics Department, University of California, Berkeley; and Harvard College Observatory, Cambridge, Massachusetts 
Received 1974 February 5; revised 1974 March 11 

ABSTRACT 

We present equilibrium states of the interstellar gas, which has run down the perturbed magnetic field lines 
of a stratified, isothermal initial state under the action of a vertical galactic gravitational field. The final states 
are lower in total energy than the corresponding initial states. Their properties depend quantitatively on the 
horizontal (but not so much on the vertical) wavelength of the initial perturbation. A striking feature of the 
final states is that the scale height of the gas increases (decreases) where the gas density increases (decreases). 
A connection between initial and final states is made by conserving the mass-to-flux ratio in each flux tube. 
Thus, although we determine final equilibrium states by solving a time-independent problem, in a time-dependent 
problem our final states can be reached from the corresponding initial states through continuous deformations 
of the field lines. The final states are consistent with observations in the solar neighborhood. We treat the 
interesting case of the magnetic pressure being initially comparable to the pressure of the thermal gas. 

We show that the isothermal gas-field-gravity system possesses an "energy integral." An effective potential 
energy is identified, and an "energy principle" follows as a corollary. The iterative procedure used in order to 
solve the magnetohydrostatic equations is outlined, and upper limits on the numerical errors are given. We 
also extend our formalism so that it can apply to the case of a general (rather than an isothermal) equation of 
state. 

Subject headings: hydromagnetics - instabilities - interstellar matter - magnetic fields - plasmas 

I. INTRODUCTION 

The dimensions of many condensations of the 
interstellar gas are so large and the condensations 
themselves are so closely associated with the interstellar 
magnetic field that one may conclude that these large
scale condensations could be produced by very long
wavelength hydromagnetic disturbances. Parker (1966), 
using linear stability analysis, showed that the 
interstellar gas, which is partially supported by mag
netic and cosmic-ray pressures against the Galactic 
gravitational field, could be unstable with respect to 
deformations of the field lines. Lerche (l967a) deter
mined a final state for the interstellar gas and field 
system, in which Parker's magnetogravitational in
stability had developed. Since he ignored the pressure 
of the gas, the final state consisted of infinitesimally 
thin sheets of matter that extended perpendicular to 
the galactic plane. This state is unstable with respect 
to small horizontal displacements of the gas elements 
(Lerche 1967b). Parker (l968a) found a different 
equilibrium state, but at the same time he pointed out 
the very special nature of his solution because of a 
simplifying mathematical assumption made (see § lIa 
below). 

In this paper we assume strict flux-freezing and we 
derive a general nonlinear, elliptic, second-order, 
partial differential equation, a subset .of whose solu
tions properly describes equilibrium states of the 
interstellar gas and field system in a galactic gravita-

• This work was supported mainly by the National Science 
Foundation under grant G P-36194X, and in part by the 
Lawrence Berkeley Laboratory under the auspices of the U.S. 
Atomic Energy Commission. 
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tional field (§ lIa). In § lib, by making use of constants 
of the motion, we remove an arbitrariness that would 
otherwise exist in the source term of this equation. 
This allows us to make a connection between initial 
and final states, even though we solve a time-indepen
dent problem. The boundary conditions and the 
assumed initial state are presented in § Ill. In § IV we 
obtain and discuss an "energy integral" of the iso
thermal gas-field-gravity system and we endeavor to 
anticipate what energy changes will take place as the 
system makes a transition from an initial to a final 
state. The physics corresponding to each step of the 
method of solution is explained in § Va. Indications for 
the physical stability of the final states are discussed 
in § Vb. We present three typical final states in § VI; 
important features and observational predictions are 
discussed in some detail. In § VII we make a few 
concluding remarks and a semiquantitative com
parison with observations in the solar neighborhood. 
Mathematical derivations that would interrupt the 
continuity of an argument, together with a description 
of our iterative scheme, are left for the appendices. 
The generalization of our formalism, so that it can 
apply to equations of state P == P(p), is also left for an 
appendix. 

II. 'HYDROSTATIC EQUILIBRIUM INCLUDING. 
FLUX -FREEZING 

a) Reduction to One Equation 

Consider a conducting gas of density p and pressure 
P in hydrostatic equilibrium in a magnetic field Band 
a gravitational field g, derivable from a potential ifJ. 
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Denoting the current density by j, we may write the 
magnetohydrostatic force equatron· as 

- VP - pVifJ + j X B/c = 0, (I) 

where c is the speed of light in vacuum. The quantities 
B andj are related by Maxwell's equation 

cV )( B = 47Tj. (2) 

The equation of state is 

P = pC 2
, (3) 

where C is the isotherml,ll speed of sound in the gas. 
In this paper we take C = constant. If a magnetic 
vector potential, A, is defined by 

then Maxwell's equation 

V·B= 0 

is satisfied identically. 

(4) 

(5) 

Following previous authors, we assume that all 
quantities are independent of z (2D geometry) and 
that Ba ::; O. Then Bx = +oA/oy, BJ/ = -vA/ox, and 
the magnetic vector potential can be written as A = 
eaA(x, y). Since B =- ea X VA, it follows that 
B·VA = O,so that A is constant on a field line. As
suming. flux-freezing, one can show the', V 4 A, I .. 

that A is a constant of the motion in the flow associated 
with Parker's instability. Each field line,· therefore, 
retains its initial value of A. 

We define a scalar function of position, q(x, y), by 

q = P exp (ifJjC2) , 

and we write equation (1) in terms of A and q as 

jVAjc = exp (_ifJjC2)Vq. 

(6) 

(7) 

Decomposing equation (7)· in directions parallel and 
perpendicular to field lines and recalling that A is 
constant on a field line, we can show that 

P exp (ifJ/C 2
) == q = constant on a field line = q(A); 

(8) 

and that 

i exp (~jC2) = constant on a field line 
c 

dq 
=dA' (9) 

The quantity q, being· a function. of A at hydrostatic 
equilibrium, expresses the fact that, since magnetic 
forces act only perpendicular to the field lines, pressure 
gradients exactly balance the gravitational forces along 
a field line. The meaning of equation (9) is as follows. 
If a magnetic Vector potential A*(x, y) [and therefore a 
magnetic field B*(x, y)] is given, and if matter is 

distributed among field lines so that the forces parallel 
to field lines are in exact balance [i.e., q* = q*(A*)], 
then we can balance the forces in a direction perpen
dicular to the field lines by calculating a current density 
j* from equation (9). However. B* and j* will not be 
consistent with each other unless they have satisfied 
equation (2), which may be written in terms of A, with 
j eliminated in favor of q, as 

V2A = -47T dq exp (-~) . (10) 
dA . C2 

So far, equation (10) differs from an equation derived· 
by Dungey (1953) only in that our ifJ is any gravitational 
potential. For example, ifJ can be the gravitational 
potential of the Galaxy as a whole, or that of a dense 
cloud in the interstellar medium. In the former case, 
ifJ can be obtained from Schmidt's (1965) model of the 
Galaxy; in the latter case, a Poisson equation for ifJ has 
to be considered simultaneously with equation (10) in 
order to obtain a self-consistent solution. In this paper 
we take ifJ to be due to the Galaxy as a whole. 

