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Statistical Inference for High-Dimensional Vector Autoregression 
with Measurement Error

Xiang Lyu†, Jian Kang‡, Lexin Li†

† University of California at Berkeley

‡ University of Michigan

Abstract

High-dimensional vector autoregression with measurement error is frequently encountered in 

a large variety of scientific and business applications. In this article, we study statistical 

inference of the transition matrix under this model. While there has been a large body of 

literature studying sparse estimation of the transition matrix, there is a paucity of inference 

solutions, especially in the high-dimensional scenario. We develop inferential procedures for 

both the global and simultaneous testing of the transition matrix. We first develop a new sparse 

expectation-maximization algorithm to estimate the model parameters, and carefully characterize 

their estimation precisions. We then construct a Gaussian matrix, after proper bias and variance 

corrections, from which we derive the test statistics. Finally, we develop the testing procedures and 

establish their asymptotic guarantees. We study the finite-sample performance of our tests through 

intensive simulations, and illustrate with a brain connectivity analysis example.

Keywords

Brain connectivity analysis; Covariance inference; Expectation-maximization algorithm; 
Simultaneous testing; Global testing; Vector autoregression

1 Introduction

In this article, we study statistical inference for high-dimensional vector autoregression 

(VAR) with measurement error. More specifically, we consider the model,

yt = xt + ϵt,
xt + 1 = A*xt + ηt,

(1)

where yt = yt, 1, …, yt, p
⊤ ∈ ℝp is the observed multivariate time series, xt = xt, 1, …, xt, p

⊤ ∈ ℝp

is the multivariate latent signal that admits an autoregressive structure, ϵt = ϵt, 1, …, ϵt, p
⊤ ∈ ℝp

is the measurement error for the observed time series, ηt = ηt, 1, …, ηt, p
⊤ ∈ ℝp is the white 

noise of the latent signal, and A* = A*, ij ∈ ℝp × p is the sparse transition matrix that encodes 

the directional relations among the latent signal variables of xt. Furthermore, we focus on 

the scenario ∥ A* ∥2 < 1 such that the VAR model of xt is stationary. The error terms ϵt and ηt
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are i.i.d. multivariate normal with mean zero and covariance σϵ, *
2 Ip and ση, *

2 Ip, respectively, and 

are independent of xt. Here we focus on the lag-1 autoregressive structure and homoscedastic 

errors. We later discuss potential extensions in Section 7.

Model like (1) is frequently employed in a variety of scientific and business applications, 

e.g., finance, engineering and neuroscience. Our motivation is brain effective connectivity 

analysis based on functional magnetic resonance imaging (fMRI). The brain is a highly 

interconnected dynamic system, in which the activity and temporal evolution of neural 

elements are triggered and influenced by the activities of other elements (Garg et al., 2011). 

Of great interest in neuroscience is to understand the directional relations among the neural 

elements through fMRI, which measures synchronized blood oxygen level dependent signals 

at different brain locations. VAR model is an important tool to model such directional 

relations, which are encoded by the transition matrix A*, while the stationarity is often 

assumed (Bullmore and Sporns, 2009; Chen et al., 2011). However, unlike a typical VAR, 

the observed time series yt is the contaminated version of the true signal xt, added with a 

measurement error ϵt (Zhang et al., 2015; Cao et al., 2019).

We address the statistical inference problem of the transition matrix A* under model (1), and 

we aim at a high-dimensional setting where p2 exceeds the length of series T . We first test 

the global hypotheses,

H0 :A*, ij = A0, ij, for all i, j ∈ S versus H1:A*, ij ≠ A0, ij, for some i, j ∈ S,

(2)

for a given A0 = A0, ij ∈ ℝp × p and S ⊆ p × p , where p = 1, …, p . The most common 

choice is A0 = 0p × p and S = p × p . We next test the simultaneous hypotheses,

H0; ij :A*, ij = A0, ij, versus H1; ij :A*, ij ≠ A0, ij, for all i, j ∈ S.

(3)

There has been a large body of literature studying sparse estimation of A* in VAR models 

(Hsu et al., 2008; Song and Bickel, 2011; Negahban and Wainwright, 2011; Basu and 

Michailidis, 2015; Han et al., 2015, among others). However, they all assumed that there 

is no measurement error ϵt, or equivalently, that xt is fully observed. Moreover, while both 

estimation and inference can produce a sparse representation of A*, they are utterly different 

problems. Sparse estimation usually does not explicitly control the false discovery rate (type 

I error), and does not produce an explicit significance quantification (p-value). There has 

been a relative paucity of inference methods for A* in VAR models. Existing inference 

solutions mostly focused on the low-dimensional VAR setting; see Reinsel (2003); Tsay 

and Chen (2018); Shao (2015) for a review. More recently, for the high-dimensional VAR 

setting, Krampe et al. (2018) proposed to bootstrap the de-biased Lasso estimator, while 

Zheng and Raskutti (2019) extended the de-correlated score test of Ning and Liu (2017). 

However, they only addressed the global testing problem (2), but not the simultaneous 

testing problem (3). Besides, it is unclear how to adapt their tests to accommodate additional 
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measurement error. To the best of our knowledge, there is no existing solution to directly 

address both global and simultaneous testing problems under the high-dimensional VAR 

setting with error.

Our proposal is built upon two key ingredients: a sparse expectation-maximization (EM) 

algorithm, and the high-dimensional covariance inference. The first ingredient, the EM 

algorithm, offers a way to estimate model parameters in the existence of measurement 

error. Early EM methods, however, only justified the convergence to a local optimum and 

did not consider sparsity. Recently, a seminal work of Balakrishnan et al. (2017) provided 

sufficient conditions to guarantee the convergence of standard EM to the global optimum but 

only in a low-dimensional setting, while Cai et al. (2019) extended the guarantee to a high-

dimensional sparse Gaussian mixture model. See also Wang et al. (2015); Yi and Caramanis 

(2015). On the other hand, they all worked with i.i.d. observations, whereas our problem 

involves temporally highly dependent data. Extension from independent to dependent 

observations is far from trivial. The second ingredient, the high-dimensional covariance 

inference, has been intensively studied in recent years, including both global testing (Cai and 

Jiang, 2011; Xiao and Wu, 2013; Chen et al., 2010) and simultaneous testing (Liu, 2013; 

Cai et al., 2013). See also Cai (2017); Cai and Sun (2017) for reviews. However, they all 

assumed the data which the covariance is constructed from are fully observed. By contrast, 

our inference is about the transition matrix A* of the latent unobserved xt, and the covariance 

of the observed yt is a nonlinear transformation of A*, making it difficult to trace back to 

A*. Consequently, there is a considerable gap before we can apply the existing covariance 

inference tools to our setting.

In this article, we develop inferential procedures for both the global and simultaneous testing 

problems (2) and (3) under the high-dimensional VAR model with error. Our proposal 

includes three main steps. First, we develop a new sparse EM algorithm to estimate relevant 

model parameters. Next, we construct a Gaussian matrix on the domain of transition matrix, 

from which we derive the test statistics. Finally, we develop the global and simultaneous 

testing procedures with proper theoretical guarantees.

In the first step, we develop a new sparse EM algorithm to estimate both the transition 

matrix A* and the error variances σϵ, *
2  and ση, *

2 . In particular, the maximization step is done 

via a generalized Dantzig selector for Yule-Walker equation, which can be efficiently solved 

by parallel linear programming (Candes and Tao, 2007; Han et al., 2015). We then establish 

the convergence of our sparse EM estimators to the true parameters, within the statistical 

precision required for the test statistics and the transition matrix inferences in later steps. 

We note that, the existing EM theory adopts the log-likelihood in an infinite-sample scheme 

as the key analytical tool, which becomes an expectation at a single observation given i.i.d. 

observations (Balakrishnan et al., 2017; Cai et al., 2019). However, the temporal dependence 

in our model makes the expectation of the log-likelihood change with the sample size. To 

tackle the issue, in our theoretical analysis, we consider the expectation in a finite-sample 

scheme instead, which introduces additional technical difficulty. We then derive several 

new concentration inequalities to establish the statistical error under some weak sparsity 

assumptions.
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In the second step, we construct a Gaussian matrix as the test statistic for our transition 

matrix inference. This is built on a key observation that the inference on A* is equivalent 

to the inference on the lagged auto-covariance of some noise term. Since this noise is not 

directly observed, we employ the sparse EM algorithm in the first step to reconstruct the 

noise. We then study the non-asymptotic behavior of the sample lagged auto-covariance of 

the reconstructed noise, and explicitly characterize its bias and variance. This in turn leads 

to the construction of the test statistic matrix whose entries marginally follow a standard 

Gaussian distribution under the null hypothesis.

