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Computational Modeling of Ground-Bridge Seismic Response and Liquefaction Scenarios
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Considerable bridge-ground interaction effects are involved in evaluating the
consequences of liquefaction-induced deformations. Due to seismic excitation, liquefied soil
layers may result in substantial accumulated permanent deformation of sloping ground near the
abutments. Ultimately, global response is dictated by the bridge-ground interaction as an integral
system. Generally, a holistic assessment of such response requires a highly demanding full three-
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dimensional (3D) Finite Element (FE) model of the bridge and surrounding ground. As such, in
order to capture a number of the salient involved mechanisms, this study focuses on the
liquefaction-induced seismic response of integral bridge-ground systems motivated by details of
actual existing bridge-ground configurations. In these 3D FE models, realistic multi-layer soil
profiles are considered with interbedded liquefiable/non-liquefiable strata. Effect of the resulting
liquefaction-induced ground deformation is explored. Attention is given to overall deformation of
the bridge structure due to lateral spreading in the vicinity of the abutments. The derived insights
indicate a need for such global analysis techniques, when addressing the potential hazard of
liquefaction and its consequences.

In order to reproduce the salient response characteristics of soils, three plasticity
constitutive models were developed and implemented into the employed computational framework
OpenSees including: (1) A pressure-dependent sand model with the Lade-Duncan failure criterion
as the yield function to provide a more accurate representation of shear response for gravel, sand
and silt, incorporating liquefaction effects, (2) A 3D model for simulating the strain softening
behavior of soil materials such as sensitive clays, cemented, over-consolidated, very dense, or
frozen soils among others, and (3) A practical 3D model for simulating the cyclic softening
behavior of soil materials, as might emanate from pore-pressure build-up, among other stiffness
and strength degradation mechanisms.

An opportunity to investigate liquefaction-induced lateral spreading and its effects on sheet
pile was permitted by availability of large sets of experimental data. The underlying mechanisms
of ground failure and damage to sheet pile were further explored by FE numerical simulations of
a series of experiments as follows: (1) A total of 17 centrifuge tests on a liquefiable sloping ground,

and (2) A total of 11 centrifuge tests on a sheet pile retaining wall system supporting liquefiable
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soils. The overall measurements were reasonably captured by the conducted FE simulations,
demonstrating that the employed constitutive models as well as the overall computational
framework have the potential to realistically evaluate the performance of ground-structure systems
when subjected to seismically-induced liquefaction.

Overall, the primary findings may be summarized as: (1) Response is highly dependent on
the bridge-ground system as an integral global entity. Connectivity provided by the bridge deck,
soil profile variability along the bridge length, and geometric configuration of the slopes are all
factors that can significantly influence the outcome, (2) The bridge structure and its foundations
may exert a significant restraining effect on lateral ground deformations. Such restraining effects
partially stem from the bridge-ground global connectivity characteristics, which can be of
considerable influence, (3) Incorporation of strain softening where applicable, is an important
consideration for a wide range of ground scenarios involving sensitive clays, cemented, over-
consolidated, very dense, or frozen soils among others, and (4) Strength and stiffness degradation
due to strain softening mechanisms might play a substantial role in terms of accumulated
deformations and its effect on the resulting ground acceleration and extent of permanent

displacement.
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Chapter 1. Introduction and Literature Review

1.1. OpenSees UC San Diego Computational Modeling of Ground-Structure
Systems: A Brief Overview

With the recent developments in material modeling techniques and high-speed computing,
three-dimensional (3D) nonlinear Finite Element (FE) simulations are becoming increasingly
feasible for geotechnical earthquake engineering applications (Elgamal et al. 2008; Kwon and
Elnashai 2008; Asgari et al. 2013; Torabi and Rayhani 2014; McGann and Arduino 2014, 2015;
Rayamajhi et al. 2013, 20164, b; Su et al. 2017; Qiu et al. 2019, 2020). Calibration, on the basis
of data from field case histories as well as centrifuge and shake table experiments, is gradually
allowing for more accurate computational modeling efforts (e.g., Lu et al. 2011; Chang et al.
2013; Karimi and Dashti 2015, 2016; He et al. 2017; Su et al. 2018). As such, calibrated FE
simulations are increasingly providing a reliable environment for modeling geotechnical
earthquake problems, such as soil liquefaction, soil-structure interaction (SSI), and ground
modification.

Particularly suited to seismic applications, the open-source computational platform
OpenSees (Mazzoni et al. 2009; McKenna 2011) provides such 3D simulation capabilities.
Implemented in OpenSees (Yang 2000; Yang and Elgamal 2002) is an analysis framework for
saturated soil response as a two-phase material following the u-p formulation of Chan (1988) and
Zienkiewicz et al. (1990), where u is displacement of the soil skeleton, and p is pore pressure. As
such, the soil domain (in 3D) is represented by effective-stress solid-fluid fully coupled brick
elements (Parra 1996; Yang 2000; Lu 2006; Yang et al. 2008) to describe the solid translational
degrees of freedom (DOFs) and the fluid pressure (e.g., OpenSees 20_8 BrickUP element,

brickUP and bbarBrickUP elements).



The OpenSees framework also includes a number of pressure-independent and pressure-
dependent soil constitutive models (Parra 1996; Yang and Elgamal 2002; Elgamal et al. 2003;
Yang et al. 2003; Yang et al. 2008), developed based on the multi-surface-plasticity theory (Mroz
1967; lwan 1967; Prevost 1977, 1978, 1985). The pressure-independent models (Elgamal 2008;
Yang et al. 2008; Lu et al. 2011) simulate the nonlinear cyclic hysteresis material response (e.g.,
undrained clay-type loading conditions). The pressure-dependent material models (typically used
with the above mentioned solid-fluid fully coupled brick elements) mainly aim at simulating the
liquefaction-induced shear strain accumulation mechanism in cohesionless soils (Yang and
Elgamal 2002; Elgamal et al. 2003; Yang et al. 2003, 2008). Currently, the above modeling tools
have been used by researchers worldwide in numerous reported studies (e.g., Elgamal et al. 2008,
2009; Zhang et al. 2008; Kwon and Elnashai 2008; Aygun et al. 2009, 2010; Ilankatharan and
Kutter 2008, 2010; Atik and Sitar 2010; Lu et al. 2011; Asgari et al. 2013; Chang et al. 2013;
Torabi and Rayhani 2014; McGann and Arduino 2014, 2015; Hashash et al. 2015; Tang et al.
2015; Rayamajhi et al. 2013, 20164, b; Karimi and Dashti 2015, 2016; He et al. 2017; Su et al.
2017, 2018; Qiu et al. 2019, 2020).

In order to facilitate the OpenSees analysis pre- and post-processing phases, the graphical
user interfaces OpenSeesPL (Lu et al. 2006; Elgamal and Lu 2009), BridgePBEE (Mackie et al.
2012) and MSBridge (Elgamal et al. 2014) were developed and employed. OpenSeesPL allows
for execution of push-over and seismic SSI pile-ground simulations (Lu et al. 2006; Elgamal and
Lu 2009). In addition, various ground modification scenarios may be studied in OpenSeesPL by
appropriate specification of the material within the pile zone. BridgePBEE is a user-interface for
conducting performance-based earthquake engineering (PBEE) studies for 2-span single-column

bridge-ground systems (Mackie et al. 2012). MSBridge focuses on efficiently conducting



nonlinear FE studies for a wide range of multi-span bridge systems (Elgamal et al. 2014), with a
recently added PBEE analysis option (Elgamal et al. 2017; Almutairi et al. 2018).

Overall, the earlier studies (as mentioned above) aim to illustrate the potential for further
reliance on computer simulation in the assessment of nonlinear SSI response. Challenges in
calibration and in high fidelity modeling are being gradually overcome. With careful attention to
the involved modeling details, effective insights may be gleaned for a wide range of practical

applications.

1.2.  Soil Liquefaction and Its Consequences

Soil liquefaction (Figure 1.1) occurs when a saturated granular soil substantially loses
strength and stiffness and becomes easier to deform (National Academies of Sciences,
Engineering, and Medicine, 2016). Large regions of the United States are highly susceptible to
strong earthquake shaking (Figure 1.2) that can cause liquefaction when saturated soils are present.
Consequences of liquefaction include: 1) Sand boils, 2) Settlements, 3) Loss of lateral support, 4)
Loss of bearing capacity, 5) Flotation of light structures, 6) Increased lateral pressures against
retaining structures, 7) Lateral spreading of soils, and 8) Lateral flows (National Academies of

Sciences, Engineering, and Medicine, 2016).

1.3. Case Histories of Spreading-Induced Damage to Bridge Foundations

Large bridge overcrossings with high ground water table are particularly vulnerable to
liquefaction-induced lateral spreading and loss of pile foundation capacity (Youd 1993; Hamada
et al. 1996; Tokimatsu and Asaka 1998; Berrill et al. 2001). Damage to such bridges has been
observed in a large number of reconnaissance investigations, including the Llacolén Bridge (Figure
1.3) during 2010 Maule earthquake of Chile (Arduino et al. 2010; Bray and Frost 2010; Verdugo

2012; Ledezma et al. 2012), the San Felipito Bridges (Figure 1.4) during 2010 El Mayor-Cucapah



earthquake of Mexico (Turner et al. 2013, 2016), and the South Brighton Bridge (Figure 1.5)
during the 2010-2011 Canterbury earthquakes (Cubrinovski et al. 2011, 2014; Wotherspoon et al

2011).