Let the gas and field system be in some initial state. 
in which Parker's (1966) magnetogravitational in
stability develops with wavelengths Ax and Ay in the x
and y-directions, respectively. We take the system to 
be periodic in x (along the galactic plane) and we assume 
that the pair of (unstable) wavelengths (Ax. Ay) is the 
same everywhere in the Galaxy. Moreover, we assume 
that the magnetic field is frozen in the matter. In order 
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FIG. I.-The dependence of the function. q on A in the 
stratified initial state (a = 1) and in a typical final state (thal 
of fig. 2c). Both q and A are normalized to their values on the 
x-axis in the initial state. 
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to find a final equilibrium state for this system we must 
solve equation (10); and for this task we need to 
calculate q(A). Parker (l968a) assumed that q(A) is 
either a linear or a quadratic function of A, and he 
solved the resulting linear equation (10) for the case 
in which the gravitational potential .p is proportional 
to the vertical distance y. We find below that, for the 
plane-parallel initial state proposed by Parker (1966), 
the function q varies as an inverse power of A (see eq. 
[15]). In the final states as well, q varies as some inverse 
power of A (see fig. 1). Although q is a function of A 
alone at hydrostatic equilibrium, it is not a constant of 
the motion. Consequently, we are not permitted to 
calculate (or to specify) q(A) in some initial state and 
then proceed to determine a final state characterized 
by the same q(A). 

b) Calculation of the Function q(A) 

In general, q(A) can be calculated as follows. With 
X == Ax12, the mass (8m) in a flux tube between field 
lines characterized by A and A + 8A is; by definition, 

I 
+x fll(x.A+6A) 

8m(A) = dx dy(x, A)p[x, y(x, A)] . (11) 
-x lI(x.A) 

It is natural to consider x and A as the independent 
variables. Since the integration over y in equation (II) 
is performed keeping x fixed, we may write dy = 
dA(8yl()A) and effect the change of variables from y 
to A. We eliminate P in favor of A by using equations 
(8) and (3), and we expand the integrand of the 
resulting equation in a Taylor series about A keeping 
only first-order terms. (The neglect of higher-order 
terms is justified a posteriori.) We then solve for q(A) 
to obtain 

(A) = C
2 
dmlf

x 
d 8y(x, A) [_.p(X' A)]. (12) 

q 2 dA x 8A exp C2 
o 

The quantity y(x, A) refers to the y-coordinate of the 
field line A at X.I 

If dmldA is given, q(A) follows from equation (12) 
for any proposed configuration. In particular, both q 
for the initial and q for the final states can be calculated 
using the same dmldA, since conservation of both mass 
and flux implies that dm/dA is a constant of the motion. 

Note that q(A) depends on the shape of the field 
lines, which are originally unknown. Hence, in general, 
one must solve equations (10) and (12) simultaneously 
for any given dmldA. The initial state of the gas and 
field system is not known in reality, for it depends on 
the mechanism which creates the magnetic flux. Here 
we take it to be the plane-parallel system proposed by 
Parker (1966). This defines dm/dA for the final state as 
well. We emphasize, however, that the only informa
tion needed in order to determine a final state is the 
mass-to-flux ratio in each flux tube. If the distribution 

1 In Appendix A we generalize the definition of q (eq. [6]) 
to apply to any equation of state, P = P(p). We also derive 
equations, which are generalizations of equations (10) and (12). 

of mass among the various flux tubes is obtained from 
observations, we can determine a final equilibrium 
state without reference to any particular initial state. 

III. THE INITIAL STATE: BOUNDARY CONDITIONS 

As an initial state we consider the stratified equi
librium state of the interstellar gas and magnetic field 
in a gravitational field g = -ey g(.1'), where g(y) = 
- g( - y) = a positive constant. Following Parker 
(1966), we assume that the) ratio of t he magnetic to gas 
pressures, 

(13) 

is constant in the initial state. For this state we find 

Ai(Y) = -2HBi(0) exp (- yj2H) , (14) 

(15) 

and 

dm 2Xpi(0) l A 1 
dA = Bi(O) -2HB;(0) ' 

( 16) 

where X == Axl2 and H is the combined scale height of 
the gas and field given by 

H == (I + a)C2/g. (17) 

The quantities Bi(O) and Pi(O) are, respectively, the 
values of Bi and Pi at y = O. The subscript i signifies 
the initialstate. In equation (16) A is not subscripted 
because, as explained in § lib, dm/dA is the same 
function of A in the initial and final states. 

The boundary conditions are as follows. Since the 
x-axis is taken to coincide with the galactic plane and 
the system is assumed periodic in x, there is reflec
tion symmetry about both the x- and v-axes. The 
former symmetry implies that the tield line originally 
coinciding with the x-axis remains undeforrned. i.e., 

A(x, y = 0) = -2HB;(0) = constant. (18) 

Periodicity in x is expressed by 

()A~x~ Y)I . = O. (19) 
ox x=O. ±X 

Boundedness at infinity and' conservation of the total 
magnetic flux imply 

A(x, y) = 0 , y = + w ; 

= -4HB;(0) , y = - w. (20) 

Because of the symmetries, equation (10) may be 
solved in the rectangle 0 < x < X, 0 < y < 00. In 
fact, this semi-infinite rectangle may be replaced by a 
finite one without affecting the solution very much, 
provided only that the extent of the finite rectangle in 
the y-direction is much larger than H (see § VId). So, 
we set the upper boundary at y = Y» H and we 
replace equation (20) by 

A(x, Y) = A;( Y) , (21) 
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where Ai( Y) is the initial value of A at y = Y. If one 
recalls that the perturbations which Parker (1966, 
Appendix III) showed to be unstable always leave some 
field lines of the initial state undeformed, equation (21) 
is equivalent to taking the upper boundary at the 
position of the first un deformed field line of the initial 
state. 

Before solving equations (10) and (12), we wrote 
them in a dimensionless form (see Appendix Cl). 
Thus, ex of the initial state is the only free parameter 
in the equations (see eq. [Cl], Appendix C). 

