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SUMMARY

Divergent transcription, in which reverse-oriented
transcripts occur upstream of eukaryotic promoters
in regions devoid of annotated genes, has been sug-
gested to be a general property of active promoters.
Here we show that the human basal RNA polymer-
ase II transcriptional machinery and core promoter
are inherently unidirectional and that reverse-ori-
ented transcripts originate from their own cognate
reverse-directed core promoters. In vitro transcrip-
tion analysis and mapping of nascent transcripts in
HeLa cells revealed that sequences at reverse start
sites are similar to those of their forward counter-
parts. The use of DNase I accessibility to define prox-
imal promoter borders revealed that about half of
promoters are unidirectional and that unidirectional
promoters are depleted at their upstream edges of
reverse core promoter sequences and their associ-
ated chromatin features. Divergent transcription is
thus not an inherent property of the transcription pro-
cess but rather the consequence of the presence of
both forward- and reverse-directed core promoters.

INTRODUCTION

Bidirectional transcription of oppositely oriented pairs of genes,

each of which appears to be expressed from its own core pro-

moter, is commonly observed, especially in compact genomes

of model organisms such as yeast (Adachi and Lieber, 2002;

Wakano et al., 2012). In mammals, recent studies have also

revealed reverse direction transcription initiating upstream of

many promoters, largely in the absence of an annotated gene

in the reverse orientation. This phenomenon is termed divergent

transcription (Core et al., 2008; Preker et al., 2008; Seila et al.,

2008), and the resulting transcripts have sometimes been

included in annotations of long-noncoding RNA (lncRNA) (Sigova

et al., 2013).While divergent transcription has been suggested to

be a general feature of eukaryotic promoters, its definition often

relies upon arbitrary distance cutoffs, yielding numbers that inev-

itably increase as longer distances are considered. Furthermore,

the near absence of divergent transcription in Drosophila mela-

nogaster (Core et al., 2012), which shares many features of tran-

scriptional regulation with other eukaryotes, argues strongly

against divergent initiation as being an inherent property of the

eukaryotic transcription process in general.

Divergent transcripts are terminated quickly and are subjected

to rapid decay through a mechanism involving cleavage/polya-

denylation and the nuclear exosome (Almada et al., 2013;

Brannan et al., 2012; Ntini et al., 2013), which has been shown

to be driven by Nrd1 in yeast (Arigo et al., 2006; Schulz et al.,

2013). The process of reverse transcription initiation, on the other

hand, remains to be clarified, and many mechanisms have been

proposed (Seila et al., 2009). A current model suggests that the

presence of CpG islands (CGIs), possibly combined with weak,

forward-directed motifs (such as the TATA box), leads to tran-

scription in both directions (Core et al., 2012; Grzechnik et al.,

2014; Lepoivre et al., 2013). While this model could potentially

explain the lack of divergent transcription in Drosophila mela-

nogaster (Core et al., 2012), the sequence and chromatin fea-

tures that mediate the initiation of divergent transcripts have

remained largely speculative.

The core promoter is a fundamental regulator of gene expres-

sion. These sequences, which encompass the region that is

approximately ±50 bp around the transcription start site (TSS),

contain motifs such as the TATA box, Initiator, and downstream

core promoter element (DPE) that are recognized by the basal

transcription machinery (Butler and Kadonaga, 2002). While a

substantial fraction of the extragenic mammalian genome is

transcribed at least at minimal levels (Birney et al., 2007; Carninci

et al., 2005; Kapranov et al., 2007; Katayama et al., 2005), it is not

known if such transcription is mediated by distinct core promoter

sequence elements. Hints at such regulation have recently been

described by cap analysis gene expression (CAGE) in enhancer

regions, where eRNA start sites show some sequence similar-

ities to those in promoter regions (Andersson et al., 2014), and

by ChIP-exo for basal transcription factors in yeast where two

distinct PICs were detected at divergent promoters (Rhee and

Pugh, 2012).
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The formation of chromatin structure that facilitates the func-

tion of trans-regulators is thought to be an important step in

gene regulation (Thurman et al., 2012). TSSs occur within nucle-

osome-free regions (NFRs), which can be detected by their

sensitivity to DNase I cleavage and display a large range of

lengths (Boyle et al., 2008; Natarajan et al., 2012). At the down-

stream edges of promoter-associated NFRs, histone H3 that is

trimethylated at lysine 4 (H3K4me3) within well-positioned +1

nucleosomes has been shown to stimulate PIC formation (Lau-

berth et al., 2013). Furthermore, nucleosome positioning and

histone modification states can be used to classify promoters

associated with different types of transcription initiation patterns

(Lenhard et al., 2012; Rach et al., 2011). However, while many

histone marks show bimodal chromatin immunoprecipitation

sequencing (ChIP-seq) signal patterns around TSSs, these

patterns can change depending on RNA polymerase II activity

(Bonn et al., 2012). Moreover, the relationship between �1

nucleosome modification and divergent transcription remains

to be clarified.

In this study, we show that the basal transcription machinery

and the vast majority of core promoters are inherently unidirec-

tional both in vitro and in cells. Maps of nascent RNA 50 ends,
which were obtained by using 50-GRO-seq (Lam et al., 2013), re-

vealed that divergent transcripts initiate from their own distinct

core promoters adjacent to the edges of NFRs, which contain

sequences that are similar to those of their forward counterparts.

We used DNase I hypersensitivity to define NFRs and thus the

borders of proximal promoters and showed that roughly half of

active promoters are intrinsically unidirectional and depleted at

their upstream edges for such reverse-directed core promoter

sequences. A high-resolution hidden Markov model (HMM)

of promoter-associated chromatin marks revealed that diver-

gent promoters show enrichment around the �1 nucleosome

of a chromatin state containing H3K4me2, H3K4me3, and

H3K27ac, a state that is enriched further downstream in the for-

ward direction. In contrast, while all active promoters are flanked

by well-positioned nucleosomes, unidirectional promoters have

no preferred chromatin state in their upstream regions. These

findings suggest that divergent transcription is the consequence

of the presence of both forward- and reverse-directed core pro-

moters that are located at the edges of NFRs.

RESULTS

Inherent Unidirectionality of the Basal Transcription
Machinery and Core Promoters
To investigate the mechanism of divergent transcription, we

tested the inherent directionality of the human core promoter

and the basal transcription machinery. The core promoter is

the minimal DNA sequence that is required for the accurate initi-

ation of transcription and is typically defined as the region that is

about ±50 bp relative to the TSS. Within the core promoter, DNA

sequence elements, such as the TATA box, Inr, DPE, and TCT

motifs, interact with the basal transcription factors to recruit

RNA polymerase II. To determine the directionality of the human

core transcription machinery, different types of core promoters

(i.e., TATA-, DPE-, and TCT-dependent promoters) were sub-

jected to in vitro transcription analysis with HeLa S3 nuclear

extracts. Accurate transcription initiation was observed in the

forward direction but not in the reverse direction (Figure 1A). In

an exceptional case, divergent initiation was observed from a

core promoter with a symmetric TATA element and an Inr in

both directions (Figure S1A). Otherwise, these findings indicate

that human core promoters and basal transcription machinery

can be intrinsically unidirectional in nature.

These biochemical observations were corroborated genome

wide by mapping HeLa S3 cell TSSs via 50 end-selected global

run-on followed by sequencing (50-GRO-seq), which captures

initiation events of nascent transcripts at single-nucleotide reso-

lution, irrespective of transcript stability (Kruesi et al., 2013; Lam

et al., 2013). After clustering the resulting genome-wide

sequence tags, 77.4% (11,985 out of 15,474) of the TSS clusters

of annotated genes did not exhibit any reverse direction tran-

scription in the core promoter region (�50 to +50; Figure 1B; blue

Figure 1. Directional Transcription of Core

Promoters

(A) Unidirectional transcription of diverse types of

core promoters, ±50 bp in respect to the +1 TSS

(marked by the arrow) in vitro. See also Figure S1.

(B) Directionality of the core promoter and pro-

moter regions (n = 15,474) as mapped by 50-GRO-

Seq in HeLa S3 cells, plotted as percent antisense

activity (50 end read counts in a given antisense

window divided by that number plus the counts in

the forward TSS cluster) for different windows

upstream of forward TSS (see Experimental

Procedures). Blue = �50 to +50, orange = �150

to �50, red = �250 to �150, and green = �350

to �250.

(C) Distribution of distances between divergent

pairs of 50GRO-Seq-defined TSSs (n = 3,865).

Reverse transcription start sites were mapped

relative to their corresponding +1 forward start

site.
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line). These data thus indicate that most human core promoters

are inherently unidirectional both in vitro and in cells.

The locations of reverse direction transcription initiation were

found to occur at variable distances from the forward TSSs (Fig-

ure 1B). We identified 3,865 divergent promoter pairs, each of

which comprises two TSS clusters (each with density signal

over background and at least 10 reads; see Experimental Proce-

dures), one associated with an annotated gene (in the forward

direction) and one reverse directed in a non-annotated 5 kb up-

stream genomic region. The preferred distance between diver-

gent TSS pairs is approximately 200 bp (Figure 1C), which is

clearly outside of the forward core promoter region.