In the third step, we develop a global testing procedure based on the extreme distribution 

of the maximal entry of the test statistic matrix from the second step, and develop a 

simultaneous testing procedure by thresholding at a level that controls false discovery rate 

(FDR). Theoretically, we obtain the asymptotic size and power of the global test, which 

together establish the consistency of our test. We also show that our simultaneous test 

achieves a consistent FDR control. Our testing procedures are extensions of the covariance 

inference methods such as Cai and Jiang (2011); Liu (2013); Cai et al. (2013). But unlike 

the existing methods that are built on the sample covariance of fully observed data, our 

tests are obtained from the sample lagged auto-covariance of the reconstructed noise. This 

difference requires us to derive new concentration inequalities and Gaussian approximations 

to disentangle the reconstruction error, lag effect, and temporal dependence. These new 

theoretical results themselves may be of independent interest.

We employ the following notation throughout this article. Let S  denote the cardinality of 

a set S. For a scalar a ∈ ℝ, let a  and a  denote the smallest and largest integer greater 

than or smaller than a. For two scalars a, b ∈ ℝ, let a ∨ b and a ∧ b denote the maxima and 

minima. For a vector a = a1, …, ap
⊤ ∈ ℝp, define ∥ a ∥ 1 = ∑i = 1

p ai , ∥ a ∥ 2 = (∑i = 1
p ai

2)1/2
, 

and ∥ a ∥ ∞ = max1 ⩽ i ⩽ p ai . For an index set S ⊆ p , let aS denote the sub-vector of 

a containing only the coordinates indexed by S. For a matrix M = Mij ∈ ℝp1 × p2, 

define ∥ M ∥ 1 = ∑ij Mij , ∥ M ∥ 2 = λmax
1/2 M⊤M , ∥ M ∥ F = (∑ij Mij

2)1/2, ∥ M ∥ max = maxij Mij , 

∥ M ∥ l1 = maxj ∈ p2 ∑i = 1
p1 Mij , ∥ M ∥ l∞ = maxi ∈ p1 ∑j = 1

p2 Mij , ∥ M ∥ l∞ = maxi ∈ p1 ∑j = 1
p2 Mij , 

and ∥ M ∥ r, 2 = maxi ∈ p1 ∑j = 1
p2 Mij

2 to be its element-wise ℓ1 norm, spectral norm, Frobenius 

norm, max norm, maximum absolute column sum, maximum absolute row sum, and 

maximal row-wise Euclidean norm, respectively. Let Mi: and M: j  denote the i th row and j th 

column. Let λmin M  and λmax M  denote its smallest and the largest eigenvalue, tr M  the trace, 

and M  the determinant. Define D M  as a diagonal matrix whose diagonal elements are the 

same as those of M.

The rest of the article is organized as follows. Section 2 presents the sparse EM algorithm, 

Section 3 constructs the test statistic matrix, and Section 4 develops the global and 

simultaneous testing procedures. Section 5 presents the simulations, and Section 6 illustrates 

with a brain connectivity analysis example. Section 7 concludes the paper with a discussion. 

All proofs are relegated to the Supplementary Appendix.
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2 Sparse EM Estimation

2.1 Sparse EM algorithm

Let yt, xt t = 1
T  denote the complete data, where T  is the total number of observations, yt is 

observed but xt is latent. Let Θ = A, ση
2, σϵ

2  collect all the parameters of interest in model (1), 

and Θ* = A*, ση, *
2 , σϵ, *

2  denote the true parameters. The goal is to estimate Θ* by maximizing 

the log-likelihood function of the observed data, ℓ (Θ ∣ yt t = 1
T ), with respect to Θ. The 

computation of ℓ (Θ ∣ yt t = 1
T ), however, is highly nontrivial. The standard EM algorithm then 

turns to an auxiliary function, named the finite-sample Q-function,

Qy Θ ∣ Θ′ = E ℓ Θ ∣ yt, xt t = 1
T ∣ yt t = 1

T , Θ′ ,

which is defined as the expectation of the log-likelihood function for the complete data 

ℓ (Θ ∣ yt, xt t = 1
T ), conditioning on a parameter set Θ′ and the observed data yt, and the 

expectation is taken with respect to the latent data xt. The Q-function can be computed 

efficiently, and provides a lower bound of the target log-likelihood function ℓ (Θ ∣ yt t = 1
T )

for any Θ. The equality ℓ (Θ′ ∣ yt t = 1
T ) = Qy Θ′ ∣ Θ′  holds if Θ = Θ′. Maximizing Q-function 

provides an uphill step of the likelihood. Starting from an initial set of parameters Θ0, 

the EM algorithm then alternates between the expectation step (E-step), where the Q-

function Qy(Θ ∣ Θk) conditioning on the parameters Θ̂k of the k th iteration is computed, 

and the maximization step (M-step), where the parameters are updated by maximizing the 

Q-function Θ̂k + 1 = argmaxΘQy(Θ ∣ Θk).

For our problem, we carry out the E-step via the standard Kalman filter and smoother 

(Ghahramani and Hinton, 1996). For the M-step, the maximizer of Qy(Θ ∣ Θk) satisfies 

that (T − 1)−1∑t = 1
T − 1 Et, t + 1; k = {(T − 1)−1∑t = 1

T − 1 Et, t; k}A⊤, where Et, s; k = E xtxs
⊤ ∣ yt′ t′ = 1

T , Θ̂k − 1  for 

s, t ∈ T  is obtained from the E-step. The standard EM algorithm directly inverts the 

matrix involving Et, t; k′ s, which is computationally challenging when the dimension p
is high. In addition, it yields a dense estimator of A*, leading to a divergent statistical 

error. To overcome these issues, we propose a sparse EM algorithm to deal with the high 

dimensionality and to produce a sparse estimate of the transition matrix. Specifically, we 

consider a generalized Dantzig selector for Yule-Walker equation (Candes and Tao, 2007; 

Han et al., 2015),

Ak = argmin
A ∈ ℝp × p

∥ A ∥1 , such that 1
T − 1 ∑

t = 1

T − 1
Et, t + 1; k − 1

T − 1 ∑
t = 1

T − 1
Et, t; kA⊤

max

⩽ τk,

(4)

where τk is the tolerance parameter that is tuned via cross-validation. The optimization 

problem (4) is solved using linear programming in a row-by-row parallel fashion. We next 

update the variance estimates as,
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ση, k
2 = 1

p(T − 1) ∑
t = 1

T − 1
tr(Et + 1, t + 1; k) − tr AkEt, t + 1; k ,

σϵ, k
2 = 1

pT ∑
t = 1

T
yt

⊤yt − 2yt
⊤Et; k + tr(Et, t; k) ,

(5)

where Et; k = E{xt ∣ yt′ t′ = 1
T , Θ̂k − 1} for t ∈ T , and (5) comes from taking derivative on 

Qy(Θ ∣ Θ̂k). We terminate our sparse EM algorithm when the estimates are close enough 

in two consecutive iterations, e.g., min ∥ Âk − Ak − 1 ∥F, σ̂η, k − ση, k − 1 , σ̂ϵ, k − σ̂ϵ, k − 1 ⩽ 10−3.

We summarize our sparse EM procedure in Algorithm 1.

Algorithm 1

Sparse EM algorithm for parameter estimation in model (1).

 Initialization: Θ̂0 = A0, ση, 0
2 , σ̂ϵ, 0

2
, and set k = 1.

 repeat

  1. E-step: Obtain Et; k, Et, t; k, and Et, t + 1; k via Kalman filter and smoothing, conditional on yt t ∈ T  and Θ̂k − 1.

  2. M-step:

   2.1. Compute Âk by (4).

   2.2. Compute ση, k
2

 and σ̂ϵ, k
2

 by (5).