1.4. One-g Shake Table Tests: Liquefaction and Pile Response

Physical modelling (1-g) shake table tests using rigid (Tokida et al. 1970; Hamada 2000)
and laminar containers (Tokimatsu and Suzuki 2004; Cubrinovski et al. 2006; He et al. 2009;
Chang and Hutchinson 2013; Motamed et al. 2013) provided insight and increased our
understanding of the mechanisms of pile response due to liquefaction and lateral spreading. More
recently, Ebeido et al. 2019 investigated the pile and pile-group response to liquefaction-induced

lateral spreading in four large-scale 1-g shake-table experiments (Figure 1.6).

1.5. Numerical Analysis of Bridge-Ground Systems

Investigators have been increasingly studying the entire bridge and the surrounding ground
response within an integral framework. Different approaches to the representation of ground
response at the location of each bridge bent, and effects on the entire bridge were presented
(Boulanger et al. 2007; Ashford et al. 2009, 2011; Aygin et al. 2009; Ledezma and Bray 2010;
Padgett et al. 2013; Turner et al. 2013, 2016; Cubrinovski et al. 2014; Wang et al. 2013a, b;
McGann and Arduino 2015; Ghofrani et al. 2016; Soltanieh et al. 2019). Aygun et al. 2011 presents
a relatively simple approach for analysis of coupled bridge-soil-foundation systems that combines
nonlinear FE models of a three-dimensional bridge system with a 2D soil domain via a set of p-y
curves (Figure 1.7).

Alternatively, using two-dimensional (2D) plane-strain FE continuum models to represent
the ground and canyon configuration, the bridge model and its foundations were idealized and

connected to the ground using soil spring formulations (Bowers 2007; Zhang et al. 2008; Kwon et



al. 2009). Shin et al. 2007, 2008 performed the global seismic analysis of a typical highway bridge
subjected to liquefaction-induced lateral spreading (Figure 1.8).

Results of these studies show that consideration of the entire bridge-ground system
provides a more realistic distribution of force and displacement demands. As such, it is indicated
that global analysis is paramount in realistically evaluating the performance of liquefaction-

induced lateral spreading and its consequences (Qiu et al. 2020).

1.6. Research Objectives

To increase our understanding of liquefaction-induced seismic response of integral bridge-
ground systems, this dissertation provides a wide range of studies about soil constitutive modeling
and calibration by experiments, and computational simulation of large-scale bridge-ground
systems during liquefaction. Main objectives of this research are summarized as follows:

1. Implementation in OpenSees of a 3D multi-surface cyclic plasticity sand model with
Lode Angle effect to reproduce salient characteristics of laboratory sample test data.

2. Development of a 3D multi-surface plasticity model for simulating the strain softening
behavior of soil materials such as sensitive clays, cemented soils, over-consolidated clays, very
dense sands, and frozen soils among others.

3. Development of a practical 3D plasticity model for simulating the cyclic softening
behavior of soil materials, as might emanate from pore-pressure build-up, among other stiffness
and strength degradation mechanisms.

4. Calibrations of 2D FE models using a series of LEAP centrifuge tests on a liquefiable
sloping ground and a sheet-pile retaining wall supporting liquefiable soils.

5. Development of full 3D FE models to investigate a number of salient features associated

with liquefaction-induced seismic response of integral bridge-ground systems including multi-



span bridges, short-span bridges in narrow canyon, and a newly proposed arch bridge

configuration.

6. Development of 2D FE plane strain simulations to investigate liquefaction-induced

canyon effects on the resulting seismic response and corresponding slope deformations.

7. Implementation of the 3D plasticity strain-softening model into a large deformation

framework (RKPM2D) to study the earthquake-induced deformation of a simple idealized earth

dam configuration.

1.7.

Outline

This dissertation consists of 13 chapters, organized as follow:

Chapter 1: Introduction and Literature Review. This chapter gives a brief overview of the
motivation behind the research program and a brief summary of earlier related work.
Chapter 2: Pressure-Dependent Multi-surface Plasticity Models Incorporating
Liquefaction Effects. This chapter presents brief descriptions of the OpenSees UC San
Diego pressure-dependent multi-surface models, including PressureDependMultiYield02,
PressureDependMultiYield03, and LadeDuncanMultiYield.

Chapter 3: Three-Dimensional Modeling of Strain-Softening Soil Response for Seismic-
Loading Applications. This chapter presents a new 3D incremental plasticity constitutive
model for simulating the strain softening behavior of soil materials including sensitive
clays, cemented soils, over-consolidated clays, very dense sands, and frozen soils among
others.

Chapter 4: Numerical Simulations of LEAP Centrifuge Tests for Seismic Response of
Liquefiable Sloping Ground. This chapter presents numerical simulations of a liquefiable

sloping ground related to LEAP-UCD-2017 and LEAP-Asia-2019 dynamic centrifuge tests



(Kutter et al. 2018b; Ueda 2018).

Chapter 5: Seismic Response of a Sheet-Pile Retaining Structure Supporting Liquefiable
Soils: Numerical Simulations of LEAP Centrifuge Tests. This chapter presents numerical
simulations of a sheet-pile retaining structure under liquefaction-induced lateral loading
related to LEAP-2020 dynamic centrifuge tests (Zeghal et al. 2019).

Chapter 6: Aspects of Bridge-Ground Seismic Response and Liquefaction-Induced
Deformations. This chapter focuses on the longitudinal seismic performance of an
idealized bridge-ground configuration, motivated by details of an existing multi-span
bridge-ground system, in order to capture a number of the salient involved mechanisms. A
realistic multi-layer soil profile is considered with interbedded liquefiable/non-liquefiable
strata. Effect of the resulting liquefaction-induced ground deformation is explored.
Attention is given to overall deformation of the bridge structure due to lateral spreading in
the vicinity of the abutments.

Chapter 7: Three-Dimensional Bridge-ground Liquefaction-induced Deformations. This
chapter extends the work presented in chapter 6, with a full 3D FE analysis. Similarities
and differences in the results of these two chapters are highlighted.

Chapter 8: Bridge in Narrow Canyon: Seismic Response and Liquefaction-Induced
Deformations. This chapter investigates longitudinal seismic performance of an overall
short-span bridge-ground system. Of particular interest is the scenario of narrow canyons
where interaction between lateral deformations at both ends of the bridge plays a major
role.

Chapter 9: Arch Bridge Configuration for Mitigation of Liquefaction-Induced Lateral

Deformations. This chapter proposes an arch bridge configuration as a structural system to



mitigate the consequences of potential liquefaction-induced lateral deformations. Where
applicable in terms of the underlying canyon geometry, such a configuration might offer
beneficial outcomes as discussed in this study. For that purpose, a full 3D FE computational
simulation is conducted to highlight these benefits.

Chapter 10: Liquefaction-Induced Canyon Effects on Seismic Response of Sloping Ground.
This chapter investigates the liquefaction-induced canyon effects in terms of the involved
mechanisms and their consequences. For reference, the presented results are compared with
those obtained from the corresponding traditional one-dimensional soil column
representation.

Chapter 11: Liquefaction-Induced Excess Pore Pressure beyond Vertical Effective Stress
and Potential Consequences. This chapter discusses a potential mechanism of liquefaction-
induced excess pore pressure that can far exceed the initial effective vertical stress, referred
to herein as super-liquefaction. The mechanism is presented, along with representative
idealized experimental and numerical simulations.

Chapter 12: Meshfree Framework for Seismic Response of Earth Systems. This chapter
makes an effort to bring the capabilities and advantages of the meshfree method within a
dedicated open-source framework RKPM2D (Huang et al. 2019) for use in earthquake
engineering applications. For illustration, initial results of an idealized earth embankment
configuration subjected to seismic loading are presented and discussed.

Chapter 13: Summary and Conclusions. This chapter summarizes the main contributions
and findings from the research reported herein. Areas of potential future research are

discussed as well.



_______________

Figure 1.1 Soil liquefaction mechanism (National Academies of Sciences, Engineering, and
Medicine, 2016)
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Figure 1.3 The Llacolén Bridge during 2010 Maule earthquake of Chile: (a) Damaged region; (b)
Deck unseating due to lateral spreading (after Ledezma et al. 2012)
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Figure 1.4 The San Felipito Bridges during 2010 El Mayor-Cucapah earthquake of Mexico (after
Turner et al. 2013, 2016)
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Figure 1.5 The South Brighton Bridge during 2011 Christchurch earthquake of New Zealand (after
Cubrinovski et al. 2011, 2014)
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(a) Modeling of soil-structure interaction in OpenSees; (b) Deformed FE mesh (after Shin et al.
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Chapter 2. UC San Diego Pressure-Dependent Multi-Surface
Plasticity Models Incorporating Liquefaction Effects

2.1. Introduction

These pressure-dependent soil constitutive models were developed based on the multi-
surface plasticity theory (Parra 1996; Yang 2000; Yang and Elgamal 2002; Elgamal et al. 2003;
Yang et al. 2003; Khosravifar et al. 2018). In these soil constitutive models, the shear-strain
backbone curve may be simply represented by the hyperbolic relationship. The low-strain shear
modulus is computed using the equation G = G,(p'/p’,)™, where p’ is effective confining
pressure, p', is a reference effective confining pressure, and G, is shear modulus at p’,.. The
dependency of shear modulus on confining pressure (n) is typically taken as 0.5. The constant M
(failure surface size) relating deviator shear and confinement (triaxial compression scenario) is
related to the friction angle ¢ (Chen and Mizuno 1990) as defined by My = 6sing/(3 — sing).
As such, soil is simulated by the implemented OpenSees materials PressureDependMultiYield
(Parra  1996; Yang 2000; Yang and Elgamal 2002; Elgamal et al. 2003),
PressureDependMultiYield02 (Yang et al. 2003), PressureDependMultiYield03 (Khosravifar et

al. 2018), and LadeDuncanMultiYield (Yang and Elgamal 2008; Qiu et al. 2019).