IV. ENERGY CONSIDERATIONS 

a) An Energy Principle 

In Appendix B we show that the magnetohydro
dynamic equations possess an "energy integral," and 
we identify an effective potential energy W of the 
isothermal gas-field-gravity system which is given by 

(22) 
where 

WI' = f P In PdV , (23) 

Wm = f (B2/87T)dV and Wg = f pfdV. (24), (25) 

One can show directly that the force equation (1) 
follows from the requirement that the first variation 
of W vanish under an arbitrary displacement; of the 
plasma elements, provided that (i) mass is conserved; 
(ii) flux is conserved; (iii) the temperature is constant. 
In the case of a system periodic in one direction (x), 
one needs the additional assumption that (iv) no mass 
is transferred from one period to the next during the 
infinitesimal plasma displacements. This demonstra
tion rigorously qualifies W as a potential energy and 
allows one to study the stability of an equilibrium state 
by investigating the sign of the potential energy 
associated with small deviations from the assumed 
equilibrium. 

b). The Meaning of WI' 

In equation (22), the magnetic energy Wm and the 
gravitational energy Wg are given by familiar expres
sions. N9te, however, that the quantity Pin P has 
replaced the usual term Pj(y - 1). The meaning of 
P In P becomes transparent, if we examine the first 
law of thermodynamics (for an ideal gas in the absence 
of any fields). This is 

dQ = du + Pd(p-l) . (26) 

The quantities Q and u are, respectively, the heat 
supplied to the gas and the internal energy of the gas; 
both Q and u are measured in units of energy per unit 
mass. For an isothermal process, du vanishes and dQ 
is an exact differential. 

Letting 8 denote the heat per unit volume supplied to 
the gas (i.e., 8 = pQ), we may write equation (26) as 

d8 = (8jP - l)dP. (27) 

A straightforward integration yields 8 as a function 
of P; this is further integrated over volume to obtain 

0== f 8dV 

-J PlnPdV + b J PdV 

- WI' + b f PdV, (28) 

where b is a constant of integration. The second term 
on the right-hand side of equation (28) is the same for 
all states, because the total mass is fixed and the gas is 
isothermal. Therefore, the heat (.10) supplied to the 
gas in going from one state to another is simply given 
by 

(29) 

Since !l WI' was derived from the second term on the 
right-hand side of equation (26), it represents the work 
done by the gas against pressure forces in making a 
transition between two states along an isothermal 
path. If !l WI' > 0, heat is released by the gas, Note, 
also, that for a reversible isothermal process, the change 
in the entropy (denoted by ~S) is given by 

!lS = !l0jT = -~WpIT. (30) 

HenCe, WI' provides a measure of the entropy and it is 
equal to the Helmholtz free energy of the gas, to 
within an additive constant. 

c) Expected Energy Changes 

When Parker's instability develops, compression 
occurs in some parts of the system and expansion in 
others. Consequently, one cannot anticipate what the 
net changes in Wm and WI' will be when a final state is 
reached. Compression (expansion) tends to increase 
(decrease) Wm and WI'. This is obvious in the case of 
Wm. It is so for WI' as weII, because when gas is being 
compressed it tends to heat up; for the temperature 
to remain constant (an assumption in our model), 
heat' has to be released. Typical cooling times are of 
the order of 105 years in the intersteIIar medium and 
become shorter as the gas density increases (Spitzer 
1968). Since this time is smaller than the e-folding time 
of the instability (107 years), the gas has enough time 
to cool down. , . 

The gravitational energy (Wg) is expected to decrease, 
since gas drains down the perturbed field lines under 
the action of the galactic gravitational field. The 
"fact" that the expanding field lifts some matter to 
higher altitudes is not expected to produce a net 
increase in the gravitational energy, for field lines can 
expand only because gas is being" unloaded" from 
their raised portions. 

V. METHOD OF SOLUTION AND PHYSICAL STABILITY 

a) The Physicsbehind the Method of Solution· 

To obtain a simultaneous solution of the equilibrium 
equations (10) and (12) we developed and followed the 
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procedure outlined in Appendix C. The physics behind 
that iterative procedure is as follows. (i) Guess a set of 
field lines (and,. therefore, a magnetic field), which 
satisfy the periodicity and symmetry conditions dis
cussed in § III. (ii) Distribute the total mass among 
the various flux tubes in such a way that the mass-to
flux ratio in each flux tube is equal to the mass~to-flux 
ratio in the corresponding flux tube of the initial 
state. (iii) Allow mass to slide up or down along field 
lines (without transferring any mass from one tube to 
another) until pressure gradients and gravitational 
forces are in exact balance along field lines. (iv) From 
the magnetic field obtained in step (i) and the mass 
distribution achieved in step (iv), calculate the current 
density necessary to balance all forces in a direction 
perpendicular to the field lines. (v) Check whether the 
just calculated current density is consistent with the 
magnetic field of step (i); if it is not, use this current 
density to calculate a new (" better") magnetic field 
and go to step (ii) to repeat the process until consistency 
is achieved. The introduction of an underrelaxation 
parameter in the iterative scheme provides a measure 
of how much" better " (or" worse"!) the magnetic field 
of on,e iteration is, compared with that of the previous 
iteration, 

b) Stability 

The stratified initial state is unstable only if the 
horizontal and vertical wavelengths of the. applied 
perturbation simultaneously exceed some critical values 
(see Parker 1966), namely, 

Ax > Ax == 4nB(2a + 1) -112, a # 0, (31) 

and 

AI/ > AiA,..) == Ax(l - p.2)-112. (32) 

The quantities a and H are defined by equations (13) 
arid (17), respectively; and p. = Ax! Ax < 1. Parker's 
dispersion relation implies that, for a fixed Ax > A" 
the growth rate of the perturbation increases as Ay 
( > Ay) increases. In addition, for a fixed All > All' the 
growth rate first increases and then decreases as Ax 
increases. The maximum growth rate is reached when 
Ax ~ 2Ax and Ay = 00. For typical parameters of the 
interstellar medium, the inverse of the maximum 
growth rate is approximately 107 years. This is smaller 
than the time required for One galactic rotation 
(approximately 108 years). . 

Starting froin the stratified initial state, we applied a . 
perturbation (in the form of a deformation of the field 
lines) characterized by a stable pair of wavelengths 
(Ax, AI/)' Our iterative scheme always converged to the 
initial state, no matter how large the amplitude of the 
perturbation was and regardless of the particular 
values of Ax and All' as long as they were stable. On the 
other hand, our iterative scheme never converged to 
the initial state in the case that the perturbation was 
characterized by an unstable pair of wavelengths, even 
if the amplitude of the perturbation was as small as 
1 percent. This is an indication (although not a proof) 

that the iterative scheme cannot converge to solutions 
representing physically unstable statc.\'. 