  3. Collect Θ̂k = Ak, σ̂η, k
2 , σ̂ϵ, k

2
, and set k = k + 1.

 until the stopping criterion is met.

2.2 Estimation consistency

We next establish the estimation consistency of our sparse EM estimators, and show that 

they achieve estimation errors within statistical precision required for the construction of test 

statistic and inference methods in subsequent steps.

Similar to Balakrishnan et al. (2017); Cai et al. (2019), we first introduce a concept, the 

population Q-function, as

Q Θ ∣ Θ′ = E Qy Θ ∣ Θ′ ∣ Θ* ,

where the expectation is with respect to the observed data yt, and this population Q-function 

depends on the true parameters Θ* and the sample size T . On the other hand, our definition is 

not exactly the same as that of Balakrishnan et al. (2017); Cai et al. (2019). They considered 

the limit of infinite i.i.d. observations, which naturally leads to the expectation of Qy at 

a single observation by the law of large numbers. However, the temporal dependence in 

our problem makes the expectation of Qy change with the sample size T . So we define 
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the population Q-function as the expectation at a finite T . This change brings additional 

technical difficulty for subsequent theoretical analysis.

We next introduce a sequence of intermediate estimators, Θk + 1 = argmaxΘQ(Θ ∣ Θ̂k). Note that 

Θk + 1 is obtained by maximizing the population Q-function Q( ⋅ ∣ Θ̂k) and can be viewed 

as a population-level estimator, whereas Θ̂k + 1 in the sparse EM algorithm is obtained by 

maximizing the finite-sample Q-function Qy( ⋅ ∣ Θ̂k) and can be viewed as a perturbation to 

its population counterpart. Meanwhile, both Q-functions are conditioning on the sparse EM 

estimator Θk from the previous iteration. We then break our theoretical analysis into two 

steps. We first characterize the contraction behavior of the intermediate estimator Θk + 1 at 

the population level. We next quantify the perturbation of the sparse EM estimator Θ̂k + 1

from Θk + 1. The resulting error bound of the sparse EM estimator consists of two errors, a 

computational error and a statistical error. The first comes from the population behavior, and 

the latter measures the perturbation due to finite samples.

Our first step of theoretical analysis is to characterize the contraction behavior 

of Θk + 1. Define the oracle auxiliary function q(Θ) = Q Θ ∣ Θ* , and the maximizer 

M(Θ) = argmaxΘ′Q Θ′ ∣ Θ . Also define a local neighborhood of the true parameters Θ*, for 

some constants λ ∈ (0, 1) and r > 0,

ℬ λ, r = A, ση
2, σϵ

2 : |ση
2 − ση, *

2 | ⩽ λση, *
2 , |σϵ

2 − σϵ, *
2 | ⩽ λσϵ, *

2 , ∥ A − A* ∥max ⩽ r .

(6)

Our first key insight is that, in a local neighborhood of the true parameter Θ*, if q( ⋅ ) is 

strongly concave, Q( ⋅ ∣ Θk) is geometrically similar to q( ⋅ ), and M( ⋅ ) well behaves, then 

Θk + 1 is closer to the truth Θ* than Θk. Denote the first and second-order partial derivatives 

of q(Θ) at any parameter entry θ in Θ as ∂θq(Θ) and ∂θ
2q(Θ). Then, for any Θ ∈ ℬ(λ, r), ∂θ

2q(Θ)
is upper bounded by a negative constant. Therefore, q(Θ) is strongly concave in ℬ(λ, r). The 

next assumption characterizes the geometric similarity between Q( ⋅ ∣ Θ̂k) and q( ⋅ ), as well 

as the behavior of M( ⋅ ) in ℬ(λ, r).

Assumption 1.—For any Θ ∈ ℬ(λ, r) and any entry of the parameter θ in Θ, assume that 
∂θMq M(Θ) ⩽ κ ∂θ*

2 q Θ* θ − θ* , for some constant 0 < κ < 1, where θM and θ* denote the 

corresponding parameter in M(Θ) and Θ*, respectively.

We note that the above inequality always holds when Θ = Θ*, even with κ = 0. When κ
is strictly positive, intuitively, it is reasonable to extend this inequality over a local region 

ℬ(λ, r) around Θ* with some positive λ and r. A similar condition was also imposed in 

Balakrishnan et al. (2017). By Assumption 1, the strong concavity of q(Θ), and the fact that 

∂θ*q Θ* = 0, we have that,

| ∂θ*
2 q Θ* | | θk + 1 − θ* | ⩽ | ∂θ*q Θ* − ∂θk + 1q Θk + 1 | ⩽ κ | ∂θ*

2 q Θ* | | θ̂k − θ* | ,
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for any corresponding entries θk + 1, θ̂k of Θk + 1, Θk. Therefore, the population update Θk + 1 is 

closer to Θ* than Θ̂k at rate κ.

Next, we need to ensure the above contraction property holds for all population 

updates Θk for any k ⩾ 1. That is, once the initial estimator Θ̂0 locates in ℬ(λ, r), 
then the population updates Θk k ⩾ 1 all locate in ℬ(λ, r), and thus the contraction 

property applies to any Θk with k ⩾ 1. To achieve that, we need to ensure that 

M(Θ) ∈ ℬ(λ, r) for any Θ ∈ ℬ(λ, r). Let Σy(Θ) ∈ ℝpT × pT  be the covariance matrix of 

the stacked vector y T = y1
⊤, …, yT

⊤ ⊤ ∈ ℝpT  conditioning on the parameter set Θ. Define 

Σ1 Θ = (T − 1)−1E ∑t = 1
T − 1 E xtxt + 1

⊤ ∣ y T , Θ ∣ Θ* , Σ0(Θ) = (T − 1)−1E ∑t = 1
T − 1 E xtxt

⊤ ∣ y T , Θ ∣ Θ* , 

Σ0
(1)(Θ) = (T − 1)−1E ∑t = 2

T E xtxt
⊤ ∣ y T , Θ ∣ Θ* . In a sense, the three terms can be viewed as 

expectations of Et, t + 1, k and Et, t, k conditioning on true parameter if Θ̂k − 1 = Θ.

Assumption 2.—For any Θ = A, ση
2, σϵ

2 ∈ ℬ(λ, r), assume that 

∥ Σ1(Θ) ⊤ Σ0(Θ) −1 − A* ∥max ⩽ r, tr Σ0
(1)(Θ) − Σ1(Θ) ⊤ Σ0(Θ) −1Σ1(Θ) − pση, *

2 ⩽ pλση, *
2 , and 

∣ pTσϵ
2 + σϵ

4tr Σy(Θ) −1Σy Θ* Σy(Θ) −1 − Σy(Θ) −1 − pTσϵ, *
2 ⩽ pTλσϵ, *

2 .

This assumption trivially holds if Θ = Θ* when λ = r = 0. When λ, r > 0, intuitively, 

it is reasonable to expect the assumption remains valid over a proper local region 

around Θ*. Taking A* for instance, note that {Σ1(Θk)}
⊤{Σ0(Θ̂k)}

−1
 is the population 

update of A* from Θk and falls in the region ℬ(λ, r) if Θk ∈ ℬ(λ, r),, thus the identity 

Σ1(Θ) = Σ0(Θ)A*
⊤ + (T − 1)−1E ∑t = 1

T − 1 E xtηt
⊤ ∣ yt′ t′ = 1

T , Θ ∣ Θ*  implies that this assumption 

essentially bounds the reminder (T − 1)−1 Σ0(Θ) −1E ∑t = 1
T − 1 E xtηt

⊤ ∣ yt′ t′ = 1
T , Θ ∣ Θ* , which 

should be small for a range of Θ*, since E xtηt
⊤ ∣ Θ* = 0. A similar condition was imposed 

in Cai et al. (2019, Condition C1) on the initialization too. The explicit forms of λ, r are 

difficult to obtain in our case though, given the temporal dependence and the complicated 

high-dimensional matrices and their inverses.

Together, Assumptions 1 and 2 ensure that the population update Θk + 1 gets closer to the 

truth Θ* than finite-sample update Θ̂k at a contraction rate κ. This subsequently leads to a 

geometrically decreasing computational error at rate κ in the error bound of the sparse EM 

estimator.

