
Lawrence Berkeley National Laboratory
LBL Publications

Title
For-Word Fortran Development Newsletter Volume 1

Permalink
https://escholarship.org/uc/item/3s92x0j9

Author
Meissner, Loren P

Publication Date
1976-02-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3s92x0j9
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

PUB.91 -/
(. F

FOR-WORD
FORTRAN DEVELOPMENT
NEWSLETTER

Loren P. Meissner

LAWRENCE BERKELEY LABORATORY
BERKELEY, CALIFORNIA 94720

VOLUME 1
No.1 - Feb. 1975

thru
No.6 - Feb. 1976

TWO-WEEK LOAN COpy

This is a library Circulating Copy
which may be borrowed for two weeks.
for a personal retention copy, call
Tech. Info. Diuision, Ext. ~

Prepared for the U. S. Energy Research and
Development Administration under Contract W·7405·ENG-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
Califomia. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

"FOR-WORD" Fortran Development Newsletter

Volume 1

by

Loren P. Meissner

Lawrence Berkeley Laboratory
Berkeley, California

Introduction

The need for communication among those interested in the
. development of the Fortran programming language was recognized

as early as 1974, by such persons as Donald J. Reiferand Guy
J. De Ba1bine. Inspired by these individuals and others, Loren
P. Meissner decided in February, 1975, to produce a newsletter
for information concerning developments in this language. The
first three issues were only one or two pages long, hut as more
interested persons began contributing material, and as liaison
with the ANSI X3J3 Fortran Standards Committee increased, the
amount of material considered to be of interest to the readers
of the newsletter increased as well.

This report is a compilation and reprint of the first six
issues of the newsletter, which were distributed between Febru
ary 1975 and January 1976.

= FOR - W 0 R D = >

Fortran Development Newsletter

Volume 1

(Reprint)

CONTENTS

Number 1, February 1975 (Original title:
"Newsletter of the West Coast Working
Croup on Fortran Language Development") 1

Number 2, March 1975. 3

Number 3, May 1975 5

Number 4, August 1975 7

Number 5, October 1975 . 21

Number 6, January 1976 (Special issue:
"Proposed ANS X3.9 FORTRAN Language Revision"). 31

Note: Two other documents were distributed during 1975
to addressees on the "FOR-WORD" mailing list. These are:

"On Extending Fortran Control Structures to Facili
tate Structured Programming,"'by L. P. Meissner; see
SrCPLAN Notices Vol. 10, No.9, September 1975, page 19

"Proposed Control Structures for Extended Fortran,"
by L. P. Meissner; see SrCPLAN Notices Vol. II, No.1,
January 1976, page 16

Copies of these papers are available from L. P.
Meissner.

-1-

No. 1 1 Feh 75
NEWSLETTER of
THE WEST COAST WORKING GROUP ON FORTRAN LANGUAGE DEVELOPMENT

1. History.

Beginning at the 1974 Lake Arrowhead Workshop on Structured Programming, and
building up steam at the Workshop on Fortran Preprocessors for Numerical Software,
has been the idea of estahlishing some sort of intercommunication facility for
people interested in trends in Fortran language development, beyond the level nm~
under consideration by the Standards group (ANSI - X3J3). Of primary concern at
the present time is the question of Fortran language extensions to accomodate
structured programming.

Recently Donald J Reifer of Aerospace Corporation has proposed the formation
of a small working group on the West Coast, to study the question of programming
in Fortran or in an extended Fortran dialect, in accordance with the "principles
of Structured Programming."

One notable trend is the proliferation of preprocessors, which accept various
source language dialects more or less like Fortran, and produce "standard Fortran"
code. The preprocessor input languages are designed, in many cases, to accept a
language that includes such keywords as "WHILE" or "ELSE," which are supposed to
be the hallmark of a structured programming language. Reifer and others are asking
whether it is possible to discern one or more areas of concensus among these dia
lects.

Dr. Guy de Balbine has taken the initiative in compiling a mailing list of
persons who have declared to him their interest in the future of Fortran as it
relates to Structured Programming. I have expanded this list somewhat, and am tak
ing the further initiative of mailing out what may be, for a while at least, a
monthly newsletter discussing the activities of this working group, if it continues
to exist. (Initial mailing: 64 copies.)

2. Announcements.

l-Yednesday, February 12, at 6 p m, at the Holiday Inn - Westwood (near lTCLA)
there will be a meeting of a small group of persons to discuss the poss
ibilities of organizing such a group as has been proposed by Don Reifer.
Anyone interested in attending ~hould call Don at 213-648-6260. This
is the evening before the Computer Science and Statistics Symposium at
UCLA.

Thursday, February 20, at 7 p m, at the Statler Hilton, Washington DC
there will be a Special Interest Session on Structured Fortran. The
chairman will be L. P. Meissner. This is in connection with the SIGCSE
Symposium. Also on the next day, Professor Gibbs of William and Mary
will be the chairman of a formal session on Structured Fortran. This
session will include papers by W. R. Bezanson of Carleton University,
J. L. Wagener of SUNY Brockport, and L. P. Meissner.

Wednesday, Februray 26, in the evening, at the Jack Tar Hotel, San Francisco,
there will be the second meeting of the West Coast Working Group on
Structured Fortran. It is expected that several interested persons from
outside California will be able to attend this session, which is at the
same place as "COMPCON," the Spring meeting of the IEEE Computer Society.

3. For Further Information: Dr. Loren P. Meissner (50-B 3239), Lawrence Berkeley
Laboratory, Berkeley, CA 94720. 415-843-2740, ext. 6361. Or call
Don Reifer at the number mentioned above.

"F 0 R - W 0 R D"

Fortran Development Newsletter
No. 2 -- 24 Har. 1975

1. The Structured Fortran Working Group:

-3-

Mailed by -- Loren P. Meissner (50-B 3239)
Lawrence Berkeley Laboratory
l1niversity of California
Berkeley, CA 94720

Het in Los Angeles on 12 Feb., and agreed to publish a language feature catalog within six
months, covering existing Fortran preprocessors. To this end, Don Reifer is soliciting information
concerning additional existing structured Fortran implementations. tater, the group expects to rec~
ommend preferred forms for the representation of various extended control constructs. The group met
again in San Francisco on 26 Feb., and discussed a skeleton list of language features to be used as
a basis for comparing structured Fortran dialects.

The next meeting of this group will be at the International Hotel~ Los Angeles, during the time
of the International Conference on Reliable Software (April 21 - 23). Besides a working meeting for
those involved in the survey, an open progress reporting session will probably be held. Time and
place of meetings will be posted in the conference registration area.

Don Reifer has submitted two papers for publication by several of the ACM Special Interest
Groups. One of these, entitled "The Structured Fortran Dilemma," outlines the problem that led to
the formation of the Structured Fortran Working Group. The other paper, "The Structured Fortran
Working Group," gives further information concerning the preprocessor survey being undertaken by the
group. lo/atch your SIG news bulletins for these papers.

Continue to report any structured Fortran dialects that you may hear about, either to Loren P.
Meissner (address above) or to Donald J. Reifer, MS 100-2034, The Aerospace Corporation, PO Box
92957, Los Angeles, CA 90009.

To simplify communications, all of the active members of the l.rorking group have been recruited
from the West Coast. They are Terry Beyer (Eugene OR), Don Buchwald (Los Angeles), Loren Carpenter
(Renton 1.1A) , ~{artin Cohen (Marina del Rey CA), A. James Cook (Stanford CA), Guy de Balbine (Pasadena
CA), Ellis Horowitz (Los Angeles), Charles L. Lawson (Pasadena, CA), Edward F. Miller, Jr. (Santa
Barbara, CA), Jock Rader (Culver City, CA), Donald J. Reifer (Los Angeles), and Loren P. Meissner
(Berkeley, CA).

2. Special Interest Session on Structured Fortran at SIGCSE Symposium, Washington, DG (20 Feb.)

Loren P. Meissner was chairman of this session, which was devoted to discussion of pedagogical
and educational implications of structured Fortran extensions. Meissner presented a preliminary
survey of control structures found in 14 existing dialects, and discussed the need for multiple
level exits and the implementation of the Dahl and Zahn constructs mentioned by Knuth (Comp. Surveys,
Dec. 1974). Other points covered during the meeting included the need to introduce control struc~
ture discipline early in the student's career, and the disadvantages of preprocessors for student·
use. James Vandendorpe of Illinois Institute of Technolop,y, and Selden I .. Stewart of the National
Bureau of Standards, des,cribep preprocessors that had not previously heen published.

3. Cooperation with the ANSI X3J3 Fortran Standards Committee

The committee is nearing completion of a revised standard, and expects to present it public\y
early in 1976. Frank Engel, Jr., who is the chairman of this committee, met with three members of
the West Coast group recently. Frank recalled that after publication of the original standard in
1966, there l.ras very little interest in further development of the language. The general feeling
seemed to be that Fortran had now been standardized and was ready to settle down, while pLII was
rising in popularity and might take over before any further need for Fortran development coald occur.
The situation seems to be q~ite different this time. The committee has a list of proposed additions
to Fortran that might be worthy but could not be considered in time for the current revision. Also,
there are some active groups (including the Hest Coast Structured Fortran group, and others) who are
interested in the further development of Fortran in specific directions.

In view of the pending completion of this phase of its work, and of the apparent interest in
Fortran within the user community, the standards committee might like to present its new proposals
at an open meeting some time early next year, and would welcome support from the user community in
organizing such a meeting. Meissner suggested the possibility of a Hest Coast presentation next
February in connection with the Computer Science Conference, followed by an East Coast presentation
in conuection with the National Computer Conference at New York in June. Further exploration of the
first possibility has already been undertaken, and planning has begun for a Fortran forum at Anaheim

-4-

during the week of 9-13 Feb. 1976. The plan is to have a one day meeting on each coast, and to
include in each some presentations by members of the X3J3 committee as well as some invited papers by
others working on Fortran language developments in specific areas of interest. Sponsorship by the
local ACM chapters and possibly by SIGPLAN is being explored. Volunteers are needed to help with the
details of both meetings.

East Coast readers of this Newsletter please note: plans for the June 1976 Fortran Forum East
need to get under way soon. Let's discuss this next month in Los An~e1es (at the conference 21-23
Apr.) or write to me or to Frank Engel Jr., 179 Lewis Rd., Re1mont, MA 0217R (617 484-5911). Nomina
tions for meeting chairman are in order.

Continuing efforts. Besides the need to publicize and implement the revised ANSI Fortran stand
ard, it was noted at the recent meeting with Frank Engel that efforts are needed in two other areas
on a continuing basis. First of all, the ANSI X3J3 committee will be recruiting new members to carry
the torch of further standards revision. The next revision will be due in five years, and judging
from past experience it will take at least six years to produce it. There seems to be some possibil
ity of organizing a subcommittee even before publication of the current revision, to consider the
left-over proposals and begin working on control structures and other features for next time around.

There remains the question of whether a separate Fortran language development effort, which
would concern itself with a look further into the future than the standards committee, is needed.
As a first step in this direction, I am exploring with SIGPLAN the possibility of forming a Fortran
subcommittee within that organization. SIGPLAN seems to me to be the most logical horne for such an
effort. Any comments?

Besides the Hest Coast Structured Fortran group, there is now an "Industrial Fortran Group" con
cerned \ilith process control applications; also a "t\Torking Party on Fortran Extensions" in the British
Computer Society, and a Data Base Management Group in Codasy1 with some interest in Fortran develop
ment. Other groups that might be interested include the computer user groups (Share, etc •.), BEMA and
EC~~ (European) manufacturers' groups, and of course the software groups working for the computer
manufacturers themselves. The National Bureau of Standards has some responsibility for Fortran stan
dards within the U.S. government. In fact, every major computer user has considerable stake in the
future of Fortran. It should be possible to tap some of this interest, in order to get some communi
cation going on the subject of future directions for development of the Fortran language.

