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Pipeline Development for Hippo Pathway Related Protein Interactome Analysis 
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Rebecca Elizabeth Vargas 
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This thesis presents a user-friendly pipeline for analyzing data from evolving mass spectrometry 

techniques, developed in response to the growing volume and complexity of data in the field of 

proteomics. While offering a comprehensive review of current methods for isolating and 

identifying interacting proteins using MS analysis, the pipeline also highlights areas for 

integrating other -omic resources to enhance data interpretation. This pipeline was utilized to 

identify novel regulators within the Hippo pathway, a central regulator of cell proliferation and 

organ size. A unique 9-amino acid sequence was identified, vital for interactions between WW-

PxY motif containing proteins in the Hippo pathway. Furthermore, the pipeline aided in the 

discovery of a new YAP inhibitor, Syntaxin binding protein 4 (STXBP4), harboring this 

conserved sequence. The pipeline was also employed to investigate potential regulators in the 

PLD-PA-Hippo axis. Although no Hippo pathway regulators were found within the PLD family, 

the analysis unveiled significant Hippo-independent interactions. Among the interactors of six 
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PLD members, the E3 ubiquitin-protein ligase, PJA2, was found to bind specifically to PLD1, an 

oncogene. Furthermore, Phosphatidic Acid (PA) was shown to bind, co-localize, and regulate 

Sphingosine Kinase1 (SPHK1), linked to cell growth, proliferation, and survival. This thesis 

underscores the importance of continually updating bioinformatic resources to keep up with 

advances in data generation techniques, thus allowing the extraction of relevant biological 

information from intricate datasets. The studies driven by this pipeline signify just the inception, 

and further tools, such as additional disease -omic resources, can be integrated for 

comprehensive insights into many biological processes. 

 

 

 

 

 

 

 



 
1 

INTRODUCTION 

Proteomics: an approach for the identification of novel biomarkers:  

Proteins are essential molecules that play key roles in virtually all cellular processes, including 

metabolism, signaling, and gene expression. Proteomics involves the identification and 

quantification of proteins in biological samples, as well as the analysis of their post-translational 

modifications, interactions, and subcellular localization. Proteomics is a rapidly advancing field 

within the broader scope of molecular biology that aims to understand the structure, function, 

and interactions of proteins within complex biological systems. The field has become 

increasingly important in recent years due to the vast potential for protein-based biomarkers in 

disease diagnosis and drug discovery. The field of proteomics has seen significant evolution 

since its early days. Proteomic studies used to consist of two-dimensional gel electrophoresis, 

which was the primary technique for protein separation, enabling scientists to separate complex 

mixtures of proteins based on their isoelectric point and molecular weight. As effective as it was 

at the time, this method was limited by its inability to detect low-abundance, highly acidic or 

basic, and hydrophobic proteins.  

 

The arrival of mass spectrometry (MS) revolutionized proteomics, providing a more precise 

method for protein identification, quantitation, and characterization of post-translational 

modifications. Advances such as tandem MS and high-resolution MS have further improved the 

accuracy and depth of proteomic analysis.  Over the years, proteomics has grown beyond the 

mere cataloging of protein species within a sample to include the exploration of dynamic 

processes such as protein synthesis, modification, turnover, and interaction networks. Advances 

in mass spectrometry and bioinformatics have enabled the development of high-throughput 
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proteomic techniques, allowing for the analysis of thousands of proteins simultaneously 

(Aebersold & Mann, 2016). Biomarkers are essential for early disease detection, prognosis, and 

treatment, and proteomics has enabled the identification of novel biomarkers that were 

previously undetectable. The use of proteomics in disease research has led to significant 

advances in our understanding of biology and has the potential to improve cancer diagnosis and 

treatment. 

 

Hand-in-hand with proteomics is bioinformatics which combines biology to analyze and 

interpret large-scale biological data. Bioinformatics tools have played an integral role in 

managing, analyzing, and interpreting the voluminous and complex data generated in proteomic 

studies. It has become an essential tool for proteomics research, providing powerful methods and 

algorithms for data processing, analysis, and interpretation (Figure 0.1). Bioinformatics tools 

and techniques have been used for protein identification, quantification, and post-translational 

modification analysis in proteomics research (Calderón-González et al, 2016). In addition to 

protein analysis, bioinformatics is also essential for the analysis of protein-protein interactions, 

networks, and pathways. These analyses help to understand the biological functions and 

interactions of proteins within a biological system and can identify potential drug targets and 

disease biomarkers.  

 

Furthermore, the integration of multiple -omics data, such as proteomics, genomics, and 

transcriptomics, is essential for the understanding of complex biological systems, and 

bioinformatics provides methods and tools for the integration and analysis of these datasets(Haas 

et al, 2017). Overall, bioinformatics is a rapidly growing field that has become indispensable in 
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proteomics research, providing powerful tools and methods for data analysis, interpretation, and 

integration, and driving new discoveries in biology and medicine. With current developments in 

single-cell proteomics and integration of multi-omics data, the field continues to evolve, 

promising more comprehensive understanding of biological systems and disease mechanisms.  

Thus far, the integration of proteomics using a user-friendly MS analysis pipeline(Kattan et al, 

2023) has elucidated novel regulators in various biological pathways widening the scope of 

biological processes and the Hippo pathway(Kattan et al, 2022b; Seo et al, 2020a; Vargas et al, 

2020a). This thesis will explore the role of proteomics in the discovery of biomarker 

identification and elucidate the discoveries in relevance to Hippo and non-Hippo signaling 

regulations. 
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Introduction to the mammalian Hippo pathway:          

Proper organ size involves a complex array of mechanisms that must precisely regulate cell 

numbers during both organ development and regeneration. This tightly controlled process and its 

underlying mechanisms have long presented a challenge for researchers worldwide. While 

previous studies have proposed that organs possess information dictating their final size, the 

precise molecular mechanisms driving this phenomenon remain poorly understood. The 

discovery of the Hippo pathway highlights important mechanisms responsible for control of 

organ growth (Pan, 2007; Zhao et al., 2010a).The Hippo pathway is an evolutionarily conserved 

signaling pathway that plays a crucial role in controlling tissue growth and organ size in various 

organisms, including humans(Johnson & Halder, 2013; Pan, 2010b; Plouffe et al, 2015).  

 

The pathway was initially identified in Drosophila melanogaster, where it regulates cell 

proliferation and apoptosis to control organ size during development(Harvey & Tapon, 2007; Xu 

et al, 1995). Overexpression of YAP, a downstream co-activator involved in the Hippo pathway, 

in the adult mouse liver mimics pathway inactivation in Drosophila and was revealed to cause a 

dramatic three- to four-fold increase in liver mass owing to increase of cell numbers (Camargo et 

al.,2007; Dong et al., 2007).  Since then, studies have revealed that the Hippo pathway is also 

involved in other processes such as stem cell maintenance, tissue regeneration, and cancer 

development(Cai et al, 2010a; Heallen et al, 2011; Pobbati & Hong, 2013). 
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The core components of the Hippo pathway are a series of protein kinases and transcription 

factors that interact with each other in a complex network of regulatory interactions (Figure 0.2). 

In mammals, the Hippo pathway is initiated by a set of upstream signals, such as mechanical 

cues(Dupont et al, 2011), cell density ((Zhao et al, 2007), and growth factors(Haskins et al, 

2014b), that activate a group of proteins called the Hippo kinases, which include MST1/2 

(mammalian Ste20-like kinases 1 and 2) and LATS1/2 (large tumor suppressor kinases 1 and 2). 

These kinases then phosphorylate and activate a downstream transcription factor called YAP 
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(Yes-associated protein) and its paralog TAZ (transcriptional co-activator with nPDZ-binding 

motif), which are key effectors of the Hippo pathway. The phosphorylated YAP/TAZ can be 

recognized by 14-3-3 proteins, retained in the cytoplasm and eventually targeted by  ß-TRCP E3 

ligase complex for degradation. When the Hippo pathway is inactivated, unphosphorylated 

YAP/TAZ enter the nucleus, where they associate with TEAD ((TEA domain family member), 

transcriptional factors to promote the transcription of genes that are involved in proliferation and 

survival. 

`     

Physiological functions of the Hippo pathway: 

From its discovery in organ size control in Drosophila, further physiological roles in humans 

including roles in development, tissue regeneration and diseases have been elucidated. It has 

been established that YAP/TAZ are key downstream effectors of the Hippo pathway that are 

important in mediating TEAD induced expression of genes involved in cell growth and 

proliferation(Zhao et al, 2008). The Hippo pathway also plays a role in development by affecting 

cell differentiation in tissues/organs. Upon the knockout of Mst1/2 in mice, dedifferentiation of 

acinar cells to ductal cells was demonstrated through a hyperactivation of YAP(Gao et al, 2013). 

Moreso, YAP has also been discovered to be required for differentiation of multiple types of 

tissues such as the airway of basal stem cells(Zhao et al, 2014), and myoblast differentiation 

(Nantie et al, 2018). The role of the Hippo pathway in tissue/organ regeneration suggests that 

YAP/TAZ is activated after damage various organs and tissues(Dey et al, 2020). An example, 

YAP levels in the intestinal epithelium are elevated during intestinal regeneration and upon YAP 

inactivation regeneration is compromised (Barry et al, 2013). 
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 In cancer, aberrant activation of YAP and TAZ has been shown to promote tumor growth and 

metastasis by enhancing cell proliferation and survival ((Feng et al, 2014; Moroishi et al, 2015; 

Wang et al, 2010). Hippo pathway components YAP/TAZ have been identified as 

oncoproteins(Hall et al, 2010) while MST1/2 and LATS1/2 as tumor suppressors(Xia et al, 

2002; Zhou et al, 2009). Various types of cancers have been related to the Hippo pathway such 

as uveal melanoma, mesothelioma, and ependymoma. In addition, the Hippo pathway has been 

shown to also influence the progression of cancer through metastasis by the control of 

LATS1/2(Takahashi et al, 2005) and YAP(Hsu et al, 2018). Understanding the mechanisms 

underlying the regulation of the Hippo pathway has become a focus of intense research, and 

novel therapeutic strategies targeting the pathway are being developed. The identification of key 

regulators and downstream targets of the pathway has led to the development of novel 

therapeutic strategies for the treatment of these diseases.  

 

Protein-Protein Modulation within the Hippo pathway:  

Protein-protein interactions (PPIs) are key components of the Hippo pathway, mediating the 

signaling cascade that ultimately leads to downstream effects. The Hippo signaling pathway is 

identified by the significant occurrence of WW domains (consisting of Tryptophan-Tryptophan 

amino acid sequences) found in the Hippo core kinase complex, the regulatory components 

located upstream, and the nuclear proteins situated downstream(Sudol & Harvey, 2010a). The 

presence of WW domains in the interactions between Hippo pathway components and other 

regulatory proteins offers a valuable chance to delve deeper into the molecular mechanisms 

involved and potentially uncover novel elements of the pathway. 
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WW domain is a small protein module that is characterized by the two tryptophan (W) residues 

separated by ~25 amino acids(Sudol et al, 1995c). The WW domain, which is a distinct protein 

module that can fold independently, has been shown to take on a structure consisting of a three-

stranded β-sheet(Koepf et al, 1999). This domain is involved in facilitating interactions between 

proteins by binding to ligands that contain multiple proline residues and a minimal consensus 

sequence of PPXY, where X represents any amino acid and Y represents tyrosine. To date, 

almost 100 WW domains and about 1,900 PPXY motifs have been identified in human proteome 

network (Sudol & Harvey, 2010a). WW domains can be grouped into four categories based on 

their interactions with different peptide ligands. Group I WW domains bind to PY motifs, while 

Group II WW domains recognize PPLP motifs. Group III WW domains recognize PR motifs, 

and Group IV WW domains recognize (S/T)P motifs. Some WW domains, specifically Groups II 

and III, are capable of binding to multiple types of peptides, including PPLP- and PR-containing 

ones, as well as polyproline sequences containing glycine, methionine, or arginine. Due to their 

broad binding capabilities, these domains could be considered as a single group with versatile 

interactions (Ingham et al, 2005).  Failure of their recognition is associated with human diseases 

such as Huntington’s disease (Faber et al, 1998a; Passani et al, 2000a), Golabi-Ito-Hall 

Syndrome (Lubs et al, 2006a; Tapia et al, 2010a) ,muscular dystrophy (Bork & Sudol, 1994a; 

Rentschler et al, 1999b) and cancers (Chang et al, 2007b; Salah & Aqeilan, 2011c). 

 

WW domain was firstly uncovered by characterizing the protein sequence of YAP, a key 

transcriptional co-activator downstream of the Hippo pathway(Pan, 2010b; Sudol et al, 1995b; 

Yu et al, 2015a). Many Hippo pathway components and regulators contain either WW domain or 

its proline-rich peptide ligand-“PPxY” highlighting the importance between WW domain 
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biochemistry and its associated cellular functions (Salah & Aqeilan, 2011b; Sudol, 2010a). YAP 

contains two WW domains whereas TAZ contains one WW domain used during interactions 

with many binding proteins that contain PPXY motifs (Liu et al, 2011). Within the nucleus, the 

WW domain of YAP/TAZ is essential for their interaction with a set of nuclear transcription 

factors and regulators that possess the PY motif playing a crucial role in the regulation of gene 

transcription(Ferrigno et al, 2002c; Haskins et al, 2014c). LATS1 kinase contains two PPXY 

motif (Hao et al, 2008a), which is important for its interaction with YAP/TAZ.  

 

The PY motif of LATS1/2 is implicated in the phosphorylation of YAP/TAZ by LATS1/2 in the 

cytoplasm. This process involves the physical binding of several proteins containing the PY 

motif to the WW domain of YAP/TAZ, which facilitates the cytoplasmic translocation of 

YAP/TAZ(Sudol, 2011).Upstream Hippo pathway components, KIBRA contain two WW 

domains ((Kremerskothen et al, 2003; Tapon et al, 2002) and can negatively regulate YAP. 

(Wilson et al, 2014a). A number of extensive proteomic studies specifically identified a cluster 

of proteins containing the PY motif, such as LATS1/2, AMOTs, and PTPN14, as the interactors 

of the Hippo pathway's WW domain-containing components (Couzens et al, 2013a; Hauri et al, 

2013a; Wang et al, 2014b). These findings highlight the specific binding affinity of the Hippo 

WW domain for these protein partners, although the precise mechanism underlying this 

interaction is not yet fully understood. 
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Regulation of the Hippo pathway in mammals:  

   

The Hippo signaling pathway is a complex system of communication with multiple parts that 

work together to carefully regulate the pathway. The main kinases of this pathway has been well 

studied in mammals. However, the specific molecular mechanisms that regulate this pathway 

have not been fully elucidated. Below is a summary of established Hippo pathway  

regulators as well as new regulators of the Hippo signaling pathway (Figure 0.3).  

 

Mechanotransduction regulation of the Hippo pathway:  

The microenvironment of cells affects cell morphology and its cellular characteristics. The 

mechanism allowing cells to sense and engage towards mechanical cues is known as 

mechanotransduction which can modulate cellular characteristics such as proliferation, survival 

and migration (Hoffman et al, 2011). The way in which developing epithelial tissues interact 

with the extracellular matrix (ECM) is important for normal bodily functions, but it also plays a 
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significant role in the development of tumors and cancer metastasis. Cells are exposed to both 

biochemical and mechanical signals from their surroundings, including the ECM, nearby cells, 

and signaling molecules, which can impact their behavior and function. These signals are varied 

and complex, and occur in vivo, in living organisms. To maintain homeostasis, cells need to be 

capable of adjusting to mechanical forces and signals. This often leads to changes in cell 

behavior such as altered rates of cell division, programmed cell death, or movement (Lopez et al, 

2008; Manninen, 2015).   

 

Numerous mechanical factors have been recently elucidated to influence YAP/TAZ activity 

(Halder et al, 2012) such as mechanical stretching (Aragona et al, 2013), surface geometry 

(Wada et al, 2011),matrix rigidity(Dupont et al., 2011; Thomasy et al, 2013), and cell density 

(Aragona et al., 2013; Zhao et al., 2007). Mechanical stretching is a phenomenon in which a 

force or tension is exerted on cells. This force can be transmitted through different cellular 

structures, such as the extracellular matrix, cell-cell contacts, and cytoskeleton, and can trigger 

various cellular responses. External physical stimuli such as pressure or tension can also cause 

mechanical stretching of cells. In certain disease conditions like cancer, abnormal accumulation 

of extracellular matrix components can cause tissue stiffening and change the mechanical 

properties leading to mechanical stretching. Manipulating the size and shape of the cell 

monolayer, YAP/TAZ activity is inhibited by F-actin-capping proteins during minimal 

mechanical forces. On the other hand, cells at the corners or edges show YAP/TAZ-dependent 

proliferation induced by cytoskeletal contractility(Aragona et al., 2013). When cell geometry 

was manipulated on a single cell, the loss of cell-cell contact activated YAP/TAZ in flat spread 

cells however, YAP/TAZ were inactivated in round compact cells. Moreso, YAP/TAZ was 
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modulated upon the manipulation of matrix rigidity, where YAP/TAZ localized in the nucleus of 

cells seeded on stiff surfaces while YAP/TAZ was inactivated when seeded on soft surfaces 

(Dupont et al., 2011; Wada et al, 2011).  

 

Cell density influences cell-cell contact and cell morphology and have been established to play 

an essential role in the regulation of the Hippo signaling. At low cell densities, YAP/TAZ are 

localized to the nucleus driving the transcription of target genes involved in cell proliferation and 

survival. At high cell densities, the core kinase complex of the Hippo pathway phosphorylates 

YAP/TAZ leading to their cytoplasmic retention where they are later degraded (Zhao et al., 

2007). Additionally, cell attachment or detachment has been demonstrated to influence 

YAP/TAZ activity. Under normal conditions, when cells are detached from the ECM, anoikis 

occurs which a type of programmed cell death. However, in an oncogenic background, cells can 

develop a resistance to anoikis which can promote survival while circulating and migrating to 

other tissues leading to metastasis. During cell detachment  the Hippo pathway is activated, 

leading to inhibition of the YAP resulting in anoikis (Zhao et al, 2012) 

 

Extracellular ligands and cellular stress regulation of the Hippo pathway: 

While the microenvironment affects the hippo pathway activation, growth factors have also been 

revealed to regulate YAP/TAZ through activation of membrane receptors and intracellular 

signaling pathways. G protein-coupled receptors (GPCRs) have been demonstrated to regulate 

the Hippo pathway by activating YAP. Serum has been demonstrated to activate YAP/TAZ in 

cultured cells where serum sphingosine-1-Phosphate (S1P), a ligand of GPCR, and 

lysophosphatidic acid (LPA) were specifically identified to inhibit LATS1/2 (Miller et al, 2012b; 
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Yu et al, 2012b).Specifically, S1P and LPA bound to their corresponding membrane GPCRs to 

activate YAP/TAZ through Rho GTPases. Further studies have revealed phosphatidic acid (PA) 

from phospholipase D (PLD) as a key regulator of the hippo pathway by activating YAP under 

various Hippo-activating conditions(Han et al, 2018b; Yu et al, 2012a). While lipid regulation of 

the hippo pathway has been explored, much is yet to be elucidated about the upstream regulation 

of lipid-Hippo axis.  

 

Various forms of cellular stress, including hypoxia, endoplasmic reticulum (ER) stress, energy 

deprivation, osmotic changes, heat stress, and heavy metal stress can serve as upstream triggers 

for the Hippo pathway. During hypoxic conditions, YAP phosphorylation is decreased while 

TAZ phosphorylation is increased suggesting differential regulation of these transcriptional co-

activators (Yan et al, 2014). Further studies have elucidated a potential role of hypoxia mediated 

regulation on the hippo pathway by Zyxin(Ma et al, 2016), SIAH2 ubiquitin E3 ligase (Ma et al, 

2015), and hypoxia-inducible factor 1 subunit alpha (HIF-1a)(Tao et al, 2021). Other forms of 

cellular stress known to induce modulation of the Hippo pathway is ER stress by inhibiting YAP 

activity and enhancing apoptosis(Wu et al, 2015). Energy stress sensor, AMP activated protein 

kinase (AMPK) has been demonstrated to induce an AMPK dependent LATS activation leading 

to the inactivation of YAP(Wang et al, 2015d) via a defect of glucose metabolism. More 

recently, studies have interestingly identified heat stress to induce YAP activation, providing 

further insight in cells survival(Luo et al, 2020).  

 

Osmotic stress is a condition when there is an imbalance in solute concentrations, leading to 

alterations in water movement across cell membranes, which can impact cellular function and 
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survival. Osmotic stress has been shown to regulate the Hippo pathway by modulating the 

phosphorylation and nuclear localization of the transcriptional co-activators YAP/TAZ. In 

response to osmotic stress, YAP/TAZ are phosphorylated, promoting their cytoplasmic retention 

and inhibiting their transcriptional activity, thereby influencing cellular responses to osmotic 

changes(Hong et al, 2020; Hong et al, 2017). Other studies have also identified the Hippo 

pathway to play a role in the regulation of heavy metal response through the modulation of metal 

regulatory transcription factor 1 by LATS, altering the heave metal response profile (Han et al, 

2022a). 

 

Regulation of the Hippo pathway by cell polarity: 

Tissue integrity is contributed to the maintenance of tight junctions, which are vital cellular 

structures found in epithelial and endothelial tissues. Composed of transmembrane proteins, tight 

junctions form continuous seals between adjacent cells near their apical regions. These protein 

complexes create a physical barrier that prevents the cellular movement of ions, molecules, and 

fluids, regulating the passage of substances across biological barriers (Gonzalez-Mariscal et al, 

2003; Tsukita et al, 2001). In mammals, tight junction associated scaffold protein, angiomotin 

(AMOT), has emerged as a critical regulator of the Hippo pathway. AMOT protein family 

consists of two other angiomotin-like proteins, AMOTL1 and AMOTL2, containing PDZ 

binding domains. The AMOT members all play an important role in cell migration and 

angiogenesis(Gagné et al, 2009). AMOT family proteins interacts directly with the WW domain 

of YAP/TAZ through its PPxY motif (Zhao et al, 2011a) and inhibits YAP/TAZ activity by 

promoting cytoplasmic retention. Mechanistically, AMOT binds LATS1/2 and MST1/2 to 

promote LATS activity which then suppresses YAP/TAZ. Additionally, 𝛼- catenin, a crucial 
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component of E-cadherin-catenin complex(Drees et al, 2005), has been shown to inhibit the 

nuclear localization of YAP which has been linked with the tumor suppressive effects of 𝛼- 

catenin (Silvis et al, 2011). Another adherin junction component, protein tyrosine phosphatase 

14 (PTPN14), also directly interacts with YAP and sequesters it in the cytoplasm(Liu et al, 

2013a). 

 

Downstream regulation of the Hippo pathway: 

The downstream regulation of the Hippo pathway involves the transcriptional activation or 

repression of specific target genes in response to cellular signals. The primary interacting 

partners of YAP/TAZ are TEA DNA binding domains which are transcription enhancer factors 

(TEFs)(Pan, 2010b). There are four homologs of TEAD that interact with YAP/TAZ through 

their TEAD binding domain (Vassilev et al, 2001) to induce proliferation. In addition to TEADs, 

YAP/TAZ are known to interact with other transcription factors such as runt-domain 

transcription factors (RUNXs), responsible for hematopoiesis and osteogenesis (Yagi et al, 1999) 

and SMADs, key players for transforming growth factor beta (TGF-β) (Ferrigno et al, 2002b). In 

association with the above transcription factors, YAP/TAZ have been reported to induce several 

target genes such as connective tissue growth factor (CTCF), cysteine-rich angiogenic inducer 61 

(CYR61), and Ankyrin repeat domain 1 (ANKRD1) (Jiménez et al, 2017; Lai et al, 2011; Zhao 

et al., 2008). 

 

Introduction to the Phospholipase D family:  

Phospholipase D (PLD) is a family of enzymes that hydrolyze phospholipids to produce 

phosphatidic acid (PA) and a corresponding alcohol. PLD isoforms are found in numerous 
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organisms such as viruses (Oguin et al, 2014b), bacteria (Pohlman et al, 1993b; Stuckey & 

Dixon, 1999), plants (Wang et al, 2014c) and mammals(McDermott et al, 2020). PLD isoforms 

have a variety of substrate specificities and can be regulated by various molecules. They are 

involved in numerous cellular processes such as receptor signaling, cytoskeletal regulation, and 

membrane trafficking. The PLD family is comprised of six isoforms, each with distinct 

structures, functions, and regulation (Frohman, 2015; Frohman et al, 1999) (Figure 0.4). 

  

Phospholipase D1 and Phospholipase D2: 

PLD1 and PLD2 are the two major isoforms of the PLD family with distinct roles and 

subcellular localizations(Jenkins & Frohman, 2005a).PLD1 is found throughout the cell, 

particularly in the Golgi, lysosome and perinuclear region (Freyberg et al, 2001a; Lucocq et al, 

2001b).PLD2 is mostly present at the plasma membrane (Du et al, 2004) but has also been 

reported to localize in the cytosol (Colley et al, 1997b). However, both isoforms have been 
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shown to alter their localization in response to certain conditions, indicating a significant role for 

PA in many cellular roles(Jenkins & Frohman, 2005a; Weernink et al, 2007). The catalytic motif 

of PLD enzymes is known as HKD, which stands for HxxxxKxD, where H represents histidine, 

K represents lysine, D represents aspartic acid, and x can be any amino acid. Mammalian PLD1 

and PLD2 both contain two HKD motifs, which are essential for their enzymatic function. This 

has been demonstrated by studies showing that point mutations in these motifs disrupt the 

activity of PLD in both in vitro and in vivo settings (Sung et al, 1997a). The HKD motifs are a 

defining feature of PLD enzymes and are critical for their catalytic activity. 

 

PLD1 is regulated by a complex network of signaling molecules and protein-protein interactions. 