For a fixed unstable pair of wavelengths, we ob
tained convergence to one and the same solution 
(distinct from the initial state) for a wide range of 
amplitudes of the initial perturbation. When perturba
tions were applied to this solution, the iterative scheme 
always conv,erged back to it. This, in conjunction with 
the properties of the iterative scheme described in the 
preceding paragraph, suggests that our solutions repre
sent states of the gas-field-gravity system which are 
physically stable, at least in a local sense. The class of 
perturbations applied to a final state was such that each 
wavelength of the final state contained an integral 
number of perturbation wavelengths. This prohibits 
mass transfer from one period of the equilibrium state 
to the next. Of course, for a definitive statement on the 
nature of an equilibrium state, one must consider all 
arbitrary perturbations. We make additional comments' 
on stability in § VIc. 

VI. FINAL STATES 

We chose several pairs of unstable wavelengths 
(Ax, AI/) for the perturbation applied to the initial state 
(see § III), and for each such pair we found a final 
equilibrium state. Figures 2a, 2b, and 2c represent 
typical final states, produced by perturbations that had 
the same vertical but different horizontal wavelengths. 
Ten field lines (solid curves) and three isodensity con
tours (dashed lines) are shown. The field lines are 
chosen so that the amount of magnetic flux contained 
between any two consecutive ones is constant. Thus, 
the spacing between consecutive field lines is inversely 
proportional to the mean strength of the magnetic 
field in the interval. The ratio a in the initial state (the 
only free parameter in the equations) was taken equal 
to unity. 

a) Dependence on A.,. 

A comparison of figures 2a, 2b, and 2c reveals that, 
as the horizontal wavelength increases, so does the 
deformation of the field lines. It is the case that the 
more deformed the field lines are, the more effective 
the gravitational field is in "unloading" the gas from 
their inflated portions. Therefore, the gas density at 
the midplaileof the condensation (x = 0, y > 0) is 
expected to increase as Ax increases. This is borne out 
in figure 3, which exhibits the dependence of the 
"emission measures" (EM) on x, in these three final 
states.2 The horizontal distance x is measured from the 
center of each condensation. In. the final state 
characterized by X = I5,we note that 

EM (x = 0) ~ 3 EM (x = 15), (33) 

EM (x =0) = 2.2 EM; . (34) 

2 We define the emission measure of a final state at a par
ticular x by EM(x) = r pl(x, y)dy, and we normalize it to that. 
of the initial state, EM, = J p,2(y)dy. The subscripts f and i 
denote final and initial states, respectively. 
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FIG. 2a (/e/t), 2b (center), and 2c(r;ght).-Final equilibrium states of the interstellar gas-field system in a galactic gravitational 
field g = -e.g(y); where g(y) ~ - g( - y) = a positive constant. Distance is measured in units of C 2 /g, where C is the isothermal 
speed of sound in the gas. The dimensions of each graph are equal to half a wavelength in the x- and half a wavelength in the 
y-direction. Half the critical wavelength in the x-direction is equal to 7.26. Field lines (solid curves) are chosen so that the magnetic 
flux between any two consecutive ones is constant. The isodensity contours (dashed cun:e.l') represent the points at which the density 
decreases to e-', e-~, and e- 3 its value on the x-axis. The number on each curve is the y-coordinate of that curve in the initial 
state, in which a = 1. ' 
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FIG. 3.-The emission measure. (noT1nalized to its value in 
the stratified initial state) as a function of x in the three final 
states of figure 2. The unit of length is C2/g . The nUl1)ber (X) 
labeling each curve is equal to half of the horizontal wavelength 
of the corresponding final state. The curves X = 9 and X = 12 
could also represent the normalized column density in the 
corresponding final states to within a few percent. Similarly, 
the curve X = 15 could represent the corresponding column 
density to within 18%. 

In this final state the column density of the gas as a 
function of x, NH(x), differs from EM (x) by at most 
18 percent; in the other two final states presented, 
EM (x) and NH(x) differ by only a few percent. 

A striking feature of the final states is the fact that, 
compared with the initial scale height, the scale height 
of the gas increases tit the position of the magnetic/i'eld 
"valleys" and decreases at the "Irings" of the conden
sations, where the field lines have expanded. At the 
midplane of the condensations, moreover, while the 
gas density increases with increasing Ax, the scale 
height of the' gas increases as well (compare the lowest 
isodensity contours of figs. 2a, 2b, and 2c). This implies 
that the gas density increases not so much because of 
compression in the vertical direclion', but because of a 
very efficient drainage of the gas from the inflated field 
lines. The additional fact that in the" wings" the gas 
density and the scale height decrease as Ax increases 
precludes the explanation that gas observed at high 
altitudes in the Galaxy is gas that has been lifted by 
the expanded field lines. In fact, if the magnetograv
itational instability is to be invoked to explain the 
high-altitude gas, one should concentrate on the iden
tification of that gas with the rise of the isodensity con
tours at the position of magnetic field "valleys" (see 
fig. 2). 

The ratio of. the magnetic to gas pressures, an 

.~ 
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43 

ALPHA AND THE GAS DENSITY IN THREE FINAL STATES· AT SOME POINTS 

a(x, y) p(x, y) 

(X, y) a b e a b e 

(0,0) ........ 1.2 1.4 2.0 1.0 1.0 1.0 
(0,22) ....... 0.1 '0.05 0.03 8.8 x 10- 5 2.1 x 10- 4 4.2 x 10- 4 

(X, O)t ....... 0.9 0.7 0.6 1.0 1.0 1.0 
(X, 22) ....... 1.6 X 10" 7.1 X 103 9.0 x 104 1.8 X 10- 6 1.8 X 10- 7 4.1 X 10- 6 

• The columns headed a, b, and e refer to the final states of figures 2a, 2b, and 2e. 
t Recall that X (== A,,/2) is different in each state; it increases as we go from state a to state e. 

interesting quantity in itself, constitutes another indi
catorof the efficiency with which gas drains down the 
inflated field lines, and of the dependence of this 
efficiency on Ax. Table 1 exhibits the values of a(x, y) 
(see eq. [13]) in the final states of figures 2a, 2b, and 2c 
(henceforth referred to as states a, b, and c) at some 
key points (x, y). The gas density is also shown at the 
same points; it is normalized to its initial value on the. 
x-axis. In addition to the information supplied in 
table I, we remark that both the gas density and the 
magnetic field are monotonically decreasing functions 
of y at a fixed x. At the two values of y used in table I, 
the normalized density in the initial state is Pi(O) = 1.0 
and Pi(22) = 1.8 x to- 5

• The final density along the 
x-axis is always uniform (and equal to unity to within 
a few percent) because of the requirement that there be 
reflection symmetry about the x-axis (see eq. [18]). No 
pressure gradients can be sustained along the x-axis, 
because the x-component of the gravitational field is 
assumed to vanish, and because magnetic forces do 
not act along field lines. 