Reverse Direction Initiation from Distinct Core
Promoters at NFR Edges
To examine the potential relationship between reverse direction

promoters and chromatin structure, we overlaid our 50-GRO-

seq TSS data with the genome-wide HeLa S3 DNase I-seq data

from ENCODE (Bernstein et al., 2012; Thurman et al., 2012).We

anchored promoters at the midpoint between the forward and

reverse TSSs and ordered them by the paired inter-cluster dis-

tance and observed a striking pattern in which the variable dis-

tances between the two divergent peaks of 50-GRO-seq signal

are entirely filled by DNase I hypersensitive DNA (Figure 2A).

Hence, in divergent promoters, initiatingRNApolymerase II flanks

the borders of NFRs, consistent with locations where engaged

RNA polymerase II (as measured by GRO-seq or TSSa-RNAs)

and yeast pre-initiation complexes were shown to accumulate

(Core et al., 2008; Rhee and Pugh, 2012; Seila et al., 2008).

The high resolution of the 50-GRO-seq assay enabled the iden-

tification of the most utilized nucleotide (mode) within each TSS

cluster (Ni et al., 2010). We reasoned that anchoring plots with

respect to these modes might allow us to visualize single-nucle-

otide promoter sequence preferences and thus gain insights into

the specific features of forward and reverse TSSs (Figure 2B).

Three immediate observations are apparent. First, it is evident

that the increasing width of center-enriched GC content directly

corresponds to the NFR (Figure 2B), which is consistent with pre-

vious reports showing a direct relationship between GC content

and nucleosome positioning (Fenouil et al., 2012). Second, there

is a large domain of AT enrichment upstream but not down-

stream of the NFR, likely reflecting depletion of coding sequence

and the recently reported asymmetry of 50 splice site/cleavage

site ratios upstream and downstream of divergent promoters (Al-

mada et al., 2013; Ntini et al., 2013). Third, two symmetric and

parallel arches of enriched AT content correspond to the TSS

mode (outer arch) and �30 (relative to the TSS mode; inner

arch) regions for both the forward and reverse 50-GRO-seq

TSS clusters. Position-specific three-mer frequencies, as well

as motif scans for TATA-box and Initiator, suggest that these

arches contain initiator-like and TATA-box-like sequences,

respectively (Figure S2).

To investigate the core promoter activity of the region that en-

compasses the reverse direction start sites, DNA sequences

from�50 to +50 (relative to the ‘‘+1’’ reverse direction start sites,

which we term FR for ‘‘forward’’ transcripts in the reverse direc-

tion) were cloned and subjected to in vitro transcription analysis

(Figure 2C). Strong, unidirectional (data not shown), and TATA

Figure 2. Transcription Initiation from Divergent Core Promoters

Occurs at Edges of Open Chromatin

(A) 50-GRO-Seq (blue) read 50 end counts and DNaseI-seq (orange) read 50 end
counts in bins of 10, ±0.5 kb from the center point of divergent TSS pairs (n =

3,865; see Experimental Procedures), ranked from top to bottom by increasing

distance between pairs.

(B) Genomic DNA sequence of divergent TSS pairs centered and ranked as in

‘(A).’ Bases ‘‘A’’ and ‘‘T’’ are yellow; bases ‘‘C’’ and ‘‘G’’ are blue. See also

Figures S2 and S3.

(C) TATA-sensitive in vitro transcription of reverse-directed core promoters. +1

TSS is marked by the arrow.
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box-dependent transcription was detected. These observations,

together with high scores from a computational position-specific

TSS sequence model (Frith et al., 2008) (Figure S3), show that

the reverse direction, non-annotated TSS clusters result from

distinct reverse direction core promoters with DNA sequence el-

ements that are similar to those of their forward, TSS-annotated

counterparts. Both the forward and reverse core promoters have

their own non-overlapping sequences that are enriched within

the edges of open chromatin. This two-core-promoter model is

consistent with general transcription factor ChIP-exo studies in

yeast (Rhee and Pugh, 2012) and is distinct from previously pro-

posed passive models of mammalian divergent initiation such as

the nonspecific transcription resulting from the presence of open

chromatin, the enhancement of transcription via the carboxy ter-

minal domain of the forward direction polymerase, or the stimu-

lation of reverse transcription via the accumulation of negative

supercoiling due to forward direction transcription (Seila et al.,

2008, 2009).

Approximately Half of Active HeLa Promoters Are
Intrinsically Unidirectional
Visual inspection of raw 50GRO-seq data together with DNase

I-seq made it clear that NFRs also have the potential to harbor

promoter regions where transcription occurs in one direction

only (Figure 3A). Such examples, together with the observed

relationship between divergent TSS pair distances and DNase I

sensitivity (Figures 2A and 3B), provided an opportunity to switch

from arbitrary distance cutoffs to a concrete definition of pro-

moter regions (comprising a proximal promoter and its associ-

ated TSS clusters) based on functional genome-wide data. To

this end, we subjected the DNase I-seq data to peak calling us-

ing the recent JAMM algorithm (Ibrahim et al., 2015) (Figures

S4A–S4C) and intersected these highly accurate DHSs with the

50GRO-seq TSS data. This approach defined 4,378 promoters

containing exactly one TSS-annotated 50-GRO-seq cluster in

the forward direction (Table S3; see Experimental Procedures).

Of these 4,378 promoters, 400 (9.1%) had an additional reverse

cluster aligning to another annotated TSS (annotated bidirec-

tional; example shown in Figure 3C), 1,741(39.8%) were found

to be divergent (i.e., contain a second upstream reverse TSS fall-

ing into a non-annotated region), and 2,237 (51.1%) were unidi-

rectional with only one TSS cluster orientated toward the gene.

Figure 3. Examples of Divergent, Unidirec-

tional, and Bidirectional Transcription

(A–C) Browser snapshots of examples displaying

genes where divergent transcription is absent ([A];

unidirectional), present ([B]; divergent), or occur-

ring at annotated bidirectional genes ([C]; bidi-

rectional). Shown is DNaseI-seq signal as gener-

ated by JAMM in black and 50GRO-seq reads in

red for the + strand and blue for the � strand.

Our DHS-based promoter region defi-

nition thus enabled a comparative

analysis of reverse regions—whether or

not they are transcribed—for both unidi-

rectional and divergent promoters. We

anchored the divergent (Figure 4A) and unidirectional (Figure 4B)

promoters based on their DHS centers and ordered themby their

DHS widths. Since border proximity of start sites within the DHS

was not part of our selection criteria, these plots revealed the

symmetric enrichment of 50-GRO-seq signal around both edges

of the divergent promoter DHSs as suggested in Figure 2A and

an asymmetric forward edge-only enrichment for the unidirec-

tional promoters. The experimentally/computationally defined

DHS edges extend a consistent�70 bp average distance down-

stream of all three 50-GRO-seq TSS cluster groups (divergent

forward and reverse and unidirectional forward), suggesting

that the TSSs are directly adjacent to either the �1 or +1 nucle-

osomes (Figures S4D and S4E). ChIP-seq reads for TAF1 or

H2AZ verify the lack of transcription initiation upstream of the

unidirectional promoters and show strong signal for the +1 and

�1 nucleosomes of both promoter groups (Figure 4C). Also, in

agreement with a depletion of divergent transcription, the unidi-

rectional promoter DHSs show reduced average signal for TAF1

ChIP-seq, TBP ChIP-seq, and traditional GRO-seq in their

reverse regions (Figures S5A–S5C). Importantly, these data sug-

gest that about half of the HeLa expressed, DHS-defined pro-

moters regions are unidirectional and are in stark contrast to

the theory that divergent transcription is a general feature of

eukaryotic promoters (Neil et al., 2009; Sigova et al., 2013).

Why do DHSs associated with unidirectional promoters

lack reverse transcription from their upstream edges? Given

our previous observations (Figure 2), we wondered, in particular,

whether unidirectional promoters contain functional core pro-

moters in the reverse direction. To test this idea, we turned to

the position-specific TSS sequence model (Frith et al., 2008).

After training the model on different subsets of core promoter

sequences ±50 bp around the forward TSSs of the divergent pro-

moters (see Experimental Procedures), the model was used to

scan the upstream and downstream DHS edges of independent

unidirectional and divergent promoters (Figure 4D). The model

reported high scores about 70 bp upstream of both edges of

the divergent promoter DHSs and the forward edge of unidirec-

tional promoter DHSs, consistent with the relative location of

50-GRO-seq clusters (Figure S4E; see above). In contrast, the

upstream edge of the unidirectional promoter DHSs shows an

altogether different pattern of lower scores that are more evenly

distributed throughout the window (Figure 4D, orange). Thus,

Molecular Cell 57, 674–684, February 19, 2015 ª2015 Elsevier Inc. 677



these findings suggest that the unidirectionality of these pro-

moters is due to the lack of a reverse direction core promoter

at the upstream edge of the NFR.