Financial support seems to be a more difficult problem. Although many organizations have a lot
to gain from the orderly development of the Fortran language, it is hard to get this fact converted
into support for standardization and development efforts. The best that can be managed seems to be
the time and travel expenses of a few volunteers who work on committees. While these efforts are far
better than nothing, it may be that more energy is required for the task than can be expected on a
volunteer basis. Obviously, domination of language development efforts by the manufacturers would be
undesirable. Support from major users might work out better, if it could be arranged. The federal
government seems willing to support in-house efforts in certain areas, such as the testing of soft
ware procurements for conformance with existing standards, but so far seems not to have taken respon
sibility for development of new language features. Research grants are aimed at specific projects,
rather than at cooperative efforts to organize language developments. The only glimmer of profes
sional society support appears in the ACM Long Range Planning Committee report (r.omm. ACM Feb. 1975)
which includes some statements of the desirability of a more active role for the organization in this
area. It is not clear how much this will mean in practice, or how soon it will become effective.
Meanwhile, if most of the work must continue to be done by volunteers, then ~ people should get
involved so that the burden on anyone individual can be decreased.

Structured Fortran Bibliography (.!) [Hore next time. Contributions welcome.]

Miller, E.F. Extensions to Fortran to support structured programming. SIGPLAN Notices 8, 6 (Jun 73)

Miller, L.R. Linus, a structured language for instructional use. SIGCSEBu11etin 6, 1 (Feb 73)

Hull, T.E. Hou1d you believe structured Fortran? SIGNUM Newsletter 8, 4 (Oct 73)

Rosin, R.F., and Hull, T.E. Correspondence on structured Fortran. SIGNUM Newsletter 9,2 (Apr 74)

Meissner, L.P., A compatible structured extension to Fortran, SIGPLAN Notices 9, 10 (Oct 74)

Ralston, A. The future of higher level languages (in teaching). Proc. Int. Compo Symposium 1973

Tenny, Ted Structured programming in Fortran, Datamation 20, 7 (Apr 74)

O'Neill, D.M. Sfor - A precompiler for the implementation of a Fortran-based structured language.
SIGPLAN Notices 9, 12 (Dec 74)

-5-

= FOR - W 0 R D = >

Fortran Development Newsletter No. 3 1 Mav 1975

1. The Structured Fortran Working Group

The third meeting of this group was held at
Los Angeles on April 22, 1975. Don Reifer repor
ted that he is working with the appropriate
groups, on sponsorship of a Fortran Forum at Ana
heim in February 1976. This is to be a one-day
presentation, overlapping with the Computer Sci
ence Conference or the SIGCSE Symposium during
the week of February 9 - 13, 1976. It is to in
clude discussion of the new ANSI Fortran standard
(led by members of the X3J3 committee) as well as
invited papers on subjects related to the future
of Fortran. Plans will proceed as soon as the
necessary approvals are obtained.

The Working Group discussed progress toward
gathering information concerning existing prepro
cessors and other language extensions for struc
tured programming. A committee was appointed to
refine the proposed questionnaire to be sent to
the developers of extended Fortran dialects.

Further discussion centered on theclarifi
cation of the objectives of the group, and on the
relation of preprocessor input languages to Stan
dard Fortran or to future extended compiler input
languages.

2. Toward.!!. Fortran Development Committee

Between sessions of the International Con
ference on Reliable Software in Los Angeles (Apr.
21 - 23), the· idea of forming a Fortran Develop
ment Committee was discussed. Dr. Halstead, the
current Chairman of SIGPLAN, stated that his
group would probably be interested in a proposal
for the formation of such a group as a Special
Technical Committee of SIGPI.AN, more or less par
allel to the existing committee on API..

The executive board of SIGPLAN will be meet
ing at the NCC in Anaheim, and a proposal could
be brought before them at that time. This will
require a statement of objectives, a set of by
laws (which could be based on those of the APL
committee), a slate of officers, and the signa
tures of as many persons as possible who are in
favor of the establishment of such a committee.

A form for gathering signatures is enclosed
with this Newsletter. SIGPLAN member signatures
are preferred, otherwise ACH members would be
nice; but the declaration by any interested per
son of support for the idea of such a committee
will have some weight. Please feel free to make
copies of the form, or attach signatures on blank
paper, or use the reverse side. Signatures that
are received by Loren Heissner by 15 Hay will be
presented at the N.ee. Other signatures will be
helpful as well, in possible further discussions
with the SIGPLAN board. (One possibility is that
some, but not all, of the necessary requirements
for the estah1ishment of the committee will be
met in time for the Nce meeting.)

Unfortunately, a petition is a rather poor
format for expressing the negative of the pro
posed opinion. If you are opposed, especially
if you have definite ideas or alternative sugges-

Mailed by -- Loren P. Heissner (50-B 3239)
Lawrence Berkeley r,ahoratory
University of California
Berkeley, CA 94720

tions, send them to any of the proposed officers
(listed below) or to a member of the SIGPLAN exec
utive board (listed inside the cover of SIGPLAN
Notices).

Proposed interim officers, to serve until an
election is held under the by-laws, are

Chairman: Paul B. Schneck, New York NY
Vice Chairman: Guy J. de Ba1bine, Pasadena CA
Secretary-Treasurer: Michael A. Ha1colm,

Waterloo, Ontario
Editor: Loren P. Meissner, Berkeley CA

One possihi1ity is that "representatives" from
various groups working toward Fortran development
will be recognized and given a definite status
with regard to the committee. Suggestions are
welcome as to means for accomplishing this, and
as to various groups that should be contacted for
their views on subjects of interest to the com
mittee.

PLEASE SIGN AND RETURN YOUR PETITION RIGHT AWAY.

3. On Preprocessors. (Editorial?)

One attendee at the Structured Fortran Work
ing Group meeting expressed the opinion that it
may be just as important to emphasize portability
and usability of the output produced by a prepro
cessor, as to attempt to standardize preprocessor
input. Further discussion after the meeting has
led to the follOWing conclusion in this regard.

There are two ways to transport a "struc
tured" Fortran program that has been developed
with the aid of a preprocessor. One way is to
transport the preprocessor source code along with
the preprocessor itself. This requires that the
preprocessor be extremely portable, so that the
user can implement it on his equipment with vir
tually no effort and at little expense. The pro
gram can then be maintained in preprocessor
source form. The other way is for the origina
tor to use the preprocessor to convert the struc
tured program to portable Fortran and transport
the preprocessor output. To make this approach
feasible, efforts would be required to make the
Fortran language output from some of the prepro
cessors more readable, so that it could be used
as a basis for code maintenance by the user. In
either case, it is not clear why the preprocessor
source language should resemble Fortran (rather
than Pascal, for example), except to permit some
gain in preproce'ssor efficiency ~ ... hen source state
ments are recognized as being Fortran statements.

Paul Jensen writes, "Because of the many struc
tured Fortran dialects, that will probably contin
ue to exist for some time, it appears that the pro
duction of very readable Fortran "object" programs
by the preprocessors is of key importance."

-7-

= FOR - W 0 R D = >

FORTRAN DEVELOPMENT NEWSLETTER

No. 4 -- Published. by
Ad hoc Committee on Fortran Development

ACM - SIGPLAN

Table of Contents

Calendar 1
Newsletter items solicited. 1
SIGPLAN Fortran Development Committee 1
West Coast Working Group on Structured Fortran. 2
Fortran Forum West 2
Fortran standards activity. 2
Standard Industrial Fortran for Process Control 3
SIGPLAN Notices to publish draft of proposed

revised Fortran standard 3
Workshop on Fortran preprocessors for numerical

software (Pasadena, 7-8 Nov 1974) 4
A quote 5
List of structured Fortran processors 6
Fortran bibliography . 7
Note . . 8
On Fortran syntax analysis methods 8
CORRESPONDENCE

Best wishes. 8
Teaching structured programming to Fortran

users . 9
Productivity 9
All Fortran control structures are illegal 9
Is preprocessing the answer? 9
Masters thesis on structured Fortran. 10
Structured WATFIV 10
Implementation problems 10
Compiler standards needed . 10
Source program format. 10
Text substitution 10
Statement grouping 11
Data structures . 11
General suggestions for Fortran development 12

Mailing list changes; Copies of previous
FOR-WORD Newsletters . 13

FOR-WORD Fortran Development Newsletter

CALENDAR

25-29 Aug 75

8-12 Sep 75

6-10 Oct 75

20-22 Oct 75

17-18 Nov 75

19-21 Jan 76

9 Feb 76

10-12 Feb 76

22-24 Mar 76

7-10 Jun 76

7-10 Jun 76

Meeting of ANSI Fortran Standards
Committee at Bell Labs, Holmdel
NJ. Contact: Tom Gibson, 2G 428.

COMPCON Fall 75, and Conf on Soft
ware Engineering; Mayflower Hotel
Washington DC. For information
write COMPCON, PO Box 639, Silver
Spring MD 20901

Reserved for possible ANSI For
tran Standards Committee mtg.

ACM 75 National Conference
Radisson Hotel, Minneapolis MN.
Chairman: Earl Joseph, PO Box
3525, St Paul MN 55165

Fourth Texas Conf on Computing
Systems, Austin TX. Chairman:
SK Basu, Computer Sci Dept,
Univ of TX, Austin TX 78712

Syrnp. on Principles of Program
ming Lang., Atlanta GA. Prog.
Chairman: SL Graham, Computer
Sci Division, Univ of Calif,
Berkeley CA 94720

FORTRAN FORUM WEST at Disneyland
Hotel, Anaheim CA. Chairman:
Donald J Reifer, Aerospace Corp.
PO Box 92957, Los Angeles 90009

Computer Science Conf 76, Anaheim
CA. Chairman: Julian Feldman,
Dept of Inf & Computer Sci, Univ
of Calif, Irvine CA 92664

Conf on Data, Abstraction, Defi
nition, & Structure, Salt Lake
City, UT.

National Computer Conf 76, New
York.

Possible FORTRAN FORUM EAST at
National Computer Conf 76.
Tentative Chairman: Paul B
Schneck, Goddard Institute,
2880 Broadway, NY 10025

NEWSLETTER ITEMS SOLICITED

Send Calendar Items, Bibliographies or
Reviews, Correspondence, Comments, Thoughts on
Fortran Development, etc. to the Editor:

Loren P. Meissner
50-B 3239
Lawrence Berkeley Laboratory
Berkeley CA 94720

8

No. 4 August 1975 page 1

SIGPLAN Fortran Development Committee

SIGPLAN (ACM Special Interest Group on Pro
gramming Languages) has been asked to create a
Special Technical Committee on Fortran Develop
ment. A proposal for creation of such a commit
tee was presented to the SIGPLAN Executive Com
mittee in Anaheim in May 1975. The presentation
included well over 50 petition signatures, an
interim slate of officers, a proposed set of by
laws, and a statement of the purpose of the com
mittee.

Although final action is pending, awaiting
further action by ACM, the SIGPLAN Executive
Committee authorized the appointment of the pro
posed officers as an ad hoc committee under SIG
PLAN sponsorship, to take further steps toward
formalization of a SIGPLAN Technical Committee
on Fortran Development, and to "establish activ
ities consonant with the existence of such a
technical committee." Some financial assistance
was also promised.

The petition signatures presented in May
were obtained in less than two weeks as the re
sult of a single mailing. Additional petitions
have been received since May, bringing the total
to about 150, of which about 100 signatures bear
an ACM Membership Number.

The purposes of the committee include: To
form a bridge between active implementations of
Fortran extensions, and the ANSI X3J3 Fortran
standards effort. To provide a forum for inter
change of ideas and proposals, for groups inter
ested in extending the Fortran language in vari
ous ways. To obtain and distribute information
concerning developments in, and extensions to,
the Fortran language as defined by existing
standards. To take stands and make recommenda
tions (after adequate consultation with all in
terested parties) concerning the desirability or
undesirability of implementing certain features
in certain ways, in the hope of reducing the
proliferation of dialects by reacting in a
timely way to new language developments.

The ad hoc committee, as currently consti
tuted, consists of the following persons who
are to become interim officers of the Technical
Committee when it is formally established: Paul
B. Schneck, New York NY (Chairman); Guy J. de
Balbine, Pasadena CA (Vice Chairman); Michael A.
Malcolm, Waterloo Ont (Secretary-Treasurer); and
Loren P. Meissner, Berkeley CA (Editor). The
Editor is now maintaining a mailing list, which
will eventually form the basis for a Membership
List of the Technical Committee. It is expected
that, after a period during which activities of
the group are supported by SIGPLAN, it will
eventually be necessary to charge a membership
fee to cover the cost of distributing the News-
letter. -LPM

FOR-WORD Fortran Development Newsletter

The West Coast Working Group
onstrUCti::iTedFortran

Current activities of this group include or
ganizing the Fortran Forum West (reported else~
where in this Newsletter), and conducting a Pre
processor Survey.