The fact that at x = 0 alpha decreases monotonically 
as y increases, and the fact that at x == X alpha in
creases monotonically with y, are different expressions 
of the same conclusion stated above, namely: the 
increase of the gas density in the magnetic field" valleys" 
is due primarily to efficient drainage along field lines, 
rather than to compression perpendicular to the galactic 
plane. This drainage is Inore efficient the larger Ax is. 
In addition, the computed low densities at x = ~ and 
large y's, in conjunction with the large values of a in 
the same region, indicate that the magrietic field is 
nearly it vacuum field at the raised portions of the 
upper field lines. 

The absolute" horizontal width" of the condensa
tion (denoted by D and defined as the distance from 
the center of the condensation to the point x, at which 
the normalized emission measure becomes equal to 
unity) shows an increase with increasing Ax (see fig. 3). 
However, the ratio D/Ax decreases as Ax increases; it 
is equal to 0.47 in state a and drops to 0.38 in state c. 
We should bear in mind that the above definition of D 
uses as a reference the stratified initial state, which, as 
emphasized in § llb, is needed only to provide a mass
to-flux ratio in each flux tube of the system. In external 
galaxies seen face-on, one can observe the contrast 
between regions of high and low gas density. Thus, the 
relevant quantity is the ratio EM (x == O)/EM (x = X) 

for each of the states of figure 3. This contrast becomes 
more pronounced as Ax increases. 

b) Energy Changes 

In making a transition from an initial to a corre
sponding final state, the system alters its magnetic and 
gravitational energies. In addition, while remaining 
isothermal, the gas does work (positive or negative) 
against pressure forces, thus releasing or absorbing 
heat (see eq. [29]). The net reduction of each of the 
three forms of energy is shown in table 2 in the case 
of the final states a, b, and c. In each state all numbers 
are normalized to the internal energy U of the gas 
which is given by 

u= J tPdV. (35) 

The quantity U is constant because of the isothermal 
equation of state and because of conservation of total 
mass. 

Starting with the heat term, we note that more heat 
is given off as Ax increases. Since heat is released by 
compressed gas and absorbed by expanded ga~, the 
amount of heat released may be taken as a rough 
measure of the net compression suffered by the gas. 
Thus, the entries in the second column of table 2 
confirm that the larger Ax is, the more effiCiently the 
gas is compressed. 

In spite of the large expansion suffered by field lines 
in the "wings" of each c()ndensation, the reduction in 
magnetic energy is small compared with that of the 
other energy terms. The relatively weak compression 
of the magnetic field[that takes place primarily along 

TABLE 2 

ENERGY REDUCTION FOR.THREE FINAL STATES 

ENERGY RELEASEO· 

Heat Magnetic Gravitational 
FINAL STATE (x 102) (x 10") (x 102

) 

a ............... 2.32 0.00 2.37 
b ............... 5.73 0.90 5.50 
e ............... lJ.8. 2.07 12.\1 

• In each state, the energy released has been normalized to 
the internal energy df the gas, (3/2) S PdV. 
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the midplane (x = 0, y > 0)] almost cancels the effect 
of the large expansion in the "wings." This is not 
surprising, since the field lines that suffer the greatest 
expansion ate those at intermediate and high altitudes, 
where the magnetic energy content is small in the first 
place. The increase in the amount of magnetic energy 
released at larger Ax may be due to the availability of a 
larger volume, in which field lines can expand. 

The gravitational energy behaves as anticipated in 
§ IV c. It is interesting to note that th~ heat released 
keeps pace with the decrease in gravitational energy, 
since both quantities reflect the accumulation of gas 
in magnetic field "valleys." 

c) Which Is The Final State? 

Over horizontal distances that are larger than twice 
the critical wavelength Ax, given by equation (31), the 
possibility of two "final" states (one having a wave
length equal to twice that of the other) arises. Merely 
on energy considerations, the state with the longer 
wavelength is a more likely final state, since it is lower 
in total energy. We chose Y = 25 and X = 18, and we 
applied a perturbation to the stratified initial state that 
had a wavelength Ax = X (rather than the usual Ax = 
2X).3 Furthermore, we imposed no condition whatso
ever at x = X/2. The final state obtained in this manner 
exhibited the characteristic double "hump," as ex
pected. Its field lines differed from those of figure 2a 
by less than three parts in 1000 at all points. When 
perturbations were applied to this state, the iterative 
scheme converged back to it. Only when the amplitude 
of the" perturbation" was so large that it erased the 
double "hump" did the iterative scheme pick out the 
state that has twice as large a horizontal wavelength. 
This leads us to believe that both states represent local 
potential wells and that it takes a finite amount of 
energy to push the system out of the state with the 
shorter wavelength and down the potential hill into 
the lower energy state, charaCterized by the longer 
wavelength. Ifperturbations that can provide the neces
sary energy are available, the intersteIlar gas conden
sations discussed so far may tend to coalesce into 
larger (and denser) condensations, separated by a larger 
mean distance. 

Suppose, now, that a disturbance in the initial state 
consists of a superposition of many wavelengths. 
Under these conditions, which final state will be 
reached? A perturbation with initial growth rate n 
grows in time as exp (nt). Because of the exponential
dependence on n, the amplitudes of two perturbations, 
which differ in their growth rates by a small amount, 
will be very different after some time has elapsed. So, 
given a spectrum of wavelengths for the initial pertur~ 
bation, that final state is more likely to be reached 
that has a wavelength corresponding to the maximum 
growth rate. In all cases presented, we have fixed 
Y = 25. Since we also took ex = I, this implies that 

3 Whenever numbers are ,given, the unit of length is C 2 /g, 
where C is the isothermal speed of sound in the gas and g is 
the magnitude of the vertical gravitational field of the Galaxy 
(assumed to be a constant; see § III). 

the maximum growth rate occurs at approximately 
X = 12.4. The solution of figure 2b is close to this final 
state. 

In summary, then, the factors deciding which final 
state wiIl be reached are as follows. (i) If the initial 
perturbation is monochromatic, its ,wavelength alone 
determines the final state. (ii) If a spectrum of wave
lengths is initially available, that final state wiIl be 
reached which corresponds to the wavelength of 
maximum relative growth rate. (iii) If disturbances 
continue to be present during the transition of the 
system, the amplitudes of these disturbances may also 
playa role in determining the final state. A definitive 
statement must await exact calculations. 

d) Dependence on Ay 

Unlike the horizontal wavelength, the vertical wave
length does not affecta solution very much, provided 
only that \, » H. For a fixed (unstable) Ax we found 
that, by changing Ay by almost a factor of 2, a typical 
solution changed by much less than I percent at small 
y's, and by a few percent at intermediate y's. One could 
anticipate this insensitive dependence of a solution on 
Ay , since more than 90 percent of the energy (per unit 
length along x) of the initial state resides under the 
altitude y ~ 7, and more than 50 percent of the energy 
is under y ~ 2.5. We further observed that the shape 
of the field lines at very large )"s depends on Ay , if 
Ay ~ Ax (»H).4 In the case that Ay» "-,. '" H, this 
effect becomes negligible altogether. 