Characteristics of Divergent and Unidirectional
Promoters
Divergent and unidirectional promoter DHSs show similar fre-

quencies of previously described initiation patterns (Ni et al.,

2010) in the forward direction as well as the reverse directions,

an observation that suggests mechanistic similarities between

forward- and reverse-directed initiation (Figure 5A). In contrast

to previously proposed models (Core et al., 2012; Lepoivre

et al., 2013), divergent and unidirectional promoters exhibit com-

parable CGI content (Figure 5B). Furthermore, forward start sites

of divergent promoters exhibit a lower percentage of canonical

TATA boxes but higher levels of in vivo TBP recruitment than

unidirectional promoters (Figures 5C and 5D). While divergent

and unidirectional promoter DHSs show some subtle differences

in their size, their overall similarities in DHS width and histone

ChIP-seq signal bimodality in HeLa cells (Figures 4C, 5E, and

S6) suggest that reverse direction transcriptional activity is

not necessary for positioning of the �1 nucleosome as previ-

ously postulated (Seila et al., 2009). Of note, the reverse TSSs

from the divergent group show fewer TATA-like sequences

than the forward TSSs (Figures 5C and 5D), consistent with

their lower scores in the TSS prediction model (Figure S3D).

Divergent promoters also show higher expression levels in the

forward direction than unidirectional promoters as measured

by ENCODE whole-cell polyA+ CAGE data (Bernstein et al.,

2012) (Figure S5D).

Unique Chromatin Environment of Divergent Promoters
It has been previously proposed that divergent transcription

could explain the bimodal distribution of many histone modifica-

tions around TSSs (Core et al., 2008; Seila et al., 2008). In this

regard, our concrete definitions of both divergent and unidirec-

tional promoters enabled us to ask two questions: first, are there

differences between the histone modifications of the +1 versus

�1 nucleosomes at divergent promoters; second, are the

modifications of the unidirectional �1 nucleosome different

from those of the divergent �1 nucleosome? To address these

questions, we employed a HMM framework for a high-resolu-

tion, unsupervised clustering of histone modifications in the

HeLa genome based on ENCODE HeLa S3 H3K4me1-3 and

H3K27ac ChIP-seq data sets (Bernstein et al., 2012) (see Exper-

imental Procedures). We identified eight genome-wide chro-

matin states: four proximal promoter states described below;

an ‘‘inactive enhancer’’ state characterized by H3K4me1 enrich-

ment; an ‘‘active enhancer’’ state with H3K4me1/H3K27ac;

a ‘‘transcribed enhancer’’ state with H3K4me1/H3K4me2/

H3K27ac, which intersects strongly with enhancer-RNA-based

definitions made by the FANTOM5 Consortium (Andersson

et al., 2014) (Figure S6A); and a background state that does

not show enrichment for any of the analyzed histone modifica-

tions (Figure 6A). A meta-analysis of divergent and unidirectional

promoters (Figures 6B and 6C) displays a clear cascade of chro-

matin state enrichments in the forward directions of both groups,

where H3K4me3 and H3K27ac are found together at the +1

nucleosome location (‘‘promoter state1’’), followed by the gain

of H3K4me2 (‘‘promoter state 2’’), then the loss of H3K27ac

(‘‘promoter state 3’’), and finally the loss of H3K4me3 (‘‘promoter

state 4’’). Indeed, the same cascade can be observed in both di-

rections of annotated bidirectional promoter DHSs (Figure 6D).

It is particularly notable, however, that in the reverse direction

of divergent promoters there is an enrichment of promoter state

2 (H3K4me2-3 and H3K27ac; Figure S6) immediately down-

stream of the FR TSS at the �1 nucleosome location (Figure 6B).

Promoter state 2 is enriched in the forward direction after pro-

moter state 1, a state clearly absent in the reverse direction. Of

note, the preference of promoter state 2 is absent at intergenic

transcribed enhancers, which are characterized by high levels

of H3K4me1-2 and H3K27ac (Figure 6E). There is also a slight

enrichment of the transcribed enhancer state (H3K4me1-2 and

H3K27ac; Figure S6) around the�2 nucleosome of the divergent

Figure 4. Many Promoter DHSs Lack Core

Promoter Sequences Necessary for Diver-

gent Transcription

(A and B) Normalized 50-GRO-Seq (blue) read 50

end counts and DNaseI-seq (orange) read 50 end
counts in bins of 10 bp, ±1 kb from the center point

of divergent (a; n = 1,741) and unidirectional (b; n =

2,237) promoter DHSs (see Experimental Pro-

cedures) ranked from top to bottom by increasing

DHS width. See also Figure S4.

(C) Normalized, fragment-extended H2AZ (top)

and TAF1 (bottom) ChIP-seq read counts in bins of

10 bp for divergent (left) and unidirectional (right)

DHSs centered and ranked as above. See also

Figure S5.

(D) Predicted TSS scores around corresponding

DHS edges resulting from a position-specific

Markov chain model (see Experimental Pro-

cedures) trained on ±50 bp around divergent

forward TSS. Blue = divergent forward, light blue =

divergent reverse, and red = unidirectional for-

ward, orange = unidirectional reverse. See also

Tables S1 and S2.
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promoters; this may be the result of the overlap of promoter

states 2 and 3 in that region. The lack of chromatin state prefer-

ence on the reverse side of the unidirectional DHSs (Figures 6C

and S6B), despite detectable average signal for all marks (Fig-

ures S6C–S6F), suggests that the act of reverse transcription

leads to the co-occurrence of themodifications in promoter state

2 (H3K4me2, H3K4me3, and H3K27ac) at the �1 nucleosome.

DISCUSSION

We have proposed a delineation of promoter regions based on

DNase I hypersensitivity that reflects the local chromatin envi-

ronment, is based on functional genomic data, and is indepen-

dent of a selected distance cutoff. The basal RNA polymerase II

transcription machinery initiates unidirectionally from core pro-

moter sequences enriched at one (unidirectional) or both (diver-

gent/bidirectional) edges of such regions. This model is in

contrast to the hypothesis that a large majority of human pro-

moters are transcribed in both directions. Reverse-directed

core promoters are necessary for divergent transcription, with

which they stimulate a unique chromatin signature, but not for

�1 nucleosome positioning (Figure 7). While other mammalian

studies have shown accumulation of RNA polymerase II activity

at the edges of the NFR (Core et al., 2008; Seila et al., 2008), the

initiating locations were not known since neither traditional

GRO-seq nor TSS-associated small RNAs (TSSa-RNAs) detect

actual start sites. The model proposed herein is consistent

with ChIP-exo based studies in yeast describing pre-initiation

complex formation around both edges of the NFR with a

corresponding enrichment of core promoter sequence elements

(Rhee and Pugh, 2012). The in vitro studies presented above go

a step further and validate the capabilities of such reverse core

promoter sequences in basal transcription initiation (Figure 2C).

Our higher estimate of unidirectional promoters compared to

previous studies is most likely due to the anchor points and win-

dows considered for measurement. First, while some studies

consider windows both upstream and downstream of annotated

TSSs to measure ‘‘divergent’’ transcription, this is only neces-

sary to counteract the inaccuracies of such annotations. Since

we use data to define our start sites (50GRO-seq), with genome

annotation only serving as a rough guide, we can be confident

that our upstream antisense signal is truly ‘‘divergent’’ and ex-

cludes downstream ‘‘convergent’’ or ‘‘antisense’’ events. Sec-

ond, the common practice of using a uniform window size

(i.e., ± 1 or 2 kb around TSSs) for all promoter regions is likely

to overestimate divergent activity due to the relationship be-

tween reverse TSSs and the NFR (Figure 2A), the typical NFR

width of�250 bp (Figure 5E), and the potential for other indepen-

dent transcribed proximal regulatory elements and/or RNA gene

loci. If applied equally to forward- and reverse-directed tran-

scription, changes in background cutoffs or sequencing depth

is likely to change the number of both unidirectional and diver-

gent promoters while keeping the ratio relatively constant. We

tested this idea on previously published exosome-knockdown

CAGE data (Ntini et al., 2013), a technique also capable of

mapping TSSs of rapidly degraded transcripts (Table S1), and

observed a comparable percentage of unidirectional DHSs

(47% by CAGE versus 51% by 50GRO-seq). It is, however,

possible that HeLa cells display a higher percentage of unidi-

rectional promoters than other cell types and that some genes

Figure 5. Characteristics of Divergent and

Unidirectional Promoters

(A) Percentage of initiation patterns defined by Ni

et al (2010) for forward 50-GRO-seq clusters of the

DHS-defined divergent and unidirectional pro-

moter groups and reverse clusters of divergent

group.