A committee met recently to decide upon a
final format for a Survey Questionnaire to be
mailed to the developers of all known Structured
Fortran preprocessors. (Although the committee
is interested in Fortran extensions that provide
structured programming features by other means
than preprocessors, it was found to be nearly
impossible to develop a single composite survey
form of reasonable length, that would.cover com
piler and interpreter implementations, for in
stance, as well as preprocessors.)

9

The committee hopes to receive the results of
this survey in time to tabulate them for distri
bution at the Fortran Forum West in February 76.

A list of the Structured Fortran implementa
tions currently known to the group appears else
where in this Newsletter. Additions to this
list are solicited. Please send information to
Donald J. Reifer, MS 100-2034, The Aerospace
Corporation, PO Box 92957, Los Angeles CA
90009.

Fortran Forum West

A one-day public session will be held on 9
February 1976, for the purpose of presenting and
discussing the forthcoming Revised Fortran Stan
dard proposed by the ANSI Fortran committee
(X3J3). Portions of the meeting will also be de
voted to discussion of Fortran developments in
two specific areas, namely Structured Fortran and
Industrial Fortran (process control).

The morning session (8 to 12) is being orga
nized by Walt Brainerd of Pasadena CA, and will
consist of presentations and discussions by mem
bers of the ANSI Fortran committee. They will
report on the progress of the committee toward
development of a Revised Fortran Standard. It is
to be expected that a draft of the proposed re
vised standard will have been' approved by the
committee and released for public review and com
ment prior to the Fortran Forum. Plans are un
der way to make copies of the draft proposal
available to all attendees at the meeting, or
sooner, if possible.

The first afternoon session (1 to 3) will
present Structured Fortran developments; Loren
Meissner of Berkeley will be chairman. The sec
ond afternoon session (3 to 5) will be devoted
to Industrial Fortran developments; Maxine
Hands of San Diego CA will be the chairman of
this session.

No. 4 August 1975 page 2

The meeting will be held at the Disneyland
Hotel, Anaheim CA. The date of the Fortran For
um is 9 February 1976, which is the day preceding
the ACM Computer Science Conference (10-12 Feb)
to be held at the same location. The list of
sponsors is expected to include the ACM and IEEE,
as well as the Los Angeles ACM Chapter and sev
eral Special Interest Groups and Committees.

General Chairman is Donald J. Reifer,
MS 100-2034, The Aerospace Corporation, PO Box
92957, Los Angeles CA 90009.

Fortran Standards Activity

Apparently many people are not aware of the
current status of standards for the Fortran lan
guage. This is not too surprising, because very
little is published on this subject. Datamation
articles by Thorlin in 1972 and by Engel in 1974,
and an article in SIGPLAN Notices by Engel in
1973, are perhaps the only widely accessible'pub
lications giving insight into the current work
of the Fortran Standards Committee (ANSI X3J3) ,
since the 1966 standard and its interpretations
were published. One of the purposes of this
Newsletter is to make more information available
concerning the status of Standard Fortran.

As one symptom of the current situation,
there are a lot of Fortran programmers who are
not sure which features are or are not in the
current (1966) Standard Fortran language. One
common misconception relates to the DO loop in
cases like the following:

LIM = 0
DO 10 I = 1, LIM

A(I) = 5.0
10 CONTINUE

A lot of people are surprised to learn that the
1966 standard does not specify that the effect
of this loop is to assign the value 5.0 to A(l).
The standard merely states (Section 7.1.2.8)
"The value represented by the initial parameter
... must be less than or equal to the value rep
resented by the terminal parameter." In other
words, the effect of the above loop is not de
fined. Of course, nearly every Fortran imple
mentation executes the body of the loop once be
fore making the test, so the "de facto" situa
tion (but not the situation prescribed by the
standard) is that the value 5.0 will be assigned
to A(l). This situation is under active review
as part of the current standards revision effort.

The average programmer can be excused for
not being aware of technical details of this
kind, or of just what the standard says about
side effects of functions, or what "second level
definition" means. But often people who should
know better make statements, like the'one I
heard recently, that language X is better than
Fortran because Fortran never checks array
bounds. The same speaker had just waxed indig-

FOR-WORD Fortran Development Newsletter

nant a few minutes earlier, because his favor
ite language X had been criticized on another
point which related to the implementation of X
rather than to the language itself. And many
authors have written textbooks purporting to
describe "Fortran" which actually describe
only a particular non-standard dialect.

The very first step in becoming knowledge
able about Fortran standards, then, should be
to read the 1966 standard. The official docu
ment is available from American National Stan
dards Institute, 1430 Broadway, NY 10018. Ask
for X3.9-l966. Unfortunately, ANSI's main
source of income is from the sale of standards
documents. Although each copy costs only a
few dollars, this makes it expensive to dis
tribute copies of the standard widely for ed
ucational purposes, such as by reprint in an
appendix to a Fortran textbook. Drafts, which
were published in ACM Communications in Oct
64, May 69, and Oct 71, should be available in
most technical libraries.

The next step is to read what is available
concerning the recent work of the ANSI X3J3
committee. The best single source is Engel's
article in SIGPLAN Notices, Mar 73. This ar
ticle tabulates 80 proposed modifications in
6 categories. There have been few changes in
the position of the committee since this list
was prepared. The most important are the de
letion of array operations and of binary data
type. A draft proposal for a revised standard
is nearly ready for publication. Information
concerning this document, when available, will
be published in this Newsletter, in SIGPLAN
Notices, and in the ACM Communications. Plans
are also under way for two Fortran Forum work
shops, one in the Western US in Feb 76 and one
in the East in Jun 76, to provide public feed
back to the committee concerning standards re
vision proposals.

The very best way to keep up to date on
the committee's activities is to attend com
mittee meetings as an observer. If you are
truly serious about your interest in Fortran,
you can even apply for membership. However,
this entails a fair amount of travel, at an
expense of a few thousand dollars a year per
member. Actually this expense is probably
well justified at most installations, consid
ering the large amount of their investment
in Fortran and the possible effect of changes
in the Standard; but it is a point on which
most managers are hard to convince: travel
expenses are generally rather closely watched.
But the meetings are held at various places
around the country, and you should be able to
attend some of them. This Newsletter will
try to include ANSI X3J3 committee meetings
on its Calendar. The meetings are open to
the public, but facilities are usually some-

10

No. 4 August 1975 page 3

what limited, so advance notice of your inten
tions will be appreciated.

If you can't attend the meetings of the
ANSI X3J3 Fortran standards committee, you can
ask to have your name added to the committee's
mailing list. Write to the vice chairman of
the committee, Martin N. Greenfield, MS 824A,
Honeywell Info. Sys., 300 Concord Road, Bill
erica MA 01821, asking to be included on the
distribution list and stating reasons for
your interest in the committee's work. Mater
ial distributed by the committee includes com
plete minutes of all meetings, and periodically
the latest approved drafts of the working docu
ments (potential draft standards). In particu
lar, the distribution includes those documents
submitted to committee members for formal vote.

Secondary sources of information concern
ing the workings of the committee include SIG
PLAN Notices, also the newsletters of ACM spe
cial interest groups such as SIGNUM and SIGCSE;
Datamation, Software Engineering (IEEE Computer
Society), Software Practice and Experience, and
Communications of ACM. This "FOR-WORD" News
letter aims to provide a somewhat more concen
trated source for Fortran standards development
information than any that has been available.

Standard Industrial Fortran for Process Control

Largely as a result of the work of the
International Purdue Workshop on Industrial
Computer Systems, whose chairman is Theodore J.
Williams, Director of Purdue Laboratory for Ap
plied Industrial Control (at Purdue University),
the Instrument Society of America has adopted a
standard for executive functions and process
input-output, for industrial users of Fortran.
The standard is available as ISA-S6l.l-1972,
from Instrument Society of America, 400 Stanwix
Street, Pittsburgh PA 15222. It defines names
and calling sequences for a number of subrou
tines useful in Fortran programs for industrial
control. Active in the development of this
standard have been Mrs. Maxine Hands of San
Diego CA, chairman of the Fortran committee of
the International Purdue Workshop, and Mr.
Matthew Gordon-Clark of Philadelphia PA, chair
man of the Real-Time Fortran Committee of the
Instrument Society of America.

SIGPLAN Notices to publish Draft of Proposed
Revised Fortran Standard

The Fortran Standards Committee (ANSI X3J3)
and ACM have tentatively agreed that the full
text of the forthcoming Draft Proposed Fortran
Standard (Revised) will be published in SIGPLAN
Notices, perhaps in January 1976. Members of
the committee plan to prepare summary articles
highlighting features of the revision, for pub
lication in Communications of the ACM and else
where.

11

FOR-WORD Fortran Development Newsletter No. 4 August 1975 page 4

Workshop on Fortran Preprocessors
for Numerical Software
Jet Propulsion Laboratory; November 7-8 1974
Reported by C.L. Lawson

(Reprinted with permission from SIGNUM Newslet
ter, Vol. 10, No.1, Jan 1975)

This workshop, cosponsored by SIGNUM and
JPL, was attended by 110 persons of whom sixty
were from outside the Los Angeles area.

The program featured thirty-one speakers
plus a final discussion period moderated by Tony
Ralston. The four half-day sessions were chaired
with sensitivity and aplomb by John Rice, Ellis
Horowitz, Dick Lau, and Bob Mercer.

My general impression, and this was also
expressed by numerous attendees, was that the
workshop was timely and very worthwhile for those
working on enhancements to the Fortran language
via preprocessors or other language developments
in which Fortran is used as a universal machine
language.

The concept of adding control statements for
structured programming in Fortran has now been
explored by many persons. Some Structured
Fortrans have reached a fairly mature level at
which the implementors are supporting a user com
munity doing real applications. Other Structured
Fortrans are more exploratory, being used as test
vehicles for various control structures. Activi
ties of both of these types should accelerate the
processes by which a wider community of program
mers and managers gain experience with the work
ing realities of structured programming. I hope
that in due time some of these enhancements will
evolve as the preferred ones and will reach a
status of being de facto standards, followed
eventually by ANSI standardization.

A concept which is at the heart of the port
ability problem is the ability to indicate chan
ges which must be made in a code for transporta
bilityof the code to different computer systems
and the availability of a processor which can
mechanically make these changes. Five of the
papers, Aird, Boyle, Ford, Krogh, and Walsh, re
ported on systems which attack this problem. I
think systems of this type provide the best pros
pect for transportability of sophisticated effi
cient mathematical software in the near future.

A survey of portability techniques with sug
gested guidelines for longer range development of
a portability support system was given by Malcolm.

A common tie connecting all participants in
the workshop was the choice of Fortran as a base
language for proJects in which portability was a
key goal. This is a testimony to the value of
the 1966 ANSI standard for Fortran. At the same

time, most of the work reported at the workshop
could be interpreted as defining changes which
the speakers would like to see made in Fortran.
Against this background Engle's talk on the ANSI
Fortran standardization process was received
with great interest and stimulated an extended
discussion period.

Engle made the point that whereas COBOL has
a language development committee, (Codasyl-PLC),
as well as an ANSI standardization committee,
there is no language development committee for
Fortran. The ANSI Fortran committee X3J3 does
not feel that it is chartered to actively ex
plore extensions to the language. Aside from
the policy question, X3J3 simply has no resour
ces for language development.

Committee X3J3 is voluntary operation whose
members currently hold week-long meetings every
two months. They find that it is difficult with
that level of effort just to complete the writ
ing of a revised standard based primarily on
language features which are already supported by
many actual Fortran compilers. At present they
anticipate publication of a proposed new stand
ard about September, 1975, with final announce
ment of the new standard about six months later.

Other problem areas addressed at the work
shop included dynamic storage allocation, pro
gram validation aids, and provision for differ
ent data types such as vectors, controlled pre
cision numbers, error-indicating numbers, and
rational numbers.

A proceedings containing a one-page summary
by each author is available on request from C.L.
Lawson, MSI25-109A, Jet Propulsion Laboratory,
4800 Oak Grove Dr., Pasadena, Calif. 91103.
Following is a list of the presented papers plus
three papers presented by title only.