2.2.  PressureDependMultiYield02 Material

The PressureDependMultiYield02 material (Figure 2.1 and Figure 2.2) has mechanisms to
simulate the dilatancy and cyclic mobility of pressure sensitive soils (Elgamal et al. 2003; Yang et
al. 2003). Calibration was performed based on a series of laboratory and centrifuge tests, and the
model parameters were provided for sands with different relative densities (Elgamal et al. 2003;

Yang et al. 2003). Brief descriptions of this soil constitutive model are included below. A large
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number of numerical studies employing the OpenSees PressureDependMultiYield02 material have
been conducted for simulating large-scale seismic soil-structure interaction and liquefaction
scenarios (Shin et al 2007, 2008; Zhang et al 2008; McGann and Arduino 2014, 2015; Karimi and
Dashti 2015; He et al. 2017; Su et al. 2018).
2.2.1. Yield Function

The yield function is defined as a conical surface in principal stress space (Prevost 1985;

Lacy 1986; Yang and Elgamal 2002):

F=2(= 0+ ) (- O +p ) WG+ =0 @)
where, s = ¢’ — p’8, is the deviatoric stress tensor, o’ is the effective Cauchy stress tensor, & is
the second-order identity tensor, p’ is mean effective stress, p’, is a small positive constant
(Figure 2.1) such that the yield surface size remains finite at p’ = 0 for numerical convenience, a
is a second-order deviatoric tensor defining the yield surface center in deviatoric stress subspace,
M defines the yield surface size, and “:”” denotes doubly contracted tensor product.

2.2.2. Contractive Phase
Shear-induced contraction occurs inside the phase transformation (PT) surface (n < npr),
as well as outside (n > npy) When i < 0, where, 7 is the stress ratio and npy is the stress ratio at

phase transformation surface (Figure 2.2). The contraction flow rule is defined as:

n:s n p'
P'=(1———)%(c; + 7)) (—)°3 (2-2)
( ||S||77PT) @ 2 C)(Pa)

where c1, 2 and ¢z are non-negative calibration constants, y, is octahedral shear strain accumulated
during previous dilation phases, p, is atmospheric pressure for normalization purpose, and § is the

deviatoric stress rate. The 1 and $ tensors are used to account for general 3D loading scenarios,
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where, 1 is the outer normal to a surface (Yang et al. 2003). The parameter cs is used to represent

the dependence of pore pressure buildup on initial confinement (i.e., K effect).

2.2.3. Dilative Phase
Dilation appears only due to shear loading outside the PT surface (n > npy withn > 0),
and is defined as:

n:s n

P"=(1-—
[[$]Inpr

)2(d, + (yd)dzxgi)—ds (2-3)

where di, d> and dz are non-negative calibration constants, and y, is the octahedral shear strain
accumulated from the beginning of a particular dilation cycle (such as, stage 1-2 or 5-6 in Figure
2.2) as long as there is no significant load reversal. Subsequently, dilation rate increases as the
shear strain accumulates in a particular cycle (Yang et al. 2003). Furthermore, a significant
unloading (such as stage 6-8 in Figure 2.2) will reset y,; to zero. Parameter ds in Equation (2-3),

reflects the dependence of pore pressure buildup on initial confinement (i.e., Ko effect).

2.2.4. Neutral Phase

When the stress state approaches the PT surface (n = npy) from below, a significant
amount of permanent shear strain may accumulate prior to dilation, with minimal changes in shear
stress and confinement (implying P" = 0). For simplicity, P" = 0 is maintained during this highly
yielded phase until a boundary defined in deviatoric strain space is reached, and then dilation
begins. This yield domain will enlarge or translate depending on load history. In deviatoric strain

space, the yield domain (Figure 2.2) is a circle with the radius y defined as (Yang et al. 2003):
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Y =s+Vm)/2

l; ! t
p -p
Ys =M1 (M)O.ZS[ dy.
0

!
p max

(2-4)

P'max — D'
Yrv = V2 (M)O'ZS oct(e — ep)
max

where, y1 (non-negative) is used to define the accumulated permanent shear strain y; as a function
of dilation history fot dy. and allow for continuing enlargement of the domain, p’,,,, is maximum

mean effective confinement experienced during cyclic loading, p’,, is mean effective confinement
at the beginning of current neutral phase, and () denotes MacCauley’s brackets (i.e., {(a) =
max (a, 0)). The y> (non-negative) parameter is mainly used to define the biased accumulation of
permanent shear strain y,.,, as a function of load reversal history and allows for translation of the
yield domain during cyclic loading. In Equation (2-4), oct(e — e,) denotes the octahedral shear
strain of tensor e — e,,, where e is current deviatoric shear strain, and e,, is pivot strain obtained

from previous dilation on load reversal point.

2.3.  PressureDependMultiYield03 Material

In order to more closely capture the established guidelines concerning triggering of
liquefaction (ldriss and Boulanger 2008), the PressureDependMultiYield02 material has been
recently updated (PressureDependMultiYield03 in Khosravifar et al. 2018). The model parameters
were calibrated with established guidelines on the liquefaction triggering logic (Idriss and
Boulanger 2008), i.e., cyclic stress ratio versus number of equivalent uniform loading cycles in
undrained shear loading to cause single-amplitude shear strain of 3 % (Khosravifar et al. 2018).
Figure 2.3 depicts the calibration results of PressureDependMultiYield03 for shear loading tests

at a vertical consolidation stress of 1 atm and lateral earth pressure coefficients K, = 0.5 (Figure
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2.3a) and Ko = 1.0 (Figure 2.3b), along with those of the PM4Sand model (Boulanger and
Ziotopoulou 2015) response for comparison.
2.4. LadeDuncanMultiYield Material

To allow for further accuracy in capturing 3D shear response, the OpenSees material
PressureDependMultiYield03 has been extended to incorporate the Lode angle effect (Figure 2.4)
by employing the Lade-Duncan failure criterion as the yield function (Lade and Duncan 1975;
Yang and Elgamal 2008; Qiu et al. 2019). This failure criterion is represented by (Chen and

Mizuno 1990):

1 1
Ji=3h)s+ (55— ) B =0 (2-5)
where, 11 is volumetric stress, J> and Jz are second and third deviatoric stress invariants,
respectively, parameter ki (> 27) is related to soil shear strength (or friction angle ¢). A typical
yield surface f,,, (Figure 2.4) is defined by Yang and Elgamal 2008:
-1 - 3
fm =13 — §(Um11)]2 +a;(Mml)° =0 (2-6)
where n,,, is normalized yield surface size (0 <n,, < 1) and a, = 2—17 — ki (Yang and Elgamal
1
2008). In Equation (2-6), J, = %5: Sand J; = %(3 -5):5, where,s=s—p'aands=0—p'6,6
is the second-order identity tensor, p’ = %Il is mean effective stress (I; = 3p'), deviatoric tensor

a is back stress (yield surface center), and the operators “-’and “:” denote single and double
contraction of two tensors, respectively.
To more closely capture the established guidelines on the liquefaction triggering logic

(Idriss and Boulanger 2008), the contraction rule of LadeDuncanMultiYield material is improved:
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P . = b, (bz (ni - b3> (i - b3> + b4) p" (2-7)

PT Npr

where, P"" is defined in Equation (2-2), and b,, b, bs, b, are non-negative calibration parameters.
Figure 2.5 shows the cyclic stress ratio to trigger liquefaction versus the number of loading cycles
in undrained cyclic shear simulations. The results are shown for sands with (N1)eo values of 5, 15
and 25 (corresponding to relative densities D, = 35 %, 55 % and 75 %) under confining effective
stress of 1 atm. The calibrated LadeDuncanMultiYield model parameters are listed in Table 2.1.
Each curve in Figure 2.5 is fitted with a power function (CSR = aN*) and the b-value is shown
ranging from 0.27 to 0.34.

For illustration, the LadeDuncanMultiYield material was calibrated using cyclic laboratory
test data in which an Ottawa F-65 sand (Kutter et al. 2018b) was employed. Figure 2.6 displays
the experimental (Kutter et al. 2018b) and computed results for a consolidated, stress-controlled
undrained cyclic triaxial test. It can be seen that the soil gradually loses its effective confinement
during cyclic triaxial loading, and the axial strain accumulates after liquefaction on a cycle-by-

cycle basis (Figure 2.6) with a strong dilation tendency and associated regain in shear stiffness.

