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Abstract

High-Performance Computing (HPC) platforms are required to solve the most
diverse large-scale scientific problems in various research areas, such as biology,
chemistry, physics, and health sciences. Researchers use a multitude of scientific
softwares, which have different requirements. These include input and output
operations, which directly impact performance due to the existing difference in
processing and data access speeds. Thus, supercomputers must efficiently handle
mixed workload when storing data from the applications. Understanding the set
of applications and their performance running in a supercomputer is paramount
to understanding the storage system’s usage, pinpointing possible bottlenecks,
and guiding optimization techniques. This research proposes a methodology and
visualization tool to evaluate a supercomputer’s data storage infrastructure’s
performance, taking into account the diverse workload and demands of the
system over a long period of operation. As a study case, we focus on the Santos
Dumont supercomputer, identifying inefficient usage, problematic performance
factors, and providing guidelines on how to tackle those issues.

Keywords: Lustre, Parallel File System, High-Performance Storage, I/O
Workload, I/O Characterization, Metadata

1. Introduction

Supercomputers, with hundreds to thousands of compute nodes, dominate
the High-Performance Computing (HPC) environments. These HPC systems
are used to solve the most diverse problems in various science domains: biology,
chemistry, physics, and health sciences. Researchers of different areas use a5

multitude of scientific software, which have different requirements. For instance,
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applications can be serial or parallel, and read/write different amounts of data
in various formats and sizes. This scenario leads to the supercomputers having
to handle mixed workloads.

The evolution of processing chips and high-speed networks allows supercom-10

puters to process larger datasets. Moreover, the infrastructure that stores these
datasets also has to provide high-performance access so that the applications
can perform their input and output (I/O) operations efficiently. For an HPC
environment, it’s not just the amount of floating-point operations per second
(FLOPs) that affects the performance but also how much data per second they15

can effectively read from and write to the storage system.
Parallel File Systems (PFS), a decentralized storage system in which dedicated

machines act as data servers that reduce the overhead of processing I/O requests,
are the de-facto file system type for HPC systems. Lustre [1] is one of the most
adopted PFS on HPC systems, representing ≈ 20% of the file systems used on20

IO500 list [2]. Although advances in data storage architectures provide a better
performance, for instance by using SSD devices, there is still a considerable
performance gap between how fast the system can handle I/O operations and
how fast it can process the data. This difference affects how supercomputers can
be used productively for new scientific discoveries. More research is being done25

with the rapid expanse of supercomputers while generating more data to be
read and written, making the shared data storage infrastructure one of the main
bottlenecks for achieving sustainable performance. The PFS is unable to keep
providing performance due to rising concurrency and interference [3, 4]. Aside
from the I/O operations, another key factor in the HPC storage management are30

the metadata operations, which are responsible for maintaining the file system
directory tree, file access permissions and ownership, timestamps, attributes, etc.
As the datasets gets bigger, the metadata performance becomes critical and can
quickly turn into a bottleneck [5].

Lawrence et al. [6] demonstrate that different scientific applications have their35

performance impacted in diverse ways by Lustre, with some using the resources
more efficiently than others. Some factors that impose limitations and negatively
impact performance of Lustre are misaligned access patterns [7], load imbalance
between storage servers [8], and resource contention [9]. Besides, we should also
consider that the existing I/O stack exposes a plethora of tunable parameters40

seeking to provide performance improvements to diverse workloads. However,
the misconfiguration of such parameters due to the users’ lack of knowledge
about its application’s I/O operations can add to the observed poor performance.
Furthermore, a poorly performing I/O application could also negatively impact
all others currently running in the system because storage is shared.45

Our research aims to understand the impact of data storage in a super-
computer by evaluating Lustre’s performance concerning the diverse I/O and
metadata workloads from different domains and their demands. We studied and
compared the behavior over two periods comprising three months of operation,
from March to May 2020 and 2021, when there was 16.50 PiB of data movement50

through 109.787 Bi I/O operations. We provide a methodology to visualize
performance factors, such as small request sizes, load imbalance, and resource
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contention. We use the Santos Dumont Supercomputer (SDumont) [10] as a
case study because little is known about the impact of its storage and I/O stack
configuration on the application set that runs daily in that production machine.55

We make the following contributions:

• We developed a methodology to collect, analyze, and visualize I/O data
from the PFS. We used open-source software that does not require admin-
istrative privileges, allowing it to be easily implemented and reproduced.

• We developed a web application to streamline the visualization and analysis60

of the PFS usage data. Such a tool makes it easier to reproduce the analysis
and study different periods of interest.

• We investigated the I/O workload and usage behavior from Lustre’s Object
Storage Targets (OST), and SDumont’s compute nodes. Our study shows
that the workload demand is not dominated by a single type of operation65

and can significantly vary across the period.

• We analyzed individual OST usage and demonstrated a significant load
imbalance across them during normal system operation.

• By crossing the I/O usage metrics from the compute nodes with information
from the job scheduling management system, we were able to identify70

problematic applications that could lead to overall performance degradation
at the PFS servers.

• The analysis and characterization of the metadata operations show that
there is a considerable demand, with the metadata accounting for 60% of
all file system operations.75

• All the data collected for this study and the toolset developed to analyze
and visualize the data are available at the Companion Repository ([11]).

The remainder of this paper is structured as follows. Section 2 contextualizes
this study and discusses related work. Section 3 presents Lustre’s architecture
and the infrastructure of SDumont, and in Section 4 our methodology. Results80

are discussed in Section 5. Section 6 summarizes the lessons learned and compares
our findings with other systems. Finally, concluding remarks and future work
are presented in Section 7.

2. Related Work

Efficient I/O performance is a critical part of modern supercomputing. Studies85

show a growing need for a better understanding of the storage infrastructure
and explaining the attained I/O performance by the applications. Huong et
al. [12] analyzed Darshan’s logs [13] from the execution of more than one million
jobs during 2014 on three leading HPC supercomputer platforms: Intrepid and
Mira at ALCF and Edison at NERSC. The authors observed that the aggregate90
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throughput for three-quarters of the applications never exceeds 1 GB/s, roughly
1% of the average peak platform bandwidth available.

Lockwood et al. [14] used system monitoring, benchmarking, and active
probing on the I/O storage infrastructure (Lustre File System and GPFS) of
two leadership-class HPC centers (NERSC and ALCF) over a year of production95

operation to identify the reasons for low performance and how to improve
performance. They investigated applications on multiple time scales, seeking to
identify trends in absolute performance and variability, the high CPU load on
the data servers, and contention for bandwidth. The results demonstrate that
variations occur in the I/O performance during regular operation and different100

execution periods. Wan et al. [15] follows a similar approach by designing a
lightweight parallel test harness to periodically collect I/O performance and job
status traces for applications running on production HPC systems. They seek to
model the transitions between different I/O performance states on production
HPC systems as a classification problem and harness that model to mitigate105

contention while improving data access.
Patel et al. [8] proposed a tool to analyze the log data of Lustre PFS obtained

with the Lustre Monitoring Tool (LMT) [16] in one year of operation (2018)
from the parallel storage system at NERSC HPC data center, shared by Edison
and Cori supercomputers. This study shows that the Lustre used is dominated110

by read operations, even with a Burst-Buffer system (in Cori).
Another approach was proposed by Sivalingam et al. [17], where the authors

used LASSi, a tool to analyze application usage and contention caused by
shared resources (file system or network) on the Lustre File System deployed at
ARCHER supercomputer. LASSi combines Lustre statistics and job information115

to calculate derived metrics, identifying a particular class of jobs that generated
excessive I/O load. The information gathered could be used to avoid slowdowns,
understand application I/O behavior in a shared file system, and guide the HPC
file systems’ expansions. Similarly, Wadhwa et al. [18] introduce an end-to-end
control plane, to optimize I/O resource allocation. They employ a user-level120

library to intercept file I/O calls and transparently provide runtime optimization
for the client application. They seek to provide an application-agnostic global
view of all resources to the MetaData Server.