Dynamic Storage Allocation

John E. Ekelund, Jet Propulsion Laboratory,
"Dynamic Storage Allocation in Spacecraft Navi
gation Software"

Paul S. Jensen, Lockheed Palo Alto Research Lab
oratory, "The Impact of a Storage Manager on
Program Design"

Henry Kleine, Jet Propulsion Laboratory, "Imple
menting Dynamic Storage Capability Without New
Language Constructs"

Different Data Types

Alan L. Craig, Naval Weapons Center, "Variable
Precision Computation with Floating-Point Num
bers"

Fred Crary, University of Wisconsin Madison,

FOR-WORD Fortran Development Newsletter

Workshop on Fortran Preprocessors
for Numerical Software (cont.)

"AUGMENT - A General Fortran Extension"

Kirby W. Fong and Thomas L. Jordan, University
of California Los Alamos, "Vectors: Why and How
Should this Data Structure be Introduced?" .

Don J. Orser, National Bureau of Standards,
"FORPAK: A Portable General Purpose Fortran
Preprocessor"

James R. Pinkert, University of Tennessee, "The
Use of SAC-l in Numerical Computations"

Debugging and Validation Aids

Herbert S. Bright, Computation Planning, Inc.
"A Method of Testing Programs for Data Sensitiv
ity"

Leon Stucki, McDonnell-Douglas Corporation,
"Self-Metric Software for Debugging and Valida
tion"

Transportability Systems

Thomas J. Aird, International Mathematical and
Statistical Libraries, Inc., "Portability of
Mathematical Software Coded in an ANSI Based
Fortran"

James M. Boyle and Kenneth W. Dritz, Argonne
National Laboratory, "A Syntax-Directed Fortran
Preprocessor and Formatting System"

Brian Ford and Steven Hague, Oxford University
Computing Laboratory, "NAG Numerical Software
Maintenance - The Predictor Corrector Approach"

Fred T. Krogh, Jet Propulsion Laboratory, "A
Preprocessor To Specialize Fortran Code"

Michael Malcolm and Lawrence Rogers, University
of Waterloo, "Designing a Portable Preprocessor"

Robert T. Walsh and Nancy Ruiz, Sandia Laborator
ise, "Version Selection and Storage Minimization"

Structured Fortran

Terry Beyer, University of Oregon, "FLECS: Struc
tured Programming in Fortran"

John Flynn, Jet Propulsion Laboratory, "SFTRAN -
Structured Fortran"

Brian W. Kernighan, Bell Laboratories, "RATFOR -
A Rational Fortran"

Loren P. Meissner, University of California Ber
keley, "A Compatible Structured IF for Fortran"

12

No. 4 August 1975 page 5

J.L. Wagener, SUNY College at Brockport, "IF -
FI DO - OD Structured Fortran"

Conversion of Fortran Code to Structured ---Fortran

Guy de Balbine, Caine, Farber & Gordon, Inc.,
"Automatic Restructuring of Fortran Programs"

General Fortran-based Language Extensions
(Structured programming, macros, conditional
compilation, precision control, and other
features)

Anders Beckman and Tom Smedsaas, Uppsala Uni
versity, Sweden, "Experiments with Fortran
Preprocessors"

M.A. Brebner and H.S.B.Hoover, University of
Calgary, "A Base Language (Fortran?) and
Macro Facilities for Mathematical Software -
First Thoughts"

.A. James Cook, Stanford Linear Accelerator
Center, "MORTRAN2"

Robert C. Gammill, Rand Corporation, "GPMX:
General Purpose Macrogenerator eXtended Used
as a Fortran Preprocessor"

John Gary, University of Colorado, "A Macro
Preprocessor for a Fortran Dialect"

C.W. Gear and L. Lopez, University of Illinois,
"Software for Scientific Packages"

T.E. Hull, University of Toronto, "Structured
Programming, Fortran and Preprocessors"

David J. Kennison, National Center for Atmos
pheric Research, "FRED - A Fortran Preproces
sor"

Jack Perrine, Jet Propulsion Laboratory, "The
ATHENA Fortran Compiler"

Arnold A. Schwartz, Jet Propulsion Laboratory,
"IPLFOR - An Extensible Fortran Preprocessor"

Lenny Shustek and C.T. Zahn, Jr., Stanford
Linear Accelerator Center, "Records and Ref
erences in MORTRAN2"

ANSI Fortran Standardization

Frank Engel, Individual Consultant, "Develop
ment of Fortran Standards"

A Quote: (R. F. Rosin, SIGCSE Bulletin, Mar
- . Apr 1971):

"Fortran is dead."

FOR-WORD Fortran Development Newsletter

List of Structured Fortran Processors

For well over a year, Don Reifer has been
assembling a list of processors for Structured
Fortran extensions. Here is his current list,
along with the name and address of the person
who can provide further information. All of
these processors will be included in the planned
Survey, the results of which will be published
by the West Coast Working Group on Structured
Fortran.

IFTRAN-l W.R. Wisehart, General Research Corp
oration, PO Box 3587, Santa Barbara CA 931'05

IFTRAN-2 W,R. Wisehart (see IFTRAN-l)

IFTRAN-LA Martin Cohen, USC Information Sci
Inst., 4676 Admiralty Way, Marina del Rey
CA 90291

IFTRAN-C W.R. Bezanson, Carleton Univ., Ottawa
Ontario, Canada

IFTRAN-W D.L. Dietmeyer, Univ. of Wisconsin,
Madison WI 53706

STRAN W.L. Johnson, Rm 2218, Bldg 3, Ford Motor
Co., PO Box 2053, Dearborn MI 48121

S-Fortran Guy de Balbine, Caine, Farber and
Gordon Inc., 1000 E Walnut St., Pasadena
CA 91106

STAPLE Selden L. Stewart, Adm A 221, National
Bureau of Standards, Washington DC 20234

SFTRAN John Flynn, Jet Propulsion Lab, MS 125-
128, Pasadena CA 91103

IPLFOR Arnold Schwartz, MS 168-427, Jet Propul
sion Lab, Pasadena CA 91103

MORTRAN-l A. James Cook, Computation Res. Gp.
Stanford Linear Accelerator Center, PO Box
4349, Stanford CA 94305

MORTRAN-2 A. James Cook (see MORTRAN-l)

MORTRAN-X Richard H. Ault, MC 1760, Physics
Dept, Univ. of Utah, Salt Lake City 84112

DEFT T.E. Hull, University of Toronto,
Toronto, Onto Canada

TRANSFOR Loren Carpenter, Boeing Computer
Services, MS 73-13, Renton WA 98055 '

RATFOR Brian Kernighan, Bell Labs, Murray
Hill NJ 07974

FLECS
OR

Terry Beyer, Univ. of Oregon, Eugene
97401

13

No. 4 August 1975 page 6

SPA S.A. Steele, 101-230, RCA, Moorestown
NJ 08057

SFOR Dennis O'Neill, Bell Labs, Holmdel NJ
07733

SFP Robert Rich', Johns Hopkins Univ., Applied
Physics Lab., Silver Spring MD 20910

SF-Visnavich E. Towster, Computer Sci Dept,
PO Box 4330, USL Station, Lafayette LA
70501

WATFIV-S Paul Dirksen, University of Waterloo
Waterloo, Ontario, Canada

S-WATFIV-Hisgen N.E. Gibbs, College of William
& Mary, Williamsburg VA 23185

NSF-Tran Frank Friedman, Temple Univ., Phila
delphia PA 19122

00-00 IF-FI Structured Fortran J.L. Wagener,
State Univ. of NY, Brockport NY 14420

LINUS J.D. Woolley, Dept. of Computer Sci.,
Bowling Green State Univ., OH 43403

HIGGINS D.S. Higgins, B-3, Florida Power Corp.
PO Box 14042, St Petersburg FL 33733

MELTRAN J.S. Miller; Intermetrics Inc., 701
Concord Ave, Cambridge MA 02138

DAY-SMP A.C. Day, Computer Center, University
College, 19 Gordon St., London WClH OAH
England

SFORTN L.L. Pooler, Hughes Aircraft, PO Box
1638, Oc'eanside CA 92054

PREFOR W.M. Bradley, MC 96, IBM Corp., 1322
Space Park, Houston TX 77050

SPDS Dick Gormley, IBM/FSD, 2625 Townsgate Rd.
Westlake Village CA 91361

Fortran-4S R.S. O'Bryant, Texas Instruments,
PO Box 6015, Dallas TX 75222

PSST Leon Stucki, A3373-B4DC MS-13-2, McDon
nell Douglas, Huntington Beach CA 92647

'SUGFOR Anders Beckman, Uppsala Univ., Uppsala,
Sweden

SAFTE Lance Moberg, Sperry Univac, PO Box 3525
St. Paul MN 55101

ELESSAR Redford Bond, Essay Corp., 100 Park
Ave., Oklahoma City OK 73102

FDP-5798-CDW Guy McCool, Dept. 84F, IBM Corp,
620 N Brand Blvd, Glendale CA 91203

14

FOR-WORD Fortran Development Newsletter No. 4 August 1975 page 7

List of Structured Fortran Processors, cont.

ATHENA-ML Ira C. Hanson, Dept 19-43, Bldg 201,
Lockheed Palo Alto Res. Lab., Palo Alto
CA 94304

SF-Henke W.L. Henke, MIT, Cambridge MA 02139

ESFOR W.L. Bearley, Citrus College, Azusa CA
91702

SHELTRAN G.A. Croes, Shell International Petro
leum Ltd., Shell Centre, London SEl-7NA
England

COM-SP R.E. Jeffries, COMSHARE Inc., PO Box
1588, Ann Arbor MI 48106

TR6B-TR7X L. Mossberg, Volvo Flyg. AB,
S-46l 01, Box 136, Trollh~ttan, Sweden

SPL&C A. Holgado, Univ. of Michigan, Ann Arbor
MI 48106

B4Tran L.P. Meissner, Lawrence Lab, Berkeley
CA 94720

SF-RIO R.N. Melo, Pontificia Univ Catolico,
Rio de Janeiro Brazil

SF-Concordia T. Radhakrishnan, Computer Sci.
Dept., Sir George Williams Campus, Concor
dia Univ., 1445 de Maisonnueve Blvd. West,
Montreal, Quebec H3G lM8, Canada

SF-CHAT Fred Foldvary, L-32, Lawrence Lab.,
PO Box 208, Livermore CA 94550

SFOR-LSI Tetsuo Mizoguchi, Electronics Lab,
Mitsubishi Elec. Corp., 325 Kamimachiya,
Kamakura, Japan 247

MTUFP J.Lowther, Computer Sci. Dept., Michigan
Technological Univ., Houghton MI 49931

Total to date: 51 processors. Please report
any additions to this list. (See article on
The West Coast Working Group, page 2.)

Fortran.Bibliography
(Installment no. 2: see also FOR-WORD Newsletter
No.2)

G.L. Perry and J.T. Sommerfeld, Fortran program
ming aids. Software Age, Oct-Nov 70

The next standard Fortran? (Report of a working
party of the British Computer Society's
specialist group on Fortran.) Computer
Bulletin, Feb 71

A.H.J. Sale, The classification of Fortran
statements. Computer Journal, Feb 71

D.E. Knuth, An empirical study of Fortran
programs. Software P & E, Apr-Jun 71

D.D. McCracken and G.M. Weinberg, How to write
a readable Fortran program. Datamation,
Oct 72

F. Thorlin, What's new with DO? Datamation,
Dec 72

F. Engel, Future Fortran development. SIGPLAN
Notices, Mar 73

J. Larmouth, Serious Fortran. Software P & E,
Apr-Jun 73 and Jul-Sep 73

D.C. Hoaglin, An analysis of Knuth's empir-
ical study. Software P & E, Apr-Jun 73

D.D. McCracken, Is there a Fortran in your
future? Datamation, May 73

P.B. Schneck and E. Angel, A Fortran to Fortran
optimising compiler. Computer Journal,
Nov 73

F. Engel, Revise standard Fortran? Datamation,
May 74

C.W. Barth, Notes on the CASE statement. Soft
ware P & E, 1974

B.G. Ryder, The PFort verifier. Software P & E,
Oct-Dec 74

L.P. Meissner, A method to expose the hidden
structure of Fortran programs. Proc. ACM
74

D.E. Whitten and P.A.D. de Maine, A machine ...
independent Fortran (PFortran). Software
Engineering, Mar 75

P.M. Neely, After Fortran, what? (Guest editor
ial) Software P & E, 1975

W.F. Ross, Structured programming: highlights
of the 1974 Lake Arrowhead workshop.
Computer (IEEE Computer Society), Jun 7S

See also SIGPLAN Notices, Mar 75, articles by
C.A. Muntz; D.L. Presberg and N.W. Johnson;
K.G. Stevens, Jr.; R.Zwakenburg, J. Engle,
D. Gotthoffer, and M. River; D. Wedel; and
H. Krohn. This is a special issue of SIGPLAN
Notices, containing proceedings of a conference
on programming languages for parallel and vec
tor machines. Many of the articles are of
interest to Fortran users and to developers of
extensions to the Fortran language.

