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PHYSICAL REVIEW E, VOLUME 63, 066201
Exact trace formulas for a class of one-dimensional ray-splitting systems
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(Received 7 September 2000; published 10 May 2001

Using quantum graph theory we establish that the ray-splitting trace formula proposed by Cowthahan
[Phys. Rev. A46, 6193 (1992] is exact for a class of one-dimensional ray-splitting systems. Important
applications in combinatorics are suggested.
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. INTRODUCTION Sy(E)=f(E)Sp. (1.3

Gutzwiller's trace formula, established in the late 1960sExamples of such systems are various billiard systems, and
and early 1970s, states that it is possible to obtain the levellso (with suitable definitions of scaling parametetise hy-
density of a bounded Hamiltonian dynamical system withdrogen atom in strong electric and/or magnetic fi¢Ri§,7).
semiclassical accuracy, based entirely on the informatioFor such systems neither the geometry of the phase space nor
provided by its classical periodic orbif4,2]. According to  the geometry of the set of periodic orbits changes with en-
Gutzwiller the density of energy states can be written as &rgy. Therefore the structure of the siinl) can be defined
sum over prime periodic orbits and their repetitions, once and is valid for all values dE. In such cases it is

interesting to investigate the relationship between the fixed
set of periodic orbitgthe periodic orbit spectruyjmand the
p(E)= ; S(E-En) quantum energy spectrum.
Direct derivation of Gutzwiller's trace formula, as pre-
— sented originally by Gutzwiller, is based on the saddle point
:P(E)WL%RGEP To(E) approximation. This implies that this formula is meant to
work only semiclassically, i.e., to predict only the highly
_ excited energy levels with semiclassical accuracy. Indeed,
X 2 Ay (E) e ISBitep(B)] (1.)  for generic billiard domains, Gutzwiller's formula is not ex-
vt act[1]. However, in certain special cases Ef.1) is known
— ) , . to predict the entire energy spectrum exactly. An example is
wherep(E) is the average density of stat&, is the classi-  he harmonic oscillator. Moreover, exact “Gutzwiller-like”

o

cal action of the prime periodic orbff, trace formulas do exist. A theorem by Anderson and Melrose
[8] states that for any billiard there exists a set of preexpo-

T :3313('5) (1.2) nential factorsA, that makes the relationshifl.1) exact.
P JE ' Other exact Gutzwiller-like trace formulas are obtained in

the context of quantum graph thed§—11]. We show that

is its period, andp,(E) is its Maslov phase. Gutzwiller de- ray-splitting system$12] provide further examples of exact
rived the preexponential factor&,, in semiclassical ap- Gutzwiller-like trace formulas. A specific example, a scaling
proximation, expressing them in terms of the stability prop-one-dimensional step billiard, closely related to quantum
erties of the corresponding periodic orbits. graphs, is presented in the following section together with its

The orbits used to construct the siinl) are obtained at generalized ray-splitting Gutzwiller formula. In Sec. Il we
a given value of the enerdy. On the other hand it is known present a proof for the exactness of the ray-splitting
that, as the energy of a generic, nonhyperbolic systenGutzwiller formula. In Sec. IV we define the ray-splittiig
changes, the structure of the phase space changes and witliuhction and relate it to cycle expansion techniques. In Sec.
the set of periodic orbits. This phenomenon is called “phaseV we make use of the exactness of the ray-splitting
space metamorphosisf3]. Phase-space metamorphosis, inGutzwiller formula to prove a nontrivial combinatorical
general, is accompanied by the creation and destruction aflentity. In Sec. VI we discuss our results and conclude the
periodic orbits giving rise to the interesting phenomenon ofpaper.
ghost orbitg/4]. Therefore, in general, the sum in Eg.1)
will change as a function d& in the sense that it may acquire Il. MODEL
or lose certain terms. However, apart from hyperbolic sys-
tems[5], there exists an interesting class of systems, that are In this section we study the spectrum and the generalized
free of such metamorphoses of the phase space. These &&¥-splitting Gutzwiller formula for the one-dimensional
the scaling systems, for which the action functioSg(E) ~ scaling step billiard12-14 (Fig. 1)
for any periodic orbitp decouples into the product of an
energy-dependent paf(E) and the “reduced action’s), V(x) = 0, for 0<x=b 2.1)
which depends only on the geometry of the periodic orbit, Vo=AE for b<x<1, '
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FIG. 2. Fourier transforn{2.7) of the density of states of the

step potentia(2.1) with b=0.7 and\ = 1/2. About 10 000 states are
included in the sunt2.7). Sharp peaks in the transform are located
precisely at the actions of the Newtonian and non-Newtonian orbits.