(B) Percentage of divergent or unidirectional pro-

moter DHSs intersecting an annotated CGI (left;

see Experimental Procedures). Size distributions

of CGIs that intersect divergent or unidirectional

promoter DHSs (right; see Experimental Pro-

cedures).

(C) Percent of forward direction 50-GRO-seq

clusters containing a TATA motif match from �35

to �25 relative to the cluster mode for forward 50-
GRO-seq clusters of divergent and unidirectional

promoters and reverse clusters of the divergent

group (left; see Experimental Procedures) and the

distributions of the corresponding scores (right).

(B and C)Whiskers are set according to the default

for ggplot2 and extend to the most extreme values

within 1.5 times the interquartile distance from the

top and bottom of the box. Data points beyond

whiskers are outliers and are removed from plots.

(D) Positional average fragment-extended ChIP-

seq read counts within TBP peak summits as

called by SISSRS in bins of 10 bp for TATA-containing and TATA-less forward and reverse core promoter subsets of divergent or forward only for unidirectional

promoters (see Experimental Procedures).

(E) Distributions of DHS widths for unidirectional, divergent, and bidirectional promoter groups. See also Figures S4 and S5 and Table S2.
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may be regulated by unidirectional and divergent alternative

promoters.

A small group of core promoters may be intrinsically bidirec-

tional (Figures 1B and S1A). In these cases, it is likely that the

core promoter element configuration permits bidirectionality

(as evidenced by the ‘‘crossing’’ of the AT-rich sequences

in the �30 region at the top of Figure 2B). However, the vast

majority of core promoters are inherently unidirectional: of

3,865 divergent TSS pairs, �95% initiate greater than 50 bp

upstream of the forward TSS. While the sequences of re-

verse-directed core promoters are very similar to those of their

forward counterparts, there are differences as evidenced by

reduced enrichment of AT content in the �30 region (Figures

S2A and S2B) and lower scores in the TSS prediction model

(Figures S3C, S3D, and 4D). This difference may be reflected

in the overall lower levels of basal transcription factor recruit-

ment and transcription from reverse-directed core promoters

(Figure S4A–S4C) as well as the lower levels of �1 nucleo-

some histone modification, compared to the +1 nucleosome,

in divergent promoters (Figure S5C–S5F). Indeed, while for-

ward TSS prediction scores and H3K27ac ChIP-seq signal

both correlate with forward 50-GRO-seq signal, these correla-

tions are slightly reduced on the reverse side of the divergent

DHSs (Table S2).

Figure 6. Distinct Chromatin Environment

at Unidirectional, Bidirectional, and Diver-

gent Promoter DHSs

(A) Chromatin state definitions based on HMM

clustering of histone modification ChIP-seq signal

at 10-bp resolution (see Experimental Pro-

cedures). Each state is a multivariate Gaussian

distribution. Shown are the distribution mean

vectors representing scaled, normalized ChIP-seq

signal.

(B–E) Chromatin state coverage ±2 kb around the

center of divergent promoter DHS (B), unidirec-

tional promoter DHS (C), bidirectional promoter

DHS (D), and divergent intergenic DHS (E) at single

nucleotide resolution. Grey = DNaseI-seq read 50

end counts, red = Promoter State1, blue = Pro-

moter State 2, green = Promoter State 3, light

blue = Promoter State 4, black = Inactive

Enhancer, yellow = Active Enhancer, pink = Tran-

scribed Enhancer, and orange = Background. See

also Figure S6.

Divergent transcripts are now known

to often be terminated quickly and

subjected to rapid decay (Almada

et al., 2013; Brannan et al., 2012; Ntini

et al., 2013). The reported enrichment

of AT-rich cleavage/polyadenylation se-

quences upstream of divergent TSSs,

which lead to this termination/decay

mechanism, is reflected in the increased

‘‘yellow’’ color (AT content) on the left

side of Figure 2B. Connecting these ob-

servations with the relative shift of chro-

matin promoter state 2 upstream versus

downstream in divergent promoters (Figure 6B) suggests that

the location of histone modifications is sensitive to extended

transcription elongation and/or nuclear RNA decay rates. Alter-

natively, this shift in chromatin states could reflect the subtle dif-

ferences in the core promoter sequences between the forward

and reverse directions (Figures S2A–S2C, S3C, and S3D). His-

tone H3K4 methyltransferases are known to be associated

with the carboxyl terminal domain of RNA polymerase II (Greer

and Shi, 2012; Hsin and Manley, 2012), supporting the observa-

tion that the –l nucleosomes of unidirectional promoters lack co-

ordinated histone modification (Figures 6C and S6).

The frequent but not universal presence of reverse-directed

core promoters poises them as candidate regulators of forward

transcription. Such a regulation may be reflected in the overall

higher expression of both bidirectional and divergent promoters,

compared to unidirectional promoters, as measured by basal

transcription factor recruitment, histone modification levels,

and whole-cell CAGE tag counts (Figures S5 and S6). This points

to a possible mechanism whereby reverse-directed core pro-

moters within the upstream edges of divergent or bidirectional

promoter DHSs increase local concentrations of initiation ma-

chinery, resulting in increased expression of the forward gene

(Figure S5D). In this study, we have been able to clarify the func-

tional similarities and differences between unidirectional and
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divergent promoters, but the underlying reasons, if any should

exist, why promoters are unidirectional or divergent remain to

be illuminated.

EXPERIMENTAL PROCEDURES

Cell Culture Conditions

HeLa S3 cells were grown at 37�C in DMEM (Cellgro) supplemented with 10%

FBS (GIBCO), 50 U penicillin, and 50 mg streptomycin per ml (GIBCO).

In Vitro Transcription Assays

Core promoter sequences, ±50 bp in respect to the +1 TSS, were cloned, and

transcription reactions were carried out as described previously (Duttke,

2014). Transcripts were subjected to primer extension analysis and separated

by urea-polyacrylamide gel electrophoresis.

50GRO-Seq and GRO-Seq Preparation

50GRO-seq was performed as described previously (Lam et al., 2013).

Briefly, about 107 HeLa S3 nuclei were used for run-on with BrU-labeled

NTPs. Fragmented transcripts were incubated with polynucleotide kinase

(PNK, NEB) to remove 30 phosphates. BrU-labeled nascent transcripts

were subsequently immunoprecipitated with anti-BrdU agarose beads

(Santa Cruz Biotech). For 50GRO-seq, immunoprecipitated RNA was de-

phosphorylated with calf intestinal phosphatase (NEB). Then 50 capped

fragments were de-capped with tobacco acid pyrophosphatase (Epicenter).

Illumina TruSeq adapters were ligated to the RNA 30 and 50 ends with trun-

cated mutant RNA ligase 2 (K227Q) and RNA ligase 1 (NEB), respectively.

Reverse transcription was performed with Superscript III (Invitrogen) followed

by PCR amplification for 12 cycles. Final libraries were size selected on

PAGE/TBE gels to 175–225 bp.

GRO-seq was essentially performed as 50GRO-seq, but the immunoprecip-

itated RNA was directly de-capped with tobacco acid pyrophosphatase

(Epicenter) and subsequently kinased with PNK (NEB) prior to adaptor ligation.

50-GRO-Seq and GRO-Seq Analysis

Two replicates of 50 end sequenced reads from the 50-GRO-seq or traditional

GRO-seq protocols were trimmed for adapters using cutadapt (Martin, 2011)

and mapped together to the hg19 human genome using Bowtie2 with default

settings (Langmead and Salzberg, 2012). Reads that did not map uniquely and

reads overlapping rRNA loci were removed, yielding 27,512,149 50-GRO-seq

reads and 21,765,842 traditional GRO-seq reads. Clusters were identified ac-

cording to the strategy described in Ni et al. (2010). To annotate the identified

clusters, the Genomic Features R package (Lawrence et al., 2013) was used

with the UCSC knownGenes table.

DNase-Seq and ChIP-Seq Analysis

All five data sets of ENCODE-mapped DNase-seq reads for HeLa-S3

cells were downloaded from the UCSC ENCODE ftp server (Bernstein et al.,

2012) and concatenated before peak calling with JAMM v1.0.6 (Ibrahim

et al., 2015) (http://code.google.com/p/jamm-peak-finder/, settings: -m nar-

row -f 1). HeLa-S3 cell TAF1, TBP, and histone modification ChIP-seq raw

fastq files were downloaded from the UCSC ENCODE ftp server (Bernstein

et al., 2012). Reads were aligned to hg19 genome using Bowtie2 (Langmead

and Salzberg, 2012) with default parameters and then filtered for those that

did not align uniquely or had more than two mismatches. For TAF1 and TBP,

replicate BED files were then concatenated before peaks were called using

SISSRS (Narlikar and Jothi, 2012), while JAMMwas used for histone modifica-

tion peak calls that served as input to the HMM (see below and Supplemental

Experimental Procedures).