See also other issues of many of the journals
listed in the references above.

FOR-WORD Fortran Development Newsletter

Note

In the fall of 1974, Peter Brown wrote an
entertaining series of articles for "Computing
Europe" (a publication of the British Computer
Society) on the theme, "Taking a stroll down
Babel Street." He characterizes various compu
ter languages as shops along a street, competing
for customers. Each article is accompanied by
a half-page illustration (suitable for framing).
Fortran is featured in 'the issue of 31 October
74. Fred Fortran is characterized as the pro
prietor of a grocery store that carries few
lines of merchandise, which remain unchanged for
years. He still stocks "the old Brand 704 plain
subscripts" and does not carry the fancy new
fangled varieties stocked by his competitors.
When someone asks him to fill an order N times,
he doesn't check to see if N is zero; he gets
on with the filling of the order and checks
afterward, since this procedure is more effi
cient. He accuses Lady Algol of spending so
much time checking everything that she takes
forever to get anything done. "He did not show
any imagination, just thoroughness and effi
ciency, and the result was low prices and lots
of customers."

On Fortran Syntax Analysis Methods

Attempts to use higher level languages for
implementing Fortran compilers sometimes fall
into difficulty because of the fact that blanks
(spaces) in Fortran are generally not signifi
cant. As a result, lexical analysis cannot be
done on the basis of a simple left-to-right
scan. For instance, it is not until the comma
is reached that the compiler can determine that
"DO 7 I = 1, 5" is not an assignment to the var
iable DOn.

One way out of this difficulty is to make a
very quick preliminary scan of the source code
to determine the statement type. Once this has
been established, a left to right scan can be
used for the detailed syntactic analysis. Pre
liminary scanners for statement recognition
purposes have been reported by A.H.J. Sale (The
classification of Fortran statements; Computer
Journal, Feb 71), by Fred Crary (Math Research
Center, University of Wisconsin), and by Don J.
Orser (Applied Math Division, National Bureau
of Standards). There are ways to make these
pre-scanners very efficient, and even to collect
adqitional information; for example, for each
left parenthesis at the outermost level, the lo
cation within the statement of the matching
right parenthesis.

This teChnique is no doubt well known to ex
perienced compiler developers, but it may be of
interest to others who are interested in adapt
ing to Fortran the methods they have developed
for other language processors.

15

No. 4 August 1975 page 8

CORRESPONDENCE

The following are excerpts from letters
received in response to previous FOR-WORD News
letters and to announcements from the West
Coast Working Group on Structured Fortran.

Best Wishes

** I would be interested in following the
progress of your committee to make Fortran amen
able to structured programming. I am a user of
Fortran in the areas of real-time industrial and
engineering programs. If I can be of assistance
to your committee, please let me know.

Stephen Kessler, San Jose CA

** I am becoming a more and more enthusiastic
supporter of Structured Fortran.

Ben Shneiderman, Bloomington IN

** I certainly support the activities of the
West Coast Structured Fortran Working Group and
would be happy to have you suggest ways in
which I and the group of people working with me
here might participate.

The areas in which your group intends to
work seem quite appropriate and, in general,
complementary to the things we are doing here.
Our current efforts are aimed at developing a
general syntactic extension to Fortran. It will
certainly be most valuable to us to have as much
input as possible from others. We are not opti
mistic that much can be accomplished through
ANSI but there is certainly no reason not to try.

Anthony Ralston, Buffalo NY

** I am interested in participating in what
ever ways might be useful to the Working Group
and to this Laboratory's future programming
effectiveness. I recently gave a talk to Lab
oratory members on things like structured pro
gramming, correctness proofs, etc., and some
interest was expressed in actually acquiring or
developing a "structured Fortran" and making a
serious attempt to make it a standard software
production tool at this installation.

Erich Kntlbil, Ithaca NY

** I am interested to see the formation of
the Structured Fortran Working Group, and am
strongly in favor of the formation of a SIGPLAN
Special Technical Committee on Fortran. It
would seem that such a group would correspond
fairly closely (in structure and objectives) to
the British Computer Society's Fortran Special
ist Group, which was formed about three years
ago and now represents an authoritative voice
on Fortran matters for the B.C.S.

Alan Clark, Herpenden, Herts.
(Secretary, BCS Fortran

Specialist Group)

16

FOR-WORD Fortran Development Newsletter

CORRESPONDENCE, cont.

** My position is that of supporting a .large
(50 to 60) population of Engineers who do model
ling in Fortran, and doing whatever independent
programming I can find time for. The environment
is such that Fortran is the only choice currently,
and for some time to come.

My selfish interests in the working group
are picking the brains of others in similar posi
tions as myself. My less selfish interest is a
belief that Fortran is basically a good language
which needs some extensions to prevent the ugly
code which is daily brought into my office."

Larry Babb, Mountain View CA

Teaching Structured Programming to Fortran Users

** My own job is teaching. Most of my students
are open shop programmers who haven't learned any
language but Fortran, and for the most part it's
very hard for them to accept the idea of writing
in a pseudo language. In my program design
course·we spend five two-hour lecture periods on
program readability, software vs. hardware cost,
modularity, top-down vs. bottom-up programming,
program correctness, etc. before we're in a posi
tion to talk about block structure and the need
for a pseudo-language. My "Suggested Steps for
Writing a Computer Program" is handed out even
later in the course. In it I've tried to de
scribe the ideas and the approach used by our
most successful local programming group. By
that time, most of the students are at least
able to see the rationale for structured pro
gramming, even if they don't agree with it.
But there's always someone who says, "Why go to
all that trouble when all you want to do is
write a Fortran program in the first place?"

Ted Tenny, Sunnyvale CA

Productivity

** We have been experiencing this "Structured
Fortran" for more than one year. We don't think
that programming productivity grew significantly,
but we think it is worth while because two per
sons are working on one project at same time with
different skill or knowledge.

Tetsuo Mizoguchi, Kamakura, Jaoan

All Fortran control structures are illegal.

** There are major differences between SHELTRAN
and other approaches that we have seen. State
ment labels (except for Format) are illegal, and
hence also all Fortran control structures. This
was done in order to enforce a top-down design
and programming style and has done wonders.
There were no complaints and virtually no train
ing was required. A great emphasis was put on
readability and hence documentation.

G.A. Croes, London, England

No. 4 August 1975 page 9

~ Preprocessing the answer?

** I cannot help but put in a "second" for the
r note , "On Preprocessors (Editorial)" in News
letter No.3. As a developer of programs for
paying customers who want ANSI Fortran programs
as a deliverable end-item, I am very concerned
about what preprocessors produce. My use of a
preprocessor is predicated on this point. Pre
processors -- at least the one I am using
have justified themselves to me as a time saver
in several ways. Principally, development of
the code proceeds faster and debugging is
eased -- especially that part involved in the
translation of "meta-code" or design language
to Fortran.

I am, by the way, a recent convert to the
preprocessor idea as my Fortran is typically
tightly structured with a minimum of labels
and very systematic use of GO TO's. (One
learns these things from bitter experience!)

Richard Swanson, North Bend WA

** I am a Fortran programmer, but I recognize
its current limitations with respect to struc
tured programming, string manipulation, recur
sion, etc. I am interested in extensions to
Fortran which enhance its capabilities and wi
den the applications for what is useful.

Unfortunately, I do not consider prepro
cessors anything but a stop-gap measure -- at
best a chance to tryout various new features,
and at worst an illustration that no one is
serious about extending (or better yet, moder
nizing) Fortran so that it is applicable out
side the university/research environment.

In my opinion, what is needed is: (a) a
formal description of a modern Fortran where
the additions -- control statements, new syn
tax / semantics -- is carefully thought out.
(b) Several working compilers (Fortran to ob
ject code) for selected machines. These must
produce object code which is reasonably compat
ible with that produced by current compilers.
(c) A concerted series of presentations, pa
pers, etc. on (the modern) Fortran. Until a
compiler is available for a properly defined
Fortran for several significant computers, I
think this subject will be regarded as mostly
a curiosity, to be ignored, except for its
(limited and scattered) supporters.

Douglas Whitten, University Park PA

** I feel very strongly that Fortran language
extensions should be implemented directly into
the compiler and (that preprocessors) are too
cumbersome and inefficient to be effectively
used in very large computing installations.
Also I have observed several precompilers
which generated awful Fortran code.

FOR-WORD Fortran Development Newsletter

CORRESPONDENCE, cont.

Portability of programs is a very desirable
goal but going from one dialect of Fortran to
another is only the tip of the iceberg of prob
lems. Portability depends heavily upon the
hardware, arithmetic structure and job control
language. With such diversity of existing sys
tems, portability is best controlled with "good
programming practices." Write the program in
a clear simple fashion with adequate comments.
It will then be translatable to the receiving
system with a minimum of effort.

Ira Hanson, Palo Alto CA

** (Concerning the survey being undertaken by
the West Coast Working Group on Structured For
tran:) I suggest establishing a clear distinc
tion between the language extensions that are
being proposed and the implementations of these
extensions. There are amateurish implementa
tions of good language ideas. Should they be
ignored because they are not properly supported?
Conversely, there are also some suggestions that
appear to be unreasonable within the working
time frame. Nevertheless, they should be recor
ded and commented upon. Any known tool whose
purpose is to allow structured programming in
a Fortran environment should be documented.
Please, let us not limit the survey to a medi
ocre solution to the problem, namely the Fortran
preprocessor. Such an obvious bias at the data
collection stage can only reduce the power and
credibility of the conclusions and recommenda
tions that we may derive from this work.

Guy de Balbine, Pasadena CA

Masters Thesis on Structured Fortran

** I am a student of computer science at the
University of Tampere. I am finishing my stud
ies and making my master thesis. The theme of
my thesis will be the structured programming
especially extensions to Fortran which support
structured programming. In the first part I
review some existing extensions· to the Fortran
language and in the second part I will intro
duce my own version of "extended Fortran."

Jorma Siintoharju, Tampere, Finland

Structured WATFIV

**We have modified WATFIV to include several
new statements and a structure so that one can
do Structured Programming in Fortran. I should
mention that the particular constructs chosen
by us were governed to a large part as to make
the implementation easy. When we finally star
ted modifying the compiler, it took us one
week to do the necessary coding and another
week to test our changes.

Paul Dirksen, Waterloo, Ontario

17

No. 4 August 1975 page 10

Implementation problems

** I am implementing a Fortran code generator,
where the input is a description of the program
control flow and a sequential file of Fortran
text data. While working on the code generator
I ran into some interesting problems: Arithmet
ical IF; Boolean IF, reversing the Boolean ex
pressions or generating a GO TO in front of the
THEN block or reversing the THEN and ELSE
blocks; Pre-checked DO loop, if the start and
lor stop value are variables, a test can be
made before entering the DO-block; Break (exit
or escape) out of loops, if an escape is wan
ted out of nested loops, the escape must be
qualified; Avoiding the generation of CONTINUE
as much as possible. I would like to discuss
these problems with you and get your opinion
about them. Did you have the same or similar
problems and how did you manage to solve or
avoid them?

Klaus Kirchhof, Munich, Germany

Compiler standards needed

** Thank you for your letter regarding struc
tured Fortran. The process of which it is a
part is of great interest to me. Possibly
severe regulation of the use of COMMON will be
considered an aspect of (use of the existing
Fortran language to write structured programs).
Many users at the Indian Institute of Technol
ogy, Kanpur, have been driven to using COMMON
simply because the Fortran compiler there im
posed a limit of 300 references to subprogram
arguments! The programming rules then should
be linked with compiler standards which make
their use feasible.

Hari Sahasrabuddhe, Waterloo, Ontario

Source program format

** I would like to advance the ideas of mult
iple statements per card and automatic format
ting of source listings. The automatic inden
ting is almost as valuable as the language
extensions.

