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ABSTRACT OF THE DISSERTATION 

 

Equivalence in Equivalent Places: Considering Similar Spaces  

in Neural Representations and Behavior 

 

by 

 

Alexander Brian Johnson 

Doctor of Philosophy in Cognitive Science 

University of California San Diego, 2022 

Professor Douglas A. Nitz, Chair 

 

 The  study behavioral phenomena and the brain states which accompany these 

behaviors has a long history. The fields of neuroscience and behavioral psychology have, for 

over 100 years, utilized structured mazes in their work in order to probe how animals choose to 

navigate them, and how neuron activity reflects navigational features of the environment. This 

dissertation proposes that appreciating similar places within an environment requires a 

structurally complex environment to appreciate.  
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Evidence that structural complexity ought to elicit novel neural and behavioral 

phenomena is substantial. There is evidence that subiculum (SUB) neurons respond in a spatial 

manner similarly across different environments that share general structural complexity, and 

present unique directional tuning only on structured mazes. There is also evidence that less 

explicit structure in an open environment can drastically modulate activity in posterior parietal 

cortex (PPC) neurons. Both of these brain regions lay along an anatomical circuit connecting 

the hippocampal formation (HPC) to motor-output regions of the brain. Furthermore it is known 

that alternation behavior (AB), while reliable, is readily modulated by environmental factors in 

simple structures.  

To address deficiencies in investigating these systems this dissertation employs both a 

structured maze, the triple-T, alongside a working memory task which allows for the animal to 

self-organize a strategy; thus providing structure in two forms, one explicit with the maze, and 

one implicit with the reward contingencies. Unique representations of place-analogies, and 

structural route-similarity are reported from SUB and PPC respectively. These reports alongside 

a report of AB being organized by spatial location provide a functional framework for the utility of 

appreciating similar places in complex spaces.   

This dissertation describes the neural correlates of brain regions anatomically crucial to 

a space-to-action circuit while animals are navigating on a structurally complex environment. 

We discovered novel spatial representations in neuron populations linking HPC to motor-

associated regions of the brain. We also discovered novel behavioral organization elaborating 

on well-known AB studies. Altogether these data show the importance of probing these systems 

with sufficiently complex structure in order to get a deeper understanding of these systems.   
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CHAPTER 1: The Utility of Space: Physical, Mental, and Neural Spaces 

  Space is a uniquely important concept for animals to understand. For all animals, the 

ability to perceive salient features in space affords them the ability to utilize those features in a 

reliable fashion. These features, such as the length of a pathway, would be critical to 

understand in order to navigate to where one wants to go most effectively. One set of features 

are those that can be considered ‘low-level’, such as a border or some impassable obstacle in 

our environment. The perception of where all these borders are in the environment can inform 

what could be defined as ‘high-level’ features such as the shape of a pathway as defined by the 

junction of borders and passable spaces. In order to understand the environment in a sufficient 

manner an accurate perception of and understanding of the environment at many levels is 

required 

Perceiving the environment at different levels would mean that a parallel perception of 

lower-level and higher-level features is always occurring, and how they interact with one another 

defines the structure of the environment more generally. The higher-level features are poised to 

inform gross decision making processes such as which route to take home, considering each 

possibilities’ connectivity profile with the larger environment. Concurrently the lower-level 

features guide behavioral output at a more local level such as positioning the body relative to 

each specific boundary to traverse the pathway more optimally. Studies of how an animal’s 

spatial understanding shapes behavior across these various levels, or frames of reference as it 

can also be described, has a long history. These studies have had a focus on the relationship 

between decision making processes and the structure of the environment and task 

(Montgomery, 1951; Miller, 1960; Uster et al., 1976). From these studies the importance of 

spatial perception to behavior becomes quite clear, and the nervous system then becomes a 

critical focus of study for trying to better elucidate how this spatial understanding exists as a 

physical property of animals’ biology.  
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  All animals with a nervous system, and particularly animals belonging to the class of 

mammals have the ability to integrate sensory information to plan and enact intelligent 

behaviors. Critical to these animals’ navigation is an accurate mental representation of their 

environment; or the structure of the space they are in (Wolbers & Hergarty, 2010). Adapted for 

this task, these animals’ nervous systems have the ability to store and represent information in 

the form of neuronal spiking activity (DeCharms, 2000). Important to note however, the nervous 

system is not equipped with any one sensory modality with which to perceive space with. 

Instead space and spatial information are inherently multi-modal unlike, for example, the 

perception of music which rests primarily on a single sense. This is due to the fact we interact 

and move through space using essentially every sensory organ.   

Just as the ability to have an accurate understanding of the environment as a whole 

requires many forms of sensory information, there exist many different frames of reference in 

which to anchor this understanding. For example people have the ability to perceive two bus 

stops along the same route at once as different with regard to the literal Euclidean spatial frame 

of reference- they are located in different places, but also as the same kinds of place where the 

same kinds of experiences may be had at each space. Thus, the two bus stops are the same 

place in some functional frames of reference. This is one of many examples of how these 

different frames of reference coexist with neither being objectively correct. Furthermore, both 

are relevant for guiding behavior depending on the behavioral goal. Depending on the specific 

frame of reference being considered different information may be required to inform them. We 

may only be able to get where we need to go from one of the bus-stops, or it may not matter. 

This would suggest that information, as a neural code, should reflect all these various 

considerations of space. For as many relevant frames of reference which behavioral decisions 

can be made along, so to must the neural code represent space along the same frames of 

reference.   
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An important question to consider then is: what representations are important enough to 

consider at any time? In many real world examples the potential frames of reference are limited 

only by one’s imagination. In order to begin answering the question one can look to the structure 

of the environment itself. The structure provides the animal with regularities in space around 

which the animal navigates around. During navigation of physical structure within the 

environment certain features of space such as the junctions of pathways present themselves as 

natural points at which behaviors are structured and at which experience traversing them 

directly relate to future navigational ability (Brunec et al., 2022). Structures such as junctions 

become more or less relevant depending on the specific task or motivational state of the animal 

(Tolman, 1930). The nervous system then is tasked with establishing relevant representations of 

spatial features that can be utilized in a variety of contexts and behavioral demands. 

Investigations into what spatial representations the nervous system actually creates is a specific 

branch of neuroscience kickstarted by the provocative neurophysiology work performed by 

O’Keefe and Dostrovsky (O’Keefe & Dostrovsky, 1971). Since then the past five decades have 

given a wealth of understanding into how brain dynamics change during navigation through 

various environments (Winson, 1978; Markus et al., 1995; Sharp, 1997; Derdikman et al., 2009; 

Dabghian et al., 2014). Parallel to investigations into the neurophysiological basis of spatial 

representations is over 100 years of investigation into how spatial structures of different forms 

elicit particular behaviors from animals (Carr, 1917; Montgomery, 1951; Douglas et al.,1972; 

Uster et al., 1976; Doeller & Burgess, 2010). Together these fields of study provide an answer 

to which spatial features are crucial to be encoded for navigation, and how those features 

reliably guide behavior.  

 As mentioned the nervous system, in a general sense, forms a coherent mapping of the 

spatial features around the animal through a distributed network of interconnected brain regions 

that is relatively stereotyped in mammals (Ekstrom et al,. 2017; Grieves & Jeffery, 2017). The 
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neurons found in these brain regions change their activity profile at the detection of particular 

spatial features, navigational behaviors, or both. Due to the distributed and interconnected 

nature of the brain regions defining this spatial navigation system it is not very surprising to 

learn that deficits in any one sensory system do not unilaterally prevent navigational 

phenomena (Poucet et al., 2000; Rossier & Schenk, 2003), and suggests that most if not all 

individual sensory systems contribute to the functioning of the spatial navigation system. 

Beyond sensory systems many regions of association cortex and subcortical structures such as 

posterior parietal cortex (PPC), retrosplenial cortex (RSC), entorhinal cortex (EC), subiculum 

(SUB), hippocampus (HPC), as well as several thalamic nuclei such as nucleus reuniens (NR) 

and anterior thalamus (ATN) are considered crucial to the spatial navigation system in that 

lesions to these regions produce profound deficits in navigation (Morris et al., 1982; Kolb & 

Whishaw, 1983; Kolb et al., 1994; Whishaw et al., 2001; Harker & Whishaw, 2004; Parron et al., 

2004). Neurons in these brain regions also modulate their activity strongly based on observable 

spatial features (O’Keefe, 1976; Hafting et al., 2005; Nitz, 2006; Alexander & Nitz, 2015). 

Because several regions of this system exhibit projections into regions of the brain encoding 

motor output the anatomical positioning evidences the importance this system ought to have on 

mediating behavioral decisions (Donaghue & Parham, 1983; Petrides & Pandya, 1984; Jurgens 

1984; Reep et al., 1990; Shibata et al., 2003; Yamawaki et al., 2016).  

 HPC appears unique in its importance within this spatial navigation system. This is 

evidenced by patients with lesions to HPC having difficulty identifying where they are in a new 

location (Smith & Milner, 1981; Cave & Squire, 1991; Rosenbaum et al., 2000), and animals 

with lesions to HPC having difficulty wayfinding and establishing spatial associations (Morris et 

al., 1982; Richmond et al., 1999; Clark et al., 2005). More evidence to this point comes from the 

activity of the neurons themselves. The individual neurons of the hippocampus are very often 

selectively active only in specific location on an environment dubbed ‘place cells’ (O’Keefe & 
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Dostrovsky, 1971; O’Keefe, 1976). As outlined in the seminal book by Nadel and O’Keefe 

(1984), a population of place cells has at least one neuron that becomes active at any given 

location, and together as a population appear to encode where an animal is within an 

environment.  Altogether, these findings suggest that HPC is crucial within this spatial cognition 

system in its role in responding to navigation from an objective, world-centered frame of 

reference.  

  Since their discovery in 1971, place cells have captivated the attention of neuroscientists 

(O’Keefe & Dostrovsky 1971, O’Keefe 1976). Originally recorded in the hippocampi of rats as 

they wandered around an arena collecting food, these place cells only reliably become active 

when the rat occupied a particular location on the arena. The area defined by a neuron’s 

activity, when spatially restricted, is referred to as the place field of that neuron. The fact that 

these neurons are responding to the environment in a manner that extends beyond the animal’s 

immediate sensory experience - in an ‘allocentric’ frame of reference - is very intriguing. It 

demonstrates explicitly that the nervous system establishes an allocentric neural-representation 

of the world despite being bounded to sensory inputs, which are inherently anchored to the 

animal itself - what could be described as an ‘egocentric’ frame of reference. These place cells 

have since been shown to be incredibly context dependent. For example place cells modulate 

their activity based on the direction of approach to a place field (McNaughton et al., 1984; Wood 

et al., 2000), and even differentiate the same location across several trajectories that each run 

through the place field (Ferbinteaneu & Shapiro, 2003). This evidence challenges our 

understanding of how space is considered in the nervous system. Studies that link these neural 

phenomena to behavioral predictability directly link these representations of space to specific 

decision making processes (Johnson & Redish, 2007; Pfeiffer & Foster, 2013).  

  Place representation has also been seen to be modulated by shape, orientation, and 

context of the environment where the animal is located (Muller & Kubie, 1987; Cressent et al., 
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2002; Lever et al., 2002; Anderson & Jeffery, 2003; Leutgeb et al., 2005), a sequence of events 

or time (Pastalkova et al., 2008; MacDonald et al., 2013; Terada et al., 2017), the task the 

animal is performing (Markus et al., 1995; Aranov et al., 2017), and recurrence present in the 

task environment (Nitz, 2011). The extensive heterogeneity seen in the activity patterns of place 

cells demonstrates that these neurons not only encode position in a literal spatial frame of 

reference, but also encode position in an abstract sense along frames of reference specific to 

the animal’s context. When discussing HPC activity, this idea of ‘place’ extending beyond the 

literal Euclidean dimension can be understood better through the framework of HPC operating 

alongside a cognitive map. This cognitive map would represent the each experience within a 

situation as a cognitive place. These cognitive places are defined by the physical and contextual 

frames of reference within which the animal is able to navigate and problem solve. In this way 

the neural activity of place cells reflects much more than a literal representation of space.  

  Beyond the spiking discharge of neurons being largely organized by location as animals 

navigate around an environment, the larger electrophysical context of the HPC changes with 

regard to the local field potential (Vanderwolf ,1969). That is when animals are actively 

navigating the recorded LFP around place cells oscillates at a regular 6-10Hz known as the 

theta-oscillation (Whishaw & Vanderwolf ,1973). Perhaps to no surprise this dramatic change in 

LFP exerts a strong influence over the spiking activity of neurons in HPC including place cells 

(O’Keefe & Reece, 1993). One way to describe the relationship of spike activity to the 

cooccurring theta oscillation is seen in phase-precession (O’Keefe & Reece, 1993). The specific 

relationship HPC spiking activity has to the underlying theta oscillation can be summarized as:  

“Late in the field, early in phase. Early in the field, late in phase.” That is to say that as an animal 

just enters a space encoded for by a single place cell, that place cell will respond preferentially 

at the late-phases of the underlying theta oscillation. As the animal traverses through the middle 

of the field the place cell will discharge action potentials at its maximum rate in the middle phase 
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of the underlying theta oscillation. Finally, as the animal exits the place field the place cell is 

encoding that place will discharge action potentials preferentially at the earlier phases of the 

underlying theta oscillation. This phase-precession phenomena serves as evidence that 

integration of space across time occurs naturally in a way that suggests that HPC neurons 

encoding position have access to information regarding what the past positions were, and what 

the future positions will be.  

  HPC activity patterns encode information regarding the temporal sequence of events 

which is expected. Thinking about HPC in this way in addition to the aforementioned contextual 

idea of place beyond literal space, it becomes natural to think of HPC as also the focus of 

memory systems. Historically HPC lesioned patients were remarkable in their acquired amnesia 

for events following their surgery (Scoville & Milner, 1957).  Since then studies have described 

these patients as more specifically lacking the ability to form new episodic memories (Cohen & 

Squire, 1980; Hamman & Squire, 1995; Squire & Zola, 1998). On the one hand there is 

extensive research done in humans on the role of HPC for the creation of episodic memory. On 

the other hand there is extensive research done in animals demonstrating a crucial role for HPC 

in spatial processing. Researchers have sought to bring together these lines of research for 

decades, historically by demonstrating spatial deficits in human patients with HPC lesions (Cave 

& Squire, 1991), or through demonstrating memory processing in HPC activity (Redondo et al., 

2014). These studies more often than not show how intertwined the neural processing for 

spatial cognition is to neural processing of episodic memories. This interplay between space 

and memory is further evidenced by looking at how place-associations are strong drivers of 

behavior (Brown et al., 1995, Lu et al., 2003), and how deficits in memory often coincide with 

deficits in navigation in dementia involving HPC (Kolb & Whishaw, 1996). Volumes of text have 

been written speculating on the specific link between spatial cognition and memory systems 

(Aggleton & Pierce 2002; Burgess et al., 2002; Rolls et al., 2002). Studying the neural circuits 
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underlying spatial cognition is one of several avenues one could take in studying the neural 

circuits underlying memory. The observed representations in the spatial navigation system can 

only be explained in part by space alone, and what are typically considered spatially responsive 

cells, such as place cells, may be the ideal substrate upon which the episodic memory system is 

built.  

  Regardless of what motivation one has for studying activity of HPC circuits a valid 

question that has been asked throughout the years is, at a mechanistic level, how do the 

specific responses to space and context observed in HPC come to be? This question is 

particularly enticing because as previously mentioned, the nervous system is only privy to 

sensory information that is anchored to the frame of reference of the animal itself in an 

egocentric manner. It is thought that the association of sensory inputs within the nervous 

system, across modalities and across time could establish the building blocks necessary for the 

activity patterns observed in HPC. Association cortices such as PPC are known for neuron 

activity patterns which seemingly respond to similar spaces across frames of reference 

anchored to a particular effector limb (Cohen & Andersen, 2002) or route shape within an 

environment (Nitz, 2009). These extrahippocampal representations of space become an 

important source of motivation for not restricting study to HPC itself, but also to include other 

brain regions where neurons activity exhibits different forms of spatial representations. 

 The major immediate input to the hippocampal system is EC (Wyss, 1981) which itself 

receives input from other association regions such as insula, piriform cortex, PPC, and RSC 

(Burwell & Amaral, 1998;  Lee et al., 2020). With regards to sensory processing EC in many 

ways represents the terminus of parallel ‘what’ and ‘where’ pathways of information processing 

(Suzuki et al., 1997; Deshmukh et al., 2012; Nilssen et al., 2019). Based on its anatomy relative 

to HPC, as well ad the highly integrative and multimodal responses seen in the neurons of EC, it 

is likely that EC contributes directly to the establishment of place representation in HPC neuron 
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activity. This idea was bolstered in 2005 with the discovery of grid cells a type of neuron in EC 

defined by its unique activity profile in a spatial frame of reference (Hafting et al., 2005). Grid 

cells have their activity selectively increased at many repeating ‘nodes’ throughout an 

environment. For any one grid cell these nodes are arranged within the environment at an equal 

distance and angle apart from one another and they extend out in this repeating pattern 

throughout the accessible space. These grid cells have been thought to be a universal map 

from which place activity may be derived (Solstad et al., 2006). Inactivation studies of show that 

inactivating EC populations causes a remapping of individual HPC place cells , and biases 

which neurons within the population will be active (Rueckemann et al., 2015; Miao et al., 2015). 

These disruptions only seem to qualitatively disrupt HPC neurons exhibition of place 

representation in circumstances of extreme sensory deprivation (Hales et al., 2014; Jacob et al., 

2020). It becomes clear that while EC plays a role in establishment of HPC activity EC activity is 

not the sole association cortex of interest. 

  Other association cortices have been studied in a similar manner to EC, such as RSC 

(Cooper & Mizumori, 2001) and PPC (Save et al., 2005), with similar findings in that place fields 

remap their preferred place, or change their shape in a quantitative manner. These association 

cortices are intriguing in this respect when considering their anatomical positioning. In addition 

to being components of the dorsal stream ‘space-to-action’ circuit which connects HPC to motor 

regions of the brain (Vann & Aggleton, 2002; Yamawaki et al., 2016; Olson et al., 2019) there is 

a reverse stream of connections from PPC to RSC (Reep et al., 1994; Kobayashi & Amaral, 

2003) and from RSC to EC by way of the presubiculum (PrS) (Insausti et al., 1998; Kobayashi & 

Amaral, 2007). Other RSC efferent targets include regions such as the anterior thalamic nuclei 

(ATN) (Mathiasen et al., 2017), which overlaps with functional inputs to SUB (Frost et al., 2021). 

This directly functionally links PPC and RSC to SUB which traditionally is considered the output 

structure of HPC neurons. However, more recent studies are revealing that SUB also serves as 
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an input structure to HPC and facilitates spatial associative learning (Xu et al., 2016; Sun et al., 

2019). This provocative view of extrahippocampal brain circuitry presents PPC, RSC, and SUB, 

as equally relevant input structures to HPC as the more often studied EC. However by contrast 

to EC, the study of spatial representations in association cortices such as PPC is sparse, and 

the literature on SUB activity profiles is orders of magnitude smaller than HPC. Considering the 

reverse of the space-to-action circuit in an ‘action-in-space’ framework provides new motivation 

to study often-overlooked regions such as SUB - a region where the neurons’ activity patterns 

are not well described in the literature - with as much attention placed on HPC and EC.   

 When investigated SUB neurons have been studied in a similar fashion to HPC place 

cells they demonstrate less specificity within the place fields and a tendency toward 

generalization across environments that HPC place cells consider distinct (Sharp & Green, 

1994; Sharp, 1997). The less specific firing properties of SUB neurons were also speculated to 

facilitate greater information transfer at the population level (Kim et al., 2012). SUB neurons 

have perhaps been better characterized by their responses to boundaries (Lever et al., 2009), 

and to the orientation of an animal (Olson et al., 2016). SUB neurons generalize their orientation 

by tuning for one heading direction and the exact opposite one, forming a representation the 

axis of travel when the animal was on a structured path-network. These response profiles are 

similar to head direction cells of ATN (Taube & Muller, 1998), RSC (Cho & Sharp, 2001), and 

postsubiculum PoS (Taube et al., 1990) all of which SUB is anatomically connected to, but differ 

in the contextual nature of them and the generalization across multiple directions . Other studies 

have shown a unique role in SUB neuron activity for the memory-trace of environmental 

structures (Poulter et al., 2021). Much like responses to boundaries but with the additional 

feature of persisting in their response for some time after the boundary is removed. These 

studies showing axis tuning, and the recorded activity patterns around the presence or 

remembered location of border structures both suggest that SUB responses may be impacted 
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by the structure to a degree greater than HPC. However, due to the largely understudied nature 

of SUB neurons the extent to which SUB spatial responses are a function of the environmental 

structure remain to be seen.  

  With respect to the bidirectional circuit connecting HPC and PPC, the anatomical 

positioning of SUB is suggestive. Connections to and from HPC suggest a role as both the 

beginning of the aforementioned space-to-action pathway and the penultimate node in the 

action-in-space pathway. This positions SUB as a unique neural-hub in the brain where 

representations across many frames of reference at many levels should coexist and influence 

the expression of one another. This raises an important question as to how activity from these 

brain regions ought to be analyzed and interpreted considering the level of complexity within the 

activity that can be expected.  

Traditionally neurons throughout the spatial navigation system of the brain have had 

their activity profiles described with regard to explicit, observable, and manipulatable features of 

the environment. These features can be environmental ones like borders (Lever et al., 2009) or 

landmarks (Wang et al., 2020), but also can include navigational features such as the 

orientation of the animal (Taube et al., 1990) and what kind of movements the animal is making 

(McNaughton et al., 1994; Keshavarzi et al., 2022). The collection of ‘cell-types’ found 

throughout the spatial navigation system is one way scientists have tried to make sense of the 

general neural computations being performed. Increasingly ,however, it is being noticed that 

many of these ‘cell-types’ exhibit junctions of responses (Sargolini et al., 2006) across many of 

the already known response profiles. More intriguingly are neurons which exhibit responses that 

demonstrate a conjunction across egocentric and allocentric frames of references (Alexander & 

Nitz, 2015; Alexander et al., 2020). Studying and describing these neuron responses has given 

a lot of insight into what representations are relevant during navigation. However it is often the 

case that cells exhibiting the same or very similar activity profiles can be found throughout many 
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regions of the nervous system perhaps suggesting the importance of signal redundancy in the 

brain, or suggesting that some of these studies classify neurons in a relatively simple manner.  

 This collection of various cell types and their responses has provided the field of spatial 

navigation many metrics to analyze new cell populations with, and has undoubtably advanced a 

general understanding for what aspects of space are important for spatial cognition (e.g. 

orientation and the perception of boundaries). However, many of these features are relatively 

obvious ones which exist in almost every environment. Every environment which can be 

constructed has an inherent orientation to other spaces, however, not every environment will 

have decision points leading to different locations. The problem which arises for neuroscientists 

studying the spatial cognition system is that neurons are sensitive to particular structural 

features also respond differently to them as their behavior around them changes (Moore et al., 

2021). 

 More tools are being developed to study the influences of high-level spatial features with 

regard to their impact on neural activity throughout the brain’s spatial navigation system. These 

tools come in several forms, such as sophisticated analytical methods that employ neural 

networks to predict the navigational features around the animal. These decoding techniques can 

identify regions of space which the neural data being investigated has more or less utility in 

discriminating across (Bassett et al., 2018; Glaser et al., 2020). These studies have the promise 

of elucidating subtle influences on neural activity patterns, but are often difficult to utilize and still 

rely on relatively simple feature spaces in their analyses. Another branch of techniques which 

advance the sophistication of experimental design comes from looking at the structure of the 

experimental design itself. Studies which employ highly structured environments allow for 

probing high-level features of space such as the topology of connected spaces. For instance 

maze structures that have overlapping segments (Miller et al., 2019), consist of multiple choice 

points (Ainge et al., 2007), and involve sequential recurrence (Scmitzer-Torbert & Redish, 2003) 
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have all been used to demonstrate that many different spatial frames of reference are important 

for explaining neural activity along the regions of the spatial navigation system. Other 

environments which have been used allow for the animal to engage directly with designed 

structures within the environments, and have yielded fascinating results in how topology is 

encoded (Dabaghian et al., 2014), how the brain breaks down spaces into subspaces 

(Alexander & Nitz, 2017), how the memory associated to places carries into the representation 

of place (Keniath et al., 2019), and how frames of reference influence spatial representations  

(Alexander & Nitz, 2015; Wang et al., 2019).  

  A salient example of neurons needing certain features to have their activity patterns 

appreciated comes from lateral entorhinal cortex (LEC) and the class of neurons known as 

landmark anchored neurons. This cell population necessitates having a landmark which to 

anchor to, without landmarks these cells could mistakenly be considered to only encode head 

direction (Wang et al., 2020). Capturing phenomena such as this in experimental design is 

challenging, because to truly grasp the nature of the representations seen many very specific 

environments could be required. Experiments are inherently bounded as well with respect to 

what features of space can be used as explanatory. It would be entirely possible to miss specific 

neural responses to spatial features if not directly looking for them. Put another way, if the 

features of space which modulate activity within a brain region are not present the system is not 

tasked with perceiving those features and thus any neurons recorded cannot give a full 

demonstration for their representative power. Fully incorporating structurally rich environments 

is something which is still nascent in neuroscience research, presumably due to a desire for 

tightly controlled subject experiences and the problem of exponentially increasing 

considerations which must be made for each feature analyzed. One has to wonder how many 

representational phenomena within past studies on the spatial navigation system have been 
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dismissed or overlooked due to the experimental environment not being suitable for them, or not 

having said hypothetical phenomena specifically targeted for investigation.  

 Outlined, thus far, has been an account of studying spatial representations in the brain. 

First has been evidence has been presented which details the exquisitely specific place-

representation of HPC and the many frames of reference which must be considered to get an 

appreciation for what ‘place’ is to HPC neurons. Second has been evidence presented which 

illustrates the many spatial representations extrahippocampal regions, particularly along the 

space-to-action circuit. Finally has been a detailed walkthrough of fundamental constraints when 

attempting to study the spatial navigation system, outlining how historic and contemporary 

environmental designs only occasionally lend themselves to unexpected findings, and even then 

they are often described along the same lines as previously defined ‘cell-types’.  

  Careful attention clearly needs to be placed when analyzing data from brain structures 

within the spatial navigation system. Considering the structure of the space being used and how 

the animal is using that space prevents our interpretations of data from being overly simplistic. 

For example the nature of experiments performed across several different species has led to 

different conclusions of the representations in the association region, PPC. In human patients 

who have suffered damage to PPC there is a debilitating condition called neglect which can 

occur (Pierce & Buxbaum, 2002). In neglect, these patients seem unable to perceive an entire 

‘side’ of what it is they are paying attention to. For instance the patient may be able to draw a 

circle on one side of a piece of paper, but when asked to draw something within the circle, it is 

as if one side of the circle vanishes from their perception. Another phenomena, topological 

amnesia can also occur in patients with similar brain damage. These patients, in spaces they 

have already been through before, have difficulty navigating – specifically the patients are 

unable to form routes to fluidly navigate around the space (DeRenzi et al., 1977). In both cases 
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PPC functioning in humans appears to be critically necessary for spatial cognition and 

navigation.  

In non-human primates PPC neuron activity has been studied directly for its role in 

various cognitive functions. PPC neurons appear critical for transforming spatial coordinates 

across sensory modalities to motor effectors which guides sensory-motor behavior (Colby & 

Goldberg, 1999). PPC neurons are also seen to exhibit modulations with regard to attentional 

processes known as gain-fields (Pouget & Sejnowski, 1997). Gain-fields occur for certain spatial 

locations within a sensory or motor frame of reference and increase the firing of downstream 

neurons. PPC neurons have been described with regard to motor planning, and in particular the 

spatial component underlying the intention on where to move (Andersen et al., 1997). Lastly 

PPC neurons are also very well studied with regard to their role in working memory processes, 

and in particular working memory for particular sensory or motor locations along various frames 

of reference (Crowe et al., 2008). In general PPC in non-human primates appears to similarly be 

highly tuned to spatial frames of reference and often analyzed with regard to their role in active 

navigation (Arbib, 1997). The many cognitive processes PPC appears to be associated with 

speaks not only to the highly integrative nature of PPC, but also to the variability in task 

demands across the different studies.  