Kunkel et al. [19] investigate and quantify the user-perceived slowdown on
the shared file system deployed at supercomputers. They introduce systematic125

I/O performance monitoring using probes to derive a slowdown factor. They
evaluate three European HPC systems: JASMIN at UK CEMS, ARCHER at UK
NSS, and Mistral at DKRZ. To assess the short-term interference, they execute
the IO-500’s standards benchmarks MDTest and IOR [20] on ARCHER. They
evaluated the long-term performance influence on up to 60 days of collected130

statistics. In both cases, the approach revealed interference in system utilization
but still lacked the server-side information to complement and aid in explaining
the performance on the server side.

Betke et al. [21] aims to identify anomalies or high workloads from jobs’
telemetric data through a workflow based on Machine Learning. The analysis135

is automated by splitting each job’s monitoring data into smaller portions and
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generating a footprint. A classification method is applied to the footprint
dataset to sort the applications with similar I/O behavior, isolating applications
with harmful I/O patterns for optimization. They used one week’s data from
DKRZ’s monitoring system at Mistral, which classified 33, 193 jobs on 8 I/O140

behavior classes. Even though a promising approach, it needs some tuning on
the automatic class labeling.

Those methodologies rely on the periodic execution of probes (usually I/O
benchmarks that run on the shared file system), application-level profiling
(Darshan), or tools that require administrative privileges. Moreover, profiling145

tools such as Darshan, commonly deployed and enabled by default in such
platforms, cover only a tiny percentage of running jobs [12, 22]. Since users can
unload this module, and until recently, it required applications to use MPI to
collect metrics, more than those metrics are needed to provide a full image of the
system. Our study proposes a broader methodology to provide a bigger picture150

of system I/O utilization, tracking inefficient behavior from the Storage Devices
to the Compute Nodes. We used open-source software that does not require
administrative privileges, allowing it to be easily implemented and reproduced.

The metadata performance on HPC storage systems is also gaining attention
in various works, exposing the need for improvements and better understanding.155

Chasapis et al. [23] evaluates the performance of Lustre’s metadata server (MDS).
The study concludes that Lustre’s metadata performance does not scale when
increasing the number of sockets and cores, with the MDS’s back-end device
not being the limiting factor, but rather, its software not being multi-core ready.
Zhao et al. [24] analyze and evaluate the performance of scientific applications160

on four representative file systems (S3FS, HDFS, Ceph, and FusionFS) on
three cloud platforms (Kodiak cluster, Amazon EC2, and FermiCloud). They
demonstrate that a distributed management approach brings orders of magnitude
improvements over the performance of centralized deployments, presenting almost
linear scalability (up to 512 nodes).165

Kunkel et al. [25] developed a new metadata benchmark called MDWorkbench,
capable of emulating many concurrent users, providing latency profile and
throughput. They used it to evaluate four parallel file systems (GPFS IBM
Spectrum Scale, Lustre, Cray’s Datawarp, and DDN IME) on five computing
platforms: Cooley at ACLF, Mistral at DKRZ, IME at Dusseldorf, Shaheen II170

at KAUST, and Cori at NERSC. The results show that capturing the contention
caused by metadata changes and identifying the relation between observed
throughput and latency was possible. To the best of our knowledge, our work
is the first to integrate I/O and metadata analysis in the same approach while
characterizing their needs on a petascale HPC system.175

3. Lustre Architecture and its Deployment on SDumont

In this section, we discuss the Lustre’s architecture and the motivation for
using the SDumont supercomputer.
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3.1. Lustre’s Architecture

Lustre PFS is an open-source client-server file system implemented entirely180

on the Linux Kernel, developed for high-performance environments. It provides
a POSIX compliant namespace and scalable I/O resources. Instead of using
traditional block-based storage, where the files are divided into equal-sized blocks
and the metadata management is coupled with the I/O management, Lustre
uses a distributed object-based storage, where a file can be divided into objects185

of different sizes that store the data and the metadata management is decoupled.
This approach entrusts the block storage management to dedicated backend
servers, which diminish problems associated with scalability and performance of
the traditional centralized file systems. There are two types of objects on Lustre:
(I) data objects containing byte arrays used to store file data, and (II) metadata190

objects containing key-value data used to implement the directory tree structure
and the file/directory attributes.

The key components of Lustre’s architecture are Metadata Servers (MDS),
Metadata Targets (MDT), Object Storage Servers (OSS), Object Storage Targets
(OST), Clients, and Lustre Network (LNET). The MDS are responsible for195

managing all metadata operations on the file system, such as deciding where a
data object will be stored, setting and retrieving file/directory attributes, and
exporting MDTs to the clients. The MDTs are the backend storage responsible
for holding the metadata objects. OSS handle the file I/O operations and export
one or more OSTs to the clients, while OSTs are responsible for storing the200

file data object. Clients combine the MDTs and OSTs in a single FS while
communicating the users’ requests to the MDSs or OSSs. The Lustre Network
(LNET) provides the communication infrastructure.

Lustre uses the data striping technique, which divides a file into data chunks
among selected OSTs. The size of the chunks is referred to as stripe size,205

and the number of OSTs by which the file will be split into is referred to as
stripe count. Striping can improve performance in file access as it makes
possible to aggregate multiple data servers’ bandwidth to access a single file
using parallel I/O operations.

3.2. The SDumont210

The Santos Dumont Supercomputer (SDumont) [10], a Bull/Atos machine
located at the National Laboratory for Scientific Computing (LNCC) [26] in
Brazil, is an example of an HPC environment with a significant heterogeneity
of research on several areas of knowledge, each with a specific set of scientific
software. The primary ones are Chemistry (21.3%), Physics (17.1%), Engineering215

(12.6%), and Biological Sciences (10,1%). SDumont is the Tier-0 of the National
High-Performance Computing System (SINAPAD) [27] and one of the largest in
Latin America. It currently has 133 research projects in progress, with a daily
average of ≈ 200 concurrent jobs. In operation since 2016, SDumont has a total
of 18, 424 CPU cores distributed across 758 compute nodes (CN).220

To store all the data, SDumont has a shared storage with Lustre PFS deployed
through the CRAY/HPE ClusterStor 9000 v3.3, composed of one MDS and

6



ten OSS. Each server has one target (MDT or OST) made out of 40 HDD in
RAID6 format. The total storage capacity of the deployed system is 1.7 PiB.
An Infiniband FDR (56 Gb/sec) fat-tree full-nonblocking network connects the225

storage servers and the client nodes. Lustre is mounted on the client nodes
with the default stripe count = 1 and stripe size = 1 MiB. According to
the ClusterStor 9000 technical specifications [28], the peak performance a Lustre
system with similar characteristics as the one implemented on SDumont should
achieve, without considering the effects of cache, is 45 GB/s. The aggregate230

network bandwidth to access the Lustre system is 70 GB/s, which should not
impose a bottleneck on the communication.