2.5. Summary and Conclusions

Pressure-dependent models implemented with the characteristics of dilatancy, cyclic
mobility and associated shear deformation are presented, including PressureDependMultiYield02,
PressureDependMultiYield03, and LadeDuncanMultiYield materials. To allow for further
accuracy in capturing 3D shear response, the PressureDependMultiYield0O3 material employs the
Lade-Duncan failure criterion (LadeDuncanMultiYield material) as the yield function. Salient
features of the model performance are presented based on the calibration of laboratory undrained
triaxial cyclic test data for Ottawa F-65 sand, where the yield function provides a more accurate

representation of nonlinear shear response. Finally, in order to more closely capture the established
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guidelines concerning triggering of liquefaction (Idriss and Boulanger 2008), the
PressureDependMultiYield02 material (PressureDependMultiYield03 in Khosravifar et al. 2018)

and the LadeDuncanMultiYield material have been recently updated (Qiu et al. 2019).
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Table 2.1 LadeDuncanMultiYield model parameters (Khosravifar et al. 2018)

Sand Model Parameters Loose | Medium | Dense
(N1)eo 5 15 25
Relative density, Dr 35% 55 % 75 %
Reference mean effective pressure, p'r (kPa) 101 101 101
Mass density, p (t/m°) 1.94 1.99 2.03
Maximum shear strain at reference pressure, ymaxr 0.1 0.1 0.1
Shear modulus at reference pressure, Gr (MPa) 46.9 73.7 94.6
Stiffness dependence coefficient n, G = Gr(PP—,T n 0.5 0.5 0.5
Poisson’s ratio, V 0.33 0.33 0.33
Shear strength at zero confinement, ¢ (kPa) 2 2 2
Friction angle ¢, with resulting shear strength defined as p'sing 30° 35° 40°
Phase transformation angle, ¢et 30° 28° 35°
Contraction coefficient, c1 0.1 0.035 0.02
Contraction coefficient, ¢ 5.0 3.0 3.0
Contraction coefficient, c3 0.05 0.2 0.4
Dilation coefficient, d: 0.1 0.15 0.2
Dilation coefficient, d» 3.0 3.0 3.0
Dilation coefficient, ds 0.05 0.2 0.4
y1 1.0 1.0 1.0
y2 0.0 0.0 0.0
b1 2.0 1.0 0.6
Additional contraction parameters (calibration for Ko = 1) | b2 30 30 20
b3 0.0 0.0 0.05
bs | 0.001 0.001 0.001
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Figure 2.1 Pressure-dependent multi-surface plasticity model: (a) In deviatoric plane and
octahedral shear stress and strain; (b) In stress space (after Yang et al. 2003)
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(b)

(c)

Figure 2.2 Schematic of constitutive model response: (a) Octahedral stress-effective confinement
response; (b) Octahedral shear stress-strain response; (c) Configuration of yield domain (after
Yang et al. 2003)
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Figure 2.3 Calibration of PressureDependMultiYield03 material (after Khosravifar et al. 2018):
(a) Lateral earth pressure coefficient K, = 0.5; (b) Ko = 1.0
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strain; (b) In stress space (after Yang and Elgamal 2008)
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Figure 2.6 Computed and laboratory results of an undrained cyclic triaxial test on Ottawa F-65
sand (data from Kutter et al. 2018b): (a) Axial strain-deviator stress; (b) Mean effective stress-
deviator stress; (c) Axial strain; (d) Excess pore pressure
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Chapter 3. Three-Dimensional Modeling of Strain-Softening
Soil Response for Seismic-Loading Applications

3.1. Abstract

A three-dimensional (3D) incremental plasticity constitutive model is developed for
simulating the strain softening behavior of soil materials. The constitutive model extends an
existing multi-yield surface (MYS) plasticity formulation with a new strain softening logic.
Formulation of the model is presented, and calibration is undertaken to match an available data
set. Implementing the model into OpenSees, Finite Element (FE) simulations are conducted to
highlight the underlying response mechanisms. Strength and stiffness degradation due to the strain
softening mechanism is shown to play a substantial role in terms of accumulated deformation and
influence on the resulting ground accelerations. For that purpose, computed results with and
without the strain softening effect are compared and discussed. As such, incorporation of strain
softening is an important consideration for a wide range of scenarios involving sensitive clays,
cemented, over-consolidated, very dense, or frozen soils among others. Overall, the derived

insights are of significance for seismic loading in such soil formations.

3.2. Introduction

Strain softening behavior (Figure 3.1) exhibited by materials such as cemented soils, dense
sands, over-consolidated clays, frozen soils, structured clays, and sensitive clays (Lee and Seed
1967; Zhu and Carbee 1984; Burland 1990; Anagnostopoulos et al. 1991; Burland et al. 1996;
Terzaghi et al. 1996; Horpibulsuk et al. 2004; Abuhajar et al. 2010; Shelman et al. 2014; Gylland
et al. 2014; Yang et al. 2015; Zhang et al. 2017; Das 2019) might play an important role during
seismic excitation. For such soils, degradation of stiffness and strength with the increase in shear

strain may cause detrimental consequences such as slope failure and landslide hazard (Crawford
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1968; Geertsema and Torrance 2005; Bagheri and Naggar 2015). For instance, failures in sensitive
clays under static loading have been reported and discussed (Gregersen 1981; Longva et al. 2003;
Andersson et al. 2005; L’Heureux 2012; Solberg et al. 2016; Locat et al. 2017). Furthermore, a
number of large-scale landslides triggered by earthquake loading have been observed in sensitive
clay slopes (Seed and Wilson 1967; Kerr and Drew 1968; Keefer 1984; Lefebvre et al. 1992;
Rodriguez 1999; Brooks 2013; Perret et al. 2013; Demers et al. 2014). All these investigations
highlight the need for modeling the soil strain softening mechanism and its effect on overall
performance of the ground system.

To simulate the monotonic-loading strain softening behavior, a number of plasticity
constitutive models have been developed (Prevost and Hoeg 1975; Whittle and Kavvadas 1994;
Kasama et al. 2000; Kavvadas and Amorosi 2000; Liu and Carter 2002; Lee et al. 2004; Lai et al.
2009; Horpibulsuk et al. 2010; Suebsuk et al. 2011; Yao et al. 2012; Nguyen and Fatahi 2016; Park
and Kutter 2016; Loria et al. 2017; Fei and Yang 2019). Using such models, static Finite Element
(FE) analyses of slopes with strain softening soil deposits have been reported (Kvalstad et al. 2005;
Troncone 2005; Conte et al. 2010; Gylland and Jostad 2010; Kovacevic et al. 2007; Quinn et al.
2011, 2012; Locat et al. 2013; Mohammadi and Taiebat 2013; Troncone et al. 2014; Dey et al.
2015, 2016; Wang et al. 2016).

Currently, FE analyses for seismic response, with consideration of strain softening in the
ground are rather limited (Kourkoulis et al. 2010; Chen and Qiu 2014; Islam et al. 2018). Kaynia
(2012) and Kaynia and Saygili (2014) developed the one-dimensional (1D) dynamic slope stability
QUIVER code. Zhou et al. (2017) implemented an additional soil disturbance dependent
constitutive model into QUIVER and performed 1D seismic response analyses for mild infinite-

slope submarine sensitive clays. In the realm of 2D FE dynamic analysis, Taiebat et al. (2010)
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implemented the SANICLAY (Dafalias et al. 2006) constitutive model with a strain softening
formulation into FLAC and performed numerical simulations for a structured clay slope.

Calibration of the employed constitutive model in these studies was done based on the
generally scarce availability of post-peak strain softening cyclic loading data, particularly as
pertains to degradation of the soil stiffness (e.g., limited insights are discussed for a cemented soil
in works of Sharma and Fehey 2003a, b and 2004).

Following in the footsteps of the above pioneering efforts, full 3D modeling of seismic
response in strain softening strata remains as an area of interest. To address this concern, a 3D
plasticity constitutive model for simulating the seismic strain softening behavior in soils is
developed. This model extends an existing multi-yield surface (MYS) plasticity formulation
(Prevost 1977; Elgamal et al. 2008; Lu et al. 2011; Gu et al. 2009, 2013, 2015) with a newly
developed strain softening logic. For the purposes of this study, the strain softening model (SSM)
was calibrated based on laboratory sample test data for quick Tiller clay (Gylland et al. 2014). The
model’s salient response mechanism is illustrated first via 1D site response simulations. For that
purpose, behavior of the FE model with and without the strain softening effect is compared and
discussed. Thereafter, a 3D slope is systematically studied to highlight the influence of strain
softening on the underlying response mechanisms.

The following sections of this chapter present: 1) the strain softening constitutive model
formulation, 2) model calibration, 3) computational framework, 4) application examples and
computed response, and 5) insights derived from this study. Finally, a number of conclusions are

summarized and discussed.

33



3.3.  Constitutive Model Formulation

The constitutive model incorporates a new strain softening logic into an existing MYS
associative Jo-plasticity formulation (Prevost 1977; Elgamal et al. 2008; Lu et al. 2011; Gu et al.
2009, 2013, 2015). In the z-plane, it is of the Drucker-Prager type, and does not consider the Lode
angle effect. This section briefly describes the basic MYS model framework including yield
function and backbone curve. Further details and model implementation specifics are provided in
Gu et al. (2009, 2013, 2015).
3.3.1. Multi-Yield Surface Formulation

In the context of MYS J.-plasticity (Figure 3.2), yield surfaces are defined in deviatoric

stress space by:

1

; 1
£ = {E (t—a™): (- aﬂ"ﬂ)}2 — K™ =0,(m=1,2,3,..,NYS) (3-1)

where T denotes the deviatoric stress tensor, m denotes the yield surface number beginning from

1to NYS (the total number of yield surfaces), and a™ and K ™ represent the back-stress tensor
and the size of the m" yield surface, respectively. Nonlinear shear response before softening can
be described by a stress-strain backbone curve as shown in Figure 3.2b, represented by the
hyperbolic formula as:

Gy

T=— 3-2
1+v/w G2
where 7 and y denote the octahedral shear stress and shear strain, respectively, G is the low-strain

YmaxTmax

shear modulus, and y, is the reference shear strain computed as y, = , Where 7,4, IS

GYmax—Tmax

the shear strength that corresponds to the shear strain y;,,, (Figure 3.2b).
The stress-strain points used to describe the piecewise linear approximation of the

originally smooth backbone curve (Figure 3.2b) are defined such that their projections on the T
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axis are uniformly spaced:

Tm = Tmax(M/NYS)
(3-3)

-7 TmVr
VYm max - Ve — T

As such, the hyperbolic backbone curve [Equation (3-2)] is replaced by a piecewise linear

approximation as shown in Figure 3.2b. Each line segment represents the domain of a yield surface

{fn = 0} of size K™ = 3t,,/+/2 characterized by an elasto-plastic shear modulus:

gm = 2 (M) (3-4)
Ym+1 — Vm

In general, for the specification of yield surface characteristics (sizes and elasto-plastic moduli),
conventional shear modulus reduction curves (Seed 1970; Seed et al. 1986; Sun et al. 1988) may
be employed as well.