PLD1 can be activated by a variety of upstream signals, including G-protein coupled receptors 

(GPCRs), protein kinase C (PKC), small GTPases such as Rho and Arf, and tyrosine kinases 

such as Src and EGFR (Foster & Xu, 2003), whereas PLD2 is most likely indirectly activated by 

some of these noted factors. Phospholipase D1 (PLD1) has been shown to play a crucial role in 

the regulation of the mechanistic target of rapamycin (mTOR) pathway, which is a major 

regulator of cell growth and proliferation. In particular,  PLD1/PLD2 has been demonstrated to 

activate mTOR signaling through phosphatidic acid. PA has been shown to directly bind to and 

activate mTOR, leading to the activation of downstream targets involved in protein synthesis and 

cell growth, such as p70S6 kinase (S6K) and eukaryotic initiation factor 4E-binding protein 1 

(4E-BP1) (Fang et al, 2001b). Additionally, consistent with a competition between PA and 

rapamycin-FKBP12 for mTOR (Toschi et al, 2009), it was demonstrated that elevated levels of 

PLD activity conferred rapamycin resistance in human breast cancer cell lines(Chen et al, 2003; 

Yoshikawa et al, 2010b).  
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Phospholipase D3, Phospholipase D4, PLD5 and PLD6 

PLD3 and PLD4 are endoplasmic reticulum (ER)–associated proteins with no classic catalytic 

activity(Munck et al, 2005b). Upon ER stress, PLD3 has been shown to increase in expression 

and enhance myotube formation(Osisami et al, 2012). Other studies have linked PLD3 and 

PLD4 to be transmembrane proteins localized to the endolysosomes(Fazzari et al, 2017; 

Gonzalez et al, 2018b).Their role in the ER is controversial with other findings highlighting 

PLD3 and PLD4 as 5′ exonucleases involved in inflammatory cytokine response (Gavin et al, 

2021; Gavin et al, 2018b). PLD5 is another PLD family member with no catalytic 

activity(Dennis, 2015a) and has been reported as an oncogene involved in prostate 

tumorigenesis(Liu et al, 2021). Further studies are worth pursuing to establish the role of PLD3, 

PLD4, and PLD5 in their biological roles.  

 

The final isoform, PLD6 (mitoPLD), is unique in its mitochondrial localization(Choi et al, 2006) 

and its single HKD catalytic site. PLD6 cleaves mitochondrial-specific lipid cardiolipin to 

generate PA and has been implicated in modulating mitochondrial morphology(Huang et al, 

2011a). Additionally, PLD6 participates in the assembly of nuage, a distinct cytoplasmic 

structure called inter-mitochondrial cement or chromatoid body (Watanabe et al, 2011). PLD6 

has also been reported to mediate MYC activity to regulate downstream co-activators YAP/TAZ 

in tumors(von Eyss et al, 2015b).  

 

Phosphatidic acid:  
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As mentioned, (PLD) catalyzes the hydrolysis of phosphatidylcholine (PC) into phosphatidic 

acid (PtdOH) and choline. However, Phosphatidic acid (PA) is a versatile lipid that can be 

synthesized through pathways other than the hydrolysis of PC by PLD. In addition to the PLD-

mediated PC hydrolysis, PA can be produced through alternative routes in the cell contributing 

to the generation of PA, which serves as an important lipid signaling molecule involved in 

various cellular processes. One of its primary functions is in the biosynthesis of membrane 

phospholipids, making it a central molecule in maintaining lipid homeostasis (Athenstaedt & 

Daum, 1999). Moreover, PA has gained recognition as a crucial factor in the regulation of 

various signaling molecules that control cell cycle progression and survival, such as mTOR, and 

Raf protein kinases (Kraft et al, 2008). As a result, the level of PA is tightly regulated to ensure 

proper cellular function and signaling pathways. 

 

In conclusion, the PLD family of enzymes is comprised of several isoforms, each with distinct 

functions and regulation. While studies have elucidated multiple functions for each of the 

isoforms and PA, a complete overview of the protein-protein interactions of each isoform and 

PA had not been performed.  
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1.1 Abstract   

During intracellular signal transduction, protein-protein interactions (PPIs) facilitate protein 

complex assembly to regulate protein localization and function, which are critical for numerous 

cellular events. Over the years, multiple techniques have been developed to characterize PPIs to 

elucidate roles and regulatory mechanisms of proteins. Among them, the mass spectrometry 

(MS)-based interactome analysis has been increasing in popularity due to its unbiased and 

informative manner towards understanding PPI networks. However, with MS instrumentation 

advancing and yielding more data than ever, analysis of a large amount of PPI-associated 

proteomic data to reveal bona fide interacting proteins become challenging. Here, we review the 

methods and bioinformatic resources that are commonly used in analyzing large interactome-

related proteomic data and propose a simple guideline for identifying novel interacting proteins 

for biological research.   

1.2 Key points 

• A review of the commonly used biochemical methods for identifying interacting proteins 

for a protein of interest 

• A summary of the bioinformatic tools and resources for analyzing interactome-based 

mass spectrometry data 

• A proposed guideline for taking proteomics as an approach to study protein-protein 

interactions in biological research 

 

1.3 Keywords  

Protein-protein interaction, proteomics, affinity purification, bioinformatics  
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1.4 Introduction 

Protein-protein interactions (PPIs) mediate cellular signal transduction cascades where specific 

interactions between proteins define unique and robust signaling outputs for different cellular 

events(Pawson & Nash, 2000). Dysregulation of PPIs has been frequently associated with 

various human diseases(Ryan & Matthews, 2005). Therefore, better characterizing PPIs will 

create new opportunities for understanding normal physiology and treating human diseases.  

 

Mass spectrometry (MS) is an instrument for analyzing small chemical and biological 

molecules(Aebersold & Mann, 2003), which has revolutionized scientific research in the past 

decades. Regarding PPI study in biological research, MS can be used in partner with multiple 

biochemical approaches to uncover bona fide interactors for proteins of interest. Commonly used 

methods for isolating protein complexes comprise immunoprecipitation, affinity purification(Li, 

2011) and protein-proximity labeling approaches like BioID(Roux et al, 2012) and APEX(Lam 

et al, 2015). However, with MS technology and methods of capturing interactors continuously 

improving, the size and complexity of PPI-related proteomic data keep increasing. Manually 

converting such a large dataset to a meaningful biological list of PPIs is time and labor-

consuming and often results in errors and biases.  

 

To tackle this issue, several bioinformatic tools have been developed to facilitate the PPI-related 

proteomic data analysis, which include but are not limited to MS raw data filtration, gene 

ontology study, functional topology analysis, and PPI network visualization. These methods 

make processing, analyzing, and presenting large-scale MS data possible for regular biological 

research labs. To produce a reliable interactome dataset that can be used by other researchers, the 
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refined PPI network also needs to be experimentally validated and functionally characterized. 

However, how to integrate these tools and methods to produce meaningful and reliable 

interactome data for in-depth functional studies has been challenging.  

 

Here, we review the current methods used for isolating and identifying interacting proteins by 

MS analysis and provide a brief summary on how to process MS raw data, interpret their 

biological significance, build PPI network, and characterize biological functions for newly 

identified interacting proteins. We hope this guideline and the related bioinformatics resources 

can benefit new researchers who are interested in taking MS as an approach to investigate PPIs 

for their biological research.   

 

1.5 Main Review 

Isolation of interacting proteins for a protein of interest  

Many biochemical methods have been developed to isolate the associated protein complex for a 

protein of interest (i.e., bait protein)(Rao et al, 2014), such as immunoprecipitation (IP) through 

antibodies against either bait protein or an epitope tag fused with bait protein, affinity 

purification (AP) using single or tandem epitope tag(Li, 2011), and protein-proximity labelling 

approaches using the modified biotin-protein ligase tag (e.g., BioID(Roux et al., 2012), 

APEX(Lam et al., 2015)). Despite their different mechanisms, the overall goal of these 

purification techniques is to capture and reserve true binding proteins while minimizing the non-

specific ones for bait protein.  
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Attempting to capture all the interacting proteins whether they are transient or stable has been a 

difficult task for the current purification methods. Although performing IP with a bait protein 

antibody (Figure 1.1A) can purify its associated protein complex at endogenous level, antibody 

availability and its IP efficiency often limit the use of this method. One way to overcome these 

issues is to utilize well-established antibodies for epitope tags, such as Flag, Myc, HA, GFP, and 

indirectly isolate the binding proteins for the bait protein fused with an epitope tag (Figure 

1.1A). However, exogenously expressing tag-fused protein often results in non-specific and 

artificial binding proteins due to overexpression. In addition, both methods share common 

antibody leakage issue, which can affect sample preparation for MS analysis. 

 

Affinity purification (AP) can overcome the antibody leakage issue and has been widely used for 

PPI studies. To achieve so, epitope tags with high binding affinity to corresponding agarose 

beads have been developed (Figure 1.1B). For example, a commonly used tag for AP is 

streptavidin binding protein (SBP) (Figure 1.1B), which has high binding affinity to streptavidin 

beads(Keefe et al, 2001). However, streptavidin beads also bind endogenous biotinylated 

proteins in cells, resulting in non-specific interactions(Keefe et al., 2001). Maltose-binding 

protein (MBP)(Kellermann & Ferenci, 1982) and glutathione S-transferase (GST)(Smith & 

Johnson, 1988) tags are often used for protein complex purification, because they can strongly 

bind to the agarose beads conjugated with amylose and glutathione, respectively (Figure 1.1B). 

However, these two epitope tags are both large in protein size and can causes potential folding 

issues for a bait protein, thus hindering the isolation of its true binding proteins. In contrast, 

hexa-histidine (His) tag(Janknecht et al, 1991) is a small tag that binds to immobilized nickel 

beads (Figure 1.1B), which offers a better solution for AP as compared to MBP and GST tags. 
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However, His tag-mediated protein purification requires the step of optimizing imidazole 

concentration for different bait proteins, adding additional work to ensure the protein purification 

quality.  

 

Recently, proximity labeling methods have been widely used for interactome study (Figure 

1.1C), because it allows identification of transient and weak binding proteins for a bait protein. 

Like the previously mentioned SBP tag, this method relies on streptavidin beads to purify the 

newly biotinylated proteins, though the endogenous modification of biotinylation leads to the 

issue of isolating non-specific binding proteins.  

 

Over time, methods for purifying protein complex associated with a protein of interest have been 

evolving to increase their performance and efficiency(Rigaut et al, 1999). Some labs 

incorporated different epitope tags as one for protein complex purification, allowing further 

elimination of non-specific binding interactions through multiple purification and washing 

steps(Dunham et al, 2012). For example, tandem affinity purification (TAP) was developed to 

fuse two epitope tags with one bait protein to reduce the non-specific binding proteins(Dunham 

et al., 2012; Li, 2011). Initially, TAP was designed with two IgG-binding units of protein A of 

Staphylococcus aureus (Protein A) and the calmodulin-binding peptide (CBP)(Rigaut et al., 

1999) (Figure 1.1D), while its upgraded version includes tags like FLAG and HA in 

tandem(Sowa et al, 2009) (Figure 1.1E) to achieve a better purification performance.  

 

In the past years, we have been extensively utilizing a S-Flag-SBP (SFB) triple tagged system for 

tandem affinity purification (Figure 1.1F) and revealed new regulators/effectors for multiple key 
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proteins involved in growth control and cancer development(Bian et al, 2021; Kattan et al, 

2022a; Li et al, 2017; Li et al, 2016a; Li et al, 2015; Li et al, 2016b; Seo et al, 2020b; Vargas et 

al, 2020b; Wang et al, 2011; Wang et al, 2012b; Wang et al, 2015b; Wang et al, 2014a; Wang et 

al, 2015c; Wang et al, 2015e). As for it, SBP is a small peptide that binds effectively to 

streptavidin beads, which can be easily eluted with a biotin-containing solution(Keefe et al., 

2001); S protein is another small peptide that binds efficiently with S protein beads and can be 

also used for affinity purification(Kim & Raines, 1993). The Flag tag in this system is used to 

detect bait protein expression by Western blot and verify its localization by immunofluorescence. 

As a routine practice in our lab, cells stably expressing the SFB-tagged bait protein are generated 

by either lentiviral infection or single colony isolation. After verifying the bait protein expression 

and localization using anti-Flag antibody, these stable cells will be expanded to a large scale and 

lysed for tandem affinity purification. As shown in Figure 1.1F, the first step of this purification 

method involves the use of streptavidin beads to isolate the associated protein complex by 

binding to SBP tag. After biotin elution, S protein beads are used for the second around of 

purification. The whole process can be finished in several hours and only one buffer solution 

(i.e., NETN buffer) is used from beginning to end, which greatly reduce the chance of protein 

degradation and protein complex dissociation. 

 

In addition to purifying the associated protein complex from cell lysates, several library 

screening approaches are available for identifying interacting proteins for a protein of interest, 

such as yeast two-hybrid (Y2H)(Young, 1998), bimolecular fluorescence complementation 

(BIFC)(Kerppola, 2006), which are developed based on the protein-fragment complementation 

strategy(Li et al, 2019). For Y2H screening, a transcription factor is split into the DNA-binding 
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domain (DBD) and activating domain (AD). If AD and DBD are brought into proximity, they 

can activate downstream reporter gene by binding onto its upstream activating sequence (UAS). 

In general, a protein of interest is fused with DBD, while its candidate interacting proteins are 

fused with AD and prepared as a cDNA library for screening their interactions with the bait 

protein. PPI indirectly connects DBD and AD to activate the transcription of reporter gene 

through its UAS. For BIFC, a fluorescent protein (e.g., CFP, GFP, YFP) is split into two 

fragments, which are respectively fused with a bait protein and its candidate interacting proteins 

in a format of cDNA library. The binding between bait protein and its interacting proteins will 

bring the two fragments of a fluorescent protein within proximity, allowing the fluorescent 

protein to reform and emit its fluorescent signal. Detection and quantification of such fluorescent 

signal can be achieved by fluorescent microscope and flow cytometry. Notably, these two assays 

are both performed in live cell system, making the characterization of in vivo PPIs possible. 

However, since these complementation assays require generation of two separate fusion proteins, 

technical issues need to be taken into consideration, which include but are not limited to the 

effects on protein localization/function as caused by fragment fusion, overexpression-induced 

artificial effects, and issues with the reforming efficiency for the split fragments from two fusion 

proteins. Previous studies also raise concerns regarding high false positive and false negative 

rates for Y2H and BIFC assays. Technically, generating the large-scale cDNA library and setting 

up conditions for screening is costly and labor and time-consuming, making these assays difficult 

to be widely used by researchers.  
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MS data generation, submission, processing, and quality evaluation 

Upon the completion of protein complex purification, sample can be prepared in a format either 

on beads or in a polyacrylamide gel and processed by a MS facility. After trypsin digestion, 

produced peptides are eluted through high-performance liquid chromatography (HPLC), 

subjected to electrospray ionization, and loaded into a mass spectrometer, where peptides are 

detected, isolated, and fragmented to produce a tandem mass spectrum of specific fragment ions 

for each peptide. Peptide sequences (i.e., protein identity) are determined by matching protein 

databases (e.g., UniProt) with the fragmentation pattern acquired by the software program 

SEQUEST. Spectral matches are filtered to contain a false discovery rate (FDR) of less than 1% 

at the peptide level using the target-decoy method(Elias & Gygi, 2007). The protein inference is 

considered followed the general rules(Nesvizhskii & Aebersold, 2005) with manual annotation 

based on experiences applied when necessary.  

 

Users will then be provided with an extensive list of identified proteins from the sample, which 

are referred as MS raw data. Now it has become a standard practice by scientific journals that 

these raw data should be shared through public repositories before publication(Prince et al, 

2004). One commonly used repository is the PRoteomics IDEntifications database 

(PRIDE)(Jones et al, 2008; Ternent et al, 2014), which is designed to receive raw protein and 

peptide files for a MS experiment. To deposit MS data to the PRIDE, users first need to gather 

the MS data files from the MS facility including raw, result, search, and peak files. These files 

are then uploaded through the ProteomeXchange (PX) submission tool(Jarnuczak & Vizcaino, 

2017), where a two-step assessment process via PRIDE is provided for checking data 
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quality(Perez-Riverol et al, 2019). After submission, a PX accession number and permanent 

digital object identifier (DOI) will be issued for publication use.  

 

Next, we usually use a pipeline to deconvolute the MS raw data into a short list of high confident 

interacting proteins (HCIPs) for a bait protein (Figure 1.2A). To achieve so, a web-accessible 

resource named the contaminant repository for affinity purification (CRAPome)(Mellacheruvu et 

al, 2013) is often used to filter out commonly identified prey proteins (i.e., non-specific binding 

proteins) by comparing to control experiments provided by either CRAPome or users. Control 

experiments are a group of unrelated MS raw datasets that are usually produced under similar 

experimental settings(Mellacheruvu et al., 2013). Based on the quantitative comparisons of prey 

abundance (using spectral counts) against the prey abundances across control experiments, a 

significance analysis of interactome (SAINT) score(Choi et al, 2011) will be assigned to each 

prey, allowing users to generate a list of HCIPs based on a suitable cutoff value of SAINT score.  

 

Specifically, SAINT identifies false interactions by estimating the spectral count distribution 

from negative controls. For experiments that are produced with multiple replicates, a probability 

score is assigned to estimate the false discovery rate (FDR)(Choi et al., 2011), allowing users to 

determine the reliability of interactions. Recently, SAINT has been updated to 

SAINTExpress(Teo et al, 2014), which provides a topology-assisted probability score 

(TopoAvgP), incorporating the prior knowledge of the target interactome into the scoring step. In 

addition, SAINTExpress provides a simpler fold-change (FC) score based on the ratio of 

averaged normalized spectral counts between experiments and controls.  
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In addition to CRAPome, scoring algorithms like comparative proteomic analysis software suite 

(CompPASS)(Sowa et al., 2009), mass spectrometry interaction statistics (MiST)(Jager et al, 

2011) and minkowski distance-based unified scoring environment (MUSE)[18] are also available 

for generating HCIP list. As compared to CompPASS and MiST, SAINT can be applied to 

datasets of all sizes and perform filtering quantification simply using spectral counts rather than 

other MS parameters(Choi et al., 2011). In addition, SAINT removes interactions with spectral 

counts less than two, making the filtering process more robust(Choi et al., 2011). Different from 

SAINT, MiST provides a more complete dataset analysis by incorporating multiple MS 

parameters-based measures, such as protein abundance (i.e., peak intensities), invariability of 

abundance over replicated experiments (i.e., reproducibility), uniqueness of an observed 

interaction across all purifications (i.e., specificity)(Jager et al., 2011). It is plausible to use 

different methods to analyze the same MS raw data, although extra bioinformatic work will be 

required.  

 

For publication purpose, we usually provide a MS data filtration report as a table by detailing the 

numbers of total experiments, control experiments, and identified peptides and proteins, 

respectively (Figure 1.2B). In addition, the cutoff value (e.g., a SAINT score) chosen for HCIP 

generation and the number of total HCIPs generated in this study are often included in this report 

table (Figure 1.2B).  

 

To evaluate the quality of the produced HCIP dataset, additional analyses are usually performed. 

For example, total spectral count (TSC) can be presented along with the number of HCIPs 

(Figure 1.2C), allowing readers to evaluate the HCIP rate of each sample in the dataset. 
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Biological replicates are required to be performed for current proteomic studies; therefore, 

reproducibility is another key factor to assess the variation among experiments for the bait 

proteins(Tabb et al, 2010). This can be determined by calculating the HCIP correlation R value 

under different numbered peptides in the dataset (usually from low to high), where 

reproducibility rate at each peptide cutoff number can be shown (Figure 1.2D). Another way to 

qualitatively evaluate the produced HCIP dataset is to compare them with some available PPI 

databases, such as biological general repository for interaction data sets (BioGRID)(Chatr-

Aryamontri et al, 2017), biophysical interactions of ORFeome-based complexes 

(BioPlex)(Huttlin et al, 2015), search tool for the retrieval of interacting genes/proteins 

(STRING)(Szklarczyk et al, 2017). These databases comprise numerous reported protein 

interactions that have been discovered through various experimental assays including AP-MS, 

proximity label-MS, yeast two-hybrid, immunoprecipitation, biochemistry, immunofluorescence. 

Comparing HCIPs with these reported interactions not only helps to evaluate the quality of the 

HCIP dataset from a different perspective, but also allows to reveal new PPIs through the current 

interactome study for functional investigation in future.  

 

Annotation of HCIP dataset  

Once a list of HCIPs have been generated, a standard practice is to deconvolute their underlying 

biological connections. This step is crucial for revealing potential functional processes, signaling 

pathways, cellular components, and human diseases that bait proteins may be involved through 

their HCIPs. To achieve so, several web-based annotation tools such as the database for 

annotation, visualization and integrated discovery (DAVID)(Huang da et al, 2009), protein 

analysis through evolutionary relationships (PANTHER)(Mi et al, 2005), and Metascape(Zhou et 
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al, 2019) are available for gene ontology (GO) analysis of HCIPs. The common ontologies 

described in these tools include biological process, molecular function, cellular components, 

pathways, diseases, and tissue distributions. As for a multiple-bait interactome study, bait 

proteins can be either analyzed individually for its HCIPs-associated GO terms (Figure 1.3A) or 

compared globally and visualized as a heatmap (Figure 1.3B). The latter usually helps reveal the 

bait proteins who share overlapped cellular functions through their HCIPs.  

 

To reveal the shared HCIPs across different bait proteins, clustering methods through Circos plot 

(Figure 1.3C) or heatmap (Figure 1.3D) are often used. On a global scale, Circos plot can 

provide easy visualization of relationships between different bait proteins(Krzywinski et al, 

2009), while heatmap can show details of the overlapped HCIPs among different bait proteins to 

reveal potential PPI sub-networks within a multi-bait interactome study.  

 

Notably, innovative technologies like artificial intelligence (AI) machine learning greatly 

facilitate the predictions of protein structures and protein-protein interactions, providing 

additional tools for HCIP dataset annotation. For example, AlphaFold(Bryant et al, 2022; Jumper 

et al, 2021) and RoseTTAFold(Baek et al, 2021) are both open-sourced AI tools, which can 

provide structural information for the identified HCIPs and predict their protein complex 

formations with the bait protein. In addition, TissueNet(Barshir et al, 2013) and integrated 

interactions database (IID)(Kotlyar et al, 2016) tools can offer tissue expression information for 

HCIPs, while weighted gene co-expression network analysis (WGCNA)(Zhang & Horvath, 

2005) can be incorporated to annotate functional correlations between bait protein and its HCIPs.  
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Visualization of protein-protein interaction (PPI) network  

Once HCIPs have been generated and annotated, a PPI network can be built up to provide an 

informatic overview of bait protein-associated interactome. Such PPI network can be generated 

using Cytoscape(Cline et al, 2007; Shannon et al, 2003) through various freely available 

plugins(Saito et al, 2012) or R program, a programming language for statistical computing and 

graphic(Jones et al, 2018).  

 

Visualizing PPI network can easily present PPIs identified from different experiments and is 

useful when looking for unique connections and patterns among bait and prey proteins(Merico et 

al, 2009). There are different ways visualizing a PPI network along with necessary experimental 

and/or biological information. Specifically, PPI network can be organized in a format of prey 

nodes surrounding their baits, where each node simply represents prey alone (Figure 1.4A) or 

prey with additional information. Moreover, these prey nodes can be complimented with further 

information by adding various “visual features”, such as different shapes, sizes, colors, patterns, 

outline thickness, to convey their experimental and/or biological details. For example, the size of 

the node can convey its identified TSC, where larger nodes represent preys with more TSC 

(Figure 1.4B). Nodes also can be made in different colors to represent the prey-associated GO 

terms, such as biological processes, localization, cellular components (Figure 1.4C). Another 

commonly presented information is to incorporate data gathered from BioGRID or STRING 

database to indicate the known interacting proteins within the PPI network. In addition, if 

reciprocal MS studies are performed using the identified HCIPs as bait proteins, the PPI network 

can be further enhanced through their connecting lines using either uni- or bi- directional arrows 

to indicate the relationship between bait proteins and its HCIPs (Figure 1.4D). Simultaneously 
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visualizing all these representations (e.g., shape, size, color, line direction) will make a PPI 

network summarizing all the experimental and biological information comprehensively achieved. 

 

Designing functional assays for characterizing newly identified HCIPs  

After generating a list of HCIPs and annotating their biological functions, a group of HCIPs of 

interest first need to be experimentally validated. Typically, immunoprecipitation and pulldown 

are the choice assays for assessing the interaction between bait protein and its HCIPs. As 

mentioned earlier, antibody-based immunoprecipitation offers a way to examine protein-protein 

interaction at endogenous level (Figure 1.5A); however, difficulties may arise in identifying a 

suitable antibody for use. To combat this, protein can be fused with a tag (e.g., Flag, HA, Myc, 

GFP, SFB), whose antibody or antibody-conjugated beads are available to help validate the 

protein-protein interaction at a level of overexpression (Figure 1.5B). In addition, 

immunofluorescent staining is usually used to assess the co-localization between a bait protein 

and its HCIPs, confirming their complex formation from a different perspective (Figure 1.5C).  

 

With the interaction between bait protein and its HCIPs validated, functional significance 

underlying their complex formation can be further explored. For example, the binding regions 

between bait protein and its HCIPs can be mapped in detail through generating a series of 

truncation and/or deletion mutants for both bait protein and its HCIPs (Figure 1.5D). In addition, 

we usually knockout (KO) or knockdown (KD) HCIPs in functionally relevant cells to examine 

the potential effects on the bait protein-dependent signaling events or biological functions 

(Figure 1.5E). If confirmed, these KO or KD cells will be reconstituted with wild-type HCIP or 

its mutant protein that fails to bind bait protein (Figure 1.5D) and used to determine whether 
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their complex formation is required for the related cellular functions. For example, to examine 

the roles of one HCIP of interest in regulating the bait protein-dependent cell proliferation and 

migration (Figure 1.5F), altered proliferation and migration will be examined in the HCIP KO 

cells. If there is a change in cell proliferation/migration, rescue experiments will be performed by 

reconstituting the HCIP KO cells with wild-type HCIP and its bait protein non-binding mutants 

(Figure 1.5F). Using this strategy, we can provide both functional and mechanistic insights into 

the newly identified HCIPs through the interactome study.  

 

1.6 Conclusions and perspectives  

In this study, we reviewed the commonly used methods and bioinformatic resources for 

characterizing the interacting proteins for a protein of interest and illustrated a pipeline for 

analyzing the related MS data. This proposed pipeline is mainly composed of three steps. First, it 

assigns each identified prey with a confidence score, allowing users to generate a list of HCIPs 

for a bait protein. Second, it provides a series of bioinformatic resources (Table 1.1) for users to 

annotate HCIPs, build up PPI network, and visualize interactome data informatically. Third, it 

suggests the strategies for follow-up data validation and functional investigation for newly 

identified HCIPs. In the past years, we have been frequently using this pipeline to define and 

characterize the PPI networks for different signaling pathways and protein families(Kattan et al., 

2022a; Li et al., 2017; Li et al., 2016a; Li et al., 2015; Seo et al., 2020b; Vargas et al., 2020b; 

Wang et al., 2014a), fully testifying its feasibility for addressing biological questions in different 

fields. Here, we would like to pinpoint several key factors that may affect the outcome of the 

interactome analysis for researchers who may be interested in trying this method for their own 

studies.  
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First, using different cell lines may lead to the difference in the identified HCIPs due to protein 

abundancy variation between cells; therefore, cell line choice should be considered prior to 

starting. In general, cell lines should be chosen based on scientific questions and their related 

biological contexts, while other issues, such as cell proliferation rate, cell culture costs, the way 

for cell collection, are also taken into consideration. We usually use HEK293T cells for protein 

complex purification due to their ease of growth and collection in a large quantity, but later move 

to functional cell lines to study biological functions for HCIPs.   