Closest Upstream Antisense Pair Assignments

In order to define a set of 50-GRO-seq cluster pairs that were reciprocally the

closest upstream antisense of each other, a combination of BEDTools and

custom scripts was used. BEDTools closest command (Quinlan and Hall,

2010) (settings: -S -id -D ‘‘a’’) was run on the modes of 50-GRO-seq clusters

(the cluster position with the highest read count) using the same file for both

inputs. Custom Perl scripts were then used to parse the BEDTools output

for only those cluster pairs where both modes were called as closest upstream

antisense of each other.

DHS-Defined Promoter Borders

BEDTools (Quinlan and Hall, 2010) intersect command was used to find

overlaps between DNaseI-seq peak calls (defining DHSs) and 50-GRO-seq

cluster modes, both described above. DHSs with exactly one intersecting

TSS cluster mode were considered unidirectional. DHS with exactly two in-

tersecting 50-GRO-seq cluster modes, for which the two modes were up-

stream and antisense of each other, one annotating as TSS and the other

as intergenic, were considered divergent. DHSs with more than one inter-

secting 50-GRO-seq cluster modes on any one DNA strand, or with two 50-
GRO-seq cluster modes on opposite strands but downstream of each other,

were removed from further analysis. Unidirectional classified DHSs intersect-

ing reverse-side annotated TSSs (yet having no 50GRO-seq clusters) or

containing exactly one TSS-annotating cluster mode that was also part of

divergent or bidirectional reciprocal closest upstream antisense selections

(described above) were considered ambiguous and removed from further

analysis.

Plotting

All plots were made using the ggplot2 R package (Wickham, 2009). Anchor

points were set by calculating the center point between the 50-GRO-seq clus-

ter modes of the paired forward/reverse TSS clusters or the center point of

DHSs. Strand assignments were made according to the forward gene for

divergent cluster pairs or unidirectional promoter DHS. For TSS-TSS or inter-

genic-intergenic 50-GRO-seq cluster pairs, the cluster with higher read counts

was used for strand assignment. For heat maps, windows were ranked from

top to bottom by increasing distance between forward and reverse TSSs, or

by DHS width. Browser snapshots were taken using the integrative genomics

viewer (Thorvaldsdóttir et al., 2013).

Heat Map- and Meta-Analyses

For 50-GRO-seq and DNaseI-seq heat maps, the number of reads whose 50

end mapped to each position were counted independent of strand and scaled

so that the minimum value for each window is 0 and the maximum value is 1.

For TAF1 and H2AZ ChIP-seq heat maps, reads were extended by the frag-

ment size calculated by JAMM, and the number of extended reads falling in

10 bp bins was plotted as above.

For sequence heat maps, BEDTools getfasta command (Quinlan and Hall,

2010) was used to retrieve the sequence corresponding to each window.

Figure 7. Model of Divergent, Bidirectional,

and Unidirectional Promoters

For each type of promoter, +1 and�1 nucleosome

positions occur at variable spacing from each

other, forward gene transcription initiates just

inside the downstream edge of the NFR, and

the +1 nucleosome is modified with H3K4me3 and

H3K27ac. When transcription initiation occurs

from the upstream NFR edge on the opposite strand from the forward gene, the �1 nucleosome gets similarly modified when stable, annotated transcripts are

present (for bidirectional promoters), or is enriched for H3K4me2, in addition to H3K4me3 and H3K27ac, when divergent transcription occurs (i.e., when unstable

non-coding transcripts are generated).
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TSS Initiation Pattern Analysis

NarrowPeak, BroadPeak, and WeakPeak initiation patterns as defined previ-

ously (Ni et al., 2010) were determined from the 50-GRO-seq clusters with at

least 25 read counts.

Probabilistic Model of TSSs

We estimated parameters for a previously published position-specific Markov

chain TSS model (PSMM) (Frith et al., 2008) using a first-order setting. A 10-

fold cross validation scheme of the PSMM (see Supplemental Experimental

Procedures) was implemented. Receiver operator characteristic and precision

recall curves were generated by defining true positives as the modes of 50-
GRO-seq clusters and true negatives as every other nucleotide in the tested

windows, the results plotted for each of the ten models from the closest up-

stream antisense selection using the R package ROCR (Sing et al., 2005).

Motif Scanning

The TRANSFAC TATA-box binding protein (M00252) or JASPAR Initiator posi-

tion weight matrices were used with the Scanner Toolset (Megraw et al., 2009)

to scan sequences �35 to �25 upstream for TATA and ± 5 for initiator around

the forward or reverse TSSmodes of the divergent and unidirectional promoter

groups (see Supplemental Experimental Procedures).

CGI Analysis

Genomic coordinates of CGI were taken from the UCSC table browser (Kuhn

et al., 2013), reportedly calculated according to the criteria of Gardiner-Garden

and Frommer (1987). Either divergent or unidirectional DHSs were intersected

with these coordinates using BEDTools intersect (Quinlan and Hall, 2010).

Chromatin State Segmentation

We employed a continuous HMM, in which state emissions are represented by

a multivariate Gaussian distribution fully defined by its means vector, corre-

sponding to the signals’ means of the histone modification tracks (see Supple-

mental Experimental Procedures), and its co-variance matrix. To learn the

emission and transition parameters of the HMM, we employ the Baum-Welch

algorithm (Bilmes, 1997; Taramasco and Bauer, 2013), initialized via k means,

on ‘‘semi-binarized’’ signal tracks of chromosome 1 at 10-bp resolution (see

Supplemental Experimental Procedures). The mean vector for each state de-

fines the averageChIP-Seq signals of the histonemodification tracks in the cor-

responding state. We 0-to-1 scale the means across each histonemodification

to define the prototypical chromatin states shown in Figure 6A. Finally, we

employ the Viterbi decoding algorithm (Taramasco and Bauer, 2013; Viterbi,

1967) to assign a chromatin state to each 10-bp bin in the genome that had a

peak in at least one of the histonemodification tracks basedon theHMMmodel

learnedby theBaum-Welch algorithm. Locations that did not have a peak in any

histone modification track are not assigned a state. Book-ended bins that have

the same state aremerged. The output of this process is genome segmentation

into variable-width non-overlapping chromatin states similar to Segway (Hoff-

man et al., 2012) and ChromHMM (Ernst and Kellis, 2012).

Chromatin State Analysis

Chromatin state coverage plots were calculated by intersecting the promoter

regions with state assignments at single-basepair resolution using BEDTools

(Quinlan and Hall, 2010) intersect command and plotting the fraction of each

position across promoters for each state.
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Figure S1 | Transcription from a divergent core promoter, related to Figure 1. Human FGB 
as an example of a divergent core promoter. The polarity depends on the DNA sequence. 
Promoters were cloned from +50 to -125 (relative to the +1 transcription start site) to allow 
reverse initiation within the natural sequence. The reverse Inr (rInr) sequence “TCAGAA” was 
substituted with “TCGGTC” (rInr-) or a consensus Inr “TCAGTC”(rInr+).  
 
Figure S2 | Sequence content of forward and reverse TSSs, related to Figure 2. 
a,b, Position-specific threemer counts normalized to total threemer frequencies for forward (a) 
and reverse (b) direction core promoters -50 to +50 bp around the 5’-GRO-seq cluster modes. c, 
Percent of forward or reverse TSSs that show motif matches to either initiator (left) or TATA-
box (right) in the -35 to -25 or -5 to +5 regions, respectively, from the 5’-GRO-seq cluster 
modes. Different colors represent different false positive rate (FPR) cutoffs.  
 
Figure S3 | Performance and results of TSS sequence model, related to Figures 2 and 4. a,b, 
Receiver operator characteristic (a) and precision-recall (b) curves for the sequence model 
described in Frith et al, 2008, trained and tested with a 10-fold cross validation +/- 50 bp around 
the mode of the forward TSSs from the divergent promoter pairs described in Figure 2 (see 
Experimental Procedures). c, Average predicted TSS scores per position for sequences +/- 50 bp 
around the mode of the corresponding TSSs from the divergent promoter pairs described in 
Figure 2, or its shuffled control, from the model trained as in “a” and “b” (see Supplemental 
Experimental Procedures). d, Distributions of 5’GRO-seq cluster mode TSS prediction scores for 
forward and reverse TSSs. 
 
Figure S4 | DHS peak call accuracy and characteristics, related to Figures 4 and 5. a,b,c, 
Heat maps of normalized DNaseI-seq read 5’end counts (blue) anchored on each DHS midpoint 
and ranked by increasing DHS width together with the location of JAMM-called peak edges 
(black) for divergent (a), unidirectional (b), and bidirectional (c) promoter DHSs. d, Scatter plot 
of DHS width versus distance between forward and reverse 5’-GRO-seq cluster modes of 
divergent promoters. e, Boxplots of distance between 5’-GRO-seq cluster modes and 
corresponding DHS edges, dot = mean. 
 