Vll. CONCLUDING REMARKS AND 
COMPARISON WITH OBSERVATIONS 

We have determined final equilibrium states for a 
model of the intersteIlar gas and field in the galactic 
gravitational iield. Our solutions represent lurge-scale 
isothermal condensations of t he interstellar gas in 
magnetic-field" valleys." They should not be identified 
with" standard clouds," which could be produced by 
the magnetogravitational instability, only ifC!» I 
(corresponding to a cold gas and a critical wavelength 
of the instability which is only a fraction of the scale 
height). We find that the boundaries of the large-scale 
isothermal condensations are fairly diffuse. This is to 
be expected, since we have not allowed any .. phase 
transitions" to occur in the manner described by 
Field, Goldsmith, and Habing (1969). The thermal 
instability (Field 1965), which we have not considered 
here,could produce only small-scale (less than I pc) 
structure within the large-scale condensations, which 
the magnetogravitational instability initiates. 

A distinctive feature of the final states is that con
densation occurs not so much because of compression 
in the direction of g, as because of drainage of the gas 
along field lines, especially at intermediate and high 
altitudes. As a consequence, at the midplane of the 
condensation, the scale height of the gas in a tinal 

4 AlthOllgh this is insignificant for the problem at hand 
because of the energy argument just cited, the shape of field 
lines at high altitudes may be important in the context of 
cosmic-ray propagation. 

.. 
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state is larger (by a factor of '" 2) than the scale-height 
in the corresponding .stratified initial state; at the 
"wings" of the condensation the opposite is true. Thus, 
the observed gas at high galactic altitudes cannot be 
interpreted as gas lifted by expanding field lines. If at 
all, it should be identified with the rise of the isodensity 
contours in magnetic field" valleys." As a corolIary, it 
is unlikely that any substantial material galactic halo 
can form by inflated field lines. A radio halo could 
indeed form, however, by cosmic rays and expanding 
field lines in the manner described by Parker (I 968b ). 

To compare with observations one needs to know 
the characteristic wavelength of a typical final state. 
A lower limit to this wavelength is, of course, the 
critical wavelength for the instability, Ax (see eq. [31 D. 
Care should be taken, however, not to identify H, in 
the expression for Ax, with the observed scale height 
of the gas today. The observed scale height is repre
sentative of the final state, rather than the initial one, 
since the growth-time of the instability is only 107 

years. Realizing that ex is a point function and that it 
cannot therefore be obtained by averaging either B or 
p over large distances, in order to make a semi
quantitative comparison with observations we assume 
that ex '" 1. Then, since the observed scale height is of 
the order of 102 pc, we expect gas condensations pro
duced by Parker's instability to be separated by at least 
a few (3 or 4) hundred parsecs. Unless ex is unexpectedly 
large, gas condensations separated by smalIer distances 
than this cannot be attributed to this instability. Be
cause Parker's instability.is associated with very long 
wavelengths, final condensations involving up to 
106 M 0 could be produced. (Note that a gas element 
travels only a fraction of the horizontal wavelength in 
going from an initial to a final state.) Also, because of 
the large scales that could be involved (up to a few 
kiloparsecs), we view this instability as providing the 
stage on which small-scale processes in the interstellar 
medium (e.g., dark cloud formation and cloud col
lapse, star formation and supernova explosions etc.) 
act out their individual roles. 

Both the nicely displayed, recent 21-cm observations 
by Heiles and Jenkins (1973), as weII as the compilation 
of 21-cm observations by Fejes and Wesselius (1973), 
when combined with the starlight polarization meas
urements by Mathewson and Ford (1970), reveal an 
intimate association between the interstellar gas and 
the interstellar magnetic field. In fact, enormous gas 
condensations coincide with magnetic-field "valleys." 
At the position of the field "valleys" the gas extends 
high above the plane and it does so in directions 
parallel to the magnetic field. The most prominent 
condensation is centered at about I = 40°; it is a few 
tens of degrees wide and extends above (and below) 
the plane by at least as much as 60°. Field lines emanat
ing from this condensation form arches above the 
Sun's location and return to the plane in the general 
direction I = 250°, where another condensation is 
located. The "edge" of the condensation at I = 40° 
may be as close as 100 pc, and that at I = 250° as close 
as 200 pc. However, the starlight-polarization maps of 
Mathewson and Ford show that most of the contribu-

tion to polarization comes from the distance range 200-
400 pc in each of these directions. Moreover, contri
bution to polarization is also made by gas extending 
out to about 600 pc in each direction. Therefore. the 
separation between the "centers" of the two conden
sations may be as large as 600 pc. Not only is this 
separation within the range of unstable wavelengths 
for the magnetogravitational instability, but it Illay 
also be close to the wavelength corresponding to the 
maximum growth rate. 

Below the galactic plane, two prominent condensa
tions that are centered at I ~ 40" and I ~ 190", 
respectively, are similar in size and in separation to 
the ones just discussed. They are located in magnetic 
field "valleys" and they are joined by field lines that 
arch high below the plane. They too may constitute 
evidence that the magnetogravitational instability has 
occurred in the solar neighborhood. 

If the Jeans instability were responsible for the 
formation of these condensations, then (i) they would 
be more centralIy condensed, and (ii) the long dimen
sion of each condensation would certainly not be along 
the magnetic field. When self-gravitation becomes 
important, three-dimensional calculations (that incor
porate the assumption of flux-freezing rigorously) 
show that the equilibrium states exhibit flattening along 
the magnetic field (Mouschovias 1974). 

The observed symmetry of high- and low-density 
regions about the galactic plane is understood in the 
context of the magnetogravitational instability. What
ever the mechanism that triggers the instability (spiral 
density shock waves ?), it certainly must act coherently 
over a region larger than the critical wavelength for 
the onset of the instability (several hundred parsecs). 
Since the interstellar gas forms a thin disk having 
thickness of a few hundred parsecs today, the perturba
tion that triggers the instability can influence the gas 
above and below the galactic plane in a similar manner. 
Therefore, if the initial distribution of the gas was 
symmetric about the· plane, the final state is expected 
to retain this symmetry. Smaller-scale deviations from 
this symmetry may be attributed to local phenomena 
(e.g., depletion of gas by star formation, ionization by 
nearby stars, sweeping of gas by supernova shocks, 
etc.). 