The vast heterogeneity of cognitive processes associated with PPC has, in some ways, 

distracted from understanding the exact representational qualities of PPC neurons. Rat PPC 

studies have more directly attempted to answer what the representational qualities are for PPC 

neurons. However, the caveat for rat studies is that many of them have been performed with 

significantly deprived task requirements. Rat studies of PPC activity has revealed an 

extraordinarily strong correlation with self-motion (Whitlock et al., 2012). Alongside studies of 

self-motion PPC activity is also seen to reflect the specific body posture of the animal (Mimica et 

al., 2018). These studies which explicitly view PPC activity as being egocentrically anchored 
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could be missing some aspects to PPC representations. There are a few studies into how PPC 

neurons react similarly across the same shaped pathways, and how PPC neurons respond at 

several frames of reference within a single environment (Nitz, 2006; Nitz, 2009). There are also 

studies of PPC neurons showing that activity responses to self-motion modulate as the task the 

rat is performing becomes more predictable and structured (Alexander et al., 2020). This trend 

of imagining PPC activity in the rat as being more divorced from spatial representations as 

compared to their primate counterparts is surprising - especially because M2, a major efferent of 

PPC has some neurons that are heavily modulated by spatial position (Olson et al., 2019).  It is 

possible that this difference is how to view and study PPC across animals is a direct cause  of 

the choice of behavioral tasks and experimental environments being used.   

  Neural codes from regions of the brain along the space-to-action circuit will ultimately 

have their activity patterns dictated by the animal’s perceived position as defined across many 

frames of reference. Much like how the neurons of the space-to-action circuit can have their 

activity altered by increasing the richness of the environment (Battaglia et al., 2003) it should be 

expected too that the neurons along this circuit would have their activity altered by behavioral 

richness as well. One frame of reference which is implicit when discussing these spatial 

navigation studies is the behavioral task itself the animal is undertaking. As seen with the 

phenomena of trajectory dependance (Wood et al., 2000) the spatial navigation system can 

distinguish across different behavioral trajectories at the same location even though the general 

behavior is the same. The same studies if performed without a divergent area on the maze 

would miss this phenomena because the set of behaviors needed would not be great enough to 

demonstrate it. Therefore designing experiments that allow investigation into what the animal is 

doing at several behavioral scales is critical to understanding the spatial cognition system as 

well. However to get an appreciation for what types of tasks one ought to employ to see 
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sufficiently rich behavior one must look back at the literature of how animal navigation has been 

studied.   

 Mazes and structured environments of many forms have been used by scientists 

studying animal navigation for a long time (Carr, 1917). In many ways the contemporary field of 

behavioral science still utilizes the same techniques established long ago. These experiments 

involve designing structured environments and placing animals of varying naivete on the 

environment to mark changes in behavior over time. In order to study interesting behaviors it 

necessitates scientist both are able to design structures that provoke interesting behaviors, and 

that scientists have the ability to identify discrete behaviors when they are being performed. 

Without both of these aspects of experimental design being considered there are fewer metrics 

which can be derived for analyses. In order to get animals to generate interesting discrete 

behaviors certain stereotyped structures have been used, such as the T-maze. The T-maze is a 

simple maze consisting of three linear corridors in the shape of the letter ‘T’. Animals walk 

through a corridor which, at its end bifurcates into two choice arms the animal can choose to 

continue walking down. Using a T-maze structure scientists quickly observed spontaneous 

alternation behavior (SAB) where animals in subsequent trials will reliably choose the opposite 

decision as the prior trial (Carr ,1917; Tolman, 1925; Wingfield & Dennis, 1934; Deacon & 

Rawlins, 2006). It was speculated by Hull in 1943 that this phenomena was best explained by 

the animal’s natural tendency to avoid performing the same action as it had previously done 

(Hull, 1943). This idea came under scrutiny by several researchers who investigated SAB under 

many different experimental conditions and claimed other explanations were better suited to 

explaining SAB. Many researcher saw SAB as an exploratory behavior suited to optimize 

exploration of the space as opposed to a simple inhibition to the behavioral reaction (Walker et 

al., 1955;  Dember & Earl, 1957; Sherrick et al., 1979). What is surprising is that after decades 

of pushing this line of research forward through the employment of different types of structured 
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mazes (Douglas, 1972; Wathen & Roberts, 1994) there has been very little attention placed on 

how is organized in environments that extend beyond single decision points. That is to say that 

the structure of these experiments remains fundamentally unchanged in over a hundred years.  

The incredibly robust and reliable presentation of SAB, along with the uncertain nature of 

it is perhaps why, for over a hundred years, behavioral science has studied SAB in the way that 

remains fundamentally unchanged. Studies have adjusted reward contingencies (Bryant & 

Church, 1974; Gaffan & Davies, 1982), orientations (Dember et al., 1966; Potegal et al., 1977), 

prior experiences (Sherrick et al., 1979), variable lengths of temporal and spatial inter-trial-

phases (Dennis, 1939). There are also a host of inactivation studies using lesions or 

pharmacological techniques to inactivate regions of the brain (Baettig, 1963; Ellen & DeLoache, 

1968; Egger et al., 1972; Parent et al., 1997; Barga et al., 2005; Nelson et al., 2020) . Still SAB 

remains a siren’s song calling researchers to be stuck on its stubborn persistence using the 

same methodology as before. Many findings have been made into what factors influence the 

expression of SAB, but we are not much further along in understanding the nature of SAB. 

Behavior studies additionally, have not attempted to put animals in a scenario where SAB 

extends beyond a single decision point to investigate the reliability beyond a single choice.  

 Attempts have been made throughout the years to look for insights into behavioral 

strategies more generally. Typically these attempts have been made through employing 

structured environments in novel and exciting ways in behavioral studies such as sequential 

turns (Hunter & Hall, 1941; Michel et al., 1978; Schmitzer-Torbert & Redish, 2003), geometric 

layout of routes (Douglas et al., 1972; Bak et al., 2017), or incorporating shortcuts into the 

environment (Grieves & Dudchenko, 2013). These studies have put forward many useful 

insights into the cognitive processes underlying navigation, but the reach of these claims is only 

able to extend so far under still relatively confined circumstances. Even on environments which 

would afford themselves to richer data, the tasks being asked of the subject rarely require the 
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subject to fully understand or utilize the topology of the environment in a meaningful manner. 

Instead the subjects are often guided or cued in some fashion that does not demand the 

utilization of spatial understanding (Euston & McNaughton, 2006; Ainge et al., 2007). This 

oversimplification of task-design certainly would occlude functions of the spatial navigation 

system as planning, attention, and memory are all tightly interconnected with spatial cognition 

processes. Thus this constrained nature of the data not only damages the ability to draw 

meaningful conclusions from behavior itself, but neurophysiological studies into nearly every 

cognitive process are certain to be deprived in some fashion.  

  One challenge to applying a greater appreciation for both spatial and behavioral 

complexity in neuroscience is seen in the constraints necessary to generating meaningful 

hypotheses in the face of increasing degrees of freedom (Krakauer, 2017). This is not a new 

consternation however, David Olton’s 1979 review discussing the need to “do hard things”, as it 

involves designing meaningful experimental environments still holds true (Olten, 1979). There is 

a natural interplay between data, with fewer degrees of freedom, which can be easily interpreted 

and analyzed in the same manner as its predecessors; and data which has too many degrees of 

freedom to make any meaningful predictions or conclusions from. The latter still pushes our 

understanding further still by offering new and reliable clues into the functioning of the nervous 

system.  

 One structural feature which has become incorporated in the field of artificial intelligence 

navigation already (Soltoggio & Jones, 2009; Yaman et al., 2019), and only recently in the study 

of insect (Pasquier & Grüter, 2016; Okada & Norikuni, 2022) and human behavior (Rothacher et 

al., 2020) is the employment of sequential decision-making locations in a meaningful manner. 

These structures incorporate two binary decision points which lead to four, or three binary 

decision points which lead to eight end sites and allow for a multitude of tasks to be performed 

on them. Surprisingly behavioral studies on rats navigating such an environment are non-
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existent despite the hundred years prior of studying the only slightly more simple single T-maze. 

This presents a problem in neuroscience that fully developing a framework of the spatial 

navigation system on richer behavioral tasks, and thus a more complete understanding of it in 

general, requires new foundational work to be done. This foundational work needs to set 

expectations not only for how regions of the spatial navigation system react to more complex 

environments, but also needs to establish a set of baseline behaviors for the field to measure in 

such experiments. These studies will contribute to fields beyond neural and behavioral science 

though. By establishing baseline behavioral metrics roboticists, which already employ such 

tasks, will be given a set of naturalistic observations to compare their automata to.    

  This dissertation serves as a response to that problem in neuroscience, and addresses it 

through the implementation of the triple-T environment which rats readily learn to perform a 

simple find-all working memory task very quickly. This environment coupled with the find-all 

working memory navigation task allow for the rat to naturally organize its behavior in reliable 

and unique ways while maintaining excellent performance. Additionally the structural and 

structural richness of the triple-T allow for SUB and PPC brain regions to exhibit novel, never 

before reported, encodings of structural similarity.   

Organization of Dissertation 

  Overall, this dissertation underpins the importance of utilizing a complex structured 

environment when studying spatial representations throughout the nervous system. To 

emphasize this novel spatial representations encoded in regions of the brain (SUB & PPC) are 

presented along with a novel behavioral findings. All of these studies emphasize the importance 

of affording the animal (and thus their nervous system) a structurally complex environment. First 

through the discovery of novel spatial representations in the neuron activity of SUB neurons as 

compared to their primary afferent - CA1. Second through the discovery of embedded structural 

coding in a population of PPC neurons, adding to the corpus of work specifically investigating 
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the spatial properties of these neurons. Lastly through the discovery of a novel, spatially 

organized, behavior in rats performing ‘triple-T’ working memory tasks.  

  Chapter 2 presents neurophysiological data from SUB neurons as well as from CA1 

neurons as rats were performing the ‘triple-T’ find-all-4 task. We report novel spatial responses 

seen exclusively in the SUB population. These neurons are highly selective for a specific 

location on the maze (though not any one specific location across the population) much like 

their CA1 place cell counterparts. However, unique to the SUB population of neurons these 

spatially responsive cells also respond to locations which share the same position across routes 

that share structural similarity with one another. This finding alongside finding that SUB neuron 

population organize these responses around structural features like corners are interpreted to 

mean that, one synapse away from the population of highly-selective CA1 place cells, exists a 

mapping of structure. This result presents a novel cell-type which suggest that understudied 

brain regions may not have their functions understood on environments lacking in sufficient 

structural complexity. 

  Chapter 3 presents neurophysiological data from PPC neurons as rats were performing 

the ‘triple-T’ find-all-4 working memory task. We report on the existence of a population of PPC 

neurons whose activity patterns were highly correlated across routes which shared general 

spatial structure yet exhibited exact opposite action sequences required to traverse them. We 

interpret these results to suggest that in addition to known frames of reference that PPC 

neurons respond to, PPC neurons exhibit the necessary activity patterns to encode general 

structure of a route. This result adds to our understanding of how different route-spaces can be 

used as frames of reference for the nervous system. This finding also presents a challenge to 

PPC studies in rats to consider space in addition to self-motion when analyzing neuron activity 

data.   
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  Chapter 4 specifically presents the behavioral data from all five rats who were trained in 

a stereotypical fashion on the ‘triple-T’ find-all-4 task, as well as three rats who made the 

transition to the more advanced find-all-8 condition. We report that animals performing the find-

all-4  condition of the ‘triple-T’ organize their decision making along the heuristic of alternation, 

and organize this heuristic spatially. Animals on the find-all-4 task utilize external routes of the 

triple-T in a stereotypical fashion as well. Additionally animals, when learning the find-all-8 

condition of the ‘triple-T’ maze, incorporate alternation behavior at the additional decision point 

without any decrement to other alternation behavior. We present these results to demonstrate 

how overlapping sequential decisions are made in the rat. This suggests that allowing the 

animal to self-organize their behavior in an environment with appreciable structure allows for 

investigation into many robust spontaneous behaviors yet to be fully investigated by behavioral 

psychology. This result presents a novel behavior self-organized by rats which could be used to 

investigate further questions in neuroscience.  

  This dissertation concludes with a detailed explanation of the importance of complex 

spatial structures which elicit sophisticated self-organized behaviors when studying 

neuroscience.  
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CHAPTER 2: Complementary Maps for Location and Environmental Structure in CA1 

and Subiculum 

Abstract 

 The dorsal subiculum lies among a network of interconnected brain regions that 

collectively map multiple spatial and orientational relationships between an organism and the 

boundaries and pathways composing its environment.  A unique role of the subiculum in spatial 

information processing has yet to be defined despite reports of small neuron subpopulations 

that encode relationships to specific boundaries, axes of travel, or locations.  We examined the 

activity patterns among populations of subiculum neurons during performance of a spatial 

working memory task performed within a complex network of interconnected pathways. 

Compared to neurons in hippocampal sub-region CA1, a major source of its afferents, 

subiculum neurons were far more likely to exhibit multiple firing fields at locations that were 

analogous with respect to path structure and function.  Subiculum neuron populations were also 

found to exhibit a greater dynamic range in scale of spatial representation and for persistent 

patterns of spiking activity to be aligned to transitions between maze segments.  Together, the 

findings indicate that the subiculum plays a unique role in spatial mapping, one that 

complements the location-specific firing of CA1 neurons with the encoding of emergent and 

recurring structural features of a complex path network. 

Main Text  

 INTRODUCTION 

  The dorsal subiculum is situated within a distributed system of brain regions forming a 

‘cognitive map’ that encodes an organism’s spatial relationship to its environment (Andersen et 

al., 1973; Hjorth-Simonsen, 1973; Amaral & Witter, 1989; Amaral et al., 1991; Witter, 2006). The 

few studies that have examined the impact of damage selective to subiculum (SUB) support a 
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role for this structure in the two most prominent tests for spatial navigation, the Morris water 

tank and T-maze spatial alternation tasks (Morris et al., 1990; Galani et al., 1998; Frost et al., 

2020). Despite this, relatively few studies have addressed the form or forms by which subiculum 

neurons represent spatial and orientational relationships to the environment. 

  Clues to a unique role for SUB as a component of a distributed cognitive mapping 

system come from its major sources of afferents (Witter, 1990; Witter et al., 2000; Naber et al., 

2001; Cembrowski 2018). A prominent input from the anterior thalamus and moderate input 

from the presubiculum suggests a strong influence of orientation or ‘head direction’ tuning on 

SUB function (Goodridge & Taube, 1997; Winter et al., 2015; Viejo & Peyrache, 2019; O’Mara & 

Aggleton, 2019). Indeed, sensitivity to head orientation relative to environmental boundaries 

was observed in early studies examining the firing of SUB neurons during random foraging in 

open arenas (Barnes et al., 1990; Sharp & Green, 1994; Sharp, 1999) and, more recently, in a 

track based environment (Olson et al., 2017). Major inputs from both medial and lateral 

entorhinal cortex and hippocampal sub-region CA1 indicate a strong influence of tuning by 

location within an allocentric, ‘world-centered’, space defined by environmental boundaries 

(Muller & Kubie, 1987; Hafting et al., 2005). Accordingly, evidence for ‘place-specific’ firing 

(Sharp & Green, 1994; O’Mara, 2005; Kim et al., 2012; Olson et al., 2017; Lee et al., 2018) in 

SUB has been observed in a small percentage of neurons as has encoding of position and 

orientation relative to boundaries and barriers (Lever, 2009; Stewart et al., 2014; Stensola et al., 

2015; Olson et al., 2017; Viejo & Peyrache, 2019; Poulter et al., 2020). Finally, SUB appears to 

play a role in the encoding of objects and landmarks and their relationships to environmental 

boundaries (Sun et al., 2019; Poulter et al., 2020). 

  Several studies examining the spatial firing properties of SUB neurons compared them 

to neurons of the CA1 sub-region of hippocampus, a region well-known for the presence of 

‘place cells’ (O’Keefe & Dostrovsky, 1971). From such work, it is known that SUB neurons are 
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less focused in their tuning to environmental location, tend to exhibit a greater number of 

individual firing fields, and have a greater tendency to show similar spatial firing patterns across 

two arena environments that are the same but for differences in shape (circle versus square 

arena) or size (Sharp & Green, 1994; Sharp, 1997; Sharp, 1999 (2); Kim et al., 2012; Olson et 

al., 2017). These quantitative differences in tuning may function to permit generalization across 

similar environments or to maximize the efficiency of information output to efferent targets 

(Sharp, 1999; Kim et al., 2012). Nevertheless, it remains to be determined whether spatial 

tuning in SUB and CA1 can be viewed as part of a continuum or whether substantive 

differences in tuning evidence different contributions of each region to components of a 

distributed cognitive map. 

  To draw out potential differences between SUB and CA1, we examined the spatial firing 

properties of neuron populations in these regions during performance of a complex spatial 

working memory navigational task set within a complex network of pathways. The combined 

structure of the path network and set of task rules allowed us to determine to what extent rats 

exhibited behavior consistent with having knowledge of the overall layout of individual path 

segments and their relation to the full path network. The routes utilized to meet task demand 

bore structural similarity in having the same total number of turns and distances between them. 

This allowed us to detect spatial tuning of neurons that reflect emergent properties of the 

combined task and maze structure. Partial overlap between routes allowed us to determine 

whether trajectory-dependence (Frank et al., 2000; Wood et al., 2000; Ferbinteanu & Shapiro, 

2003; Ainge et al., 2007) differs between CA1 and SUB and whether its presence or absence is 

a dynamic property of either system. Finally, the maze structure contained many intersections 

and path segments of different lengths, allowing us to compare the spatial scale of 

representation for CA1 versus SUB as well as the alignment of their population firing patterns to 

maze structure. 
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  During sustained, highly accurate performance of the task, we find that individual 

neurons of the CA1 region primarily encode the animal’s location and the trajectory taken 

through that location. In contrast, just one synapse beyond CA1, SUB neurons were often active 

for “kinds” of places that were analogous with respect to maze structure and with respect to 

multiple spatial variables such as head direction, axis of travel, and progression through a route. 

We also find that the spatial scale of representation is greater for SUB, and that it varies 

dynamically in both structures. Furthermore, persistence in CA1 and SUB population activity 

patterns across track positions segmented space in distinct ways, suggesting that spatial 

representation in these structures can follow qualitatively different rules. These findings identify 

a unique role for SUB in spatial cognition and suggest that this region is critical to encoding the 

fundamental structure of pathways through complex environments. 

RESULTS 

Robust navigation within a complex environment 

  We trained 6 rats on a variation of the “Triple-T” maze (Figure 1A, Olson et al., 2017; 

Olson et al., 2020). The task demands that animals learn the functional relationships among a 

set of interconnected pathways and provides a means by which to assess the impact of 

location, orientation and trajectory on the spiking activity of recorded neurons. Briefly, on each 

trial, the animal must move through 3 sequential left or right turns to arrive at 1 of 4 goal 

locations. The rat must then return to the starting location via external pathways that surround 

the internal pathways. Rewards at each goal location were 1/4 Cheerio piece and distributed on 

a “visit-all” schedule where reward access reset after all locations were visited. During post-

implantation recording sessions, rats ran on average 148 trials per session. 
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  The nature of this task and our training regimen purposely leads to highly stereotyped 

running behavior. The rats became proficient in the procedural aspect of the task, only moving 

in one direction at any given location (Figure 1B) and doing so at high speeds (Fig 1C). For 

analysis purposes, we selected out behavioral epochs where the animal ran uninterrupted from 

the start point to one of four reward locations (outbound routes) or from the reward locations 

back to the starting point (return routes, Fig 1D). This results in analyzing only the behavior 

during locomotion and controls over the range of head orientations and actions associated with 

any specific location. The rats met the uninterrupted running criteria on 85% of route traversals 

and averaged a velocity of 57 cm/sec during the accepted runs. 

  Rats also became proficient at the working memory aspect of the visit-all task on the 

Triple-T maze, receiving rewards on 81% of trials in recordings post-surgery (Figure 1E, mean 

0.81 ± 0.15 s.d.; N = 95, P < 0.0001, one-sided Mann-Whitney U test; chance = 48%). The 

animals exhibited an understanding of the track space, taking the shorter return pathway on 

92% of trials (Figure 1F, mean 0.92 ± 0.11 s.d.; N = 95, P < 0.0001, one-sided Mann-Whitney U 

test; chance = 50%). Animals even ran perfect blocks – a series of visiting all 4 locations without 

mistake – on 56% of trials (Figure 1G, mean 0.56 ± 0.21 s.d.; N = 95, P < 0.0001, one-sided 

Mann-Whitney U test; chance = 9%). Performance at this level may suggest formation of a habit 

with respect to the order of internal routes taken over a block, but a closer look at animal 

tendencies disagrees. The most common pattern used by an individual animal over an 

individual recording session accounted for only 48% of correct blocks (Fig 1H, mean 0.48 ± 0.20 

s.d.; N = 94, P < 0.0001, one-sided Mann-Whitney U test; chance = 19%), and 26% ± 14% of 

total blocks. However, animals clearly used alternation at the first turn location as a mnemonic 

strategy, doing so on 91% of trials (Fig 1I, mean 0.91 ± 0.09 s.d.; N = 95, P < 0.0001, one-sided 

Mann-Whitney U test; chance = 50%). 
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Individual subiculum neurons are active across analogous maze locations 

  To compare neural activity in SUB and CA1, we recorded from the same 6 animals 

during task performance using microdrives outfitted with tetrodes. 573 neurons were recorded 

from dorsal SUB (4 SUB animals), with the majority being from the proximal half of SUB, and 

401 neurons were recorded from dorsal CA1 (3 CA1 animals) (Figure 2B, Supplemental Figure 

1). Maximum and minimum firing rate thresholds were used to exclude inactive cells and 

putative interneurons, leaving a final dataset of 480 SUB and 298 CA1 neurons. 

  Commonly used measures for spatially tuned CA1 and SUB spike firing were largely 

consistent with previous literature. SUB neurons fire more (CA1 mean 0.89 ± 1.43 s.d. N = 298; 

SUB mean 3.62 ± 4.23 s.d. N = 480, P < 0.0001, one-sided Mann-Whitney U test) and exhibit 

lower spatial information per spike (CA1 mean 2.97 ± 1.18 s.d. N = 298; SUB mean 1.55 ± 1.21 

s.d. N = 480, P < 0.0001, one-sided Mann-Whitney U test) (Kim et al., 2012) as well as lower 

spatial selectivity (CA1 mean 63.9 ± 50.8 s.d. N = 298; SUB mean 31.1 ± 38.8 s.d. N = 480, P < 

0.0001, one-sided Mann-Whitney U test) (Kim et al., 2012, Lee et al., 2018). There was no 

difference between CA1 and SUB in spatial coherence on the maze (CA1 mean 0.49 ± 0.12 s.d. 

N = 298; SUB mean 0.49 ± 0.14 s.d. N = 480, P = 0.82, Mann-Whitney U test), unlike previous 

reports (Sharp & Green, 1993, Lee et al., 2018).  

  The differences in general spatial properties were qualitatively apparent in CA1 and SUB 

activity on the Triple-T maze. Individual SUB neurons often exhibited larger or more firing fields 

than their CA1 counterparts. Beyond these previously-described differences in spatial tuning, 

we observed that many SUB neurons displayed another differentiating trait: increased structural 

relationships between the firing fields of individual neurons. While some SUB neurons did show 

single fields on the track, activity of individual SUB neurons more often occurred in multiple 

locations that often shared spatial or functional features (Figure 2D). For simplicity, we will refer 

to this as representation of structural or functional analogy between maze locations. 
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  To quantify this propensity for multiple firing fields of individual neurons to distribute 

across analogous maze locations, we created linearized positional firing rate maps for each 

individual route. We then correlated individual neuron’s firing activity for non-overlapping 

portions of all combinations of outbound runs as well as between the two return runs. For 

neurons with fields at analogous locations along two or more routes, correlations should be 

high, whereas correlations will be low or negative if the locations of firing fields across 

analogous portions of two routes are very different (Figure 2E). Rate vector correlations are 

mathematically undefined in cases where a neuron does not fire at all along one of two routes, 

but we note that, practically speaking, this can be considered a low or zero correlation result. 

We found that SUB neurons were much more likely to exhibit high correlations between routes. 

SUB neurons had higher maximum correlations between routes (CA1 mean 0.29 ± 0.34 s.d. N = 

252; SUB mean 0.46 ± 0.30 s.d. N = 468, one sided KS test, P < 0.0001, KS test stat 0.29), as 

47% of SUB neurons had either internal or external routes with correlations exceeding 0.5, as 

compared to 26% of CA1 neurons (Figure 2F). Thus, our simple measure to detect similarity in 

positional firing rates for analogous but spatially segregated locations along same-length routes 

provides a strong indication of a qualitatively different organization of spatial tuning for SUB 

versus CA1 neurons. 

Analogous responses in subiculum include decreased trajectory dependence 

  Since individual SUB neurons exhibit much greater similarity in firing rates across 

analogous spaces of two routes than CA1 neurons, we next determined to what extent this is 

also seen in the two regions’ population activity patterns. We first present data for the long 

straight segments of the return routes that have functional and directional similarity but are 

separated by nearly 2 meters (Figure 3A, labeled B). Pearson correlations of population mean 

firing vectors between the two segments show higher correlations for SUB than CA1 (Figure 3B, 

CA1 mean 0.28 ± 0.09 s.d. N = 110; SUB mean 0.60 ± 0.08 s.d. N = 110, P < 0.0001, one-sided 
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Mann-Whitney U test). We observed low correlation in population activity patterns as compared 

to the correlations for odd versus even trials of the same location (All control comparisons, N = 

110, P <0.0001, one-sided Mann-Whitney U test). The final straight segments on the return 

routes maintain functional similarity but lack directional equivalence (Figure 3A, labeled C). Yet, 

SUB again had higher correlations than CA1 (Figure 3C, CA1 mean 0.25 ± 0.07 s.d. N = 59; 

SUB mean 0.64 ± 0.07 s.d. N = 59, P < 0.0001, one-sided Mann-Whitney U test; all control 

comparisons, P <0.0001, one-sided Mann-Whitney U test), and the segments’ correlations for 

SUB were not measurably lower than the directionally consistent segments (P > 0.9984, one-

sided Mann-Whitney U test). 

  We also used the population rate vector correlation technique to contrast pattern 

recurrence for SUB versus CA1 populations over overlapping portions of outbound routes. One 

well-described example of differentiation in CA1 is trajectory-dependent coding, wherein CA1 in-

field firing rates vary according to the trajectories taken through the field (Frank et al., 2000; 

Wood et al., 2000; Ferbinteanu & Shapiro 2003, Ainge et al. 2007; Grieves et al., 2016). In the 

Triple T maze, the center stem (Figure 3A, labeled D) is a segment common to all four of the 

outbound routes. Correlation of mean firing rates between pre-left-turn and pre-right-turn activity 

show strong trajectory dependence in the CA1 population. CA1 population activity correlations 

were low as compared to the correlations for odd versus even trials of the same trajectory 

(Figure 3D, CA1 mean 0.24 ± 0.07 s.d. N = 51; both P < 0.0001, one-sided Mann-Whitney U 

test). The SUB population exhibits far less trajectory-dependence than the CA1 population (SUB 

mean 0.66 ± 0.06 s.d. N = 51; P < 0.0001, one-sided Mann-Whitney U test; all control 

comparisons, P < 0.0001, one-sided Mann-Whitney U test). That is, the SUB population activity 

patterns largely generalize in the representation of this space despite the very different 

trajectories. We note that trajectory dependence is nonexistent in both CA1 and SUB for the 

space where the animals approached the final pre-reward choice point (Figure 3A, labeled E, 
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Figure 3E, CA1 mean 0.92 ± 0.02 s.d. N = 67; SUB mean 0.94 ± 0.03 s.d. N = 67, all control 

comparisons, P > 0.9999, one-sided Mann-Whitney U test). This indicates that trajectory-

dependence is dynamic in its expression for CA1 and for SUB, but much lower overall for SUB. 