 

Second, technical caveats for isolating associated protein complex for a bait protein should be 

taken into consideration. For example, choosing appropriate tag is crucial, as it could cause 

protein structure change and introduce false positive/negative hits. In addition, users should be 

aware of the positioning of the tag (e.g., N terminus, C terminus), as it may alter bait protein 

cellular localization and function. Regarding this point, several methods are available to 

characterize PPIs without using an epitope tag. For example, thermal proximity coaggregation 

(TPCA) approach can be used to examine protein complex dynamics in cells(Tan et al, 2018). 

Size exclusion chromatography can separate different protein complexes based on their 

size(Bloustine et al, 2003). Combined with MS analysis, these approaches thus provide options 

for elucidating interacting proteins for untagged bait protein, although additional factors could be 

introduced to affect protein complex formation (e.g., temperature, chromatography sample 

preparation). These approaches can be concurrently performed when analyzing limited bait 

proteins, while this strategy may not be feasible for a large-scale multi-bait interactome study.   
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Expressing a bait protein in cells will also bring in the overexpression issue. To address it, 

knock-in approach can be adopted to integrate a tag into the bait protein coding region via 

CRISPR technique, so we can directly purify endogenous bait protein-associated protein 

complex. To accelerate the progress, an inducible lentiviral system can be used to establish the 

stable cells for a bait protein, where doxycycline concentration is optimized to make the level of 

exogenously expressed bait protein close to that of endogenous one(Han et al, 2022b; Wang et 

al., 2012b).  

In addition, the steps of cell lysing and followed protein complex purification can lead to protein 

degradation, loss of weak and transient interactors, and non-specific binding(Miteva et al, 2013). 

To reduce these problems, isolating associated protein complex from cells should be finished in a 

timely manner and avoid frequent changes of buffer systems between different steps.  

 

Third, identifying bona fide interacting partners can be hindered by a vast number of 

contaminants (i.e., non-specific binding proteins) during purification of bait protein-associated 

protein complex. This issue can be solved by including a group of control experiments for MS 

data filtration. Before that, users are suggested to carefully examine their control experiments to 

ensure that they are appropriate and unrelated to their bait proteins. Another way to reduce 

contaminants is to apply different purification approaches (e.g., TAP and BioID) (Figure 1) to 

the same bait protein and then compare their identified HCIPs. Not only would this confirm true 

binding proteins for a bait protein, but also allow the user to reduce the contaminants due to 

technical issues, thus making the interactome analysis more robust.  
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Lastly, interactome data analysis has become more comprehensive with online databases and 

software constantly evolving, allowing the generation of more informative PPI datasets based on 

needs. For example, PPI dataset can be further integrated with cancer-related databases (e.g., 

TCGA), which can help annotate the produced HCIPs from a cancer-related perspective and 

provide opportunities for identifying new therapeutic strategies for cancer treatment.  

 

Collectively, we review the commonly used methods/resources for characterizing cellular PPI 

networks and propose a simple pipeline for researchers to process the related large-scale MS 

data. As mentioned earlier, deconvoluting the MS data into a list of HCIPs and validating the 

HCIP dataset are just the beginning of the study. The goal of the entire work is to reveal valuable 

HCIPs for in-depth functional studies to advance our understanding of the mechanisms 

underlying the related biological questions. We hope this work would not only help alleviate the 

fears newcomers may face when trying to piece together bioinformatic methods/resources to 

analyze large-scale proteomic data, but also aid users with a user-friendly pipeline that 

incorporates details behind the methods/resources needed to identify bona fide interacting 

proteins for their research. 
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Table 1.1 Summary of available bioinformatic resources for analyzing interactome-related proteomics data 
 

Name Annotation Website Reference 

CRAPome Data Filtering https://reprint-apms.org/  (Mellacheruvu et al., 
2013) 

CompPASS Data Filtering  (Sowa et al., 2009) 

MUSE Data Filtering  (Li et al., 2016a) 

MiST Data Filtering  https://modbase.compbio.ucsf.edu/mist/ 
 

(Jager et al., 2011) 

BioPlex Compare Datasets https://bioplex.hms.harvard.edu/  (Huttlin et al., 2015) 

BioGRID Compare Datasets https://thebiogrid.org/  (Chatr-Aryamontri et 
al., 2017) 

AlphaFold Structural Analysis https://alphafold.ebi.ac.uk/ (Bryant et al., 2022; 
Jumper et al., 2021) 

RoseTTAFold Structural Analysis https://www.ipd.uw.edu/2021/07/rosettafold-
accurate-protein-structure-prediction-accessible-
to-all/  

(Baek et al., 2021) 

TissueNet Tissue Association for PPI https://netbio.bgu.ac.il/tissuenet3/  (Barshir et al., 2013) 

IID Condition Association for 
PPI http://iid.ophid.utoronto.ca/ (Kotlyar et al., 2016) 

WGCNA Explore PPI via Gene 
Expression Profiles  (Zhang & Horvath, 

2005) 
PANTHER Gene Ontology  http://pantherdb.org/  (Mi et al., 2005) 

Metascape Gene Ontology  http://metascape.org/  (Zhou et al., 2019) 

DAVID Bioinformatics Gene Ontology  https://david.ncifcrf.gov/  (Huang da et al., 
2009) 

R Studio Visualization/Graphs 
Clustering/Heatmaps https://www.rstudio.com/  Open-Source 

License 
Cytoscape Visualization of PPI 

network 
https://cytoscape.org/  
 
 
 
 

(Cline et al., 2007; 
Shannon et al., 
2003) 
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Table 1.1 Summary of available bioinformatic resources for analyzing interactome-related 

proteomics data. The commonly used bioinformatic resources for interactome studies are listed, 

which include the tools for proteomics data filtration, GO analysis, PPI databases for HCIP 

compare, PPI network visualization.   
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1.12 Figures  

 

 

 

Figure 1.1. Illustration of commonly used methods for isolating associated protein complex 

for a protein of interest.  

The commonly used methods for purifying bait protein-associated protein complex from cells for 

mass spectrometry (MS) analysis include antibody-based immunoprecipitation (A), one-step 

affinity purification (AP) (B), proximity ligation-based AP (C), ProteinA/TEV/CBP-based 

tandem affinity purification (TAP) (D), FLAG/HA-based TAP (E), and SFB-based TAP (F).  
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Figure 1.2. Schematic overview of the interactome-related proteomics data processing.   

(A) Schematic workflow for the filtration of mass spectrometry (MS) data to generate a high 

confidence interacting proteins (HCIP) list used for further bioinformatics analysis.  

(B) Organization of MS summary data can include number of experiments, peptide information, 

protein information, cutoff score for HCIP generation, and HCIP count. 

(C) Schematic illustration of the comparison between the total spectral counts (TSCs) and HCIP 

number for an interactome study. 
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(D) Reproducibility rate can be illustrated based on different prey peptide cutoffs.  

(E) HCIPs can be compared with public PPI resources like BioGRID and BioPlex to reveal 

known and new interactions in the produced interactome dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
72 

   

 

Figure 1.3. Gene ontology (GO) and topological analyses of interactome data.  

(A) GO analysis can be applied and presented for bait proteins individually.  

(B) GO analysis can be applied across a series of bait proteins and presented as a heatmap.  

(C) Topological analysis of multi-bait interactome data can be presented as Circos plot to reveal 

the bait proteins that share overlapping HCIPs. 

(D) Topological analysis of multi-bait interactome data can be presented as heatmap to reveal the 

overlapping HCIPs among bait proteins. 
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Figure 1.4. Visualization of protein-protein interaction (PPI) networks.  

(A) A PPI network can be organized in a format of prey nodes surrounding their baits, where 

nodes simply represent preys alone.  

(B) A PPI network can be organized in a format of prey nodes surrounding their baits, where 

nodes represent preys and their total spectral count (TSC). The size of the node conveys its 

identified TSC, where larger nodes represent preys with more TSC.  

(C) A PPI network can be organized in a format of prey nodes surrounding their baits, where 

nodes represent preys and their GO terms that are labeled in different colors.  

(D) The information from reciprocal MS studies using HCIPs as bait proteins can be included in 

the PPI network and indicated as connecting lines with either uni- or bi- directional arrows. 
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Figure 1.5. Validation and functional characterization of HCIPs produced through an 

interactome study.  

(A-B) Illustration of experimental assays used for validating the complex formation between bait 

proteins and HCIPs. To examine the interaction between a bait protein and its HCIP, cell lysates 

can be subjected to immunoprecipitation (A) and pulldown (B) assays.  

(C) Immunofluorescence assay can be used to examine the co-localization of bait proteins with 

their HCIPs.  
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(D) The bait protein-HCIP complex formation can be further characterized through mapping the 

regions required for their interaction.  

(E) Illustration of the HCIP knockout (KO) cell generation using CRISPR/Cas9 technique.  

(F) Rescue experiments can be performed in the HCIP KO cells to determine whether the bait 

protein binding is required for HCIP to regulate the related cellular functions such as cell 

proliferation and migration.  
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2.1 Abstract 

The Hippo pathway, which plays a critical role in organ size control and cancer, is featured with 

the WW domain-based protein-protein interaction. However, ~100 WW domains and 2,000 PY 

motif-containing peptides have been found in human proteome, raising a “WW-PY” binding 

specificity issue for the Hippo pathway. In this study, we demonstrated the WW domain binding 

specificity for the Hippo pathway components and uncovered a unique amino acid sequence 

required for it. By using this criterion, we identified a WW domain-containing protein, STXBP4 

as a negative regulator of YAP. Mechanistically, STXBP4 assembles a protein complex 

comprising 𝛼-catenin and a group of Hippo PY motif-containing components/regulators to 

inhibit YAP, a process that is regulated by actin cytoskeleton tension. Interestingly, STXBP4 is a 

potential tumor suppressor for human kidney cancer, whose downregulation is correlated with 

YAP activation in clear cell renal cell carcinoma. Taken together, our study not only elucidates 

the WW domain binding specificity for the Hippo pathway, but also reveals STXBP4 as a player 

in actin cytoskeleton tension-mediated Hippo pathway regulation. 

 

2.2 Key words  

WW domain, PY motif, the Hippo pathway, YAP, STXBP4 
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2.3 Introduction 

Signaling proteins often entail modular domains that facilitate protein-protein interactions to 

assemble functional protein complexes, control enzymatic activity and regulate protein cellular 

localization(Cohen et al, 1995; Pawson & Scott, 1997). Importantly, the recognition between 

domains and their peptide ligands is usually specific, thus allowing the transduction of unique 

information through signaling cascades(Das & Smith, 2000; Hu et al, 2004). The WW domain is 

a small protein module that is defined by the presence of two tryptophan (W) residues separated 

apart by ~25 amino acids(Sudol et al, 1995d). WW domain and its cognate proline-rich peptide 

motif have been identified within various protein complexes widely distributed in plasma 

membrane, cytoplasm and nucleus. Failure of their recognition is associated with multiple human 

diseases including Alzheimer’s disease(Liu et al, 2007; Mandelkow & Mandelkow, 1998), 

Huntington’s disease(Faber et al, 1998b; Passani et al, 2000b), Liddle Syndrome(Hansson et al, 

1995), Golabi-Ito-Hall Syndrome(Lubs et al, 2006b; Tapia et al, 2010b), muscular 

dystrophy(Bork & Sudol, 1994b; Ervasti, 2007; Rentschler et al, 1999a) and cancers(Chang et 

al, 2007a; Salah & Aqeilan, 2011a). These facts highlight a crucial role of the WW domain-

mediated protein-protein interaction in biological processes and tissue homeostasis.  

 

WW domain was initially uncovered by characterizing the protein sequence of YAP, a key 

transcriptional co-activator downstream of the Hippo pathway(Jiang et al, 2015; Pan, 2010a; 

Sudol et al, 1995a). The Hippo pathway is a highly conserved signaling pathway involved in 

tissue homeostasis, organ size control and cancer development(Halder & Johnson, 2011; Jiang et 

al., 2015; Pan, 2010a; Piccolo et al, 2014; Yu et al, 2015b). In mammals, the Hippo pathway is 

composed of a kinase cascade (two serine/threonine kinases, MST and LATS; and the adaptors 
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SAV1 for MST and MOB1 for LATS), downstream effectors (YAP and TAZ), and nuclear 

transcriptional factors (TEADs). MST phosphorylates and activates LATS, which in turn 

phosphorylates YAP and TAZ. The phosphorylated YAP/TAZ can be recognized by 14-3-3 

proteins, retained in the cytoplasm and eventually targeted by �-TRCP E3 ligase complex for 

degradation. When the Hippo pathway is inactivated, unphosphorylated YAP/TAZ enter into the 

nucleus, where they associate with TEAD transcriptional factors to promote the transcription of 

genes that are involved in proliferation and survival.  

 

Notably, many Hippo pathway components and regulators contain either the WW domain or its 

proline-rich peptide ligand, mostly “PPxY” motif (P, proline; Y, tyrosine; x, any amino acid; 

hereafter named as “PY” motif)(Salah & Aqeilan, 2011a; Sudol, 2010b). YAP, TAZ, SAV1 and 

KIBRA, an upstream component of the Hippo kinase cascade(Yu et al, 2010), are four known 

WW domain-containing components of the Hippo pathway(Salah & Aqeilan, 2011a). In the 

nucleus, the WW domain of YAP/TAZ is a requirement for their association with a group of 

nuclear transcriptional factors and regulators that contain the PY motif to regulate gene 

transcription (Chang et al, 2018; Ferrigno et al, 2002a; Haskins et al, 2014a; Liu et al, 2018; 

Qiao et al, 2016; Strano et al, 2005; Strano et al, 2001; Zhang et al, 2011). In the cytoplasm, the 

PY motif of LATS1/2 is involved in the LATS1/2-mediated YAP/TAZ phosphorylation(Hao et 

al, 2008b; Verma et al, 2018); several PY motif-containing proteins can physically bind the WW 

domain of YAP/TAZ and promote YAP/TAZ’s cytoplasmic translocation(Chan et al, 2011; 

Espanel & Sudol, 2001; Liu et al, 2013b; Michaloglou et al, 2013; Tavana et al, 2016; Wang et 

al., 2011; Wang et al., 2012b; Wang et al., 2014a; Zhao et al, 2011b). Moreover, the 

phosphorylated YAP/TAZ can negatively regulate Wnt pathway by forming a complex with 
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DVL2, which is mediated by the WW domain of YAP/TAZ and the PY motif of DVL2(Varelas 

et al, 2010). As a Hippo upstream component, KIBRA can similarly associate with several 

Hippo PY motif-containing proteins and negatively regulate YAP(Tavana et al., 2016; Wilson et 

al, 2014b). On the other hand, several WW domain-containing proteins have been shown to 

modulate the Hippo pathway activity by regulating the Hippo PY motif-containing components 

and regulators(Abu-Odeh et al, 2014; Salah et al, 2013; Salah et al, 2011; Ulbricht et al, 2013; 

Wang et al, 2015a; Yeung et al, 2013). Collectively, these facts suggest that the WW domain and 

PY motif-mediated protein-protein interaction plays a fundamental role in building up the major 

framework of the Hippo pathway. 

 

Actually, ~100 WW domains and 2,000 PY motif-containing peptides have been predicted in the 

human proteome(Tapia et al., 2010b), raising an issue of binding specificity for the proteins 

containing WW domain and PY motif. Indeed, a large scale of WW domain array screen only 

confirmed 10% of the tested WW domain-ligand interactions(Hu et al., 2004). Several large-

scale proteomic studies exclusively identified a group of PY motif-containing proteins (e.g., 

LATS1/2, AMOTs, PTPN14) as the binding partners for the Hippo WW domain-containing 

components(Couzens et al, 2013b; Hauri et al, 2013b; Wang et al., 2014a). These facts indicate 

the binding specificity for the Hippo WW domain-mediated protein-protein interaction, while the 

underlying mechanism is still largely unknown.  

 

In this study, we demonstrated the WW domain binding specificity for the Hippo pathway 

proteins and uncovered a highly conserved amino acid sequence required for it. By using this 

criterion, we identified STXBP4 as a novel Hippo pathway regulator in human proteome. 
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Mechanistically, STXBP4 assembled a complex with a-catenin and several Hippo PY motif-

containing components/regulators to negatively regulate YAP when actin cytoskeleton tension is 

low. Moreover, both TCGA data and tissue array studies suggested STXBP4 as a potential tumor 

suppressor in human kidney cancer, whose downregulation is significantly correlated with YAP 

activation in clear cell renal cell carcinoma. Collectively, our study not only elucidated the WW 

domain binding specificity for the Hippo pathway protein-protein interaction network, but also 

identified STXBP4 as a Hippo pathway regulator and a potential tumor suppressor in kidney 

cancer development.  

 

2.4 Results 

Binding specificity exists for the Hippo WW domain-containing components 

We re-analyzed our previously published proteomic data(Wang et al., 2014a) for four Hippo 

WW domain-containing components YAP, TAZ, SAV1 and KIBRA (Figure 2.1A), and found 

that most of the known Hippo PY motif-containing proteins (e.g., AMOT, AMOTL1, AMOTL2, 

LATS1, LATS2, PTPN14, PTPN21, WBP2) were hardly detected in the SAV1-associated 

protein complex (Figure 2.1B). Moreover, proteomic analysis of the WW domains isolated from 

these four Hippo components (Figure S2.1A) further confirmed this finding, where the WW 

domain of YAP, TAZ and KIBRA, but not that of SAV1, retrieved most of these known Hippo 

PY motif-containing proteins (Figure 2.1B). These data suggest that the WW domain of SAV1 

is different from that of YAP, TAZ and KIBRA in associating with the known Hippo PY motif-

containing proteins.  
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Next, we expanded our proteomic analysis for additional 22 WW domain-containing proteins 

(Figure S2.1B; Tables S2.1-S2.3) and examined their ability to isolate these known Hippo PY 

motif-containing proteins. Consistent with previous reports(Abu-Odeh et al., 2014; Salah et al., 

2013; Ulbricht et al., 2013; Wang et al., 2015a; Yeung et al., 2013), WWOX, BAG3 and 

members of the HECT family of E3 ligases NEDD4L, WWP1 and WWP2 were found to form 

complexes with the Hippo PY motif-containing proteins such as AMOT family proteins, 

CCDC85C and WBP2 (Figure 2.1C). However, we failed to identify these Hippo PY motif-

containing proteins as the binding proteins for other tested WW domain-containing proteins 

(Figure 2.1C). Moreover, the high-confident interacting proteins (HCIPs) of the Hippo WW 

domain-containing components were involved in different signaling pathways from those of the 

control WW domain-containing proteins (Figure 2.1D and Table S2.4). We also performed 

proteomic analysis for the WW domains isolated from 13 randomly selected WW domain-

containing proteins, and found that only 10.2% of the HCIPs were shared by the Hippo and 

control WW domains (Figure S2.1C). Taken together, these results indicate that the WW 

domains of the Hippo pathway components YAP, TAZ and KIBRA possess a binding specificity 

with the known Hippo PY motif-containing proteins. 

 

Validation of the Hippo WW domain binding specificity 

To validate our proteomic findings, we examined the interaction between a series of WW 

domain-containing proteins and AMOT family proteins. Unlike YAP, TAZ and KIBRA, SAV1 

failed to bind AMOT and AMOTL1 (Figure 2.1E). Consistently, we hardly detected the 

association between SAV1 and LATS1 in our experimental setting (Appendix Figure S2.7A). 

Moreover, BAG3, WWOX and several members of the HECT family of E3 ligases can interact 
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with AMOT proteins (Figure 2.1E), which is consistent with our proteomic study (Figure 

2.1C). However, other tested WW domain-containing proteins as well as their derived WW 

domains failed to bind AMOT family proteins (Figures 2.1E and 2.1F). These results 

demonstrate the WW domain binding specificity for the Hippo pathway proteins. 

 

A highly conserved amino acid sequence is required for the Hippo WW domain binding 

specificity  

To further explore the underlying mechanism, we analyzed the WW domain protein sequence for 

the Hippo pathway components as well as WWOX, BAG3 and several members of the HECT 

family of E3 ligases, which can bind the known Hippo PY motif-containing proteins (Figure 

2.2A). Interestingly, in addition to the two tryptophan residues, additional 9 amino acids were 

found to be highly conserved among these WW domains (Figure 2.2A). We hypothesized that 

this conserved 9-amino acid sequence could be required for the specific association with the 

known Hippo PY motif-containing proteins.  

 

To test this hypothesis, we examined the identified 9-amino acid sequence in the control WW 

domain-containing proteins that failed to bind the Hippo PY motif-containing proteins (Figure 

2.1C) and found that their WW domains have at least one of these 9 amino acids replaced by 

other residues (Figures 2.2B and S2.2A). As for SAV1, the conserved glutamate residue within 

this 9-amino acid sequence was found changed to a serine in its WW domain (Figure 2.2A). 

Consistently, mutating either of these identified 9 amino acids to alanine dramatically disrupted 

the association of AMOT with TAZ (Figure 2.2C) or its WW domain (Figure 2.2D). Similar 

findings were also observed for both KIBRA (Figure 2.2E) and YAP (Figure 2.2F). Notably, 
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mutations of the G and E residues among these identified 9 amino acids are less detrimental to 

the Hippo WW-PY interaction as compared with other identified sites (Figures 2.2C-2.2E). We 

also tested the conservative substitution for the “E/D”, “Y/F” or “F/Y” of this conserved amino 

acid sequence, and found that the association of AMOT with TAZ and KIBRA was not affected 

by these substitutions (Appendix Figure S2.7B). Interestingly, an interaction between SAV1 

and AMOT was recovered when the unmatched serine residue was replaced by glutamate, 

allowing SAV1 WW domain to fit the 9-amino acid sequence criterion (Figure 2.2G). Taken 

together, these results demonstrate that the identified 9-amino acid sequence determines the WW 

domain binding specificity for the Hippo pathway proteins. 

 

We also examined the Hippo WW domain-containing components in Drosophila and found that 

this 9-amino acid sequence was highly conserved in the WW domain of Yorkie and Kibra, while 

Salvador similarly contains a replacement of the conserved glutamate residue by alanine 

(Appendix Figure S2.7). By taking YAP as an example, conservation of this 9-amino acid 

sequence in the YAP WW domains can be even tracked to Capsapsora owczarzaki (Figure 

S2.2B and Table S2.5), an unicellular specie that is known to contain the functional Hippo 

pathway components(Sebe-Pedros et al, 2012). Interestingly, in Capsapsora owczarzaki, a PY 

motif was also identified in LATS (Figure S2.2C), suggesting that this conserved 9-amino acid 

sequence may play a crucial role for the Hippo pathway at its premetazoan origin.     

 

Role of the 9-amino acid sequence in assembly of a specific WW-PY complex involving the 

Hippo pathway proteins   
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Next, we analyzed a NMR solution structure of the YAP-WW1 domain (the first WW domain of 

YAP) and SMAD7-PY motif-containing peptide complex(Aragon et al, 2012). Interestingly, the 

identified 9 amino acids form as two functional groups.  

First, together with the second tryptophan (W199 of YAP-WW1), the conserved residues E178, 

Y188, H192 and T197 were involved in the binding interface with the SMAD7-PY motif 

(Figure S2.3A). Specifically, hydrogen bond (H-bond) formation was respectively paired 

between H192 (YAP-WW1 domain) and Y211 (SMAD7-PY motif), and T197 (YAP-WW1 

domain) and P209 (SMAD7-PY motif) (Figures S2.3B and S2.3C). Hydrophobic contact not 

only existed within the intramolecular interaction between the W199 and Y188 residues of 

YAP1-WW domain, but also mediated their intermolecular interaction with the P208 and P209 

residues within SMAD7-PY motif, respectively (Figures S2.3B and S2.3C). E178 (YAP-WW1 

domain) functioned in sustaining the intermolecular contact between H192 (YAP-WW1 domain) 

and Y211 (SMAD7-PY motif) by forming both electrostatic and H-bonding interactions with 

H192 (Figures S2.3B and S2.3C).  

 

Second, together with the first tryptophan (W177 of YAP-WW1 domain), the rest residues L173, 

P174, G176, F189 and P202 formed a hydrophobic cluster at the backside of the YAP-

WW1/SMAD7-PY complex (Figures S2.3A and S2.3C). Although not directly interacted with 

SMAD7-PY motif, this hydrophobic cluster may maintain a unique YAP-WW1 domain structure 

to facilitate its binding with SMAD7-PY motif. Since these hydrophobic cluster residues are also 

frequently replaced by other amino acids in the non-Hippo WW domains (Figures 2.2B and 

S2.2A), we consider them as part of the determinants for the specific Hippo WW-PY 

recognition.  
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To further determine the role of this identified 9-amino acid sequence from a structure-based 

perspective, we mutated each of these conserved residues into alanine in silico and performed 

root-mean-square deviation (RMSD) analyses using the average unbound (apo) structure of 

YAP-WW1 domain as a reference. Interestingly, mutating either of the identified residues within 

the backside hydrophobic cluster significantly altered the YAP-WW1 protein structure as 

indicated by their relatively high RMSD values, while this was not the case for the residues 

within the binding interface with SMAD7-PY motif (Figure S2.3D). These results further 

confirm the hypothesis that the backside hydrophobic cluster may play a role in maintaining a 

functional YAP-WW1 structure. In addition, mutating either of the conserved residues altered 

the complex structure (Figure S2.3E and Appendix Figure S2.8A) and increased the average 

distance between YAP-WW1 domain and SMAD7-PY motif peptide (Figure S2.3F), indicating 

the intervention of their complex formation. As a control, we analyzed a NMR solution structure 

of the APBB3-WW domain (Appendix Figure S2.8B). The APBB3-WW domain failed to bind 

the Hippo PY motif-containing proteins (Figure 2.1F), since it contains two unmatched residues 

(as compared to the identified 9-amino acid sequence) locating in the PY motif binding interface 

(Figures 2B and S2.2A; Appendix Figure S2.8B). Consistently, the average distance between 

APBB3-WW domain and SMAD7-PY motif peptide is comparable to that between YAP-WW1 

domain mutants and SMAD7-PY motif peptide (Figure S2.3F), suggesting an unstable complex 

formation for APBB3-WW domain and SMAD7-PY motif. Notably, the standard deviation of 

average distance value for both YAP-WW1 domain mutants and APBB3-WW domain 

complexes is relatively larger than that of the control YAP-WW domain complex (Figure 
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S2.3F), indicating a substantial movement between SMAD7-PY motif peptide and the YAP-

WW1 domain mutants as well as APPB3-WW domain.  