Bez et al. [29] investigated the performance difference between MPI implemen-
tations when issuing collective operations, focusing on two specific applications
on the SDumont supercomputer. The study includes an initial Lustre workload235

characterization, using monitoring data collected during a week of operation.
However, there was still no comprehensive data on Lustre’s behavior and its
usage on SDumont. Without a detailed analysis over a representative period, it
is challenging to assess if the Lustre delivers the required performance or limits
the scalability of applications.240

4. Analysis and Visualization Methodology

We propose a pipeline workflow to study the Lustre PFS utilization on
supercomputers. It is comprised of three steps, as depicted in Figure 1: (1)
Collect performance metrics from the nodes; (2) Pre-process the raw metric
data and store it in an easy-to-use format; and (3) Analyze the data.245

Data gathering
Gather the collectl metric files
from all nodes

Step 1

Pre-Processing
Parse raw files, storing in SQLite
database

Step 2

Analysis 

Data analysis, generating
visualization and reports with R

Step 3

SQLite OST/MDT 
CSTOR Database

SDumont 
Compute Nodes

ClusterStor 
9000

collectl

collectl

parser

parser

SQLite job usage 
 Database

SLURM  
Database

Administrative 
 Database

analyzer

Raw CSTOR  
OST/MDT

.gz

Raw Ccompute  
OST/MDT

.gz

SQLite OST/MDT 
Compute Database

Data Cross

Figure 1: Data collection and analysis workflow
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Table 1: Lustre I/O metrics

Metric Description

reads Number of read operations.
readkb Volume of data read (KiB).
readsize Block size of read operation (readkb/reads).
readqo [17] Quality of read operation ((reads ∗ 1024)/readkb).
writes Number of write operations.
writekb Volume of data written (KiB).
writesize Block size of write operation (writekb/writes).
writeqo [17] Quality of write operation ((writes ∗ 1024)/writekb).
CFbw [14] Bandwidth Coverage Factor of a job.
LI Load Imbalance.
SMA3HR Simple Moving Averages of three hours.

4.1. Data Gathering Step

We favored collectl [30], an open-source system performance monitoring tool
capable of collecting metrics from various subsystems, such as CPU, disk, inodes,
memory, and network. The advantages of collectl are that it is easily deployed
and configured, does not need administrative privileges to install or use, is250

capable of storing the collected metrics on a locally compressed file or sending
them over the network, and has a flexible API enables the development of custom
modules (plugins). collectl-lustre[31] is a special plugin to collect I/O metrics
and metadata counters exposed by Lustre’s kernel modules on servers and clients.
The default I/O metrics provided by the collectl-lustre plugin are the number255

of read and write operations and the volume of data transferred in KiB. In the
following steps, additional metrics are calculated, summarized at Table 1.

The Lustre’s metadata kernel module exposes counters common to the MDS
and Compute Node clients, and other counters exclusive to each. For this
reason, collectl-lustre retrieves information about fopen and fclose (file open260

and close requests), getattr and setattr (get and set file/dir attributes), and sync
(synchronizes data to the FS) counters on both the MDS and clients. Among the
counters exclusive to the MDS are unlink (file/directory removals) and statfs
(return FS statistics). The seek (change file pointer position) counter is available
only on clients.265

The collectl tool version 4.3.1, with collectl-lustre, was installed on all Cluster-
Stor Lustre nodes (MDS and OSSes), and the 758 Compute Nodes. We store the
metrics on a daily compressed file at the local /tmp FS to avoid interference with
Lustre. The overhead imposed by collectl on the monitored nodes was negligible
(< 0.1% of CPU). The collection of data in short time intervals creates signifi-270

cant demand for storage space and CPU resources during the Pre-Processing
and Analysis steps. For this reason, we collected the Lustre utilization metrics
every 15 seconds. Our initial evaluation considered 1s intervals. However, we
noticed that for a single node, collectl would generate a file of > 1MB per day.
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Considering the 756 nodes in the system, each day would require ≈ 760MB,275

which in a month would account for ≈ 21GB worth of metrics. In contrast, when
increasing the interval to 15s, we observed a monthly file of ≈ 1.5GB, a 14×
reduction. Despite losing a certain degree of precision (because collectl provides
an average value in that time interval), we found this choice still gave us a good
overall picture of the system’s utilization.280

4.2. Data Pre-Processing Step

The files generated by collectl are collected from each node daily for Pre-
Processing, which consists of parsing, cleaning, and inserting the data into
an SQLite[32] database. The choice to use the SQLite format for storing the
data was due to its mobility (the database is a single compact file, and any285

dataset stored in it can be easily transferred from one system to another), and it
comes pre-installed on most Linux distributions. Besides, it has APIs for various
data analysis tools and languages. We have two distinct datasets, one from the
data collected at the ClusterStor Nodes(Figures 2a and 2b) and one from the
SDumont Base Compute Nodes (Figures 2c and 2d).290

The data collected from the Compute Nodes alone does not provide enough
insight as to “who, how, and why” was using the Lustre file system. To con-
textualize the Lustre utilization, an intermediate Data Crossing process was
utilized, combining data from (1) Compute Nodes dataset; (2) SLURM 1 resource
manager, regarding the number of submitted jobs, application name, runtime,295

start and end time, the number of compute nodes, and the total number of cores;
and (3) an internal administrative database used by SDumont’s managers, which
provides information about the Science Domain of each research project using
the SDumont. By crossing the data from which nodes a job used, with which
domain the job belongs to, and the metrics from the Compute Nodes dataset,300

a new dataset composed of time-series data was generated, called Job Usage
(Figures 2e and 2f). Figure 2 depicts the structure of the datasets, where, aside
from the previously mentioned metrics, Timestamp is the moment the metrics
were collected, OST Name is the name of the Object Storage Target where the I/O
metrics were collected, Node Name is the name of the compute node that used305

the Lustre PFS (through the OSTs for I/O or through the MDT for metadata),
jobid is the identification number of the job that used the Lustre PFS through
the compute nodes, account is the name of the Linux group that submitted
the job, Science Domain is the name of the science domain belonging to the
account, and application is the name of the application used by the submitted310

job.
During this step, two complementary I/O metrics are generated during the

pre-processing step: (I) the average block (transfer) size in KiB and (II) the
Quality of Operation. QO, as proposed by Sivalingam et al. [17]. The latter is
based on the default 1 MiB stripe size of the Lustre file system on SDumont.315

Based on QO, the operation would make an optimal usage of Lustre when at

1https://slurm.schedmd.com/documentation.html
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(a) ClusterStor I/O (OST)

(b) ClusterStor Metadata (MDT)

(c) Compute Nodes I/O (OST)

(d) Compute Nodes Metadata (MDT)

(e) Job Usage I/O (OST)

(f) Job Usage Metadata (MDT)

Figure 2: Datasets Structure.

least 1 MiB is read or written. Hence, a value of “1” represents optimal usage,
and values in a higher order of magnitude represent poor quality.

4.3. Data Analysis Step

During this step, additional features are calculated: Bandwidth Coverage320

Factor (CFbw), Load Imbalance (LI), and Simple Moving Averages (SMA)
of each metric. The CFbw(1), as proposed by Loockwood et al. [14], represents
the fraction of the system bandwidth that can be attributed to the job and is
given by the amount of data transferred by the job divided by the amount of
data transferred to/from Lustre. For instance, a job with CFbw of 0.60 indicates325

that other competing jobs consumed 40% of the available resources.

CFbw(job) =
Nbytes(job)

Nbytes(Lustre)
(1)

The standard deviation (σ) measures the dispersion in a distribution of
values regarding its central tendency. Considering the OSTs’ load (amount of
data read/written at each timestamp), it is possible to use the σ to evaluate
how severe the load imbalance is. A σ of zero means that the load is evenly330

distributed. When the distribution presents a “high” σ, few OSTs handle more
data than others. In contrast, a “low” σ represents that the load is better
distributed. Since the σ is quantified as high or low regarding the mean (µ) load
observed on the OSTs at each timestamp, we define the LI = σ

µ metric as a
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Coefficient of Variation 2 to express better how severe the imbalance is. LI335

values below 0.5 can be considered low imbalance, values around 1 are moderate,
and values above are considered as a severe imbalance.

The SMA [33], a time series analysis technique commonly used in the financial
market, is an arithmetic mean of a variable within a certain time frame (tf ), and
that moves through a time series. For a metric m at timestamp t, the SMAtf340

of m is given by (2):

SMAtf (m) =
1

tf

t∑
i=t−tf

mi (2)

The financial market data have a high variation over time, similar to the
I/O usage on HPC. With the use of SMA, it is possible to identify a tendency
throughout the period. We have tested many time frame intervals and opted
to use 3 hours, which proved to be a reasonable length to reduce part of the345

“noise” from the high variability and amount of data while still providing a good
representation.