Our second step of theoretical analysis is to quantify the perturbation of the sparse EM 

estimator Θ̂k + 1 from its population counterpart Θk + 1. We introduce the next two assumptions 

that characterize the temporal dependence and the sparsity of the model. In Assumption 3, 

M mn denotes the (m, n) th p × p block matrix in M ∈ ℝT p × T p.

Assumption 3.—Assume supΘ ∈ ℬ(λ, r) maxm ∈ T ∑l = 1
T ∥ Σy(Θ) −1Σy Θ* Σy(Θ) −1

mn
∥

max
< ∞. 

In addition, assume that 

supΘ ∈ ℬ(λ, r) maxm ∈ T ∑n = 1
T ∥ Σy Θ* Σy(Θ) −1

mn
∥

max
+ ∥ Σy Θ* Σy(Θ) −1

mn
∥

max
< ∞.
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This assumption constrains the temporal dependence, where the matrices in this assumption 

are the covariance matrices of the quadratic forms of yt’s. Note that the randomness in Θk + 1

comes from the average of the quadratic forms of yt’s, and the law of large numbers holds 

as long as the temporal dependence between the quadratic forms of yt’s is bounded. This 

assumption is reasonable as the inequalities that bound the spectral of the quadratic forms 

comply with the existing concentration theory (Negahban and Wainwright, 2011).

Next, consider a weakly sparse matrix space, ℳ rq, Rq, r1, R1 , defined as,

M ∈ ℝp × p: max
j ∈ p

∑
i = 1

p
Mij

q ⩽ rq, ∑
i, j ∈ p

Mij
q ⩽ Rq, ∥ M ∥l1 ⩽ r1, ∥ M ∥1 ⩽ R1 ,

(7)

for some constants 0 ⩽ q < 1, rq > 0, Rq > 0, r1 > 0, and R1 > 0.

Assumption 4.—There exist constants q ∈ [0, 1), rq > 0, Rq > 0, and r1 > 0, such that, for 

any Θ ∈ ℬ(λ, r), Σ0(Θ) −1Σ1(Θ) ∈ ℳ rq, Rq, r1, R1 .

This assumption imposes a weak sparsity constraint on the matrix Σ0(Θ) −1Σ1(Θ), the 

population update of A*, in that the matrix can be dense as long as there are only a few 

dominant entries and the rest entries are small. Besides, we allow rq, Rq in ℳ rq, Rq, r1, R1  to 

diverge in the subsequent theoretical development. This is much weaker than requiring the 

population update to be strictly sparse with only a few nonzero entries. This assumption is 

similar in spirit as the sparsity assumption in Cai et al. (2019), except that it involves a more 

complicated form due to the temporal dependence of the time series model.

Together, Assumptions 3 and 4 ensure that the sparse EM estimator Θk + 1 is not too far away 

from its population counterpart Θk + 1, which contributes to the statistical error in the error 

bound of the sparse EM estimator.

Now we are ready to present the main theorem regarding the computational and statistical 

errors of our sparse EM estimator. The key idea is that, for any entry of the parameter space, 

we have that |θk + 1 − θ* | ⩽ κ | θ̂k − θ*|. Besides, define δθ = supΘ̂k ∈ ℬ(λ, r) | θk + 1 − θ̂k + 1| as the distance 

between the population and finite-sample estimator of θ. Then, we have,

|θ̂k + 1 − θ* | ⩽ |θk + 1 − θ* | + | θ̂k + 1 − θk + 1 | ⩽ κ | θ̂k − θ* | + δθ ⩽ κk + 1| θ̂0 − θ* | + 1
1 − κ δθ,

in which the first term is the geometrically decaying computational error, and the second 

term is the statistical error. The next theorem gives a more precise summary.

Theorem 1.—Suppose the following conditions hold.

a. The initial parameter set Θ̂0 = A0, σ̂η, 0
2 , σ̂ϵ, 0

2  are in a neighborhood ℬ(λ, r) that 

satisfies Assumptions 1, 2, 3, and 4 for some λ ∈ (0, 1) and r > 0.
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b. The tolerance parameter τl = cl r1 + 1 log(p)/T  for some positive constant 

cl, ∀l ⩽ k.

c. The dimension of time series p and the length of series T satisfy that C log p ⩽ T
for some positive constant C.

Then, the sparse EM estimator Θ̂k = Âk, σ̂η, k
2 , σ̂ϵ, k

2  at the kth iteration satisfies that, for any 

constant c0 > 0, there exist positive constants c1 to c5 such that the event

|σ̂ϵ, k
2 − σϵ, *

2 | ⩽ κk | σ̂ϵ, 0
2 − σϵ, *

2 | + c1
1 − κ ∥ Σy Θ* ∥2 sup

Θ ∈ ℬ λ, r
∥ Σy Θ −1 ∥2

2 log p
T p ,

|σ̂η, k
2 − ση, *

2 | ⩽ κk | σ̂η, 0
2 − ση, *

2 | + c2
1 − κ ∥ Σy Θ* ∥2 1 ∨ sup

Θ ∈ ℬ(λ, r)
∥ Σy(Θ) −1 ∥2

2 log p
T p

+ 1
p

log p
T r1 ∨ 1 R1 + Rq r1 ∨ 1 log p

T sup
Θ ∈ ℬ(λ, r)

∥ Σ0(Θ) −1 ∥l1

1 − q
,

∥ Âk − A* ∥max ⩽ κk∥ Â0 − A* ∥max + c3
1 − κ r1 ∨ 1 sup

Θ ∈ ℬ λ, r
∥ Σ0 Θ −1 ∥l1

log p
T ,

∥ Âk − A* ∥l∞ ⩽ κk∥ Â0 − A* ∥l∞ + c4
1 − κ rq r1 ∨ 1 sup

Θ ∈ ℬ λ, r
∥ Σ0 Θ −1 ∥l1

log p
T

1 − q
,

∥ Âk − A* ∥r, 2 ⩽ κk∥ Â0 − A* ∥r, 2 + c5
1 − κ rq r1 ∨ 1 sup

Θ ∈ ℬ λ, r
∥ Σ0 Θ −1 ∥l1

log p
T

1 − q
2,

happens with probability at least 1 − p−c0.

We make some remarks. First, the non-asymptotic error bound portrays the estimation 

error of sparse EM at each iteration, and reveals the interplay between the computational 

efficiency and the statistical rate of convergence. After a sufficient number of iterations, the 

computational error is to be dominated by the statistical error. Second, the statistical errors 

are all vanishing if log p scales with T , and they decay sufficiently fast in terms of p and 

T  for subsequent statistical inference, even when rq and Rq in ℳ rq, Rq, r1, R1  in (7) diverge. 

Third, the statistical errors for A* do not explicitly display the sparsity. This information 

is hidden in ℳ rq, Rq, r1, R1 . Moreover, since the update of ση, *
2  involves the update of A*, 

the statistical error of ση, *
2  is more complicated than that of σϵ, *

2 . Finally, we observe the 

phenomenon of “blessing of dimensionality”, in that the statistical errors of σϵ, *
2  and ση, *

2

decrease when the dimension p grows under a fixed sample size T . In general, we allow p to 

diverge at an exponential rate of T  as both approach infinity.

3 Test Statistics

We next construct a Gaussian matrix as our test statistic for the transition matrix inference 

in our high-dimensional VAR with measurement error. Given model (1), we observe a 

time series of yt that follows an autoregressive structure, yt + 1 = A*yt + et, with the error term 

et = − A*ϵt + ϵt + 1 + ηt Then the lag-1 auto-covariance of the error et is of the form,
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Σe = Cov et, et − 1 = − σϵ, *
2 A* .

This suggests that we can apply the covariance testing methods on Σe to infer transition 

matrix A*. However, et is not directly observed. Define generic estimators of Θ* by Â, σ̂ϵ
2, σ̂η

2 . 

We use them to reconstruct this error, and obtain the sample lag-1 auto-covariance estimator,

Σe = 1
T − 2 t = 2

T − 1
êtêt − 1

⊤ , where êt = yt + 1 − Ayt − 1
T − 1 t′ = 1

T − 1
(yt′ + 1 − Ayt′) .