  Finally, we examined encoding similarity as the animal approaches the goal locations 

(Figure 3A, labeled F). We hypothesized that SUB may generalize across the approaches to 

these four separate locations. Transitioning to the final segment, spatial locations diverge. 

However, correlations across the routes increased for both CA1 and SUB (Figure 3F, CA1 pre-

final segment mean 0.13 ± 0.07 s.d. N = 67, CA1 final segment mean 0.30 ± 0.04 s.d. N = 21, P  

> 0.0001, one-sided Mann-Whitney U test; SUB pre-final segment mean 0.45 ± 0.14 s.d. N = 

67, SUB final segment mean 0.61 ± 0.03 s.d. N = 21, P  > 0.0001, one-sided Mann-Whitney U 

test), with SUB again generalizing more (N = 21, P  > 0.0001, one-sided Mann-Whitney U test). 

Subiculum and CA1 population firing patterns chunk epochs differentially relative to task phase 

and maze structure 

  Given the striking differences between SUB and CA1 encoding of multiple task phases, 

we looked deeper into how population firing patterns shift relative to task phase and maze 

structure. For each region, we assembled ensemble firing rate vectors of the even and the odd 

trials separately, using all recorded neurons at each position along each route. We then 

concatenated these route-based positional rate vectors and calculated Pearson correlations to 

assess pattern similarity for each route location relative to all others (Figure 4AB, Cowen & Nitz, 

2012). The resulting correlation matrix can be used to compare how SUB and CA1 population 

activity patterns persist over contiguous locations and whether shifts in patterning are related to 

specific task phases or the beginnings and endings of maze segments. 

  Both SUB and CA1 populations reliably encode individual locations at similar levels. 

Values along the diagonal of the correlation matrix correspond to even versus odd trial 
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autocorrelations for the same location. If activity is consistent across trials at each location, 

correlations should be high (Cowen et al., 2014). This was the case for both SUB and CA1, as 

the median diagonal R values for both exceeded 0.7 (SUB = 0.76, CA1 = 0.74). The distribution 

of values for SUB was actually higher than that of CA1 (Figure 4C, one sided KS test, P < 

0.0001, KS test stat = 0.17). Thus, both SUB and CA1 population activity patterns are reliable 

across trials at any single location, consistent with an encoding of location. 

Representational scale 

  While both SUB and CA1 reliably encoded individual locations, the patterns in the 

correlation matrices suggest qualitative differences in spatial encoding. One feature of interest is 

the scale with which the two populations encode spaces. Consistent with historical precedent 

(Maurer et al., 2005), we operationalized the representational scale as the space surrounding a 

given location that is associated with population activity patterns that correlate at 0.5 or better to 

that location (Figure 4DE). This is determined by iteratively moving outward in both directions 

from any given location and finding the first position point at which the correlation value drops 

below 0.5. Notably, because task performance is associated with single directions of travel for 

all locations, drop-off points and their distance from any given location can be determined for 

the spaces visited both before and after the location of interest. The sum of these distances is 

the representational scale. Importantly, representational scale patterns were consistent for a 

wide array of correlation cutoff values (Supplemental Figure 2). 

  Representational scale of SUB was larger than CA1 (Figure 4F, one sided KS test, P > 

0.0001, KS test stat = 0.37) with a median scale of 27 cm for SUB and 20 cm for CA1. This 

scale value was not constant across locations, however (Figure 4G). Both SUB and CA1 had 

larger scales on the return runs (Figure 4H, SUB: one sided KS test, P < 0.0001, KS test stat = 

0.83; SUB: one sided KS test, P < 0.0001, KS test stat = 0.47). As a control to assess the 

validity of this dynamic change in scale, we created a bootstrapped distribution by randomly 
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shifting the mean odd-trial and even-trial positional mean firing rate vectors together for each 

neuron independently. This procedure preserves field integrity and spatial information on a 

single neuron level but randomizes relationships between field locations and the environment. 

SUB representational scale on the return paths was often larger than predicted by the shuffled 

population, showing that the representational scale is dynamic in response to the environment 

features, even within one environment (Figure 4G, 117/197 positions of return outside 99th 

percentile of shifted population bootstrap). CA1 is on the edge of expected representational 

scale for return runs, showing a similar but muted scale dynamic (54/197 positions of return 

outside 99th percentile of shifted population bootstrap). The two regions scale together (Figure 

4I, correlation of scatter, r = 0.49), suggesting a common underlying mechanism. 

Representational alignment and segmentation to maze structure and task phase 

  Another stark feature of the correlation matrices was the presence of square regions of 

high correlations around the diagonals for both the CA1 and SUB correlation matrices (Figure 

4A,DE). These regions are areas where the coding of the path is consistent, whereas their 

corners on the diagonal suggest locations that are spatially close but representationally more 

distant. To put it another way, the square regions indicate track regions that are chunked 

together and represented highly similarly. 

  To examine these regions of high correlation in quantitative detail, we found the 

difference in distances at which correlations drop off forward (to the right on the correlation 

matrix main diagonal) versus backward (to the left on the correlation matrix) at each location on 

the matrix diagonal and termed it the representational alignment (Figure 4DE). Positive values 

indicate forward-facing representational alignment relative to a specific location along a route in 

that a longer length of space ahead of the animal will exhibit similar population representation 

than the length of space behind the animal. Negative values indicate a backward-facing 

representational alignment in that a longer length of space leading up to a given track location 
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will exhibit similar patterning than the spaces traversed subsequent to that location. A uniform 

alignment value would indicate a constant balance and a random distribution of place fields, 

whereas, alignments oscillating between positive and negative values indicate segmenting of 

space. Both SUB and CA1 dynamically changed their representational alignments as the 

animals navigated the maze (Figure 4J, CA1: 26% (89/337) of positions outside 99th percentile 

of shifted population bootstrap; SUB: 54% (182/337) of positions outside 99th percentile of 

shifted population bootstrap). Further, the variance of representational alignment for both 

regions was far greater than the shuffled population bootstrap (Figure 4K), suggesting there 

may be representational structure causing the large variations. 

  We therefore hypothesized that the dynamics of representational alignment followed the 

maze and route structure. Transition points at which the sign of the representational alignment 

flip from negative to positive indicate the end of one similarly represented section and the 

beginning of another. These transition points are the peaks of the derivative of alignment 

(Figure 4L). To ensure these variations are beyond expected random fluctuations if the place 

field distributions were random, only peaks that surpassed the 99th percentile of the shuffled 

population bootstrap were considered. Here, again, a major dissociation in between SUB and 

CA1 populations was observed. Transition points for the SUB population clustered at turns 

(Figure 4M, SUB circular median = 10.8°, P = 0.3877, circular median test, H0 = 0°). As turn 

locations can define the structure of the path network itself, this indicates that in SUB, 

population rate vectors exhibit persistent patterning over individual straight path segments. To 

our surprise, CA1 also transitions in forward-facing versus backward-facing representational 

alignment in CA1 population activity patterns. Unlike SUB, CA1 transition points were not near 

the apexes of turns, but instead surrounded the turns (CA1 circular median = 126.0°, P = 

0.0023, circular median test, H0 = 0°). This distinction between SUB and CA1 shows a large-

scale population difference in SUB and CA1 organization, and indicates that spatial 
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representation in SUB cannot be considered as merely quantitatively different from CA1. 

Instead SUB and CA1 population activity patterns are organized differently relative to maze 

structure and task phase. 

DISCUSSION 

  We compared spatial and directional tuning of CA1 and SUB neuronal populations 

during performance of a spatial working memory task within a complex, multipath environment. 

While a multitude of studies have documented the role of CA1 in location mapping and 

navigation, it has not been determined whether SUB functions as secondary output of the 

hippocampal formation with slight differences in the tuning properties or if SUB tuning to location 

and orientation can be considered a qualitatively different form of representation. That is, can 

SUB be regarded as appendage of the hippocampus or a unique node among a distributed set 

of brain structures encoding different types of organism-environment relationships. Here, using 

a multipath network that allowed us to compare many spatial and movement variables, we 

discovered that in three main ways, SUB exhibits striking differences from CA1. First, the 

spatially isolated firing fields for individual SUB neurons often occupied analogous locations 

across the environment, whereas CA1 neurons did not bear fields at locations with structural 

similarity. Second, while both SUB and CA1 population activity patterns are dynamic with 

respect to scale of representation, SUB scaling is considerably greater. Finally, SUB and CA1 

populations differentially shifted in how they encoded contiguous locations behind versus in 

front of the animal’s current location. The recursion of SUB activity patterns at structurally 

analogous locations and the alignment of SUB population activity pattern shifts to the 

beginnings and endings of path segments evidences a role for this structure in encoding 

structurally-defined ‘chunks’ of the environment. Together, this evidence suggests that SUB 

may carry out a qualitatively different function during spatial navigation. 

Structural Analogy and Trajectory-Defined Discrimination Versus Generalization 
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  Perhaps the most striking result from this study is evidence for representation of 

analogous, but spatially separate locations through recurrence of SUB firing patterns. By 

‘analogous’ we refer to two or more locations that are spatially separate from each other, yet 

logically linked by reference to location within topologically similar pathways and/or by head 

orientations taken during travel through their locations. For humans, city street grids bear 

regularity in the orientations and intersections among individual pathways and, therefore, 

subsets of environmental locations have ‘analogy’ with respect to how they align relative to 

environmental boundaries. Thus, streets and avenues in major cities may be organized by 

north-south and east-west affordances for travel and give rise to emergent concepts such as a 

‘northwest corner’ or ‘a block’. The observed spatial and directional firing patterns of SUB 

neurons and their organized recurrence across the maze used in our task is suggestive of the 

emergence of encoding that reflects recurrence in environmental sub-structure. Recurrence 

based on repetition within the structure of a single path has been reported for entorhinal cortex, 

retrosplenial cortex and posterior parietal cortex (Alexander & Nitz, 2015; Nitz, 2012; Derdikman 

et al., 2009) and the reported presence of ‘axis-tuned’ neurons in an earlier publication from our 

group (Olson et al., 2017) can be interpreted as reflecting recurrence of individual neuron firing 

patterns over all paths having the same orientation. We note that CA1 neurons under some 

circumstances exhibit tuning to related locations, but that, in the present case, CA1 neuron 

population patterns exhibited very little recurrence in firing patterns. Thus, the transition from 

CA1 to SUB would appear to reflect a substantive shift from encoding of location in the 

environment to the encoding of multiple locations according to structural and/or functional 

analogy. 

  Related to the phenomena described here are findings from earlier research showing 

that SUB generalizes in its spatial firing patterns across different environments sharing the 

same-shaped boundaries and/or a singular, prominent distal polarizing cue (Sharp & Green, 
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1994; Sharp, 1997; Brotons-Mas et al., 2010). In the present work, SUB neurons generalize in 

their spatial firing patterns across widely separated environmental locations that are analogous 

with respect to the shape and layout of paths taken through them. The analogous 

representations of SUB neurons sharply contrast with CA1 neurons. CA1 place cells are highly 

specific to experiences, segmenting experience by place, movement, and even trajectory 

dependence during navigation (O’Keefe & Dostrovsky, 1971; McNaughton, 1983; Markus & 

McNaughton, 1995; Wood et al., 2000; Frank et al., 2000; Ferbinteanu & Shapiro, 2003). Here, 

CA1 place cells, as previously reported, are highly specific to the animal’s location and 

trajectory. CA1 firing patterns clearly distinguished not only all separate locations within the 

environment, but also the first section shared by the four outbound paths according to whether 

the animal would ultimately turn left (paths 1,2) or right (paths 3,4). 

  The factors that lead to the SUB representations of analogous locations is an open 

question, but orientation appears to be an important variable. On our maze, analogous locations 

sharing highly similar SUB firing patterns are often aligned in orientation, although they may 

also have opposing directions such as the second segment of paths 1,2 versus paths 3,4 and 

the end segments of the two perimeter paths. The axis-tuned neurons previously reported from 

a minor sub-population of the present dataset (Olson et al., 2017) may be an extreme form of 

this sort of analogous representation. This may reflect association of inputs from different sub-

populations of anterior thalamic neurons having opposite tuning by head orientation ((Taube, 

1995; Goodridge & Taube, 1997; Peyrache et al., 2017; Viejo & Peyrache, 2019; Frost et al., 

2020). Future work on environments where functionally similar spaces are not parallel may help 

tease apart whether the structural or functional aspects of the locations drive such responses in 

SUB neurons.  

  Previous work by Frank and colleagues (Frank et al., 2000) showed a high prevalence of 

path equivalency in deep entorhinal cortex neurons. These neurons fired in spaces that were 
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analogous in their movement sequences, such as on left turns on similar sub-paths within a ‘W-

shaped’ maze. The authors did not often see this pattern in CA1 neurons, however. Knowing 

both SUB and CA1 project to deep EC, the authors hypothesized SUB may play a role in this 

signal. Our data are consistent with this hypothesis and strengthen the possibility that 

analogous location representations are generated in SUB as a result of circuit interactions 

between EC, CA1, and anterior thalamic inputs that are tuned to head orientation.  

  An interesting quirk to our data exists in the trajectory dependence on the outbound 

routes. On the first segment leading into turn 1, CA1 population patterns almost completely 

differentiate trials in which the animal makes opposite choices at the upcoming turn. Even the 

SUB population demonstrates a much more moderate degree of trajectory dependence over the 

same locations. However, the segments leading to the final outbound turn (segment 3) show no 

trajectory dependence in either CA1 or SUB firing patterns. This difference could be due to the 

fact that the outbound path spaces subsequent to turn 1 are the same leading into both of the 

third turns (for paths 1,2 and 3,4). In contrast, different maze spaces lead into the first segment 

of all four outbound paths. We note here that the outbound turn 1 alternation pattern typically 

yields related alternation in the return paths leading into the first outbound segment.   

  Prior studies have either found strong evidence for trajectory-dependent modulation of 

place-specific activity (Frank et al., 2000; Wood et al., 2000; Ferbinteanu & Shapiro, 2003; Nitz, 

2006) or the near absence of it (Bower et al., 2005). For multichoice mazes, prior work suggests 

that trajectory dependence was similar at the first and second choice points of a double-Y maze 

(Ainge et al., 2007; Grieves et al., 2016). Our data evidence the fact that trajectory dependence 

is dynamic in its expression even within a single environment and task structure. We 

hypothesize that the difference in its prevalence preceding different choice locations may be 

related to action stereotypy or to the navigational strategy employed by the animal. In our study, 

animals quickly traversed segment 1 and alternated at the first turn at a very high rate, 91%. 
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However, the animals often slightly slowed preceding turn 3 and executed less regular turn 

choice patterns across trials. That is, the alternation patterns at turn 1 were not strongly 

observed at turn 3 such that different orders of paths to goal locations 1-4 were observed 

(Figure 2DE). We therefore suggest that the trajectory dependence is strongly related to relative 

degree of separation of the behavioral patterns. In other words, the trajectory dependence 

appears to follow the navigational strategy and patterns of the animals’ path selections in 

solving the task. Our data and associated hypotheses further predict that trajectory dependence 

should develop over learning and be more pronounced on tasks with more consistent 

transitions. We would predict that in our task, if path order was consistent, then trajectory 

dependence would appear for the locations leading into turn 3. If our theory is correct, it is also 

a potential indicator of the state of learning of the animal on a task. 

Representational Scale, Alignment, & Partitioning of Maze Segments 

  SUB neurons are known to have larger firing field sizes than those of CA1 neurons in the 

open field and on a track (Sharp & Green, 1994; Kim et al., 2012). It has been theorized that this 

may be useful for information transfer, as individual neurons carry more information (Kim et al., 

2012; Kintashi et al., 2020). Using a population correlation approach (Maurer et al., 2005) we 

have shown that the SUB population also encodes space at a larger scale than CA1 - a result 

that follows from the larger fields of individual neurons. 

  While larger scale was an expected finding, we also report that the scale of CA1 and 

SUB is dynamic, changing on different segments of the track. For larger track segments, the 

encoding expands such that similar patterns are observed across locations separated by larger 

distances. SUB carries a larger dynamic range than CA1 in this respect, but there appears to be 

parallel shifts in scale of representation between the two regions. This suggests a shared 

underlying cause. Differences in CA1 and CA3 scale are only known to exist across the 

longitudinal axis (septo-temporal axis) of the hippocampus (Maurer et al., 2005; Jung et al., 
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1994; Kjelstrup et al., 2008; Royer et al., 2010). This has been theorized to be due to a 

differential relationship between place fields and running speed across the longitudinal axis 

(Maurer et al., 2005). We therefore hypothesize that the increased running speed on longer 

track sections may be responsible for the dynamic scaling reported here, but emphasize that 

this influence can apply to the same population of neurons as opposed to expression only 

across the longitudinal axis. 

  We also examined the locations at which spatial firing patterns in SUB and CA1 shift. 

From these analyses, we find that CA1 and SUB population firing patterns partition the 

environment in different ways with SUB population shifts biased to the locations of path 

intersections.  The partitioning we observe is reminiscent of “chunking”, a proposed 

psychological phenomenon where information is grouped into intuitive components to facilitate 

memory (Miller, 1956). In our data, there are transition points of low representational scale 

separating areas of large scale. Before and after these transition points, SUB and CA1 patterns 

may persist across contiguous locations along the track. We note that, in such cases, the 

patterns preceding and following a transition point are different, and that this, in part, defines the 

transition point itself. Previous research has suggested SUB neurons’ activity results in a 

schematized chunking of space (Olson et al., 2017; Lee et al., 2018), and our results largely 

support this interpretation. Gupta et al. (2012) previously described similar dynamics in 

chunking for CA1 populations relative to inflection points in the animals behavior (e.g., turns and 

stopping points for reward). Our results complement their findings, showing that the activity 

patterns segmenting space in this fashion are prevalent even at a population level, occur with 

less frequency for SUB than for CA1, and, as stated, are biased to path intersections for SUB. 

  If chunking is indeed the outcome of spatially organized, non-continuous shifts in spatial 

representation, then an important question is how the information (space) is actually being 

grouped. This may lend insight into processing of the task and space. Instead of presupposing 
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the locations, we applied an unbiased analysis of all potential locations for transition between 

representational partitions (or “chunks”). Perhaps surprisingly, we found the transition locations 

were not the same for CA1 and SUB. SUB transition points near shifts between path segments 

(i.e., at corners) were consistent with the importance of orientation previously discussed. CA1 

transitions, on the other hand, often occurred within individual path segments, for example, the 

halfway point along segment 1 of outbound paths. These results may hint at the different 

functions of the two hippocampal outputs. The SUB, with its more orientation-based partitioning 

of maze space, may be more specific to structural components of the full path network while for 

CA1 transition may more closely align to action sequences. 

  To report that SUB is both chunking space and representing analogous spaces may 

seem superficially contradictory, but in many ways, the two features are orthogonal. Analogous 

representations treat spatially separate locations similarly, while chunking groups locally 

contiguous space. Together, both encoding features function to assemble and associate 

particular kinds of places together. Indeed, progress along a learned route of a particular shape, 

irrespective of its location in an environment, is encoded independently of action in many 

posterior parietal and retrosplenial cortex neurons (Nitz, 2006; Alexander and Nitz, 2015). SUB 

activity patterns may thus contribute to such encoding through input patterns to retrosplenial 

cortex that recur for topologically similar, but spatially separated routes.  

Encoding of Location 

  As with any set of neural analyses, the importance of the relative aspects of CA1 and 

SUB activity patterns depends on the transformation of information by downstream readers. 

Here, we have analyzed population activity using correlations of 0.5 as a baseline due to 

historical precedence (Maurer et al., 2005). While our results on representational scale, 

alignment, and chunking are robust and similar at a variety of thresholds between 0.3 and 0.7 
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(Supplemental Figure 2), what threshold is meaningful is ultimately determined by the neural 

networks receiving the signal. 

  The implications of what level of correlation is meaningful is especially important to SUB 

outputs, as differing levels will determine if SUB generalizes or separates locations sharing 

spatial variables. Odd/even trial population correlations at individual locations were extremely 

high in SUB and, if anything, higher than for CA1. The differences between these regions lies a 

step below the strong “place” correlations in population patterns for repeated visits to the same 

location while on the same trajectory. Thus, if downstream readers are extremely sensitive to 

small gradations in firing rates among a large population of neurons, many locations will 

therefore be differentiated and an encoding of location only may result. However, if output 

regions are less sensitive to variations in input patterns, the analogous locations will be read 

equivalently, and structural information will be the information transmitted. We cannot 

determine, as yet, whether structures such as retrosplenial cortex better resemble the location 

tuning of CA1 as opposed to the location and analogy encoding properties of SUB. However, 

we predict that population coding for different, but analogous locations in SUB often reaches 

values of 0.75 or higher, levels often considered adequate evidence for reliable encoding of 

individual locations (e.g., Maurer et al., 2005).  

Anatomical Context 

  Considering the importance of downstream readers, it is worth considering outputs of 

SUB and their known activity patterns in light of these novel input signals from SUB. SUB 

projects to many regions considered important for spatial navigation. One particular region of 

interest may be retrosplenial cortex. Retrosplenial cortex primarily receives its “hippocampal” 

input from SUB (Jay & Witter, 1991) and, like SUB, has been shown to also represent 

conjunctions of spatial and movement variables (Alexander & Nitz, 2015). The conjunctions 

seen in RSC often combine allocentric with egocentric variables such as proximity to a border 
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and locations of turns (e.g. Alexander et al., 2019; Alexander and Nitz, 2015), an aspect not 

seen in SUB to date. This may further indicate that SUB acts in part as a step before 

retrosplenial cortex along the transformation of spatial information into action.  

  Finally, these results throw into doubt the idea that the activity patterns in SUB are best 

understood as a mere transformation of CA1. If this is not the case, it raises the question as to 

what the other key drivers of the activity in SUB are. Strong cortical inputs exist from entorhinal, 

perirhinal, and postrhinal cortices and subcortical inputs from nucleus reuniens, the medial 

septum, and anterior thalamus (Witter et al., 1990; Witter et al., 2000; O’Mara, 2006; Witter, 

2006). Recent work has shown the importance of anterior thalamic inputs into SUB in guiding 

choice behavior at intersections. Temporary and permanent anterior thalamic lesions led to 

marked behavioral deficits and degraded spatial firing in SUB while CA1 place fields remain 

intact (Frost et al., 2020). Further research is needed into investigating the importance of these 

inputs for SUB function. 

Limitations and Future Directions 

  While our task and data have brought to light many new interesting aspects of CA1 and 

SUB activity during spatial navigation, there were aspects of the experiment we would have 

liked to improve. We believe the Triple T maze is a strength of our design, allowing assessment 

of multiple spatial variables, their conjunctions, and the ability to assess generalization. That 

said, in order to more conclusively tease apart contributions of variables that are highly 

conjunctive, even more data and combinations are needed. Including all 8 reward locations and 

repeating the task in both directions would have moved us much closer to this goal, but this 

amount of data is largely infeasible in single recording sessions. Future work may need to 

record animals over multiple sessions in a day to collect the varied behaviors needed to better 

disentangle the forms of information represented in SUB. 
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  Another limitation of our work is the anatomical distribution of our recordings. Most of our 

data was collected in proximal SUB. The proximal-distal gradient in SUB is well described and 

separates both activity patterns, sources of afferents, and projection targets (Naber & Witte, 

1998; Kim et al., 2012; Aggleton & Christiansen, 2015; Cembrowski et al., 2018). It is of note 

that this data, while appearing extremely spatial, is in the region of SUB that largely projects to 

and from lateral entorhinal cortex, not medial. Conversely, the object vector cells recently 

discovered in SUB appear to have been located predominantly in distal SUB (Poulter et al., 

2020). This leads us to speculate that the what/where division currently dominant in the field 

between lateral and medial entorhinal cortex may be a false dichotomy, and that in the context 

of more complex behaviors, lateral entorhinal cortex activity may be interpreted differently. 

Regardless, future work spanning the full proximal-distal extent of SUB on this or similar 

navigation tasks would be invaluable toward having a better understanding of the proximal-distal 

function of SUB for spatial navigation. 

CONCLUSION 

  This work has studied the properties of neurons in dorsal CA1 and SUB while rats 

navigated a complex path network. We have found that both CA1 and SUB dynamically adapt 

their encoding properties over different phases of the task but chunk those spaces in different 

locations. SUB neurons showed a propensity for activity at analogous functional or structural 

locations on the track, and the SUB population often encoded these analogous locations 

similarly. The differences in specificity and generalization between these two hippocampal 

outputs are stark and suggest SUB and CA1 may play complementary roles. Differentiating 

small differences as seen in CA1 is crucial for memory of individual events, but grouping similar 

information as in SUB is vital for extrapolation and a holistic cognitive map. As such, we believe 

these results point to complementary roles for CA1 and SUB in episodic memory and 

navigation, and that these roles may expand more generally to episodic storage versus 
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consolidation of abstract information. We hope future work will further evaluate these two 

hippocampal outputs side by side to clarify their roles in navigation and memory. 

METHODS 

Subjects 

  Subjects were adult male Sprague-Dawley rats (N = 6). Rats were housed individually 

on a 12-h light/dark cycle. Prior to experimentation, animals were habituated to the colony room 

and handled for acclimation for 1-2 weeks. The rats were food restricted for motivational 

purposes at 85-95% of their free-fed weight. No water restriction occurred. All rats were required 

to reach a weight of 350g (5-10 months of age) before surgery and experimentation. All 

experimental protocols adhered to AALAC guidelines and were approved by UCSD IACUC and 

UCSD Animal Care Program. 

Apparatus 

  All behavioral tasks were conducted on the “Triple-T” track maze. The Triple-T maze is a 

custom built environment made of black plastic with a running surface of a thin sheet of black 

rubber. This path-network is made of tracks that are 8cm in width. The overall dimensions of the 

environment are 1.6m x 1.25m and are elevated 20cm from the ground. Track edges are 

approximately 2cm in height, allowing the rat an unobstructed view to distal cues. Taller 10cm 

walls were included at internal sides of corners and to block potential shortcuts across small 

gaps between tracks near the reward locations. 

Behavior 

  Rats were habituated to the Triple T maze with two 30 minute epochs of free exploration 

with rewards scattered throughout the maze. Animals were then trained to conduct outbound 

routes, traversing from the midpoint of one of the long edges of the maze (Figure 1A, location of 
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rat), through the center space, to one of the four reward locations (Figure 1A, colored dots). The 

outbound routes from the start to the reward locations consisted of straight paths interleaved 

with 3 left or right turns. The first and third turn directions were choice points but the second turn 

was forced. Total outbound route lengths were 140cm with turns at 51cm, 87cm, and 118cm. 

Rewards (1/4 - 1/2 piece of Cheerios cereal) were manually delivered at the reward sites. 

Animals were trained to return to the start location via the outside paths after completion of an 

outbound route. We refer to these behaviors throughout as return routes. Animals were trained 

over 1-2 weeks to make these route traversals and to do so without stopping mid-route. At this 

point in training, we implemented the visit-all working memory task to be used throughout 

experimentation. The animals were rewarded at any of the four locations, but needed to visit all 

four locations before rewards were again available at previously visited reward locations. Over 

at least 2 additional weeks, animals were trained by simple trial and error to a criterion of 80% 

for ballistic (uninterrupted) path traversals, regardless of reward performance. Only after this 

level of running performance were animals surgically implanted for experimentation. 