 

Taken together, these simulation analyses suggest that the identified 9-amino acid sequence is 

involved in binding PY motif and maintaining a unique WW domain structure, which both 

determine the Hippo WW domain binding specificity with the known Hippo PY motif-

containing proteins.  

 

Identification of STXBP4, a WW domain-containing protein, whose WW domain fits the 9-amino 

acid sequence criterion  

Next, we searched all the WW domain-containing proteins in the human proteome and identified 

12 WW domain-containing proteins whose WW domains fit such a 9-amino acid sequence 

(Figure S2.4 and Table S2.6). Among them, role of STXBP4 in the Hippo pathway regulation 

has not been fully characterized (Figure S2.4). Although no STXBP4 ortholog is identified in 

Drosophila, this 9-amino acid sequence of the STXBP4 WW domain was largely conserved in 

different species (Figure 2.3A). Interestingly, STXBP4 can form a complex with several Hippo 

PY motif-containing regulators including AMOT, AMOTL2 and PTPN14 (Figure 2.3B). 

Mutating either of the conserved 9-amino acid residues diminished the interaction between 

STXBP4 and AMOT (Figure 2.3C). As expected, the association between STXBP4 and these 

PY motif-containing Hippo regulators are mediated by the WW domain of STXBP4 (Appendix 

Figure S2.9A) and the PY motif of these Hippo regulators (Appendix Figure S2.9B).  
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To gain a structural insight into the STXBP4 WW domain, we compared STXBP4-WW and 

YAP-WW1 through ensemble molecular dynamics simulations and calculating binding free 

energies (DG) using the molecular mechanics Poisson-Boltzman surface area (MM/PBSA) 

method. As shown in Appendix Figure S2.9C, the top 5 predicted clusters for the STXBP4-

WW/SMAD7-PY complex is similar to those of the YAP-WW1/SMAD7-PY complex. By 

comparing the top one cluster for these two WW-PY complexes, we found that the identified 9-

amino acid residues as well as the two tryptophan residues are similarly distributed within both 

the STXBP4-WW/SMAD7-PY and YAP-WW1/SMAD7-PY complexes, where they form as two 

groups to respectively involve in the binding with SMAD7-PY motif and assemble a supportive 

backside hydrophobic cluster for each WW domain (Figure 2.3D). The average distance 

between STXBP4-WW domain and SMAD7-PY motif is close to that between YAP-WW1 

domain and SMAD7-PY motif with a similarly low standard deviation value (Figure S2.3F). 

Moreover, binding free energy (DG) from MM/PBSA calculations further indicates the similarity 

between YAP-WW1 and STXBP4-WW when they form as a complex with SMAD7-PY motif 

peptide (Figure 2.3E). Taken together, these data suggest that the STXBP4 WW domain 

possesses the Hippo WW domain binding specificity, endowing STXBP4 a potential role in the 

Hippo pathway. 

 

STXBP4 is a negative regulator of YAP 

To test the role of STXBP4 in regulation of the Hippo pathway, we examined YAP activation in 

the STXBP4 knockout (KO) cells (Appendix Figure S2.10). Interestingly, loss of STXBP4 

significantly reduced YAP phosphorylation (Figure 2.3F), moved YAP into the nucleus (Figure 

3G) and activated YAP downstream gene transcription (Figure 2.3H). Notably, either deleting 
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the WW domain or mutating the histidine residue out of the identified 9-amino acid sequence to 

alanine failed to rescue YAP’s cytoplasmic localization (Figure 2.3I), suggesting that the WW 

domain is required for the STXBP4-mediated YAP inhibition.    

 

The observation that STXBP4 deficiency reduced YAP phosphorylation at S127 (Figure 2.3F) 

suggests that the Hippo pathway is inhibited in the STXBP4 KO cells. Indeed, as shown in 

Figure 2.3F, loss of STXBP4 suppressed LATS phosphorylation but did not affect that of MST 

or its substrate MOB1. These data suggest that STXBP4 is required for LATS activation in the 

Hippo pathway.  

 

Multiple upstream signaling events have been identified to regulate the Hippo pathway(Yu et al., 

2015b). Next, we examined the signaling context for the STXBP4-mediated Hippo pathway 

regulation. Interestingly, loss of STXBP4 attenuated YAP phosphorylation when actin 

cytoskeleton was either depolymerized or its tension was inhibited (Figure 2.3J); whereas, YAP 

was still fully phosphorylated under serum and glucose-deprived conditions (Figure 2.3J). These 

data suggest that STXBP4 is involved in the actin cytoskeleton-mediated Hippo pathway 

regulation.  

 

STXBP4 involves in a protein-protein interaction network comprising multiple Hippo pathway 

components and regulators 

To elucidate the mechanism by which STXBP4 regulates the Hippo pathway, we purified the 

STXBP4-associated protein complex and characterized its binding partners by mass 

spectrometry analysis. As shown in Figure 2.4A, all the AMOT family proteins were identified 
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to form a complex with STXBP4, which is consistent with our previous findings (Figures 2.3B 

and Appendix Figure S2.9A). Interestingly, we also identified a-catenin, a known Hippo 

upstream regulator(Feng et al, 2016; Rauskolb et al, 2014; Schlegelmilch et al, 2011; Vite et al, 

2018), as a binding partner for STXBP4 (Figure 2.4A). STXBP4 was also reciprocally identified 

as a binding protein for some Hippo pathway components (e.g., LATS1, LATS2, TAZ) and 

regulators (e.g., AMOT, AMOTL1, AMOTL2, PTPN14)(Couzens et al., 2013b; Huttlin et al, 

2017; Wang et al., 2014a) (Figure 2.4A). Collectively, these data suggest that STXBP4 involves 

in a protein-protein interaction network comprising a group of Hippo pathway components and 

regulators.  

 

Notably, most of these STXBP4-associated proteins are PY-motif containing proteins (Figure 

2.4A), suggesting that STXBP4 WW domain is required here. Since a-catenin does not contain a 

PY motif, we further characterized the a-catenin-binding region in STXBP4. To achieve this, a 

series of STXBP4 truncation and deletion mutants were generated (Appendix Figure S2.11A). 

As shown in Appendix Figure S6B, deletion of the 300~500 amino acid residues of STXBP4, 

but not its WW domain, fully abolished its association with a-catenin. Moreover, we failed to 

further narrow down the a-catenin binding region in STXBP4 (Appendix Figure S2.10C), 

suggesting that this identified 300~500 amino acid sequence region is required for its interaction 

with a-catenin.  

 

Taken together, these data indicate that STXBP4 can form a complex with several Hippo PY 

motif-containing proteins and a-catenin through its WW domain and the 300~500 amino acid 

sequence region, respectively.\ 
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STXBP4 functions as a scaffold protein to assemble a protein complex including a-catenin 

AMOT, LATS and YAP 

To test this hypothesis, we performed a sequential pulldown/immunoprecipitation assay using 

exogenously expressed SFB-STXBP4 and Myc-a-catenin in HEK293T cells. As shown in 

Figure 2.4B, we first isolated STXBP4-associated protein complex using streptavidin beads, 

eluted the complex with biotin, and purified the a-catenin-associated protein complex through 

immunoprecipitation. This sequential purification approach can help to characterize the proteins 

within the STXBP4/a-catenin protein complex. Consistent with our proteomic data (Figure 4A), 

AMOT, LATS1 and YAP were all identified within the STXBP4/a-catenin protein complex 

(Figure 2.4B).  

 

Next, we examined the role of STXBP4 in this multi-protein complex. Overexpression of 

STXBP4 induced the interaction of a-catenin with both AMOT and LATS1 (Figure 2.4C); 

while loss of STXBP4 largely attenuated the association of a-catenin with AMOT, LATS1 and 

YAP (Figure 2.4D). In addition, STXBP4 promoted the co-localization between AMOT and a-

catenin onto cell adherens junction/membrane region, where both LATS1 and YAP were also 

identified (Figure 2.4E). These results suggest a scaffold role of STXBP4 in assembly of a 

protein complex containing at least a-catenin, AMOT, LATS and YAP at adherens junctions.  

 

Both the WW domain and a-catenin association are required for the STXBP4-mediated YAP 

regulation 

Given the potential tumor suppressive role of STXBP4 in targeting YAP, we next examined the 

genetic alteration of STXBP4 in the cBioportal database and found that STXBP4 alleles harbor a 
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series of mutations within cancer patient samples (Appendix Figure S2.12A and Table S2.7). 

Four missense mutations that are localized in the a-catenin-binding region (Figure 2.4F) 

disrupted the interaction between STXBP4 and a-catenin (Figure 2.4G). As for the STXBP4 

WW domain, four out of the identified 9 amino acid residues were found mutated in 

oligodendrogioma (G501E), bladder urothelial carcinoma (Y513C), uterine carcinosarcoma 

(H517Y) and cutaneous melanoma (P527L), respectively (Figure 2.4F), and they all diminished 

the association between STXBP4 and AMOT (Figure 2.4H). Notably, these cancer-derived 

missense mutations in either a-catenin-binding region or the WW domain of STXBP4 all failed 

to rescue YAP’s cytoplasmic localization in the STXBP4 KO cells (Appendix Figure S2.12B), 

suggesting that association with a-catenin and the Hippo PY motif-containing 

components/regulators is required for the STXBP4-dependent the Hippo pathway regulation.  

 

STXBP4 functions as a potential mechano-transducer involved in actin cytoskeleton-mediated 

Hippo pathway regulation 

Notably, a-catenin is known to play a critical role in mechanotransduction(Charras & Yap, 2018; 

Yonemura et al, 2010), and loss of STXBP4 significantly attenuated YAP phosphorylation upon 

disruption of actin cytoskeleton or inhibition of its tension (Figure 2.3J). Interestingly, 

depolymerization of actin cytoskeleton by latrunculin B or inhibition of its tension by 

blebbistatin induced the association of STXBP4 with LATS1, AMOT and a-catenin (Figure 

2.4I). Reconstitution of STXBP4, but not its mutants with missense mutations at its a-catenin-

binding region and WW domain (Figure 2.4F), significantly rescued YAP phosphorylation 

when actin cytoskeleton tension was inhibited (Figure 2.4J). These data indicate that the 

STXBP4-mediated protein complex formation with a-catenin and the Hippo PY motif-
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containing proteins plays a role in actin cytoskeleton-dependent regulation of the Hippo 

pathway.  

 

STXBP4 is frequently downregulated in kidney cancer correlated with YAP activation 

By analyzing the cancer database, FireBrowse, a platform developed to analyze 14,729 tumor 

sample data generated by The Cancer Genome Atlas (TCGA), we found that the mRNA level of 

STXBP4 was downregulated in all the listed kidney cancer subtypes (Figure 2.5A). This finding 

was further confirmed through a kidney tissue microarray analysis, where the expression of 

STXBP4 was found decreased in several types of human kidney cancer: 84.8% clear cell 

carcinoma, 100% papillary renal cell carcinoma, 50% chromophobe carcinoma, 66.7% 

carcinoma sarcomatodes and 50% high grade urothelial carcinoma of renal pelvis (Figure 2.5B). 

However, downregulation of STXBP4 was only observed in 10% normal kidney tissue (Figure 

2.5B), suggesting an inverse correlation between STXBP4 expression and kidney cancer 

formation (P=2.9´10-20, R=-0.41). Moreover, our TCGA data analysis indicated that low 

expression of STXBP4 was significantly correlated with the poor overall survival rate for the 

cancer patients with clear cell renal cell carcinoma (ccRCC) (Figure 2.5C), indicating that 

STXBP4 is a potential tumor suppressor in ccRCC.     

 

YAP is highly expressed and activated in multiple major human cancer types but genetic 

mutation for the Hippo pathway components is hardly detected(Jiang et al., 2015), suggesting 

that additional oncogenic alterations could lead to YAP activation for tumorigenesis. Since loss 

of STXBP4 activated YAP (Figures 2.3F-2.3H), we next examined the pathological correlation 

between STXBP4 and YAP using a kidney cancer tissue microarray. Consistent with previous 
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studies(Cao et al, 2014; Godlewski et al, 2018; Schutte et al, 2014), upregulation of YAP was 

observed in 57% (45 of 79) of ccRCC tissue samples, while only 20% (2 of 10) of normal kidney 

tissues showed high YAP expression (Figures 2.5D and 2.5E). Moreover, an inverse correlation 

between STXBP4 expression and YAP nuclear enrichment was found in the tissue samples with 

high YAP expression (P=0.0036, R=-0.46), where 94.7% (36 of 38) of the tested tissue samples 

with low STXBP4 expression had high nuclear enrichment of YAP (Figures 2.5D and 2.5E). 

However, there were still 10.6% (5 of 47) of the total tested specimens showing high STXBP4 

expression but YAP nuclear enrichment (Figure 2.5E). These results indicate that 

downregulation of STXBP4 may contribute to YAP activation in a substantial fraction of 

ccRCC; however, YAP can still be activated in other tumors via different mechanisms.  

 

Interestingly, although a general low expression of YAP was found in normal kidney tissues, we 

were still able to observe a relatively high expression of YAP in the podocytes of glomerulus 

region and partially in the convoluted tubule region (Figure 2.5D). Even though, these YAP 

highly expressed normal kidney regions still consistently showed a decreased STXBP4 

expression level (Figure 2.5D), suggesting that their inverse correlation in expression could 

involve in normal kidney physiology.       

 

Both the a-catenin association and functional WW domain are required for the STXBP4’s tumor 

suppressive function in kidney cancer 

To investigate the role of STXBP4 in kidney cancer, we first determined the STXBP4 expression 

in normal mouse kidney tissue and a group of human kidney-related cell lines. Interestingly, 

STXBP4 had an abundant expression in mouse kidney tissue, an embryonic kidney immortalized 
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cell line HEK293A and an immortalized human renal proximal tubular epithelial cell line 

RPTEC (Figure 2.5F). In contrast, STXBP4 showed moderate or low expressions in all the 

tested ccRCC cell lines (Figure 2.5F), where YAP was found majorly localized in the nucleus 

(Appendix Figure S2.13A). Overexpression of STXBP4, but not its two patient-derived 

missense mutants (R490C and P527L) (Figure 2.4F), in a ccRCC cell line 786-O (Appendix 

Figure S2.13B), significantly suppressed the xenograft tumor formation (Figures 2.5G and 

2.5H). Since the R490C and P527L mutations can respectively disrupt the STXBP4’s interaction 

with a-catenin (Figure 2.4G) and AMOT (Figure 2.4H), these results indicate that the 

association with a-catenin and a functional WW domain are both required for STXBP4’s tumor 

suppressive function. 

 

2.5 Discussion  

In this study, we identified a conserved 9-amino acid sequence within the WW domain of the 

Hippo pathway components and regulators (Figure 2.2), which is required for the specific Hippo 

WW-PY complex formation. Notably, this identified 9-amino acid sequence has at least one 

residue altered in all the tested control WW domain-containing proteins (Figures 2.2B and 

S2.2A), which could help to explain why these control WW domain-containing proteins fail to 

interact with the Hippo PY motif-containing proteins (Figures 2.1E and 2.1F). Since the “WW-

PY” recognition is widely present in the Hippo pathway, manipulation of their recognition is 

likely to control the outputs of this key signaling pathway in tissue/organ growth and 

tumorigenesis. Thus, it would be highly exciting if this Hippo WW domain determinants could 

be utilized for the development of small molecules or peptides to precisely modulate YAP/TAZ 

activity in cancer therapy and tissue repair. 
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Mechanistically, the identified 9-amino acid sequence accounts for both a suitable WW domain 

structure and the binding interface with the PY motif peptide (Figures S2.3A-S2.3C), providing 

a structural basis for the Hippo WW domain binding specificity. Here, our study is only focused 

on the individual WW domain binding property. Actually, the mechanism underlying the specific 

“WW-PY” recognition could be more complicated given the role of WW tandem in mediating 

PY motif binding(Lin et al, 2019) and the potential homo- and hetero-dimer formations among 

WW domains(Sudol & Harvey, 2010b). Moreover, although our current study mostly focused on 

the WW domain, it is highly possible that its cognate PY motif ligand could also contribute to 

the specific Hippo “WW-PY” recognition. However, the PY motif is relatively short, flexible 

and could be easily buried into a higher level of protein structure, making it difficult to assess its 

role at a protein level. Thus, we did not further address this question from the PY motif-based 

perspective.  

 

Among the Hippo pathway components, the SAV1 WW domain functions differently from that 

of YAP, TAZ and KIBRA to bind Hippo PY motif-containing proteins (Figure 2.1). This 

difference may arise from the change of one conserved glutamate residue in the identified 9-

amino acid sequence for the SAV1 WW domain in both human (Figures 2.2A and 2.2B) and 

Drosophila (Appendix Figure S2.7). Based on our E/D substitution data (Appendix Figure 

S2.7B) and the structural analysis (Figure S2.3C), the negative charge for this residue position 

could be essential. Interestingly, the substituted serine residue within the human SAV1 WW 

domain can be phosphorylated in vivo (www.phosphosite.org), suggesting that the association 
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between SAV1 and Hippo PY motif-containing proteins could be regulated through a yet-to-be 

characterized phosphorylation event.  

There are only a few WW domain-containing proteins, whose WW domains fit such 9-amino 

acid sequence in human proteome (Figure S2.4 and Table S2.6). Among them, STXBP4 was 

found as a negative regulator for YAP (Figures 2.3F-2.3H) by forming a protein complex with a 

series of Hippo PY motif-containing proteins and an adherens junction component, a-catenin 

(Figure 2.4A). Interestingly, STXBP4 serves as a scaffold protein in this network and transduces 

actin-based mechanical cues to regulate the Hippo pathway. Since a-catenin is known to play a 

role in both cell density and cytoskeleton tension-dependent regulation of YAP(Feng et al., 

2016; Rauskolb et al., 2014; Schlegelmilch et al., 2011; Vite et al., 2018), our findings provided 

molecular insights into its downstream signaling events. Under the condition with low actin 

cytoskeleton tension, STXBP4 recruits several Hippo PY motif-containing proteins including at 

least AMOT, LATS to form a complex with a-catenin at adherens junction. YAP/TAZ are also 

within this complex based on their interaction with AMOT and LATS (Figure S2.5). In 

proximity, LATS phosphorylates and inhibits YAP. When mechanical cues increase actin 

cytoskeleton tension, both the adherens junction-associated a-catenin and the filament actin-

bound AMOT would be affected in their conformation, resulting in the protein complex 

disassembly and YAP activation (Figure S2.5). Exactly how this a-catenin-STXBP4-Hippo PY 

proteins axis is coordinated with other related signaling events(Dutta et al, 2018; Low et al, 

2014; Qiao et al, 2017) in regulating the interplay between actin cytoskeleton and the Hippo-

YAP/TAZ pathway deserves further investigation.  
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Intriguingly, our TCGA database and tissue microarray studies suggested that STXBP4 is a 

potential tumor suppressor in kidney cancer (Figures 2.5A-2.5C) and its downregulation is 

significantly correlated with YAP activation in ccRCC tissues (Figures 2.5D and 2.5E). YAP 

has been found highly expressed and activated in human kidney cancer including ccRCC(Cao et 

al., 2014; Godlewski et al., 2018; Schutte et al., 2014). Here, our study identified a pathological 

relevance between STXBP4 and YAP, providing a potential mechanism for the YAP activation 

in ccRCC. Notably, a CpG island was identified in the STXBP4 promoter, suggesting that the 

loss of STXBP4 could occur due to its promoter methylation. In addition, STXBP4 gene alleles 

harbor a relative high mutation rate (13.45%) including nonsense mutation (6.92%), frameshift 

deletion (1.92%), in frameshift deletion (0.38%) and gene fusion (4.23%) (Appendix Figure 

S2.12A), which could also partially explain the loss of STXBP4 in cancer.  

 

STXBP4 is originally identified as an insulin-regulated protein involved in GLUT4-mediated 

glucose transport in adipocyte(Min et al, 1999), and functions as an inhibitory protein for the 

SNARE complex-dependent membrane fusion(Yu et al, 2013). Dysregualted STXBP4 

expression was associated with some SNPs in breast cancer(Caswell et al, 2015; Darabi et al, 

2016; Masoodi et al, 2017). Recent studies also implicated the role of STXBP4 in squamous cell 

carcinomas, by regulating N-terminally truncated isoform of p63 (DNp63) (Otaka et al, 2017; 

Rokudai et al, 2018). Together with these studies, our findings in kidney cancer suggested a 

complex role of STXBP4 in cancer development, which could depend on tissue context. 

 

2.6 Materials and Methods 

Antibodies and chemicals 
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For Western blotting, anti-a-tubulin (T6199-200UL, 1:5000 dilution), anti-Flag (M2) (F3165-

5MG, 1:5000 dilution), and anti-AMOTL1 (HPA001196, 1:1000 dilution) antibodies were 

obtained from Sigma-Aldrich. Anti-Myc (sc-40, 1:500 dilution) and anti-GFP (sc-9996, 1:1000 

dilution) antibodies were purchased from Santa Cruz Biotechnology. Anti-phospho-YAP (S127) 

(4911S, 1:1000 dilution), anti-phospho-LATS1 (Thr1079) (8654S, 1:1000 dilution), anti-LATS1 

(3477S, 1:1000 dilution), anti-phospho-MST (Thr180/Thr183) (3681S, 1:1000 dilution), anti-

MST1 (3682S, 1:1000 dilution), anti-phospho-MOB1 (Thr35) (8699S, 1:1000 dilution), anti-

MOB1 (3863S, 1:2000 dilution) and anti-NF2 (12896S, 1:2000 dilution) antibodies were 

purchased from Cell Signaling Technology. The AMOT, AMOTL2, PTPN14 and YAP 

polyclonal antibodies were generated as previously described(Wang et al., 2011; Wang et al., 

2012b). The STXBP4 antiserum was raised against MBP-STXBP4 (the 251~553 amino acid 

residues) and polyclonal antibody was affinity-purified using an AminoLink Plus Immobilization 

and Purification Kit (Pierce). 

 

For immunostaining, an anti-YAP (sc-101199, 1:200 dilution) monoclonal antibody was 

purchased from Santa Cruz Biotechnology. Anti-hemagglutinin (HA) polyclonal antibody 

(3724S, 1:3000 dilution) was obtained from Cell Signaling Technology. 

 

For immunohistochemical staining, an anti-YAP (14074S, 1:15 dilution) monoclonal antibody 

was purchased from Cell Signaling Technology. The STXBP4 antiserum was raised against 

MBP-STXBP4 (the 1~250 amino acid residues) and polyclonal antibody (1:200 dilution) was 

affinity-purified using an AminoLink Plus Immobilization and Purification Kit 

(Pierce).Latrunculin B and blebbistatin were obtained from Sigma-Aldrich. 
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Constructs and viruses 

Plasmids encoding the indicated genes were obtained from the Human ORFeome V5.1 library or 

purchased from Harvard Plasmid DNA Resource Core and Dharmacon. All constructs were 

generated via polymerase chain reaction (PCR) and subcloned into a pDONOR201 vector using 

Gateway Technology (Invitrogen) as the entry clones. For tandem affinity purification, all entry 

clones were subsequently recombined into a lentiviral Gateway-compatible destination vector for 

the expression of C-terminal SFB-tagged fusion proteins. Gateway-compatible destination 

vectors with the indicated SFB tag, HA tag, GFP tag or Myc tag were used to express various 

fusion proteins. PCR-mediated mutagenesis was used to generate all the indicated site mutations 

and internal region/domain deletion mutations.  

 

All lentiviral supernatants were generated by transient transfection of HEK293T cells with the 

helper plasmids pSPAX2 and pMD2G (kindly provided by Dr. Zhou Songyang, Baylor College 

of Medicine) and harvested 48 hours later. Supernatants were passed through a 0.45-µm filter 

and used to infect cells with the addition of 8 µg/mL hexadimethrine bromide (Polybrene) 

(Sigma-Aldrich).  

 

Cell culture and transfection 

HEK293T, ACHN, SLR20 and UMRC6 cell lines were purchased from ATCC and kindly 

provided by Drs. Boyi Gan and Junjie Chen (MD Anderson Cancer Center). HEK293A cells 

were purchased from ThermoFisher and kindly provided by Dr. Jae-Il Park (MD Anderson 

Cancer Center). RPTEC, 786-O, RCC4 and UMRC2 cells were purchased from ATCC and 



 
102 

kindly provided by Dr. Olga Razorenova (University of California, Irvine). HEK293T, 

HEK293A, RCC4, UMRC2 and UMRC6 cells were maintained in Dulbecco’s modified essential 

medium (DMEM) supplemented with 10% fetal bovine serum at 37°C in 5% CO2 (v/v). SLR20 

and 786-O cells were grown in RPMI-1640 medium supplemented with 10% fetal bovine serum 

at 37°C in 5% CO2 (v/v). RPTEC cells were maintained in DMEM/F12 medium supplemented 

with 5 pM triiodo-L-thyronine, 10 ng/mL epidermal growth factor, 3.5 µg/mL ascorbic acid, 5 

µg/mL transferrin, 5 µg/mL insulin, 25 ng/mL prostaglandin E1, 25 ng/mL hydrocortisone, 8.65 

ng/mL sodium selenite and 1.2 mg/mL sodium bicarbonate at 37 °C in 5% CO2 (v/v).  All the 

culture media contain 1% penicillin and streptomycin. Plasmid transfection was performed using 

a polyethylenimine reagent. 

 

Immunofluorescent staining 

Immunofluorescent staining was performed as described previously(Wang et al, 2008) with 

minor modifications. Briefly, cells cultured on coverslips were fixed with 4% paraformaldehyde 

for 10 minutes at room temperature and then extracted with 0.5% Triton X-100 solution for 5 

minutes. For a-catenin-related immunofluorescent staining, cells were pretreated with PBS 

solution containing 0.5% Trion X-100 and 1% paraformaldehyde for 4 minutes, and subjected to 

4% paraformaldehyde fixation. After blocking with Tris-buffered saline with Tween 20 

containing 1% bovine serum albumin, the cells were incubated with the indicated primary 

antibodies for 1 hour at room temperature. After that, the cells were washed and incubated with 

fluorescein isothiocyanate-, rhodamine- and Cy5-conjugated secondary antibodies for 1 hour. 