This sample estimator Σe, nevertheless, involves some bias due to the reconstruction of 

the error term, and also an inflated variance due to the temporal dependence of the time 

series data. We next explicitly quantify such bias and variance, by characterizing the non-

asymptotic behavior of Σ̂e, which eventually leads to our Gaussian matrix test statistic.

Denote the maximal row-wise ℓ1 estimation error as Δ1 = ∥ A* − A ∥ℓ1, and the maximal 

row-wise Euclidean estimation error as Δ2 = ∥ A* − A ∥r, 2. The next proposition characterizes 

the non-asymptotic behavior of Σ̂e .

Proposition 1.

For any constant c > 0, there exist positive constants c1 to c3, such that, when T ⩾ c1log p,

ℙ ∥ Σ̂e + ση, *
2 + σϵ, *

2 Â − 1
T − 2 t = 2

T − 1
etet − 1

⊤ ∥
max

⩽ c2 Δ1sr
log p

T + Δ2
2 + log p

T ⩾ 1 − c3p−c,

where sr = maxi ∈ p j :A*, ij ≠ 0  is the maximal row-wise sparsity of A*.

This proposition suggests using T − 2Σ̂e to construct the Gaussian matrix test statistic, since 

(T − 2)−1/2∑t = 2
T − 1 etet − 1

⊤ − Eetet − 1
⊤  converges to a zero-mean Gaussian matrix by the central 

limit theorem. The max norm error of the sparse EM estimator and the fact Eetet − 1
⊤ = − σϵ, *

2 A*

further imply that the non-vanishing bias of T − 2Σ̂e is T − 2{−(ση, *
2 + σϵ, *

2 )Â + ση, *
2 A*}, which 

can be estimated by T − 2{−(σ̂η
2 + σ̂ϵ

2)A + σ̂η
2A0} under the null hypothesis. Meanwhile, 

after the bias correction and some direct calculation of the entry-wise variance of 

(T − 2)−1/2∑t = 2
T − 1 etet − 1

⊤ − Eetet − 1
⊤ , the entry-wise limit variance of T − 2Σe is,

σ*, ij
2 = σϵ, *

2 + ση, *
2 2 + σϵ, *

4 A*, ij
2 + 2σϵ, *

4 A*, iiA*, jj + σϵ, *
4 ∥ A*, i: ∥2

2∥ A*, j: ∥2
2

+ σϵ, *
4 + σϵ, *

2 ση, *
2 ∥ A*, i: ∥2

2 + ∥ A*, j: ∥2
2 , i, j ∈ [p] .

Plugging in the estimators Â, σ̂ϵ
2, σ̂η

2  into the above equation, we obtain the corresponding 

estimator σ̂ij
2 . We also comment that, one can use any generic estimators A, σ̂ϵ

2, ση
2  to 

estimate the bias and variance of T − 2Σ̂e. Later, we present the sufficient conditions on the 
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estimation precision of the generic estimators, so to achieve the desired theoretical properties 

of inference. We then show that the estimators from our sparse EM algorithm satisfy those 

conditions.

Now, we construct the Gaussian matrix test statistic H, whose (i, j)th entry is,

Hij = t = 2
T − 1 êt, iêt − 1, j + σ̂η

2 + σ̂ϵ
2 Âij − σ̂η

2A0, ij

T − 2 σ̂ij
, i, j ∈ p .

(8)

Denote the estimation errors, Δϵ = | σ̂ϵ
2 − σϵ, *

2 |, Δη = | σ̂η
2 − ση, *

2 |. and Δσ = maxi, j ∈ p ∣ σ̂ij
2 − σ*, ij

2 ∣. 
The next theorem provides the sufficient conditions to guarantee the asymptotic standard 

normality of Hij under the null hypothesis.

Theorem 2.

Suppose the following conditions hold.

a. The estimation errors satisfy that Δ1 = op{sr
−1(log p)−1/2}, Δ2 = op(T −1/4), 

Δϵ = op(T −1/2), Δη = op(T −1/2), and Δσ = op(1).

b. The dimension of time series p and the length of series T  satisfy that 

log p = o(T 1/2). Then

t = 2
T − 1 êt, iêt − 1, j + σ̂η

2 + σ̂ϵ
2 Âij − σ̂η

2A*, ij

T − 2 σ̂ij

d
N(0, 1)

uniformly for i, j ∈ p  as p, T ∞.

Here the normality holds when the dimension p grows at the exponential rate of T . The 

matrix H is to serve as the test statistic for the subsequent inference procedures.

4 Transition Matrix Inference

4.1 Global inference

We first develop a testing procedure for the global hypotheses (2). The key observation 

is that the squared maximum entry of a zero mean normal vector converges to a Gumbel 

distribution (Cai and Jiang, 2011). Specifically, we construct the global test statistic as,

GS = max
(i, j) ∈ S

Hij
2

The next theorem states that the asymptotic null distribution of GS is Gumbel. We again state 

the sufficient conditions required for generic estimators A, σ̂ϵ
2, σ̂η

2  first, and show later that 

the sparse EM estimators satisfy these conditions.

Theorem 3.—Suppose the following conditions hold.
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a. The estimation errors satisfy that Δ1 = op sr log p −1 , Δ2 = op (T log p)−1/4 , 

Δϵ = op (T log p)−1/2 , Δη = op (T log p)−1/2  and Δσ = op (log p)−1 .

b. The dimension of time series p and the length of series T  satisfy that 

log p = o T 1/7 . Then, under the global null hypothesis in (2), for any S ⊆ p × p

and any x ∈ ℝ,

lim
S ∞

ℙ GS − 2 log S + log log S ⩽ x = exp − exp( − x/2)/ π .

We note that the condition (a) about the estimation consistency in Theorem 3 is stronger 

than that in Theorem 2 for the asymptotic normality. This is because the Gumbel 

convergence is built upon the normality property that needs to be guaranteed first. Based 

on this limiting null distribution, we define the asymptotic α-level test as,

Ψα = 1 GS > 2 log S − loglog S − logπ − 2 log − log(1 − α) .

We reject the global null if Ψα = 1.

Next, we study the asymptotic power of the test Ψα. Toward that end, we introduce a 

parameter class of alternatives,

A c, S = A*, ση, *
2 , σϵ, *

2 : max
i, j ∈ S

ση, *
2 δij
σ*, ij

⩾ c log S
T ,

(9)

where δij = A*, ij − A0, ij  is the distance between the null and the true transition matrix. The 

class A(c, S) requires at least one entry in S has a proper signal-to-noise ratio against the 

null. Note that this is a very large class, because the imposed magnitude log S /T  is 

vanishing, and it only requires one entry to satisfy. The next theorem shows that Ψα has the 

power converging to one uniformly over A(2 2, S). Together, Theorems 3 and 4 establish the 

asymptotic size and power, and thus the consistency of the global test Ψα.

Theorem 4.—Suppose the same conditions in Theorem 3 hold. Then

inf
{A*, ση, *

2 , σϵ, *
2 } ∈ A(2 2, S)

ℙ Ψα = 1 1, as S ∞ .

Next, we show that, when we employ the sparse EM estimators developed in Section 2, 

we can obtain the same desired results as in Theorems 3 and 4. Recall the sparse EM 

estimators at iteration k are denoted as Âk, σ̂η, k
2 , σ̂ϵ, k

2 . Plugging in these estimators yields 

the corresponding sparse EM estimator σ̂ij, k
2  of σ*, ij

2 . Denote the global test statistic and the 

α-level test based on these sparse EM estimators as GS, sEM and Ψα, sEM, respectively. The next 

proposition establishes their size and power properties.
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Proposition 2.—Suppose the following conditions hold.

1. The initial parameter set Θ̂0 = Â0, σ̂η, 0
2 , σ̂ϵ, 0

2  are in a neighborhood ℬ(λ, r) that 

satisfies Assumptions 1, 2, 3, and 4 for some λ ∈ (0, 1) and r > 0.

2.
The parameters in (7) satisfy that R1 < ∞, rq = o[T

1
2 − q

2 /{sr(log p)
3
2 − q

2}]

and Rq = o{pT
1
2 − q

2 /(log p)
3
2 − q

2}. Moreover, supΘ ∈ ℬ(λ, r) ∥ Σy(Θ) −1 ∥2 < ∞, and 

∥ Σy Θ* ∥2 < ∞.