where\ is the scaling constant arfd is the energy of the
system. In this paper we focus on the casel. First results
on this model were presented [ib6] in the context of gen-

eralized Poisson formulas in ray-splitting systems. Despite Solving Eq.(2.4) numerically, it is easy to obtain a large

its formal simplicity Eq.(2.1) can be used to illustrate many : e .
physical and mathematical methods and ideas connecté’ mber of roots for studying statistical properties of the

with the ray-splitting approachl2—-16. We work in units quan;um energy Ieve!s as well as the relationships to the
such thatﬁillpthe \?vidt%pof thglpote(atial wellis 1. and the classical periodic orbits of the system. The latter goal is

L . achieved by computing the Fourier image of the density of
mass of the quantum particle is 1/2. Definikg JE and « states defined as

= Bk, where
Bz\ll_)\, (22) F(S):E e_iSKj. (27)
=1
it is elementary to obtain the exact quantum mechanical
equation According to the Gutzwiller trace formuld..1), the Fourier
transform provides a convenient tool for studying the orbit
; K. _ spectra of dynamical systems, since it produces pronounced
_ + — — = ! .
coskb)sin x(1-b)] k sin(kb)cog «(1-b)]=0 peaks at those values efthat correspond to the actions of

2.3 classical periodic orbits. In the case of the scaling system

) (2.1), the actionsS, in Eq. (1.1) are proportional tc,
for the energy levelg,, of the system. They are determined

by the rootsk, of Eg. (2.3) according toEnzkﬁ.

It is more convenient to write Eq2.3) in the form Sy(BE)= fpk(x)dx= Spk, (2.9
sin(kwq)—r sin(kw,)=0 (2.9
and hence one expects the Fourier transf¢gn?) of Eq.
with (1.1) to produce as peak ats,,= usg for every primitive
periodic orbitp and its repetitions.
w1=l1+1l5, wy=l1—1,, l;=b, 1,=8(1-b) The result of the numerical evaluation of the s(@v) for

(2.5 this system is presented in Fig. 2. It shows a large number of
narrow peaks. Most of them do not correspond to the stan-
dard (Newtonian periodic orbits. This is immediately clear
since in the case of the potentig®.1) there exists only a

_ ﬂ 2.6 single primitive Newtonian periodic orbit at any value of the

1+B° ' energy above the potential stégee Fig. L
The extra peaks in Fig. 2 are due to non-Newtonian peri-

In general the two frequencies;, andw, in Eq.(2.4) are not  odic orbits[12—16. They correspond to the non-Newtonian

rationally related. Therefore E@2.4) connects the physical reflections off the sharp ray-splitting step. Together with the

problem of a scaling step potential with the mathematicaNewtonian orbits the non-Newtonian orbits account for ev-
theory of almost periodic functiod.7]. This means that all ery single peak in Fig. 2 for arbitrary values of the param-
our exact results on the spectrum of the scaling step potentiaters A and b. Numerical computations indicate that the

(2.1) can be interpreted as theorems on the roots of doublynaxima ofF(s) converge toS peaks in the limit when the

periodic functions. number of roots included in the suf@.7) tends to infinity.

and the reflection coefficient

r

066201-2



EXACT TRACE FORMULAS FOR A CLASS OF ONE .. PHYSICAL REVIEW E 63 066201

This, in turn, suggests that there exists an exact formula of 0 1 0

the type(1.1). That this is indeed the case is proved in Sec.

Il below. c=\1 0 1} 3.2
A natural generalization of Gutzwiller's trace formula, 01 0

which includes the contributions from the non-Newtonian . . . .
ray-splitting orbits, was obtained previously [ih2]. Speak- On every bond connecting verticeandj, one defines a free
ing in terms of the step potenti&2.1), instead of just a single Particle wave functionj;; , which satisfies the following ver-
orbit bouncing betweer=0 andx=1, a generic orbit may tex conditions:
now be reflected off or transmitted throu h the ray-splittin

; s UiE=0)=gi, Wi(é=Li=g¢;, (33

boundary ak=b any number of times in arbitrary sequence.