Surgery 

  Rats were surgically implanted with 1-3 tetrode (twisted sets of four 12μm polyimide-

insulated tungsten or nichrome wires) arrays integrated into custom microdrives. Each 

microdrive held four to twelve tetrodes. Under isoflurane anesthesia, animals were positioned in 

a stereotaxic device (Kopf Instruments). Following craniotomy and resection of dura mater, 

microdrives were implanted. Microdrives were implanted relative to bregma with targeting 

coordinates consistent across animals. SUB: A/P −5.6 to −6.6 mm, M/L ±1.6 to ±2.7 mm; dorsal 

CA1:  A/P −3.8mm, M/L ±2.3mm. 
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Neural and Behavioral Recordings 

  Following a week for recovery from surgery, animals were retrained for at least 1 week 

before beginning recordings. This ensured adequate behavior and running ability with the new 

weight of the implant. Electrodes were moved ventrally in 40μm increments between most 

recordings to maximize the number of distinct units collected for each animal. Each microdrive 

had 1-3 electrical interface boards (EIB-16, Neuralynx) connected to a single amplifying 

headstage (20x, Triangle Biosystems). The headstages were tethered to a set of preamplifiers 

(50x) and a high pass filter (>150 Hz). These signals were input in the acquisition computer 

running Plexon SortClient software. Signals were recorded after digital filtering at 0.45–9 kHz, 

1–15x amplification (to reach a total of 1,000–15,000x amplification of the signal), and 40 kHz 

digitization. Waveforms from single units were isolated in Plexon OfflineSorter software. 

Waveform parameters used were peak height, peak valley, energy, average voltage, full width 

at half maximum, and principal components. Waveform clusters appearing to overlap with the 

amplitude threshold set for collection were discarded to avoid collection of only partial spiking 

data of neurons. Waveform amplitudes were monitored to ensure systematic fluctuation did not 

result in confounds for isolating single units. Recordings typically lasted 30-60 minutes. 

  After single unit isolation was complete, cluster quality was quantified using a modified 

isolation distance score as described in Olson et al. (2017, Figure 2B). Briefly, isolation distance 

(Harris et al., 2000) measures the cluster separation using the Mahalanobis distance between 

the cluster center and the nth closest noncluster spike, where n is the number of spikes in the 

cluster. The units of this are equal to cluster variance. Equivalently, isolation distance is the 

radius of the cluster center to the circle containing double the number of spikes as actually 

classified in the cluster. This is normalized by the cluster variance. As such, this measure is 

undefined when the spikes recorded is not at least double the spikes included in the cluster. To 

avoid this issue, Olson et al (2017) adapted this measure to be the minimum of the isolation 
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distance as defined by Harris et al. and the distance to the noncluster spike 20% into the 

noncluster spike distance distribution. This modification defines the value for all neurons and 

reduces the isolation distance for clusters with many spikes. This modification makes the criteria 

stricter, but this conservative adjustment more accurately represents cluster quality for tetrodes 

with one high firing neuron. Isolation distance is not a criterion used for excluding units in this 

study. Instead, it is presented here to show the high quality of neurons identified. 

  Animals’ positions were tracked during neural recordings using a camera located 2.6m 

above the recording room floor. Plexon CinePlex Studio software detected two LED lights on the 

animal’s surgical implant separated by approximately 5cm. Location tracking was captured at 

60Hz. At any given time point, position and orientation were determined using the average 

location of the two lights and the orientation of the vector between the lights. All animal 

movement data such as location, head direction, and derivatives are calculated from these 

values. 

  We recorded a total of 573 subiculum and 401 CA1 neurons from 6 rats. Relatively 

inactive neurons were excluded from analysis if their activity never averaged at least 3 

spikes/sec at any location on the maze. Interneurons were attempted to be excluded from 

analysis by removing neurons that averaged more than 3 spikes/sec at all locations on the 

maze. After exclusions, our dataset consisted of 480 subiculum and 298 CA1 neurons. 

Histology 

  Animals were perfused with 4% paraformaldehyde under deep anesthesia. Brains were 

extracted and sliced into 30μm - 50μm sections. Slices were Nissl stained to reveal the final 

depth of electrodes. Microdrive movement was used to reconstruct recording-depth profiles. 

These data were then compared to known anatomical boundaries of the regions of interest 

(Paxinos & Watson, 2006) to establish a final categorization of the source of each microdrive. 
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Filtering of Behavior for Fluid Route Traversals 

  To limit variation in behavior at each location, we only analyzed data for when the animal 

was performing a smooth, uninterrupted traversal of an entire route. We refer to these smooth 

traversals as uninterrupted trials. This permitted us to examine action potential firing rate data 

associated with stereotypical movements (forward running, turning) through all sections of all 

routes. The defined routes were the four internal outbound routes toward potential reward sites 

and the two return routes leading back to the internal entrance (Figure 1D). 

  A multistep process using custom MATLAB graphical user interfaces was used to 

identify uninterrupted traversals of each route. Users defined starting and ending gates for each 

route. The program then selects all trials crossing these locations with sustained running speeds 

of 3cm/s or greater throughout. Finally, a researcher verifies all identified trials did not contain 

either obvious interruptions in locomotion or significant deviation from the stereotyped path for 

that route (Figure 1D). This method separates stalled track traversals, reward periods, and 

behavior between trials from controlled action and spatial data. Individual recordings were 

excluded from analysis if the number of traversals on each internal route did not exceed 3. 

2D Positional Firing Rate Maps 

  To assess activity as a function of 2D space, we calculated individual neurons’ positional 

firing rates by dividing the total number of spikes at each location by the total occupancy time at 

that location. If only showing identified routes, only data identified as during an uninterrupted 

trial was used. Positional firing maps were smoothed using a 2D convolution with a Gaussian 

filter with s.d. of 1cm that also accounts for bins with no occupancy (Kraus, 2013). 
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Spatial Statistics 

  Many spatial statistics have been previously defined to summarize the spatially selective 

nature of neuron firing. First, we created 2D positional firing rate maps using 1cm square bins 

with no smoothing. We then calculated spatial information in bits per spike (Skaggs et al., 1993), 

 

  where i is each bin, pi is the occupancy of bin i, λi is the mean firing rate of bin i, and λ is 

the overall mean firing rate. Spatial selectivity (Skaggs et al., 1996) is large for neurons with 

firing fields that are a small portion of the environment and is simply the ratio of the max firing 

bin divided by the overall mean firing. Finally, spatial coherence (Kubie & Muller, 1989) 

assesses continuity of signals and is defined as the z-transform of the spatial autocorrelation 

between each bin and the average of its immediate neighbors. Here we used a Spearman 

correlation as the correlation and do not transform into Z coordinates. 

Linearized Firing Rate Maps 

  We also aligned neural activity to progression through each of the identified routes. For 

each recording, custom MATLAB software is utilized to generate a spatial template matching 

the average trajectory of the animal along each route in the horizontal (2D) plane. This 

approach ensures the best possible matching of animal behavior and positions taken across 

recordings and trials. Position samples included in the identified ballistic route traversals were 

mapped to the nearest template bins. Then the linearized firing is found by dividing the total 

number of spikes at each location by the total occupancy time at that location. Linearized firing 

maps were smoothed using a 1D convolution with a Gaussian filter with s.d. of 1cm that also 

accounts for bins with no occupancy (Kraus, 2013). The linearized firing rate is then averaged 

over all traversals the animal made for that recording to calculate the mean linearized firing rate. 
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Individual Neuron Analogous Route Correlations 

  To assess individual neuron’s similarity of representation across routes, a pairwise 

Pearson’s correlation was calculated for each neuron between each outbound route and each 

other outbound route. The calculation was on the vector of mean linearized firing rates between 

the non-overlapping portions of the routes. The same analysis was then applied to the two 

return routes. The maximum correlation of all correlations was used for the population analysis, 

as the sparse nature of activity in HPC and SUB renders most values undefined or near-zero. 

Of interest is whether any high correlations exist among any of the comparisons. 

Population Analogous Route Correlations and Correlation Matrices 

Population-wide similarity of route representations were also taken. For each position 

along the linearized track space, individual neurons’ mean firing rates were appended to create 

a population firing rate vector. Then, Pearson’s correlations were calculated of the population 

firing rate vectors of two locations of interest. Locations chosen include locations with similar but 

spatially separated locations or functions with respect to the trained behavior (i.e. two return 

routes, or close to the reward locations). If more than two analogous locations existed, pairwise 

correlations were calculated and then averaged across all pairwise combinations. 

As a control, the linearized firing rates for each neuron were split into odd and even 

traversals. For each neuron a new mean firing rate was calculated from the odd/even traversals 

and used to create two population firing rate vectors from non-overlapping trials. Correlations of 

the same space from these two odd and even vectors show the reliability of the signal and serve 

as a control for the limit of possible correlation given the consistency patterns of the population. 

Correlation matrices were also constructed to visualize the relationship of each pairwise 

set of positions across the linearized track space. As specified above, the linearized firing rates 

for each neuron were split into odd and even traversals. For each neuron a new mean firing rate 
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was calculated from the odd/even traversals. For each pairwise combination of positions, the 

population vector of odd traversal mean firing rates was correlated with the population vector of 

even traversal mean firing rates. By splitting the trials into non-overlapping sets and correlating 

these values, the diagonal value of the correlation matrix reflects a form of reliability of 

population activity for each position.   

Population Representational Scale, Alignment, and Transition Points 

The correlation matrices exhibit where and how similar population neural activity 

patterns are across the maze. We developed new and adapted old metrics to quantify some of 

these patterns. 

Representational scale was defined as the space surrounding a location that correlates 

above a given threshold with that location. This groups contiguous, similar space both in front of 

and behind the location. We used 0.5 as the correlation threshold, consistent with historical 

precedent (Maurer et al., 2005), for this analysis and its derivative analyses below, but a wide 

array of values resulted in similar results (Supplemental Figure 2). Representational alignment 

was operationalized as the difference in the amount of highly correlated space before and after 

the current location. More correlated space in front of the location is positive, while more space 

behind is negative. The derivative of the representational alignment shows how the alignment 

changes across the track space. The peaks of the derivative, termed the transition points, are 

points where the correlations move from backwards looking to forwards looking, indicating a 

separation in the representation of nearby locations. 

Representational Analyses Shifted Population Bootstrap 

  To assess the magnitude and validity of the fluctuations of our newly defined 

representational scale and alignment metrics, we created a bootstrapped distribution for 

comparison. This distribution was created by appending all of the routes linearized firing rates, 
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as done in the correlation matrix, then shifting the mean firing rates of individual neurons 

independently to create a new population where local neural activity field characteristics remain, 

but population level neural field distributions are random and unassociated with track features. 

New correlation matrices were created from this shifted population and all representational 

analyses were conducted. This procedure was repeated 1000 times, and 1st and 99th 

percentiles of the results were used as statistical comparisons for results expected by similar 

neurons with similar field properties by chance. 

Statistical Tests 

  Nonparametric tests were used throughout to avoid assumptions of normality in the data. 

The Mann Whitney U test was used to evaluate the statistical significance of behavior to chance 

and differences between SUB and CA1 across the different analyses, as well as comparisons of 

SUB and CA1 to odd trial or even trial control populations. The Kolmogorov-Smirnov test was 

used to assess if pairwise distributions of correlations from SUB and CA1 were significantly 

different. Representational scale, alignment, and transition points were compared to the 99th 

percentiles of a population created by bootstrapping the shifted linearized firing rates from the 

actual neural population. Circular median tests were used to compare CA1 and SUB transition 

points to the turn locations. No statistical methods were used to predetermine sample sizes. 

However, based on similar sample sizes reported in previous publications, we believe we have 

adequate power (0.8) or greater to detect significant effects. 

Data and Code Availability 

The data collected and analyzed in this study as well as the code used in all analyses are 

available from the corresponding author upon reasonable request. 
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 FIGURE 2.1: Robust Navigation of a Complex Environment 
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 FIGURE 2.2: Individual Subiculum Neurons Are Active in Analogous Spaces 
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FIGURE 2.3: Analogous Responses in Subiculum Include 
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FIGURE 2.4: Subiculum and CA1 Populations Chunk Epochs at Different Locations 
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SUPPLEMENTAL FIGURE 2.1: Summary of Recording Site Histological Data 
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SUPPLEMENTAL FIGURE 2.2: Representational Scale, Alignment and Transition Points are                                               

           Consistent across a Wide Range of Correlation Threshold Values 
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Figure Legends  

Figure 1: Robust Navigation of a Complex Environment 

A) Illustration of Triple-T navigational task recording environment. Animals begin at a starting 

point (center-bottom) and must navigate a three-turn sequence to arrive at one of four different 

reward locations. In the visit-all-4 reward schedule, rats must visit each of the four locations 

before revisiting any reward location. B) Behavioral tracking from a full sample recording on the 

Triple-T maze. Positional data is color-coded showing the animal’s average head direction at 

each position. C) Behavioral tracking, as in B, but with color coding showing average velocity, 

from 0 in blue to the max, 92cm/s, in yellow. D) Behavioral tracking of identified routes. Shown 

are all data labeled as uninterrupted runs from the same recording session in the visit-all-4 

reward schedule. In this setup, four outbound routes begin at the start point and end at four 

different reward locations. Two external routes are also defined encapsulating the paths from 

the rewards to the starting location. Routes are minimally translated and stretched for 

visualization purposes. E-I) Box plots of per behavioral session performance metrics (red bar: 

median; box limits: first and third quartiles; whiskers: range of non-outlier data points). In each, 

the dotted red line represents chance. E) Proportion of rewarded runs. F) Proportion of shorter 

return routes taken. G) Proportion of visit-all-4 reward blocks without a mistake. H) Proportion of 

the most commonly run block pattern from each recording. I) Proportion of left/right alternations 

at the first choice point. 

Figure 2: Individual Subiculum Neurons Are Active in Analogous Spaces 

A) Electrode placement in CA1 (blue, 3 rats) and SUB (red, 4 rats). Lines end at the terminal 

identified locations of tetrode bundle tracks. B) Isolation distance waveform discrimination 

quality metric for both CA1 (top) and SUB (bottom). C) Positional firing rate maps of example 

CA1 neurons, color mapped from 0 (blue) to the mean + 3 s.d. (yellow) for each neuron. The 
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max value is written in each map. D) Positional firing rate maps of example SUB neurons, 

colormapped as in C. E) Left: Two dimensional spatial maps of mean firing rates for individual 

neurons highlighted in C and D, mapped as a function of route and track position. Like Figure 

1C, routes are minimally translated and stretched from the actual track location to separate 

each map for visualization purposes. Colormap scaling is identical to C. Right: Linearized mean 

firing rates as a function of routes for the corresponding neurons on the left. The routes for each 

graph are depicted on the right. Pearson correlations of the two return routes are shown. When 

one route has no activity, correlations are undefined (top). G) Population histogram of maximum 

pairwise correlations of routes for individual cells. If only one route had activity, the correlation 

was undefined.  

Figure 3: Analogous Responses in Subiculum Include Decreased Trajectory Dependence  

A) Schematic of Triple-T maze. Highlighted regions are analyzed in the following panels 

corresponding with the labels. White dotted lines show animal routes, with solid red portions 

indicating regions analyzed and shown in this figure. B-F) Left: Pearson correlations of 

population mean firing vectors, and Right: box plots of the Pearson correlation distributions. In 

all panels, CA1 data is blue and SUB is red. Solid lines are across route segment comparisons. 

Dotted lines are odd versus even correlations within one group. For all box plots, black bar: 

median; notch: comparison interval at 5% level; box limits: first and third quartiles; whiskers: 

range of non-outlier data points; +: outliers). Subscript O is for odd trial population data, while E 

for even trial population data.  * denotes Mann Whitney U test with P < 0.05. B) CA1 and SUB 

population correlations between the long straight segments of the two return routes. C) CA1 and 

SUB population correlations between the final straight segments of the two return routes. D) 

CA1 and SUB population correlations of the center stem split according to upcoming turn 

direction.  E) CA1 and SUB population correlations of the two straight segments preceding the 
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final outbound turn, split by upcoming turn direction. F) CA1 and SUB population correlations of 

non-overlapping outbound run segments. 

Figure 4: Subiculum and CA1 Populations Chunk Epochs at Different Locations 

A) Odd versus even trials population correlation matrices for CA1 (left) and SUB (right). The 

vector of mean firing rates for all recorded cells in the given region are correlated across each 

pairwise position and route combination. High correlations (yellow) indicate similar encoding of 

the two spaces. The routes that are linearized are depicted next to the corresponding 

rows/columns. Dotted white lines indicate turn apexes. B) Example population correlation 

calculation. The matrix value indicated by the red arrow on A is the correlation of the odd or 

even mean firing rates from all neurons at the corresponding route and position locations. Here, 

it is two corresponding locations from the two return routes. The color mapped value is the 

Pearson correlation of these two ensembles. C) Histograms of odd versus even trials population 

correlations for the same locations. This corresponds to the diagonal values in the population 

correlation matrices. D-E) Representational scale and alignment examples. D) Center: 

Subsection of population correlation matrix highlighted in A. Contiguous row-wise off-diagonal 

values above 0.5 are mapped to color on the same scale from A. The remainder of the 

submatrix is mapped black to white. The width of the above threshold region (representational 

scale) is shown on the left along the route space. The difference in forward/backward extent of 

the above threshold region (representational alignment) is shown on the right. Scales are in cm. 

Black lines show turn apexes, while dotted blue lines show segmentation transition points. E) 

Same as D, but for SUB. Chunking edge lines are in red not blue.  F) Histogram of 

representational scale of CA1 (left, blue) and SUB (right, red). Inset: box plots of same data 

(bar: median; notch: comparison interval at 5% level; box limits: first and third quartiles; 

whiskers: range of non-outlier data points; +: outliers). * denotes Kolmogorov-Smirnov test with 

P < 0.05. G) Mean representational scale for the outbound (left) and return (right) runs for both 
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CA1 (top) and SUB (bottom). Dotted lines indicate bootstrapped 1st/99th percentile thresholds. 

H) Representational scale distributions for outbound and return routes. * denotes Kolmogorov-

Smirnov test with P < 0.05. I) Scatterplot of CA1 (x axis) versus SUB (y axis) representational 

scale at identical locations for outbound (dark grey) and return (grey) routes. J) Mean 

representational alignment for the outbound (left) and return (right) runs for both CA1 (top) and 

SUB (bottom). Dotted lines indicate bootstrapped 1st/99th percentile thresholds. K) Variance in 

representational alignment for CA1 and SUB compared to bootstrapped 99th percentile. L) 

Mean derivative of the representational alignment for the outbound (left) and return (right) runs 

for both CA1 (top) and SUB (bottom). Dotted lines indicate bootstrapped 1st/99th percentile 

thresholds. Peaks (transition points) are locations of maximum change from reverse to forward 

representational alignment. M) Distributions of transition point distances relative to nearest turn 

apexes for CA1 (top) and SUB (bottom).  

Supplemental Figure 1: Summary of recording site histological data.  

A) Recordings of CA1 neurons (N = 401) were obtained from a total of six four-tetrode bundles 

in three animals. Numbers of total recorded neurons and numbers of neurons included above 

each figure. Red arrows depict tracks left by the bundles and their approximate endpoints. All of 

the recording sites were restricted to the dorsal CA1 while one (BL2-right) was additionally 

moved ventral to DG after main-experiment (DG data not included). B) Recordings of SUB 

neurons (N = 573) were obtained from a total of six four-tetrode bundles in four animals. Red 

arrows depict tracks left by the bundles and their approximate endpoints. Three of the recording 

sites were restricted to the SUB while three (NS15-left, the lateral bundle in NS16-right, and 

NS23-right) were in a transition zone bordering the CA1 sub-region. Abbreviations: RCTX 

(retrosplenial cortex), DG (dentate gyrus), SUB (subiculum) 

Supplemental Figure 2: Representational Scale, Alignment and Transition Points are Consistent 

across a Wide Range of Correlation Threshold Values  
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A) Representational scale as a function of correlation thresholds for each of the four outbound 

and two return runs. Top Row: SUB population. Bottom Row: CA1 population.  B) 

Representational alignment as a function of correlation thresholds for each of the four outbound 

and two return runs. Top Row: SUB population. Bottom Row: CA1 population. C) 

Representational alignment transition points as a function of correlation thresholds. Top Row: 

SUB population. Bottom Row: CA1 population. 
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CHAPTER 3: Self-Motion Independent Mapping of Route Structure in Parietal Cortex 

Abstract 

  Posterior parietal cortex (PPC) has been the target of neuroscientists for decades 

seeking to uncover its role in cognitive processes. Evidence from humans, non-human primates, 

and rats all have demonstrated PPC to be involved with the perception of space across many 

frames of reference defined by the animal’s body (egocentric), and the environment itself 

(allocentric). This remains true across many species and rodent studies in particular afford 

neuroscience a flexibility in experimental design that is unattainable through other model 

subjects in that rat nervous systems can be recorded as the subject moved around relatively 

unrestrained. Rodent studies have demonstrated that the shapes of routes as defined by the 

specific self-motion sequence undertaken is a powerful modulator of PPC neuron activity in rats. 

It remains unknown to what extent space beyond self-motion is represented in the activity of 

PPC neurons. We studied the activity of PPC neurons on a structured path-network to 

investigate the role allocentric environmental structure has on individual neuron activity. We 

describe a population of parietal cortex neurons that exhibit activity patterns consistent with the 

encoding of structure of a route for instances when self-motion sequences are exactly opposite 

one another. 

Main Text 

INTRODUCTION  

Moving across space, whether it is tapping a single finger onto a keyboard or locomoting 

the entire body across a field requires an appreciation of the space which one is moving at the 

appropriate level on which one is moving. Our awareness of these spaces comes from our 

nervous system’s ability to associate relevant sensory stimuli together to mentally create 

relevant frames of reference on which our attention can be placed. Considering the space 
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between our hands and the keyboard as one frame of reference allows for decision making 

processes to rapidly calculate efficient pathways between the hands and each key which needs 

to be pressed, the shapes of these pathways having unique meaning within that frame of 

reference. Within the brain many regions of sensory cortex exhibit spatial responses with regard 

to the location of a stimulus relative position to the body (Holmes, 1918; Penfield & Boldrey, 

1937; Montero & Torrealba, 1973). Association cortices, like posterior parietal cortex (PPC), 

integrate activity across many different sensory modalities (Krieg, 1946; Jones & Powell, 1970; 

Rushworth et al., 2005) and demonstrate neural responses which discriminate spatial location of 

sensation across many species (Gottlieb et al., 1998; Connolly et al., 2003; Merriam et al., 

2003; Nitz, 2006; Bremmer et al., 2013). These responses are seen to manifest in a variety of 

ways across studies and species. The inherent multimodal nature of PPC, in one way suggests 

that it should be expected to find neurons that have their activity modulated by the specific 

experimental task being used.  

PPC is densely interconnected with other regions of cortex which process visual 

information (Miller & Vogt, 1984; Montero, 1993), vestibular information (Guldin & Grüsser, 

1992), somatosensory information (Burton, 1986), and other association cortices (Whitlock, 

2008; Agster & Burwell, 2009). Of particular interest is the anatomical junction PPC is placed at 

within a circuit connecting efferent information flow of the hippocampal formation to motor 

cortices (Yamawaki, et al. 2016), along what could be described as a space-to-action pathway 

(Olson et al., 2019). This anatomical consideration would place PPC as a mediator for 

transforming spatial information from the hippocampus into a usable motor command by 

secondary motor (M2) and primary motor (M1) cortices. This framework with which to interpret 

rodent PPC data aligns with many previous studies investigating PPC function in other animals.  

Clues to the general function of PPC in humans historically has come from lesion 

studies. Lesions to this region of the cortex create profound deficits in everyday life with regard 



 
 

84 

to working memory, spatial navigation, motor planning, attention, and perception  (Holmes, 

1918; Holmes & Horrax, 1919; Brain, 1941; Denny-Brown et al., 1952; Critchley, 1962, Levine & 

Mohr, 1978; Damasio & Benton, 1979; Bisiach et al, 1979).  These deficits are rarely confined to 

a single sensory modality but rather seem to impact many sensory and motor systems.  This 

mapping across reference frames can also been seen in neglect syndrome of human patients 

where the patients seem to lose their perception or attention to the side of an object across 

many frames of reference such as their own body (Bisiach et al., 1979) or an image they are 

tasked with paying attention to (Heilman & Valenstein, 1979).  

Findings from human patients accompany studies performed using neurophysiological 

recordings in nonhuman primates which have shown direct involvement of PPC neurons in 

motor planning (Cui & Andersen, 2011), working memory (Chafee & Goldman-Rakic, 1998), and 

what has been described as a mapping of space for the intention to move some effector to 

(Andersen & Buneo, 2002). The specific cognitive processes being probed, as well as the tasks 

being performed, vary significantly across studies. Consistently PPC has been seen to involve 

itself with the perception of space and spatial relationships. These studies have helped imagine 

PPC as a region of the brain tasked with mapping one set of coordinates defined by one or 

several sensory modalities onto another set of coordinates which can be utilized by motor 

systems (Pouget & Sejnowski, 1997). 

Based on anatomical homology with primates (Krieg, 1946) it has been theorized that 

PPC in the rodent brain should also have a critical function in spatial processing, particularly for 

attention and working memory processes (Corwin & Reep, 1998; Reep & Corwin, 2009). Lesion 

studies in rats have shown distinct motor deficits (Kolb & Walkey, 1987), perceptual memory 

deficits (Chiba et al., 2002), path integration deficits (Save et al., 2001), and route planning 

deficits (Kolb et al., 1994). One benefit to working with rodents as the previous studies do, is the 

relative flexibility in experimental design. Neurophysiology studies in rodents more so than in 
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primates are poised to incorporate interesting and meaningful spatial relationships into 

experiment design. Indeed studies directly investigating the spatial properties of rat PPC neuron 

activity have found encoding of route shape through comparing activity of neurons on 

equivalently shaped routes (Nitz, 2006). And various route-structures have been demonstrated 

as viable frames of reference to explain activity profiles (Nitz, 2009; Nitz, 2012).  

Alongside studies outlining the theoretical understanding of PPC in animals as an area 

of spatial sensitivity are a number of studies that describe PPC neuron activity with regard to 

self-motion (Kawano et al., 1980; Andersen & Mountcastle, 1983; McNaughton et al., 1994; 

Wilber et al., 2014; Sasaki et al. 2020). These self-motion responses could be expected 

considering PPC is connected to cortical regions, RSC and M2, which also have large 

populations of neurons modulated by self-motion (Alexander & Nitz, 2015; Olson et al., 2019). 

These self-motion representations and how they are modulated in various contexts are central 

in many theories regarding the frames of reference along which PPC is uniquely sensitive to 

(Save & Poucet, 2000; Cohen & Andersen, 2002; Bicanski & Burgess, 2018 ).  

From these theories on PPC integrating self-motion one could get the idea that the 

spatial frames of reference PPC neurons are sensitive to are restricted to being fundamentally 

egocentric. In many ways even studies into PPC responses to frames of reference such as 

route shape would suggest the shape being referenced needs to be equivalent in self-motion 

(Nitz, 2006). What has yet to be demonstrated is an explicit investigation into if spaces of similar 

structure but different, or opposite self-motion profiles elicit similar response profiles in PPC. If 

so this would suggest that PPC is capable of encoding space in a manner which is divorced 

from the commonly studied self-motion. It could be predicted, from previous studies, that self-

motion in the form of linear and angular velocities dictate possible spatial coding in PPC. It could 

also be predicted that PPC neurons respond to structural similarity more generally as a frame of 

reference and thus will represent space in a self-motion independent fashion.   
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To better understand potential spatial firing properties we examined the neuron activity 

profiles of 236 rodent PPC neurons while rats (n=5) navigated on a path-network consisting of 

several interconnected pathways. The structure of the environment in addition to application of 

specific rules constituting a working memory task allow for an assessment of the animal’s 

spatial knowledge based on how well they are able to utilize the appropriate routes. All the 

pathways shared a consistent structure of straight portions and 90° turns. The difference in 

shape for the routes comes from the combination of specific right-left turns that bring the animal 

to their destination. The first and third turn for each internal route consisted of a left/right 

decision-point which the animal could choose. This choice of environment allows investigation 

into how differently shaped pathways, which are similar in structural connectivity, influence PPC 

neuron activity. This is an important consideration to be made as structure is known to be 

encoded for in the spatial navigation system (Dabaghian et al., 2014; Johnson et al, 2021), and 

PPC is known to respond across several frames of reference with a bias for the particular shape 

of routes (Nitz, 2009; Nitz, 2012). 