Cells were counterstained with 100 ng/mL 4′,6-diamidino-2-phenylindole (DAPI) for 2 minutes 
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to visualize nuclear DNA. The coverslips were mounted onto glass slides with an anti-fade 

solution and visualized under a Nikon Eclipse Ti spinning-disk confocal microscope. 

Tandem affinity purification (TAP) of SFB-tagged protein complexes  

HEK293T cells stably expressing the indicated SFB-tagged proteins were selected by culturing 

in medium containing 2 µg/mL puromycin and confirmed by immunostaining and Western 

blotting as described previously(Wang et al., 2014a). For TAP, HEK293T cells were lysed in 

NETN buffer (with protease and phosphatase inhibitors) at 4°C for 20 minutes. The crude lysates 

were centrifuged at 14,000 rpm for 15 minutes at 4°C. The supernatants were incubated with 

streptavidin-conjugated beads (GE Healthcare) for 1 hour at 4°C. The beads were washed 3 

times with NETN buffer, and bound proteins were eluted with NETN buffer containing 2 mg/mL 

biotin (Sigma-Aldrich) for 2 hours at 4°C. The elutes were incubated with S protein beads 

(Novagen) for 1 hour. The beads were washed three times with NETN buffer and subjected to 

sodium dodecyl sulfate polyacrylamide gel electrophoresis. Each pulldown sample was run just 

into the separation gel so that the whole bands could be excised as one sample and subjected to 

in-gel trypsin digestion and MS analysis.  

 

Mass spectrometry (MS) analysis 

The mass spectrometry was performed as described previously(Tavana et al., 2016; Wang et al., 

2014a). Briefly, the excised gel bands described above were cut into approximately 1-mm3 

pieces. The gel pieces were then subjected to in-gel trypsin digestion(Shevchenko et al, 1996) 

and dried. Samples were reconstituted in 5 µL of high-performance liquid chromatography 

(HPLC) solvent A (2.5% acetonitrile, 0.1% formic acid). A nanoscale reverse-phase HPLC 

capillary column was created by packing 5-µm C18 spherical silica beads into a fused silica 
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capillary (100 µm inner diameter × ~20 cm length) with a flame-drawn tip. After the column was 

equilibrated, each sample was loaded onto the column via a Famos autosampler (LC Packings). 

A gradient was formed, and peptides were eluted with increasing concentrations of solvent B 

(97.5% acetonitrile, 0.1% formic acid).   

 

As the peptides eluted, they were subjected to electrospray ionization and then entered into an 

LTQ-Velos mass spectrometer (Thermo Fisher Scientific). The peptides were detected, isolated, 

and fragmented to produce a tandem mass spectrum of specific fragment ions for each peptide. 

Peptide sequences (and hence protein identity) were determined by matching protein databases 

with the fragmentation pattern acquired by the software program SEQUEST (ver. 28) (Thermo 

Fisher Scientific). Enzyme specificity was set to partially tryptic with two missed cleavages. 

Modifications included carboxyamidomethyl (cysteine, fixed) and oxidation (methionine, 

variable). Mass tolerance was set to 0.5 Da for precursor ions and fragment ions. The database 

searched was UniProt. Spectral matches were filtered to contain a false discovery rate of less 

than 1% at the peptide level using the target-decoy method(Elias & Gygi, 2007), and the protein 

inference was considered followed the general rules(Nesvizhskii & Aebersold, 2005), with 

manual annotation based on experiences applied when necessary. This same principle was used 

for isoforms when they were present in the database. The longest isoform was reported as the 

match.  

 

Bioinformatic analysis 

The full-length YAP, TAZ, SAV1 and KIBRA dataset was retrieved from a previous 

study(Wang et al., 2014a). The TAP-MS dataset for a group of full-length WW domain-
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containing proteins randomly selected from human proteome and the WW domains isolated from 

these proteins as well as the four Hippo pathway WW components (YAP, TAZ, SAV1 and 

KIBRA) were newly generated in this study. We combined these two datasets and assigned 

quality scores to the identified protein-protein interactions using MUSE algorithm as previously 

described(Li et al., 2016a), where a group of unrelated TAP-MS experiments (1,806 experiments 

using stably expressed TAP-tagged protein baits and 20 experiments using empty vector baits) 

were included as a control group. Through it, we considered any interaction with a MUSE score 

of at least 0.9 and raw spectra count greater than 1 to be a high-confident interacting protein 

(HCIP). The overall HCIP reproducibility rate was close to 85%, which increased when the 

cutoff peptide number increased. The full-length WW domain-containing proteins and their 

corresponded WW domains shared 47.5% HCIPs and only 10.2% overlapped HCIPs were 

identified for the WW domains isolated from the Hippo WW domain-containing components and 

the control ones (Figure S2.1C).  

 

The WW domain-containing proteins’ interactomes were enriched in signaling pathways, 

biological processes and diseases using the HCIPs identified in our studies. The P values were 

estimated using the Knowledge Base provided by Ingenuity Pathway software (Ingenuity 

Systems, www.ingenuity.com), which contains findings and annotations from multiple sources 

including the Gene Ontology database, KEGG pathway database, and Panther pathway database. 

Only statistically significant correlations (P < 0.05) are shown. The –log (P value) for each 

function and related HCIPs is listed. 
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Screen of human WW domain-containing proteins using the identified Hippo WW domain 

binding criterion 

All the WW domain-containing proteins were retrieved from human proteome using a Simple 

Modular Architecture Research Tool (SMART) (http://smart.embl-heidelberg.de) and the WW 

domain-containing protein list was further refined in Uniprot (https://www.uniprot.org). Based 

on the definition, the WW domain-containing proteins are defaulted with two tryptophan (W) 

residues as separated by 20-22 amino acids within the sequence. All the WW domain sequences 

were downloaded from Uniprot and subjected to scan with the identified 9-amino acid sequence 

manually. The list of all the human WW domain-containing proteins and the searching result are 

listed in Table S2.6.  

 

Gene inactivation by CRISPR/Cas9 system  

To generate the STXBP4 knockout cells, five distinct single-guide RNAs (sgRNA) were 

designed by CHOPCHOP website (https://chopchop.rc.fas.harvard.edu), cloned into lentiGuide-

Puro vector (Addgene plasmid # 52963), and transfected into HEK293A cells with lentiCas9-

Blast construct (Addgene plasmid # 52962). The next day, cells were selected with puromycin (2 

µg/ml) for two days and subcloned to form single colonies. Knockout cell clones were screened 

by Western blotting to verify the loss of STXBP4 expression and their genomic editing was 

further confirmed by sequencing (Appendix Figure S2.10).    

The sequence information for sgRNAs used for STXBP4 knockout cell generation is as follows:  

STXBP4_sgRNA1: AGACTTAATGTTGAGGCTTG;  
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STXBP4_sgRNA2: GGCTTGGTGTTGTTCCTTTG;  

STXBP4_sgRNA3: TGCTTTCACCAAAGTAGCCT;  

STXBP4_sgRNA4: GGAAACAGGCCTTGGCCTGA;  

STXBP4_sgRNA5: AGGTACTAGGAGGAATTAAC. 

 

RNA extraction, reverse transcription and real-time PCR 

RNA samples were extracted with TRIzol reagent (Invitrogen). Reverse transcription assay was 

performed using the Script Reverse Transcription Supermix Kit (Bio-Rad) according to the 

manufacturer’s instructions. Real-time PCR was performed using Power SYBR Green PCR 

master mix (Applied Biosystems). For quantification of gene expression, the 2-ΔΔCt method was 

used. GAPDH expression was used for normalization.  

The sequence information for each primer used for gene expression analysis is as 

follows: 

CTGF-Forward: 5¢-CCAATGACAACGCCTCCTG-3¢; 

CTGF-Reverse: 5¢-GAGCTTTCTGGCTGCACCA-3¢; 

CYR61-Forward: 5¢-AGCCTCGCATCCTATACAACC-3¢; 

CYR61-Reverse: 5¢-GAGTGCCGCCTTGTGAAAGAA-3¢; 

ANKRD1-Forward: 5¢-CACTTCTAGCCCACCCTGTGA-3¢; 

ANKRD1-Reverse: 5¢-CCACAGGTTCCGTAATGATTT-3¢. 

 

Molecular dynamics simulations 

All simulations were conducted using the AMBER18 molecular dynamics suite(Case et al, 2005; 

Case, 2017; Gotz et al, 2012; Salomon-Ferrer et al, 2013). Initial parameterization of complexes 
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and apo conformations was conducted with the LeAP module in AMBER18, using the protein 

force field ff14SB(Maier et al, 2015). YAP-WW1 domain bound to SMAD7-PY motif-

containing peptide was initially parameterized using the PDB structure, 2LTW. The SMAD7-PY 

motif-containing peptide structure was removed from 2LTW and docked to the STXBP4-WW 

domain (PDB: 2YSG) to form a complex (STXBP4-WW/SMAD7-PY). In the N-terminal 

sequence of STXBP4, four non-native residues (GSSG) were removed prior to docking and 

formation of the complex STXBP4-WW/SMAD7-PY to maintain consistent residue number 

with the YAP-WW1 domain. To generate the mutant complexes, all the conserved residues from 

2LTW were mutated into alanine using Modeller v9.21(Fiser et al, 2000; Marti-Renom et al, 

2000; Sali & Blundell, 1993; Webb & Sali, 2016), and initial docked poses between mutated 

YAP-WW1 domains and SMAD7 were generated using the HADDOCK docking program(de 

Vries et al, 2007; Dominguez et al, 2003) prior to simulation (Table S2.1). This docking 

procedure was also repeated for the APBB3-WW/SMAD7-PY simulations. An apo form of 

SMAD7-PY and YAP-WW1 (wild-type domain mutants: L173A/P174A, G176A, W177A, 

E178A, Y188A, F189A, H192A, T197A, W199A, P202A) were also derived from PDB 

structure 2LTW, for simulations (Table S2.1). Neutralized with either Na+ or Cl- counter ions, 

systems were solvated using a 10 Å buffer of TIP3P waters in a truncated octahedron box. All 

complexes and apo forms were minimized in a two-step process using the PMEMD program to 

remove any steric clashes and overlaps. Complexes were heated to 300K for 100 ps in the 

canonical (NVT) ensemble and equilibrated for 10 ns at 300K in the isothermal-isobaric (NPT) 

ensemble. Production runs were generated using the accelerated CUDA version of 

PMEMD(Gotz et al., 2012; Salomon-Ferrer et al., 2013) in the NVT ensemble with 2-fs time 
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steps at 300K, until MM/PBSA calculations converged. Table S2.1 outlines the complete 

simulation conditions for each complex and apo structure. 

 

The MM/PBSA module in AMBER18(Botello-Smith & Luo, 2015; Cai et al, 2010b; Miller et 

al, 2012a; Wang et al, 2017a; Wang et al, 2016a; Wang et al, 2012a; Wang & Luo, 2010; Wang 

et al, 2006) was employed to calculate the binding free energies (∆G) of wild-type and mutant 

complexes. Calculations do not take into consideration entropy; however, all complexes retain 

SMAD7-PY as a common binder meeting the necessary requirements for MM/PBSA calculation 

and comparison. Convergence of both YAP-WW1 and STXBP4-WW complex simulations was 

determined via cumulative average calculations of ∆G values and timeframes for all subsequent 

analyses (e.g. clustering, averaging, RMSD, etc.) of each complex were determined based on this 

metric.   

 

Utilizing the AMBER post-processing program (CPPTRAJ)(Roe & Cheatham, 2013) module in 

the AMBER18 package, clustering was performed for each complex using only the Ca atoms in 

SMAD7-PY motif-containing peptide. We chose to cluster using SMAD7-PY motif-containing 

peptide that coordinates upon observation of the relative stability of both wild-type YAP-WW1 

and STXBP4-WW domains. For wild-type complexes (YAP-WW1 or STXBP4-WW bound to 

SMAD7-PY), all frames were incorporated to generate representative clusters, and only the top 5 

clusters are displayed (Appendix Figure S2.9C). Conformations were clustered using the 

hierarchical agglomerative clustering algorithm (average-linkage), with 2.33 Å criteria set as the 

minimum distance between clusters. Average structures were calculated from only converged 

timeframes indicated in Table S2.1. Using only Ca atoms, the conformation with the smallest 
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RMSD to the average structure was used to represent the average conformation (Figures S2.3A, 

S2.3E and 3D). Hydrogen bonds were quantified using the Baker-Hubbard(Baker & Hubbard, 

1984) criteria and the MDTraj(McGibbon et al, 2015) python module. Ionic salt bridge 

interactions were determined with a distance criterion(Barlow & Thornton, 1983) (6 Å) between 

centers of charged groups (positively charged atoms from basic residues Arg, Lys, His: NH*, 

NZ*, NE2; regions of partial positive charge from His: NE2, HE*, CE1, HD2; negatively 

charged atoms from acidic residues Glu and Asp: OE*, OD*). Hydrophobic interactions were 

also measured via a distance criterion of 3.9 Å between carbon atoms. Initially identified in WT 

YAP-WW1/SMAD7-PY simulations, four intermolecular residue pairs (P208-W199, P209-

T197, Y211-H192, P209-Y188) and their Ca atoms were used to calculate the average distance 

(AD) values in frames outlined in the simulation conditions table (Figure S2.3F and Table S2.1 

S1). This AD calculation procedure was repeated for all complex simulations (SMAD7-PY 

bound to YAP-WW1 mutants, STXBP4-WW, and APBB3-WW), with Ca atoms of residues in 

equivalent positions of YAP-WW1 residues. 

 

Xenograft Assays 

Athymic nude (nu/nu) mouse strain was used for the xenograft tumor assay in this study. Four-

week-old female nude mice were purchased from Jackson Laboratory (002019) and kept in a 

pathogen-free environment. The xenograft tumor experiments were followed institutional 

guidelines, approved by the Institutional Animal Care and Use Committee of the University of 

California, Irvine, and performed under veterinary supervision. The indicated 786-O cells 

(2´106) were subcutaneously injected into the nude mice. After 60 days’ adaptation, mice were 

euthanized, and tumor weights were analyzed. 
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Immunohistochemical analysis 

The kidney tissue array (BC07115a) was purchased from US Biomax, Inc. According to the 

Declaration of Specimen Collection provided by US Biomax, each specimen collected from any 

clinic was consented by both hospital and individual.  

 

The kidney tissue array was deparaffinized and rehydrated. The antigens were retrieved by 

applying Unmask Solution (Vector Laboratories) in a steamer for 40 min. To block endogenous 

peroxidase activity, the sections were treated with 3% hydrogen peroxide for 30 min. After 1 

hour of pre-incubation in 10% goat serum to prevent non-specific staining, the samples were 

incubated with an antibody at 4 0C overnight. The sections were incubated with SignalStain 

Boost detection reagent at room temperature for 30 min. Color was developed with SignalStain 

3,3’-diaminobenzidine chromogen-diluted solution (all reagents were obtained from Cell 

Signaling Technology). Sections were counterstained with Mayer hematoxylin. To quantify the 

results, a total score of protein expression was calculated from both the percentage of 

immunopositive cells and immunostaining intensity. High and low protein expressions were 

defined using the mean score of all samples as a cutoff point. Pearson chi-square analysis test 

was used for statistical analysis of the correlation of STXBP4 with tissue type (normal versus 

cancer) and the correlation between STXBP4 and YAP. 

 

TCGA database analysis 

Dataset for STXBP4 was downloaded from the Cancer Genome Atlas (TCGA) data portal 

(https://portal.gdc.cancer.gov/). The mRNA expression and clinical data of STXBP4 were 
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analyzed in TCGA-KIRC project. The mRNA levels of STXBP4 was categorized into high and 

low expression groups based on the median value. The correlation between STXBP4 expression 

and patient survival rate was analyzed. Total 611 patient samples were analyzed. 

 

Quantification and statistical analysis  

Each experiment was repeated twice or more, unless otherwise noted. There were no samples or 

animals excluded for the analyses in this study. As for the mouse experiments, there was no 

statistical method used to predetermine sample size. We assigned the animals randomly to 

different groups. A laboratory technician was blinded to the group allocation and tumor 

collections during the animal experiments as well as the data analyses. The Student’s t-test was 

used to analyze the differences between groups. Data were analyzed by Student’s t-test or 

Pearson chi-square analysis. SD was used for error estimation. A P value < 0.05 was considered 

statistically significant. 

2.7 Data availability 

The MS proteomic data have been deposited in the ProteomeXchange Consortium database 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository(Vizcaino et al, 

2013) with the dataset identifier PXD004649. The detailed project information is as follows: 

Project Name: Human WW-domain containing proteins TAP-LC-MSMS 

Project accession: PXD004649 

Project DOI: 10.6019/PXD004649 

Reviewer account username: reviewer38029@ebi.ac.uk 

Password: eavjPdCz 
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2.12 Figures 

Figure 2.1

 

Figure 2.1. The Hippo WW domain shows binding specificity with the known Hippo PY 

motif-containing proteins.  

(A) Schematic illustration of the human Hippo pathway, where the Hippo WW domain-

containing components are highlighted. 
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(B) A summary map of cytoscape-generated merged interaction network for the Hippo WW 

domain-containing components and their WW domains. 

(C) The Hippo WW domain-containing proteins show binding specificity to the known Hippo 

PY motif-containing proteins. TAP-MS analysis of a series of WW domain-containing proteins 

were performed and their binding with the indicated Hippo PY motif-containing proteins was 

summarized in a heatmap.  

(D) The HCIPs for the Hippo WW domain-containing proteins were involved in different 

signaling pathways compared to those retrieved from the control WW domain-containing 

proteins. Gene Ontology analysis was performed. 

(E) Validation of the binding specificity for the Hippo WW domain-containing proteins. 

HEK293T cells were transfected with the indicated SFB-tagged constructs and subjected to the 

pulldown assay. 

(F) Validation of the binding specificity for the derived WW domains from the Hippo WW 

domain-containing proteins. HEK293T cells were transfected with the indicated SFB-tagged 

constructs and subjected to the pulldown assay. 
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Figure 2.2  

Figure 2.2. Identification of a conserved 9-amino acid sequence that determines the Hippo 

WW domain binding specificity.  

(A) Sequence alignment of the WW domains derived from the WW domain-containing proteins 

that are known to bind the Hippo PY motif-containing proteins. The two conserved tryptophan 

restudies were highlighted in purple. Additional conserved amino acid residues were highlighted 

in yellow.    
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(B) Summary of the residue difference in the identified 9-amino acid sequence for the control 

WW domains. The conserved two tryptophan residues are labelled in grey; the changed residues 

are labelled in orange; and the unchanged residues are labelled in white.   

(C-G) Validation of the identified 9-amino acid sequence in determining the Hippo WW domain 

binding specificity. The requirement of the identified 9-amino acid sequence for AMOT 

association was respectively examined for TAZ (C), TAZ-WW domain (D), KIBRA (E), YAP 

(F) and SAV1 (G). HEK293T cells were transfected with the indicated SFB-tagged constructs 

and subjected to the pulldown assay.  
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Figure 2.3 

 

Figure 2.3. STXBP4 is a Hippo pathway regulator, which contains a WW domain that fits 

the criterion of the Hippo WW domain binding specificity.  

(A) Schematic illustration of STXBP4 protein, where the identified 9-amino acid sequence of 

STXBP4-WW domain was aligned across the indicated species.   
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(B) STXBP4 forms a complex with several Hippo PY motif-containing proteins.  

Immunoprecipitation was performed with STXBP4 antibody. 

(C) The identified 9-amino acid sequence is required for the association between STXBP4 and 

AMOT. HEK293T cells were transfected with the indicated STXBP4 mutants and subjected to 

the pulldown assay. 

(D) Structural comparison between the YAP-WW1/SMAD7-PY and STXBP4-WW/SMAD7-PY 

complexes. The identified 9 amino acid residues were indicated for both complexes.   

(E) The YAP-WW1/SMAD7-PY and STXBP4-WW/SMAD7-PY complexes show similar 

cumulative average trend and average binding free energy (DG) within standard deviation (the 

shaded region) of one another.  

(F) Loss of STXBP4 inhibits YAP phosphorylation and LATS activation. Western blotting was 

performed with the indicated antibodies. 

(G and H) Loss of STXBP4 activates YAP. STXBP4 deficiency promotes YAP nuclear 

translocation (G) and YAP downstream gene transcription (mean ± s.d., n=3 biological 

replicates) (H). Scale bar, 20 µm.*** p < 0.001 (Student’s t-test).  

(I) WW domain is required for the STXBP4-mediated YAP cytoplasmic translocation. STXBP4 

KO cells were transfected with the indicated STXBP4 constructs and immunofluorescent 

staining was performed. HA-positive cells (arrows) from ~30 different views (~200 cells in total) 

were randomly selected and quantified for YAP localization. Percentage of HA-positive cells 

with nuclear YAP enrichment is shown. Scale bar, 20 µm. 

(J) Loss of STXBP4 attenuates YAP phosphorylation as induced by actin cytoskeleton 

inhibition. The indicated cells were subjected to serum starvation (treatment with no-serum 

medium for 12 hours), glucose starvation (treatment with no-glucose medium for 6 hours) or 
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actin inhibition (treatment with 0.5 µg/mL latrunculin B or 5 µM blebbistatin for 30 min). YAP 

phosphorylation was detected using phospho-tag gel, where the YAP phosphorylation level was 

indicated. 
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Figure 2.4 

 

Figure 24. STXBP4 functions in the actin cytoskeleton tension-mediated Hippo pathway 

regulation by forming a complex with a-catenin and a group of Hippo PY motif-containing 

proteins.  

(A) A summary map of cytoscape-generated protein-protein interaction network for STXBP4, a-

catenin and a group of Hippo pathway proteins. 

(B) STXBP4 forms a protein complex with a-catenin and a group of Hippo pathway proteins.  
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(C) STXBP4 promotes the association of a-catenin with AMOT and LATS1. HEK293T cells 

were transfected with the indicated SFB-tagged constructs and subjected to the pulldown assay. 

(D) Loss of STXBP4 diminishes the association of a-catenin with AMOT, LATS1 and YAP. 

HEK293A and STXBP4 KO cells were transfected with the SFB-tagged a-catenin construct and 

subjected to the pulldown assay. 

(E) STXBP4 induces the co-localization between a-catenin and AMOT as well as LATS1 and 

YAP. HEK293A cells were transfected with the indicated constructs and immunofluorescence 

was performed. Scale bar, 20 µm. 

(F-H) Identification of several STXBP4 missense mutations that disrupt its interaction with a-

catenin and AMOT. The missense mutations within the STXBP4 a-catenin-binding region and 

the 9-amino acid sequence of the STXBP4 WW domain were indicated and annotated (F). The 

identified missense mutations respectively disrupted the STXBP4- a-catenin (G) and STXBP4-

AMOT (H) complex formation.     

(I) Inhibition of actin cytoskeleton promotes the STXBP4-associated protein complex formation. 

HEK293A and the STXBP4 KO cells were subjected to immunoprecipitation using pre-immune 

serum and anti-STXBP4 serum under the indicated treatments.  

(J) The missense mutations of STXBP4 (F) diminished the ability of STXBP4 to rescue YAP 

phosphorylation in the STXBP4 KO cells with low actin cytoskeleton tension.  YAP 

phosphorylation 
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Figure 2.5 

 

Figure 2.5. STXBP4 is a tumor suppressor in human kidney cancer.  

(A and B) STXBP4 is downregulated in human kidney cancer. The mRNA level of STXBP4 is 

analyzed in the Firebrowse web database (http://firebrowse.org) (A), where 14,729 tumor sample 

data generated by TCGA were included. The first quartile, median and third quartile values were 

indicated as the boxplots. Outliers were plotted as individual points. Error bars indicated the 

standard deviation above and below the mean of the data. The expression of STXBP4 was also 

examined using kidney tissue microarray, where percentage of the indicated tissue samples with 

downregulated STXBP4 was shown (B). The p value was calculated by using the paired 

Student’s t-test. 
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(C) Kaplan-Meier curves of overall survival of patients with ccRCC is stratified by STXBP4 

expression level. Clinical data of STXBP4 were analyzed in TCGA-KIRC project containing 

total 611 patient samples. The p value was calculated by using the Log-rank (Mantel-Cox) test. 

(D) Immunohistochemical staining of STXBP4 and YAP were performed in a kidney cancer 

tissue microarray, where the indicated regions in the box were shown three times enlarged. 

Brown staining indicates positive immunoreactivity. Scale bar, 100 µm. 

(E) Correlation analyses between STXBP4 and YAP in human normal kidney and clear cell 

carcinoma samples are shown as tables. Statistical significance was determined by chi-square 

test. R, correlation coefficient. N, nuclear localization. C, cytoplasmic localization. 

(F) STXBP4 expression is examined in a panel of ccRCC cell lines by Western Blotting.  

(G and H) Both the association with a-catenin and the functional WW domain are required for 

the STXBP4’s tumor suppressive function in 786-O cells. Overexpression of STXBP4, but not 

the indicated STXBP4 missense mutants, significantly suppressed the 786-O cell xenograft 

tumor formation. Xenograft tumors are shown in (G), and the tumor weight is quantified in (H) 

(n = 5 mice, mean ± s.d.). ** p < 0.01 (Student’s t-test). Scale bar, 1 cm. 
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2.13 Supplementary Figures 
Supplementary Fig. S2.1 

Supplementary Figure S2.1: Proteomic analysis of the WW-containing proteins. 

(A) Schematic illustration of the Hippo WW domain-containing components.  

(B) The total spectral counts (TSCs) and corresponding numbers of HCIPs for the indicated 

proteomic experiments were listed.  

(C) The overlapped HCIP rate was compared for the full-length protein vs. its WW domain, and 

Hippo WW domains vs. control WW domains, respectively. 
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Supplementary Fig. S2.2

 
Supplementary Figure S2.2: Analyses of the identified 9-amino acid sequence in both 
control WW domains and evolution.  
(A) Sequence alignment of the WW domains derived from the control WW domain-containing 

proteins that cannot bind the Hippo PY motif-containing proteins. The two conserved tryptophan 

restudies were highlighted in purple, and the identified 9 amino acid residues were highlighted in 

yellow.  