Figure S5 | Unidirectional promoters lack upstream hallmarks of divergent transcription, 
related to Figures 4 and 5. a,b, Positional average fragment-extended ChIP-seq read counts 
within Taf1 (a) and Tbp (b) peak summits as called by SISSRS in bins of 10 nucleotides (see 
Supplemental Experimental Procedures). c, Positional average of normalized read 5’end counts 
of traditional GRO-seq for the forward (red and blue) or reverse (orange and light blue) 
directions of the divergent (red and orange) or unidirectional (blue and light blue) promoters 
(“normalized counts” refers to 0-to-1 scaling of read counts for every DHS window, see 



Supplemental Experimental Procedures). d, Distributions of whole HeLa cell, polyA-plus CAGE 
tag 5’end counts from ENCODE intersecting designated 5’GRO-seq clusters. 
 
 
Figure S6 | Histone modifications HMM characteristics and analysis, related to Figure 6. a, 
Chromatin state – Genome Annotation enrichment map (see Supplemental Experimental 
Procedures). “Genes” are entire UCSC gene lengths, “TSS” are UCSC known gene transcription 
start sites, “TES” are UCSC known gene transcription end sites, “TSS 4kb” and “TES 4kb” are 
windows centered around UCSC TSSs and TESs respectively going 2kb upstream and 
downstream, “F5 Enhancers” are enhancers identified by the Fantom5 consortium for the hg19 
genome build, “F5 Enhancers 2k” are windows centered around the midpoints of F5 Enhancers 
going 1kb downstream and 1kb upstream, “CGI” are UCSC “CpG” islands. b, Percentage of 
chromatin state intersections at 75 bp downstream of the NFR edges. “No State” refers to those 
locations that did not intersect any chromatin state. c,d,e,f Average fragment-extended read 
counts of H3K27ac (c), H3K4me3 (d), H3K4me2 (e), and H3K4me1(f) ChIP-seq in bins of 10 
nucleotides for divergent (blue), unidirectional (red), bidirectional (green), and intergenic (light 
blue) 5’-GRO-seq-containing DHSs (see Experimental Procedures). grey = average DNaseI-seq 
read 5’end counts for DHSs from all four groups combined. 
 
Table S1 | Comparison of 5’GRO-seq and exosome KD CAGE analyses, related to Figure 4. 
The same analyses were performed on both datasets using the same DHS peaks calls as 
described in the Supplemental Experimental Procedures.  Margin numbers indicate the number 
of DHSs that were identified in each group from each dataset. Table numbers indicate the 
overlap between DHS classes between the two datasets. The most conservative estimate for 
percentage of unidirectional promoters is 34% (1196/3499) when only considering DHSs with 
forward gene evidence in both datasets, from which unidirectional DHSs are consistently 
classified in both datasets and divergent/bidirectional DHSs identified in at least one dataset. It is 
likely that many of the forward TSS-containing DHSs (unidirectional, divergent, or 
bidirectional) identified in only one of the two datasets are true; when these are included, we 
estimate that the true percentage of unidirectional promoters is closer to 44% (3394/7707). 
 
Table S2 | Correlations between 5’GRO-seq and TSS prediction score or H3K27ac ChIP-
seq, related to Figure 4. 
Spearman Rho correlation values are shown with corresponding p values between 5’GRO-seq 
read 5’end counts within called clusters (top) and either the TSS prediction score (left top) or 
H3K27ac ChIP-seq fragment-extended read counts intersecting a window 148 bp downstream of 
the appropriate DHS peak edge (left bottom).   
 
 
 



Table S3 | Final_Cluster Sets.xlsx, related to Figure 1. 
5’GRO-seq cluster calls as identified using the strategy described in Ni et al. (Ni et al., 2010) and 
Supplemental Experimental Procedures. 
 
Supplementary Tables 
 
Table S1. 
 

5’-‐GRO-‐seq	  (n	  =	  4378)	  

	  

Exosome	  KD	  

CAGE	  (n	  =	  6828)	  

	  
Divergent	  

(1741)	  

Unidirectional	  

(2237)	  

Bidirectional	  

(400)	  

Divergent	  

(2890)	  
1134	   490	   4	  

Unidirectional	  
(3188)	  

343	   1196	   1	  

Bidirectional	  

(750)	  
0	   1	   330	  

	  

Table S2. 
 

	  

Sequence	  
Model	  

	   5’GRO-‐seq	  Cluster	  Read	  Counts	   	  

	   Forward	   	   Reverse	  

Forward	   0.22	  (p	  <	  0.0001)	   -‐0.026	  (p	  =	  0.29)	  

Reverse	   -‐0.04	  (p	  =	  0.096)	   0.16	  (p	  <	  0.0001)	  

H3K27ac	  

	   	   	   	   	  

Forward	   0.39	  (p	  <	  0.0001)	   0.0001	  (p	  =	  0.09)	  

Reverse	   0.04	  (p	  =	  0.09)	   0.25	  (p	  <	  0.0001)	  

	  

 



Supplemental Experimental Procedures 

Cell culture conditions 

HeLa S3 cells were grown at 37°C in DMEM (Cellgro) supplemented with 10% FBS (Gibco), 

50 U Penicillin and 50 µg Streptomycin per mL (Gibco). 

In vitro transcription assays 

Core promoter sequences, ±50 bp in respect to the +1 TSS, were cloned into pUC119 (F/FR) or 

pUC118 (R) containing a Pol III specific terminator (Duttke, 2014) using XbaI and PstI. A 

spacer was further inserted into pUC118 to match the distance of the XbaI and PstI cloning sites 

to the reverse M13 primer site of pUC119. When indicated, the TATA-box was substituted with 

“ACGTCCGT” (mTATA). 

Transcription reactions were carried out as described previously (Duttke, 2014). Briefly, 7 µL of 

13 mg/mL human nuclear extract (HSK) were preincubated with 500 ng DNA template in a total 

volume of 46 µL with a final concentration of 20 mM HEPES-K+ (pH 7.6); 50 mM KCl; 6 mM 

MgCl2; 2.5% (w/v) polyvinyl glycol (compound); 0.5 mM DTT; 3 mM ATP; 0.02 mM EDTA 

and 2% glycerol at 30°C for 75 minutes. Transcription was started by addition of 4 µL NTPs (5 

mM each), carried out for 20 minutes and stopped by addition of 100 µL STOP buffer [20 mM 

EDTA; 200 mM NaCl; 1% SDS, 0.3 mg/mL glycogen]. After mixing, 12.5 µg Proteinase K was 

added and reactions were incubated at room temperature (~21°C) for 15 minutes. Nucleic acids 

were subsequently extracted by standard phenol/chloroform purification followed by ethanol 

precipitation. Transcripts were subjected to primer extension analysis using 5′- 32P-labeled M13 

reverse sequencing primer [5’-AGCGGATAACAATTTCACACAGGA] and separated by urea-



polyacrylamide gel electrophoresis. Gels were exposed to a phosphor imager plate and reverse 

transcription products visualized and quantified with a Typhoon imager (GE Health Sciences). 

5’GRO-seq and GRO-seq library generation and sequencing 

5’GRO-seq was performed as described previously (Lam et al., 2013). Briefly, about 107 HeLa 

S3 nuclei were used for run-on with BrU-labelled NTPs. Reactions were stopped by addition of 

450 µL Trizol LS reagent (Invitrogen). After RNA extraction and treatment with Turbo DNase 

(Ambion), both according to the manufacturer’s instructions, RNA was hydrolyzed by Zn2+ 

fragmentation (Ambion). The fragmented transcripts were incubated for 2  h at 37°C with 

polynucleotide kinase (PNK, NEB) at pH 5.5 to remove 3’ phosphates. BrU-labelled nascent 

transcripts were subsequently immunoprecipitated with anti-BrdU agarose beads (Santa Cruz 

Biotech). For 5’GRO-seq, immunoprecipitated RNA was dephosphorylated with calf intestinal 

phosphatase (NEB). Then 5′ capped fragments were de-capped with tobacco acid 

pyrophosphatase (Epicentre). Illumina TruSeq adapters were ligated to the RNA 3′ and 5′ ends 

with truncated mutant RNA ligase 2 (K227Q) and RNA ligase 1 (NEB), respectively. Reverse 

transcription was performed with Superscript III (Invitrogen) followed by PCR amplification for 

12 cycles. Final libraries were size selected on PAGE/TBE gels to 175–225 bp.  

GRO-seq was essentially performed as 5’GRO-seq but the immunoprecipitated RNA was 

directly de-capped with tobacco acid pyrophosphatase (Epicentre) and subsequently kinased with 

PNK (NEB) prior to adapter ligation.  