During periods of engaged task running we find a population of individual PPC neurons 

which remain significantly correlated in activity across periods of exact opposite self-motion 

sequences. At the population level we show significant variability across individual routes for the 

ability of self-motion to predict firing of neurons. Using the same method we demonstrate that 

PPC neurons highly correlated to structure of route are not tuned for self-motion, whereas PPC 

neurons exhibiting significantly negative correlations in activity patterns across routes of exact 

opposite self-motion profiles were significantly tuned for angular velocity. This research 

identifies a population of PPC neurons significantly tuned to a novel frame of reference; space 

beyond self-motion as defined through task-structure. This underlines the importance of task 

structure beyond what can be considered through self-motion similarity to be considered when 
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analyzing PPC datasets.   

RESULTS 

 Animals Perform task very fluidly and engage with individual routes equivalently  

  We trained 5 male Sprague Dawley rats to navigate on a  “Triple-T” structured path 

environment during the context of a working memory task (Johnson et al., 2021). The rats were 

trained to collect food reward at 4 specific locations (FIG 3.1A), and were only permitted a single 

direction of travel while navigating the internal pathways. Each pathway is defined by a unique 

action sequence of left or right turns and in that regard are very different from one another (Fig 

3.1B), however all routes shared structural similarity in that the turn locations along each route 

located equivalently through each route (Fig 3.2C). The rats become very proficient in this task 

(FIG 3.1D) collecting a reward for about 84% of all traversals (s.d. = 6.88%) in a single 

recording. Animals frequently utilized a number of strategies including the use of the shorter 

return arm to return back to the main stem of the maze (Fig 3.1F mean = 0.9197 s.d. = 0.1075 ) 

alternation (FIG 3.1H mean = 0.8973 s.d. = 0.0916) at the first decision point, while not 

repeating a memorized pattern (Fig 3.1G mean = 0.4016 s.d. = 0.173).  

Animals navigated at consistently high speeds (FIG 3.1I,J) and with consistent angular 

velocities (Fig 3.1K,L ). The profiles of linear velocities were seen to be consistent across routes 

(Fig 3.1M top) whereas the profiles for angular velocities were seen to differ across route 

comparisons dramatically (Fig 3.1M bottom) 

Individual PPC Neurons Variably Tuned to Self-Motion Across Routes 

 Frequently applied measures of activity and of calculating self-motion tuning were 

applied to each neuron. PPC neurons fired on average 5.6Hz during track running recordings 

(s.d. = 7.67Hz) (Fig 3.2B).  
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From the creation of spatial ratemaps many PPC neurons appeared to be strongly tuned 

to angular velocity on one or most of the triple-T’s routes (Fig 3.2C). This was confirmed by 

GLM analyses demonstrating a significant decline in NMSE values for pGLMs lacking angular 

velocity (Fig 3.2D). Another population of PPC neurons had reliable activity profiles with 

equivalent strength of firing to their counterparts which were tuned to angular velocity. This 

second population of neurons however demonstrated no clear relationship between firing 

profiles and either linear nor angular velocities (Fig 3.2E). These neurons had characteristically 

elevated NMSE values and as expected were insensitive to pGLM analyses (Fig 3.2F).  

The entire population of PPC neurons’ GLM analyses exhibited a heterogeneity in 

accuracy across the different routes (Fig 3.2G). With minimum performance of cGLMs at mean 

NMSE = 0.9707 s.d.= 0.0337; correlation value = 0.1474 s.d. = 0.8696. Mean performance of 

cGLMs doing better at mean NMSE = 0.8408 s.d = 0.136; correlation value = 0.3214 s.d. = 

0.1014. Maximum performance with mean NMSE = 0.6514 s.d. = 0.2496; correlation value = 

0.4983 s.d. = 0.1424. This heterogeneity is reflected in pGLM accuracy across neurons showing 

performance for minimum impact pGLM LV NMSE = 0.7515 s.d. = 0.2663 correlation = 0.0659 

s.d. = 0.0676; pGLM AV NMSE = 0.7107 s.d. = 0.2608 correlation = 0.0616 s.d. = 0.066 ; mean 

impact pGLM LV NMSE = 0.9004 s.d. = 0.1371 correlation = 0.2030 s.d. = 0.0959; pGLM AV 

NMSE = 0.8886 s.d. = 0.1366 correlation = 0.2216 s.d. = 0.0883 ; maximum impact LV pGLM 

NMSE = 0.9911 s.d. = 0.0184 correlation = 0.3740 s.d. = 0.1447; AV pGLM NMSE = 0.9919 

s.d. = 0.0179 correlation = 0.4307 s.d. = 0.1461. Proportional change in NMSE and correlation 

are presented to give a better illustration of how scores vary across routes.  

Identification of Environmental Structure Encoding in PPC  

Using linearized rate vectors for each neurons we calculated the correlation value 

(Pearson’s r) for each neuron across routes in a pairwise fashion. An example of a neuron with 

strong general route-route correlations is seen in Figure 3.3A (top). An example of a neuron with 
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generally negative correlation values with the exception of route comparisons hat share similar 

angular velocity profiles is seen in Fig 3.3A (bottom). We defined neurons as being significantly 

tuned to the structure of the environment on three specific examples: route 1 and route 4, route 

2 and route 3, and the two return routes. Each of these comparisons highlight similarities in 

spatial structure while differing completely in angular velocity profiles (Fig 3.1M). For each 

comparison tuning was defined by neurons inter-route correlation being above or below the 

mean and 2 standard deviations for an equivalent distribution of correlation values coming from 

a collection of shuffled data. At the same time neurons needed to exhibit stable activity along 

the spatially defined route through the correlation of each route’s data with itself split in an 

odd/even traversal fashion. Neurons that fell above or below two standard deviations for both 

criteria were selected out for further analyses (Fig 3.3B). In all three instances of oppositely 

shaped routes we found neurons that had significantly elevated correlation values (dubbed ‘A’ 

neurons in each instance). Not as surprising were the population of neurons, dubbed ‘B’ 

neurons, which responded with significantly negative correlation values for these path-

comparison.  

To test the relative strength of self-motion for the activity profiles within each selected A 

& B population a pGLM analysis was performed (Fig 3.3C). Neurons that were classified as ‘A’ 

for either their 1:4 correlation or their 4:1 correlation were included in the ‘A’ data on the left, a 

similar classification scheme was used for each ‘A’ and ‘B’ population throughout. The 

cumulative change in NMSE score was calculated for each population and tested against one 

another using a 2-tailed t-test. This revealed that ‘A’ and ‘B’ neurons consistently differed only 

with respect to their apparent angular velocity sensitivity with those in the ‘B’ classification 

regularly having elevated values compared to the ‘A’ population. A slight opposite trend could 

be seen for the population of ‘A’ and ‘B’ neurons for route comparison 1 & 4 when linear velocity 

is removed. This suggests that, consistent with previous reports (Nitz 2012), linear velocity may 
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still be important for modulating activity patterns across routes. Interestingly this trend does not 

occur for the comparison across the two return routes which share equivalently long pathways 

where high speeds are achieved by rats (Fig 3.1I). 

DISCUSSION  

PPC neurons, as recorded on the context of an environment with complex structure, are 

capable of encoding the general structure of a route beyond what can be described through 

self-motion. This sensitivity to structure presents itself on routes which share a general 

connectedness with the greater environment. This finding progresses our understanding of how 

allocentric frames of reference are construed within PPC neuron activity. PPC, while often 

studied with regard for self-motion defined space, is capable of spatial representations anchored 

to allocentric frames of reference relevant to route structure during spatial navigation. It could be 

expected that these spatial representations will be shown to be functionally related with spatial 

representations in connected cortical regions such as M2 (Olson et al., 2019) or RSC 

(Alexander & Nitz, 2015). In order to better examine how spatial representations in these 

regions differ tasks which afford sufficiently complex environments may be needed in order to 

provide a sufficient amount of frames of reference with which to consider the data. Even though 

neurons in M2, PPC, and RSC all are modulated by allocentric frames of reference it should be 

expected that the particular representations in each region will align to some frames of 

reference more than others depending on where it is recorded. These differences may be subtle 

and require multiple behavioral tasks to fully appreciate as well as seen previously that imposed 

structure on unrestrained running in the form of a laser to chase following a highly predictable 

pathway changes the temporal component of neuron activity (Alexander et al. 2020). With 

increased structure inherently comes with a restraint on the degrees of freedom with which an 

animal is allowed to move, complexity of the structure in the form of many paths interconnecting 
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is a relatively controlled mechanism to experimentally probe the relationship structure and 

complexity have on neural dynamics.  

Previous studies have examined how activity profiles of PPC neurons reflect specific 

shapes of routes (Nitz, 2006; Nitz, 2009; Nitz, 2012). These ‘route-cells’ have been some of the 

purest forms of spatial representation described in PPC neurons. PPC neuron activity can 

reflect the specific shape of a route regardless of where, in space, that shape was ran. Finding 

that PPC neurons modulate responses along structural frames of reference such as route 

recurrence additionally gave tremendous insights into how structure can guide the frame of 

reference which PPC neuron activity is tuned to. From this an open question remained asking 

how the dynamics of PPC neurons would reflect routes that shared general features but were 

exact opposite in self-motion defined shape.   

Structure of the environment, which is often discussed in this field as topology, is a 

known feature of the spatial navigation system which modulates the activity of neurons 

(Dabaghian et al., 2014; Rueckemann et al., 2021). However there has yet to be a 

comprehensive theory as to how the features of topology are encoded for in the first place. PPC 

neurons clearly demonstrate the ability to encode for positions along a structurally complex 

maze in a manner that corresponds to route position in a fashion which generalizes across 

routes of similar structure indifferent to the specific shape being dissimilar, a feature which may 

be construed as topology encoding by some.   

Representations of structural similarity throughout the brain are beginning to be 

appreciated (Johnson et al., 2021). This posits shift in attention for neuroscience away from the 

classically defined ‘cell types’ which populate many regions of the spatial navigation system 

which respond to a very specific feature in the environment (O’Keefe, 1976; Taube et al., 1990; 

Lever et al., 2009). Many of these spatial representations, such as the head direction signal, 

occur in various forms throughout the spatial navigation system (Stackman & Taube, 1998;  
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Taube & Muller, 1998), work presented here suggests that at least for some of these regions 

redundant signaling may be attributed to the environment that is being utilized not being 

sufficiently complex to extract out all the frames of reference which are important to the spatial 

navigation system.  

Finding that PPC neurons are capable of encoding routes of different shapes adds to a 

deeper understanding of the computational abilities of PPC neurons. These neurons as a 

population encode for self-motion as many other rodent studies have found (McNaughton et al., 

1994), but do so in a dynamic fashion not well described by previous studies. PPC neurons are 

thought to integrate self-motion cues across time (Whitlock et al., 2012, Alexander et al., 2020), 

and this integration is proposed to be the base for PPC neurons ability to be tuned to various 

frames of reference (Save & Poucet, 2009). It will be an exciting advancement to see how 

timescales of integration are influenced by additional layer of structure during navigation and 

how that may serve as a foundation to the creation of the frames of reference observed in PPC.    

What these routes do have in common most is the progression through each where 

deflections in self-motion occur. Seeing the space in this generalized frame of reference helps 

interpret the many examples of structurally-tuned PPC neurons which appeared to respond 

similarly to all internal routes in a fashion qualitatively different from the external routes (Fig 3.2 

E). Many of these PPC neurons most likely had heterogeneous scores on the GLM decoding 

analysis for this reason; as a neuron tuned along this frame of reference might respond similarly 

for positions where self-motion is dissimilar, and may only respond on the internal or external 

routes in a reliable fashion.   

The ability to utilize rodents as subjects in an experimentally flexible manner means that 

a variety of structural contexts ought to be able to be applied in researching PPC. It has recently 

been shown that PPC self-motion tuning can be significantly modulated by rats running a 

predicted path in space (Alexander et al., 2020) additionally those authors found that a neural-
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network decoder’s ability to predict individual activity profiles from self-motion alone had an 

increased window of elevated performance on those same structured runs. The ability of PPC to 

learn, associate, and represent spatial structures may underlie many of the studies performed 

on PPC neurons in other animals. For instance a primate being studied on a delay match-to-

place experiment may have neurons recorded which generalize the structure of motor output 

about to be performed; and if an insufficient number of discernable motor patterns were being 

performed findings may be conflated with PPC neuron sensitivities to imposed spatial structure. 

Neural coding in this form in a structure interconnected with motor cortices may even underlie 

observations such as  M1 neurons encoding for spatially defined pathlets (Hatsopoulos & 

Suminski, 2011). Additionally many more insights into the frames of reference PPC responds to 

across various tasks could be made by incorporating a diversity of effector patterns. Translating 

findings from rodent spatial navigation studies to primate working memory functions requires a 

lot of work, but can be guided by findings such as those presented here.       

Future studies should look not only at replicating these findings in primate studies, but 

utilizing the experimental flexibility rodents afford. Previously PPC neurons have been described 

as being modulated by the predictability of a pathway being run (Alexander et al., 2020), the 

extent to which this extends to explicit environmental structure imposed on the animal by being 

placed on a maze like the triple-T has yet to be studied. PPC afferents include several 

neuromodulator structures such as basal forebrain (Lamour et al., 1982) which is known to 

encode task features such as epoch which could be used to define a general task-structure 

(Tingley et al., 2015). The extent to which this possible task structure and environmental 

structure interact should also be pursued in tasks designed with embedded task-environment 

structures.   
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CONCLUSION 

We have presented data supporting the idea that spatial representations better explain a 

subset of activity profiles recorded in PPC neurons. These spatial representations are likely not 

all equivalent along which frames of reference they are tuned to. This heterogeneity in what 

spaces elicit responses across PPC neurons makes analyses that consider activity across all 

routes unable to determine self-motion determinates for PPC neurons with strong spatial 

correlations.  

It has never been explicitly described in the rodent PPC, but environmental structure 

encoding of this form could be expected considering many known spatial representation 

qualities of cortical regions connected to rodent PPC. Rat PPC activity has been demonstrated 

to reflect where, in a route, the animal is located (Nitz, 2009); additionally certain spatial 

features such as segment number have been seen to modulate the activity of individual PPC 

neurons (Nitz, 2012). Furthermore PPC neurons have been seen to respond very strongly to 

imposed task structure. On experiments where rats were chasing a laser which would move 

about the environment randomly; when the laser was moved in a stereotyped pathway, and 

embedded path, PPC neurons’ responses to self-motion changed. The integration window is 

known to widen as well when the task the animal is performing is given more structure, as 

running in a stereotyped or previously learned shape in an open arena (Whitlock et al., 2012; 

Alexander et al., 2020). This process could reflect the PPC’s role in encoding long-term memory 

of spatial structures which the animal encounters (Poucet & Save, 2009). That is to say that by 

affording the animal additional layers of structure with which to interact with (e.g. interconnected 

paths on the triple-t) additional frames of reference emerge as relevant to the neurons of PPC. 

Presented here is work that furthers the understanding of what frames of reference PPC 

neurons are capable of having their activity tuned to. 
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It is not known if this process would be reflected in more abstract forms of task structure 

such as the organization of behavior. The triple-T task, along with other tasks used in 

neuroscience, allow the animal to self-organize a strategy which to accomplish the task. If PPC 

neurons are seen to trend toward more complicated forms of environmental structure, perhaps 

PPC neurons would also modulate their activity patterns surrounding the employment of certain 

structured behavioral strategies. Only recently have the analytical tools been developed to begin 

looking at simple decision processes and already reveal a rich changing of behavior strategies 

(Ashwood et al., 2020). Surely as advances in behavioral analyses progress the role of 

integrative brain regions such as the PPC with be further elucidated.  

METHODS 

Rats 

Subjects were 5 male Sprague Dawley rats all under 6 months old prior to the initiation 

of training. Rats were initially started on an ad libetum feeding schedule. Following the initial 

habituation phase of training rats had their food intake lessened to reduce body weight down to 

approximately 90% baseline weight. This motivated state ensured rats learned the triple-T 

working memory task quickly. Weight was monitored throughout the experiment to avoid 

fluctuations.  

Surgery 

Following one month of pre-surgery training on the triple-T working memory task. Rats 

were surgically implanted with custom built microdrives each equipped with bundles of  12.5 um 

nickel chromium wires spun in groups of 4 into tetrodes. Rats were implanted unilaterally or 

bilaterally with microdrives positioned dorsal to PPC with wires initially positioned approximately 

0.5mm deep into cortex. Rats were anesthetized with isoflurane and were held in a sterotactic 

device (Kopf Instruments). Coordinates for implants were determined through referencing 
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Paxinos & Watson Rat Brain Atlas (Paxinos & Watson 2014) and measuring distance from 

bregma. PPC coordinates were centered around (A/P -3.8 mm,  M/L ±2.3 mm, D/V 0.5mm). 

Following a craniotomy and resection of dura mater microdrives were implanted. Multiple skull 

screws were placed on the skull including 2 screws used as references and attached to the 

microdrives with insulated copper wire. These implants were secured in place and secured with 

dental cement. 

Triple-T Maze Environment  

Experiments were conducted on a “triple-T” path-network maze. The track (Figure 3.1A ; 

8-cm-wide pathways, overall perimeter 1.6 m × 1.25 m in length and width, painted black) stood 

20cm high in the middle of the recording room. The track edges were only 2 cm in height, 

allowing an unobstructed view of the environment’s boundaries and associated distal visual 

cues. Access to certain areas of the maze were restricted by placing painted black cans at key 

junctions. The placement of these blockers configures the available space to a total of 4 internal 

pathways, defined by their terminus location, each measuring 140 cm in length with junctions 

located 51 cm, 87 cm, and 118 cm along each internal pathway (Figure 3.1A top). Two 

perimeter routes flank the internal portions of the maze and were defined, each 197 cm in 

length, based on which side of the maze they were on.  

Spatial Working Memory Behavior Task 

Rats were habituated to the “triple-T” maze for 2 periods of about 30 minutes prior to 

training. During the first habituation period the animal had access to the entire maze without any 

blockers present. The second habituation period took place the following day and only some of 

the possible internal pathways were made available. Following habituation rats were trained to 

traverse one of the four available internal pathways in for a food-reward. Following the collection 

of the food reward animals learned to utilize the perimeter routes of the maze to return to the 
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‘main stem’, the shared portion of each internal route’, and begin another traversal for another 

food reward. Rats were permitted to choose whichever route back to the ‘main stem’ they 

preferred and were also permitted to turn around only on the perimeter pathways. Rats often did 

not change their direction however often restricting their behavior to a single direction for each 

position of the maze, and maintaining consistent self-motion (Figure 3.1 I-L). Once animals 

regularly performed 80% or more non-interrupted traversals of all four internal pathways a 

reward schedule was implemented which required the rat to obtain each of the 4 potential 

rewards before the rewards were replaced. Rats quickly learned this find-all-4 rule and 

performed the task reliably quickly and with high accuracy.  

Recording Sessions 

Each microdrive implant had one electrical interface board (EIB-16 Neuralynx) 

connected to an amplifying headstage (20X, Triangle Biosystems). Raw signals were initially 

amplified and low-pass filtered (50X, 150Hz) and brought into a dedicated recording computer 

running Plexon SortClient software. Here, the signal was digitized at  40kHz, band-pass filtered 

(0.45 – 9kHz), and amplified between 1X and 15X to fit the shape of detected waveforms (for a 

total of 1,000X – 15,000X). Over time tetrode wires were moved in 40um steps ventrally through 

brain tissue to maximize number of unique neural units recorded across days from each animal. 

Single units were identified and isolated by hand using Plexon OfflineSorter software. Key 

waveform parameters for separation were peak height, peak-valley distance, energy, average 

voltage, and principals components.  

  Animal position data was collected at 60Hz using a ceiling-mounted camera, mounted 

305cm above the recording room floor. Colored LED lights affixed to the implants of recorded 

animals were tracked using Plexon CinePlex Studio software to obtain X,Y coordinates. Lights 

were approximately 4.5cm apart and were positioned perpendicular to the heading of the 

animal.  
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Histology  

  Rats were perfused intracardially with a solution of 4% w/v paraformaldehyde in PBS 

during deep anesthesia. Following an injection of a lethal dose of pentobarbital brains were 

removed and sectioned into 30um slices. Brain slices were Nissle-stained to identify the 

location, trajectory, and depth of tetrode wires in PPC. Boundaries of PPC were defined based 

on previous electrophysiological studies and in accordance with Paxinos and Watson altas 

(Paxinos & Watson 2014). All tetrodes were determined to have been located in the PPC at the 

time of recording for the units to be included in this study.  

Identification of Clean Traversals 

  To identify traversals made on the triple-T maze that demonstrated clean and 

uninterrupted running custom MATLAB graphical interfaces were utilized. First the user defines, 

in space the starting and ending ‘gates’ for each route defined for analyses. The MATLAB script 

automatically extracts traversals with sustained running speed at or above 3cm/s throughout the 

traversal. The user then verifies each individual run to ensure there are no obvious deviations 

from uninterrupted stereotyped running behavior. The selection of clean runs results in the data 

presented in Figure 3.1A (bottom). Through this method regions of the maze without 

stereotypical running behavior, such as the reward locations and spaces between defined 

routes, are not conflated in our analyses for the spatial firing characteristics of these neurons. 

Additionally individual traversals which introduce outlier behavior are not conflated in analyses 

which assume some degree of recurrence in behavior.      

Route and Space Referenced Ratemaps  

  To analyze the action and spatial correlates for each neuron, individual neuron activity 

was mapped onto the position of each route through the use of custom MATLAB scripts. 

Previously identified stereotypically ran traversals were overlaid on one another for the 
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traversals belonging to each route. A spatial template was drawn for each route that equally 

binned space in steps of 10 pixels apart which corresponds approximately to 3.5cm. Firing rates 

were then calculated for each bin by dividing the total number of spikes by occupation time. 

Activity patterns were then smoothed with a Gaussian filter (σ = 6 cm  AOC = 1).  

  Similar to the linearized route referenced ratemaps, two dimensional firing ratemaps 

were constructed for each neuron for the entire space of the maze for the entire experiment. For 

recording bins with a detected velocity at or above 3cm/s the X,Y coordinates are identified the 

number of spikes is divided by the occupancy time. This process is done for the entire 

experiment and averaged across each identified X,Y position. Raw two dimensional ratemaps 

were smoothed with a gaussian filter (σ = 6 cm2  AOC = 1). 

Generalized Linear Model 

  A series of GLMs were computed to assess the impact self-motion had on the activity 

profiles of individual neurons as rats performed the triple-T task. To begin only linear and 

angular velocity were chosen as those are the self-motion cues most associated with PPC 

activity. A complete GLM or cGLM was constructed for the max-normalized mean firing rate for 

each neuron which used both linear and angular velocities as predictors (glmfit function in 

MATLAB using the ‘identity’ link function). Coefficients were calculated for both linear and 

angular velocities (glmval function in MATLAB) to reconstruct the activity profile which was used 

to calculate the fit between the actual firing rate vector and the cGLM output assessed using the 

normalized mean squared error (‘NMSE’, as an output from the function ‘goodnessOfFit’ in 

MATLAB). To test the impact of each self-motion variable on the accuracy of the GLM a partial 

GLM, or pGLM was fit to each neuron in the same manner as above, but by dropping either 

linear or angular velocity from the model. Kruskall-Wallis tests with post hoc Boneferonni 

corrections were made comparing the distribution of values derived from the pGLMs relative to 

their respective cGLMs. NMSE scores derived from pGLMs were tested, using a 2-tailed t-test, 
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against cGLM NMSE scores for specific populations to determine which aspect of self-motion, if 

any, best explained cGLM performance.  

Correlation Analyses of Topological Encoding 

  Individual neurons had their activity patterns compared across identical length routes, as 

in the 4 internal routes or the 2 external routes. through a pearson’s r calculated for the mean 

firing rate profiles for each route across each positional bin. As a measure of reliability the 

correlations derived from same-path comparisons were made from the correlation between 

mean firing rate profiles for both the even traversals and the odd traversals. Correlations for 

non-identical path comparisons were calculated form the mean firing rate vectors without further 

splitting of the data.  

  Shuffled correlation values were created by randomly shifting each traversal of the 

linearized spike train for each route 100 times. These shuffled firing rate profiles had both inter 

and intra path correlations calculated as described above and the distribution of these 

correlation values was used in determining significant route-route correlations for each neuron. 

For each neuron topological encoding was determined if the route-route correlation was equal to 

or higher than the mean of the control distribution plus or minus 2 standard deviations.   
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FIGURE 3.1: Components of Self-Motion During Spatial Working Memory Task 
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FIGURE 3.2: Some Individual Parietal Cortex Neurons Respond To Self-Motion Variables 

Parietal Cortex Neurons Respond To Self-Motion Variables 
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FIGURE 3.3: Path Structure and Path Shape Encoded by PPC Neurons 



 
 

104 

 

SUPPLEMENTAL FIGURE 3.1: Summary of Recording Site Histological Data 
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SUPPLEMENTAL FIGURE 3.2: Complete Correlation Projection Across all Routes 
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Figure Legends  

Figure 3.1: Components of Self-Motion During Spatial Working Memory Task 

A) Schematic of triple-T environment configured to the find-all-4 task. Blockers (red X’s) were 

used to make certain portions of the environment inaccessible. Below are individual traversals 

of the maze separated in space to illustrate labelling individual paths based on their terminal 

location. B) Individual internal pathway pairs 1 and 4 and the external pathway pair of R1 and 

R2 can be considered exact opposite shaped routes when considering the specific direction of 

turning along each route. C) The same pathway pairs as in B, can also be seen as identical in 

general structure when considering where the turn locations are. D-H) Compilation of 

performance on the find-all-4 condition. Probability of getting a reward mean = 0.838 s.d = 

0.0688 . Probability of completing a block without error mean = 0.566 s.d. = 0.1679. Probability 

of choosing the shorter of two return arms mean = 0.9197 s.d. = 0.1075. Probability of perfect 

blocks having the same sequence as the maximum performed sequence that recording mean = 

0.4016 s.d. = 0.173. Probability of alternating at the first decision point mean = 0.8973 s.d. = 

0.0916. I) Color-coded behavioral tracking illustrating average linear velocity, from 0 in blue to 

105cm/s in yellow. J) Data from I presented with each route’s space linearized along the x-axis 

from the start to the end for each route. K) Color-coded behavioral tracking illustrating average 

angular velocity, from -8 radians/s in blue to +8 radians/s in yellow. L)  Data from K presented 

with each route’s space linearized along the x-axis from the start to the end for each route. M) 

Route-route correlations for mean linear velocity (above) or mean angular velocity (below). 