(B) Evolutionary analysis of the YAP WW domains. The identified 9-amino acid sequence is 

highlighted in the two YAP WW domains derived from the indicated species.  
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(C) A PY motif is identified in Capsapsora owczarzaki LATS. Schematic illustration of the 

Capsapsora owczarzaki LATS protein, where the PY motif is indicated. MBD, MOB1-binding 

domain. The PY motif is underlined in the Capsapsora owczarzaki LATS protein sequence, 

where the auto-phosphorylation site (S586) and the phosphorylation site (T750) in the 

hydrophobic motif were shown in red. 
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Supplementary Fig. S2.3 

Supplementary Figure S2.3: Structural analysis of the identified 9-amino acid sequence.  

(A) Illustration of the identified 9 amino acid residues in the average YAP-WW1/SMAD7-PY 

structure. The initial structure was derived from NMR solution structure (2LTW). SMAD7-PY 

peptide was adjusted to 50% transparence to show the residue details on the binding interface.  

(B) Four contact regions within the YAP-WW1/SMAD7-PY complex were shown in details 

from the representative top cluster structures. Residues from SMAD7-PY motif peptide were 

labeled in purple. Hydrogen bond is indicated in blue line. 

(C) The binding type and the corresponding frequency rate were shown for the indicated inter- 

and intra-molecular residue pairs.  

(D) Simulation analysis of apo YAP-WW1 domain and its indicated mutants. RMSD value for 

each mutant simulation (referenced against the average apo YAP-WW1 domain) was shown. 
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(E) Average structures of the indicated YAP-WW1 mutant/SMAD7-PY complexes.  

(F) The average distance between SMAD7-PY motif peptide and the indicated WW domains 

was summarized in a table.  
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Supplementary Fig. S2.4 

 

Supplementary Fig. S2.4: Schematic illustration of the human proteome search for the 

WW domain-containing proteins that fit the Hippo WW domain 9-amino acid sequence 

criterion.  

The identified 9-amino acid sequence was subjected to the 49 WW domain-containing proteins 

in human proteome. Total 12 WW domain-containing proteins were found to contain the WW 

domains fitting the Hippo WW domain criterion.  
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Supplementary Fig. S2.5

 

Supplementary Fig. S2.5: A proposed model for the STXBP4-mediated Hippo pathway 

regulation in response to actin cytoskeleton tension change.  

Under low actin tension, STXBP4 assembles a protein complex comprising 𝛼-catenin, AMOT, 

LATS and YAP to promote YAP phosphorylation and cytoplasmic retention. When actin 

cytoskeleton tension increases, the STXBP4-centered protein complex is dissembled, resulting in 

YAP’s dephosphorylation and nuclear translocation as well as the subsequent cancer 

development.    
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2.1Appendix Figure  

Appendix Figure S2.6 

 

 

Appendix Figure S2.6 Characterization of the Hippo WW domain binding specificity.  

(A) Hippo pathway components TAZ but not SAV1 interacts with AMOT and LATS1. 

HEK293T cells were transfected with the indicated SFB-tagged constructs and subjected to the 

pulldown assay.  

(B) Examination of the conservative substitution mutations for the identified 9-amino acid 

sequence. HEK293T cells were transfected with the indicated SFB-tagged constructs and 

subjected to the pulldown assay. The tandem tyrosine residues within the 9-amino acid sequence 

of KIBRA were indicated as Y1 and Y2, respectively. 

 

 

  

 

 



 
148 

Appendix Figure. S2.7 

 

 

Appendix Figure. S2.7. Examination of the identified 9-amino acid sequence for the 

Drosophila Hippo pathway components.  

Sequence alignment of the WW domains derived from the Drosophila Hippo WW domain-

containing components. The two conserved tryptophan restudies were highlighted in purple. As 

compared with the 9-amino acid sequence, the conserved amino acid residues were highlighted 

in yellow.    
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Appendix Figure. S2.8 

 

Appendix Figure. S2.8. Characterization of the identified 9-amino acid sequence through 

simulation analyses.  

(A) Simulation analysis of the indicated YAP-WW1 mutant/SMAD7-PY complexes.  

(B) Illustration of the identified 9-amino acid sequence in the APBB3-WW/SMAD7-PY 

complex. The NMR solution structure of the APBB3-WW domain (2YSC) was used for 

simulation. SMAD7-PY peptide was adjusted to 50% transparence to show the residue details on 

the binding interface.  
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Appendix Figure. S2.9 

 

Appendix Figure. S2.9. STXBP4 associates with the Hippo PY motif-containing proteins.  

(A and B) The association between STXBP4 and the indicated Hippo PY motif-containing 

proteins is mediated by the WW domain (A) and PY motif (B). HEK293T cells were transfected 

with the indicated constructs and subjected to the pulldown assay. 

(C) Simulation of the STXBP4-WW and SMAD7-PY complex structure. The top five WW-PY 

structure clusters were shown for both YAP-WW1/SMAD7-PY and STXBP4-WW/SMAD7-PY 

complexes. The frequency rate was shown for each cluster. C, cluster. 
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Appendix Figure. S2.10 

 

Appendix Figure. S2.10 Genomic DNA sequencing results for the STXBP4 knockout (KO) 

cell lines as generated via CRISPR/Cas9.   

Among the five designed guide RNAs (gRNAs), only the gRNA4 and gRNA5-targeted regions 

showed genomic editing for all the three STXBP4 KO cell lines. The genomic editing details for 

each STXBP4 KO cell line were indicated. 
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Appendix Figure. S2.11 

 

Appendix Figure. S2.11. STXBP4 interacts with 𝜶-catenin.  

(A) Schematic illustration of a series of STXBP4 protein truncation and deletion mutants used in 

this study. 

(B and C) Mapping the 𝛼-catenin binding region in STXBP4. An internal region (300~500 

residues) of STXBP4 is required to associate with 𝛼-catenin (B), and we failed to further narrow 

down the binding region within the 300~500 residues (C).   
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Appendix Figure. S2.12 

 

Appendix Figure. S2.12 STXBP4 binds α-catenin and AMOT to regulate YAP.  

(A) Summary of STXBP4 mutations in cBioportal web database (http://www.cbioportal.org).  

(B) Interactions with 𝛼-catenin and the Hippo PY motif-containing proteins are both required for 

the STXBP4-mediated YAP suppression. The indicated STXBP4 mutants were expressed in the 

STXBP4 KO cells and immunofluorescent staining was performed. HA-positive cells from ~30 

different views (~200 cells in total) were randomly selected and quantified for YAP localization. 

N, nuclear localization. C, cytoplasmic localization. 
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Appendix Figure. S2.13 

 

Appendix Figure. S2.13. STXBP4 is a potential tumor suppressor in kidney cancer.  

(A) YAP is highly enriched in the tested ccRCC cancer cell lines. YAP cellular localization is 

detected by immunofluorescent staining. Scale bar, 20 𝜇m. 

(B) STXBP4 protein expression is examined in the 786-O cells that were transduced with 

STXBP4 and its cancer-derived mutants.  
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Appendix Table S2.1: Simulation Conditions 
 

Structure # of 
Simulations 

PDB 
ID 

Temperature 
(K) 

Start – End 
Time per sim. 

(µs) 

Ions & 
Waters 

(WT) YAP- WW1 & 
SMAD7 3 2LTW 300 0.4–1 1 Na+ 

3147waters 

(WT) STXBP4-WW & 
SMAD7 3 2YSG, 

2LTW 300 0.6–1 3 Na+ 
4222waters 

(WT) APBB3-WW & 
SMAD7 3 2YSC, 

2LTW 300 0-1 
1 Cl- 
3897-

5433waters 

(Mutant) YAP-WW1 
L173A/P174A & 

SMAD7 
3 2LTW 300 0-1 

1 Na+ 
3048-

4496waters 

(Mutant) YAP-WW1 
G176A & SMAD7 3 2LTW 300 0-1 

1 Na+ 
2880-

3528waters 

(Mutant) YAP-WW1 
W177A & SMAD7 3 2LTW 300 0-1 

1 Na+ 
3235-

4118waters 

(Mutant) YAP-WW1 
E178A & SMAD7 3 2LTW 300 0-1 3365-

3546waters 

(Mutant) YAP-WW1 
Y188A & SMAD7 3 2LTW 300 0-1 

1 Na+ 
3292-

4430waters 

(Mutant) YAP-WW1 
F189A & SMAD7 3 2LTW 300 0-1 

1 Na+ 
3260-

3831waters 

(Mutant) YAP-WW1 
H192A & SMAD7 3 2LTW 300 0-1 

1 Na+ 
2916-

4162waters 

(Mutant) YAP-WW1 
T197A & SMAD7 3 2LTW 300 0-1 

1 Na+ 
2872-

3139waters 

(Mutant) YAP-WW1 
W199A & SMAD7 3 2LTW 300 0-1 

1 Na+ 
3608-

3974waters 
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(Mutant) YAP-WW1 
P202A & SMAD7 3 2LTW 300 0-1 

1 Na+ 
2789-

3887waters 

(WT) apo YAP-WW1 3 2LTW 300 0-1 2870waters 

(Mutant) apo YAP-
WW1 L173A/P174A 3 2LTW 300  0-1 2669-

2739waters 

(Mutant) apo YAP-
WW1 G176A 3 2LTW 300  0-1 2761-2998 

waters 

(Mutant) apo YAP-
WW1 W177A 3 2LTW 300  0-1 2839-2988 

waters 

(Mutant) apo YAP-
WW1 E178A 3 2LTW 300  0-1 

1Cl- 
2813-3088 

waters 

(Mutant) apo YAP-
WW1 Y188A 3 2LTW 300  0-1 2661-

3097waters 

(Mutant) apo YAP-
WW1 F189A 3 2LTW 300  0-1 2882-2996 

waters 

(Mutant) apo YAP-
WW1 H192A 3 2LTW 300  0-1 2834-2974 

waters 

(Mutant) apo YAP-
WW1 T197A 3 2LTW 300  0-1 2822-3022 

waters 

(Mutant) apo YAP-
WW1 W199A 3 2LTW 300  0-1 2788-2934 

waters 

(Mutant) apo YAP-
WW1 P202A 3 2LTW 300  0-1 2773-3008 

waters 
 
Appendix Table S2.1. List of simulation conditions.  

Summary of all the structural simulation conditions and time/frames used for all the indicated 

analyses. The start and end times for the YAP-WW1 and STXBP4-WW complexes were 

determined via convergence analyses of MM/PBSA calculations. 
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2.15 Supplementary Electronic Tables  

Table S2.1 Protein identification list for the WW domain-containing protein proteomic study 

Table S2.2 Peptide identification list for the WW domain-containing protein proteomic study 

Table S2.3 HCIP list for the WW domain-containing protein proteomic study 

Table S2.4 Gene Ontology analysis for the HCIPs 

Table S2.5 List of YAP protein sequences used for the evolutionary analysis  

Table S2.6 List of the human WW domain-containing proteins 

Table S2.7 List of the STXBP4-related cancer mutations based on cBioportal 
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3.1 Abstract 

Mammalian phospholipase D (PLD) enzyme family consists of six members. Among them, 

PLD1/2/6 catalyze phosphatidic acid (PA) production, while PLD3/4/5 have no catalytic  

activities. Deregulation of the PLD-PA lipid signaling has been associated with various human 

diseases including cancers. However, a comprehensive analysis of the regulators and effectors 

for this crucial lipid metabolic pathway has not been fully achieved. Using a proteomic approach, 

we defined the protein interaction network for the human PLD family of enzymes and PA, and 

revealed diverse cellular signaling events involving them. Through it, we identified PJA2 as a 

novel E3 ubiquitin ligase for PLD1 involved in control of the PLD1-mediated mTOR signaling. 

Additionally, we showed that PA interacted with and positively regulated sphingosine kinase 1 

(SPHK1). Taken together, our study not only generates a rich interactome resource for further 

characterizing the human PLD-PA lipid signaling, but also connects this important metabolic 

pathway with numerous biological processes.   

 

3.2 Key words  

PLD, PA, PJA2, SPHK1, S1P 

 

3.3 Abbreviations 

PLD (phospholipase D), PA (phosphatidic acid), CRAPome (Contaminant Repository for 

Affinity Purification), SAINT (Significance Analysis of INTeractome), HCIP (high confidence 

interacting protein), PPI (protein-protein interaction), SFB (S tag-Flag tag-SBP tag), TAP-MS 

(tandem affinity purification coupled with mass spectrometry), mTOR (mechanistic target of 

rapamycin), S6K (S6 kinase), SPHK1 (sphingosine kinase 1), S1P (sphingosine-1-phosphatate).  
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3.4 Introduction 

The PLD enzyme family is known for its catalytic action to produce phosphatidic acid (PA) 

(Billah et al, 1989). Originally identified in salmonella typhimurium (Pohlman et al, 1993a), 

PLDs display conserved functions in numerous organisms (Jenkins & Frohman, 2005b). The 

mammalian PLD enzymes comprise six members (i.e. PLD1-6), sharing the conserved HKD 

motif. The HKD motif contains the sequence HxKxxxxD (H: Histidine; K: lysine; D: Aspartic 

acid; x: any amino acid) and is essential for the catalytic activity of PLDs (Sung et al, 1997b). 

Additional domains found in some PLD family members like PH and PX domains are 

responsible for their membrane localization (Stahelin et al, 2004).   

 

Among the human PLD enzymes, PLD1 and PLD2 are ubiquitously expressed in multiple tissues 

and play vital roles in various physiological processes, including receptor-mediated endocytosis, 

cell migration, cytoskeletal organization (Colley et al, 1997a; Kang et al, 2014). Deregulation of 

these two PLD members have been associated with different human diseases (Min et al, 2001; 

Saito et al, 2007). PLD1 and PLD2 are 50% identical and share similar regulations and 

functions. For example, they both can be activated by ARF family GTPases (Cockcroft et al, 

1994; Hammond et al, 1995) and PI(4,5)P2 (Hammond et al, 1997). PLD1 is localized in 

perinuclear structures such as Golgi, early endosomes, late endosomes, and lysosomes (Colley et 

al., 1997a; Dall'Armi et al, 2010; Freyberg et al, 2001b; Lucocq et al, 2001a); while PLD2 is 

found in the plasma membrane, exosomes, Golgi, and cytoplasm (Freyberg et al, 2002; 

Laulagnier et al, 2004). These findings suggest their roles in organelles-based cellular events. 

Additionally, PLD1/2 have been reported to regulate several growth-related signaling pathways 

through its lipid product PA such as the mammalian target of rapamycin (mTOR) (Fang et al, 
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2003) and the Hippo pathway (Han et al, 2018a), highlighting their crucial roles in growth 

control and cancer development. As for other PLD family members, PLD3 and PLD4 are 

endoplasmic reticulum (ER)-associated proteins with no classic catalytic activity (Munck et al, 

2005a; Yoshikawa et al, 2010a). Instead, PLD3 and PLD4 show 5’ exonuclease activity involved 

in inflammatory cytokine response (Gavin et al, 2018a). PLD5 is another PLD family member 

with no catalytic activity (Dennis, 2015b), and has been reported as an oncogene involved in 

prostate tumorigenesis (Liu et al., 2021). PLD6 is localized on mitochondria and regulates 

mitochondrial fusion (Zhang et al, 2016). PA produced by PLD6 on the mitochondrial surface is 

converted to diacylglycerol to affect mitochondrial dynamics (Huang et al, 2011b). PLD6 also 

plays a role in the Myc-mediated AMPK activation, which in turn inhibits YAP/TAZ in the 

Hippo pathway (von Eyss et al, 2015a). 

 

As the major lipid product generated by PLD family enzymes, PA is found in cell plasma 

membrane and vesicles, and has been extensively studied for its roles in vesicular trafficking, 

cytoskeletal dynamics, and endocytosis (Bader & Vitale, 2009; Bowling et al, 2021). 

Interestingly, studies also revealed PA as a key signaling molecule involved in many signaling 

events via forming a complex with proteins. For example, PA directly binds and activates mTOR 

(Fang et al, 2001a; Veverka et al, 2008). PA inhibits the Hippo pathway by interacting with its 

two components LATS and NF2 (Han et al., 2018a). MAPK cascade is regulated by PA through 

its physical interaction with Raf-1 (Rizzo et al, 2000). PA binds KIF5B to regulate MT1-MMP 

in cancer metastasis (Wang et al, 2017b).  
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Pathologically, the PLD enzymes have been explored for their critical roles in numerous human 

diseases, including influenza (Oguin et al, 2014a), neurodegenerative disorders (Cai et al, 2006), 

autism (Anney et al, 2010), and fertility issues (Huang et al., 2011b). In addition, enhanced PLD 

expression and activity are associated with many types of human cancer (Bruntz et al, 2014; 

Gozgit et al, 2007; Henkels et al, 2013b; Liu et al, 2015), implicating their potential roles as 

biomarkers and targets for cancer treatment. Therefore, further characterizing the regulators and 

effectors for this key lipid enzyme family and its lipid product PA will not only provide novel 

insights into the PLD-PA lipid pathway in normal physiology, but also reveal potential 

therapeutic targets for treating human diseases like cancer.  

 

In this study, we conducted a large-scale proteomic study for the human PLD family enzymes 

and PA, and defined the protein interaction network for this important lipid metabolic pathway. 

Through it, we connected the PLD enzymes and PA with various biological processes and 

discovered interacting proteins for PLDs and PA that may exert their cellular functions. Our 

functional studies further identified PJA2 as a novel E3 ubiquitin ligase for PLD1 and a negative 

regulator of mTOR signaling. Moreover, by characterizing the PA-sphingosine kinase 1 

(SPHK1) lipid-protein complex, we established PA as a lipid regulator of SPHK1 to positively 

drive the SPHK1-dependent sphingosine-1-phosphate (S1P) production. Taken together, our 

interactome analysis of the PLDs and PA-associated protein interaction network provides a rich 

resource for further exploration of this key lipid metabolic pathway in various signaling events 

and biological processes.  
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3.5 Results  

Mapping the PLDs and PA-associated protein network  

To gain an overview of the human PLD family enzymes, we first examined their subcellular 

localization under normal culture condition. As shown in Figure 3.1A, a significant portion of 

PLD1 was localized on lysosomes, which is consistent with previous studies (Dall'Armi et al., 

2010; Freyberg et al., 2001b; Lucocq et al., 2001a). PLD2 was majorly localized in the 

cytoplasm with partial membrane association (Figures 1A and S1A). Similar to previous reports 

(Munck et al., 2005a; Yoshikawa et al., 2010a), PLD3 and PLD4 were found as ER-localized 

proteins (Figure 3.1A). In addition, previously uncharacterized PLD5 was found as a 

cytoplasmic protein, while PLD6 was mostly localized on mitochondria (Figure 3.1A). These 

findings show distinct subcellular localizations for the human PLD enzymes.  

 

To elucidate the intricate protein-protein interaction network for the PLD enzymes, we generated 

HEK293A cells stably expressing each of the six PLD members fused with a C-terminal SFB 

triple tags (i.e. S tag-Flag tag-SBP tag) through lentiviral infection and puromycin selection 

(Figure 3.1B). These PLD stable cells then underwent two independent tandem affinity 

purification (TAP) experiments after verification of bait protein expression and cellular 

localization. The associated proteins with each PLD enzyme were further examined using mass 

spectrometry (MS). In addition, the PA-bound proteins were isolated from HEK293A cell lysates 

using PA-conjugated agarose beads and analyzed by MS (Figure 3.1B). A complete list of the 

peptides and proteins identified in this study can be found in Tables S1 and S2, respectively. 
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To refine the identified PLDs-interacting proteins, a group of 72 unrelated TAP-MS experiments 

performed under similar purification conditions were included as controls. Moreover, two 

independent pulldown experiments using agarose beads only were performed as controls for the 

identified PA-interacting proteins. We assigned a SAINT score to each identified hit and 

considered any interaction with a SAINT score at least 0.80 and raw spectra counts at least 2 as a 

high confidence interacting protein (HCIP) (Figure 3.1B). Through this filtration, a total of 303 

HCIPs among the 6586 preys were identified for the PLD-PA lipid pathway (Figure 3.1C and 

Table S3). The HCIP number and total spectral count (TSC) number for each PLD member and 

PA were summarized in Figure 3.1D. Data reproducibility by comparing the two biological 

repeats for the PLDs and PA proteomic studies suggested the reliability of the dataset (Figure 

3.1E). Gene Ontology (GO) analysis indicated that the identified HCIPs of PLDs and PA are 

widely distributed with different subcellular localizations and are involved in numerous cellular 

functions (Figures 1F and 1G; Table S3). Since the cells used for our proteomic study were 

grown under normal culture condition, the identified HCIPs should be considered as the basal-

state interactome for the human PLD-PA lipid pathway. In addition, our proteomic study was 

performed in HEK293A cells, thus it may not recapitulate specific interacting proteins and 

unique cellular functions for some PLD proteins in specialized cells.  

 

We next compared our PLDs HCIP list with the data reported in the BioPlex Interactome 

database (https://bioplex.hms.harvard.edu). Of 45 protein interactions identified for PLD1 in 

BioPlex, only 1 were identified as HCIP in our PLD1 interactome study (Figure S3.1B and 

Table S3.4). Of 69 interactions identified for PLD2 in BioPlex, 10 were identified as HCIPs in 

our PLD2 interactome study (Figure S3.1B and Table S3.4). Of 34 interactions identified for 
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PLD6 in BioPlex, 2 were identified as HCIPs in our PLD6 interactome study (Figure S3.1B and 

Table S3.4). Actually, several of the interactions reported in BioPlex were also identified in our 

data set but did not pass the stringent filtering criteria used in our study (8 interactions for PLD1, 

16 interaction for PLD2, and 4 interactions for PLD6). In addition, the PLD3 interactome study 

in BioPlex only reported one interaction that was not identified in our data set (Figure S3.1B and 

Table S3.4). The interactome analyses of PLD4 and PLD5 were not included in BioPlex, 

although PLD5 was revealed as a prey protein in some interactome studies there (Figure S3.1B 

and Table S3.4). Moreover, we identified additional high-confidence interactions with PLD 

proteins that were not reported in BioPlex, further extending our knowledge of the PLDs-

associated protein network. Taken together, these results suggest that our PLDs proteomic data 

set not only reproduced previous findings but also provided an additional collection of candidate 

HCIPs for further validation. 

 

Overview of the protein interaction landscape for the PLD-PA lipid pathway 

Interestingly, metascape analysis revealed that many HCIPs were shared among PLD family 

enzymes like PLD3, PLD4 and PLD6; while this was not the case for PLD1 or PA (Figure 

3.2A). We also connected the HCIPs of PLDs and PA with various biological processes via GO 

analysis. As shown in Figure 3.2B and Table S3.5, although the HCIPs of PLDs and PA were 

functionally categorized into multiple biological processes, they were highly enriched in protein 

modification, metabolism, and organelle-based cellular functions. As for each PLD member, the 

HCIPs of PLD3 and PLD4 were majorly involved in protein folding and ER-associated functions 

(Figure 3.2B), which was consistent with the ER localization of these two PLD members 

(Figure 3.1A). PLD3 also played roles in lipid biosynthesis and nuclear envelop organization, 
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while PLD4 specifically regulated exocytosis (Figure 3.2B), suggesting their unique functions 

through their binding proteins. Although localized on mitochondria (Figure 3.1A), PLD6 could 

play a role in ER-related cellular events, because its HCIPs shared some biological processes 

with those of PLD3/4 (Figure 3.2B). In addition, this GO analysis suggested roles of PLD1 and 

PA in synaptic vesicle transport and vesicle protein recruitment, respectively (Figure 3.2B).  

 

Based on these findings, we further examined the PLDs and PA-associated protein interaction 

network through a prey-oriented hierarchical clustering analysis. As shown in Figure 3.2C, 

some common subsets were revealed between different PLD family members. For example, 

PLD3 and PLD4 interacted with a wide range of ER proteins such protein disulfide-isomerase 

family members PDIA3/4/6 (cluster 1) (Figure 3.2D). Additionally, PLD3, PLD4 and PLD6 

shared HCIPs involved in ER protein folding, including OS9, P4HB, CHPF2, HYOU1, UGGT1, 

GANAB (cluster 2 and cluster 3) (Figure 3.2D). These findings suggested that PLD3, PLD4 and 

PLD6 may play roles in ER-associated protein quality control and stress response. Interestingly, 

both PLD3 and PLD4 interacted with a group of lysosome-associated transmembrane proteins 

TM9SF1-3 (cluster 2) (Figure 3.2D), suggesting potential roles of PLD3 and PLD4 in mediating 

the crosstalk between ER and lysosomes. Moreover, PLD2 and PLD6 were strongly associated 

with tubulin subunits (i.e. TUBA1C, TUBB2B and TUBB4B) (cluster 3) (Figure 3.2D), 

indicating that their functions may involve the microtubule-based events. Again, we hardly 

identified significant HCIPs clusters of PLD1 or PA with other PLD members (Figure 3.2C), 

consistently showing relatively unique binding proteins for PLD1 and PA.  
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Next, we organized the PLDs and PA-associated protein network individually and functionally 

by clustering the HCIPs based on their cellular localization (Figure 3.3). This comparative 

interaction network organization highlighted the different groups of HCIPs for each PLD 

member and PA and implicated their roles in the related biological processes. We also compared 

the HCIPs for individual PLD enzyme and PA, and revealed a group of HCIPs as shared binding 

proteins among PLDs and PA (Figure S3.2), which is consistent with the prey-oriented 

hierarchical clustering analysis (Figure 3.2C). Taken together, these results show that PLD 

enzymes and PA share common and unique binding proteins, implicating their both redundant 

and specific functions within various cellular events. 

 

Validation of the PLD3/4/6-associated protein interaction network  

By examining the PLD3 and PLD4-associated proteins (Figure 3.3 and Table S3.3), we found 

that they reciprocally identified each other (Figure 3.4A). Indeed, pulldown experiments showed 

that PLD3 and PLD4 not only strongly interacted with each other, but also bound their own, 

among the six PLD members (Figure 3.4B). In addition to some shared HCIPs, PLD3 and PLD4 

also specifically interacted with some ER proteins (Figure 3.4A). Among them, the PLD3-

PNPLA6 (Figure 3.4C) and PLD4-RPN2/TMX3 (Figure 3.4D) complexes were validated 

through pulldown assays.  

 

Notably, several lysosome-associated TM9SF family proteins (i.e. TM9SF1-4) were identified as 

shared binding partners for PLD3 and PLD4 (Figure 3.4A). Among them, the associations of 

TM9SF1 and TM9SF3 with PLD3 (Figures 4E and 4F) and PLD4 (Figures 4G and 4H) were 

experimentally confirmed. Since TM9SFs and PLD3/4 are transmembrane proteins localized on 
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lysosomes and ER, respectively, their interaction could play a role in ER-lysosomes contact 

formation. Interestingly, overexpression of PLD3 but not vector control significantly promoted 

the co-localization between ER and lysosomes as visualized by mCherry-ER-3 and LAMP1, 

respectively (Figures 4I and 4J). These data implicate a potential role of the PLD3/4-TM9SFs 

complex in mediating the contact formation between ER and lysosomes.   