3. The tolerance parameter τl = cl r1 + 1 log(p)/T  for some positive constant 

cl, ∀l ⩽ k.

4. The iteration k ⩾ C log (T log p) ∨ srlog p  for some positive constant C.

5. The dimension of time series p and the length of series T  satisfy that 

log p = o(T 1/7).

Then, under the global null hypothesis in (2), for any S ⊆ p × p ,

lim
S ∞

ℙ GS, sEM − 2 log S + log log S ⩽ x = exp{ − exp( − x/2)/ π} for any x ∈ ℝ,

inf
{A*, ση, *

2 , σϵ, *
2 } ∈ A(2 2, S)

ℙ Ψα, sEM = 1 1, as S ∞ .

The conditions for this proposition essentially combine those of Theorems 1 and 3. When 

the number of iterations k is large enough, the statistical error is to dominate the error bound 

of the sparse EM estimators, and this bound decays sufficiently fast to ensure the properties 

of the global testing procedure. The requirements on the statistical error of sparse EM are 

reasonable, in that rq and Rq are allowed to diverge at certain rates. Moreover, we consider 

a finite R1 here for simplicity, though it is possible to relax the sufficient condition to let R1

diverge too.

4.2 Simultaneous inference with FDR control

We next develop a testing procedure for the simultaneous hypotheses (3) with a proper 

FDR control. Let ℋ0 = (i, j) :A*, ij = A0, ij, (i, j) ∈ S  denote the set of true null hypotheses, 

and ℋ1 = (i, j) : (i, j) ∈ S, (i, j) ∉ ℋ0  denote the set of true alternatives. The test statistic 

Hij follows a standard normal distribution when H0; ij holds, and as such, we reject H0; ij if 

Hij > t for some thresholding value t > 0. Let RS(t) = ∑(i, j) ∈ S 1{ Hij > t} denote the number 

of rejections at t. Then the false discovery proportion (FDP) and the false discovery rate 

(FDR) in our simultaneous testing problem are,

FDPS t = i, j ∈ ℋ0 1 Hij > t
RS t ∨ 1 , and FDRS t = E FDPS t .

An ideal choice of the threshold t is to reject as many true positives as possible, 

while controlling the false discovery at the pre-specified level β. That is, we choose 
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inf t > 0 :FDPS(t) ⩽ β  as the threshold. However, ℋ0 in FDPS(t) is unknown. Observing that 

ℙ Hij > t ≈ 2 1 − Φ(t)  by Theorem 2, where Φ( ⋅ ) is the cumulative distribution function of 

a standard normal distribution, we estimate the false rejections ∑(i, j) ∈ ℋ0 1 Hij > t  in FDPS(t)
using 2 − 2Φ(t) S . Moreover, we restrict the search of t to the range 0, 2 log S , since 

ℙ t̂ exists in 0, 2 log S 1 as we show later in the proof of Theorem 5. We summarize 

our simultaneous testing procedure in Algorithm 2.

Next, we study the asymptotic FDR control of Algorithm 2. We need two assumptions.

Assumption 5.—There exist positive constants u1 and u2, such that

(i, j) : (i, j) ∈ ℋ1,
ση, *

2 δij
σ*, ij

> 4 + u1
log p

T ⩾ u2 log log S .

Algorithm 2

Simultaneous inference with FDR control.

 1. Calculate Hij for all (i, j) ∈ S.

 2. Compute the thresholding value,

   t̂ = inf 0 < t ⩽ 2 log S : 2 − 2Φ(t) S
RS(t) ∨ 1 ⩽ β .

If t̂ does not exist, set t̂ = 2 log S .

 3. For all (i, j) ∈ S, reject H0; ij if Hij > t̂.

This assumption requires a reasonable number of alternatives in S. Intuitively, if the number 

of alternatives is too small, then ∑(i, j) ∈ ℋ0 1 Hij > t ≈ RS(t) for any t, and the resulting 

FDR is close to one regardless thresholding value. This assumption is rather mild, since 

the required number is logarithm of logarithm of S . Liu and Shao (2014) showed that 

this assumption is nearly necessary in the sense that the FDR control for large-scale 

simultaneous testing would fail if the number of true alternatives is fixed.

Assumption 6.—For some constants 0 < v < (1 − σ‾)/(1 + σ‾), γ > 0, and u > 0, we 

have |{ i1, j1 , i2, j2 : σi1j1, i2j2 > (log |S | )−2 − γ; i1, j1 ≠ i2, j2 ; i1, j1 , i2, j2 ∈ ℋ0} | ⩽ u |S|1 + v, 

where σi1j1, i2j2 is the limit covariance between Hi1j1 and Hi2j2, for i1, j1 ≠ i2, j2 ∈ S, and 

σ‾ = max i1, j1 ≠ i2, j2 ; i1, j1 , i2, j2 ∈ ℋ0 σi1j1, i2j2 .

This assumption bounds the number of strongly correlated entries in the null hypotheses. 

The bound, S 1 + v, is weak, since there are S 2 pairs in total and the majority of them are 

allowed to be strongly correlated. A similar assumption was adopted in Xia et al. (2018) to 

ensure the FDR control consistency. The explicit expression of σi1j1, i2j2 is given in the proof of 

Theorem 5.
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The next theorem shows that the simultaneous testing procedure in Algorithm 2 controls 

both FDR and FDP. We again state the sufficient conditions required for any estimators 

A, σ̂ϵ
2, σ̂η

2  first, then show that the sparse EM estimators satisfy these conditions.

Theorem 5.—Suppose the following conditions hold.

a. Suppose Assumptions 5 and 6 hold.

b. The estimation errors satisfy the precision requirements in (a) of Theorem 3.

c. Suppose ℋ0 ⩾ c1 S  for some positive constant c1.

d. The dimension of time series p and the length of series T  satisfy that p ⩽ T c2 for 
some positive constant c2.

Then, for simultaneous hypotheses (3), for any S ⊆ p × p ,

lim
S ∞

FDRS(t̂)
β ℋ0 / S = 1, and FDPS(t̂)

β ℋ0 / S
p

1 as S ∞ .

Compared to the global testing, the estimation consistency condition (b) is the same 

for the simultaneous testing. Meanwhile, the simultaneous testing places some additional 

requirements on the number of alternatives as in condition (c) and Assumption 5, and the 

entry dependence as in Assumption 6. In addition, the dimension p grows at the polynomial 

rate of the sample size T , as in condition (d). These requirements are reasonable because, 

intuitively, the global testing only deals with the maximum entry, whereas the simultaneous 

testing tackles every individual entry. As such, the simultaneous testing relies more on the 

dependence structure among the entries, and needs a larger sample size than the global 

testing. Finally, the slight deflation β ℋ0 / S  in the limiting FDR comes from substituting 

ℋ0  with S  in the false rejection approximation.

Next, we show that, when we employ the sparse EM estimators developed in Section 2, we 

can obtain the same properties as in Theorem 5.

Proposition 3.—Suppose the following conditions hold.

a. Suppose Assumptions 5 and 6 hold.

b. Suppose the conditions (a) to (d) in Proposition 2 hold.

c. Suppose ℋ0 ⩾ c1 S  for some positive constant c1.

d. The dimension of time series p and the length of series T  satisfy that p ⩽ T c2 for 
some positive constant c2.

Then, for simultaneous hypotheses (3), for any S ⊆ p × p ,

lim
S ∞

FDRS(t̂)
β ℋ0 / S = 1, and FDPS(t̂)

β ℋ0 / S
p

1 as S ∞ .
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The conditions for this proposition essentially combine those of Theorems 1 and 5. The 

requirement (b) on the sparse EM algorithm is the same as that for the global testing.