As a result, the set oprimitive non-Newtonian orbitbe- vfyhereg is the coordinate along a particular bond of length
comes infinite. In a one-dimensional system the numbers ij » S0 that the wave functions on different bonds match on
these reflections and transmissions are the only characterl Very vertex. The general solution satisfying the vertex con-
tics of the orbits, and therefore any orbit can be characterize itions is

uniquely and completely by a binary sequence of symidols

and R that keep track of each reflection off the leff)( or

the right (R) wall of the potential well. The corresponding (€)= Ws"ﬂﬁu —&)]

generalized Gutzwiller sum includes all primitive Newtonian e
and non-Newtonian periodic orbits and their repetitions,

¢;iCjj
+—SI k 3.4
1 Slr[kﬁul—”] r[ Bljf] ( )
_ _ 27 o v A VS
p(E)—p(E)+;R€Ep Tpgl [(— ¥ Pro®@reS, g0 presence of the coefficiengy allows us to generalize
(2.9  the formalism developed if9—11]. For the derivatives we
have the continuity conditions

wherep=[b+ B(1—Db)]/(2wk) is the average level density,

r, defined by Eq(2.6), is the quantum reflection coefficient, > Cijlﬂj’i(§=Lij):E Cij#;(£=0). (3.5
t=1-r? is the transmission coefficient;(p) and 2r(p) J<i I

are the number of reflections and transmissions of the primi-
tive orbit p at the potential step, ang(p) counts the total
number of times the orbit reflects off the walls and off the

For the case of the potentié?.1),

potential step to the right of the ray-splitting boundary. Note U €)= ———sin(ké), (3.6
that (—1)X(P=¢'¢p and explicitly defines the Maslov phase S'”(kb)
in Eq. (1.).

If we denote the actions of the shortest orbi® énd £) _ $2 iMkB(1—b— 3
by Sk andS;, respectively, the actios, of any orbit can be V2dé) sinkB(1—b)] sirtka( 0 @9

expressed as a sum, . o N ]
The matching and continuity conditions at vertex 2 result in

S,=n,S,+n , 2.1
p=NeSct NeSe (2.10 Btankb)+tafk8(1—b)]=0 (3.9
for certain integers, and ny (generally different fromo or
and 7). The level density2.9) contains only even powers of
the transm|53|on coefficientt because every periodic OI’.bI't sink(ly+1,)]—r sink(l;—1,)]=0, (3.9
transmits an even number of times through the ray-splitting
boundary. which is the same as E.4). The lengthd; andl,, defined
in Eq. (2.5 turn out to be the weighted bond lengths.
IIl. EXACTNESS OF THE RAY-SPLITTING TRACE The same quantization condition can be obtained from
FORMULA considering the scattering process at every vertex of the

) o i graph(3.1). The vertex scattering matrix is given by
Using quantum graph theorf9—-11], it is possible to

show that the expressid@.9) is exact. We prove this below o\ —g(')C Ciir, (3.10
after presenting some basic ideas of quantum graph theory. iy’ a

From the perspective of quantum graph theory, the quanyhere the index refers to the vertex under consideration,
tization_ of a particle in the potentigR.l) is treated as a gj(I) are coefficients that depend on the physics of the scat-
scattering problem on the graph tering at the vertex, andC;; are the matrix elements of the
(3.1)  connectivity matrix determining the geometry of the graph.

L ]
1 *2 3 At the “dead end” vertices 1 and 3 of the gragB.1) we
with three vertices and two bonds described by the connediavec'y), = o'3}, = — 1. For the central vertex it is easy to
tivity matrix [9—11] show that
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@ [t
20\t —r )

On the other hand, from the analytical properties of
(3.1)  def1—S(E)][11], itis easy to relate it to the spectral count-
ing functionN(E),

The graph scattering matrix, describing the graph as a whole, o 1 1 * 1
is given by N(E)ZNW(E)—§+;Im2 ﬁTr(sn), (3.18
n=1

0 -D

S= ( Do@ 0 ) (312  whereNy(E) is the average spectral staircase funcfite

Weyl term). Putting all these ingredients together, one ar-
where the matrix rives at the trace formulé2.9).