 

Unexpectedly, although PLD6 is majorly localized on mitochondria (Figure 3.1A), our 

proteomic study revealed multiple ER proteins as its binding proteins (Figure 3.3). Indeed, 

among the tested HCIPs (Figure 3.4K), the association of PLD6 with ER proteins ERLEC1, 

HSPA5 and P4HB were confirmed through pulldown assays (Figure 3.4L), which was 

comparable to that between PLD6 and two mitochondrial proteins ACOT9 and CPT1A (Figure 

3.4L). Thus, these data indicate a potential role of PLD6 in ER-related functions, which deserves 

further investigation.  

 

Characterization of the PLD1/2/5-based protein interaction network uncovers PJA2 as an E3 

ubiquitin ligase for PLD1 

Upon analyzing the HCIPs of PLD5, we identified a Hedgehog pathway regulator ANKMY2 

(Somatilaka et al, 2020) as a shared interacting protein with PLD1 and PLD2 (Figure 3.5A). 

Although pulldown experiments confirmed the interaction between PLD1/2/5 and ANKMY2 

(Figure 5B), PLD2 strongly interacted with ANKMY2 as compared to PLD1 and PLD5 (Figure 

5B). This result was consistent with the observation that PLD2 was the only PLD member 

identified in the ANKMY2 reverse TAP-MS study (Figure 5A). In addition to ANKMY2, 

several PLD5 HCIPs, including PCCB (Figure 5C), GNAI3 (Figure 5D), TTC1 (Figure 5E) 
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and UNC45A (Figure 5F), were further validated for their association with PLD5 through 

pulldown assays. These results suggest a variety of cellular events that may involve PLD5, 

providing functional insights into this previously uncharacterized PLD member. 

 

PLD1 plays a key role in PA production and dysregulated PLD1 expression has been associated 

with many oncogenic signaling events and observed in various human cancers (Bruntz et al., 

2014; Henkels et al., 2013b; Min et al., 2001). Interestingly, an E3 ubiquitin ligase PJA2 was 

identified as a binding partner for PLD1 (Figures 3.3 and 5A). Therefore, we further examined 

whether PJA2 could target PLD1 protein stability and modulate its-associated signaling events. 

Indeed, PJA2 specifically interacted with PLD1 among the six PLD members (Figure 5G). 

Overexpression of PJA2 reduced PLD1 protein expression (Figure 5H) but did not affect that of 

PLD2 (Figure 5I). Moreover, expression of PJA2, but not its ring domain mutant PJA2RM, 

dramatically induced PLD1 ubiquitination (Figure 5J). On the other hand, depletion of PJA2 

stabilized PLD1 and another known PJA2 substrate MOB1 (Lignitto et al, 2013) (Figure 5K), 

and also largely reduced the ubiquitination of PLD1 (Figure 5L). Given the critical role of PLD1 

in activating mTOR signaling (Fang et al., 2003), we examined whether PJA2 could modulate 

mTOR activity. Indeed, as shown in Figure 5K, loss of PJA2 promoted the mTOR-dependent 

S6K phosphorylation. Taken together, these data demonstrate that PJA2 serves as an E3 

ubiquitin ligase for PLD1 and controls PLD1-downstream signaling events.  

 

Analysis of the PA interactome reveals PA as a positive regulator of SPHK1 

Interestingly, our proteomic study showed that the PA HCIPs have diverse cellular localizations, 

including cytoplasm, nucleus, cytoskeleton, plasma membrane, ER, peroxisome, mitochondria, 
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endosome and lysosome (Figure 3). Based on this finding, we performed the PA-beads 

pulldown assay and confirmed the association between PA and its HCIPs such as HSDL2 

(peroxisome) (Figure 3.6A), HSD17B4 (peroxisome) (Figure 3.6B), VIM (cytoskeleton) 

(Figure 3.6C), GDAP2 (lysosome) (Figure 3.6D), and ETV6 (nucleus) (Figure 3.6E). These 

results suggest potential roles of PA in the cellular events involving these interacting proteins. 

 

Among the PA HCIPs (Figure 3.3 and Table S3.3), SPHK1 is a sphingosine kinase, whose 

product spingosine-1-phosphate (S1P) has been discovered as a key signaling molecule involved 

in various growth-related cellular events such as cell proliferation, survival, migration, 

transformation (Olivera & Spiegel, 1993). Although the physical interaction between PA and 

SPHK1 has been previously reported (Delon et al, 2004), the functional significance underlying 

this lipid-protein complex formation has not been fully elucidated.  

 

To address it, we further characterized the interaction between PA and SPHK1. As shown in 

Figure 3.6F, PA specifically interacted with SPHK1 but not SPHK2. Moreover, SPHK1 kinase 

dead mutant (Chan et al, 2012; Kim & Sieburth, 2018; Pitson et al, 2002) failed to bind PA 

(Figure 3.6G), while its two hydrophobic patch mutants (i.e. L280Q and F283A/L284Q), which 

were previously reported to disrupt the association between SPHK1 and liposome (Shen et al, 

2014), can still bind PA (Figure 3.6G). We also examined the cellular localization of SPHK1 

and PA. As shown in Figure 3.6H, SPHK1 as well as its two hydrophobic patch mutants were 

co-localized with PA on the punctate structures in the cytoplasm, which are known as Rab5-

positive early endosomes and endocytic intermediates (Shen et al., 2014). In contrast, SPHK2 

and SPHK1 kinase dead mutant (KD-5A), which cannot bind PA (Figures 6F and 6G), failed to 
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localize on the PA-positive punctate structures (Figure 3.6H), suggesting that PA binding is 

required in this process.  

 

Since SPHK1 kinase dead mutant (KD-5A) failed to bind PA (Figure 3.6G), it raised the 

possibility that PA could regulate SPHK1 kinase activity. To test it, we isolated SPHK1 from the 

serum starved HEK293A cells, incubated it with PA, and subjected it to in vitro kinase assay 

using sphingosine as a substrate. As shown in Figure 3.6I, PA incubation largely enhanced the 

ability of SPHK1 to phosphorylate sphingosine to produce S1P. Moreover, treatment with 

PLD1/2 inhibitors FIPI and CAY10594 significantly reduced the SPHK1-induced S1P 

production (Figure 3.6J), suggesting that targeting PA production inhibited SPHK1 kinase 

activity in vivo. Taken together, these data demonstrate PA as a positive regulator of SPHK1, 

where PA binds SPHK1 and regulates its cellular localization and kinase activity.  

 

3.6 Discussion 

In this study, we defined the protein interaction landscape for the human PLD family enzymes 

and their lipid product PA, and identified over 300 HCIPs for them, which greatly expanded our 

knowledge of this lipid metabolic pathway in diverse signaling events and cellular functions.  

 

Since some PLD members comprised similar protein domains (Figure 3.1B) and showed similar 

subcellular localizations (Figure 3.1A), PLD enzymes were found to share some binding 

partners despite having the unique interacting proteins of their own (Figures 3.2, 3.3 and S2), 

providing us an opportunity to further explore both generic and specific functions/regulations for 

the PLD enzymes. Indeed, our validation studies not only revealed several specific protein 
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complexes for PLD members such as PLD3-PLD4 (Figure 3.4B), PLD3-PNPLA6 (Figure 

3.4C), PLD4-RPN2 (Figure 3.4D), PLD4-TMX3 (Figure 3.4D), PLD1-PJA2 (Figure 5G); but 

also discovered TM9SFs and ANKMY2 as shared binding partners for PLD3/PLD4 (Figures 4A 

and 4E-4H) and PLD1/PLD2/PLD5 (Figures 5A and 5B), respectively.  

 

Interestingly, our functional studies also connected the PLD family members to several 

unexpected cellular events. For example, although PLD3 and PLD4 are ER-bound proteins 

(Figure 3.1A), their ER-related functions remain largely unknown. Notably, our study 

uncovered many key players in ER protein quality control as binding partners for PLD3 and 

PLD4 (Figures 3.2D and 3.3), suggesting potential roles of PLD3 and PLD4 in regulating ER 

stress response. In addition, PLD3 and PLD4 formed a complex with lysosome proteins TM9SFs 

(Figures 4A and 4E-4H), and overexpression of PLD3 induced the contact formation between 

ER and lysosomes (Figures 4I and 4J). Since PLD3/4 and TM9SFs are transmembrane proteins 

on ER and lysosomes, respectively, following work will be focused on determining whether their 

interaction is directly mediated by their cytosolic regions or through additional “ligand factors”. 

In addition, the signaling contexts as well as the functional significance underlying the PLD3/4-

TM9SFs complex formation deserve further investigation. Strikingly, our data also revealed the 

hetero- and homo- dimerization occurring between PLD3 and PLD4 (Figure 3.4B). Therefore, it 

will be highly interesting to elucidate the role of such dimer formation in regulating the ER-

related functions of PLD3/4 as mentioned above.  

 

Our proteomic analysis uncovered PJA2 as an E3 ubiquitin ligase for PLD1 (Figures 5G-5L), 

whose loss increased mTOR signaling (Figure 5K). Although PLD1 also functions as a negative 
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regulator of the Hippo pathway (Han et al., 2018a), we did not observe a dramatic change of 

YAP phosphorylation or subcellular localization in the PJA2 KO HEK293A cells. This could be 

explained by the fact that PJA2 deficiency also stabilized MOB1, a key Hippo pathway adaptor, 

to activate Hippo signaling (Lignitto et al., 2013) and compromise the effect as caused by the 

increased expression of PLD1. Actually, in addition to PLD1 and MOB1, PJA2 has been 

identified as an E3 ubiquitin ligase for other key signaling proteins, including PKA (Lignitto et 

al, 2011), CDK5R1 (Sakamaki et al, 2014), KSR1 (Rinaldi et al, 2016; Zhao et al, 2021), HIV-1 

protein Tat (Faust et al, 2017), MFHAS1 (Zhong et al, 2017), and TCF/LEF1 (Song et al, 2018), 

highlighting a complex downstream signaling network as controlled by PJA2.   

 

Many studies including ours have revealed PA as a key signaling molecule through its physical 

interaction with proteins, which prompted us to use a proteomic approach to investigate the PA-

associated proteins. Through it, we identified a group of proteins as PA binding proteins 

(Figures 3.3 and 3.6A-3.6F), linking the PLD-PA lipid pathway to additional cellular events and 

biological processes. Among them, we experimentally confirmed the lipid-protein interaction 

between PA and SPHK1, which has been previously discovered using different approaches 

(Delon et al., 2004; Shen et al., 2014). Notably, our functional study further demonstrated PA as 

a key regulator of SPHK1 to modulate its cellular localization and kinase activity (Figures 3.6G-

3.6J), providing novel mechanistic insights into the regulation of this key lipid kinase. Given the 

crucial roles of SPHK1 in cell proliferation, survival, migration, differentiation, and cancer 

development (Heffernan-Stroud & Obeid, 2013; Shida et al, 2008), it will be highly important to 

determine whether these SPHK1-related cellular events also involve the PLD-PA lipid pathway.  
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Notably, although our proteomic study successfully identified a group of PA-binding proteins, 

we failed to discover some previously reported ones such as PI4P5K, Raf-1, SHP-1, mTOR 

(Stace & Ktistakis, 2006). This could be explained by the limitation of the PA-conjugated 

agarose beads. Based on the information provided by the manufacturer, the PA beads used in our 

study contain the PA with one C-16 carbon chain and one C-6 carbon chain, where the C-6 chain 

is modified for agarose bead conjugation. Therefore, such conjugation with agarose beads may 

affect the binding of PA with some proteins and affect the PA membrane accessibility. In 

addition, our stringent washing process could also interfere with the capture of some transient 

and/or weak interacting proteins for PA.  

 

In summary, our proteomic study of the PLDs and PA-centered protein interaction network not 

only reveals a number of cellular functions/regulations for the PLDs/PA-related signaling events, 

but also generates a comprehensive interactome resource for further characterization of this 

important lipid metabolic pathway in various biological processes.  

 

3.7 Experimental Procedures  

Cell lines 

HEK293T cells (a female cell line, ATCC: CRL-3216) were purchased from ATCC and kindly 

provided by Dr. Junjie Chen (MD Anderson Cancer Center). HEK293A cells (a female cell line, 

Thermo Fisher Scientific: R70507) cells were purchased from Thermo Fisher Scientific and 

kindly provided by Dr. Jae-Il Park (MD Anderson Cancer Center). HEK293A and HEK293T 

cells were maintained in Dulbecco’s modified essential medium (DMEM) supplemented with 
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10% bovine growth serum and 1% penicillin and streptomycin at 37°C in 5% CO2 (v/v). Plasmid 

transfection was performed using a polyethylenimine reagent. 

 

 

Antibodies and chemicals 

For Western blotting, anti-Flag (M2) (F3165-5MG, 1:5000 dilution) and anti-a-tubulin (T6199-

200UL, 1:5000 dilution) monoclonal antibodies were obtained from Sigma-Aldrich. An anti-

Myc (sc-40, 1:500 dilution) monoclonal antibody was purchased from Santa Cruz 

Biotechnology. An anti-hemagglutinin (HA) monoclonal antibody (MMS-101P, 1:3000 dilution) 

was obtained from BioLegend. Anti-PJA2 (#40180, 1:1000 dilution), anti-MOB1 (# 3863S, 

1:2000 dilution), and anti-phospho-p70 S6 Kinase (Thr389) (#9234S,1:1000 dilution) polyclonal 

antibodies were obtained from Cell Signaling Technology. An anti-sphingosine-1-phosphate 

(S1P) (Z-P300; 1:500 dilution) monoclonal antibody was obtained from Echelon Biosciences. 

For immunostaining, anti-HA (3724S, 1:3000 dilution) and anti-LAMP1 (9091S, 1:400 dilution) 

polyclonal antibodies were obtained from Cell Signaling Technology. An anti-Flag (F7425-

.2MG, 1:5000 dilution) polyclonal antibody was purchased from Sigma-Aldrich. An anti-

TOM20 (612278, 1:200 dilution) monoclonal antibody was purchased from BD Biosciences. For 

chemicals, FIPI hydrocholoride hydrate (#F5807) was obtained from Sigma-Aldrich. CAY10594 

(#13207) was obtained from Cayman chemical. 

 

Constructs and viruses 

Plasmids encoding the indicated genes were obtained from the Human ORFeome V5.1 library or 

purchased from DNASU Plasmid Repository. All constructs were generated via polymerase 
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chain reaction (PCR) and sub-cloned into a pDONOR201 vector using Gateway Technology 

(Thermo Fisher Scientific) as entry clones. For tandem affinity purification, all entry clones were 

subsequently recombined into a lentiviral gateway-compatible destination vector for the 

expression of C-terminal SFB-tagged fusion proteins. Gateway-compatible destination vectors 

with the indicated SFB tag, HA tag, Myc tag, mCherry tag were used to express various fusion 

proteins.mCherry-Lysosomes-20 (plasmid #55073) and mCherry-ER-3 (plasmid #55041) were 

obtained from Addgene. PJA2 plasmid was kindly provided by Antonio Feliciello (University 

Federico II, Italy). RFP-PASS construct was kindly provided by Dr. Guangwei Du (University of 

Texas Health Science Center at Houston).PCR-mediated site-directed mutagenesis was used to 

generate amino acid mutations for PJA2 and SPHK1. PJA2 ring domain mutation (RM) was 

generated by mutating sites Cys634 and Cys671 to Ala (Lignitto et al., 2013). SPHK1 kinase 

dead (KD-5A) mutant was generated by mutating sites Ser165, Gly166, Asp167, Gly168, and 

Leu169 to Ala (Chan et al., 2012; Kim & Sieburth, 2018; Pitson et al., 2002). The two SPHK1 

hydrophobic patch mutants were generated by respectively mutating the site Leu280 to Ala, and 

Phe283 to Ala/Leu284 to Gln (Shen et al., 2014). All lentiviral supernatants were generated by 

transient transfection of HEK293T cells with the helper plasmids pSPAX2 and pMD2G (kindly 

provided by Dr. Zhou Songyang, Baylor College of Medicine) and harvested 48 hours later. 

Supernatants were passed through a 0.45-µm filter and used to infect cells with the addition of 8 

µg/mL hexadimethrine bromide (Polybrene) (Sigma-Aldrich).  

 

Purification of PLDs and PA-associated protein complexes  

HEK293A cells stably expressing SFB-tagged PLD proteins were isolated by culturing in 

medium containing 2 µg/mL puromycin and validated by immunostaining and Western blotting 
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as described previously (Wang et al., 2014a). For tandem affinity purification, the HEK293A 

stable cells were lysed in 10 mL NETN buffer (100 mM NaCl; 20 mM Tris-HCl, pH 8.0; 0.5 

mM EDTA; 0.5 % Nonidet P-40) with protease and phosphatase inhibitors at 4 0C for 20 

minutes. The crude lysates were centrifuged at 14,000 rpm at 4 0C for 15 minutes. The 

supernatants were incubated with 100 µL streptavidin-conjugated beads (GE Healthcare) at 4 0C 

for 6 hours. The beads were then washed 3 times with 10 mL NETN buffer, and bound proteins 

were eluted with 1.5 mL NETN buffer containing 2 mg/mL biotin (Sigma-Aldrich) at 4 0C for 12 

hours. The elutes were incubated with 25 µL S protein beads (Novagen) at 4 0C for 4 hours. The 

beads were then washed 3 times with 1mL NETN buffer and subjected to sodium dodecyl sulfate 

polyacrylamide gel electrophoresis. Each sample was run into the separation gel for a short 

distance, so that the whole bands could be excised as one sample for in-gel trypsin digestion and 

mass spectrometry analysis. To isolate PA-associated protein complex, HEK293A cells were 

lysed in 10 mL NETN buffer with protease and phosphatase inhibitors at 4 0C for 20 minutes. 

The crude lysates were centrifuged at 14,000 rpm at 4 0C for 15 minutes. The supernatants were 

incubated with 30 µL control beads (#P-B000, Echelon Biosciences) or PA beads (#P-B0PA, 

Echelon Biosciences) at 4 0C for 12 hours. The beads were then washed 5 times with 1mL NETN 

buffer and subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis. Each sample 

was run into the separation gel for a short distance, so that the whole bands could be excised as 

one sample for in-gel trypsin digestion and mass spectrometry analysis. 

 

Mass spectrometry analysis 

The mass spectrometry was performed by the Taplin Mass Spectrometry Facility (Harvard 

Medical School) as described previously (Li et al., 2016a; Wang et al., 2014a). Briefly, the 
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excised gel bands described above were cut into approximately 1-mm3 pieces. The gel pieces 

were then subjected to in-gel trypsin digestion and dried (Shevchenko et al., 1996). Samples 

were reconstituted in 5 µL of high-performance liquid chromatography (HPLC) solvent A (2.5% 

acetonitrile, 0.1% formic acid). The facility packed a nanoscale reverse-phase HPLC capillary 

column by packing 5-µm C18 spherical silica beads (Thermo Fisher Scientific) into a fused silica 

capillary (100 µm inner diameter × ~20 cm length) with a flame-drawn tip. After the column was 

equilibrated, each sample was loaded onto the column via a Famos autosampler (LC Packings). 

A gradient was formed, and peptides were eluted with increasing concentrations of solvent B 

(97.5% acetonitrile, 0.1% formic acid).  As the peptides eluted, they were subjected to 

electrospray ionization and then entered into an LTQ Orbitrap Elite mass spectrometer (Thermo 

Fisher Scientific). The peptides were detected, isolated, and fragmented to produce a tandem 

mass spectrum of specific fragment ions for each peptide. Peptide sequences (and hence protein 

identity) were determined by matching protein databases with the fragmentation pattern acquired 

by the software program SEQUEST (ver. 28) (Thermo Fisher Scientific). Enzyme specificity 

was set to partially tryptic with 2 missed cleavages. Modifications included carboxyamidomethyl 

(cysteines, fixed) and oxidation (methionine, variable). Mass tolerance was set to 5 ppm for 

precursor ions and 0.5 Da for fragment ions. The mass spectrometry peak list was generated by 

ReADW.exe (version 4.3.1) using human as species. Peptide sequences were searched using 

Uniprot database (https://www.uniprot.org/proteomes/?query=taxonomy:9606) downloaded on 

June 20, 2017. The number of entries within this database searched are 160, 020 (half forward 

and half reverse and 168 contaminants added). Spectral matches were filtered to contain a false 

discovery rate of less than 1% at the peptide level using the target-decoy method (Elias & Gygi, 

2007), and the protein inference was considered followed the general rules (Nesvizhskii & 
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Aebersold, 2005), with manual annotation based on experiences applied when necessary. This 

same principle was used for isoforms when they were present in the database. The longest 

isoform was reported as the match.  

 

Bioinformatic analysis 

As for the TAP-MS data analysis, a group of unrelated TAP-MS experiments (i.e. 72 

experiments using stably expressed SFB-tagged proteins as baits) were included as a control 

group. As for the PA beads-pulldown MS data, two control beads-pulldown MS data were 

included as a control group. Using the “sensitivity1/2-(1-specificity)1/2” measurement as 

determined by the CRAPome databases (Mellacheruvu et al., 2013), we considered any 

interaction with a SAINT score of at least 0.8 and raw spectra count of at least 2 to be a high-

confident interacting protein (HCIP) (Wang et al., 2014a). The Gene Ontology (GO) p values 

were estimated using metascape (www.metascape.org) (Zhou et al., 2019), which contains 

findings and annotations from multiple sources including the Gene Ontology database, KEGG 

pathway database, and Panther pathway database. Only statistically significant correlations (p < 

0.05) are shown. The –log10 (p value) for each biological process with related HCIPs is listed. 

 

Experimental Design and Statistical Rationale  

To apply SAINT analysis through CRAPome (Contaminant Repository for Affinity Purification, 

https://reprint-apms.org/), we first gathered information about baits and preys including the 

spectra counts and assignment of control baits. We reorganized the data to the format compatible 

to the SAINT program and used two-pool analysis, which recognizes the control group as a 

separate pool. We did not remove outlier data points. The statistics used to assess accuracy and 
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significance of measurements was referred to the SAINT algorithms, where SAINT score ≥ 0.80 

was taken as the threshold required for the data quantification, as indicated by the SAINT 

method (Choi et al., 2011). In total, 6586 interactions were identified in 14 experiments total 

which includes biological replicates for each PLD enzyme and PA. There was a total of 74 

unrelated negative control experiments that were used to carry out filtration via CRAPome. A 

total of 403 interactions passed a probability score of ≥ 0.80. To evaluate the specificity of our 

results, we overlapped our SAINT interactors amongst the six different isoforms/PA and 

considered the overlapped ones to be “false positives” therefore designating 303 interactions as 

HCIPs. The PLDs and PA interactomes were generated using information from Ingenuity 

pathway software (Ingenuity Systems, www.ingenuity.com) for function/localization and 

Metascape (www.metascape.org) for gene ontology (GO). We used -log(p value) of individual 

functions to generate heatmap where a p value <0.05 was considered statistically significant. The 

heatmap for the GO: biological processes and hierarchical clustering was generated by Rstudio.  

 

Immunofluorescent staining 

Immunofluorescent staining was performed as described previously (Wang et al., 2008). Briefly, 

cells cultured on coverslips were fixed with 4% paraformaldehyde for 10 minutes at room 

temperature and then extracted with 0.5% Triton X-100 solution for 5 minutes. After blocking 

with Tris-buffered saline with Tween 20 containing 1% bovine serum albumin, the cells were 

incubated with the indicated primary antibodies for 1 hour at room temperature. After that, the 

cells were washed and incubated with fluorescein isothiocyanate, rhodamine, or Cy5-conjugated 

secondary antibodies for 1 hour. Cells were counterstained with 100 ng/mL 4′,6-diamidino-2-

phenylindole (DAPI) for 2 minutes to visualize nuclear DNA. The cover slips were mounted 
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onto glass slides with an anti-fade solution and visualized under a Nikon Ti2-E inverted 

microscope. 

 

Gene inactivation by CRISPR/Cas9 system  

To generate the PJA2 knockout cells, five distinct single-guide RNAs (sgRNA) were designed 

by CHOPCHOP website (https://chopchop.rc.fas.harvard.edu), cloned into lentiGuide-Puro 

vector (Addgene plasmid # 52963), and transfected into HEK293A cells with lentiCas9-Blast 

construct (Addgene plasmid # 52962). The next day, cells were selected with puromycin (2 

µg/mL) for two days and sub-cloned to form single colonies. Knockout cell clones were screened 

by Western blotting to verify the loss of PJA2 expression. The oligo sequence information of 

sgRNAs used for knockout cell generation is listed in the Table S3.6.  

 

SPHK1 kinase assay 

SFB-tagged SPHK1 was purified from serum-starved HEK293A cells using S protein beads; 

washed with NETN buffer, washing buffer (40 mM HEPES, 250 mM NaCl) and kinase assay 

buffer (30 mM HEPES, 50 mM potassium acetate, 5 mM MgCl2); and subjected to in vitro 

kinase assay in the presence of cold ATP (500 μM), sphingosine (1 mM), and PA (300 μM). The 

reaction mixture was incubated at 37 0C for 30 min and terminated with 1 M HCl. S1P was 

extracted with chloroform and dotted on nitrocellulose membrane. The S1P-dotted nitrocellulose 

membrane was blocked in 3% BSA at 4 0C overnight and followed by incubation with anti-S1P 

monoclonal antibody at 4 0C overnight.  To examine the roles of PLD inhibitors in regulating 

SPHK1 activity, SFB-SPHK1 was purified from HEK293A cells treated with DMSO, 30 μM 

FIPI or 20 μM CAY10594 overnight using S protein beads, similarly washed as described above, 
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and subjected to the kinase assay in the presence of cold ATP (500 μM) and sphingosine (1 

mM). S1P dot-blot assay was performed. 
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3.13 Figures  

3.1 

 

Figure 3.1. Proteomic analysis of the phospholipase D (PLD) and phosphatidic acid (PA)-

associated protein network. 

(A) PLD family enzymes show different subcellular localizations. Immunofluorescent staining 

was performed using the indicated antibodies. Scale bar, 30 μm. 

(B) Schematic illustration of the major steps used in the proteomic study of human PLDs and 

PA-associated protein complexes. PLDs were constructed into a C-terminal SFB–tag fused 

lentiviral vector. HEK293A cells stably expressing each PLD bait protein were generated via 

lentiviral infection and puromycin selection, and subjected to the TAP-MS analysis. For isolation 

of the PA-associated protein complex, HEK293A cells were subjected to pulldown assays using 
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the PA-conjugated agarose beads. All the MS results were processed via the CRAPome 2.0 

statistical model (i.e. SAINT express).  