Figure 3.2: Some Individual Parietal Cortex Neurons Respond To Self-Motion Variables 

A) Schematic of electrode placement with recordings determined to be in PPC highlighted in 

red. B) Mean firing rate for all neurons showing a logarithmic distribution consistent with 

previous reports of neurons in this cortical region. C) Color-coded ratemap of an example PPC 
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neuron tuned to angular velocity from no firing in blue to the mean firing plus one standard 

deviation, labelled at the top, in yellow. Additional example of PPC neurons seemingly tuned to 

angular velocities are tiled to the right. D) GLM analysis for neuron #124 route 1 activity. cGLM 

performance for route 1 had NMSE of 0.53 and a correlation of r=0.68. pGLMs were made 

without either linear or angular velocity and a proportional change in NMSE was recorded (10% 

increase for the pGLM without linear velocity, and 86% increase for the pGLM without angular 

velocity). E) Color-coded ratemap of an example PPC neuron which displayed an activity profile 

not readily explained by self-motion across all routes. Additional example of PPC neurons with 

activity patterns not explained by self-motion are tiled to the right. F) GLM analysis for neuron 

#213 route 1 activity. cGLM performance for route 1 had high NMSE of 0.83 and a low 

correlation of r=0.41. pGLMs were made without either linear or angular velocity and a 

proportional change in NMSE was recorded. Compared to the GLM analysis in D relatively 

small effects were noted (13% increase for the pGLM without linear velocity, and 7% increase 

for the pGLM without angular velocity). G) For each neuron the minimum, mean, and maximum 

cGLM NMSE and correlation scores across routes are presented. (Min NMSE mean = 0.6514 

s.d.= 0.2496; Mean NMSE mean = 0.8408  s.d. = 0.136; Max NMSE mean = 0.9707 s.d. = 

0.0337; Min r-value mean = 0.1474 s.d.= 0.0869 ; Mean r-value mean = 0.3214 s.d. = 0.1014; 

Max r-value mean = 0.4983 s.d. = 0.1424). Proportional changes to GLM scores were recorded 

for both pGLMs: subtracting linear velocity (Min NMSE mean = +0.7% s.d.= 1.69%; Mean 

NMSE mean = +8.45% s.d. =7.63%; Max NMSE mean = +24.47% s.d. = 20.76% ; Min r-value 

mean = -6.08% s.d.= 9.74% ; Mean r-value mean = -35.36% s.d. = 15.57%; Max r-value mean 

= -72.03% s.d. = 22.23%), and subtracting angular velocity (Min NMSE mean = +0.6% s.d.= 

1.3% ; Mean NMSE mean = +6.48% s.d. = 6.65%; Max NMSE mean = +17.62% s.d. = 17.3%; 

Min r-value mean = -4.04% s.d.= 7.34%; Mean r-value mean = -31.34% s.d. =14.39%; Max r-

value mean = -70.39% s.d. = 24.75%).  
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Figure 3.3: Path Structure and Path Shape Encoded by PPC Neurons 

A) Two example neurons’ color coded tracking data showing where the neuron exhibited no-

firing in blue, and maximal firing in yellow. Linearized activity profiles were constructed and 

route-route correlations were made across mean firing rates. Top neuron demonstrated very 

high correlation values for all path comparisons in a manner not consistent with self-motion. 

Bottom neuron exhibited an activity profile consistent with angular velocity tuning and had route-

route correlation values comparable to the angular velocity correlations across routes. B) 

Scatterplot of path-path activity comparisons. Shaded regions correspond to the mean plus two 

standard deviations for correlations derived from shuffled data. Neurons labelled in red are 

significantly correlated for represented path-pairs. Neurons in blue are significantly anti-

correlated for represented path-pairs. The three path-pairs represented all are behaviorally 

opposite, but structurally identical.  C) Cumulative change in NMSE was calculated across all 

routes for each neuron’s GLM analysis. The population of neurons above, labelled A, and 

below, labelled B, were tested against each other in a 2-tailed t-test to compare relative 

contributions of each self-motion variable. Routes 1&4 -LV: p=0.9 ; -AV: p = 0.00024; Routes 

2&3-LV: p=0.9 ; -AV: p = 0.00024; and the two return routes -LV: p=0.9 ; -AV: p = 0.00024.  

Supplemental Figure 3.1 Summary of Recording Site Histological Data 

A) Nissl stained brain sections of each animal’s tetrode recording sites. Anatomical locations 

determined to be included in the dataset highlighted in red.  

Supplemental Figure 3.2 Complete route-route Correlation Projections 

Scatterplot of path-path activity comparisons. Shaded regions correspond to the mean plus two 

standard deviations for correlations derived from shuffled data. Neurons labelled in red are 

significantly correlated for represented path-pairs. Neurons in blue are significantly anti-
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correlated for represented path-pairs. Neuron counts for each grouping (above or below) are 

presented above the route-route projections. 
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CHAPTER 4: Considering Spatial Recurrence to Probe Self-Organized Behavior on a 

Latent Learning Task   

Abstract 

 Animals employ many behavioral strategies when engaged with even simple tasks. 

These strategies have been shown to maximize the animal’s exploratory capabilities, and can 

be as simple as alternating at a choice point. How these simple strategies, adapt to more 

sophisticated spaces however is understudied. We endeavored to explain rat choice behavior 

on a working memory task which employed two choice points in sequence. The same rats then 

had their task elaborated upon where there were 3 decision points in sequence. Presented here 

is evidence that rats employ a sophisticated understanding of physical and task structure on the 

triple-T working memory task. Additionally is evidence that rats anchor alternation behaviors 

based on spatial location. The latter is consistent with ideas that alternation strategies are useful 

for maximizing exploration. 

Main Text 

INTRODUCTION 

From decisions about who to associate with, what to eat, when to go to sleep, or where 

to travel to in order to reach one’s goals; decisions of all sorts permeate our everyday 

experience. Many of these decisions allow us to choose from an almost endless number of 

possibilities, when navigating across a field for instance there are a near infinite combination of 

locations - or routes, which all would deliver one from a shared starting location to a terminal 

location. Mentally running through each of these possibilities would result in very long mental 

processing times for even simple decision making tasks. Clues to how a potential 

knowledgebase is formed such that decision making can be more efficient currently is guided by 

studies showing that the structure of environments previously experienced strongly influences 
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navigational strategies (Barhortst-Cates et al., 2021; Coutrot et al., 2022). In particular having 

knowledge regarding spaces where path-junctions occur was highly related to navigational 

ability (Brunec et al., 2022). These studies highlight the importance of physical structures in 

guiding perceptions and utilizations of space. This inherently reduces the availability of certain 

routes through space thus demanding fewer considerations be made by decision making 

processes. While the previous example was explicitly one about spatial decision making it could 

be theorized that those sorts of decisions are actually insights into decision making more 

generally. It has been proposed that across domains decisions are often broken up into 

sequential binary decisions that the brain mentally navigates through (Sridhar et al., 2021). In 

this way the study of spaces and structures explicitly can inform theories into decision making 

mental-spaces and adaptions to bounds placed on problem-solving. Studies of this nature have 

historically been performed through the application of structured mazes.  

The application of maze environments to study psychology and behavior is rich and 

begins for the purposes of this research in the late 19th century with the studies done by George 

Romanes. A friend of Charles Darwin’s, he used maze structures to investigate the evolution of 

memory systems across species, and coined the phrase ‘comparative psychology’ (Romanes, 

1882). The use of mazes in behavior experiments quickly became a foundational tool for studies 

probing memory systems, and designing appropriate maze structures began to be crucial in 

order to elicit ‘naturalistic’ behaviors such as navigation back to a home den through a labyrinth 

of tunnels (Kline, 1899; Small, 1901). One unexpected outcome of the implementation of these 

structured environments was the observation of animals organizing their behaviors around 

certain types of structures in unpredicted ways. First noted by Carr (Carr, 1917) animals had a 

robust tendency to alternate decisions at junctions which presented 2 choices. That is when 

animals approached a T-shaped junction on a maze the animals reliably chose opposite their 

previous choice. While Carr did not elaborate much on this behavior other researchers such as 
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Tolman took this behavior as crucial evidence of an adaptable navigation system (Tolman, 

1925). This alternation behavior (AB) as it has since been known, became the central focus of 

research investigating memory systems across animals in accordance to theories put forward 

by Hull whereby the expression of AB was a result of a form of satiety with regard to the action 

just taken, and thus the choice to pursue a new action follows an avoidance for repetition (Hull, 

1935; Hull, 1943). Since Hull, the nuances of why animals express AB have been debated in the 

literature for decades (Dember & Earl, 1957; Olton, 1979; Richman et al., 1986; Lalonde, 2002; 

Bak et al., 2017).  

Throughout the last hundred year of AB research there remains a stubbornly consistent 

experimental design. In virtually all studies into AB the selected environment consists of a single 

decision point. Many manipulations can be made on the structure of this simple design for 

example: the start corridor and two possible choice corridors can be oriented in various angles, 

and can demonstrate effects of this on AB (Douglas et al., 1972). For most experiments the 

choice arms are oriented perpendicular from the start forming a T-shape (Deacon & Rawlins, 

2006), although similar behavioral outcomes can be expected on a Y-shaped maze (Bak et al., 

2017) with equal angles orienting each of the three arms. Rats and other animals (Schultz, 

1964; Livesey, 1965; Hughes, 1967), will spontaneously exhibit AB on about 80% of traversals 

of such decision points. This phenomenon has been described as one of the most robust in all 

of psychology for the persistence of it across many experimental conditions (Dember & Earl, 

1957).  

Perhaps because AB is such a robust and predictable behavior it has been investigated 

by neuroscience for many decades probing the neural foundations of AB (Lalonde, 2002). While 

damage to some brain regions such as hippocampus elicit strong deficits in AB presentation 

lending to ideas AB is contingent on short-term memory (Ellen & Deloache, 1968; Stevens & 

Cowey 1973), lesioning cortical regions such as frontal cortex (Divac et al., 1975), entorhinal 
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cortex (Scheff & Cotman, 1977), retrosplenial cortex (Pothuizen et al., 2008), and sensory 

cortices (Stevens, 1973) occasionally impact AB presentation especially paired with 

experimental manipulations like rotations or extended inter-trial intervals, however in many 

studies these deficits are much weaker compared to hippocampus lesions, are transient, or vary 

dramatically across subjects.    

The persistent display of and mysterious nature of AB at single decision-point 

environments have captivated the attention of scientists for a hundred years. Surprisingly while 

it was the implementation of structured environments which gave rise to this observation very 

few structural manipulations to the environment are implemented to probe AB. The structural 

manipulations which are used in studies involve changing many features of the maze around 

the decision point; the relative angles across choice arms (Douglas et al., 1972) which 

specifically was used to show the abolishment of AB when choice arms are parallel to one 

another, and the use of rotations or changing rooms (Sherrick & Dember, 1966; Dudchenko & 

Davidson, 2002, Cahill et al., 2015) to illustrate the aspects of AB which may be a result of 

memory.  

One characteristic of AB is that animals will with above 80% probability do it, and in 

many experiments AB occurs with a ceiling effect (Dember & Earl, 1957; Douglas et al., 1974). 

This is perhaps suggestive that the experimental design is too simplistic and that ; this 

perspective would posit that finding a mechanism to reduce the certainty of AB without 

abolishing it completely would directly inform what dimensions of experimental complexity AB is 

sensitive to. One way to increase the ‘load’ or difficulty of the task is to implement additional 

decision points within the task; and evidence from rats navigating mazes consisting up to 14-

decision points (Michel & Klein, 1978) shows clearly that rats have the capability for decision-

making well beyond the single choice experiments commonly used, however this and other 

studies that employ multiple decision points maintain a single ‘correct’ pathway which anchors 
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the animal’s behavior (Schmitzer-Torbert & Redish, 2004; Ainge et al., 2007). These studies 

increase the cognitive load of wayfinding, but do not always investigate AB or the effect of how 

AB is influenced by various experimental structures. If these studies were to structure the 

manner in which the decision points were connected it would allow for many additional 

dimensions of study from what is historically done with regard to decision-making behavior.  

Already there is a push for data of this nature from the field of artificial intelligence (AI). 

In the field of AI automata are often designed to navigate spaces analogously to their animal 

counterparts (Barrera & Weitzenfeld, 2008). Recent years have seen AI research demand more 

complex environments and contexts with which to test their automata. A common experimental 

design would see that the AI learns a navigational strategy from one set of spaces and is 

expected to generalize navigational strategies to other spaces (Bechtold et al., 2018; Yaman et 

al., 2019; Zou et al., 2021). This poses a problem for those fields as behavioral phenomena 

such as AB have not yet been investigated on more complex environments. This gap in 

sophistication experiment design between AI and experiment design for behavioral science is 

surprising given the call for sophisticated experimental design over the years (Olten, 1979; 

Meketa, 2014), indeed it seems as though experimental design complexity should match the 

complexity we seek to appreciate from the systems studied – thus even sophisticated memory 

and navigational systems may appear overly simplistic from overly simplistic experimental 

design.  

To investigate the behavior of animals on a sequential-choice task we examined the 

navigational choices of rats performing a working memory task on a triple-T maze (Olson et al. 

2017; Johnson et al., 2021) under conditions of two decision points and three decision points. 

The structure of the maze complements a working memory ‘find-all’ task which was 

implemented and required animals to collect rewards at each of the routes’ terminus repeatedly. 

The combination of environment and working memory task allow for the animal to organize their 
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decision sequences in potentially dozens of ways while still performing the task optimally, as 

measured by probability of collecting a reward. Beyond simple metrics of correct-or-not this 

experimental design allows for the investigation into how animals organize their choices, and to 

specifically see how AB presents itself on the task.  All potential choice pathways shared a 

consistent structure of straight portions and three 90° turns in sequence. The difference in 

shape for the routes comes from the combination of right-left turns which bring the animal to 

their destination. Initially animals perform on a two-sequence decision making task ‘find-all-4’ 

where 4 possible destinations are possible from changing the first and third turns, the second 

being yoked to the first through a blocker. Following several weeks of recordings on the find-all-

4 task animals were allowed access to four other pathways through the removal of previously 

established blockers. Animals were from then on required to incorporate the new decision point 

to navigate to the 8 possible destinations through combinations of all 3 turns. Elaborating the 

task in this fashion forces the animal to incorporate 4 new routes, all structurally analogous to 

the original 4.  

During both the find-all-4 condition and the find-all-8 condition we report a strong 

tendency for rats to perform well above chance. We describe rats’ performance in detail across 

the first week of learning the new context as well as many facets of the rats’ behavioral 

strategies as they relate to performance. Of these findings the most robust observed were the 

rats’ tendency for AB across every turn location. AB on subsequent turns after the first did not 

appear to have the same ceiling effect as seen on the first turn. This AB was seemingly only 

true if each turn was considered in a spatial sense and not true when only sequence was 

considered with regard to sequence of choice alone. The combination of sequential decisions 

which the animal alternates at intriguingly emerges as 2nd order alternation (AA BB as opposed 

to ABAB) for the intermediate turn of the find-all-8 condition. The presence of AB along with the 
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utilization of spatial features as navigational aids affords many insights into how rats use these 

stratagems to organize their behavior along task demands. 

 

RESULTS 

Structure of Performance Across Latent Learning Condition 

 Rats began data collection following at least 2 weeks of training, and did not 

demonstrate a systematic bias for any route on the find-all-4 task (Fig 4.1C), even though rats 

were slightly more likely to perform an error on route number 1 (Fig 4.2A). Rats performed the 

find-all-4 task with very high performance, averaging probability of 0.84 for obtaining a reward 

on any given trial. Additionally rats on the find-all-4 task completed a block of 4 trials without 

error on average 56% of the time. When the rat obtained a reward the animal averaged 

receiving 9.1 rewards before making an error. Upon making an error animals averaged making 

1.6 errors in a row before re-obtaining a reward (Fig 4.1G). Suggesting that animals regularly 

were in bouts of high performance, but when errors occurred they were not usually isolated 

incidents.  

 On the find-all-8 condition rats had a slight systematic bias for the routes newly 

incorporated into the task scheme consistent with oversampling novelty (Fig 4.1F; Fig 4.2D,H). 

This bias reliably occurred after the first day of recording on the find-all-8 condition (Fig 4.2I). In 

spite of this, animals still performed with excellent performance averaging a probability of 0.76 

for obtaining a reward on any given trial.  Additionally rats on the find-all-8 task completed a 

block of 8 trials without error on average 16% of the time, considerably lower compared to the 

find-all-4 condition. When the rat obtained a reward the animal averaged receiving 6.1 rewards 

before making an error. Upon making an error animals averaged making 1.9 errors in a row 
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before re-obtaining a reward (Fig 4.1H). These metrics define how the doubling of difficulty in 

task design does not equate to a doubling in error performance, but a more subtle increase.  

 Temporally, when animals made an error there was a remarkable decline in probability 

of error presentation immediately preceding or following. However an increase in error incidence 

could be seen in a fashion which suggests for both the find-all-4 and find-all-8 pathways the 

block structure also structures when errors will occur (Fig 4.2B,E). This corresponds to a finding 

that the highest incidence of error occurred in the final position in the block across conditions 

(Fig 4.2J,K). The pattern of reward incidence seemed to follow a similar, though weaker pattern 

(Fig 4.2C,F). 

Use of Environmental Spaces as a Heuristic 

 Two forms of environmental heuristics were measured. First was the heuristic of taking 

the short return path back following a trial run which signified a linking of decisions to upcoming 

return behavior. Second was the bias demonstrated by animals where the return route selected 

would predict the upcoming trial run independent of if that return was a short or long traversal.  

 Animals showed similar display of both behaviors on the find-all-4 condition with average 

probability of taking the short return at 0.77 and average probability of biasing their next 

decision at 0.81. Importantly, one rat AJ5, reliably chose the opposite pattern – that is taking the 

long return path back, and biasing subsequent decisions to be on the ipsilateral side. It should 

be noted that this combination of behaviors is functionally equivalent for granting the animal a 

spatial heuristic to orient their decision making process (Fig 4.3A; Fig 4.4A). All animals 

regressed their heuristics closer to chance levels (50%) following introduction to the find-all-8 

condition averaging a probability of 0.53 for taking the short return path back and 0.66 for 

biasing decisions based on previous return route (Fig 4.3F; Fig4.4F). This suggests that overall 

biasing of upcoming choice based on return route is a stronger heuristic, and that taking the 
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shorter return route back could be epiphenomenal on the simpler task. The peri-event 

probabilities of these behaviors around themselves (Fig 4.3C,H; Fig 4.4C,H) and to rewards (Fig 

4.3E,J; Fig 4.4E,J) showed no dramatic patterning, however in the find-all-8 condition only it 

does appear as though errors apply a negative pressure on using these heuristics (Fig 4.3I; Fig 

4.4I).   Across the latent learning paradigm these behaviors followed similar general trends (Fig 

4.3K; Fig 4.4K) with all but one animal strongly performing the behaviors prior to the new 

pathways and one animal strongly not performing the behavior. Following the introduction to the 

new pathways all animals across days migrated their behavioral probabilities to be closer to 

chance, suggesting the find-all-8 condition itself may exert a negative pressure on using these 

heuristics.  

Alternation Behavior  

 Animals had a strong tendency to alternate their sequential decisions in a spatial 

manner. That is, for sequential choices AB was reliably seen for each considered decision point. 

Strongest demonstration of AB was seen at the first decision point with a mean probability of 

0.89 (Fig 4.5A), this persisted through the latent learning paradigm with a mean rate of 0.85 

after learning the new pathways (Fig 4.5F). In both conditions AB at the first turn was correlated 

to overall success for the find-all-4 condition (r = 0.6577) and for the find-all-8 condition 

(r=0.6428) (Fig 4.5B,G). There was approximately a 10% decline in probability of AB at the first 

turn on the second day of the find-all-8 condition, but not for the first day (Fig 4.5K). When an 

alternation occurs there is no increase in preceding or subsequent trials to have alternations 

(Fig 4.5 C,H) A slight but consistent variability in AB was seen just preceding error trials, but no 

such relationship to rewards could reliably be seen.  

Nearly equivalent strong demonstration of AB was seen at the spatially defined final 

decision point with a mean probability of 0.86 (Fig 4.6A), this persisted through the latent 

learning paradigm with a mean rate of 0.86 after learning the new pathways (Fig 4.6F,K). In 
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both conditions AB at the final space was correlated to overall success for the find-all-4 

condition (r = 0.5568) and for the find-all-8 condition (r=0.6479) (Fig 4.6B,G). When an 

alternation at the final space occurs there is no increase in preceding or subsequent trials to 

have alternations (Fig 4.6 C,H). There is a consistent drop in AB at the final turn during error 

runs, this suggests that about 50% of errors during the find-all-4 condition coincided with a 

failure to perform AB (Fig 4.6D). A slight but consistent increase in AB at the final space was 

seen around rewarded trials. On the find-all-8 condition both of these effects were much less in 

intensity but similar trends persisted (Fig 4.6I,J). There was no discernable change across the 

time course of latent learning seen (Fig 4.6K). 

If the final decision was considered independent as to the particular space AB appears 

to go away. That is to say animals definitely organize their AB behavior on the triple-T tasks in a 

spatial and not a task-based manner. In the find-all-4 condition rats alternated at the final choice 

with a mean probability of 0.56 and on the find-all-8 condition on average 0.51 (Fig 4.7A,F), 

much lower compared to other alternation schemes. Both the find-all-4 condition and the find-

all-8 condition saw alternating based on choice and not space was weakly negatively correlated 

with performance at r= -0.4657, and r= -0.389 respectively (Fig 4.7 B,G). When looking at the 

peri-event plots for incidence of alternating based on choice, when it occurred for the find-all-4 

and not for the find-all-8 there was a dramatic decrease in probability just preceding and 

proceeding that event, in both directions there was then a dramatic increase in incidence the 

next trial over (Fig 4.7C). This oscillation of probability suggests that there is a strong preference 

for animals to not alternate in a choice-based fashion and when it occurs there is a pressure to 

prevent it from occurring again. Neither condition saw a reliable display of alternation at the final 

decision point based on choice share a temporal relationship with either errors (Fig4.7 D,I) or 

rewards (Fig 4.7 E,J) and the incidence rate remained stable across the latent learning 

paradigm (Fig 4.7 K).  
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The final site of alternation was the second turn on the find-all-8 condition only, as on the 

find-all-4 condition this turn was yoked to the first. Like the final decision point, this turn can be 

considered with regard to the particular space being traversed (Fig 4.8A-E,K) which 

demonstrated equivalently strong tendencies for alternate as with the other spatially considered 

decision points mean probability of 0.74 and had a strong correlation to overall probability of 

obtaining a reward r = 0.6641; or with regard to the second choice point regardless of the spatial 

location (Fig 4.8F-J,L) which still had above chance levels of presentation, with a mean 

probability of 0.6 , but a slight negative correlation to reward probability r = -0.3178.  Alternating 

by spatial location did not have a strong peri-event pattern, but did have an interesting 

oscillatory shape when looked at alternations around error trials. This may mean that there is a 

regular oscillation of propensity to alternate at this turn, and at particular moments within that 

cycle errors are more likely to coincide with disruptions in this alternation scheme (Fig 4.8D). A 

similar type of pattern was not seen structured around reward trials. Alternation based on choice 

position appeared to have a oscillatory pattern around the peri-event probability. This pattern 

resembled that of alternation by choice position for the final turn on the find-all-4 condition (Fig 

4.7C). The spatial alternation tendency appears to develop after the first recording day of the 

latent learning paradigm (Fig 4.8K) whereas there is no change in the alternation based on 

choice position alone over time (Fig 4.8L).   

Emergent Second Order Alternations 

 One unique aspect of the experimental design chosen is that patterns beyond simple AB 

can develop along certain perspectives of looking at the data. AB which is of the first order, for 

example left – right – left – right – left – right, and so on, has been very well described in 

literature. However, it is known animals can learn second order alternation patterns with 

training, for example left – left – right – right – left – left, and so on where each decision is 

repeated a single time before an alternation event. The provocative high-then-low-then-high 
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peri-event probabilities for alternations based on choice position made it a natural variable to 

investigate whether higher order alternations occurred at the second choice point for the find-all-

8 condition. When considered from a spatial perspective animals decidedly do not perform 

second order alternations with a mean probability of 0.42. The peri-event probabilities show no 

dramatic trend is display of this type of behavior with the exception that error trials appear to 

coincide with a reduced probability of alternating in this fashion (Fig 4.9D). Animals furthermore 

do not change this behavior over more experience to the find-all-8 condition (Fig 4.9K). 

 More fascinating was when second order alternation was considered with regard to the 

choice position. Here what seems to be a clear bimodal distribution across trials was calculated 

(Fig 4.9F) with a mean probability of 0.53. Neither bootstrapped method produced a bimodal 

distribution. Although this distribution did not pass a Hartigan’s dip test for significance it was 

close enough to be considered a trend (dip = 0.1). This may be due to the sample size having 

been too low (n = 44), as more experiments are run it would be interesting to see if this 

bimodality becomes more pronounced and more easily definable. Alternation of this type within 

a recording session did not seem overly correlated to performance with r = -0.0971. The peri-

event probabilities revealed, however, that when the animal alternated in this fashion the 

immediate next trial had a strong pressure to break the alternation (Fig 4.9H), however no clear 

patterning around errors or rewards was noted (Fig 4.9I,J). Across days it appeared that every 

animal has highly variable for this measurement across days (Fig 4.9L), with animals rarely ever 

performing around chance level and either decidedly using this alternation scheme or decidedly 

not.  

DISCUSSION 

Reported here is evidence that rats learn a relatively complicated find-all task and 

perform very well with both 4 and 8 choices. Rats take only one day typically to reach terrific 

performance and to establish stereotypical behavioral schemas. Results from rat performance 
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should speak volumes to a general understanding of rats’ abilities to perform challenging spatial 

navigation tasks, and have impacts that extend into the fields of neuroscience and beyond.  

Novel Metrics for Behavioral Assessment in Multichoice Task  

 One barrier to expanding the repertoire of behavioral tasks employed is the relative 

difficulty in collecting baseline data and learning how to titrate performance expectations, often it 

is much easier to use tasks which have a hundred years of baseline data described (Carr, 1917) 

and redescribed (Bak et al., 2017) – in that way there is a pressure on research to not push the 

boundaries of behavioral design. The experimental design presented here was only made 

theoretically possible from prior studies utilizing the same environment, but not always with the 

exact same behavioral protocol (Olson et al., 2017; Olson et al., 2019; Johnson et al., 2021). In 

this way the stage had been set to collect data in a controlled fashion because of the gained 

intuition to design the proper training and recording protocols. This aspect to experiment design 

cannot be downplayed as a barrier for researchers seeking to employ novel behavioral designs 

and urges extensive pilot investigations into the optimal experimental design. 

 Looking at AB in similar triple-T sequential decision making tasks has only been 

performed in insects (Pasquier & Gruter, 2016; Okada & Kumano, 2022), but with varying task 

conditions, and in humans (Rothacher et al., 2020) however again the task structure did not 

allow for subjects to generate meaningful navigational strategies as they were only traversing 

the maze in a restricted manner. These previous studies have limited their investigation of 

specific behaviors, unlike the present work into naturalistic patterns of behavior. The current 

study Investigates AB at many levels and reveals some natural, and many potential 

experimental targets examples of AB changing around the time of missed trials. In the find-all-4 

task almost half of error trials were also trials where the animal broke alternation at the final 

spatial decision. A much reduced effect was seen in the find-all-8 condition, suggesting that 

there is a heterogeneity in the types of errors being performed, especially across conditions.  
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   The use of the external pathways also allows for exciting self-generated behavioral 

patterns to emerge. These pathways flank the internal ‘rewarded’ routes and do not need to be 

selected with any relation to the choice of route selected before or after. As reliable as 

alternation on the , one animal decidedly chose the long return route and had their choice-bias 

flipped on the find-all-4 condition. This is an interesting deviation from the rest of the animals 

and may point to a natural deviation in strategy planning. This animal did have this deviation 

removed over time with the introduction of the new pathways. This presents another novel 

finding. Animals’ biases for return routes to influence trial run choices was seen to diminish 

equally across both metrics of return route utilization. Why this pattern of behavior was seen is 

not clear, but it remains as a provocative metric which should be tracked during experimental 

manipulations.  

 Animals have been seen to be able to be trained on second order alternation tasks, 

though with some difficulty depending on the experimental design (Hunter & Hall, 1941). What 

has never been reported before was a naturalistic use of this higher order alternation ability in 

rats in a manner that rats would generate such a pattern of behavior themselves when not 

explicitly rewarded for it. With multiple nested decision points the ability to consider each 

decision with regard to the specific spatial location as well as the generalized choice position 

affords for more analytics to be applied when looking at choice data. Second order alternation 

as a scheme emerges from the second choice point in a fashion which is consistently not-

chance, but inconsistently above or below chance levels. This surprising facet to alternation 

behavior on this experimental design gives a metric to analyze self-generated second order 

alternations on experimental designs with similarly arranged choice points.  

 These metrics further provide fields such as AI a look into naturalistic patterns of 

exploration. Triple-T environments have been employed for automata without knowledge of 

what would be expected of an animal and thus prevented naturalistic comparisons. With these 
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metrics, and a reliable task-structure, automata which are trained to explore triple-T 

environments (Yaman et al., 2019; Zou et al., 2021) can further have their navigation studied 

with a naturalistic lens.  