For model initialization, peak (octahedral) shear strength t,,,,, (Figure 3.2) can be defined
based on friction angle ¢ and cohesion c as a function of the initial static effective confinement p’

as:

2V 2si 2v2
Tax = \/_SL.TLQD p'+ \/_c (3-5)
3 —sing 3

G6r (@' /P'r)Ymax

As such, the stress-strain hyperbolic backbone relationship becomes t = Fe—

, Where p’,.

and G, are user-defined reference mean effective confining pressure and low-strain shear modulus,
and d denotes pressure-dependence coefficient (d = 0.5 in this study).

As described in more detail (Prevost 1977; Elgamal et al. 2008; Lu et al. 2011), an
associative flow rule is adopted to define the plastic strain direction. In addition, a purely kinematic
hardening rule is employed to conveniently generate the desired hysteretic cyclic response. In the

formulation, translation of the yield surface is governed by the consideration that no overlapping
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is allowed between yield surfaces (Prevost 1977; Elgamal et al. 2008; Lu et al. 2011; Gu et al.
2009, 2013, 2015). As such; i) the active surface location is updated according to the logic
described in Elgamal et al. (2003), and ii) all inner yield surface locations {f; = 0}, {f, = 0}, ...,
{fm-1 = 0} are updated such that {f; = 0} to {f,,, = 0} are tangent to each other at the current
stress point T as shown in Figure 3.2d. Accordingly, translation of all inner yield surfaces is
controlled by:

T, —a™ t,—a™b 7, —a® (3-6)

Km ~ T gm-n T T gm

3.3.2. Strain Softening Logic
A schematic of the strain softening logic (Qiu and Elgamal 2020a) is shown in Figure 3.3.

Post 74 4, the strain softening curve (octahedral shear stress-strain) is simply defined by:

Yiax + Vres
2 (3-7)
SY < Vres

aekY + by <y <

Yimax + Vres
2

ce k¥ 4 4,
where, k; and k, are non-negative input calibration parameters. As such, the constants a-d in
Equation (3-7) are calculated based on the user-defined peak (t/qx, ¥iax) and residual states (7,

Yres), and calibration constants (k; and k) as follows:

A A
A A k A k + 2
Tmax " Tres (Thhax+Tres)e1Ymax —2¢f, e 1(Vimax+¥res)/

2 [e le#Lax —ek1 (V#uzx‘H’TeS)/z] ! 2 [e kl)’#lax _ekl(}’#;,axﬂ’res)/z]

(3-8)

A A
A A k A k + 2
Tres—Tmax _ (Thhaxttres)e1Ymax -2t e 1(Ymax+vres)/

c = =
2 [e k2vres—ek2 (V‘#lax"'l’res)/z] ' 2 [e—kZYres —e~ k2 (Y#laxﬂ/res)/z]

In the above 1, is defined by an expression similar to Equation (3-5), in which a residual friction
angle gres and cohesion cres are used. On this basis, the parameters of Equations (3-2) and (3-5)

conveniently allow for modelling shear response as a function of confinement p’, based on

experimentation data sets when available.
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Figure 3.4 depicts the model response under monotonic loading for different sets of
calibration parameters k; and k,. For k; = k, = 0, the strain softening segment is linear. For
k.=k,, strain softening representative of thixotropic clay (Park and Kutter 2015, 2016) can be
simulated. For k; = 0 and k, > 0, sudden decrease of shear strength for quick clays or cemented
soils (Park and Kutter 2015, 2016) can be modeled.

As seen in Figure 3.3, the hyperbolic backbone curve before strain softening is O-A and
the initial shear modulus is G. If the current deviatoric stress reaches peak point A and the
octahedral shear strain is still increasing (until the residual point C in Figure 3.3 is reached): i) the
stress state and size of all yield surfaces is gradually and permanently reduced by the ratio (7/7,,,4x)
according to the logic of Equation (3-7), and ii) using Equation (3-6), location of the inner surfaces
« is updated to maintain the tangency condition of Equation (3-6). In addition, the backbone curve
[Equation (3-2)] is updated, where the attained instantaneous t in Equation (3-7) replaces 7,4«
(Figure 3.3b). In this regard, the low-strain shear modulus G can be re-defined to match
experimental observations when available. In this study, it is allowed to decrease by the
ratio(t/Tmqx )", Where parameter n is a non-negative constant. Due to the scarcity of post-peak
strain softening cyclic loading test data as relates to degradation of shear stiffness, this constant in
the presented computational simulations below was taken as n = 0.5 (conventional value for
pressure-dependent soil materials). As such: i) a new set of stress-strain points [Equation (3-3)] is
defined describing the piecewise linear approximation of the updated smooth backbone and the
elasto-plastic shear moduli are updated [Equation (3-4)]. Upon load reversal, the updated yield
surface sizes, low-strain shear modulus, and elasto-plastic moduli are systematically employed

(Figure 3.3).

37



3.4.  Model Calibration and Performance

The SSM was calibrated by laboratory monotonic triaxial test data for quick Tiller clay
(Gylland et al. 2014). The goal was to obtain a reasonable match of strain softening characteristics
for this soil. With the modeling parameters of Table 3.1, the computed response (Figure 3.5a)
reasonably follows the reported quick Tiller clay deviator stress-axial strain curve at the confining
pressure of 73 kPa (Gylland et al. 2014).

Representative cyclic loading simulations using the calibrated quick Tiller clay model are
shown in Figure 3.5b-e. Model response (confining pressure = 73 kPa) under strain-controlled
cyclic shear loading (Figure 3.5b), shows degradation of strength and stiffness, eventually reaching
the residual state (Figure 3.5c). Figure 3.5d and e display the model cyclic response (confining
pressure = 73 kPa) for a scenario representative of a stress-state in a ground slope. For illustration,
a biased strain-controlled cyclic strain history is applied (Figure 3.5d). Under this loading, the
model reproduces the shown (Figure 3.5€) cycle-by-cycle degradation of shear strength, eventually
reaching the residual state. Similar to the original MYS formulation (Prevost 1977; Elgamal et al.
2008; Lu et al. 2011; Gu et al. 2009, 2013, 2015), the SSM cyclic response may be seen (Figure
3.5b) to generate hysteresis damping of the Masing type (Masing 1926). In the softening range,
this damping is dictated systematically by the updated hyperbolic backbone curve characteristics
(Figure 3.3).

3.5.  Computational Framework

The Open System for Earthquake Engineering Simulation (OpenSees, McKenna 2011,
http://opensees.berkeley.edu) was employed to conduct the nonlinear seismic loading FE analyses
presented below. OpenSees is developed by the Pacific Earthquake Engineering Research (PEER)

Center and is widely used for simulation of structural and geotechnical systems under conditions
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of static and seismic loading (YYang 2000; Yang and Elgamal 2002; Lu et al. 2011).

In conducting the dynamic computations, the FE matrix equation is integrated in time using
a single-step implicit predictor multi-corrector scheme of the Newmark type (Chan 1988; Parra
1996) with integration parameters y = 0.6, £ = 0.3025 and a time step At of 0.01s. The equation is
solved using the modified Newton-Raphson method with Krylov subspace acceleration (Carlson
and Miller 1998; Mazzoni et al. 2009). Convergence for solving the nonlinear FE matrix equation
is based on a displacement increment norm of 10, Slight tangent stiffness-proportional viscous
damping (Priestley et al. 2005; Petrini et al. 2008; Jehel et al. 2014) was used (coefficient = 0.003)
to enhance the numerical system stability, with the main damping emanating from the soil
nonlinear shear stress-strain hysteresis response.

Finally, it is noted that the strain softening mechanism in continuum damage mechanics
can lead to mesh dependency, where the solution will highly depend on the finite element size. To
address this type of mesh dependency and the strain localization issue, the gradient method (a
regularization method) may be employed (Borst et al. 1995, 1996; Lasry and Belytschko 1988;
Chen et al. 2007). To maintain focus in elucidating the soil model response characteristics, the FE

studies below did not include any such regularization procedure.

3.6.  Site Response and Permanent Deformation

Before presenting a 3D seismic response scenario, a mildly inclined infinite slope (Figure
3.6) with the calibrated quick Tiller clay model (Table 3.1) is employed to illustrate the salient soil
strain-softening response characteristics. Representative shear behavior of the employed SSM is
shown in Figure 3.6b, along with that of the corresponding MYS model for reference. As such, a
1D free-field ground response model is represented by ten brick elements (Figure 3.6a) at a 4°

inclination, in order to provide a static driving shear stress due to gravity (Elgamal et al. 2009; Lu
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et al. 2019). The displacement degrees of freedom at any given depth are tied together both
horizontally and vertically (to reproduce the desired 1D site response representation).

A base motion with a relatively high peak acceleration was employed, so as to trigger strain
softening and induce significant accumulation of lateral ground deformation. For that purpose, this
motion (Figure 3.6c) was simply taken as that of the 1994 Northridge earthquake Rinaldi
Receiving Station record (Component S48W), scaled down to a peak amplitude of 0.4 g.