Reproducing this study’s analysis with a new dataset from SDumont or
another HPC platform can be daunting. To streamline the analysis process, we
developed a web application using Shiny [34]. The app consumes the datasets350

generated in Step 2 and produces the statistical and visual analysis for any
time frame of interest, facilitating the reproducibility of the results. A reduced
version of the app used in this study is publicly available at http://arcarneiro.
shinyapps.io/sdumont_lustre. The requirements to run a full version of the
app used in this study are a system with the Shiny Server, 100 GiB of storage,355

16 GiB RAM, and a quad-core 2.20 GHz processor.

5. Glancing at the Lustre Filesystem

We collected usage metrics from three months (March, April, and May)
of both 2020 and 2021 to study utilization of the Lustre PFS on SDumont,
and compare the findings between years. The analysis of the PFS was divided360

into two parts. First, we analyzed the whole period (three months) using the
ClusterStor dataset (Section 5.1). Second, we focused on a specific period of
interest using the Job Usage dataset (Section 5.2). In each one, we compare the
data from the two years to assess the evolution in the PFS utilization.

5.1. Overview of Lustre Usage365

In this section we provide an overview of the Lustre PFS utilization, analyzing
the operation data obtained during March, April, and May from the years 2020
and 2021. On Section 5.1.1 we focus on the I/O operations performed on
the system with data collected from the ClusterStor’s OSSs and OSTs. On
Section 5.1.2 we evaluate the Metadata operations with data from the MDS.370

2The Coefficient of Variation is a statistical measure of the dispersion of data points in a
data series around the mean.
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Figure 3: Data distribution for 3 months of 2020 (left) and 2021 (right).

5.1.1. I/O Data Analysis

We investigated the aggregated throughput of the storage system during the
aforementioned period. Figure 3 illustrates the results in GiB/m for 2020 (left
facet) and 2021 (right facet). Read (in red) and write (in blue) operations are
stacked together based on when the metric was collected. In the two years, there375

were scheduled maintenance on ClusterStor to recover failed nodes and update
the Lustre version. In 2020, the maintenance window was from April 13th to
April 17th, and in 2021, from March 8th to March 12th. During those periods,
the file system was inaccessible, resulting in no reported values.

Comparing both years it is possible to notice an increase in utilization. In380

terms of absolute values, in 2020, there was 1.8 PiB data read and 2.9 PiB
written, and the system received 64.154 Bi read requests, and 1.234 Bi write
requests. Comparing with 2021, the total volume of data read presented an
increase of 4.7× (7.95 PiB), and the data written increased 1.5× (4.1 PiB). The
number of read operations decreased 1.6× (39.102 Bi), and the write operations385

increased 4.3× (5.297 Bi). The increase in volume of data transferred to/from
the system is accompanied by an increase in the number of jobs submitted to
SDumont, where in 2020 there was 36, 884 jobs and in 2021 145, 793, representing
4× more jobs. The increase in read data volume but the decrease in operation
suggests that applications are reading larger chunks of data, which is beneficial390

to attain high performance. However, writes seem to go in the opposite direction,
with smaller request sizes which are proven to harm performance [35, 36].

During the whole period of the collected data, and considering the entire file
system (sum of all OSTs), the highest throughput peaks are attributed to write
operations on both years. The maximum achieved in 2020 was 1, 127 GiB/m (at395

2020-04-20 14:30:00) and in 2021 was 1, 145 GiB/m (2021-04-01 18:50:00), which
represents ≈ 41.74% and ≈ 42.41%, respectively, of the maximum bandwidth of
the ClusterStor3. The average write throughput in 2020 was 25.336 GiB/m and

3According to the technical specifications, the peak performance a ClusterStor system such
as the one installed on SDumont should achieve, without considering cache effects, is 45 GiB/s.
Since we aggregated the data by minute, we assume the peak is 2700 GiB/m (45 GiB/s×60 s).
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in 2021 as 34.452 GiB/m (1.3× increase). The read operations presented lower
values in 2020 but with a significant increase in 2021. The peak throughput in400

2020 316 GiB/m (at 2020-03-24 20:36:00) and in 2021 1, 077 GiB/m (at 2021-
03-20 18:50:00), accounting for ≈ 11.7% and ≈ 39.89%, respectively, of the max
bandwidth. The average read throughput in 2020 was 15.825 GiB/m and in 2021
was 66.953 GiB/m (4.2× increase). If we focus on the peak throughput registered
at each OST, the write occurred as a single event on all OSTs simultaneously,405

which is the peak throughput for the whole file system. On the other hand, the
readings presented the peaks on each OST spread out through period, with none
of the OSTs’ peaks coinciding. This behavior indicates that the applications
write data in a more coordinated manner than they read.

Table 2 depicts the distribution of the Size and Quality of Operations across410

the observed data of the two years, showing that in 2020 the writes use the
Lustre file system more efficiently, with 75% being below 2 QO, and by using
bigger request sizes. On the other hand, reads present a somewhat inefficient
use, with most of its operations being above 2 QO and using less than 512 KiB
for its request sizes. In 2021, the reads still were inefficient and presented smaller415

transfer sizes when compared to writes. Nonetheless, it is possible to notice
a considerable improvement when comparing the read operations from 2020
against the 2021 values. As an example, the median read transfer size went from
23 KiB to 816 KiB. This increase in the read operation size is why there was a
decrease in the number of reading operations but increased the amount of data420

transferred. The writing operations showed a slight decrease (lower quality and
smaller transfer sizes). Another important observation in Table 2 is that in 2021,
the performance gap between reading and writing operations narrowed. In 2020
the average write operation size was ≈ 3× bigger than the read size (1729 KiB
and 651 KiB respectively), while in 2021 the write size was only ≈ 1.4× bigger425

than the read (1488 KiB and 1018 KiB). This difference in request sizes explains
why we observed higher throughput on writing operations.

Table 2: Size (KiB) and Quality of Operations.

Year Operation Metric Min. 1st Q. Median 3rd Q. Max.

2020
Read

Size 4.00 6.60 23.80 577.00 4096.00
QO 0.25 1.77 43.00 155.00 256.00

Write
Size 0.01 530.00 1458.00 2947.00 4096.00
QO 0.25 0.35 0.70 1.93 525131.00

2021
Read

Size 4.00 271.00 816.00 1786.00 4096.00
QO 0.25 0.57 1.25 3.78 256.00

Write
Size 0.01 420.00 970.00 2149.00 4096.00
QO 0.25 0.48 1.10 2.44 104865.00

As for the workload characterization, we analyzed how much each type of
operation demands from the system. Overall, in 2020 the write workload domi-
nated the throughput, representing 61.75% of all data transferred. Nevertheless,430
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Figure 4: Workload distribution by week from 2020 (left) and 2021 (right)

considering the number of operations, the workload is primarily dominated by
read operations, representing 98.11% of the total amount. There were ≈ 52×
more read operations than writes. The data from 2020 presents a scenario
where Lustre received an enormous amount of inefficient reads. In 2021 the read
operations dominated both workloads, accounting for 66% of the throughput435

and 88% for the number of operations.
The left facet at Figure 4 depicts the workload distribution between reads and

writes grouped by week, starting on March 10th, 2020, and split by the number
of operations (top) and the volume of data transferred (bottom). Checkpoints do
not always dominate the I/O workload of HPC systems. Scientists are reading440

large volumes of data into HPC systems as part of their science [37, 38]. As new
applications from Big Data and Machine Learning enter the HPC system, the
ratio between read and write-bound workloads varies based on the application
set running on the platform. Overall, during the three-month observation
period, nine of the twelve weeks of data transferred are dominated by writes.445

Nonetheless, this trend is shifted towards read-intensive applications for three
weeks (W14, W16, and W17). Regarding the number of operations, the workload
was dominated by readings across all weeks, being fairly balanced on W12.
Figure 4 shows how the demand for I/O operations changes across the period
and how varied the workload is – while more read operations are occurring, more450

data are being written (especially in the last five weeks).
Unlike 2020, the right facet in Figure 4 denotes that in 2021 the volume of

data transferred was dominated by reads, with only four out of fourteen weeks
being dominated by writes. The number of read operations continues to dominate
most weeks, with the exception of weeks W10 and W11, which were dominated455
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Figure 5: SMA3HR of LI for the read (red) and write (blue) workload from 2020 (left) and
2021 (right). Values < 0.5 can be considered as low imbalance, values around 1 are moderate,
and those above represent severe imbalance. Missing values refer to maintenance periods.

by writing both in number of operations and in volume of data transferred. The
behavior of a greater number of read operations of small size still occur and can
be observed specially on weeks W15 and W17, where the readings dominated
the number of operations but the writings dominated the amount of data
transferred. That prompts system administrators, I/O library developers, and460

I/O specialists to tackle automatic selective optimizations for read-intensive and
write-intensive applications, taking into account the application’s I/O demands
and characteristics in future supercomputers’ I/O subsystem.