D.L. Dietmeyer, Madison WI

Text substitution

** I draw to your attention a feature of the
Burroughs B6700 I 7700 Algol language, the
DEFINE declaration (text substitution), and
suggest that a feature of this kind added to
the Fortran language might assist those inter
ested in its development to experiment with
structured forms. Extracts from Burroughs
reference manual are attached.

B.A.M. Moon, Christchurch,
New Zealand

FOR-WORD Fortran Development Newsletter

CORRESPONDENCE, cont.

Statement grouping

** I have not followed the common approach of
trying to emulate Algol, because I don't consi
der Algol to have the best control structure
features, and also because I wanted to make the
implementation of a preprocessor as simple as
possible. The key element in my system is the
use of block identifiers, which are not merely
entry-point labels; as in Algol, but define the
entire block. Once one has such identifiers,
then several other useful structure elements
become feasible.

EXIT has been demonstrated to be necessary
in structured programs. The "EXIT blockname"
enables exiting any number of nested levels, and
therefore helps in writing clear programs with
out using unnecessary control flags, as is nee
ded by DO-WHILE. That is why I avoided DO-WHILE
-- it is not good for top-down programming, be
cause it requires the initialization of control
variables external and prior to the block in
which they have a meaning.

The specification for any structured For
tran should be such that ordinary Fortran state
ments can be intermixed with the structured For
tran, so that existing programs can be amended
using the structured notation, without having
to totally rewrite.

Sylvan Rubin, Palo Alto CA

** I think you are right when you write that
Algol-like ways of grouping statements (begin
.•. end) are not well suited from the point of
view of extending existing Fortran compilers.

Bertrand Meyer, Clamart, France

** The change I advocate most and the one I
believe will make the most improvement for the
size of the change suggested is to add "DO TO
nfl, a particularly useful construction on the
end of an IF condition.

Perhaps the second most needed change
would be a read / write core under format con
trol. The third change I would suggest is in
the area of string handling.

In the area of conveniences, Fortran would
be improved if it had vector and matrix opera
tions, and the ability to specify action on er
ror, such as divide by zero.

R.A. Baker, Houston TX

Data structures

** What happened to data structures? Existing
macro preprocessors implement in one form or an
other the control statements appropriate to
structured programming. They do not, in general,

18

No. 4 August 1975 page 11

address the problem of adequate data structur
ing facilities, so the usefulness of the lang
uages currently implemented for serious struc
tured programming is only partial. Happily,
we can implement at least the records and ref
erences of Algol-W, Pascal, etc. in a restric
ted form, using Fortran arrays. This has been
accomplished via the table-driven macro trans
lator for the MORTRAN-2 language, but the imp
lementation technique can presumably be inc or
proated into other macro-preprocessors. Imp
lementation of stacks and queues is very sim
ple also.

THe ideal situation would be a flexible
(presumably table driven) yet reasonably
efficient macro-translator existing as a
standard Fortran program, and a "core lang
uage" implemented by this translator into
standard Fortran. This core language would
presumably contain the normal control state
ments associated with structured control;
some form of implementation of records and
references should also be included.

Charles Zahn, Stanford CA

** I want to get my two cents worth into a
definition of a Fortran of tomorrow, and want
to layout here where my specific interests
lie.

I'm sure you people have structured pro
gramming concepts well in hand. My interest
is more in the area of data definition, on
which I have some rather strong ideas. For
instance, it ought to be possible to declare
REAL numbers in terms of their number of dig
its of significance. Another need would be
to define data widths in terms of how many
characters.' a variable can hold -- e. g.
"CHAR * 30 NAME", NAME then occupying 3
words on the 7600 and 8 words on the 370.

I've been involved in writing pattern rec
ognition programs in Fortran over the"last
few years, which is an activity that leads one
to wish desperately for a facility like the
PL/I BASED variable -- i.e"., a multi-word data
object that is referenced via a pointer word.
I think such a thing could be crammed into
Fortran without too much violence, by making
it look like a Labelled Common block -- e.g.,
"BASED /BLAH/ A, B, CIt and then some way has
to be invented of shoehorning explicit or im
plicit pointer-qualifications into the lang
uage. There are many possibilities. I'm not
asking for actual verbs like ALLOCATE and
FREE, just the possibility of doing one's own
allocation and garbage collection out in
Blank Common and then easily referring to the
created structured data.

Ed Fourt, Berkeley CA

FOR-WORD Fortran Development Newsletter

CORRESPONDENCE, cont.

General suggestions for Fortran development

** Fqr old Algol users the drawbacks of For
tran were obvious. 'Here are some: (1) The
lack of control structures; (2) the lack of
data structures (we used an Aigol dialect
called Algol-Genius, the data structures of
which are inspired by Cobol); (3) The lack of
blocking facilities and the use of internal
variables within blocks; (4) The fact that
most Fortran compilers, using part compiling,
are not able to detect as many errors at com
pile time as an Algol compiler, for example
to check the number and types of the actual
arguments in a subroutine call.

Lars Mossberg, Trollh~ttan, Sweden

** Personally, I feel that a non-recursive
Algol with Fortran's input-output characteris
tics (including mechanisms for direct access
files) would be an extremely powerful language
that would be easy to implement and learn.
This obviously does not take into account the
inertia of current Fortran implementation and
applications, and I don't seriously propose it.
I use it simply to convey to you my current
view of the language I would like to be using.

Warren Smith, Sacramento CA

** It is an unfortunate fact of life that For
tran and Cobol will certainly be with us for ,a
while and if the techniques of structured pro
gramming are ever to receive mass acceptance,
they must be made easily available within these
languages.

Just as structured programming is more than
GOTO-lessness, soa good preprocessor should
provide more than just extensive control struc
tures. Provably the most important feature
needed is a provision for local subroutines.

I have long felt that one of the great
deficiencies of Fortran for doing reliable
programming was the six character limitation
on variable names.

An INCLUDE facility for copying in arbi
trary program text would allow standard code,
COMMON definitions, and the like to be ent
ered in many places identically. Simple
macro processors which offer no more than a
straightforward string replacement aid in the
maintainability and portability of programs.

Most preprocessors that I have seen provide
free format input and embedded comments.

Wrandle Barth, Greenbelt MD

** This letter is written in response to the
request of the committee for information about
structured Fortran precompiler implementations.

19

No. 4 August 1975 page 12

Its purpose is to describe a language, ELESSAR,
which may be of interest. A note is to appear
in SIGPLAN Notices as a description of the lan
guage. I will amplify the note in order to
point ,up the features of this language that I
think the committee should consider.

'1. Free form. I think it is necessary
for a structured language to have free format.
One way to implement free form is (a) let the
structured language keywords appear anywhere on
a card and (b) use a statement separator be
tween Fortran statements, as has been done for
many years in timesharing compilers.

2. New language. If a structured 'Fortran
is presented as a set of extensions to Fortran,
it is to be expected that the user will have to
learn a set of restrictions applicable to each
extension. If it is presented as a new lan
guage, the entire language can be described to
a Fortran programmer in very little space and
with very little burden on the user's memory.
The key to this is the fact that, without ex
ception, "any Fortran statement is an ELESSAR
construct."

3. Keyword lexicography. After a great
deal of thought, I have come to the conclusion
that the use of a special character as part of
each keyword is justified.

4. Statement brackets. Regardless of what
statement brackets are adopted as standard, I
strongly recommend that the ending keyword
somehow reflect back to the beginning keyword.

5. Spaces. Spaces should be significant.

6. Control constructs. I assume that
there is little argument with the necessity
for the simple WHILE, REPEAT and IF constructs,
although I realize that Meissner has advocated
retaining the flavor of Fortran, a position
with which I strongly disagree. I also suppose
there is little argument with the desirability
of some sort of an internal subroutine capabil
i ty., I recommend that the internal subroutine
not contain 'a RETURN statement; this would be
a temptation for a programmer to use mutiple
exits. I strongly recommend REPEAT ... UNTIL
'" DO '" END (REP). Since implementating
this precompiler, I have considered more than
a hundred possible ways to implement the n-and
-a-half repetition loop. Zahn's event indica
tors are hard to learn, unnatural and rigid.
Dahl's proposal is also unnatural, even without
the semicolons and colons which he proposes.
LEAVE or EXIT statements have a "jumpy" conno
tation. If I say in English "Repeat your ex
ercises until sundown" or "Until sundown do
pushups" I believe it is natural and clear.

7. Speed. If a precompiler is to appeal

FOR-WORD Fortran Development Newsletter

CORRESPONDENCE, cont.

to a broad class of users, it must be fast.

8. Parsing. Any standard must require some
sort of simplified parse of the structured lan
guage code. I realize that it is only neces
sary to recognize keywords in order to trans
late correct code but decent error recognition
and recovery cannot be accomplished unless the
translator knows what it is doing.

9. Comments and CONTINUEs. I recommend a
precompiler which does not copy comments from
the source structured code and does not insert
any comments. I think it is desirable to pro
duce Fortran code that is as unreadable as
possible in order that users will not be temp
ted to tinker with the Fortran code but will
instead make changes in the structured language
code. Also the preprocessor output should con
tain as few CONTINUE statements as possible.

10. Portability. ELESSAR will translate
any Fortran. This is because of its syntax.

Mailing list changes; copies of previous
FOR-WORD Newsletters -----

Please use the bottom half of this page, or a
photo-copy, to report mailing list changes or
to request copies of previous FOR-WORD News-
letters.

I enclose mailing label from FOR-WORD
Newsletter No. 4 (or I am using entire
bottom half of page, containing mailing
label on the outside). Please change
mailing address to that shown:
Add the following name and address:

Please send me a copy of FOR-WORD Newsletter:
() No. 1 () No. 2 () No. 3

FOLD PAGE IN FOURTHS AND MAIL

20

No. 4 August 1975 Page 13

This precompiler has all the control struc
tures which I need or would like to have (ex
cept for possible deficiencies in the CASE
statement), and there are no redundant fea
tures except possibly the FOR and the WHILE
... DO •.. UNTIL. Its efficiency is due to
the fact that non-portable input and output
routines are included.

I do not beli~ve that a standard can win
acceptance if it is only a Fortran-flavored
set of extensions.

I will be happy to furnish additional in
formation concerning the details of the imp
lementation and the techniques employed in
the parse, the semantics and the elimination
of CONTINUEs.

Redford Bond
Essay Corp, 100 Park Ave.
Oklahoma City OK 73102

(Ed. note: this letter has been condensed.)

>.
,-.. 1-<
0'> 0 rn
t") .., 'M
N rn I:::
t") 1-< 1-< 0

0 0 N
!Xl ,/::I 4-< r--
r rn 'M '<t

0 "'" .-< 0'>
l/') rn

>. u
C]) <r::

1-< .-< 4-< U
C]) C]) 0
I::: ,;.:

>. U) 1-< .>'
U) C]) .., C])

'M !Xl ·M .-<
C]) U) C])

::E C]) 1-< ,;.:
U C]) 1-<
I::: :> C])

CI.. C]) ·M p:)

1-< I:::
I': ~ :::l
C]) rn
1-< "'" 0 .. "'" 0

E-<

21

= FOR - W 0 R 0 = >
FORTRAN DEVELOPMENT NEWSLETTER

October 1975 -- No. 5 -- Published by
Ad Hoc Committee on Fortran Development

ACM-SIGPLAN

Table of Contents

Concerning FOR-WORD 1
Calendar. 1
The Fortran Forum is Coming 1
Fortran Standards Activity

'X3J3 Committee Activities 2
Progress on a new Standard Fortran 2
Progress toward a Fortran Data Base

Facility. 5
Onward toward Fortran-1984! . 5
Recent changes to Subset Fortran 5
Plans for distributing proposed Revision 5

Correspondence
On the Fate of Fortran 6
Should "Structured Fortran" imitate

Algol? 7
What is Fortran? 8
Working Within Standard Fortran 8
Fortran Development as a Key to Struc-

tured Programming Principles. 8
On Pre-compilers and Structures 9
In Favor of the Situation Case Statement 9
Vector preprocessor available 9
A Subject for Debate? 9
An Efficient PLII Compiler? . 9

Reviews and References 10

CONCERNING FOR-WORD

This Newsletter is an informal publication
of the SIGPLAN Fortran Development Committee.
This is an ad hoc committee created by SIGPLAN
for the'purpose of taking steps toward formation
of a Special Technical Committee on Fortran De
velopment. Interim officers are Paul B. Schneck,
New York NY (Chairman); Guy J. de Balbine, Pasa
dena CA (Vice Chairman); Michael A. Malcolm, Wat
erloo Ont (Secretary-Treasurer); and Loren P.
Meissner, Berkeley CA (Editor). Further infor
mation concerning the purposes of the committee
may be found in previous issues of FOR-WORD.