Observations of the motion of the interstellar ·gas in 
the solar neighborhood show a flow pattern in which 
gas falIs down toward the galactic plane and flows out 
in the general direction of the galactic center and that 
of the anticenter (Erickson, Helfer, and Tatel 1959; 
Helfer 1959; Weaver 1973). The velocities observed 
are a few kilometers per second. This particular flow 
pattern is consistent with a picture in which gas is still 
sliding down the expanding field lines joining the two 
condensations referred to above, which are located at 
I ~ 40° and I ~ 250°. 

Observations of external galaxies provide further 
evidence for the magnetogravitational instability. This 
(and some consequences of the assumption that the 
instability is triggered by a spiral density shock wave) 
will be discussed in another publication (Mouschovias, 
Shu, and Woodward 1974). : 
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APPENDIX A 

GENERALIZATION OF THE FUNCTION q TO EQUATIONS OF STATE P = pep) 

Even if the isothermal equation of state is replaced 
by a general equation of state . 

P = pcp), (AI) 

a connection between initial and final states may still 
be made. For this purpose we define q(x, y) by 

(A2) 

Following the same procedure that we did in § II, 
we can still show that 

q = q(A) 

and that equations (10) and (12) 
respectively, 

and 

V2A = -4n- din q(A) 
P dA 

(A3) 

now become, 

(A4) 

(A) = ! dmj' (X. d oy(x, A) [dq _ (A) d.p] -1 . (AS) 
q 2 dA J 0 x a A dP q dP ; 

1n equation (A4) p is eliminated by using equation (A2), 
i.e., 

[
dq . d.pJ-1 P = q(A) - - q(A) - . . dP . dP (A6) 

In practice. the derivatives appearing in the right-hand 
sides of equations (AS) and (A6) are calculated in a 
straightforward fashion hy using the chain rule. We 
obtain 

dq dq dA 
dP dA dP 

= dq (OA ox + DA PY) ('dP) - 1 

. dA AX op ()y (Jp . dp. (A7) 

and 

d.p = (o.p ox + a.p E'Y) (dP) -.1 • (AS) 
dP {)x op ()y (Jp . dp 

The price that we have paid, in order to replace the 
isothermal equation of state with the general equation 
of state (A I), is that the iterative procedure over the 
single function A must now be replaced by an iterative 
procedure over all three functions A, q, and p. The 
solution of this general problem is feasible. 

APPENDIX B 

AN "ENERGY INTEGRAL" FOR AN ISOTHERMAL PLASMA 

Bernstein et al. (I95S) state that the equations of 
magneto hydrodynamics 

dv j 
(BI) - = -VP - pV.p + - X B 

dt c 

op 
ot + V·(pv) = 0, (B2) 

E + (v/c) X B = 0, (B3) 

d 
dt (Pp-Y) = 0, (B4) 

VXE= 
loB 

(BS) -cat ' 
V X B = (47T/C)j, (B6) 

V·B = 0, (B7) 

possess the energy integral 

f dV( tpv2 + :~ + p.p + y ~ I) = a constant ,(BS) 

where the integration is extended over all space. The 
operators a/at and d/dt denote Eulerian and comoving 
time-derivatives, respectively. 

Here we show that, even in the case that the plasma 
is isothermal (i.e., y = 1), an "energy integral" still 
exists; it is identical with that of equation (BS), except 
for the fact that the term P/(y - 1) is replaced by 
Pin P, We proceed in the usual manner to take the dot 
product of both sides of equation (Bl) with v; then, 
by using equations (B2)-(B7), we write each term as 
follows: . . 

j . ( c ) a (B2) v·c X B = - V· 47T Ex B - at S1T ' (B9) 

\0' 
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(BIO) 

Also, 
-v·Vp = -V.(Pv) + PV·v. (Bll) 

But, by judiciously adding and subtracting the quan
titv Pin PV. v, we can show that the last term in 
equation (BI I) may be written as 

PV·v = - [:t (P In P) + V .(P In PV)]. (BI2) 

Collecting all terms, we obtain 

r_ (B2 ) 
:1 tpv2 + 81T + P'P +P In P 

+ V· [tpv2v + :" E X B + PVsv + Pin (P/e)v 1 = O. 

(BI3) 

In equation (Bl3), e is the natural-logarithm base. If 
the plasma extends over all space, being periodic in x 
(with a wavelength ,\~) and symmetric about the x-axis, 
we may integrate equation (BI3) over one period of the 
system in x, and over the upper half-plane in y.5The 

5 As in the main text, the geometry is taken to be two-dimen
sional, although this is not necessary for this argument. 

divergence term yields a surface integral with all the 
terms vanishing,if there is no mass transfer from one 
period to the next, or across the x-axis, and if either 
the magnetic field or the velocity vanishes at y = 00. 

Formally these conditions are 

ii·., = 0 

and either 

_{(X, y= 0) 
at 

(x = ± X, y) 
(BI4) 

B(x,y =(0) = 0, or v(x,y = (0) = O. (815) 

The unit normal to the" surface" of a period is denoted 
by ii, and X is equal to '\x/2. Thus, the result of the 
integration is 

f dV( tpv2 + :: + PVs + Plnp) = aconstant. (BI6) 

The first term in this integral is the kinetic energy of 
the fluid. The sum of the other three terms acts as an 
effective potential energy of the isothermal plasma. 
This point and the meaning of P In P are discussed in 
the main text (see § IV). Here we only remark that 
Pin P is not the internal energy density of the fluid; 
the latter is always equal to 3P/2. 

APPENDIX C 

METHOD OF SOLUTION 

I. THE DIMENSIONLESS PROBLEM 

We measure the magnetic vector potential and the 
gas density in units of their initial values on the x-axis, 
i.e., - 2HBi(0) and Pi(O), respectively. The unit of 
length is taken as C 2 /g, and the unit of time is fixed 
by choosing the unit of velocity as C, the isothermal 
speed of sound in the gas. With the gravitational field 
chosen as in § III, we may write the dimensionless form 
of equation (10) as 

V2A(x, y) = Q(y, A; a), (CI) 

where 

Q(y, A; a) = I dq(A) 
8a(1 + a)2 dA exp ( - y). (C2) 

The parameter a is characteristic of the initial state (see 
eq. [13]). Similarly, equation (12) becomes 

1 dmlf.X 8y(x, A) , 
q(A) = 2: dA 0 dX aA exp [-y(x, A)], (C3) 

where 

dm 
dA = -4X(l + a)A , (C4) 

and X is defined by X == Ax/2. The dimensionless form 
of the boundary conditions is 

and 

A(x, y = 0)= I , 

oA(x, y) I = ° , 
ox x=O.±X 

A(x,y) = 0, y = +00; 

= 2, y = -00. 