Figure 3.7 shows the computed shear stress-strain at the depths of 5 and 10 m, respectively.
Due to the large fling-motion pulse in the base input acceleration (Figure 3.6¢) and the static
driving shear stress (4° inclination), a significant level of accumulated permanent shear strain was
incurred. In this figure, the SSM response clearly shows the strain softening effect, with shear
stress reaching its residual value. As expected, the MYS response is noticeably different, with
overall lower levels of permanent shear strain.

Accordingly, the SSM accumulated permanent ground displacement is seen to be greater
(Figure 3.8a). This outcome is a consequence of the SSM reduction in soil strength and stiffness
(Figure 3.7), resulting in a more compliant soil system. The acceleration and corresponding
response spectrum are shown in Figure 3.8b and c, respectively. Significant differences are seen
in the SSM time history and its frequency content compared to those of the MYS model.
Specifically, during the softening phase: a) peak accelerations are markedly reduced in the
negative direction, during the phases of downslope displacement accumulation (analogous to the
classical Newmark 1965 sliding block response), and b) a corresponding marked decrease in peak
spectral values is evident. As such, incorporation of strain softening where applicable, may
significantly change the soil system response, in terms of acceleration at the ground surface, and

magnitude of accumulated permanent displacement.
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3.7. Three-Dimensional Ground Slope

Using the same soil properties (Table 3.1) and input ground motion (scaled down to a peak
amplitude of 0.3 g), a 3D model of sloping ground is studied in this section. For that purpose, the
FE mesh is configured to have a gradually varying slope inclination over a distance of 80 m (Figure
3.9), with the steepest being at 2H:1V (Horizontal: Vertical) at Z = 80 m and the mildest at 6H:1V
from Z = 0 to 20 m. In this configuration, seismic excitation is imparted solely in the longitudinal
X-direction. As such, the 3D FE model is 400 m long, and 80 m wide, with 10 m of overlying
sloping ground. Based on the above, the FE mesh for the 3D ground slope was generated
comprising 32,550 nodes, and 28,780 brick elements.

3.7.1. Boundary and Loading Conditions

The boundary and loading conditions are implemented in a staged fashion as follows
(Figure 3.9):

1) Gravity was applied first to activate an initial static state with: i) linear elastic properties,
ii) nodes along the left- and right-side mesh boundaries (X = 0 m and X = 400 m) fixed against
longitudinal translation, iii) to generate a periodic boundary (Law and Lam 2001), nodes along the
back and front longitudinal planes (Z = 0 m and Z = 80 m) fixed against transverse translation, and
iv) fixed nodes along the FE model base (Y =0 m).

2) Soil properties were switched from linear elastic to plastic (Table 3.1).

3) Dynamic analysis was conducted by applying the acceleration time history (Figure 3.6¢)
to the FE model base (Y = 0 m), scaled down to 0.3 g in peak value. During the shaking event, 2D
plane strain soil columns of large depth (not shown) are included (Su et al. 2017) along the left-
and right-side mesh boundaries (X = 0 m and X = 400 m). These columns have the same height

and material properties as the adjacent soil profile on each side. Relative to the Z-direction 80 m
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transverse dimension (Figure 3.9), the large depth conveniently enforces the desired free-field
ground response, at an adequate distance away from the sloping zone of interest (to minimize
boundary effects).

3.7.2. Deformation

The deformed FE mesh at end of shaking (colors depict the total accumulated 3D
displacement) is shown in Figure 3.10. Large permanent ground deformation occurs reaching a
peak of about 1.7 m near the steepest 2H:1V slope inclination (Figure 3.11a). Figure 3.12 and
Figure 3.13 provide a clearer picture of the accumulated longitudinal, transverse, and vertical
deformations. Arrows depicting the direction of 3D slope deformation are shown in Figure 3.11a.
Due to the geometric features of the slope with various inclinations, transverse displacement of
about 0.25 m is seen in Figure 3.11d. Peak slope settlements near the steepest section show
slumping by as much as 0.82 m (Figure 3.11c).

To further illustrate the involved salient 3D deformation pattern, Figure 3.13 depicts the
displacement profile along the slope top (from Z = 0 m to 80 m). For relatively mild inclinations
from 4H:1V to 6H:1V, the longitudinal displacement peaks at about 3 seconds (Figure 3.12a and
Figure 3.13), upon passage of the main shaking pulse (Figure 3.6c). Conversely, additional
longitudinal displacement continues to accumulate in the relatively steep zone between the
inclinations from 4H:1V to 2H:1V (Figure 3.12a and Figure 3.13).

For vertical displacement, a similar pattern (Figure 3.12b) was observed, and the maximum
value reached about 0.82 m near the steepest inclination 2H:1V (Figure 3.13). Due to the variation
of geometric configuration in this 3D slope, transverse displacement (Figure 3.12a and Figure
3.13) was also seen along the slope top, reaching a peak value of about 0.16 m in the zone near the

inclination 3H:1V.
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3.7.3. Three-Dimensional Shear Response

In accordance with the above 3D deformation pattern, Figure 3.14 depicts shear strain
contours at end of shaking along a number of XY cross-sectional slices. It can be seen that the
highest shear strains yxy occurred at the relatively steep inclinations from 4H: 1V to 2H:1V (Figure
3.14b). These large strains correspond to overall higher ground surface displacement at these
locations (Figure 3.9-Figure 3.11).

Related to the influence of longitudinal displacement on transverse deformation, Figure
3.15 depicts the shear strain yx; contours along a number of XZ cross-sectional slices. As seen in
this figure, peak yx., shear strain occurred within the slope, reaching a value of about 7.5 %.

Finally, the shear strain yy, in @ number of YZ cross-sectional slices is displayed in Figure
3.16. The peak shear strain occurs within the plane boundaries defined by X =200 m - 208 m, in
accordance with the deformation pattern of this 3D slope (Figure 3.9-Figure 3.11).

The coupled mechanisms of 3D shear response are further highlighted in Figure 3.17. The
dominant shear driven by longitudinal downslope deformation is seen to exceed its peak value at
around 3 seconds. Thereafter, softening ensues with residual stress approached and with large
accumulated strains (Figure 3.17a-c). Overall, it is seen that accumulation of shear strain occurs in
all direction throughout the strong shaking duration.

3.7.4. Acceleration

Figure 3.18 displays representative acceleration response time histories. At the slope top,
peak acceleration is amplified compared to that of the base input motion (0.3 g). In the longitudinal
direction, it may be seen that lower negative peak accelerations prevail at the steep 2H:1V location,
in accordance with occurrence of significant downslope deformations. In addition, it can be seen

that significant vertical and transverse response appear as a consequence of the imparted
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longitudinal excitation and resulting 3D slope deformations.

The variability in overall response is further illustrated by Figure 3.19, displaying the
spectral response in all three directions. In the vertical direction, the highest values appear at the
steep 2H:1V plane. Finally, transverse motion (Figure 3.19b) in the central section of the mesh
(away from the front and back symmetry planes) is generated as well, with the slope undergoing a
full 3D pattern of deformations.

3.7.5. Computed Response Using MYS model

To assess influence of strain softening effect, an additional numerical simulation of the
above 3D slope was conducted using the MYS model (Figure 3.6b). Figure 3.20a shows the
deformed mesh with a peak displacement of about 0.55 m near the steepest inclination 2H:1V.
Compared to the SSM scenario (Figure 3.21a), this accumulated MY'S permanent displacement is
significantly lower. Similarly, the MY'S shear strains are much reduced (Figure 3.22) compared to
their SSM counterpart (Figure 3.17). In accordance with the response pattern of Figure 3.8, Figure
3.21b displays the corresponding response spectra with SSM being significantly lower over a wide

frequency range.

3.8. Potential Application of SSM

In addition to post-peak stress softening, cyclic degradation exhibited by soils due to
mechanisms such as pore pressure generation for instance (ldriss et al. 1978; Vucetic and Dobry
1988; Vucetic 1988; Zergoun and Vaid 1994; Matasovi¢ and Vucetic 1995; Ishihara 1996;
Boulanger and Idriss 2006, 2007; Tsai et al. 2014) can be incorporated into the developed strain
softening plasticity constitutive model.

As such, degradation can be defined based on mechanisms such as accumulated energy

(Kokusho and Mimori 2015; Kokusho 2017), or accumulated plastic shear strain (Ishibashi et al.
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1985; Elgamal 1991). In this section, degradation of shear stiffness and strength is defined based
on the relatively simple mechanism described below. Other degradation logics (e.g., Elgamal
1991) may be implemented depending on the nature of the data at hand, and the intended scope of
application (e.g., earthquake response versus low-strain repetitive cyclic loading).

In this section, the SSM was calibrated to represent the Cloverdale clay laboratory
undrained test data (Figure 3.23) of Zergoun and Vaid (1994). For that purpose, the material
parameters undrained shear strength Sy (7max) = 56 KPa, Vimax = 10 %, and G = 28 MPa closely
match the monotonic undrained stress-strain behavior (Figure 3.23a). Degradation of shear
strength At is simply related to the accumulated shear strain y by the relationship At = a(y)? in
which a and b are non-negative input calibration constants. Furthermore, the low-strain shear
modulus and elasto-plastic moduli are decreased according to the factor e*”, where k is an
additional non-negative input calibration constant. On this basis, a, b, and k of 0.85, 0.2 and 3
respectively, provided a reasonable match to the reported data for the normalized cyclic stress
ratios of 7, /S, = 0.75 and 0.62 within the range of as many as 12 loading cycles (Figure 3.23b).
As such, both the computed and laboratory results show similar cycle-by-cycle degradation in
shear stiffness strength (Figure 3.23c and d), with potential application for an earthquake response

scenario.