The exactness of E@2.9) can be understood on the basis
elik o of the dramatic increase of the number of primitive non-

D=( 0 sz) (3.13  Newtonian orbits included in it. As the orbit length in Eq.
€ (2.9 increases, non-Newtonian orbits proliferate exponen-

accounts for the phases accumulated along the bonds. T%@élyr;oa;%\;:g;\r}?x?dd|t|0nal information about the structure of
quantization conditiof9—11] It is interesting to compare E@2.9) with the results pro-

o — duced by Gutzwiller's trace formula without ray splitting.
de{1-S)=0, 3.1 ) : .
el ) (319 For the step potentigl.1) there exits only one Newtonian
results in periodic orbit with classical actiosy which bounces be-
tween the left and the right walls of the wéRig. 1). There-
e2i(lak+12K) _p (g2ilak _ g2iloky — 1 (3.15 fore Eq.(2.9) predicts
This is the same as E€3.9). . N S _ " 3
With the help of p(E)=p(E)+ = 2, cosvSY=Ty 2 o(Sy~2mm),
(3.19
o1
Inde{1—-S)=— >, ﬁTr(S”), (3.1  where
n=1
Sy=2kb+ 2kB(1—b) =Sk, (3.20

the quantization conditiofB8.14) can be written alternatively -
as a sum over the periodic orbits of the graph. Indeed, sincg, = gS, /JE, and p=Ty/2m. Since only a single periodic
the scattering matrix is defined geometrically using the graplrbit contributes, Eq(3.19 predicts a periodic spectrum for

connectivity matrix, its indices correspond to the vertices a particle in the step potenti&2.1). Moreover, the Fourier
andj connected by a bond if the matrix eleméf#0. The  image

trace of thenth power of this matrix is defined on the set of

all the possible cyclicah-bond sequences. Using E¢3.10 . ”
and(3.12) we obtain Tr6®"*1)=0 and F(S):f p(E)e '5kd|5=[5;(31]2m:2_3c MK —s]

(3.22
2N\ _ _ o4272ikL,
(S )_2n£+%:n (=1)r"t"e ' (3.1 of the density of states producégeaks at integer multiples

of the reduced actioﬁﬁ of the (only) Newtonian orbit of the

wheren, andny give the number of times the lefi’j and  system. Figure 3 shows that the exact spectrum of the prob-
the right (R) bonds of Eq.(3.1) occur in the sequencé,, lem is not periodic, which illustrates that the trace formula
=ngl,+ngl,, o is the number of reflections from the (1.1 [(2.9), respectively without non-Newtonian orbits pre-
middle vertex, and 2 is the number of transmissions dicts a wrong energy level distribution.
through it. Since the reflection coefficient coming from the A straightforward generalization of the ideas and proce-
scattering matrix3.11) can be positive or negative, the fac- dures discussed above provides a proof of the exactness of
tor (—1)* is needed to keep track of how many times it Ed. (2.9 for the whole class oN-step scaled potentials
appears with a minus sign. It also keeps track of how many .
times a given orbit scatters off the walls. VX)=Vi=NE, bi_y<x<b;, i=1...N,

There are two possibilities fdr,, . Either it corresponds to (3.22
a prime periodic orbit, or it corresponds to a bond sequencnereb,=0, by=1, and\; is the scaling coefficient for the
that retraces itseli’ times. In this casd., is v times the  jth interval[b;_;,b;].
length of a singleprimitive) traversalL,, and the preexpo-
nential factor is thesth power of the factor corresponding to
the shortest closed bond sequence. Alternatively, these
closed bond sequences can be viewed as periodic orbits Despite its exponentially decreasing terms, £39) con-
traced by a particle moving on the graph. verges only conditionally due to the exponential proliferation

IV. RAY-SPLITTING Z FUNCTION

066201-4
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V. COMBINATORICS

15

In quantum graph theory the representation of the quan-
p(k) tum level density in the form of a Gutzwiller-like trace for-

; | mula is exacf9-11]. In special cases both the level density
and the trace formula can be evaluated analytically and give
rise to combinatorical identities. This idea was successfully

os ] implemented by Schanz and Smilansky, who obtained a host
of new and nontrivial combinatorical identiti¢49]. Addi-
tional identities are generated whenever E89 can be
| | solved analytically. We illustrate the method by choosghg
such that;=b andl,=B(1—-b)=Db in Eq.(3.9. In this case
(3.9 becomes sin(&) =0, solved byk,=n/(2b). The cor-
0 5 10 k 18 20 24

(=3

05 responding periodic level density can be obtained directly
using the conventional Poisson formula,

5

FIG. 3. Contribution of the 43 shortest Newtonian and non- w
Newtonian periodic orbit$up to binary code length)#o the den- p(E)= E 5
sity of states of the step potential shown in Fig. 1. The exact energy n=1
eigenvalues {) are close to the locations of the peaks. For com-
parison the energy levels predicted by the Newtonian orbits along g interesting that the arguments of the exponents in Eq.
are also shownX). (5.1 coincide with the actions of the repetitions of the New-

tonian orbit,Sy=4bk. This coincidence is due to the special
of the non-Newtonian orbits. Therefore, one should specify &nhojce of parameters =1,=b assumed in this case.
physically meaningful way of partial summation for this se- Alternatively, the level density5.1) can be expressed via

ries. In practice, one could certainly consider the shortestq (2.9). Equating the prefactors of terms with the same
periodic orbits in order to get an approximation for E&9).  ction results in the sum rule