5 Simulations

5.1 Setup

We carry out intensive simulations to study the finite-sample performance of our 

proposed method. We generate the data following model (1). We consider four 

common network structures for the transition matrix A*: banded, Erdös-Rényi, stochastic 

block, and hub, as shown in Figure 1. We first fix σϵ, * = ση, * = 0.2, ∥ A* ∥2 = 0.97, 

and vary the dimension and sample size (p, T ) = (30, 500), (50, 500), (50, 1000), (70, 1000). 
Next, we fix p = 50, T = 1000, σϵ, * = ση, * = 0.2 and vary the signal strength 

∥ A* ∥2 = 0.7, 0.8, 0.9, 0.97. Finally, we fix p = 50, T = 1000, ∥ A* ∥2 = 0.97, and vary the noise 

level σϵ, *, ση, * = (0.1, 0.1), (0.2, 0.2), (0.3, 0.3), (0.4, 0.4).

5.2 Parameter estimation

We first report the estimation accuracy of our sparse EM. The tuning of the tolerance 

parameter τk in (4) is done by cross-validation, where we use the first 25% of data 

points for testing, the last 60% for training, and the middle 15% discarded to reduce the 

temporal dependence between the training and testing samples. We choose the value of τk

that minimizes the average prediction error of the testing samples. We find our algorithm 

converges fast, usually within 10 iterations.

We compare our method with three alternative solutions, including the standard EM without 

sparsity constraint, the Lasso estimator (Hsu et al., 2008), and the Dantzig estimator (Han 

et al., 2015), both of which were designed for VAR without measurement error. We 

evaluate the estimation accuracy by the Frobenius error ∥ A − A* ∥F. Figure 2 reports the 

average estimation accuracy out of 1000 data replications for the varying (p, T ), the varying 

signal strength ∥ A* ∥2, and the varying noise level σϵ, *, ση, * , respectively. It is seen that our 

proposed sparse EM achieves the smallest estimation error across all settings, except when 

the noise level is close to 0. For the case, the model reduces to a standard VAR model 

with little measurement error, and the Lasso and Dantzig estimators should work the best. 

Moreover, our method performs similarly under different network structures, reflecting its 

robustness with respect to the connectivity patterns. We also consider other error norms for 

A* and the estimation accuracy for σϵ, *, ση, *. The results show the same qualitative patterns as 

Figure 2, and are thus omitted.

5.3 Global and simultaneous inference

We next evaluate the performance of our global and simultaneous inference procedures. 

Table 1 reports the empirical size and power based on 1000 data replications, with the 

significant level set at α = 5%. It is seen that our global test maintains a reasonable control 

of the size, and at the same time achieves a good power. Table 2 reports the average false 

discovery proportion and the average true positive rate based on 1000 data replications, with 
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the FDR level set at 5%. It is seen that our simultaneous test achieves both a high true 

positive rate and a low false discovery proportion.

6 Brain Connectivity Analysis

We illustrate the proposed method with a brain connectivity study based on task-evoked 

fMRI. The data is part of the Human Connectome Project (HCP, Van Essen et al., 2013), 

whose overarching objective is to understand brain connectivity patterns of healthy adults. 

We study the fMRI scans of two individual subjects of the same age and sex and both 

participating the same story-math task. The task consists of blocks of auditory stories 

and addition-subtraction calculations, and requires the participant to answer a series of 

questions. An accuracy score is given at the end based on the participant’s answers. The 

performance of the two subjects differ considerably, with one achieving the perfect score 

and the other getting only about half correct. We aim to estimate and infer the brain 

connectivity networks of the two subjects and compare between them. We have preprocessed 

the fMRI data following the pipeline of Glasser et al. (2013). The resulting data for each 

subject are p = 264 time series, corresponding to 264 brain regions-of-interest following 

the brain atlas of Power et al. (2011). The length of each time series is = 316. The 264 

brain regions have been further grouped into 14 functional modules (Smith et al., 2009): 

auditory (AD), cerebellar (CR), cingulo-opercular task control (CO), default mode (DM), 

dorsal attention (DAT), fronto-parietal task control (FP), memory retrieval (MR), salience 

(SA), sensory/somatomotor hand (SMH), sensory/somatomotor mouth (SMM), subcortical 

(SC), uncertain (UN), ventral attention (VA), and visual (VS). Each module possesses 

a relatively autonomous functionality, and complex brain tasks are believed to perform 

through coordinated collaborations among the modules.

We begin with the global test for each subject separately. The p-values for the global test 

for both subjects are smaller than 10−15, indicating that at least one pair of brain regions 

have statistically significant connectivity. We then apply the simultaneous test, with the the 

FDR set at 0.001. First of all, we have identified more within-module connections than the 

between-module connections (294 out of 7700 or 3.8% versus 961 out of 61936 or 1.6% 

for the high-accuracy subject, and 376 out of 7700 or 4.9% versus 1350 out of 61936 or 

2.2% for the low-accuracy subject). The partition of the brain regions to the functional 

modules has been fully based on the biological knowledge, and our finding lends some 

numerical support to this partition. Second, the majority of within-module connections 

are concentrated on eight functional modules. Moreover, when comparing between the 

two subjects among those modules, we find that the high-accuracy subject has more within-

module connections than the low-accuracy subject for the following functional modules: 

visual (118 versus 27 out of 961), salience (29 versus 11 out of 324), cingulo-opercular 

task control (17 versus 3 out of 196), and memory retrieval (6 versus 2 out of 25) modules. 

Such findings suggest that the high-accuracy subject has exhibited more intensive neural 

activities for processing visual imagery, memory retrieval, tonic alertness and executive 

control when performing the story-math task, which agrees with the literature (Sadaghiani 

and D’Esposito, 2015; Luo et al., 2014). On the other hand, we find that the high-accuracy 

subject has fewer connections than the low-accuracy subject for the following functional 

modules: default mode (25 versus 200 out of 3364), fronto-parietal task control (15 versus 
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37 out of 625), auditory (2 versus 8 out of 169), and subcortical (19 versus 49 out of 

169) modules. These findings again agree with the literature, in that these modules have 

been found strongly associated with the language and reasoning type tasks (Schultz and 

Cole, 2016), and the high-accuracy subject has exhibited less brain activity interplay related 

to auditory processing and mind wandering (Van Praag et al., 2017). Figure 3 shows the 

identified connectivity patterns for the two subjects, and Figure 4 shows the corresponding 

brain regions visualized using BrainNet Viewer (Xia et al., 2013).

7 Discussion

In this article, we study both global and simultaneous inferences of the transition matrix 

under the high-dimensional vector autoregression model with measurement error. There is 

no existing solution, and our proposal makes a useful contribution for scientific applications 

such as brain connectivity analysis and others. The technical tools we develop are also of 

independent interest, and can facilitate the development of inferential procedures for other 

models involving latent variables or correlated observations. We next make some remarks 

regarding our model assumptions, potential limitations, and possible extensions.

We have primarily focused on a lag-1 autoregressive structure in this article. Meanwhile, 

our proposal can be extended in a relatively straightforward fashion to a more general 

lag structure. Specifically, suppose the number of lags is d. Then the latent process 

in model (1) becomes xt = ∑l = 1
d Al, *xt − l + ηt − 1, and the problem of interest becomes 

testing A1, *, …, Ad, *. This lag-d VAR model can be equivalently rewritten as a lag-1 

model, such that xt = A*xt − 1 + ηt − 1, xt = xt
⊤, …, xt − d + 1

⊤ ⊤ ∈ ℝpd, ηt = ηt
⊤, 0p

⊤, …, 0p
⊤ ⊤ ∈ ℝpd, and 

A* =

A1, * A2, * … Ad, *

Ip 0p × p … 0p × p

0p × p Ip … 0p × p

0p × p 0p × p … Ip
pd × pd

. We can then apply our test to the first block row of A*, which in 

turn tests A1, *, …, Ad, *.

We have assumed a homoscedastic and independent error structure for both error terms ϵt

and ηt. This is essentially a tradeoff. Under such an error structure, the individual variables in 

xt are still non-identically distributed and highly correlated given the autoregressive structure 

of the model. In applications such as brain connectivity analysis, it is often reasonable to 

keep a simplified error structure (Zhang et al., 2015). In the VAR literature, more general 

error structures have been considered. However, when estimating the transition matrix, none 

of existing methods directly estimated this error structure. By contrast, our inference hinges 

on a good estimate of the error terms. A more general form of the error structure would 

introduce more unknown parameters, and requires a considerable amount of extra work to 

characterize the estimation precision. We thus keep a simple error structure in this first work 

on statistical inference, and leave the more general form of the error terms as future research.