3.9. Cyclic Softening Model

This section extends the above practical 3D plasticity model to simulate the cyclic
softening behavior of soil materials (Figure 3.24), as might emanate from pore-pressure build-up,
among other potential stiffness and strength degradation mechanisms (Elgamal 1991). The relation
which governs pore-pressure build-up based on experimental cyclic torsional strain-controlled

testing of Ottawa sand (Ishibashi et al. 1985) is given by:
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. (x/2) (3-9)
Y (c+k/2)

where 1, is pore-pressure ratio (0.0 <, <1.0), c is a model parameter (controlling the rate of pore
pressure build-up) to be specified by the user, and k is related to y in the following simple fashion:
K=V —Yen) (3-10)
k(@) =k +{ly(®) —vol = ven)
in which t is time step, y;, represents a threshold strain (0.00005 for Ottawa sand, Elgamal 1991)
below which no pore pressure is generated, y; denotes the octahedral shear strain when the last
stress (or strain) reversal took place and | | is the absolute value. Variable u(t) modifies the
curve-fitting constants as follows:
u(® = [1-r(0O1/[1 - r(t — D] (3-11)
For the hyperbolic relation:
G(t) = ufG(t—1) (3-12)
Tnax () = 12 Tpar (t — 1) (3-13)
in which, parameters k, and k, are employed to represent the degradation of shear strength and
stiffness, and the updated yield surface sizes and elasto-plastic moduli will be systematically
defined (Figure 3.3), in terms of the updated low-strain shear modulus G (t) and strength ,,,4, (t).
Representative cyclic loading simulations using this cyclic softening model are shown in
Figure 3.25. As seen in this figure, model response under strain-controlled and stress-controlled
cyclic shear loading (Figure 3.25a and b) clearly shows the degradation of strength and stiffness
with the increase of excess pore pressure ratio. Figure 3.25c¢ displays model response under a
biased strain-controlled cyclic shear loading. It can be seen that the model reproduces the shown

(Figure 3.25c¢) cycle-by-cycle degradation of shear strength and stiffness.
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3.10. Summary and Conclusions

A three-dimensional (3D) incremental plasticity constitutive model for simulating cyclic
strain softening behavior is developed. The constitutive model extends an existing multi-yield
surface plasticity (MYS) formulation with a newly developed strain softening logic. Using the
calibrated constitutive model, 1D and 3D Finite Element (FE) simulations are presented to
highlight the underlying response mechanisms.

The main remarks may be summarized as:

1. Strength and stiffness degradation due to the strain softening mechanism might play a
substantial role in terms of accumulated deformations and its effect on the resulting ground
acceleration and extent of permanent displacement.

2. Incorporation of strain softening where applicable, is an important consideration for a
wide range of ground scenarios involving sensitive clays, cemented, over-consolidated, very
dense, or frozen soils among others.

3. Additional experimental data sets are needed in order to further quantify degradation of
strength and stiffness due to cyclic loading (post-peak behavior). As such new data sets become

available, the gained insights may be introduced into the presented softening framework.
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Table 3.1 Calibrated SSM model parameters for quick Tiller clay (Gylland et al. 2014)

Model parameters Value
Reference pressure, p'r (kPa) 100.0
Mass density, p (tm?) 2.0
Low-strain shear modulus, G (MPa) 8.0
Poisson’s ratio, V 0.4
Cohesion, ¢ (kPa) 6.0
Octahedral shear strain at peak strength, ymax (%) 1.96
Residual cohesion, cres (kPa) 3.0
Residual octahedral shear strain, yres (%) 25.46
Friction angle, ¢ 28.0
Residual friction angle, ¢res 11.0
Calibration parameter, ki 0
Calibration parameter, ko 20
Stiffness reduction ratio, n 0.5
Number of yield surfaces (NYS) 40

48



120 ‘ ‘ 400 i v
—6— Confinement 500 kPa " —6—Confinement 400 kPa
100 P Confinement 300 kPa - = s P Confinement 200 kPa
© o 300 >
< 80 =<
0
n )
@ o
g 60 200 g By
2 ' § S T P, | S S
8 Z0) GO 2 $
(_,C) ....... (]>,) 100 "‘
¢ a "
204 i
of . \ . o \ \ \
0 10 20 30 40 0 5 10 15 20
Shear displacement (mm) Axial strain (%)
(a) (b)
800 w ' ‘ 5000
—6—Confinement 144.1 kPa == Unconfined compression
— S =P Confinement 71.7 kPa 4000 -
S 600+ J Ne ® Confinement 36.5 kPa i~
= d g o
X
@ 4 L, 3000 ¢
o ‘ ]
“t;)" 400 1 q‘_)
S % 2000 |
o ® } B
3 200 ¢ .5 "2
o g 1000 |
0¢ : : : 0 : :
0 5 10 15 20 0 5 10 15
Axial strain (%) Axial strain (%)
(c) (d)

Figure 3.1 Strain softening behavior: (a) Sensitive clay (data from Stark and Contreras 1998); (b)
Cemented clay (data from Horpibulsuk et al. 2004); (c) Dense sand (data from Wilson and Elgamal
2015); (d) Frozen soil (data from Shelman et al. 2014)
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Figure 3.2 The multi-yield surface plasticity model: (a) In deviatoric plane and octahedral shear
stress and strain; (b) In stress space; (d) Inner yield surface movements (after Elgamal et al. 2008;
Luetal. 2011)
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Figure 3.14 Shear strain jy: (a) Contour with FE mesh; (b) Slices were taken at Z = 0.0 m, 39.3
m, 49.0 m, 58.7 m and 80.0 m
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Figure 3.15 Shear strain x: (a) Contour with FE mesh; (b) Slices were taken at Y =22 m, 24 m,
26 mand 28 m
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Figure 3.16 Shear strain x.: (a) Contour with FE mesh; (b) Slices were taken at X =192 m, 196
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Figure 3.24 Schematic of cyclic softening logic

72



S0 ‘ ‘ ‘ ‘ 0.8
@ 25 06!
=
~
@
8 0 2 04rF
®
5
c 25¢ 0.2r
%)
-50 - ‘ ‘ ‘ ‘ 0 ‘ : ‘ :
-1 -0.5 0 0.5 1 0 2 4 6 8 10
Shear strain v (%) Time (s)
(a)
30 0.7
—~ 20 067
Q
0.5¢
< 10}
=
» 0.4r
g 0 [ Lj
7 0.31
g 10/ 02}
ey
» -20 + 0.1
-30 ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
-10 -5 0 5 10 0 2 4 6 8 10
Shear strain v (%) Time (s)
(b)
50 ‘ ‘ - ‘ 0.9
0.8 1
© 0.7}
o 25t
< 06
=
% 5 0.5F
s Or 0.4r
)
© 0.3}
.GC) O 2 L
D 251 '
011
Il 1 1 1 0 L 1 L 1
0 10 20 30 40 0 2 4 6 8 10
Shear strain ~ (%) Time (s)
(©)

Figure 3.25 Cyclic softening model response under cyclic loading: (a) Strain controlled; (b) Stress
controlled; (c) Biased accumulation of permanent shear strain

73



Chapter 4. Numerical Simulations of LEAP Centrifuge Tests
for Seismic Response of Liquefiable Sloping Ground

4.1. Abstract

This chapter presents numerical simulations of a liquefiable sloping ground related to
LEAP-UCD-2017 and LEAP-Asia-2019 (Liquefaction Experiments and Analysis Projects)
dynamic centrifuge model tests (Type-C phase) conducted by various institutions. The numerical
simulations are performed using a pressure-dependent constitutive model implemented with the
characteristics of dilatancy, cyclic mobility and associated shear deformation. The soil parameters
are determined based on a series of available stress-controlled cyclic triaxial and torsional shear
tests for matching the liquefaction strength curves of Ottawa F-65 sand with relative densities D,
= 65 % and 60 % in calibration phase of LEAP-UCD-2017 and LEAP-Asia-2019, respectively.
The computational framework for the dynamic response analysis is discussed and the computed
results are presented for the selected centrifuge experiments during Type-C phase. Measured time
histories (e.g., displacement, acceleration, and excess pore pressure ratio) of these experiments are
reasonably captured. Comparisons between the numerical simulations and measured results
showed that the pressure-dependent constitutive model as well as the overall employed
computational framework have the potential to predict the response of the liquefiable sloping
ground, and subsequently realistically evaluate the performance of an equivalent soil system

subjected to seismically-induced liquefaction.

4.2. Introduction

LEAP (Liquefaction Experiments and Analysis Projects) is an effort to facilitate validation
and verification of numerical procedures for liquefaction-induced lateral spreading analysis of a

liquefiable sloping ground (Manzari et al. 2014; Kutter et al. 2014, 2015, 2018a). In order to obtain
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a set of reliable centrifuge test data with high quality among different facilities, a centrifuge
experiment was repeated at 6 facilities in LEAP-GWU-2015 (Manzari et al. 2018; Kutter et al.
2018a), as one project within LEAP. In addition, the associated numerical simulations conducted
by several predictors (Armstrong 2018; Ghofrani and Arduino 2018; Ueda and lai 2018; Zeghal et
al. 2018; Ziotopoulou 2018) were compared with the measured response from the conducted
experiments.

As part of the ongoing LEAP, i.e., LEAP-UCD-2017 (El Ghoraiby et al. 2017, 2020; Kutter
et al. 2020a-d; Manzari et al. 2020a, b; Qiu and Elgamal 2020b, c) and LEAP-Asia-2019 (Ueda
2018; Qiu and Elgamal 2020b, c), a new set of dynamic centrifuge tests have been performed to
simulate the liquefaction induced lateral spreading phenomenon in a fully saturated sloping
ground. The test results of LEAP-UCD-2017 and LEAP-Asia-2019 are available in DesignSafe-
ClI (Kutter et al. 2018b; Ueda 2018).