5’-GRO-seq and GRO-seq read processing, cluster calls, and annotation 

Two replicates of 5’end sequenced reads from the 5’-GRO-seq or traditional GRO-seq protocols 

were trimmed for adapters using cutadapt (Martin, 2011), mapped together to the hg19 human 



genome using Bowtie2 with default settings(Langmead and Salzberg, 2012). Reads that did not 

map uniquely and reads overlapping rRNA loci were removed, yielding 27,512,149 5’-GRO-seq 

reads and 21,765,842 traditional GRO-seq reads. Clusters were identified according to the 

strategy  described in Ni et al. (Ni et al., 2010).  Briefly, a kernel density estimate (KDE) of the 

5’ end positions of the mapped reads was calculated across the genome.  Any region exceeding 

the genome-wide average KDE that contained at least 10 reads was identified as a cluster and 

used in subsequent analysis. To annotate the identified clusters, the Genomic Features(Lawrence 

et al., 2013) R package was used to generate BED files for 5’utr, 3’utr, intron, coding exon, non-

coding exon, and promoter (-250 upstream of annotated transcription start sites) regions 

according to the UCSC knownGenes table. BEDTools (Quinlan and Hall, 2010) intersect was 

used to perform a prioritized intersection between the 5’-GRO-seq cluster calls and these 

annotation bed files with the following priorities: transcription start site (TSS) > coding exon > 

3’utr > non-coding exon > intron. Clusters intersecting either promoter or 5’utr locations were 

considered TSS-annotating clusters. Clusters not intersecting any of these locations were 

considered intergenic-annotating clusters. This strategy resulted in exactly one annotation per 

5’GRO-seq cluster. Following downstream analyses of cluster pair calling (either closest 

upstream or DNase-seq based; described below), regions containing clusters annotated as TSS 

but that overlapped annotated tRNA loci were removed from subsequent analysis. 

DNase-seq and ChIP-seq read processing and peak calling 

All 5 datasets of ENCODE-mapped DNase-seq reads for HeLa-S3 cells were downloaded from 

the UCSC ENCODE ftp server (Bernstein et al., 2012). PCR duplicates from each file were 

removed using SAMTools (Li et al., 2009). The resulting files were converted to BED using 

BEDTools (Quinlan and Hall, 2010) and concatenated before peak calling with JAMM v1.0.6 



(Ibrahim et al., 2014) (http://code.google.com/p/jamm-peak-finder/, settings: -m narrow -f 1). 

HeLa-S3 cell, Broad Institute histone modification ChIP-seq raw fastq files were downloaded 

from the UCSC ENCODE ftp server (Bernstein et al., 2012). Reads were aligned to hg19 

genome using Bowtie2 (Langmead and Salzberg, 2012) with default parameters and then filtered 

for those that did not align uniquely or had more than two mismatches. PCR duplicates were 

removed after alignment using SAMTools (Li et al., 2009) and converted to standard BED 

format using BEDTools (Quinlan and Hall, 2010). Histone modification peaks were called using 

JAMM v1.0.4rev1 (Ibrahim et al., 2014) with default settings while maintaining all replicates 

separate. The filtered peak lists produced by JAMM were considered for further analysis. Raw 

ENCODE HeLa-S3 ChIP-Seq fastq files for TAF1 and TBP (Bernstein et al., 2012) were 

processed in the same way as ENCODE histone modification datasets. Replicate BED files were 

then concatenated before peaks were called using SISSRS (Narlikar and Jothi, 2012) , which can 

resolve ChIP-Seq peak summits at high resolution (settings: -s 3095693983). 

CAGE read processing 

Fastq files from Ntini et al.(Ntini et al., 2013) (SRR922110.sra and SRR922111.sra) were 

obtained from the Gene Expresssion Omnibus (GEO) website. Reads were trimmed according to 

authors methods (Ntini et al., 2013) using Flexbar (Dodt et al., 2012) and mapped to the hg19 

human genome using Bowtie2 with default settings (Langmead and Salzberg, 2012). Reads that 

did not map uniquely were removed. Mapped .bam files for Hela whole-cell, polyA-plus CAGE 

were downloaded from the UCSC ENCODE ftp server (Bernstein et al., 2012). CAGE reads 

were corrected for the 5’end nucleotide bias using the CAGEr R package 

(http://bioconductor.org/packages/release/bioc/html/CAGEr.html). 



Closest upstream antisense pair assignments 

In order to define a set of 5’-GRO-seq cluster pairs that were reciprocally the closest upstream 

antisense of each other, a combination of BEDTools and custom scripts was used. BEDTools 

closest command (Quinlan and Hall, 2010) (settings: -S -id -D “a”) was run on the modes of 5’-

GRO-seq clusters (the position with the highest read count within a cluster) using the same file 

for both inputs. Custom Perl scripts were then used to parse the BEDTools output for only those 

cluster pairs where both modes were called as closest upstream antisense of each other.  

DHS-based divergent and unidirectional promoter definitions 

In order to define promoter DNase-I HyperSensitive regions (DHSs) as divergent or 

unidirectional, BEDTools (Quinlan and Hall, 2010) intersect command was used to find overlaps 

between  DNaseI-seq peak calls (defining DHSs) and  5’-GRO-seq cluster modes, both described 

above. The output from BEDTools was then parsed with custom Perl scripts into different DHS 

categories. DHSs with exactly one intersecting TSS cluster mode were considered unidirectional. 

DHS with exactly two intersecting 5’-GRO-seq cluster modes where the two modes were 

upstream and antisense of each other, one annotating as TSS and the other as intergenic, were 

considered divergent. DHSs with more than one intersecting 5’-GRO-seq cluster modes on any 

one DNA strand, or with two 5’-GRO-seq cluster modes on opposite strands but downstream of 

each other, were removed from further analysis. For an increased-confidence unidirectional 

group, unidirectional classified DHSs intersecting reverse-side annotated TSSs (yet having no 

5’GRO-seq clusters) or containing exactly one TSS-annotating cluster mode that was also part of 

the divergent or bidirectional reciprocal closest upstream antisense selection (described above) 

were considered ambiguous and removed from further analysis..  



Heat map and meta-analysis plots 

5’-GRO-seq and DNaseI-seq heat maps were made by calculating the center point between the 

5’-GRO-seq cluster modes of the paired forward/reverse TSS clusters or the center point of 

DHSs. Windows were then taken around these center points and strand assignments (important 

for plotting orientation) made according to the forward, annotated, gene for divergent cluster 

pairs or unidirectional promoter DHS. For TSS-TSS or intergenic-intergenic 5’-GRO-seq cluster 

pairs, the cluster with higher read counts was used for strand assignment since there is no clear 

definition for sense/antisense in these situations. Genomic coordinates were then grouped in bins 

of 10 and the number of reads whose 5’end mapped to each bin were counted independent of 

strand and scaled so that the minimum value for each window is 0 and the maximum value is 1. 

Windows were sorted according to the distance between cluster pairs or the width of the DNaseI-

seq peaks and plotted using the ggplot2 R package (Wickham, 2009). 

 For sequence heat maps, center positions, windows, strand and ranking were determined 

as above. BEDTools getfasta command (Quinlan and Hall, 2010) was used to retrieve the 

sequence corresponding to each window and ggplot2 (Wickham, 2009) was used for the plotting. 

 For TAF1 and Tbp ChIP-seq meta-analysis plots, sequence reads were extended by the 

fragment length calculated by SISSRS (Narlikar and Jothi, 2012). Center points, windows, and 

strands were determined as described above. For each window, genomic positions were grouped 

in bins of 10. If a bin overlapped a SISSRS summit (Narlikar and Jothi, 2012) ( see above), then 

the number of extended-reads covering that bin were counted. If no peak summits overlapped a 

bin, it was assigned a 0. The per-bin means across all promoter locations were plotted using the 

ggplot2 R package (Wickham, 2009). 



 For GRO-seq metaplots center points, windows, and strands were determined as 

described above. For each window, genomic positions were grouped in bins of 10 and the 

number of sequence tag 5’ends counted per bin in a strand sensitive manner. The two resulting 

vectors of binned counts (one for each strand per window) were scaled together so that the 

minimum value for each window is 0 and the maximum value is 1. The per-bin means of these 

strand-sensitive, scaled, vectors across all promoter locations were plotted using the ggplot2 R 

package (Wickham, 2009).  

The number of ENCODE CAGE sequence tag 5’ends were counted that intersected each 5’-

GRO-seq cluster and the distribution of such counts per group were plotted as boxplots using the 

ggplot2 R package (Wickham, 2009). 

 Histone modification metaplot center points, windows, and strands were determined as 

described above. Reads were extended by the fragment sizes calculated within JAMM (Ibrahim 

et al., 2014). Genomic coordinates were then grouped in bins of 10 and the number of extended 

reads per million mapped overlapping each bin were counted independent of strand. The per-bin 

means across all promoter locations were plotted using the ggplot2 R package (Wickham, 2009). 

TSS initiation pattern analysis  

NarrowPeak, BroadPeak, and WeakPeak initiation patterns as defined previously(Ni et al., 2010) 

were determined for the specified groups from the 5’-GRO-seq clusters with at least 25 read 

counts. 

Position-specific threemer counts 



Position-specific threemer counts were determined with custom Perl scripts. After counting the 

instances of each threemer at each position, this value was divided by the total occurrence of that 

threemer in that sequence group. These values were plotted using the ggplot2 R package 

(Wickham, 2009).   