Influence of Physical and Task Structures  

Critically important to the interpretation of these behavioral data is a consideration of the 

task and environment structure. The problem posed to the animal and potential solutions to the 

problem of the find-all task presents, intuitively, an urge to organize subsequent choice in a way 

to optimize performance with as few rules as possible. Additionally it is known animals will 

structure behavior around the physical structures of the environment (Montgomery, 1951). 

Therefore by demanding a task which has a pressure to organize choices, and by providing 

physical structures which are navigated in a systematic way it can be expected to see the 

structure  

The latent learning protocol further demonstrates a fascinating discovery in the ease of 

learning rats demonstrated incorporating double the number of choices on the find-all task. 

Additionally the fact that error distributions across time resembled the same as those seen on 

the find-all-4 with regard to block-structure (Fig 4.2B,E) suggests that the task structure itself 

was carried over and may have been a key factor in rats performing to proficiency within a 

single day of the new pathways being presented.   

Use of return route structure was also seen to deviate across animals for the find-all-4 

condition in a manner that all animals utilized the return routes, however, one animal did so in 

an opposite fashion. The meaningful incorporation of the return routes puts forward the 

importance of having the space of trial choices being made circuitous such that animals were 

uninterrupted across many trials. In doing so animals were afforded the ability to develop strong 

heuristics. Why these heuristics diminished so much during latent learning is unclear, however 
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further analyses may reveal a nuanced relationship between return route usage and trial run 

choice on the find-all-8-condition. 

Increasingly being appreciated by neuroscience research, sometimes in experiments on 

the triple-T environment, are brain regions which have neurons that respond along complex 

frames of reference defined by the presence of structure in the environment (Olson et al., 2017; 

Johnson et al., 2021), or the degree of structure in an expected trajectory (Alexander et al., 

2020). Previous studies have also identified many brain regions which are modulated by 

allocentric positions across frames of reference anchored to the maze environment itself 

(Alexander & Nitz 2015; Olson et al., 20219). Not fully explored are what specific features of 

space modulate activity across all of these brain regions. That is to suggest that certain 

structural features of space may regularly modulate these allocentric responses that have not 

yet been controlled for in a systematic way as see is possible on the triple-T (Olson et al., 2019). 

These findings present motivation to study more regions of the brain along the same 

experimental design while also providing motivation to see the influence of disrupting these 

brain regions on performance of triple-T tasks.  

Future Directions  

Investigations into behavior on the triple-T maze are still very early compared to the long 

history of single-decision tasks. These behavioral studies situate themselves uniquely in a 

position to adapt many of the same lesion, stimulation, and pharmacological experimental 

manipulations done over the past hundred years on the single-T maze. Alternation at turn 1 had 

a very high presentation (Fig 4.5A,F), alternation at the final decision point was equivalent to the 

first decision point for the find-all-8 condition, but was slightly diminished in the find-all-4 

condition (Fig 4.6A,F), and in the find-all-8 condition the intermediate turn showed a slightly 

diminished rate of presentation (Fig 4.8A,F) with more dynamics around error trials than the 

previously described spatial alternations (Fig 4.8D). These are only a few of the trends 
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described here, and already present an interesting area of investigation not available on sing-

decision tasks. Future studies which investigate manipulations previously performed on single-

decisions might very well find more robust disturbances of AB, or even the presence of AB at 

some turns and not others. Thus the triple-T find-all tasks present a new chapter in behavioral 

studies. 

Yet to be incorporated to behavioral assessments such as this are metrics of vicarious-

trial-and-error (VTE). Due to the relative subjectivity in classifying this as a behavioral moment 

on the currently available tracking data. VTE events certainly do permeate many of these 

datasets to varying degrees with some being almost imperceptible, or easily confused with other 

behavioral stereotypy events which may be differentiable with the use of tools such as 

DeepLabCut (Mathis et al., 2018). VTE behavior is known to influence future decisions 

(Goldenberg et al., 2020), and is shown to dramatically impact the spatial navigation system 

(Johnson & Redish, 2007, Tang et al., 2021).  

Previous researchers have had great success with advanced modelling techniques such 

as hidden Markov model generalized linear models (HMMGLMs) which are used to detect 

hidden decision making states which, even on tasks with only two options, are able to pick up 

dynamic moments of bias behaviors as well as other ‘strategies’ that were difficult to describe 

(Ashwood et al., 2022). These tools have been used to explain why animals lapse in 2-choice 

tasks, but it appears they may be better suited to datasets composed of many more choices, 

and thus more ‘types’ of errors which could be made. For each condition there are n! choices 

where n is the number of choices in the condition. The number of path combinations for perfect 

blocks in the find-all-4 task equals 24 possibilities, and the number of combinations in the find-

all-8 condition explodes to 40320 possibilities. This presents a hurdle to behaviors which employ 

multiple combinations of possible ‘right’ answers, to what degree does regularity and patterning 

occur within experimental days. It is possible that at times the animal is engaged with one 
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strategy and then, for unexplored reasons, the animal decides to employ a different strategy 

such as alternating at various spatial locations along the maze, or the display of 2nd order 

alternation seen in the second choice point which had the most dynamic peri-event probability of 

any variable examined (Fig 4.9H) as well as the most variability across recording days. 

HMMGLM techniques would be uniquely situated to detect decision states as well as the 

behaviors which corresponded to them.  

CONCLUSION 

Rats naturally learn and employ strategies to perform on triple-T tasks with excellent 

performance. The utilization of alternations at each spatially defined location is the most 

apparent strategy employed along with, on the simpler task rat-specific heuristics involving 

return route to trial choice associations. These data highlight many key perspectives with which 

to analyze future behavioral data collected on triple-T environments.  

The use of a T-maze in the contemporary neuroscience culture may not be the type of 

experimental design which generates much excitement on its own. However, we are currently at 

the cusp of a revolution in neuroscience which promises to deliver on a long called for increased 

sophistication with behavioral design (Olton, 1979). The triple-T maze affords physical structure 

upon which stereotypical behaviors are able to play out, and the find-all task affords the animal 

the motivation to navigate the space and use behaviors like AB to perform more optimally. 

Together this experimental design advances a field which has not progressed much in the last 

hundred years with regard to meaningful elaborations on task design.  

Experimental questions will, it seems, continue to demand reliable behavioral metrics 

with which to probe systems of memory, attention, planning, and navigation. T-maze studies 

which have been previously explored in depth continue to guide investigations today despite 

many T-maze studies showing weak, unreliable, or transient results. Expanding the application 
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of behavioral tasks to ones which afford many more metrics additionally affords neuroscience 

an increased investigatory power.  

Books have been written on AB as it has been known across its long use as an 

experimental method (Dember & Richmond, 1989), primarily on single decision points. It will be 

interesting to see how AB across multiple spaces as well as the relationship of AB across 

various distributed spaces is influenced by experimental design. Additionally the use of spatial 

features as a heuristic to guide future choices motivates future studies to more explicitly study 

the role spatial location of particular structures in decision-making behaviors.  

METHODS 

Rats 

Subjects were 6 male Sprague Dawley rats all under 6 months old prior to the initiation 

of training. Rats were initially started on an ad libetum feeding schedule. Following the initial 

habituation phase of training rats had their food intake lessened to reduce body weight down to 

approximately 90% baseline weight. This motivated state ensured rats learned the triple-T 

working memory task quickly. Weight was monitored throughout the experiment to avoid 

fluctuations.  

All rats were, at the time, undergoing simultaneous neurophysiological studies as well. 

As such these animals had all been surgically implanted with microwire electrodes (diameter = 

um). All rats had their brain tissue verified post-hoc for the absence of apparent lesions, 

abnormal gliosis, or other histological changes that would indicate a chronic issue throughout 

data collection. Due to this all animals’ nervous systems were considered to be intact and not 

lesioned in any manner.  
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Triple-T Maze Environment 

Experiments were conducted on a “triple-T” path-network maze. The track (Fig 4.1A-B 

(left) ; 8-cm-wide pathways, overall perimeter 1.6 m × 1.25 m in length and width, painted black) 

stood 20cm high in the middle of the recording room. The track edges were only 2 cm in height, 

allowing an unobstructed view of the environment’s boundaries and associated distal visual 

cues. Access to certain areas of the maze were restricted by placing painted black cans at key 

junctions. The placement of these blockers configures the available space to a total of 4 internal 

pathways, defined by their terminus location, each measuring 140 cm in length with junctions 

located 51 cm, 87 cm, and 118 cm along each internal pathway. Two perimeter routes flank the 

internal portions of the maze and were defined, each 197 cm in length, based on which side of 

the maze they were on. 

Spatial Working Memory Task 

Rats were habituated to the “triple-T” maze for 2 periods of about 30 minutes prior to 

training. During the first habituation period the animal had access to the entire maze without any 

blockers present. The second habituation period took place the following day and only some of 

the possible internal pathways were made available. Following habituation rats were trained to 

traverse one of the four available internal pathways in for a food-reward. Following the collection 

of the food reward animals learned to utilize the perimeter routes of the maze to return to the 

‘main stem’, the shared portion of each internal route’, and begin another traversal for another 

food reward. Rats were permitted to choose whichever route back to the ‘main stem’ they 

preferred and were also permitted to turn around only on the perimeter pathways. Rats often did 

not change their direction however often restricting their behavior to a single direction for each 

position of the maze. Once animals regularly performed 80% or more non-interrupted traversals 

of all four internal pathways a reward schedule was implemented which required the rat to 
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obtain each of the 4 potential rewards before the rewards were replaced. Rats quickly learned 

this visit-all-4 rule and performed the task reliably quickly and with high accuracy. 

Latent Learning of New Pathways 

After several weeks of being recorded performing the find-all-4 task some rats were 

given one  day where a set of blockers, preventing the rat from navigating to the four pathways 

on the same side as the ‘main stem’ (Fig 4.1B (right)), was removed. On this day the rats began 

a find-all-8 paradigm which shares the same rule structure as before, but now includes the 

newly available pathways. Initially rats were allowed to perform however they chose, all but one 

rat chose to collect the already learned pathways and seemed oblivious to the change in path-

connectivity. Two of the rats perseverated on the already learned pathways and appeared, after 

as many as 20 traversals, to still not notice the change to their environment. For these rats small 

experimenter cues tapping at the location of the changed blocker were made a single time each. 

Once the change was noticed by the rats they did not require any further cueing. Rats were 

allowed to complete two entire blocks of the find-all-8 condition before being removed from the 

maze for the day. All subsequent days rats were tested on the find-all-8 condition    

Recording Sessions & Performance Analyses 

Animal position data was collected at 60Hz using a ceiling-mounted camera, mounted 

305cm above the recording room floor. Colored LED lights affixed to the implants of recorded 

animals were tracked using Plexon CinePlex Studio software to obtain X,Y coordinates. Lights 

were approximately 4.5cm apart and were positioned perpendicular to the heading of the 

animal.  

Coordinates extracted from Cineplex were fed into a custom built MATLAB GUI to define 

each traversal. First the user defines, in space, a gate which is the shared beginning point for 

each internal-pathway traversal as well as an ending gate for each internal route stemming from 
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the starting gate. The MATLAB script automatically extracts all traversals belonging to each 

route. The user then verifies that all routes were collected. Another custom MATLAB script uses 

the choice data from each recording to reconstruct the block structure imposed during the 

recording. Individual traversals are marked for their features including if it was rewarded, an 

alternation from the previous choice, and if the short return route was taken (when applicable).  

Alternations for each decision point were made across two reference frames. The first 

considered each decision point unique to its location. This measure was calculated by 

considering the turn being made (left or right) differed from the previous traversal when the 

animal made a decision at that specific location. Another method of calculating alternation was 

through considering each decision point after the first agnostic to the spatial location. That is an 

alternation would be considered to be made if the rat chose to turn left at the second decision 

point and on the previous trial had turn right at whichever second decision point was 

encountered through that traversal. Second degree alternations were identified through 

identification of trials  

Peri-event plots of behavior probability were calculated for trials within each recording 

from trial n to the end less n trials where n is equal to the number of blocks viewed around each 

event. For the find-all-4 recordings an n size of 8 was used, for the find-all-8 recordings an n 

size of 16 was used corresponding to the lengths of two full blocks before or after each event of 

interest. Binary vectors for each variable were used to identify when events such as error trials 

had occurred. n trials behind to n trials in front of the identified trial where the behavior of 

interest occurred were collected for each recording. Mean value across recordings with 

standard deviation across recordings is presented.  

Tests for bimodality were performed using a Hartigan’s dip test of unimodality. (Hartigan 

& Hartigan, 1985) bin width set to 0.05 for the range of 0 to 1. MATLAB code adapted from F. 

Mechler was used (Mechler, 2002) for the calculation of the dip statistic. p-values were 
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calculated by sampling a random distribution values equivalently sized to the test data 

generating a histogram of equal bin width and sample size, but without predefined structure. 

The dip statistic was calculated on and re-calculating the Hartigan’s dip statistic. This was 

repeated 10,000 times to generate a null distribution. For this statistic p is equal to the sum of 

instances when the bootstrapped statistic was less than the actual data.  

Bootstrapping 

Two methods of bootstrapping were done, both required a shuffling of the choice data by the 

rats and re-running the previously mentioned analyses. The first took the vector of pathways 

chosen, both internal and external and created a collection of all run internal pathways choices 

and all external pathways. The position of either internal or external path was used for each 

randomly created path-vector where the choice at each position was randomly sampled from 

the pool of all traversals made. This method preserves the sampling probabilities without the 

presumption of learning the structure of the find-all tasks. The second method preserved the 

structure of blocks by creating the shuffled vector one block at a time. For each block beginning 

with the first internal route chosen (when P(reward) = 1) , a pool of routes was of all internal and 

external choices made up until the return route following the final reward being collected that 

block. This method of bootstrapping preserved the overall sampling probabilities of each route 

as well as overall reward rate without the assumption of any strategies being employed. 
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Figures

  FIGURE 4.1: Triple-T Environment and Performance on Working Memory Task 
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FIGURE 4.2: Assessment of Errors Across Routes and Trials 
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FIGURE 4.3: Detailed Examination of Choosing the Short Return Path Following a Traversal 
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FIGURE 4.4: Detailed Examination of Choice Biased to Previous Return Route Chosen 
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FIGURE 4.5: Detailed Examination of Alternation Behavior At the First Junction 
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 FIGURE 4.6: Detailed Examination of Alternation Behavior For Each Final Junction 
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FIGURE 4.7: Detailed Examination of Alternation Behavior for the Final Decision 
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 FIGURE 4.8: Detailed Examination of Alternation Behavior at the Second Decision in All-8 

Condition 
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 FIGURE 4.9: Detailed Examination of Second Order Alternation Behavior at the Second 

Decision 
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Figure Legends  

Figure 4.1 Triple-T Environment and Performance on Working Memory Task 

The find-all working memory task demanded of the animal that they navigate along the corridors 

of the triple-T in order to locate one of either 4 or 8 rewards. At the start all rewarded locations 

are baited, and one-by-one the animal collects them until they are all collected by the animal. At 

that point the rewarded locations are re-baited and a new block of trials begins being recorded. 

Animals are permitted to return to already-collected reward locations, however they are only 

rewarded for the first visit per place per block. Total number of recordings for the find-all-4 n = 

92, total number of recordings for the find-all-8 n = 44.  

A) Schematic drawing of triple-T environment set up for the find-all-4 condition. Blockers (red 

X’s) were used to make certain portions of the maze inaccessible shown as shaded regions. 

Example tracking data collected from rat DN14 shown to the right of the schematic. B) 

Schematic drawing of triple-T environment set up for the find-all-8 condition. Only one corridor 

utilizing blockers (red X’s) shown as shaded region. Example tracking data collected from rat 

AJ5 shown to the right of the schematic. C) Four possible routes were recorded as defined by 

their terminus location (Internal routes 1,2,3, and 4). Two external return routes (R1 & R2) 

flanked the internal routes and returned the animal back to the main stem of the maze shared 

by all four internal routes. D) Same as C but for the find-all-8 condition E) Probability of each 

route selection in the find-all-4 condition showing a relatively equal sampling of all routes. F) 

Same as E but for the find-all-8 condition. G) Basic performance metrics across recordings for 

probability of obtaining a reward (mean = 0.8429 s.d. = 0.0645, Bootstrapped(BS) KS.test p < 

0.001), performing a block without any errors (mean = 0.5624 s.d.= 0.174 , BS KS.test p< 

0.001). Metrics for how many rewards were obtained in sequence before an error (mean = 

9.079 sequential trials s.d. = 4.387 trials), and how many errors were performed in sequence 
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before a reward was obtained (mean = 1.568 sequential errors s.d. = 0.3068 trials). H) Same as 

G but for the find-all-8. Probability of reward (mean = 0.762 s.d. = 0.0841, BS KS.test p < 

0.001), probability of a perfect block (mean = 0.162 s.d. = 0.0854, BS KS.test p < 0.001), mean 

sequential errors (mean = 1.904 sequential errors s.d. = 0.7347 trials) , mean sequential 

rewards (mean = 6.077 sequential trials s.d. = 1.3549 trials).  

Figure 4.2 Assessment of Errors Across Routes and Trials 

A) Boxplot of probability of each route being chosen across recordings. B) Peri-event plot of 

probability of performing an error anchored to every instance of an error being performed. C) 

Same as B, but for rewards instead of errors. D-F) Same as A-C but for find-all-8 condition. G) 

Boxplot of trial-distance for each route calculated for each recording. H) Same as G, but for find-

all-8 condition. I) Plot of bias score calculated for each of the 3 rats who underwent the latent 

learning protocol data across days from the first recording on the find-all-8 condition through 8 

subsequent recording days. J) Boxplot of probability of an error occurring at each trial-position. 

K) Same as J, but for the find-all-8 condition.  

Figure 4.3 Detailed Examination of Choosing the Short Return Path Following a Traversal 

A) Histogram of the probability of choosing the short return (mean = 0.7738 s.d = 0.3177 dip 

=0.075 p = 0.4534). Gray line is a bootstrapped distribution made from a complete shuffle of the 

data ( KS.test p= 1*10-52). Purple line is a bootstrapped distribution made from shuffling data 

within each block (KS.test p= 1*10-54) .B) Scatterplot correlating the probability of choosing the 

shorter return path for each recording with the probability of obtaining a reward for the 

recording. (Pearson’s r = -0.02) C) Peri-event plot of probability of choosing the short return 

(black) anchored to each instance of having chosen the short return route. One standard 

deviation in either direction is a dashed black line. Red line denotes probability of performing an 

error. Green line denotes probability of obtaining a reward. D) Peri-event plot of probability of 
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choosing the short return (black) anchored to each instance of performing an error (red). E) 

Peri-event plot of probability of choosing the short return (black) anchored to each instance of 

obtaining a reward (green). F-J) Same as A-E, but for the find-all-8 condition. Probability of 

taking the short return (mean =0.5325 s.d. = 0.1686 , All Bootstrapped  KS.test p=1*10-7 

Blocked Bootstrapped KS.test p = 1*10-8 ). Correlation of probability of taking the short return to 

probability of getting a reward (Pearson’s r = 0.34). K) Plot illustrating probability of taking the 

short return leading up to, during, and after the transition to the find-all-8 condition. Three rats 

shown were three used during the latent learning protocol (Green = AJ5; Blue = BL2; Orange = 

NS23). 

Figure 4.4 Detailed Examination of Choice Biased to Previous Return Route Chosen 

A) Histogram of the probability of biasing trial run based on previous return (mean = 0.8063 s.d 

= 0.2893 dip = 0.075 p = 0.4568 ). Gray line is a bootstrapped distribution made from a 

complete shuffle of the data ( KS.test p= 1*10-54). Purple line is a bootstrapped distribution made 

from shuffling data within each block (KS.test p= 1*10-56) .B) Scatterplot correlating the 

probability of biasing trial run based on previous return for each recording with the probability of 

obtaining a reward for the recording. (Pearson’s r = -0.0582) C) Peri-event plot of probability of 

choosing a trial run based on previous return (black)  anchored to each instance of having 

biased their trial run. One standard deviation in either direction is a dashed black line. Red line 

denotes probability of performing an error. Green line denotes probability of obtaining a reward. 

D) Peri-event plot of probability of choosing a trial run based on previous return (black) 

anchored to each instance of performing an error (red). E) Peri-event plot of probability of 

choosing a trial run based on previous return (black) anchored to each instance of obtaining a 

reward (green). F-J) Same as A-E, but for the find-all-8 condition. Probability of choosing a trial 

run based on previous return (mean =0.6615 s.d. = 0.1826 , All Bootstrapped  KS.test p=1*10-16 

Blocked Bootstrapped KS.test p = 1*10-17 ). Correlation of probability of choosing a trial run 
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based on previous return to probability of getting a reward (Pearson’s r = 0.2589). K) Plot 

illustrating probability of choosing a trial run based on previous return leading up to, during, and 

after the transition to the find-all-8 condition. Three rats shown were three used during the latent 

learning protocol (Green = AJ5; Blue = BL2; Orange = NS23). 

Figure 4.5 Detailed Examination of Alternation Behavior At the First Junction 

A) Histogram of the probability of alternating at the first decision point (mean = 0.8877 s.d = 

0.0872). Gray line is a bootstrapped distribution made from a complete shuffle of the data ( 

KS.test p= 1*10-80). Purple line is a bootstrapped distribution made from shuffling data within 

each block (KS.test p= 1*10-77) .B) Scatterplot correlating the probability of alternating at the first 

decision point for each recording with the probability of obtaining a reward for the recording. 

(Pearson’s r = 0.6577) C) Peri-event plot of probability of alternating at the first decision point 

(black) anchored to each instance of having just alternated at the first decision point. One 

standard deviation in either direction is a dashed black line. Red line denotes probability of 

performing an error. Green line denotes probability of obtaining a reward. D) Peri-event plot of 

probability of alternating at the first decision point (black) anchored to each instance of 

performing an error (red). E) Peri-event plot of probability of alternating at the first decision point 

(black) anchored to each instance of obtaining a reward (green). F-J) Same as A-E, but for the 

find-all-8 condition. Probability of probability of alternating at the first decision point (mean 

=0.8483 s.d. = 0.0608 , All Bootstrapped  KS.test p=1*10-40 Blocked Bootstrapped KS.test p = 

1*10-38 ). Correlation of probability of alternating at the first decision point to probability of getting 

a reward (Pearson’s r = 0.6428). K) Plot illustrating probability of alternating at the first decision 

point leading up to, during, and after the transition to the find-all-8 condition. Three rats shown 

were three used during the latent learning protocol (Green = AJ5; Blue = BL2; Orange = NS23). 

Figure 4.6 Detailed Examination of Alternation Behavior For Each Final Junction 
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A) Histogram of the probability of alternating at the final decision space (mean = 0.8552 s.d = 

0.0531). Gray line is a bootstrapped distribution made from a complete shuffle of the data ( 

KS.test p= 1*10-81). Purple line is a bootstrapped distribution made from shuffling data within 

each block (KS.test p= 1*10-68) .B) Scatterplot correlating the probability of alternating at the 

final decision space for each recording with the probability of obtaining a reward for the 

recording. (Pearson’s r = 0.5568) C) Peri-event plot of probability of alternating at the final 

decision space (black) anchored to each instance of having just alternated at the final decision 

space. One standard deviation in either direction is a dashed black line. Red line denotes 

probability of performing an error. Green line denotes probability of obtaining a reward. D) Peri-

event plot of probability of alternating at the final decision space (black) anchored to each 

instance of performing an error (red). E) Peri-event plot of probability of alternating at the final 

decision space (black) anchored to each instance of obtaining a reward (green). F-J) Same as 

A-E, but for the find-all-8 condition. Probability of alternating at the final decision space (mean 

=0.8648 s.d. = 0.0241 , All Bootstrapped  KS.test p=1*10-40 Blocked Bootstrapped KS.test p = 

1*10-40 ). Correlation of probability of alternating at the final decision space to probability of 

getting a reward (Pearson’s r = 0.6479). K) Plot illustrating probability of alternating at the final 

decision space leading up to, during, and after the transition to the find-all-8 condition. Three 

rats shown were three used during the latent learning protocol (Green = AJ5; Blue = BL2; 

Orange = NS23). 

Figure 4.7 Detailed Examination of Alternation Behavior for the Final Decision 

A) Histogram of the probability of alternating at the final decision choice (mean = 0.5565 s.d = 

0.0485). Gray line is a bootstrapped distribution made from a complete shuffle of the data ( 

KS.test p= 1*10-11). Purple line is a bootstrapped distribution made from shuffling data within 

each block (KS.test p= 1*10-10) .B) Scatterplot correlating the probability of alternating at the 

final decision choice for each recording with the probability of obtaining a reward for the 
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recording. (Pearson’s r = -0.4657) C) Peri-event plot of probability of alternating at the final 

decision choice (black) anchored to each instance of having just alternated at the final decision 

choice. One standard deviation in either direction is a dashed black line. Red line denotes 

probability of performing an error. Green line denotes probability of obtaining a reward. D) Peri-

event plot of probability of alternating at the final decision choice (black) anchored to each 

instance of performing an error (red). E) Peri-event plot of probability of alternating at the final 

decision choice (black) anchored to each instance of obtaining a reward (green). F-J) Same as 

A-E, but for the find-all-8 condition. Probability of alternating at the final decision choice (mean 

=0.5096 s.d. = 0.043 , All Bootstrapped  KS.test p=0.7 Blocked Bootstrapped KS.test p = 1*10-8 

). Correlation of probability of alternating at the final decision choice to probability of getting a 

reward (Pearson’s r = -0.389). K) Plot illustrating probability of alternating at the final decision 

choice leading up to, during, and after the transition to the find-all-8 condition. Three rats shown 

were three used during the latent learning protocol (Green = AJ5; Blue = BL2; Orange = NS23). 

Figure 4.8 Detailed Examination of Alternation Behavior at the Second Decision in All-8 

Condition 

A) Histogram of the probability of alternating at the second decision space for find-all-8 

recordings (mean = 0.7416 s.d = 0.0731). Gray line is a bootstrapped distribution made from a 

complete shuffle of the data ( KS.test p= 1*10-36). Purple line is a bootstrapped distribution made 

from shuffling data within each block (KS.test p= 1*10-34) .B) Scatterplot correlating the 

probability of alternating at the second decision space for each recording with the probability of 

obtaining a reward for the recording. (Pearson’s r = 0.6641) C) Peri-event plot of probability of 

alternating at the second decision space (black) anchored to each instance of having just 

alternated at the final decision choice. One standard deviation in either direction is a dashed 

black line. Red line denotes probability of performing an error. Green line denotes probability of 

obtaining a reward. D) Peri-event plot of probability of alternating at the second decision space 
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(black) anchored to each instance of performing an error (red). E) Peri-event plot of probability 

of alternating at the second decision space (black) anchored to each instance of obtaining a 

reward (green). F-J) Same as A-E, but considering probability of alternating at the second 

choice. Probability of probability of alternating at the second choice (mean =0.6073 s.d. = 

0.0365 , All Bootstrapped  KS.test p=1*10-33 Blocked Bootstrapped KS.test p = 1*10-19 ). 

Correlation of probability of alternating at the second choice to probability of getting a reward 

(Pearson’s r = 0.3178). K) Plot illustrating probability of alternating at the second decision space 

leading up to, during, and after the transition to the find-all-8 condition. Three rats shown were 

three used during the latent learning protocol (Green = AJ5; Blue = BL2; Orange = NS23). L) 

Same as K, but considering probability of alternating at the second choice across recording 

days.  