On this basis, the results of numerical simulations for these dynamic centrifuge tests during
Type-C phase in LEAP-UCD-2017 and LEAP-Asia-2019 are presented in this chapter. All the
Finite Element (FE) simulations are performed using a pressure-dependent constitutive model
(Parra 1996; Yang 2000; Yang and Elgamal 2002; Elgamal et al. 2003; Yang et al. 2003;
Khosravifar et al. 2018) implemented with the characteristics of dilatancy, cyclic mobility and
associated shear deformation. The soil parameters in LEAP-UCD-2017 and LEAP-Asia-2019 are
determined based on a series of stress-controlled cyclic triaxial and torsional shear tests provided
in the calibration phase for matching the liquefaction strength curves of Ottawa F-65 sand with
relative densities D, = 65 % and 60 %, respectively. To better capture the overall dynamic response

of each selected centrifuge test in Type-C phase, two contraction parameters cs and cs controlling
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the rate of pore pressure build-up were adjusted based on observations from selected centrifuge
test results.

The following sections of this chapter outline: 1) computational framework, 2) specifics
and calibration processes, 3) details of the employed FE modeling techniques, and 4) computed
results of the selected centrifuge tests. Finally, a number of conclusions are presented and

discussed.

4.3. Brief Summary of the Centrifuge Tests in LEAP-UCD-2017 and LEAP-
Asia-2019

A schematic representation of the centrifuge tests (ElI Ghoraiby et al. 2020) is shown in
Figure 4.1. The soil specimen is a sloping layer of Ottawa F-65 sand with 5° slope (target relative
density D, = 65 % in LEAP-UCD-2017 and D, = 60 % in LEAP-Asia-2019). The soil layer has a
length of 20 meters (in prototype scale) and a height of 4 meters (in prototype scale) at the center.
The specimen is built in a container with rigid walls. Three arrays of accelerometers and pore
pressure transducers are placed in the central section and at 3.5 meters away from the side walls
on the upslope and downslope of the centrifuge model. In the vertical direction, the sensors are 0.5
meters apart. The sensors in the central section are required sensors and those of side arrays (away
from central section) are recommended for all centrifuge facilities. All centrifuge models were
subjected to a target motion of ramped, 1 Hz sine wave base motion with amplitude 0.15 g. Figure
4.2 shows the achieved motions for all selected centrifuge experiments with various relative
densities in LEAP-UCD-2017 (Kutter et al. 2018b) and LEAP-Asia-2019 (Ueda 2018),
respectively.
4.4. Finite Element Model

A two-dimensional FE mesh (Figure 4.3) is created to represent the centrifuge model,
comprising 4961 nodes and 4800 quadrilateral elements (maximum size = 0.2 m). All numerical
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simulations for the selected centrifuge experiments during Type-C phase of LEAP-UCD-2017 and
LEAP-Asia-2019 are performed using the computational platform OpenSees. The Open System

for Earthquake Engineering Simulation (OpenSees, McKenna 2011, http://opensees.berkeley.edu)

developed by the Pacific Earthquake Engineering Research (PEER) Center, is an open source,
object-oriented finite element platform. Currently, OpenSees is widely used for simulation of
structural and geotechnical systems (Yang 2000; Yang and Elgamal 2002) under static and seismic
loading.

Quadrilateral Four-node plane-strain elements with two-phase material following the u-p
(Chan 1988) formulation were employed for simulating saturated soil response, where u is the
displacement of the soil skeleton and p is the pore water pressure. Implementation of the u-p
element is based on the following assumptions: 1) small deformation and rotation; 2) solid and
fluid density remain constant in time and space; 3) porosity is locally homogeneous and constant
with time; 4) soil grains are incompressible; 5) solid and fluid phases are accelerated equally.
Hence, the soil layers represented by effective stress fully coupled u-p elements (quadUP in
OpensSees) are capable of accounting for soil deformations and the associated changes in pore
water pressure.
4.4.1. Soil Constitutive Model

The employed soil constitutive model (Parra 1996; Yang 2000; Yang and Elgamal 2002;
Elgamal et al. 2003; Yang et al. 2003; Khosravifar et al. 2018) was developed based on the multi-
surface-plasticity theory (Prevost 1978, 1985). In this employed soil constitutive model (Figure
4.4), the shear-strain backbone curve was represented by the hyperbolic relationship with the shear
strength based on simple shear (reached at an octahedral shear strain of 10 %). The low-strain

shear modulus under a reference effective confining pressure p’,. is computed using the equation
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G = Go(p'/p' )™ where p’ is effective confining pressure and G, is shear modulus at pressure p’,..
The dependency of shear modulus on confining pressure is taken as n = 0.5. The critical state
frictional constant Mg (failure surface) is related to the friction angle ¢ (Chen and Mizuno 1990)
and defined as Ms = 6sing/(3-sing). As such, the soil is simulated by the implemented OpenSees
material PressureDependMultiYield03 (Khosravifar et al. 2018). It is noted that
PressureDependMultiYield03 includes recent modifications to more closely capture the
established guidelines on liquefaction triggering (Idriss and Boulanger 2008). Brief descriptions
of this soil constitutive model are included below.
4.4.2. Yield Function

The yield function is defined as a conical surface in principal stress space (Prevost 1985;

Lacy 1986; Yang and Elgamal 2002):

O N O R L CRE T S
where, s = ¢’ — p’8, is the deviatoric stress tensor, o’ is the effective Cauchy stress tensor, & is
the second-order identity tensor, p’ is mean effective stress, p’, is a small positive constant (0.3
kPa in this chapter) such that the yield surface size remains finite at p’ = 0 for numerical
convenience and to avoid ambiguity in defining the yield surface normal to the yield surface apex,
a is a second-order deviatoric tensor defining the yield surface center in deviatoric stress subspace,

M defines the yield surface size, and “:” denotes doubly contracted tensor product.

4.4.3. Contractive Phase
Shear-induced contraction occurs inside the phase transformation (PT) surface (n < npr),

as well as outside (n > npr) when 1 < 0, where, n is the deviatoric stress ratio defined as
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%S:S/(p' +p’,) and npr is the deviatoric stress ratio at phase transformation surface (Figure

4.4b). The contraction flow rule is defined as:

P" = 1_2_ + _C3 Cs
= A=15m, )( €2e) C)" (Callry)

(4-2)

\/[(011 - 022)2 + (022 — 033)2 + (011 — 033)2]/2 + 7122 + T23% + 1432
(" +p',)

Nyy =

where ci1, C2, C3, C4 and cs are non-negative calibration constants, y, is octahedral shear strain
accumulated during previous dilation phases, p, is atmospheric pressure for normalization
purpose, and $ is the deviatoric stress rate. In Equation (4-2), n,,, is the shear stress ratio on load
reversal point during cyclic loading, essentially representing the effect of previous shear stress on
the subsequent contractive behavior. The nn and § tensors are used to account for general 3D
loading scenarios, where, 1 is the outer normal to a surface. The parameter cs is used to represent
the dependence of pore pressure buildup on initial confinement (i.e., K effect).
4.4.4. Dilative Phase

Dilation appears only due to shear loading outside the PT surface (n > npr with n > 0),

and is defined as:

" _ _h__ dy p_,—d3 4-3
P = (L= Dy 4 7a ™)) (4-3)

where di, d> and dz are non-negative calibration constants, and y, is the octahedral shear strain
accumulated from the beginning of a particular dilation cycle (such as, stage 1-2 or 5-6 in Figure
4.4b) as long as there is no significant load reversal. Subsequently, dilation rate increases as the

shear strain accumulates in a particular cycle. Furthermore, a significant unloading (such as stage
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6-8 in Figure 4.4b) will reset y, to zero. Parameter dsz in Equation (4-3), reflects the dependence
of pore pressure buildup on initial confinement (i.e., Ko effect).
4.4.5. Neutral Phase

When the stress state approaches the PT surface (n = npy) from below, a significant
amount of permanent shear strain may accumulate prior to dilation, with minimal changes in shear
stress and confinement (implying P" = 0). For simplicity, P" = 0 is maintained during this highly
yielded phase until a boundary defined in deviatoric strain space is reached, and then dilation
begins. This yield domain will enlarge or translate depending on load history. In deviatoric strain
space, the yield domain (Figure 4.4b) is a circle with the radius y defined as (Yang et al. 2003):

— )/S + )/TU
14 2

! ! t
P'max — P
Vs =y1(— 7 —°% f dy. (4-4)
0

max

P'max — P
Yrv=DY2 (M)O'ZS OCt(e - ep)
max

where, y1 (non-negative) is used to define the accumulated permanent shear strain y; as a function
of dilation history fot dy. and allow for continuing enlargement of the domain, p’,,,4, IS Maximum

mean effective confinement experienced during cyclic loading, p',, is mean effective confinement
at the beginning of current neutral phase, and () denotes MacCauley’s brackets (i.c., {(a) =
max (a, 0)). Figure 4.5a shows the effect of y1 on the evolution process of yield domain for an
undrained cyclic loading simulation. As seen in this figure, larger y1 will result in a higher level of
cycle-by-cycle shear strain accumulation. The y2 (non-negative) parameter is mainly used to define
the biased accumulation of permanent shear strain y,., as a function of load reversal history and

allows for translation of the yield domain during cyclic loading. Figure 4.5b investigates the effect
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of y2 on the translation of the yield domain on a cycle-by-cycle basis. It can be seen that the
scenario with a larger value of y> will cause