In brain connectivity analysis, the early experiments usually focus on a single experiment 

subject or a very small number of subjects (Friston, 2011). More recently, data involving a 

large number of subjects are emerging. It is of interest to extend our modeling framework of 
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a single subject to multiple subjects. The key is to capture the subject-to-subject variability 

by incorporating the subject-specific covariates, meanwhile integrating common information 

shared across different subjects. A full pursuit of this topic is beyond the scope of this 

article, and we leave it as future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Structures of the transition matrix A*. Black dots represent the nonzero entries.
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Figure 2: 
Estimation error of the transition matrix A* for four network structures, and the varying 

(p, T ) (top row), the varying signal strength ∥ A* ∥2 (middle row), and the varying noise level 

σϵ, *, ση, *  (bottom row). Four methods are compared: the proposed sparse EM (solid line), the 

standard EM (dotted line), the Lasso estimator (dot-dashed line), and the Dantzig estimator 

(dashed line).
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Figure 3: 
The identified brain connectivity patterns for the high-accuracy subject (left column) and 

low-accuracy subject (right column). The 14 functional modules are indicated by the blocks 

(bottom row), and the 8 modules that demonstrate the most within-module connections are 

highlighted and amplified (top row).
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Figure 4: 
Visualization of the identified brain regions and their within-module connections of the 

high-accuracy and low-accuracy subjects for the eight functional modules.
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Table 1:

Empirical size and power, in percentage, of the global test for four network structures, and the varying (p, T )
(left column), the varying signal strength ∥ A* ∥2 (middle column), and the varying noise level (σϵ, *, ση, *) (right 

column). The standard errors are reported in the parentheses.

(p, T ) Size Power ∥ A* ∥2 Size Power (σϵ, *, ση, *) Size Power

banded (30,500) 3.1 (0.17) 100 (0) 0.7 3.4 (0.18) 100 (0) (0.1,0.1) 4.5 (0.21) 100 (0)

(50,500) 2.7 (0.16) 100 (0) 0.8 3.1 (0.17) 100 (0) (0.2,0.2) 2.4 (0.15) 100 (0)

(50,1000) 2.4 (0.15) 100 (0) 0.9 2.9 (0.17) 100 (0) (0.3,0.3) 2.4 (0.15) 100 (0)

(70,1000) 2.7 (0.16) 100 (0) 0.97 2.4 (0.15) 100 (0) (0.4,0.4) 2.4 (0.15) 100 (0)

Erdös-Rényi (30,500) 3.1 (0.17) 100 (0) 0.7 (0.18) 3.4 (0) 100 (0) (0.1,0.1) 5.0 (0.22) 100 (0)

(50,500) 2.6 (0.16) 100 (0) 0.8 3.5 (0.18) 100 (0) (0.2,0.2) 2.8 (0.17) 100 (0)

(50,1000) 2.8 (0.17) 100 (0) 0.9 3.1 (0.17) 100 (0) (0.3,0.3) 2.7 (0.16) 100 (0)

(70,1000) 3 (0.17) 100 (0) 0.97 2.8 (0.17) 100 (0) (0.4,0.4) 2.7 (0.16) 100 (0)

stochastic block (30,500) 3.2 (0.18) 100 (0) 0.7 3.8 (0.19) 100 (0) (0.1,0.1) 5.9 (0.24) 100 (0)

(50,500) 3.1 (0.17) 100 (0) 0.8 3.7 (0.19) 100 (0) (0.2,0.2) 3.4 (0.18) 100 (0)

(50,1000) 3.4 (0.18) 100 (0) 0.9 3.5 (0.18) 100 (0) (0.3,0.3) 3.3 (0.18) 100 (0)

(70,1000) 2.1 (0.14) 100 (0) 0.97 3.4 (0.18) 100 (0) (0.4,0.4) 3.3 (0.18) 100 (0)

hub (30,500) 3.5 (0.18) 100 (0) 0.7 2.9 (0.17) 100 (0) (0.1,0.1) 6.3 (0.24) 100 (0)

(50,500) 2 (0.14) 100 (0) 0.8 2.9 (0.17) 100 (0) (0.2,0.2) 2.6 (0.16) 100 (0)

(50,1000) 2.6 (0.16) 100 (0) 0.9 2.5 (0.16) 100 (0) (0.3,0.3) 2.6 (0.16) 100 (0)

(70,1000) 3.7 (0.19) 100 (0) 0.97 2.6 (0.16) 100 (0) (0.4,0.4) 2.5 (0.16) 100 (0)
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Table 2:

Average false discovery proportion (FDP) and true positive rate (TPR), in percentage, of the simultaneous test 

for four network structures, and the varying (p, T ) (left column), the varying signal strength ∥ A* ∥2 (middle 

column), and the varying noise level (σϵ, *, ση, *) (right column). The standard errors are reported in the 

parentheses.

(p, T ) FDR TPR ∥ A* ∥2 FDR TPR (σϵ, *, ση, *) FDR TPR

banded (30,500) 4.34 (0.03) 73.65 (0.05) 0.7 4.59 (0.02) 71.42 (0.04) (0.1,0.1) 5.39 (0.02) 93.59 (0.02)

(50,500) 3.91 (0.02) 67.19 (0.05) 0.8 4.45 (0.02) 82.55 (0.03) (0.2,0.2) 3.91 (0.02) 92.3 (0.02)

(50,1000) 3.91 (0.02) 92.3 (0.02) 0.9 4.18 (0.02) 89.24 (0.03) (0.3,0.3) 3.91 (0.02) 92.27 (0.02)

(70,1000) 3.73 (0.02) 88.44 (0.02) 0.97 3.91 (0.02) 92.3 (0.02) (0.4,0.4) 3.91 (0.02) 92.27 (0.02)

Erdös-Rényi (30,500) 3.95 (0.03) 75.45 (0.06) 0.7 4.63 (0.02) 70.53 (0.05) (0.1,0.1) 5.61 (0.02) 98.27 (0.01)

(50,500) 3.93 (0.02) 65.68 (0.05) 0.8 4.59 (0.02) 86.83 (0.03) (0.2,0.2) 3.98 (0.02) 97.4 (0.02)

(50,1000) 3.98 (0.02) 97.4 (0.02) 0.9 4.21 (0.02) 94.57 (0.02) (0.3,0.3) 3.97 (0.02) 97.35 (0.02)

(70,1000) 4.07 (0.02) 91.36 (0.02) 0.97 3.98 (0.02) 97.4 (0.02) (0.4,0.4) 3.97 (0.02) 97.34 (0.02)

stochastic 
block

(30,500) 4.14 (0.03) 73.96 (0.05) 0.7 4.7 (0.03) 66.79 (0.05) (0.1,0.1) 5.62 (0.02) 90.98 (0.02)

(50,500) 3.75 (0.02) 61.12 (0.05) 0.8 4.65 (0.02) 78.86 (0.04) (0.2,0.2) 4.18 (0.02) 89.6 (0.03)

(50,1000) 4.18 (0.02) 89.6 (0.03) 0.9 4.42 (0.02) 86.15 (0.03) (0.3,0.3) 4.17 (0.02) 89.55 (0.03)

(70,1000) 3.97 (0.02) 84.63 (0.02) 0.97 4.18 (0.02) 89.6 (0.03) (0.4,0.4) 4.18 (0.02) 89.54 (0.03)

hub (30,500) 4.33 (0.03) 81.02 (0.05) 0.7 4.75 (0.03) 65.07 (0.05) (0.1,0.1) 6.37 (0.02) 96.96 (0.02)

(50,500) 3.81 (0.02) 58.74 (0.06) 0.8 4.7 (0.02) 82.08 (0.04) (0.2,0.2) 4.25 (0.02) 95.28 (0.02)

(50,1000) 4.25 (0.02) 95.28 (0.02) 0.9 4.45 (0.02) 91.76 (0.03) (0.3,0.3) 4.26 (0.02) 95.28 (0.02)

(70,1000) 4.39 (0.02) 77.21 (0.03) 0.97 4.25 (0.02) 95.28 (0.02) (0.4,0.4) 4.19 (0.02) 95.26 (0.02)
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