Figure 3 presents the contribution of the 43 shortest periodic
orbits. This corresponds to including all periodic orbits up to 1
binary code length 7e.g., LRRLLLL). Figure 3 shows 1=—
that the peaks give a very accurate representation of the ac-

tual positions of the roots. . S
Since Eq.(2.9 is a geometric series with respect to the HereTy=2b/k and the sum on the right-hand side is over all

repetition indexw, this part of the summation can be per- Periodic orbits, Newtonian and non-Newtonian, that add up
formed immediately, yielding to the same multiple of the Newtonian actigy.

The sum rule(5.2) can be recast into a combinatorical
theorem on the se¥, of cyclically nonequivalent binary
codes of even length =2M over the symbole andR in
1—(—1)XP)t27(P)y o(P)giSp(E) the following way. (i) For every wordwe W, compute the

(4.2 primitive time T,, defined asT,=M/v,,, wherev,, is the
number of repetitions of the shortest subcodeviriii) Scan
Using the relation1.2), the density of states can be written each wordw e W, and assign

E— em4bk — (5.7)

Kk m=—ow

w2n? b &
4b?

=—> Tp[(_1)X(D)t27(p)r<r(p)]1f_ (5.2)
TN pv

(— 1)XO)27(P)p () gISy(E)

— 1
p(E)=p(E)+—ReX T,
p

as
W— (= 1) (r?)Puw (t2) 7w (5.3
— 1 J
p(E)=p(E)— —Im—=InZ(E), (420 according to the substitutions
Where LR—t, RL—t, LL—r, RR—-r. (5.9

Then, withr?+t?=1, we have
Z(E)=]] [1-(—1)XP27P)roPeiSp] (4.3
p
2 Tu(~ DM (rd)fu (=1, (5.5
We

is an analog of the Fredholm determinant associated with the *
ray-splitting system2.1) and the sum2.9), considered as a \yhjch is equivalent to the sum rul®.2). Stated differently,
function of the coefficients andt. One can consider a cycle Eq. (5.5 is the same as
expansion 18] of the product(4.3) in powers ofr or t. A
natural choice for the expansion variable would be the M
smaller one ofr,t. Physically, this asymmetry determines 2 (_1)awTW:< ) (5.6)
whether reflection or transmission is the dominant process. weWy ,By=8 B
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VI. DISCUSSION AND CONCLUSIONS This result immediately suggests many important applica-
tions. First, from the mathematical point of view, one can
erive statements about the behavior of the zeros of a wide
lass of almost periodic functions. Second, the exactness of

Since Atle Selberg discovered his famous trace formul
[20], more exact trace formulas have been found. There ar

many cases in which the geometrical information containe : . :
) SR . g. (2.9 provides a convenient way to prove many combi-
in the set of closed geodesigaeriodic orbits can be used to natorical identities, expressible in terms of periodic orbits in

reconstruct the spectrum exactly. Gutzwiller provided : . o . X
physical theory that parallels these results. His formuleq'(z'l)' Lastly, it provides a nontrivial way to obtain Fey

oints the way to establishpproximaterelationships, which nman'’s path integrals in a well-defined limit. It is a natural
iF;\voIve h sigal rather than peometrical conce tz ,In articuidea to approximate arbitrary one-dimensional potentials by
pny 9 : PIS. In p .a steplike profile such a€3.22), for which (2.9) is exact.
lar, Gutzwiller uses the semiclassical saddle point approxis

mation, valid under certain physical conditions, in order tOTaking the limit in which the size of the steps tends to zero,
derive ,the re exponential fapctgrs in B4.1) in a f;)rm that one can approximate the shape of any smooth potential with
. : pre exp . ’ ' any accuracy. As the number of steps increases, the sum over
is valid for a wide class of dynamical systems.

However, Gutzwiller's theory does not imply that thesethe non-Newtonian orbits leads to Feynman’s path integral.

sums are necessarily approximate. There exist different ap-

proaches to establish exact relatlonsh|p$ betV\_/een the spectra ACKNOWLEDGMENTS

of operators and the spectra of periodic orbits. The above
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