The analysis of the OSTs’ load distribution indicates that there’s a consider-
able imbalance. Figure 5 (left facet) shows that for 2020, both read and write465

operations follow similar trends regarding the load imbalance. Despite Cluster-
Stor presenting 0.6 LI for 50% of the time, there are some severe cases where
the overload represented up to 300% of the OSTs’ average load. An interesting
imbalance case happened on April 10th, where it is possible to observe a spike
in the writing load. Not only is the imbalance severe, but it also lasted for more470

than one day on certain occasions. The average for reading was 0.92 while for
writing was 0.80. The level of imbalance between read and write was similar,
with at least 25% of the time operating with LI above 1.

Lustre’s default load balancing is focused on OST’s available storage space,
where the MDS uses a round-robin approach to designate where to store the data475

objects. This approach does not consider the current I/O load on the OSSes and
allied with the default stripping policy on SDumont (stripe count = 1 and
stripe count = 1MiB), potentially leads to hot-spots and resource contention
that degrades performance. Hence, updating the default striping policy in the
machine could alleviate such imbalance by better distributing the load among480

the selected OSTs. Another more invasive approach that system administrators

15



00
01

02
03

04
05

06
07

08
09

20
20

−0
3−

09

20
20

−0
3−

13

20
20

−0
3−

17

20
20

−0
3−

21

20
20

−0
3−

25

20
20

−0
3−

29

20
20

−0
4−

02

20
20

−0
4−

06

20
20

−0
4−

10

20
20

−0
4−

14

20
20

−0
4−

18

20
20

−0
4−

22

20
20

−0
4−

26

20
20

−0
4−

30

20
20

−0
5−

04

20
20

−0
5−

08

20
20

−0
5−

12

20
20

−0
5−

16

20
20

−0
5−

20

20
20

−0
5−

24

20
20

−0
5−

28

20
20

−0
6−

01

20
20

−0
6−

05

05
101520

05
101520

05
101520

05
101520

05
101520

05
101520

05
101520

05
101520

05
101520

05
101520

Timestamp

3H
R

 S
M

A
 T

hr
ou

gh
pu

t (
G

iB
/m

)

Read Write

Figure 6: 2020 SMA3HR of read and write throughput by OST.

might take is to adopt a dynamic load balancer that automatically coordinates
the workload and data placement among I/O servers [9, 18].

Figure 6 depicts the SMA3HR (Equation 2) of read and write throughput
from 2020, broken down by OST. The spike in the imbalance on April 10th is485

due to OST 09 receiving a more significant write workload than the others. With
the SMA, we can observe the general trend, identifying where usage peaks occur
and periods when a specific OST receives more load than the others.

Figure 5 (right facet) depicts that the 2021 utilization data presented a
decrease in the imbalance, with the average LI for reading being 0.68 while for490

writing, it was 0.58. The reading was more unbalanced, with at least 25% of the
time operating with LI above 1. The increase in LI of the reads between March
28th and April 5th (also observed as an increase of read on Figure 3) is due to a
load concentration on three OSTs (01, 03, and 08)4.

5.1.2. Metadata Analysis495

This subsection presents the analysis of the metadata operations performed
on the Lustre PFS for the 2021 dataset. We were unable to collect some metrics
during 2020 due to a bug on the collectl-plugin MDS module that prevents
the collection of correct operation counters information exposed by the newer
versions of the Lustre MDS kernel module (2.10 and later).500

Table 3 summarizes the executions of each metadata operation during the

4Figure available at the Companion Repository [11].
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Table 3: Overview of metadata operations.

Operation Total Min ops/s Avg. ops/s Max. ops/s

fopen 28, 812, 381, 450 1 3,859 102,291
fclose 25, 369, 943, 340 1 3,398 102,132
getattr 6, 733, 374, 960 1 902 32,698
setattr 3, 451, 979, 850 1 462 8,406
unlink 593, 117, 055 1 87 2,357
getxattr 345, 187, 575 1 47 7,833
statfs 280, 998, 450 1 38 62
sync 125, 075, 625 1 76 1,618
mkdir 94, 034, 205 1 14 1,228
rmdir 41, 638, 320 1 34 1,041
setxattr 4, 354, 485 1 83 1,061
link 1, 649, 205 1 139 2,357

whole period. The most demanding operations are fopen, fclose, getattr, and
setattr. Considering all the metadata operations executed at the same times-
tamp, the mean ops/s was 8, 920, and the maximum registered was 205, 016 ops/s.
It seems that there is a tendency by the users to treat the Lustre PFS as a regular505

file system, e.g., HOMEDIR, where they usually execute plenty of commands that
return file and directory attributes (size and access mode). This behavior can
generate an unnecessary overload on the MDS because this operation is costly
(the MDS must query each OST to get information about the object’s size to
get the total file size). The setattr operation is associated with file creation, as510

we configure the default access mode. On the other hand, the manual change of
file attributes by the users (through chmod or chown commands) is uncommon.
Another behavior that stood out is the “low” number of file removals (unlink).
This indicates that many old unused files occupy valuable space on Lustre PFS.

Figure 7A depicts the load distribution between I/O and metadata operations.515

It is possible to notice that the metadata operations dominate most weeks, except
W12 and W13. This figure denotes how metadata-intensive the utilization of the
Lustre PFS on SDumont is, with weeks where the I/O operations reach only 5% of
the total load. The metadata was responsible for 60% of all file system operations,
with ≈ 67 Billion requests against ≈ 44 Billion I/O requests. In Figure 7B,520

it is possible to observe an approximate constant trend of fopen and fclose

operations across the whole period. On W10, however, there is an increase in
the getattr and setattr operations, also observed on W17, W18, and W19.
The system has a high demand for opening and closing files and retrieving a file
or directory attributes. Most of the time, there are more operations to open525

and close files than to read and write them, indicating that the system handles
many small files and the applications perform small throughput I/O (as shown
in Section 5.1.1). The metadata workload characterized on SDumont would not
be desirable on a scratch Lustre PFS designated for high throughput.
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Figure 7: 2021 metadata load distribution by week. (A) depicts the load of I/O operations
(purple) and metadata operations (yellow). (B) details the metadata operation type.

Metadata operations are becoming an increasingly hot development topic530

in high-performance storage and a genuine concern. It is possible to observe
this trend on the latest releases of the IO500 [39], where the most significant
growth in the max score is attributed to metadata while the I/O throughput
presents little to no increase over the years. Among the improvements that
boost metadata performance are the use of multiple servers [40], indexing535

mechanisms [41], and client-side pre-allocation [42]. There are features [43]
specific to improve Lustre’s metadata performance which system administrators
should asses, such as Distributed Namespace (DNE – use of multiple metadata
servers to distribute the load) and Data on Metadata (DoM – store small files
on the MDT, significantly reducing the number of requests and access to OSTs).540

None of those improvements are implemented on SDumont.