Figure 4.9 Detailed Examination of Second Order Alternation Behavior at the Second Decision  

A) Histogram of the probability of alternating at the second order at the second decision space 

for find-all-8 recordings (mean = 0.4204 s.d = 0.0734). Gray line is a bootstrapped distribution 

made from a complete shuffle of the data ( KS.test p= 1*10-15). Purple line is a bootstrapped 

distribution made from shuffling data within each block (KS.test p= 1*10-24) .B) Scatterplot 

correlating the probability of alternating at the second order at the second decision space for 

each recording with the probability of obtaining a reward for the recording. (Pearson’s r = 

0.1491) C) Peri-event plot of probability of alternating at the second order at the second 

decision space (black) anchored to each instance of having just alternated at the final decision 

choice. One standard deviation in either direction is a dashed black line. Red line denotes 

probability of performing an error. Green line denotes probability of obtaining a reward. D) Peri-

event plot of probability of alternating at the second order at the second decision space (black) 

anchored to each instance of performing an error (red). E) Peri-event plot of probability of 

alternating at the second order at the second decision space (black) anchored to each instance 
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of obtaining a reward (green). F-J) Same as A-E, but considering probability of alternating at the 

second order at the second choice. Probability of probability of alternating at the second choice 

(mean =0.5254 s.d. = 0.1924 , All Bootstrapped  KS.test p=1*10-10 Blocked Bootstrapped 

KS.test p = 1*10-10 , dip = 0.1 p=0.0758). Correlation of probability of alternating at the second 

order at the second choice to probability of getting a reward (Pearson’s r = -0.0971). K) Plot 

illustrating probability of alternating at the second order at the second decision space leading up 

to, during, and after the transition to the find-all-8 condition. Three rats shown were three used 

during the latent learning protocol (Green = AJ5; Blue = BL2; Orange = NS23). L) Same as K, 

but considering probability of alternating at the second order at the second choice across 

recording days.  
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CHAPTER 5: The Utility of Structure: Spatial Similarities in Behavioral Neuroscience 

 This dissertation work has demonstrated in three ways the impact of a complex path-

network environment on the representational qualities of nervous system activity, and on self-

organized behavior. These impacts can be seen as the nervous system’s ability to adapt 

representational qualities to environment’s structure, and animals’ ability to implement that 

structure in stereotypical ways to perform a working memory task. First, in chapter 2, with the 

comparison between CA1 neurons with subiculum (SUB) neurons with regard to spatially 

anchored activity patterns, data demonstrated that SUB is a brain region which has many 

neurons tuned across multiple spaces with similar physical structure. Second, chapter 3, with 

the investigation into posterior parietal cortex (PPC) neurons activity patterns across oppositely 

shaped trajectories, data showed that PPC extends known allocentric encoding beyond route 

cells to include routes of general structure which cannot be explained through self-motion. 

Finally, in chapter 4, with the behavioral analyses performed on animal behavior, data illustrated 

a novel display of alternation behavior (AB) distributed at similar T-shaped junctions. These 

studies each necessitated a particular structure exist in the external world to be perceived in 

order to influence the data in each way. That is to say, if similar experiments were performed on 

a single-T maze as opposed to the triple-T maze SUB neural responses may not be shown to 

represent structural analogy because the amount of structural analogy afforded to the system is 

relatively deprived. Similarly, PPC neurons appear to require complex routes to study its spatial 

representations appropriately. Without multiple routes involving different levels of similarity in 

self-motion it can become much more difficult to disentangle the effects of self-motion. The 

structurally complex environment was crucial for the behavior findings as well, the physical 

structure of embedded decision points, and the find-all task structure allowed for the exhibition 

of AB in a meaningful way. 
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Structure is ubiquitous in everything we experience through our day-to-day lives. 

Environments have structure in the form of physical boundaries, and tasks have structure in the 

form of a predictable events occurring in response to particular behaviors. What each use of the 

word ‘structure’ has in common is that within the domain which it is being applied, ‘structure’ 

refers to a meaningful arrangement of the respective features. The features of the environment 

are the physical boundaries around spaces which can define the structures around which one 

must navigate, like a T-junction. The features of the task are the reward contingencies, which 

give meaning to decision making and pressures the animal to organize their decision making 

processes to more optimally perform. To consider the environment with regard to structure the 

animal must both perceive features such as boundaries on their own, but also perceive the 

relationship to one another in some manner. Neural responses around particular features in the 

environment, like borders (Lever, et al. 2009) or landmarks (Deshmukh & Knierim, 2013) have 

been documented, but the application of a complex enough structure to fully appreciate the 

spatially tuned CA1, SUB, and PPC neural responses presented in the studies here had not 

been endeavored upon prior.    

Environmental structure is the relationship across different features of space, and many 

of the possible structures perceived in an environment prompt the animal on how to behave. For 

example, the arrangement of borders in an environment define areas of accessibility and 

inaccessibility. The arrangement of the borders in this example is the environmental structure, 

and at different scales of perspective the structure of the environment can be described as a 

shape or multiple shapes. Some of these shapes, such as a T-shaped space, are meaningful in 

that they elicit predictable behaviors. Other shapes, such as the shape of a route taken to get to 

a reward, are meaningful especially in triple-T tasks where it can be generalized across all 

possible routes. Lastly, shapes such as the shape defined by the totality of navigable space are 

meaningful in that patterns of other shapes can be found to repeat within it, and lines of 
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symmetry naturally emerge which may assist in cognitive processes by breaking down more 

difficult navigational problems into simpler ones. Structural complexity defined from this 

perspective is an increased incidence of meaningful shapes that emerge from the total structure 

of that environment. A simple environment could consist of a linear path to traverse, the 

structure of which bounds the behavior of the animal to a single dimension and which can be 

described by the length of the corridor alone. Another simple environment could be an open 

arena, the structure of which affords the animal no bounds to their behavior and can be defined 

by the geometric shape of the boundaries alone. In these two examples, the minimal structure 

of the environment provides a single meaningful shape to the environment, but to dramatically 

different ends. A slightly more complex maze would be a maze consisting of a single T-shaped 

junction. Relative to the previous two examples, a single T-shaped junction lends itself to 

increased complexity as multiple scales of meaningful shapes emerge. Each linear portion of 

the maze is a shape unto itself, and the arrangement of the linear portions of the maze provides 

an additional T-shape. Even a small increase in complexity in the environment can allow for 

more meaningful tasks to be performed, which can shape behavior in dramatic ways.  

Identifying what environmental structures guide behavior in stereotypical ways had been 

an active line of research (Carr, 1917; Mongomery, 1951; Douglas et al., 1974). However, in the 

last several decades, psychological research has gone from being dominated by behaviorist 

techniques to being biased toward contemporary neuroscience techniques which emphasize 

collecting unique forms of data. This current emphasis on specific neuroscience techniques 

include, for example, calcium transients (Harvey et al., 2012), recording from a genetically or 

anatomically defined subregion (Essig, et al., 2021), or utilizing sophisticated viral transfection 

techniques to influence neural activity with more specificity than a lesion through optogenetics 

and chemogenetics (Lammel et al., 2012; Roth, 2016). Relevant and high-impact data has 

changed from observing identifiable behaviors interpreted within their environmental contexts, to 
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observing biological correlates of particular events or behaviors. Sometimes these metrics and 

manipulations are variable, and require many instances of the behavior to be seen and 

validated. This has pressured the entire field to reduce structural-complexity of both tasks and 

environments used in experimentation. Less complexity has allowed for data to be collected and 

analyzed with greater speed and explained more thoroughly with ease. However, the trade off is 

that meaningful behaviors dependent on increased environmental complexity are not being 

captured. No domain of research suffered greater from this reductionist trend more than the 

study of spatial navigation. 

A demand for using structurally complex environments could have been expected in 

1976 with the discovery of place cells (O’Keefe, 1976), or expected in 1983 when place cells 

were seen to be directionally tuned (McNaughton et al., 1983), or again expected in the early 

2000’s with the discovery of trajectory dependence (Wood et al., 2000; Ferbinteanu & Shapiro, 

2003), or at any point in the long study of the spatial navigation system of the brain. From the 

beginning of place cell study, and repeated throughout the decades has been evidence that 

particular structures and behaviors elicited dramatically different responses in place activity. 

Despite mounting evidence to the importance of structural context, the employment of such 

structures in recording studies has not become the standard; in fact very few papers specifically 

address the effect structures of different types have on the spatial navigation system, and fewer 

of them interpret their results as a direct result emergent from the structure of environment 

chosen (Leutgeb et al., 2005; Derdikman et al., 2009; Nitz, 2011; Dabaghian et al., 2014; 

Stensola et al., 2015). Interpretations of these data are rarely able to go beyond the fact that 

structure matters, and only in rare occasions (Nitz, 2011) do researchers include specific 

structural features in their interpretation of the data. Even more surprising is that despite several 

historical attempts to push the field in this direction (Olton, 1979) it is only recently that this 



 
 

162 

subject has come back in discussions (Fetsch, 2016). If this push for greater environmental 

structure is going to make a lasting impact or is merely a perennial trend is yet to be seen. 

We know that spatial representations within the brain, such as with place cells of the 

hippocampus (HPC) (O’Keefe, 1976), consider more environmental and task features than 

border arrangement to manifest a representation of place. These features indeed involve the 

geometric shape the boundaries make (Leutgeb et al., 2005), but also the orientation in several 

frames of reference (Muller & Kubie, 1987; Deshmukh & Knierim, 2013), the specific 

connectivity places have to one another (Dabaghian et al., 2014), and even what experiences 

have previously occurred at that place (Kaufman et al., 2020, Poulter et al., 2021). In many 

ways the spatial navigation system of the brain considers nearly every imaginable feature of 

space in order to better represent it within the activity of neurons (Grieves & Jeffery, 2017). This 

growing constellation of observed spatial features encoded by various brain regions is a 

testament to the adaptive nature for which the spatial navigation system has evolved. What is 

critically underappreciated, however, is in what ways the nervous system is tuned to particular 

structures of these features. Studies on place cells as animals traverse maze environments with 

heavy recurrence (e.g. a spiral shape) clearly demonstrate that recurrence of structure can be a 

driving force for activity (Nitz, 2011). Findings such as this provide a deeper understanding of 

how recurrence of features in an environment organize spatial representations in the brain, and 

clearly demonstrate that environmental structure should be expected to play a major role in 

modulating brain activity.    

In chapter 2 SUB neurons were found to have distinct ‘break’ points in their spatial 

representations around all corners. This novel consideration of the kind of space around which 

SUB neurons organize their activity was distinctly not seen in CA1 populations. This allows for 

interpretations of how space is being represented by each population differentially beyond the 

obvious display of analogous place fields in SUB neuron activity. It was found in chapter 3 that 
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about twenty percent (20%) of all PPC neurons had their activity best explained by spatial 

positioning. This adds to the interpretation of PPC neurons encoding for frames of reference at 

many levels beyond those defined by self-motion. Beyond route encoding, the fact that PPC 

neurons encode for general structure itself has many implications for future studies and data 

interpretation.  

Findings from both chapters 2 and 3 give insights into the distributed spatial cognition 

system in the brain. It is important to consider these functional findings together with anatomical 

knowledge of a circuit that connects HPC to motor cortices via SUB, RSC, and PPC. This is 

what has been described as a space-to-action circuit (Vann & Aggleton, 2002; Yamawaki et al., 

2016; Olson et al. 2019; Nitzan et al., 2020). Beyond the ‘readout’ of HPC place information 

there are strong recurrent connections from SUB directly back to CA1 necessary for some 

memory tasks (Xu et al. 2016, Sun et al. 2019). The multidirectional nature of these brain 

regions raises questions as to the relationship between the representations of place and 

potential representations of structure. From one perspective is a neural circuit which is poised to 

be impacted by the specific place representation of HPC efferent connections. Seeing HPC as a 

modulatory signal on efferent targets could perhaps explain the allocentric modulations of self-

motion activity in RSC neurons (Alexander & Nitz, 2015) and M2 neurons (Olson et al., 2019). If 

the neurons presented in chapters 2 and 3 have their structural frames of reference defined by 

HPC place activity, then disruption of CA1 activity should reliably abolish SUB analogy encoding 

and PPC sensitivity to structure. This hypothesis would suggest that some integration of place 

activity is what gets construed as structure by the nervous system. From the other perspective 

this circuit is instead poised to directly inform and modulate place representations of HPC. This 

alternative view would help explain why lesions to PPC and SUB produce profound, but 

qualitatively different types of deficits during navigation as compared to HPC lesions (Morris et 

al., 1990; Save et al., 2005). If the neurons in chapters 2 and 3 are instead involved with the 
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creation of structured frames of reference that organize place cells, then a different set of 

expectations can be assumed. Disruption of CA1 place cells activity should instead not impact 

SUB representations of analogy and PPC sensitivity to structure, but disruptions of SUB or PPC 

should produce changes to CA1 place cells, perhaps only on a structurally complex maze such 

at the triple-T. Determining the ‘flow’ of information along this pathway will give a much better 

framework with which to interpret spatial representations of structure in the brain and their 

relationship to other cognitive processes.  

Previous studies have attempted to describe SUB neuron activity as simply as CA1 

neuron activity by studying SUB neurons along many of the same experimental paradigms that 

CA1 place cells are studied (Sharp. 1994; Kim & Frank, 2012; Lee et al., 2019. These 

paradigms commonly involve a relative lack in structural complexity. It should be expected from 

understudied brain regions that their neuron activity will respond to stimuli in unexpected ways. 

If, for instance, SUB is studied on unstructured environments or environments with simplistic 

structures it can be expected that SUB neurons will respond in an overly simplistic fashion 

resembling a low-quality place-cell in some contexts (Sharp & Green, 1994). There are many 

poorly studied brain regions that the field of neuroscience has yet to fully investigate. Chapter 2 

highlights the importance of utilizing structured environments and tasks of sufficient complexity 

when investigating brain regions which are not well studied in order to potentially unveil 

surprising phenomena. Furthermore, both chapters 2 and 3 highlight the importance of re-

exploring well studied brain regions such as CA1 and PPC on environments that are more 

complex compared to preceding investigations. Novel discoveries about CA1 such as a distinct 

lack of trajectory dependance at the subsequent decision after the first are surprising, and 

contradict some reports previously made (Ainge et al., 2007). What separates our study from 

previous studies is the combination of task design and environmental design that allows animals 

to self-generate their behavior during the find-all-4 task. This task difference for the triple-T 
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experiments may influence place representation and needs to be considered. It also could have 

been expected to see many place cells exhibit multiple place fields as the triple-T is a relatively 

large environment (Kjelstrup et al., 2008). However it also could have been expected to see 

those place fields distributed in a meaningful manner along the structure of the maze (Nitz, 

2011; Grieves et el., 2017), which was not seen as compared to SUB neurons. The discoveries 

made in PPC neuron encoding additionally give much-needed context for studying PPC in 

rodents, and allow for a better interpretation for the many self-motion dominated rodent studies. 

These studies show that in addition encoding navigational behaviors (McNaughton et al., 1994) 

PPC neurons can encode postures (Mimica et al., 2018) , both of which are behavioral 

responses to particular structure in the environment.   

  Critical to all of these studies was a careful appreciation of the behavior being asked of 

our rats, which is specifically analyzed in chapter 4. The triple-T task afforded the experimental 

design an incredible possible number of explanatory variables and perspectives with which to 

look at the data. This is part of the hurdle scientists have had in designing coherent but complex 

structures for studies. As mentioned in chapter 4, it was only due to many years of pilot studies 

and experimenter observations (Olson et al., 2017; Olson et al., 2019) that made designing a 

meaningful task on the triple-T and identifying which behaviors were particularly relevant for 

their navigation possible. The triple-T environment allows for the find-all spatial working memory 

tasks consisting of serial left-right decisions. There were either two decisions in the find-all-4 

condition or three decisions in the find-all-8 condition. The animals’ ability to perform highly at 

the find-all task was utilized for neural recording experiments to ensure an even sampling of 

spaces. Surprisingly animals were able to learn and incorporate new pathways into the known 

find-all-4 schema quickly and efficiently after one day of a brief introduction. This finding again 

affords neurophysiological studies the ability to obtain a naturalistic even sampling of space, 
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and shows that rats are capable of much more difficult or complex tasks than currently get 

asked of them.  

  Beyond the behavior itself, how the rats chose to perform the find-all task, became 

fascinating in its regularity. Rats are known to exhibit AB regularly on T-maze tasks (Carr, 1917; 

Bak et al., 2017 ). This phenomenon, and how it modulates with environmental and task 

changes (Douglas, 1974), has been the source of study for almost 100 years. Interestingly, in 

our studies the rats chose to exhibit AB on the triple-T environment in a spatially organized 

manner which, when analyzed in some contexts reveals emergent spontaneous double-

alternation behavior. These behavioral stereotypies become even more curious under the 

latent-learning transition from the find-all-4 to the find-all-8 condition. Rats learn and incorporate 

new pathways into a known task-schema immediately and better their performance as their 

behavior becomes more stereotyped. This incorporation of a new decision point quickly 

develops its own AB as well. This occurs without any diminishment to AB at either of the other 

two more experienced decision points. This is consistent with the rat’s behavioral schema of 

choosing to alternate at every decision point when that space is encountered over subsequent 

trials.  

  One observation made from chapter 4 is that not all errors can be attributed to lapses in 

any one behavior in particular. This is especially true on the find-all-8 condition. Chapter 4 posits 

there exists some embedded patterning of behavior into larger strategy chunks. This evidence 

suggests that rats are strategizing about how to perform the task, and fluidly updating that 

strategy throughout the experiment. This hypothesis is backed by the occasional display of 

higher order alternation at the second decision point which could arise from nesting first order 

alternation at each location separately. The fact that this higher order alternation behavior, and 

others exhibit strong negative pressures for the behavior to be continued demand some 

temporal level of analysis beyond what is currently available. The data which chapter 4 
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describes agree with previous theories on rat alternation behavior that rats will bias their 

behavior to avoid more recently visited spaces in an effort to maximize exploratory behavior 

(Douglas, 1966; Phillmore & Klein, 2019). There is also a strong behavioral heuristic in the form 

of using the return arms on occasion. Exactly how spatial behaviors such as AB and the use of 

spaces as navigational heuristics interplay to form the rat’s schema is a natural next step for this 

observation over time. 

  Chapter 4 also raised the question: do rats change their strategizing throughout the 

duration of the experiment? It has been seen that in simple two-choice perceptual response 

tasks mice perform in a manner that can be described by the shifting of several strategies 

across a single recording (Ashwood et al., 2022). Considering that the triple-T tasks performed 

involve several more decision points to consider it should be expected that the strategy of the 

rats ought to be more dynamic. To what extent these dynamics play out over time has yet to be 

seen. This is just one of the functions of how the triple-T, and related tasks, can be used to 

study spontaneous choice behaviors and strategy related activity in the brain. 

In summary, work presented here gives a greater appreciation for the ability of the 

nervous system to perceive and represent structurally rich path-networks. This evidence is not 

surprising given the natural environments in which animals live and which the nervous system 

was evolved to perceive. However, the evidence is interesting because it supports the idea that 

some brain regions’ unique ability to represent space necessitates that feature-rich 

environments be present in order to be observed. Experiments done which inadvertently deprive 

the nervous system of the richness in which it was evolved to interact through the application of 

substandard environments cannot reveal all of the responses that these brain regions, or 

behavior have to offer. The revelation of dynamics still unseen in neural activity and behavior 

and their relationship to structurally complex spaces may even reconcile research on the many 
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other cognitive functions associated with the spatial navigation system such as the episodic 

memory system, attentional systems, and planning systems. 

  Structural similarity can be seen in many ways across brain regions as demonstrated in 

chapters 2 and 3. Structural similarity can also been seen to organize behavior in regular ways 

as shown in chapter 4. These findings in summary can help guide neuroscience research in 

developing new, interesting, behavioral tasks which allow for the nervous system to both 

discriminate and generalize space. As seen with analogy encoding demonstrated by SUB 

neurons, by affording the animal a more structurally complex environment, allows for  

structurally relevant representations of space present themselves neuron activity. This was also 

seen in demonstration that PPC neurons respond in a way that is equivalent across structurally 

equivalent routes. Finally, by allowing our subjects to self-employ strategies to accomplish a 

structured working memory task within the triple-T path network it allowed for the emergence of 

never before described spontaneous behaviors. This is seen in how rats regularly structure their 

alternation behavior according to areas of topological similarity. Surely the application of 

environments which allow for many forms of structural similarity to be appreciated will allow 

neuroscience to continue to discover unique and surprising findings that shed light on the 

function of various brain regions, well studied and not. As more elaborate behaviors are 

employed and allow for the subject to self-organize their own behavioral strategy, two questions 

arise: (1) how are these strategies employed throughout the time course of an entire behavioral 

experiment, and (2) how do those strategies manifest in the activity of neural populations known 

to be associated with working memory and navigational processes? In order to answer these 

questions preliminary work that can reliably explain the naturalistic behavior of animals must be 

done. Already great strides are being made in the world of hybrid models using Hidden Markov 

Generalized Linear Models (HMMGLM) to describe the subtleties seen in choice behavior on a 

two-choice perceptual task (Ashwood et al., 2022). Application of these tools onto triple-T 
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datasets promises to identify epochs of time when the subject undertakes a consistent 

behavioral stereotypy. The ability to identify these times would also allow for the ability to 

compare neural activity across epochs to investigate behaviorally-structured neural activity. 

 As a result of the intersection across the spatial navigation system in the brain and other 

cognitive processes in the brain this research also poses many interesting questions for human 

pathology. That is to suggest that when inexplainable symptoms arise in cognitive systems, 

structure of the surroundings could give profound clues as to what an appropriate therapeutic 

approach to care may be. For example, freezing of gait in Parkinson’s disease appears to be 

brought on by particular structures, such traversing a narrow doorframe (Stern et al., 1980). 

While the mechanism of this freezing is unclear, it could have foundations in the environmental 

structure being encountered itself. It may be that some structures elicit particular cognitive 

inflection-points, and in this way understanding the foundation of structure perception in the 

nervous system is critical to better understanding a source of this particular pathology. As 

another example, people living with memory impairment often have difficulty living in assisted 

communities as their structure is unfamiliar (Schiff, 1990). Many of the same systems utilized in 

the brain for memory are the same as used for spatial navigation. Further research into what 

types of structures anchor neural activity in brain regions affected by pathology will certainly 

inform what kinds of structures are most cognitively demanding and perhaps most difficult to 

navigate for the memory impaired.  

Major Themes and Claims  

Equivalent Structures Can Elicit Equivalent Behavior  

 Along what lines two stimuli are different and equivalent is a common source of 

inspiration for neuroscience research. A general reductionism in experimental design has been 

the result of an overabundance of attention placed on sophisticated methods of data collection. 
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These methods do not always afford for experiments with matched behavioral sophistication, 

and thus the scope of interpretation is bound to be simplistic. The real world is not simplistic, 

and various locations in the real world can be considered with regard to their similarity to one 

another. From our data, with sufficient structural complexity, we found that the nervous system 

is capable of appreciating equivalence across many frames of reference. The analogy encoding 

found in SUB neurons and PPC neurons generalizing in space against self-motion are two 

forms of evidence from distinct brain regions that structural equivalence is referenced in many 

brain structures. The spatially distributed nature of AB on the find-all tasks further demonstrates 

that spaces which have structural equivalence (e.g. T-junctions) can be seen as equivalent in 

many ways despite their spatially distributed nature. This dissertation demonstrates that places 

of equivalence will often elicit equivalent behaviors in the neural activity as well as decision-

making patterns. While perhaps an unsurprising claim to make, it is more surprising that studies 

that allow for such a claim to be made are not more commonly performed. This claim also 

demands better experimental design from neuroscience. We cannot simply ignore evidence for 

the importance of structurally complex environments and continue to force the system being 

studied into an overly simplistic experimental design.  

Structure to Place Interaction 

The original motivation behind many of these studies was to observe how place 

representations would reflect, or not reflect, the structure of the triple-T maze. Unexpectedly, 

place cells did not systematically organize their activity around the structure of the triple-T with 

the exception of a lack of observed trajectory coding at the final turn for the find-all-4 condition. 

CA1 place cells did not organize their place fields around corners, which SUB neurons did. We 

observed that brain regions such as SUB and PPC organized their activity along frames of 

reference best described by the structure of the maze, while CA1 place cells did not. These 

findings are provocative and pose an interesting research topic as to the nature of place and 
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structure representations with regard to one another. From a space-to-action point of view, 

place representations would be generated by HPC and then broadcast to efferent targets, 

potentially to be decoded as representations of structure from the representation of place and 

sequences of places. From an action-in-space point of view, efferent copies of motor decisions 

would be associated with other information, such as vision and somatosensation. These 

associations could generate representations of the relevant structure within the cortex which 

could go on to influence neurons co-targeted by hippocampal efflux. This action-in-space 

system could provide a coherent representation of the context within which an action is being 

taken. SUB encodes structure in a form of activity that resembles place fields distributed in 

many meaningful locations, and yet the dynamics one synapse away with place cells are so 

different. It will be critical to understand the relationship between CA1 and SUB neurons in 

particular to elucidate a better understanding of how structure and place interact.   

Structures as General Organizing Principals 

Colloquially ‘structure’ is used to discuss the relative organization of features with one 

another. Structures have been shown to influence the activity patterns of neurons along intuitive 

lines. For example, the analogy tuning seen in SUB neurons is often reflected across an 

obvious line of symmetry with regard to the overall structure of the maze. Structure also 

influences PPC spatial representations in that PPC neurons respond similarly across similarly 

structured pathways irrespective of their specific shape. Additionally, structures which share the 

quality of being T-shaped junctions elicit AB in an equivalent fashion even though they are in 

different locations, occur at different points in the total decision making scheme, and are 

variably related to performing an error. Why do these very obvious and explicit features 

(symmetry, affordance, and shape) organize certain levels of the spatial navigation system and 

not others? One possibility is that the associations between perceived features as a whole may 

give rise to most, or all, possible structure representations. The brain could then have a process 
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to detect relevant structures at each level of neural computation and organize activity around 

them. This merely changes the question to identifying the process for which structural relevance 

is selected.  

It seems useful to endeavor in constructing a framework in which to study structure as a 

concept itself. This would allow us to define common metrics which can be applied to both 

environmental and task design. These metrics could help put forward theories that link the many 

cognitive processes seen to involve the same brain regions, and help differentiate the many 

forms of redundant encoding seen in neural activity. It may be that functional specificity is not 

the correct perspective to get an appreciation for the uniqueness of each brain region – there is 

simply too much overlap in what each brain region is able to respond to in order to classify brain 

regions on what they ‘do’. Experiments in this fashion often set out with an a priori hypothesis 

about a brain region’s ability to encode a particular stimulus in order to receive a relatively 

binary answer for the stimulus and its feature set. Instead, it may be the difference in specific 

structural tuning that best defines functional brain regions. One brain region may respond to 

structures at a different level of complexity compared to another brain region, and that may be a 

more parsimonious way to describe them. Experiments that investigate this would need to 

employ thoroughly complex environmental and task structures to provoke many potential 

responses. Designing and considering sufficiently complex structures of task and environmental 

interactions through the experimental time course of neurophysiological studies may prove 

much more useful in describing meaningful differences across brain regions. Furthermore these 

studies have the potential to address specifically how relevant structures are identified from the 

set of all possible structures. Similar lines of thought have begun to take shape in the world of 

fMRI analyses where considering task similarity matrices are allowing for functional 

differentiation of many brain regions (Cohen et al., 2017).  
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As of now experimenters are restricted to their own intuition for how complex a task and 

environment can be reliably performed. Even then, it can take years of pilot studies to provide 

the foundation required to fully elaborate on meaningful patterns in behavior on such a task. If 

the concept of structural complexity could be formalized in a manner that was intuitive and 

quickly adaptable it would benefit the field greatly. Such a formalization may be structural 

complexity ‘score’, involving the structure of working memory task demands and the structure of 

spatially distributed choices. If such a value were to be computed, it would allow researchers the 

backing needed to endeavor into new tasks assured that they are not overly simplistic nor overly 

complex for the system they are studying.  

The concept of structure can be applied to everything we can perceive, including objects 

and spaces, but as well as events and tasks. As more attention is applied to what is meant by 

‘structure’ and proper tools are developed to investigate structure along behavioral and physical 

domains it is clear that representations of structure itself will emerge. These representations of 

structure will almost certainly be found to be powerful organizing forces for neuron activity.   
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