The Newsletter mailing list will eventually
form the basis for a Membership List to be main
tained by ACM. It is expected that, after a per
iod of time during which activities of the group
are supported by SIGPLAN, it will eventually be
necessary to charge a membership fee to cover the
cost of distributing the Newsletter.

Please send mailing list changes (with a
photocopy of mailing label, if possible) and ad
ditions to the Editor at the address given below.

Copies of back issues of FOR-WORD are also
available from the Editor.

Contributions solicited. Please send
items of interest to the Editor. Especially
solicited are letters or articles concerning
the directions that future Fortran development
should take. Concise reviews of new books or
articles pertinent to Fortran language develop
ment or modern Fortran programming methodology
may also be contributed. The Editor reserves
the right to excerpt all correspondence.

Mailing address:

CALENDAR

Loren P. Meissner
50-B 3239
Lawrence Berkeley Laboratory
Berkeley CA 94720

2-5 Dec 19,75 Fall DECUS U.S. Symposium (Digit
al Equipment Users Society), Los
Angeles CA. Chairman: William J.
Lennon, Northwestern University.

19-21 Jan 76 Symp. on Principles of Program
ming Lang., Atlanta GA. Program

,Chmn: S.L. Graham, U of CA, Berk.

2 Feb 76 Fortran Specialist Group, British
Computer Society. London. Visi
tors to England are welcome. P.A.
Clarke, Rothamsted Exp. Sta.,
Harpenden, Hertfordshire.

9 Feb 76 West Coast Fortran Forum (see
notice below).

10-12 Feb 76 Computer Science Conf 76, Anaheim
CA. Chairman: J. Feldman, U of
CA, Irvine.

Forthcoming meetings of ANSI X3J3:
8-12 Dec 1976, Marlboro Mass.
19 Jan or 2 Feb, Southern Calif.

THE FORTRAN FORUM IS COMING

The Los Angeles Chapter of the ACM and the
National Bureau of Standards, in cooperation
with the ACM (SIGPLAN) and the IEEE Computer So
ciety, is sponsoring the West Coast Fortran For
um to be held on Monday, February 9, 1976, at
the Disneyland Hotel -- the day before the ACM
Computer Science Conference. At the Forum there
will be discussions of the soon-to-be-released
draft proposed American National Standard X3.9
Fortran revision. Representatives from the For
tran Standards Committee will be available to
answer questions and clarify concepts. Chair
man: Donald Reifer, PO Box 92957, Los Angeles
CA 90009

FOR-WORD Fortran Development Newsletter

FORTRAN STANDARDS ACTIVITY

X3J3 Committee Activities

The ANSI Fortran Standards Committee (X3J3)
has prepared a document for letter ballot.
This document, if approved, will become the
basis for further action by ANSI, including
possible publication for public review and
comment as a draft proposed American National
Standard Fortran (revised).

The document describes a full language and
a subset. The criteria for the subset include
"a minimum demand on storage requirements, par
ticularly during execution," and "a minimum of
effort for the development and maintenance of
a viable FORTRAN processor."

A more inclusive subset has also been under
consideration by the committee; however present
plans are to forego inclusion of the intermedi
ate subset in the present document, but to con
tinue work on it as a recommendation to be re
leased later.

Progress on a new Standard Fortran, by
Walter S.-Srainerd, Pasadena CA

[The following notes were prepared for an
informal session,that was held to discuss pro
gress on the proposed new standard.]

22

During preparation of a proposed new stan
dard Fortran, the following changes have been
voted by ANSI X3J3 through August 1975. Only
significant changes are listed here; many addi
tional minor changes have also been approved.

1. The main program may contain a PROGRAM
statement. A BLOCK DATA subprogram may have
a name.

2. Character data type:

a. Constants: 'ABC'

b. Declaration of character variables and ar-
rays:

CHARACTER*4 A, B*8, C(9, 9)*5, D

c. Concatenation operator: B // 'Q'

d. Substrings:

B(2:5) = C(3, 5)(3:4) // D(2:3)

3. Expressions:

a. Integer, real, or double precision expres
sions may appear in subscripts, DO parame
ters, computed GO TO, etc.

b. Expressions of all types may appear in
output lists.

c. Character expressions may be used as for-

No. 5 October 1975

mat specification.

PRINT '(13, A1, 13)', I,

READ (5, '(A80)') CHARS

,-, - ,

page 2

J * K

d. Mixing of arithmetic data types is permit
ted.

e. The processor may evaluate any equivalent
expression, except that integer division
and integrity of parentheses must be pre
served.

4. Implicit types of names beginning with des
ignated letters may be declared by means of
IMPLICIT statement. Also character lengths.

5. PARAMETER statement:

PARAMETER N = 1.7, C = '«('
a. The type of the name depends upon the

constant.

b. A parameter name may appear as a primary
in an expression, in a data statement, and
as the character length in an I~1PLICIT

statement.

6. Arrays:

a. Arrays may have as many as 7 dimensions.

b. Explicit lower bounds for arrays (with
lower bound default = 1):

REAL A(-3:-1, 0:7)

c. Adjustable dimensions may be transmitted
via COMMON as well as in the argument list.

7. Computed GO TO defaults to following state
ment if the value of the control expression
is out of range.

8. DO loops:

a. Parameters, which may be integer, real,
or double precision, are evaluated and con
verted to the type of the DO variable.

h. The increment value may be negative.

c. A trip count is established initially,
and is unaffected by changing entities in
parameter expressions. The DO variable
must not be changed during execution of the
loop.

d. The minimum trip count is zero.

e. The DO variable remains defined at com
pletion, with the value it would have had
if the loop had been executed one more time.

f. Examples:

9

Q = .1

DO 9 X .9, Q / 2, -Q

A X

Q 2 * Q

23

POR-WORD Fortran Development Newsletter No. 5 October 1975 page 3

9.

The loop is executed 9 times; at comple
tion, A = .1, X = O.

N = 1

DO 9 5, 3

9 N N - 1

The loop is executed 0 times; at comple
tion, N = 1, I = 5.

Keyword specification of unit and format in
input-output statements; also error and end
of file specifiers:

END = specifier (statement label)
ERR = specifier (statement label)
UNIT = specifier (expression)
FMT = specifier (reference to statement la

bel or character entity)

READ (ERR = 99, UNIT = N - 2, END 98,

FMT = F) A

10. Stream input-output: the property is spec
ified for a,file. The next character read or
written is the one following the last one
read or written, regardless of record bound
aries.

11. Direct-access input-output: the property
is specified for a file. An input-output
statement on a direct-access file transmits
one record.

'WRITE (9, REC = K * 2) B

12. Internal files: a character entity name
may be used in place of a file name for an in
put or output statement. '(This implements
the features of ENCODE and DECODE.)

CHARACTER*5 C

WRITE (C, 9)

9 FORMAT (I 5)

13. OPEN statement: OPEN (list)

The list must specify a unit number, and may
also include any of the following:

ERR = label
NAME = file name (e.g., 'ABC/DEF')
STATUS = 'OLD'

'NEW'
'SCRATCH'
'UNKNOWN'

ACCESS 'SEQUENTIAL'
'STREAM'
'DIRECT'

FORM 'FORMATTED'
, UNFORMA TIED'

RECL record length in a direct access
file

MAXREC largest record number in a direct
access file

14.

15.

CLOSE stateme;nt:

ERR = label
STATUS = 'KEEP'

'DELETE'

INQUIRE statement:

UNIT = or FILE =
ERR = label
EXIST = logical,'
OPENED = logical
NuMBER = integer (number of unit connec-

ted to file)
NAMED = logical
NAME = character
ACCESS = character (, SEQUENTIAL' ,'STREAM' ,

or 'DIRECT')
FORM = character (' FORlv'IATTED', or

, UNFORMATTED')
RECL = integer
MAXREC = integer

The INQUIRE statement permits programmatic de
termination of the properties of a file or
unit.

16. A FORMAT statement label reference may be
set by an ASSIGN statement.

17. New edit

lu.m

E '/i). a
E '/i). a
A '/i)

A

'XXXX'
T n
±n X

±S, S
BZ, BN

Ee
De

descriptors:

at least m digits (left zero
fill)

e digits in exponent field
e digits in exponent 'field
character data
character data (field width deter-

mined by character entity)
character constant (output only)
tab to position n
relative tab of n positions

(right or left)
terminate input-output if list is

exhausted
control of optional plus sign
input blanks converted to zeros

or skipped

18. List -directed input -output: "*,, in place
of format identifier specifies a "default"
format determined by the input-output list
items, and on input by the form of the data.

READ *, I, A(I)

19. Intrinsic functions now include those form
erly called intrinsic and basic ext,erna1 func
tions.

a. Generic functions. Most of them return a
value having the same type as the argu
ment(s). For example,

SIN (2.302) is ,double

MIN (1.7, X) is real

24

FOR-WORD Fortran Development Newsletter

b. Type conversion generic functions may
have integer, real, double, or complex arg
uments:

INT
REAL
DBLE
CMPLX

For example, REAL when applied to integer
arguments performs FLOAT operation; for
double precision arguments truncates to
single precision; and delivers real part of
complex arguments.

c. CMPLX and ATAN may have one or two argu
ments.

20. The INTRINSIC statement allows an intrin
sic function to be passed as an actual argu
ment.

21. The EXTERNAL statement identifies an exter
nal procedure (not an intrinsic) and allows
it to be passed as an actual argument.

22. The ENTRY statement allows alternate entry
into a subprogram.

23. The SAVE statement specifies local varia
bles and common blocks (not references to
dummy arguments) to be saved between execu
tions of a subroutine.

24. Alternate return:

Calling program:

CALL SUBRTN (A, *14, B, *9)

9 CONTINUE

14 CONTINUE

Subroutine:

SUBROUTINE SUBRTN (X, *, Y, *)

N = 3

RETURN N - 1

END

Control is returned to the statement with la
bel 9 in the calling program. RETURN N would
be a normal return if N is less than one or
greater than two.

Conflicts with X3.9-l966:

1. The Hollerith data type has been deleted.
The nH edit descriptor in FORMAT statements
has been retained, however.

2. The names of new intrinsic functions may

No. 5 October 1975 page 4

conflict with programmer-provided external
functions.

3. An intrinsic function that is passed as an
actual argument must appear in an INTRINSIC
statement.

4. Reading into an nH edit descriptor is pro
hibited.

5. The value of a subscript expression must
not exceed the declared bound. Thus, neither
of the following programs is permitted:

REAL A(2, 2)

A(3, 1) = 3.1

STOP

END

SUBROUTINE SIGH (B)

REAL B(l)

B(2) 2.2

RETURN

END

6. In an EQUIVALENCE statement, an array must
either have no subscript or have the same num
ber of subscripts as declared dimensions.
(Formerly, a single subscript was permitted
for multiply dimensioned arrays.)-

7. Mixing formatted and unformatted records in
the same file is not permitted.

8. An input-output-list or sublist must not be
enclosed in parentheses.

9. Redundant type specifications are prohib
ited.

Some suggestions for minimizing difficulty with
Portability

1. Conversion of a real or double precision
datum to an integer datum may not produce con
sistent results due to roundoff error. The
following are standard, but not recommended,
statements:

D09X= .1, .9,.1

READ (UNIT SIN (X» A

GO TO (10, 20, 30) T * T - 7.3

A(X) = 0.0

2. No collating sequence for the characters is
specified, except that the letters A to Z are
in order and the digits ° to 9 are in order.
In particular, the relation of the blank char
acter to the letters and digits is not speci
fied. Thus the use of relational operators
other than .EQ. and .NE. to compare character
entities may not be portable.

3. A function will not necessarily be evalua
ted, if the value of the expression in which
it appears can be established without its
evaluation. Thus, if the function has side

25

FOR-WORD Fortran Development Newsletter No. 5 October 1975 page 5

effects (e.g., if it changes the value of an
argument, creates output, etc.), these mayor
may not occur, depending upon the processor.