5.2. Detailed View of a Region of Interest

Section 5.1 presented an overall view of the Lustre PFS usage on SDumont,
which indicated that read operations seem to make inefficient use of the PFS,
and it has a high demand for metadata operations. To make a more in-depth545

analysis, we selected two periods, one from each year, to analyze with the Job
Usage dataset as we wanted to verify which applications contributed to specific
events. From 2020 we choose the period between March 24th and March 28th
because it comprises the peak throughput for the read operations (Figure 3 left),
and from 2021, between March 28th and April 1st because of the striking increase550

in read volume (Figure 3 right). Crossing the information from the compute
node dataset and SLURM’s job list is very resource-demanding, depending on
the date range. Nevertheless, this process can be executed on-demand on any
period to understand better how the Lustre FS behaved during a given event.
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5.2.1. Applications I/O Data Analysis555

In this subsection, we used the information collected at the compute nodes to
characterize the applications’ I/O utilization. During the selected period of 2020,
a total of 866 jobs have been executed on SDumont. With the SLURM’s informa-
tion, we were able to identify nine different applications: AMBER [44], BIE [45],
CASINO [46], DockThor [47], GROMACS [48], LAMMPS [49], NAMD [50],560

QUANTUM ESPRESSO [51], and SIESTA [52]. We could not identify some job’s
applications solely with the executable name provided by SLURM, and therefore
cataloged under three groups as Bash Scripts (executable name informed is bash
and the user’s job is executed directly through a script), OpenMPI mpiexec (ex-
ecutable name informed is orted and the application is started directly through565

mpiexec/mpirun, without using SLURM’s srun command), and unknown (when
the user compiles the application and the executable name informed is not present
on the database of known applications).
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Figure 8: Identified applications (2020), their Science Domains, and the number of jobs.

Figure 8 details the applications and which “Science Domain” used them. It
is interesting to notice that an application can be employed by different areas,570

such as GROMACS, used by projects in Chemistry, Physics, Biological Sciences,
and Health Sciences. This fact contributes to an application having different I/O
volumes, demands, and behaviors [29]. The Science Domain that used the largest
application set was Physics, with nine different applications, followed by Chem-
istry, with five. The five most executed applications were unknown (37.41%),575

DockThor (27.83%), QUANTUM ESPRESSO (9.93%), AMBER (7.39%), and
Bash Script (6.93%). For the 2021 dataset, we observed a total of 845 submitted
jobs and recorded eleven different applications (plus the three groups): AM-
BER, BIE, DockThor, GROMACS, LAMMPS, LHCB DIRAC [53], ORCA [54],
Python [55], QUANTUM ESPRESSO, SIESTA, and VASP [56]. The Science580
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Domain that used the largest application set was Physics and Chemistry, which
used seven different applications each. The five most executed applications on
2021 were: DockThor (36.21%), unknown (17.75%), QUANTUM ESPRESSO
(10.06%), LHCB DIRAC (8.88%), and AMBER (7.57%).

There are different types of optimizations that can be employed on the storage585

system to improve performance. I/O optimizations can be applied to applications
at each layer of the stack [57], and automatic dynamic scheduler [58, 59] can
schedule applications with same I/O patterns to alleviate congestion. One thing
in common that these optimizations techniques need is the I/O access patterns
characteristics of each application. The same application can have different I/O590

behavior [29] depending upon which science domain used it. In that way, having
the information about the science domain that used the application together
with the access pattern might help I/O libraries, schedulers and other techniques
to obtain a better picture and comprehension when applying the optimizations.

Aside from the maximum throughput achieved for reads in 2020 (presented595

in Section 5.1), the peak for writes on this specific period was 370 GiB/m (at
2020-03-27). Table 4 describes the peak achieved by an individual application for
reading and writing. It is important to notice that: (I) only one job (application)
was responsible for ≈ 91.87% read throughput and ≈ 95.43% for the write
throughput in the 2020 period, (II) both with high CFbw, (III) there was a600

decrease in the throughput of individual application from 2020 to 2021 but with
an increase in the bandwidth utilization by a greater number of applications
(decrease in the CFbw value). QUANTUM ESPRESSO can be categorized as a
traditional HPC Scientific Application, highly parallelized and optimized [60].

Figure 9 depicts how the bandwidth of the whole Lustre file system was used,605

where the maximum (red), minimum (blue), and average (black) CFbw of the
jobs, at each timestamp, throughout the specific 2020 period is plotted. This
behavior indicates that a few applications with high I/O throughput consume
the bandwidth since the average value is closer to the minimum.

Table 4: Individual application’s throughput.

Year Application Operation GiB/m CFbw

2020
QUANTUM ESPRESSO Read 290 0.84
QUANTUM ESPRESSO Write 353 0.94

2021
unknown Read 153 0.70
QUANTUM ESPRESSO Write 90 0.31

As depicted by Figure 10, in 2021 a few jobs also dominated the bandwidth.610

We observed high-bandwidth jobs starting at May 31st, with the decrease in the
Max. CFbw and a slight increase in the average values.

Figure 11 presents the overall distribution for the 2020 period of the Trans-
fer Size and QO metrics. We analyzed the distribution of each application’s
Quality of Operations and the majority of them presented inefficient reads, with615

readqo above 1 for most of the time. In 2020, the most notably read-inefficient
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Figure 9: 2020 CFbw of the jobs. The dots in red, black, and blue represent the max., avg.,
and min., respectively, of all jobs, observed on each timestamp.
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Figure 10: CFbw (min, max, and average) of the jobs in 2021.

applications were DockThor, BIE, and Bash Script. Only the OpenMPI mpiexec
category presented readqo under 1 for 75% of its execution, meaning that it
read blocks of data closer to the Lustre’s stripe size. Regarding each Science
Domain, Biodiversity and Materials Science presented the best behavior, using620

larger sizes for the operations with a good QO index.
As for the transfer sizes, most applications seldom use sizes larger than 1 MiB.

Most issue 100 KiB or smaller at least 75% of the time. We did not observe
transfer sizes above 4 MiB, which is due to Lustre’s default maximum bulk I/O
RPC size [61] from a client to the OST, even though applications might be625

issuing bigger operations. Requests bigger than 4 MiB need to be broken down
by two or more RPCs. This parameter can be tuned up to 16 MiB on current
Lustre version (2.1X), allowing fewer RPCs to transfer the same amount of data
between clients and servers. Applications that used bigger size operations were
SIESTA, QUANTUM ESPRESSO, CASINO, and AMBER, with at least 50%630

of the time above 1 MiB. The application category that presented the largest
writing sizes was the OpenMPI mpiexec, using above 2 MiB during 75% of its
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Figure 11: 2020 Distribution of the Quality of Operation (left) and Transfer Size (right).

execution. The applications with the most notably smallest sizes were LAMMPS,
DockThor, and Bash Script, with 75% of their operations under 40 KiB.

The distribution of the quality of operation and transfer size of applications635

observed during the 2021 window presented a similar behavior as in 2020, and
for that reason we are omitting the figure (but it is available at [11]). The most
notably read-inefficient were Bash Script and BIE. The ones that presented
the most efficient operations were GROMACS, OpenMPI mpiexec, and Python.
Applications started through OpenMPI mpiexec presented the highest sizes for640

both reads (50% above 1 MiB) and writes (75% above 1 MiB). We were unable to
identify those applications based only on the SLURM information, hence, there
could be a broad mix of applications in this group, as occurs with the unknown
group. The write transfer size was bigger than the read for most applications.
Those that used the biggest write sizes were OpenMPI mpiexec, ORCA, and645

SIESTA, with 1.5 MiB or above for at least 50% of their execution time.
Most applications’ workload in 2020 is dominated by write operations, both

regarding the number of operations and volume of data transferred. Once again,
only the OpenMPI mpiexec category presents read dominance (above 80% on
the number of operations and data volume). Two applications presented inverse650

workload demands: (I) CASINO, with the number of operations dominated
by reads and the data transferred dominated by writes (indicating its writing
operations are bigger than readings) ; and (II) BIE, with writes dominating the
number of operations, and reads the data transferred (indicating its reading
operations are bigger than writings). Regarding the workload of each Science655

Domain, five presented dominance for the number of readings, with the most
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notable being Biodiversity (90%) and Health Sciences (76%). Considering the
amount of data transferred, only Biodiversity had its workload dominated by
reading (55%). The most write-demanding Domains are Geosciences, Biological
Sciences and Climate and Weather in both the number of operations and volume660

of data. Two interesting cases are Astronomy and Health Sciences, where
reads dominate the number of operations, but the volume of data transferred is
dominated by writes, indicating that the workflow of these two Science Domains
utilize many small read operations and few larger write operations.