(C5) 

(C6) 

(C7) 

The approximate boundary condition that replaces 
equation (C7) is 

(C8) 

with Ai(Y) given by _ 

Ai(Y) = exp [-y/(2a + 2)] . (C9) 

.II. OUTLINE OF THE NUMERICAL SCHEME 

In equation (CI) V2 is a linear differential operator 
and Qis a nonlinear algebraic operator. We solved 
equation (CI) numerically by an underrelaxation 
iterative procedure. The premise was that, if we can 
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calculate Q as a function of x and y (rather than A 
and y), we could easily solve the resulting Poisson 
equation by anyone of the many available fast tech
niques (see Dorr 1970). We know Q as a function of 
x and y, however, only if a solution A(x, y) is at hand; 
hence the necessity of an iterative scheme. 

Starting from an initial guess A(O)(x, y), we define a 
sequence of iterates by the recursion relations 

\72A*(n+1) = Q(y, A(n); a), n = 0, 1,2, ... , (ClO) 

o ::;; O(n) < I. (Cll) 

The quantity A*(n+1) is a provisional iterate and (J<n) 
is the relaxation parameter at the nth iteration. We say 
that a solution is reached if the following condition is 
satisfied at all points (x, y): 

IA* (n + 1) _ A(n)1 

A*<n+1) < E. (CI2) 

In equation (CI2), absolute values are denoted by the 
vertical bars. (Recall that the dimensionless A is always 
positive.) The quantity E is a small positive number 
and can be chosen at will to achieve desired levels of 
accuracy. 

We chose some field lines of the initial state (the 
number varied from 65 to 129), we introduced pertur
bations most often having the form 

oA(x, y) = - AiCY)jJ- sin (7TY/ Y) cos (7TX/ X), (Cl3) 

where jJ- is a fixed positive number less than unity, and 
we followed these field lines from iteration to iteration 
until they settled down, Although we found solutions 
(to within 1 or 270) in a number of iterations varying 
from 6 to 22, we forced the program to continue for as 
many as 97 iterations in order to make a detailed error 
anat,ysis. Thus, we computed the asymptotic converg
ence rate and demonstrated that, at any one interior 
point, our solutions are accurate to within 0.5 percent. 

In more detail, the steps involved in the iterative 
scheme are the following. 

i) Define a uniform mesh over the region of interest 
having J points in the y-direction and K points in the 
x-direction: 

Y1 = (j-l)~y, j= 1,2, ... ,J; 

Xk =(k-I)~x, k = 1,2, ... ,K; 

(CI4) 

(CI5) 

where Lly = Y/(J - 1) and ~x = X/(K - 1). [Note 
that, a mesh having been defined, all functions of one 
(two) variables become one- (two-) dimensional 
arrays.] 

ii) Choose a set of field lines of the initial state 
which we shall follow. Let this set be {At}, i = 1, 
2, ... , I. 

iii) Guess an A(O)(x, y). 
iv) For each x, interpolate to find yeAh x), i = 1, 

2, ... , I. That is, obtain y as a function of x along each 
field line chosen in step (ii). 

v) For each x, differentiate y(Aj, x) with respect to A 
to obtain oy/8A. 

vi) Perform the integration in equation (e3) for 
each At. 

vii) Obtain q(A;) from equation (e3), since 
dm(Aj)/dA is always given by equation (e4). 

viii) Perform the differentiation with respect to A to 
find h(Ai) == dq(A;)/dA. 

ix) Since h(A;) is known along the field lines, whose 
position was determined in step (iv), interpolate to 
obtain h at the mesh points. This interpolation is done, 
for each x, by using y(A" x) as old abscissae and Yi as 
new abscissae; the subscripts i and j span their 
respective ranges. 

x) With the right-hand side known as a function of 
x and y, the Poisson equation (el) is solved to lind 
A(1)(X, y). . , 

xi) If A(1) and A (0) satisfy the criterion given by 
equation (eI2), then A(l) is a solution. If they do not, 
underrelax A as in equation (el I) and go back to step 
(iv) to repeat the process. 

Numerical integrations, differentiations, and inter
polations are performed so many times in the program 
that, although the routines performing each operation 
are very accurate, their combined effect in the calcula
tion of the right-hand side of equation (CI) cannot be 

. predicted. To study this effect we searched for a 
function A(x, y), which would (i) correspond to field 
lines having the desired wavy shape; (ii) satisfy the 
appropriate boundary conditions; and (iii) allow us 
to calculate the right-hand side of equation (el) 
analytically! If s.!::!ch an A(x, y) is known, then the 
calculated Q(y, A; a) can be compared with the Q 
computed by the program. and the net numerical 
errors be determined. Such an A is obtained by solving 
the quadratic 

exp [- y/(2a + 2)] = (I - A)(A - Ao)w(x) + A, 

(CI6) 

where 

W(x) = K cos (17X/X) , H < I, (eI7) 

and Ao is the value of A in the initial state at y = Y. 
It is remarkable that we found that the maximum 

error in the computation of dqC4)'dA occurs at the 
upper boundary (where all physical quantities are very 

TABLE 3 

MAXIMUM COMPUTATIONAL ERRORS 

Function 

y(A, x) ........... . 
oy(A, x)/oA .... ... . 
I(A)* ............ . 
q(A) ............. . 
dq(A)/dA ......... . 
dq[A(x, y)l/dA . ... . 

Maximum Error (/0) 

0.320 
0.060 
0.098 
0.445 
0.770 
0.91 ;.. 

Location 

i = 2, k = 2 
i = ('), k = 15 
i = I 
i. = 65. 
i = 64 
j = 64, k = 45 

* The function 1(.4) is defined as the integral in the denom
inator of equation (C3). 

'.' 
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small compared with their values on the x-axis) and is 
equal to 0.91 percent. Table 3 exhibits the maximum 
errors in the computation of the various quantities and 
the points at which these errors occur. The mesh was 
uniform in each direction; the number of meshpoints 
in the y-direction was 65, and that in the x-direction 
was 63. This is the smallest number of mesh points 
used to obtain anyone of our solutions. Thus, the 

errors given in table 3 are the largest thal we may 
expect. The indices j and k denotl' mesh points in the 
y" and x-directions, respectively (sec eqs. [C 14] and 
[C 15]). The index i denotes field lines. the lowest tielJ 
line having i = 1 and the one at r =" Y having ioe; 65, 
Note that fhe maximum errors OCl'ur at the boundaries, 
In fact, the errors at interior points are much less than 
those given in table 3. 
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