Probabilistic model of transcription start sites 

In order to compare the sequence composition of reverse direction core promoters and to scan 

DHS regions for transcription start site sequences, we employed a previously published position-

specific Markov chain model (Frith et al., 2008) (PSMM). We used the first-order setting which 

will calculate the probability of a given di-nucleotide at a given position relative to that 

position’s mono-nucleotide frequency, normalized for the di- and mono-nucleotide frequencies 

in the training set independent of position. Since the program reports log2 scores, all the values 

in our plots are 2S, S being the log2 score output by the program.  

A 10-fold cross validation scheme of the PSMM was implemented as follows. To train 

the model, the list of forward, TSS annotating, core promoters from either the closest upstream 

antisense selection, or DHS-based selection strategies, were split into 10 equal-size, non-

overlapping, groups. These were designated as 10 unique “test” sets. For each test set, a 

corresponding training set was composed of the regions in the complete set that did not overlap 

the test set. The PSMM was then trained 10 separate times, once for each training set, on 

sequences +/- 50 bp around the TSS cluster modes. Each of the 10 models was then run on its 

corresponding, non-overlapping, test set. For the closest upstream antisense selection strategy, 

the test sequences were +/- 50 around the modes of the 5’-GRO-seq clusters. For the DHS-based 



selection strategy, the test sequences were -150 to +50 around the appropriate DHS edge 

corresponding to the 5’-GRO-seq clusters of that test set.  

In addition to the test group subsets, the 10 models were each run on the complete set of 

other sequences in question. For the closest upstream antisense selection strategy, these other 

sequences were +/- 50 around the 5’-GRO-seq cluster modes. Means were calculated for each 

position across the promoters of each list, resulting in 10 vectors of position means, one for each 

trained model. The mean at each position across these 10 vectors was plotted using ggplot2 

(Wickham, 2009). For the DHS-based selection strategy, the sequences were -150 to + 50 around 

the appropriate DHS edge. Negative scores where the background model was higher than the 

TSS model were set to zero. The sequence positions were grouped in bins of 10 and the average 

score from each bin was calculated, then the mean average score was calculated for each binned 

position across all promoters of the list, resulting in 10 vectors of average score means at each 

position, one for each trained model. Shuffled control sequences were generated using the 

shuffleseq algorithm with default settings from the EMBOSS suite (Rice et al., 2000). The mean 

at each binned position across these 10 vectors was smoothed and plotted using ggplot2 

(Wickham, 2009). For divergent pair scores in Supplemental Figure 3d, the scores for each 5-

GRO-seq cluster mode were combined for each of the 10 cross validation runs and plotted as 

boxplots using ggplot2 (Wickham, 2009).  

Receiver operator characteristic and precision recall curves were generated by defining 

true positives as the modes of 5’-GRO-seq clusters and true negatives as every other nucleotide 

in the tested windows, the results plotted for each of the 10 models from the closest upstream 

antisense selection using the R package ROCR (Sing et al., 2005).     



Motif scanning 

The TRANSFAC TATA-box binding protein or JASPAR Initiator position weight matrices 

(M00252; pwm) were used with the Scanner Toolset  (Megraw et al., 2009) to scan sequences -

35 to -25 upstream for TATA and +/- 5 for initiator around the forward TSS modes of the 

divergent and unidirectional promoter groups. A fixed first order Markov background was used 

for each list calculated from sequences +/- 50 around the forward TSS modes. Thresholds for 

fixed background scans were determined with a false positive rate cutoff of 0.001 as described in 

Megraw et al. (Megraw et al., 2009). For score distributions, highest scores were taken when 

locations contained multiple hits in the region scanned. 

CpG island (CGI) analysis 

Genomic coordinates of CGI were taken from the UCSC table browser  (Kuhn et al., 2013). 

Either divergent or unidirectional DHSs were intersected with these coordinates using BEDTools 

intersect (Quinlan and Hall, 2010), either with the –u setting for counting the number of DHSs 

that intersect a CGI or the –wa –wb setting for determining size distributions of CGIs that 

intersect DHSs.  

Chromatin State Segmentation 

Similar to previous approaches (Ernst and Kellis, 2012; Hoffman et al., 2012), we employed a 

Hidden Markov Model (Taramasco and Bauer, 2013) (HMM)  for unsupervised genome-wide 

clustering of histone modification ChIP-Seq read counts.  We chose a multivariate Gaussian 

distribution for the HMM state emissions. Each chromatin state is a multivariate Gaussian 

distribution fully defined by its means vector, corresponding to the signals' means of the histone 

modification tracks, and its co-variance matrix. 



In a pre-processing step, we define relevant locations for each histone modification (positions 

intersecting a ChIP-Seq peak) separately across the whole genome at 10-basepair resolution. The 

signal at relevant locations is defined as background-normalized, smoothed, extended-read 

counts (ie. ChIP-Seq signal). Peaks were identified using JAMM (Ibrahim et al., 2014), as 

described above.  For each histone modification dataset, we extracted the corresponding ChIP-

Seq signal for each peak at single-basepair resolution, using the SignalGenerator pipeline 

provided with JAMM (Ibrahim et al., 2014). JAMM's SignalGenerator output is then aligned to 

the genome in 10-basepair bins using the BEDOps (Neph et al., 2012) bedmap command 

(settings: --mean). Bins that did not intersect ChIP-Seq peaks are assigned a signal of zero. ChIP-

Seq signal for each histone modification track is then scaled so that the minimum value is zero 

and the maximum value is 1000 and converted to log-space. 

The resulting 10-basepair binned signal tracks for all histone modifications are matched up and 

bins that have a zero ChIP-Seq signal in all tracks are discarded. Bins that have a zero ChIP-Seq 

signal in one or more histone modification track(s) but not the other(s) are assigned a simulated 

normally-distributed background signal with a mean equal to the lowest bin signal value in the 

corresponding histone modification track and a variance of 0.1. 

To learn the emission and transition parameters of the HMM, we employ the Baum-Welch 

algorithm (Bilmes, 1997; Taramasco and Bauer, 2013), initialized via k-means, on the signal 

tracks of chromosome 1. This learning process results in distinct chromatin states, each 

represented as a multivariate Gaussian distribution. The mean vector for each state defines the 

average ChIP-Seq signals of the histone modification tracks in the corresponding state. We 0-to-

1 scale the means across each histone modification to define the prototypical chromatin states 

shown in Fig. 6a. 



Finally, we employ the Viterbi decoding algorithm (Taramasco and Bauer, 2013; Viterbi, 1967) 

to assign a chromatin state to each 10-basepair bin in the genome that had a peak in at least one 

of the histone modification tracks. Locations that did not have a peak in any histone modification 

track (no relevant features, zero signal in all tracks) are not assigned a state. Book-ended bins 

that have the same state are merged. The output of this process is genome segmentation into 

variable-width non-overlapping chromatin states similar to Segway (Hoffman et al., 2012) and 

ChromHMM (Ernst and Kellis, 2012).  

The main advantage of our chromatin state genome segmentation pipeline is that it allows for 

chromatin state assignment at high-resolution using “semi-binarized” signal, as opposed to using 

fully binarized (enriched / not-enriched) information at 200 bp resolution utilized in the 

ChromHMM approach (Ernst and Kellis, 2012). Our semi-binarized signal is the smoothed-

extended ChIP-Seq read counts for relevant locations in the genome (ChIP-Seq peaks) and zeros 

elsewhere. This allows to account for information about the co-variance of the histone 

modifications' signals, but without suffering from noise over-representation, and thus has the 

potential to lead to more meaningful clustering of the histone modification signals compared to 

previous approaches(Ernst and Kellis, 2012; Hoffman et al., 2012). Finally, we do not analyze 

the entire genome, but only locations which had ChIP-Seq peaks in at least one histone 

modification dataset. Therefore, we can assign chromatin states at high-resolution 10 bp bins, 

close to the single-basepair resolution of Segway (Hoffman et al., 2012) but without its 

expensive computational resources requirement. Segway (Hoffman et al., 2012) can only run on 

high-performance computing clusters whereas our pipeline runs on typical desktop machines. 

 



Chromatin State Analysis 

To produce chromatin state coverage plots, we started with windows defined around the 

midpoints of DHSs as described above. Chromatin states were intersected with DHS-based 

windows using BEDTools (Quinlan and Hall, 2010) intersect command. 

Chromatin state enrichment for different categories of 5'GRO cluster annotations were based on 

intersection of chromatin states with single-nucleotide locations that are 75-basepair downstream 

of the corresponding DHS edge. 

Chromatin state enrichment with different genome-wide annotations were done using 

ChromHMM (Ernst and Kellis, 2012) overlapEnrichment command (settings: -b 10) using 

annotations based on hg19 UCSC knownGenes table (Kuhn et al., 2013) and hg19 Fantom5 

enhancer list (Andersson et al., 2014). 
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