The 2021 period presented an increase in the number of read-intensive665

applications, where from the fourteen identified applications, four are dominated
by reads (BIE, OpenMPI mpiexec, Python, and unknown) on both number of
operations and volume of data transferred. ORCA presented a read-intensive
workload regarding the number of operations but wrote more data than read,
with a significant difference in the transfer sizes for each operation – while 75%670

of reading operations has transfer size below 45 KiB, writings presented transfer
sizes above 1 MiB for 75% of the time. Bash Script presented a read-intensive
data transfer but issued more write operations, indicating many small writes
(75% of the time below 2 KiB). The other applications are write-intensive.

Looking at the five most data-intensive applications from 2021, the unknown675

group (the second most executed) have the highest average amount of data read
per job (5, 394 GiB – but writes only 23 GiB per job), being responsible for the
expressive increase in the reading activities observed in Figure 3b. BIE come as
the 2nd application, which on average read 793 GiB and write 60 GiB data per
job. The succeeding applications were OpenMPI mpiexec (95 GiB and 42 GiB),680

AMBER (3 GiB and 44 GiB, and QUANTUM ESPRESSO (2 GiB and 22 GiB).
Interestingly, none presented an even write/read workload.

Finally, we evaluate the level of I/O parallelism performed by each application
using the data collected at Compute Node at each timestamp. We analyze it in
two facets: (1) how many OSTs were used and (2) how many Compute Nodes685

performed I/O operations. In 2020, the average of simultaneous OST used
by each application is ≈ 3.24, which is below half the available OSTs (10 in
total). During 75% of the time, only up to four OSTs are used simultaneously
by the applications. The average simultaneous Compute Nodes used during I/O
activities was ≈ 1.64 and 75% of the cases used only up to two nodes, which is690

considerably lower than the OSTs used. This difference in proportions indicates
that most of the time, the applications use few Compute Nodes to perform I/O
on a greater number of OSTs. In fact, we observed cases where the application
used only one Compute Node to write on all ten OSTs.

The level of parallelism in 2021 follows a similar trend as the one observed in695

2020, with the average of simultaneous OST used being 3.6 while the average
for computational nodes used for I/O operations was 1.65. The analysis of the
utilization divided by the type of operation reveals that, on average, the jobs
use ≈ 4 OSTs for concurrent reads. Writing operations showed slightly lower
values, with the average of 3.3 simultaneous OSTs. In general, applications use700

fewer simultaneous nodes for the I/O operations than available OSTs, with only
five applications using more than five compute nodes at the same time.
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Through the analysis of how the applications used the Lustre PFS on SDu-
mont, we were able to identify that most of them perform small I/O requests,
especially for the reads, resulting in inefficient utilization. The high rate of small705

requests signals that most applications do not use specialized I/O libraries (e.g.,
HDF5 [62] and MPI-IO [63]) that have optimizations capable of aggregating and
reorganizing data access patterns to read or write large contiguous chunks that
potentially match the layout in the storage servers. As the Coverage Factor of the
Bandwidth (Figures 9 and 10) shows, few applications issuing high throughput710

operations use most of the aggregate bandwidth provided by the storage system,
leaving plenty of available resources. On the other hand, there is considerable
demand for low latency performance to respond to the many small transfer size
operations. We believe that an I/O Forwarding [64] or Burst Buffer [65] layer
would significantly benefit SDumont in handling these low-latency small requests.715

The System Administrators can opt to direct efforts to improve the I/O perfor-
mance of the most demanding applications or implement frameworks [57, 58, 59]
that auto-tune and optimize I/O for a more extensive set of applications.

5.2.2. Applications Metadata Analysis

In this subsection, we used the information collected at the compute nodes720

to characterize the applications’ metadata utilization for the periods defined in
Section 5.2. Figure 12A illustrates the load ratio between I/O and metadata
operations recorded by each application’s jobs executed in the 2020 window.
From the twelve identified applications, only CASINO presents a metadata-
intensive behavior (more metadata than I/O). AMBER also makes heavy usage725

of metadata. The one with the lowest metadata usage are GROMACS, LAMMPS,
and the OpenMPI mpiexec category. It is possible to notice that the usual load
of metadata operations is between 10% and 25%.

Figure 12B depicts the types of metadata operations used by the applications.
It is possible to observe that the seek operation dominates most of the appli-730

cations (AMBER, Bash Scripts, CASINO, NAMD, QUANTUM ESPRESSO,
SIESTA, and unknown), indicating a great number of random file access. Two
applications (BIE and OpenMPI mpiexec) present a high load of fopen and
fclose operations, indicating the use of many files during its workflow. Three
applications (DockThor, GROMACS, and LAMMPS ) presented a high load of735

the getattr, operations that retrieve file information from the MDS and should
be avoided as much as possible due to increase in the overload of the MDS.
The setattr operation is hardly used by the applications. These observations
highlight the heterogeneous I/O workloads that a shared PFS has to handle
efficiently. However, the plethora of available tunable parameters makes it hard740

for end-users to understand when and how they should tune it to avoid bottle-
necks. Furthermore, due to its shared nature, poorly tuned applications could
harm performance to themselves and other concurrent jobs. Future HPC storage
systems should automatically isolate those or provide working mechanisms to
tune the FS based on the observed I/O workloads.745

Regarding the Science Domain, only Materials Science and Astronomy are
metadata-intensive, with their load reaching 55% and 49%, respectively. Health
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Figure 12: 2020 applications’ metadata load distribution. (A) presents the load division
between I/O (purple) and metadata operations (yellow). (B) presents the division among each
metadata operation type. The x-axis is the application’s name and y-axis is the load (%)

Science makes minor use of metadata operations, presenting the lowest workload.
The other domains present a metadata workload between 10% and 25%.

We omit the metadata load distribution plot from the 2021 data because most750

applications identified on the 2021 period appear on 2020 and the characterization
was similar (the plot is available at the companion repository [11]). For the
applications identified on the 2021 period and not present in Figure 12, only
Python and LHCB DIRAC present a metadata-intensive behavior, with a load
of respectively 95% and 65%. ORCA and VASP are I/O intensive, with their755

metadata load reaching only 5%. Regarding the metadata operations most used
by each application, LHCB DIRAC is dominated by seek and getattr, ORCA
presents a high load of file open and close, Python is dominated by getattr

executions, and VASP presents a high load of seek.

6. Discussion760

In this section, we discuss the lessons learned and compare how the Lustre
PFS deployment on SDumont against the storage system of other HPC platforms.