(C) Summary of the PLD-PA lipid pathway MS study. Experimental information and total 

numbers of peptides and proteins identified in the MS analysis were shown. A SAINT score ≥ 

0.8 was used as the cutoff to identify HCIPs.  

(D) The total spectral counts (TSCs) and corresponding numbers of HCIPs for PLDs and PA.  

Data reproducibility between two biological MS experiments for PLD members and PA are 

evaluated using the number of peptide spectrum matches (PSMs). 

(F-G) Gene Ontology (GO) annotations of the identified HCIPs of PLDs and PA. Cellular 

localization (F) and cellular functions (G) for the HCIPs of PLDs and PA were shown. 
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Figure 3.2

  

Figure 3.2. Hierarchical clustering analysis of the HCIPs generated for the PLD-PA lipid 

pathway. 

(A) The HCIPs shared between PLDs and PA were analyzed by www.metascape.org.  

(B) The HCIPs of PLDs and PA were subjected to GO analysis. Through it, the biological 

processes of the PLDs/PA-HCIPs were shown as a heatmap.  

(C-D) A heatmap was generated from hierarchical clustering of 303 HCIPs for PLDs and PA. 

Three prominent HCIP clusters were manually selected (C) and enlarged below (D). The color of 

squares in the heatmap indicates the identified HCIP peptide number for each bait.  
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Figure 3.3 

 

 

 

 

Figure 3.3. Interaction maps of the human PLDs and PA-centered protein interaction 

network. 

As for each PLD family member and PA, HCIPs are grouped based on their cellular localization 

according to the GO analysis and literature search, and visualized in different colors.  
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Figure 3.4 

 

Figure 3.4. Validation of the PLD3/PLD4/PLD6-associated protein network. 

(A) A summary of the protein-protein interaction network with the selected HCIPs of PLD3 and 

PLD4.  

(B) Validation of the interaction between PLD3 and PLD4 in the PLD family. HEK293T cells 

were transfected with the constructs encoding the indicated proteins and subjected to pulldown 

assay using S protein beads.  
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(C) Validation of the interaction between PLD3 and its selected HCIPs. HEK293T cells were 

transfected with the constructs encoding the indicated proteins and subjected to pulldown assay 

using S protein beads.  

(D) Validation of the interaction between PLD4 and its selected HCIPs. HEK293T cells were 

transfected with the constructs encoding the indicated proteins and subjected to pulldown assay 

using S protein beads.  

(E-H) PLD3/4 interact with TM9SF1/3. HEK293T cells were transfected with the constructs 

encoding SFB-tagged TM9SF1 or TM9SF3 and HA-tagged PLD3 (E, F) or PLD4 (G, H), and 

subjected to pulldown assay using S protein beads.  

(I-J) PLD3 drives ER-lysosome contact formation. Immunofluorescent staining was performed 

using the indicated antibodies (I). The indicated area were 5 times enlarged (5x). Scale bar, 15 

μm. The fluorescent intensity correlation (R) between ER-3 (red) and LAMP1 (green) were 

analyzed (J) along the lines as indicated in (I). 

(K) A summary of the protein-protein interaction network for the selected HCIPs of PLD6. 

(L) Validation of the interaction between PLD6 and its selected HCIPs. HEK293T cells were 

transfected with the constructs encoding the indicated proteins and subjected to pulldown assay 

using S protein beads.  
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Figure 3.5 
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Figure 3.5. Characterization of PLD1/PLD2/PLD5-associated protein network reveals 

PJA2 as an E3 ubiquitin ligase for PLD1. 

(A) A summary of the protein-protein interaction network with the selected HCIPs of PLD1/2/5.  

ANKMY2 was indicated as the shared HCIP for these three PLD proteins.  

(B) ANKMY2 interacts with PLD1/2/5. HEK293T cells were transfected with the constructs 

encoding the indicated proteins and subjected to pulldown assay using S protein beads. 

(C-F) Validation of the interaction between PLD5 and its selected HCIPs. Constructs encoding 

SFB-tagged PLD5 and HA-tagged PCCB (C), GNAI3 (D), TTC1 (E) and UNC45A (F) were 

transfected into HEK293T cells. Pulldown experiments were performed using S protein beads. 

(G) PJA2 specifically interacts with PLD1 among the PLD members. HEK293T cells were 

transfected with the constructs encoding the indicated proteins and subjected to pulldown assay 

using S protein beads. 

(H-I) PJA2 targets PLD1 protein expression but does not affect that of PLD2. Constructs 

encoding Flag-tagged PJA2 and HA-tagged PLD1 (H) or PLD2 (I) were co-transfected into 

HEK293T cells. Western blots were performed using the indicated antibodies. 

(J) Overexpression of PJA2 but not its ring domain mutant (RM) induces the ubiquitination of 

PLD1. HEK293T cells were transfected with the constructs encoding the indicated proteins, 

treated with MG132 (20 μM) for 8 h, and subjected to pulldown assay using S protein beads. 

Western blots were performed using the indicated antibodies. 

(K) PLD1 protein expression is increased in the PJA2 knockout (KO) HEK293A cells. Western 

blots were performed using the indicated antibodies. 

(L) The ubiquitination of PLD1 is decreased in the PJA2 knockout (KO) HEK293A cells. The 

indicated HEK293A cells were transfected with the constructs encoding the indicated proteins, 
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treated with MG132 (20 μM) for 8 h, and subjected to pulldown assay using S protein beads. 

Western blots were performed using the indicated antibodies. 
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Figure 3.6 

 

Figure 3.6. Analysis of the PA-mediated lipid-protein interaction network uncovers PA as a 

positive regulator of SPHK1.  

(A-E) Validation of the interaction between PA and its selected HCIPs. Constructs encoding 

SFB-tagged HSDL2 (A), HSD17B4 (B), VIM (C), GDAP2 (D) and ETV6 (E) were transfected 

into HEK293T cells. Pulldown experiments were performed using PA beads. 

(F) PA binds SPHK1 but not SPHK2. HEK293T cells were transfected with the constructs 

encoding the indicated proteins and subjected to pulldown assay using PA beads.  
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(G) PA dose not bind SPHK1 kinase dead mutant. HEK293T cells were transfected with the 

constructs encoding the indicated proteins and subjected to pulldown assay using PA beads.  

KD-5A, SPHK1 kinase dead mutant (S165A/G166A/D167A/G168A/L169A).  

(H) PA is co-localized with SPHK1 and its two hydrophobic patch mutants but not with its 

kinase dead mutant or SPHK2. HEK293A cells were transfected with the constructs encoding the 

indicated proteins and subjected to immunofluorescent staining. PASS, PA sensor protein. Scale 

bar, 30 μm. 

(I) Supplementing PA induces SPHK1 kinase activity in vitro. SFB-tagged SPHK1 was 

expressed in HEK293A cells, purified using S protein beads, and subjected to in vitro kinase 

assay in the presence of PA (300 μM), where sphingosine was used as a substrate. The extracted 

S1P was dotted on nitrocellulose paper and immunoblotted with the indicated antibodies.  

(J) Inhibition of PA production suppresses SPHK1 kinase activity. SFB-tagged SPHK1 was 

expressed in HEK293A cells, treated with DMSO, FIPI (30 μM) or CAY10594 (20 μM) 

overnight, purified using S protein beads, and subjected to in vitro kinase assay, where 

sphingosine was used as a substrate. The extracted S1P was dotted on nitrocellulose paper and 

immunoblotted with the indicated antibodies.  
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3.14 Supplemental Figure  

Figure S3.1 

 

Figure S3.1. Characterization of PLDs-based protein-protein interaction network. 

(A) SFB tag location does not affect PLD2 cellular localization. N-terminal SFB-tagged PLD2 

and C-terminal SFB-tagged PLD2 constructs were expressed in HEK293A cells. 

Immunofluorescent staining was performed using Flag antibody. Scale bar, 30 μm. 

(B) Comparison of the numbers of PLDs-interacting proteins identified in the BioPlex 

interactome database with the HCIPs of our data set. 
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Figure S3.2 

Figure S3.2. Interactome map of the PLDs and PA-associated proteins. 

The cytoscape-generated merged interaction network for six PLD proteins and their lipid product 

PA showed a group of shared HCIPs (green) between PLD proteins and PA. Unique HCIPs for 

each PLD protein and PA are labelled in blue 
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3.15 Electronic Supplemental Tables 

Table S3.1. Complete peptide identification list for human PLDs and PA-based MS experiments. 

Table S3.2. Complete prey list for human PLDs and PA-based MS experiments. 

Table S3.3. Complete HCIP list for human PLDs and PA-based MS experiments. 

Table S3.4. Comparison of the PLDs HCIPs in BioPlex. 

Table S3.5. GO analyses of human PLDs and PA-associated HCIPs. 

Table S3.6: Sequence information of PJA2 sgRNAs. 
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CHAPTER 4 

Summary and Conclusions 

 
4.1 Summary of results  
               

 
The aim of this work was to generate a user-friendly pipeline for mass spectrometry data analysis 

to aid in the identification of biologically relevant interactions (Figure 4.1). While the 

proteomics field and mass spectrometry instruments has evolved over the decades, so does the 

amount of data produced creating a problem for users in the identification of bona fide 

interactions. We applied this generated pipeline for the identification of novel Hippo pathway 

regulators to further elucidate our understanding of this pathway’s modulations. We 
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demonstrated using this generated pipeline, the identification of a unique 9-amino acid residue 

important for modulating interactions between WW-PxY motif containing proteins within the 

Hippo pathway. Additionally, a novel YAP inhibitor was discovered using this conserved 9 

amino acid sequence, Syntaxin binding protein 4 (STXBP4). The application of this pipeline was 

also used to potentially identify novel upstream regulators governing the PLD-PA-Hippo axis. 

Though our further studies did not identify any Hippo pathway regulators amongst the PLD 

family, we did discover novel interactors that are Hippo independent and biologically relevant. 

Amongst the potential interactors of six PLD members, an E3 ubiquitin-protein ligase, PJA2 was 

identified to bind specifically to PLD1 (an oncogene). Additionally, we uncovered that PA binds, 

co-localizes, and regulates Sphingosine Kinase1 (SPHK1), which has been associated with 

regulating cell growth, proliferation, and survival.  

 

In Chapter 1 (published in ((Kattan et al., 2023)), we describe the MS pipeline for data analysis. 

Mass spectrometry (MS) is a powerful tool for studying small molecules in biological research. 

It can be used in conjunction with other techniques to identify interacting proteins in protein-

protein interaction (PPI) studies. Common methods for isolating protein complexes include 

immunoprecipitation, affinity purification, and protein-proximity labelling approaches. 

Nevertheless, the growing size and intricacy of proteomic data associated with protein-protein 

interactions present difficulties when attempting to manually extract meaningful biological 

insights from the data. To address this issue, various bioinformatic tools have been developed to 

facilitate the analysis of PPI-related proteomic data. These tools include MS raw data filtration, 

gene ontology (GO) analysis, functional topology analysis, and PPI network visualization. These 

methods enable regular biological research labs to process, analyze, and present large-scale MS 
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data. Validating and characterizing the refined PPI network experimentally is also crucial to 

ensure the reliability of the interactome dataset. This review article discusses the current methods 

used for isolating and identifying interacting proteins using MS analysis. It provides an overview 

of how to process MS raw data, interpret their biological significance, construct a PPI network, 

and characterize the functions of newly identified interacting proteins. We aimed to offer 

guidance and highlight bioinformatics resources for researchers interested in using MS to 

investigate PPIs in their biological research. While this guideline provides current resources, 

there is room to incorporate other -omic resources to make the data more meaningful. Using this 

approach, we were able to identify novel regulators that were Hippo and non-Hippo related.  

 

In Chapter 2, we put this generated pipeline into use for the discovery of novel hippo 

interactions(Vargas et al, 2020c). This study focused on WW domains, which are protein 

modules involved in protein-protein interactions. By using bioinformatic resources and tools, we 

screened many potential ligands, and identified the specific binding preferences of WW domains 

within the Hippo pathway. This led to the identification of a specific amino acid sequence 

governing this specificity. Upon further analysis, this specific sequence criterion was 

demonstrated to be specific for other proteins within the WW proteome, STXBP4 was 

discovered to contain this sequence. Mechanistically, studies demonstrated that STXBP4 recruits 

multiple Hippo PY motif-containing proteins, such as AMOT and LATS, to form a complex with 

α-catenin at adherens junctions. This complex also includes YAP/TAZ, which interact with 

AMOT and LATS. The findings of this study provide valuable insights into the regulatory 

mechanisms of the Hippo pathway and suggest a novel role for STXBP4 as an inhibitor of YAP. 

This research contributes to our understanding of the molecular interactions involved in the 
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Hippo signaling pathway and may have implications for developing therapeutic strategies 

targeting YAP in cancer and other diseases. 

 

In Chapter 3, we aimed to identify novel regulators upstream of the PLD-PA-Hippo axis in hopes 

of finding an important player for this axis. The study aims to uncover the protein-protein 

interactions and functional relationships of PLD and PA-associated proteins in their relation to 

the Hippo pathway. Using a combination of experimental and bioinformatics approaches, we 

identified and validated a comprehensive network of proteins that interact with PLD and 

participate in PA signaling. The interactome analysis revealed several novel interactions and 

functional associations. While we did not find any Hippo related regulators, we found that PLD 

interacts with numerous proteins involved in various cellular pathways, including membrane 

trafficking, cytoskeleton organization, cell signaling, and lipid metabolism. Through our 

proteomic analysis, we discovered that PJA2 functions as an E3 ubiquitin ligase for PLD1. These 

findings emphasize the involvement of PJA2 in a complex downstream signaling network. 

Numerous studies, including our own, have identified PA as a significant signaling molecule due 

to its interaction with various proteins. This led us to employ a proteomic approach to explore 

the proteins associated with PA.  

 

Through this analysis, we successfully identified a cluster of proteins as PA binding proteins. 

Among the identified proteins, we experimentally validated the lipid-protein interaction between 

PA and SPHK1, which has also been previously reported using different methods. We 

demonstrated that PA serves as a critical regulator of SPHK1, influencing its cellular localization 

and kinase activity. These findings shed light on the mechanisms underlying the modulation of 
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this essential lipid kinase. The findings of this study provide valuable insights into the complex 

network of interactions and functional roles of PLD and PA-associated proteins. This 

comprehensive analysis contributes to our understanding of the molecular mechanisms 

underlying PA signaling and its involvement in cellular processes. The identified protein-protein 

interactions and complexes serve as a resource for further investigations into the physiological 

and pathological roles of PLD and PA signaling in human biology and disease. 

 

In conclusion, our understanding of complex datasets is still at the surface level. With so many 

new -omic data generation evolving overtime demands that bioinformatic resources stay up to 

date. With new data generating techniques being generated, convoluted data is generated, and the 

need arises for further establishments of guidelines on how to deconvolute and create a user-

friendly guide on how to extract relevant data. The studies arising from our generated pipeline is 

just the beginning, further tools can be added in such as additional disease -omic resource to 

provide additional insight into these interactions.  

 

4.2 Implications of generated proteomics pipeline for discovery of novel regulators  

The analysis of affinity purification-related proteomic data for studying protein-protein 

interaction networks opens several exciting avenues for future research, including method 

development, network dynamics, functional annotation, validation, perturbation studies, and 

integration with other -omics data. These implications can contribute to a deeper understanding 

of cellular processes, disease mechanisms, and potential therapeutic targets(Hanash, 2003; 

Rolland et al, 2014). While this generated pipeline is a general guideline on how to handle a 

large dataset, there is room for further method development that can give provide further 
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biological information. Future modifications to this guideline can be incorporated once 

refinement on existing scoring methods (e.g., CRAPome, MUSE) enhance the accuracy, 

sensitivity, and throughput of proteomic data analysis in the context of studying protein-protein 

interaction (PPI) networks. While these scoring resources are useful, they have some limitations 

such as contaminant database coverage, lack of contextual information, and parameter 

determination that can lead a user to explore interactions that may not necessarily be true. More 

so, future implications include investigating the dynamic nature of generated PPI networks over 

time, capturing changes in interactions under different cellular conditions or in response to 

different treatments(Räschle et al, 2015). These types of studies could shed light on the temporal 

aspects and regulatory mechanisms governing protein-protein interactions.  

 

Expanding on the analysis of proteomic data, future studies can focus on functional annotation of 

the identified protein-protein interactions. Integrating other -omics data, such as transcriptomics 

or metabolomics (Srivastava & Creek, 2019), can provide a more comprehensive understanding 

of the biological processes and pathways associated with the protein-protein interaction network 

(Huang et al, 2017; Reel et al, 2021). Future implications include developing computational 

approaches and tools to integrate multi-omic data and unravel the complex relationships between 

genetic variation, protein-protein interactions, and cellular phenotypes. Although affinity 

purification-based methods are powerful for identifying protein-protein interactions, 

experimental validation is crucial to establish biological function. Additionally, further 

characterization of specific interactions can be performed to understand their binding affinities 

and functional consequences. 
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In conclusion, the analysis of large datasets has proven to be a valuable approach for studying 

protein-protein interaction networks in cells. By utilizing affinity purification techniques coupled 

with mass spectrometry, researchers can identify and characterize protein complexes, elucidate 

protein interaction dynamics, and gain insights into the functional organization of cellular 

pathways. This powerful method has enabled the discovery of novel protein interactions, the 

identification of protein complexes involved in disease processes, and the exploration of 

signaling networks underlying cellular functions. As advances in proteomic technologies 

continue to refine and expand, the analysis of affinity purification-related proteomic data will 

undoubtedly remain a fundamental tool for unraveling the intricate web of protein interactions 

that drive cellular processes, ultimately leading to a deeper understanding of cell biology and the 

development of targeted therapeutics.  

 

With the role of the mammalian Hippo pathway as a vital signaling pathway involved in organ 

size control and tumorigenesis, targeting this pathway is an attractive target. Understanding the 

specific binding interactions between WW domains and their ligands opens possibilities for 

developing targeted therapeutics. The generated proteomics analysis pipeline was utilized to 

initiate the study of the WW domain within the Hippo pathway which further elucidated 

important motif-driven interactions. Modulating the WW domain interactions within the Hippo 

pathway can lead to potential treatments of cancer. Downstream transcriptional coactivator, 

YAP, has been demonstrated to have a dramatic effect on organ size through its 

hyperactivation(Dong et al, 2007). The cytoplasmic-nuclear shuttling of YAP has been 

established to be critical for its regulation, therefore, it has been suggested that blocking nuclear 

signaling promoted by YAP could be an approach to inhibit its activity and restrict tumor 
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growth(Yu et al, 2014; Zavan et al, 2019). Through its high expression in many human cancers, 

YAP drives tumorigeneses by promoting cancer cell survival, metastasis, and cell proliferation, 

highlighting YAP as an attractive therapeutic cancer treatment. Research efforts have been 

geared towards generating inhibitors towards YAP(Dey et al., 2020; Gibault et al, 2017; Wang et 

al, 2016b; Ye & Eisinger-Mathason, 2016), though no successful drug has been generated 

creating a need for a YAP targeting therapeutic. 

 

To generate a YAP targeting therapy, a YAP WW domain containing small peptide can be 

constructed. As mentioned, the WW domain is defined by the presence of two tryptophan (W) 

residues separated apart by ~25 amino acids, which can bind its proline-rich peptide ligand, 

mostly "PPxY" motif (P, proline; Y, tyrosine; x, any amino acid; hereafter named as "PY" 

motif). Failure of their recognition is associated with many human diseases including 

cancer(Chang et al., 2007b), giving the WW domain-mediated protein-protein a critical role in 

biological processes. With the elucidation of the Hippo WW domain binding specificity for 

Hippo pathway components, such a therapy can be created. YAP contains two WW domains, 

which are required to recruit nuclear PY motif-containing proteins such as ERBB4, ARID1A, 

WBP2 to facilitate YAP transcriptional activity and oncogenic functions. With this criteria, a 

small peptide containing a WW domain that can target and inhibit YAP in YAP dependent 

cancers. Given its central role in diverse pathological processes, targeting YAP with the use of a 

WW domain small peptide therapy with in the Hippo pathway emerges as an exciting therapeutic 

avenue for addressing a wide range of diseases, potentially offering novel and effective 

treatments 
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To address the role of phospholipase D (PLD) and phosphatidic acid (PA) on the Hippo pathway, 

a proteomics approach as the one mentioned above was taken. This study identified several 

proteins that interact with the PLD and PA. While there are numerous novel interactions that 

were identified, future investigations are needed to further establish biological relevance.  Our 

functional investigations established connections between members of the PLD family and 

various cellular processes. While further biochemical assays are needed to validate the 

interactions between the specific PLD bait and their respective HCIP prey, proteomics related 

analysis revealed many potential biological pathways these PLD members could be participating 

in.  PLD1 was found to be a substrate of PJA2, however, it is important to note that 3 additional 

HCIPs fall under the category of proteosome-mediated ubiquitin dependent protein processing. 

This highlights that PLD1 could be a substrate of other ubiquitin ligases, future studies could 

expand on the degradation mechanism of this phospholipid.  PLD2 prey identified sixteen 

members playing a role in HSP90 chaperone cycle for steroid hormone receptor (SHR). SHRs 

are transcription factors that become activated upon sensing steroid hormones such as androgens 

and estrogens. Many unliganded hormone receptors are located mostly in the cytoplasm, and 

with PLD2 localizing to the cytoplasm it is possible that PLD2 plays a role in regulating novel 

SHR pathways.  

 

Interestingly, when analyzing the proteomics data for PLD3 and PLD4 HCIPs, approximately 30 

members were found to be involved in protein processing in the endoplasmic reticulum (ER).  

Although PLD3 and PLD4 are proteins primarily localized to the ER, their specific roles in ER-

related functions have remained largely unknown. Notably, our research has uncovered several 

important participants involved in ER protein quality control as binding partners for PLD3 and 



 
217 

PLD4 indicating potential involvement of PLD3 and PLD4 in the regulation of the ER stress 

response. Additionally, we observed the formation of a complex between PLD3 and PLD4 with 

lysosome proteins TM9SFs and the overexpression of PLD3 induced contact formation between 

the ER and lysosomes. As both PLD3/4 and TM9SFs are transmembrane proteins located on the 

ER and lysosomes, respectively, future investigations will focus on determining whether their 

interaction is directly mediated by their cytosolic regions or influenced by external factors. 

Furthermore, the signaling contexts and functional significance underlying the formation of the 

PLD3/4–TM9SFs complex warrant further exploration. Remarkably, our data also unveiled the 

occurrence of heterodimerization and homodimerization between PLD3 and PLD4. It will be 

highly intriguing to elucidate the role of such dimer formation in regulating the ER-related 

functions of PLD3/4. With recent discovery of PLD3 and PLD4 function as redundant lysosomal 

5’-3’ exonuclease with major activity towards mtDNA(Gavin et al., 2018b; Gonzalez et al, 

2018a; Van Acker et al, 2023) , it is important to further characterize this ER finding.  

 

PLD5 remains very loosely studied. While this study revealed some potential new partners 

through validation, further studies are warranted to establish a biological role. Through the 

proteomics analysis, many ER related prey were found. While it does remain possible that PLD5 

could have some contact with the ER through other interacting partners, this finding could be due 

to the handling of sample during the purification process of PLD5. PLD6 identified fourteen 

preys to be involved within mitochondrial membrane organization and fifteen prey to be 

involved in protein processing in the ER. PLD6 was demonstrated to bind through interaction 

assays to mitochondrial proteins ACOT9, CPT1A, and FAM49B as well as ER proteins 

ERLEC1, HSPA5, and P4HB.  These findings indicate that PLD6 could participate in ER-
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mitochondria crosstalk or have some type of interaction at contact sites. Further studies are 

needed to show how PLD6 is involved in the ER and under what physiological conditions. 

Finally, the proteomics analysis of PA revealed to have many interesting new potential 

interaction partners including nine involved in peroxisomal protein import. It is possible that PA 

binds to proteins involved in peroxisomal protein import, potentially regulating their activity or 

localization, thereby affecting the import process.  

 

This study also demonstrated that PJA2 interacts and ubiquitinates oncogene PLD1 (Chen et al, 

2012; Henkels et al, 2013a), and facilitates its degradation, suggesting that PJA2 may function as 

tumor suppressor and promote tumorigenesis. However, we found that when abolishing PJA2 

expression and looked for tumor growth via a cell-derived xenograft model, there was no tumor 

growth and PJA2 was highly expressed in breast carcinoma tissues (unpublished data). This not 

only suggests that PJA2 is also an oncogene but that PJA2 has other independent functions yet to 

be elucidated. With this in mind, we aimed to explore the possible mechanism behind its tumor 

suppressive functions and found in a colleagues MS dataset for LC3A, a protein involved in the 

elongation and closure of the autophagosome membrane, that PJA2 was a prey identified 

(unpublished data). Through further interactions studies, we saw that PJA2 interacted strongly 

with LC3A amongst a panel of autophagy related proteins leading to the notion that PJA2 plays a 

role in autophagy. Further investigation found that under CQ treatment, PJA2 colocalizes with 

LC3A punctate and its binding is abolished when deleting an LC3 interacting region identified 

within PJA2 (unpublished data). While autophagy remains to be a regulated and detailed 

biological process, E3 ligases have been seen to play a role with autophagy machinery(Sun et al, 
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2017). While this data is unpublished, further studies are required to further elucidate the role of 

PJA2.  

 

In conclusion, the integration of the studies mentioned has provided a comprehensive 

understanding of different aspects of protein biology and interaction networks. The generation of 

a pipeline for the analysis of affinity purification-related proteomic data has allowed for a 

systematic exploration of protein-protein interactions within cells, offering valuable insights into 

the complex network of molecular associations. Furthermore, the elucidation of WW domain 

ligand binding specificities in the Hippo pathway has identified STXBP4 as a potent inhibitor of 

YAP, uncovering a novel regulatory mechanism. Additionally, the interactome analysis of 

human Phospholipase D and the associated phosphatidic acid protein network has shed light on 

the intricate cellular signaling pathways involved in lipid metabolism. By combining these 

studies, we have deepened our knowledge of protein-protein interactions, unveiled novel 

regulatory mechanisms, and gained insights into the complex orchestration of cellular processes. 

These findings contribute to the broader understanding of molecular biology and pave the way 

for further investigations aimed at deciphering the intricacies of cellular networks and 

developing targeted therapeutic approaches. 
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