I/O Workload. The I/O workload on HPC systems is not dominated by a
single type of operation, as some studies imply. While Kim et al. [66] presented
only a marginal difference between the read (42.2%) and write (57.8%) workload,765

the system analyzed by Gunasekaran et al. [67] shows a write dominance by 75%.
In contrast, Patel et al. [8], observed that the read constantly dominates the
workload. The data transfer volume observed on SDumont presented a certain
seasonality (Figure 4). On the 2020 period the read operations dominated part
of the first half, with writings dominating the last period. But in terms of the770

number of requests, the workload is massively dominated by reads. In general
terms, the total data written was ≈ 1.6× the data read, but the system received
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≈ 52× more read requests than writes. This indicates that more data is written
using large request sizes. Our finding helps designing future storage system
acquisition for HPC systems that have this type of heterogeneous environment.775

Operation Size. The system studied by Kim et al. [66] presents most request
sizes that are either less than 16 KiB or between 512 KiB and 1 MiB. Gunasekaran
et al. [67] concluded that 60% of write requests are 4 KiB or less, and over
50% of reads were at least 1 MiB. The request sizes on SDumont presents an
inverted proportion, with reads being small (50% below 23 KiB) while writes780

are larger (50% reaching ≈ 1.5 MiB). The write operation size on SDumont was
≈ 3× larger than the read requests. This difference in operation size confirms
that there are far more small reads than writes. On the quality of operations,
the reads are notably worse than writes. This information helps optimize block
devices since the PFS throughput is highly dependant on the request size.785

Bandwidth Usage. SDumont presented low bandwidth usage if compared with
other systems. Kim et al. [66] observed that the peak read throughput reached
75% of the maximum bandwidth, while the writes reached 54%. The system
analyzed by Gunasekaran et al. [67] presented up to 80% of the bandwidth for
reads and 70% for writes. The peak of writes on SDumont reached 41.74% of790

the maximum bandwidth, while the reads reached only 11.7%. Aside from being
lower, we see an inverted behavior. This low performance of the read operations
is associated with the fact that the their sizes is far smaller than the writes.

Load Imbalance. This is a problem that still has not been fully addressed in
large-scale platforms. As shown with our results (Figure 5), the load imbalanced795

on SDumont can be as severe as a single OST receiving 100% of the load.
Previous works ([66, 8]) reported similar problems. High load imbalance results
in low throughput and under-utilization. System administrators might consider
adopting a dynamic load balancer that automatically coordinates the workload
and data placement among I/O servers to ease this problem.800

Low I/O Parallelism. HPC applications still do not take full advantage of
a PFS or of high-level I/O libraries and middleware that has the potential to
improve I/O performance. On SDumont 75% of the observed jobs used only up
to 4 of the 10 available OSTs. This is another indication of why the bandwidth
usage is low. Application developers should consider high-level I/O libraries to805

leverage the data access parallelism and end-users should be instructed on how
to tune the file system’s stripping parameters for efficient usage.

7. Conclusion

This paper evaluated the storage of SDumont supercomputing which houses
research from different Science Domains. We collected metrics and analyzed810

the machine’s I/O behavior for three months from two years. Our proposed
methodology provides insights to understand Lustre’s usage. We were able to
identify critical aspects that negatively impact the performance on SDumont:
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• Inefficient read operations : There’s a high count of operations using small
transfer sizes, which often translate into poor performance. Furthermore,815

it shows that applications are not taking full advantage of high-level I/O
libraries and middleware to aggregate small requests into larger ones.

• Imbalance among resources: With the individual OST usage view was
possible to assess how the load is distributed, denoting some severe and
lasting cases where the overload corresponds to 3× the average OSTs’ load.820

• Problematic applications: We were able to identify problematic behaviors,
such as BIE, which exhibits the worst readqo and have the data transfer
workload dominated by reading operations.

• Demand for metadata operations: The metadata analysis shows a consid-
erable demand for this type of operation on SDumont, with it accounting825

for 60% of all file system operations. This scenario raises a warning for
the system administrators to quickly take some action about it.

Identifying these aspects guides the administration of SDumont to focus
the efforts to help improve the system’s performance and usability. They can
evaluate the adoption of an I/O forwarding layer or other transparent middleware830

solution to aggregate the small-sized operations and relieve the high read demand;
revise the default striping policy; implement an automatic load balancer to
smooth storage server imbalance; assess Lustre’s internal metadata improvements;
evaluate the implementation of a framework to auto-tune the I/O stack; and
contact the demanding projects to address special requirements.835

As future work, we plan to improve the application identification, especially
in those large detected groups. This better identification would also help provide
additional information for frameworks oriented for I/O optimizations guided for
specific applications. We also plan to improve the scalability and performance of
our analysis tools. All data, source codes, and analysis conducted in this paper840

are available at the Companion Repository ([11]).
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[60] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni,
S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru,
S. Baroni, Quantum espresso toward the exascale, The Journal of Chemical Physics1045

152 (15) (2020) 154105. doi:10.1063/5.0005082.
URL https://doi.org/10.1063/5.0005082

[61] Oracle, I. Corporation, Lustre Software Release 2.x (2017).
URL https://doc.lustre.org/lustre_manual.xhtml

[62] M. Folk, A. Cheng, K. Yates, Hdf5: A file format and i/o library for high performance1050

computing applications, in: Proceedings of supercomputing, Vol. 99, 1999, pp. 5–33.

[63] P. Corbett, D. Feitelson, S. Fineberg, Y. Hsu, B. Nitzberg, J.-P. Prost, M. Snirt, B. Traver-
sat, P. Wong, Overview of the MPI-IO Parallel I/O Interface, Springer US, Boston, MA,
1996, pp. 127–146. doi:10.1007/978-1-4613-1401-1_5.
URL https://doi.org/10.1007/978-1-4613-1401-1_51055

[64] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross, L. Ward, P. Sadayappan,
Scalable i/o forwarding framework for high-performance computing systems, in: 2009
IEEE International Conference on Cluster Computing and Workshops, 2009, pp. 1–10.
doi:10.1109/CLUSTR.2009.5289188.

[65] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, C. Maltzahn,1060

On the role of burst buffers in leadership-class storage systems, in: 2012 IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST), 2012, pp. 1–11. doi:

10.1109/MSST.2012.6232369.

[66] Y. Kim, R. Gunasekaran, Understanding I/O workload characteristics of a Peta-scale
storage system, Journal of Supercomputing 71 (3) (2015) 761–780. doi:10.1007/1065

s11227-014-1321-8.

[67] R. Gunasekaran, S. Oral, J. Hill, R. Miller, F. Wang, D. Leverman, Comparative i/o
workload characterization of two leadership class storage clusters, in: Proceedings of the
10th Parallel Data Storage Workshop, PDSW ’15, Association for Computing Machinery,
New York, NY, USA, 2015, p. 31–36. doi:10.1145/2834976.2834985.1070

URL https://doi.org/10.1145/2834976.2834985

32

http://dx.doi.org/10.1109/IPDPS.2014.27
https://doi.org/10.1063/5.0005082
http://dx.doi.org/10.1063/5.0005082
https://doi.org/10.1063/5.0005082
https://doc.lustre.org/lustre_manual.xhtml
https://doc.lustre.org/lustre_manual.xhtml
https://doi.org/10.1007/978-1-4613-1401-1_5
http://dx.doi.org/10.1007/978-1-4613-1401-1_5
https://doi.org/10.1007/978-1-4613-1401-1_5
http://dx.doi.org/10.1109/CLUSTR.2009.5289188
http://dx.doi.org/10.1109/MSST.2012.6232369
http://dx.doi.org/10.1109/MSST.2012.6232369
http://dx.doi.org/10.1109/MSST.2012.6232369
http://dx.doi.org/10.1007/s11227-014-1321-8
http://dx.doi.org/10.1007/s11227-014-1321-8
http://dx.doi.org/10.1007/s11227-014-1321-8
https://doi.org/10.1145/2834976.2834985
https://doi.org/10.1145/2834976.2834985
https://doi.org/10.1145/2834976.2834985
http://dx.doi.org/10.1145/2834976.2834985
https://doi.org/10.1145/2834976.2834985

	Introduction
	Related Work
	Lustre Architecture and its Deployment on SDumont
	Lustre's Architecture
	The SDumont

	Analysis and Visualization Methodology
	Data Gathering Step
	Data Pre-Processing Step
	Data Analysis Step

	Glancing at the Lustre Filesystem
	Overview of Lustre Usage
	I/O Data Analysis
	Metadata Analysis

	Detailed View of a Region of Interest
	Applications I/O Data Analysis
	Applications Metadata Analysis


	Discussion
	Conclusion