4. Each external function referenced in a pro
gram should appear in an EXTERNAL statement.
Each intrinsic function that is not in the
given Table should appear in an INTRINSIC
statement in any program unit that references
it.

5. Characters not in the Fortran character set
should not be used,

6. The set of file names is processor dependent.

7. Use E w.d Ee or E w.d De edit descriptors
instead of E w.d and D w.d edit descriptors.

Progress toward ~ Fortran Data Base Facility

Chester M. Smith, Jr., the. chairman of the
Codasyl committee on Fortran Database Manipula
tion Language, reports concerning progress on a
data manipulation proposal for Fortran:

"We have a version,· currentiy called Version
0.2, of what we hope will be a reasonable Jour
nal of Development for a Fortran Data Base Facil
ity. It is good in places and in others there
are gaping' holes. It is seventy pages in length
and outlines all the major sections we are think
ing about. Now some of the sections only con
sist of a section head, and others need much
work, so I would prefer to keep the distribu
tion down to a minimum. If on the other harid
you feel the need for a copy, and I am sure
that a number of people do, if you will write
me a letter I will send you one."

Address: Chester M. Smith, Jr.
Computation Center
The Pennsylvania State University
University Par.k PA 16802

Onward toward Fortran-1984!

At the recent meeting of ANSI X3J3, an ad
hoc committee on future revisions of the For
tran standards was appointed. This committee
will make recommendations to X3J3 in several
areas, including criteria ~or determining
whether or not further revision (beyond the cur
rent efforts of the committee) should be under
taken, and if so, objectives and target dates
for such revision, and criteria for proposed
changes, as well as philosophy for defining sub
sets (proper subsets or modules, etc.) in a
future revision. The ad hoc committee will
also collect and classify features that have
been proposed or that are suggested to the full
committee in the near future, but which are
postponed by the full committee for considera
tion as part of a possible future revision.

Members of the ad hoc committee. are W .• S.
Brainerd (chairman), J.H. Matheny, L.P. Meiss
ner, J.C. Noll, M.A. Rainer, and R.T. Slavinski.

Recent changes to Subset Fortran·

·At the recent meeting of X3.J3. (Sunnyvale
CA, 7 - 9 October 1975) it was voted to add the
following features to the Fortran subset:

Character assignment and relational operators
where the two sides are character entities
of different lengths

The BN and BZ edit descriptors

The nH edit descriptor in a format specified
by a character entity

Asterisk as well as C in column one 'of a com
ment line

It was a'lso voted not to require asterisk fill
in a real output field where the magnitude of
the printed exponent exceeds 999; and not to
incorporate the "short form" READ, WRITE, ~nd
PRINT statements (with no unit number 'spec1-
fied) at the subset level. Character entities
of different lengths will also be allowed in a
DATA statement (i.e., the specified constant
need not have the same length as the character
enti ty to which it is pre-assigned ..)

Some of these changes were already incor
porated in the preliminary subset working doc
ument recently 'distributed by the committee on
a limited basis.

Plans for distributing proposed Revision

The committee (X3J3) has voted to submit to
its 20 or 25 members a letter ballot on the

.. question of whether the current draft document
should be forwarded as a "draft proposed Amer
ican National Standard" revising X3.9-1966
Fortran. If the current document (which des
cribes Fortran and Subset Fortran) is consid
ered acceptable by the committee, it will be
forwarded to X3 for further processing. If
the current document is not acceptable, some
later document will presumably be forwarded to
X3. The first step to be taken by X3 will be
to approve (or disapprove) release' of the doc
ument for public review and comment. Current,
most optimistic estimates are that release for
publication could occur as soon as early Febru
ary 1976.

ACM has offered to assist with the dissem
ination of this document as soon as it becomes
available. It is planned to publish the entire
document in SIGPLAN Notices, and to publish one
or more summary articles in other publications
of the ACM. (Hint: Non-members of SIGPLAN
may have to purchase copies at a rrice nearly
equal to the annual SIGPLAN 'membership fee.)

26

FOR-WORD Fortran Development Newsletter

CORRESPONDENCE

On the Fate of Fortran

Robert F. Rosin, Ames IA:

I was pleased to find myself on the mailing
list for FOR-WORD because, as I expressed when
I met its editor in Los Angeles, I am curious
about the fate of Fortran and how the competing
forces of awakened enlightened programmers, har
rassed threatened implementors, and conserva
tive budget-conscious manufacturers will settle
their differences.

But I was far less happy when I saw the
statement "Fortran is dead" attributed to me
completely out of context and without explana
tion (on page 5 of issue number 4).

In looking back at the short article from
which I was quoted I found the following para
graph. "In my remarks at Houston, I said that
I wished to declare that FORTRAN IS DEAD. Of
course it is not dead in the literal sense; it
is thriving. My claim, however, is:

1. Intellectually, it is. dead, and
2. From a pedagogical point of view, its

use in an introductory course tends to
propagate its intellectual'moribundity."

I thought at first not to write in response
to this incident, for to do so might be interp
reted as lending my support to the massive ef
forts to revitalize Fortran. In retrospect,
however, I recognize that the majority of the
people involved are either 1) from disciplines
other than computer science and merely trying
to make more useful the only programming lan
guage which they are accustomed to using, or
2) computer scientists who (perhaps because of
hard economic times) are in a position in which
they must use Fortran and are doing everything
they can to overcome its obvious deficiencies.
Therefore, I 'feel that it might not be inappro
priate for a computer scientist, who is not com
mitted to use Fortran, to 'use this'occasion to
offer a few observations to the readership of
FOR-WORD.

My experience during the five years since
my previously quoted statement appeared sug
gests that it remains as appropriate today, as
it was then. It has always been my perception
that Fortran was little more than machine lan
guage for the IBM 704 computer, with some syn
tactic sugar sprinkled over the top. The arith
metic IF statement, the plunge-ahead DO state
ment, variable names of 6 or fewer characters,
1 imi ted character set, seriously restricted 'sub
script expressions, and perhaps a few other For
tran fundamentals are archeological evidence of
that extinct machine. Like so many others, I
had my first "real" programming experience on
the 704, but one must learn to recognize the
changes which have taken place since its intro
duction in 1956. By the way, one can also re-

No. 5 October 1975 page 6

call that it took quite a while to convince a
large part of the community of "scientific com
puter users" to program in Fortran rather than
assembly language.

The letters published in FOR-WORD offer an
overwhelming variety of suggestions for chang
ing Fortran. It is interesting to note that
many of them refer to "structured programming"
as though there exists a wide-spread understand
ing of that term. To many people, structured
programming does not represent a defined body
of knowledge, but rather it is an on-going
study which has no obvious conclusion in sight.
Perhaps some of the most intriguing work in
this field is being done by David Parnas at
Darmstadt University in Germany. In his publi
cations and manuscripts he generally ind~cates
that his research into the production of qual
ity software, through the application of the
concepts of specifications and modules, is
yielding results, and yet it presently offers
very few language constructs, techniques, or
rules which can be applied universally. (One

'can refer to his papers in the May and December,
1972, issues of CACM and in the proceedings of
Conference of Reliable Software, in SIGPLAN No
tices, June, 19i5). The publ ished work of oth
ers, such as Hoare and Liskov, support the con
tribution of concepts about data accessing and
modules in this context. In contrast to this
attitude of skepticism, I am disturbed to see
strong implications, and even some direct state
ments, in FOR-WORD which indicate that, for ex
ample the addition of IF-THEN-ELSE and WHILE-DO
to Fortran will allow the creation of struc
tured programs in some automatic way.

Almost all of the suggestions one reads in
FOR-WORD are for features to be added (or
tacked on) to the language, and very few are
for things to be taken away. One might suspect
that changing the Fortran language in these
ways might· very well compromise two of the at
tributes which has made it so attractive over
the past 18 (!) years; they are, fast complia
tion and fast execution based on having a rel
atively simple minded language to process. In
order to preserve either or both of these char
acteristics it might be necessary to keep the
language "small" by e1iminating a number of
constructs. (Although one can argue that pre
processors have a place in thi~ scheme, they
become expensive when used for the numbers of
programs encountered in introductory courses in
universities. I say this in spite of the fact
that my own Fortran-to-MAD preprocessor, writ
ten in 1960-6f, was used at Project MAC for sev
eral years.)

Of course deleting such goodies as the ar
ithmetic-IF statement would lead to incompati
bilities with the existing Fortran language.
Apparently it is inconceivable to many people
that an installation could have two compilers
for two languages - "old Fortran" for maintain-

FOR-WORD Fortran Development Newsletter

ing ancient programs, and "new Fortran" for pro
gram development. And I can understand their
reasons; after all, if you're going to make
wholesale changes, why not redesign the language
from the bottom up (or from the top down) iri or
der to achieve a tool which is consistent,
clean, and well suited to what have been "Consid
ered Fortran applications? But total redesign
is repugnant to many people because it would be
tantamount to admitting publicly that Fortran
is dead. One can only wonder what would have
happened if the early SHARE-IBM effort had re
tained the working name they applied to their
product; what became PL/I was originally called
Fortran VI.

Computer scientists in academic institu
tions, such as mysel~, are often characterized
as walking around with our heads in the clouds,
in contrast to those people who have to face
the realities which "real users" confront. I
do not believe' that this view is justified.
Most computer scientists earn their way through.
years of formal study by writing dozens of pro
grams for applications from a variety of disci
plines and in various languages, including For
tran. However, our academic training has also
led us to understand that most questions about
language use, definition and implementation
have very few answers based on sound knowledge
or theory. Therefore, we appreciate the neces
sity for exercising judgement in deciding
among a variety of tools and techniques for im
plementing an application, because many of
these possibilities offer very attractive trade
offs with respect to the effectiveness of the
final product.

As a result, I imagine that we secretly
envy those for whom this task is eased by not
having to determine which language is most ap
propriate for a given application, because that
choice is· often the most critical of all those
which must be made in the light of our inade
quate knowledge. I have the impression that the
FOR-WORD thrust is to make that choice for all
appropriate applications by changing Fortran-in
some significant ways, rather than making that
choice on an individual basis for each applica
tion. You are demonstrating that language de
velopment is very much alive and that Fortran,
as we have known it, is on the list of endan
gered species. I wish you very good luck in
your efforts to reach an understanding in your
quest for its successor.

Should "Structured Fortran" Imitate Algol?

B.A.M. Moon, Christchurch, New Zealand':

I found FOR-WORD No. 4 to be very interes
ting reading. It seems to me assured that the
"ground-swell" generated by the interest and ef
forts of Fortran users will add significant new
features to the Fortran language, of which the
standard will take cognizance. Clearly the

27

No.5 October 1975 page 7

best of modern knowledge must go into the
choice of those language features - for example,
it is not sufficient merely to answer the criti
cism of Algol 60 advocates.

Algol 60 control structures also have
their shortcomings, which are understandable as
it is now an old language. Thus its loop struc
tures allow greater flexibility than is justi
fied by good programming standards and yet do
not eliminate the need for the occasional GO TO.
This is exemplified by the attached material
from Professor Sale of the University of Tasma
nia:

"I shall stick my neck out further and de
tail some of the deficiencies of the for-loop.
There are many of these. Some of the-mQst ob
vious are:

"(1) There is no way in standard Algol 60 to
write simple loops which have. the escape
test at the very loop start (see note (7)
also), or at the very end of the loop,

. without resorting to gotos.

"(2) The ramifications of the name substitu
tions that pervade Algol 60 create myster
ious and undesirable forms of loop that
ought not to be written.

"(3) In the case of the st~-until element, the
elaboration of the Algol 60 report makes
optimization of the loop a forbidding tas~;
as a result most compilers make a very
poor job of it. It is no easy task to
cope with loops that may reverse counting
direct ions in mid-flight, perhaps reselect
count-variables, and perhaps move onto
other list elements when this·one is ex
hausted. It is foolish to pay such an ex
orbitant penalty for a feature we seldom
want, and certainly never need.

n(4) The undefinition of the count variable af
ter exhaustion of the particular element
involved must now be regarded as a poor de
C1Sl0n. The best approaches seem to be to
fully define its value at all times (and
forget the minor optimizations that are
made more difficult), or even better, to
make the count variable a fully local con
struct to the for-loop. This means any at
tempt to access-It outside the loop is
flagged by the compiler as a compile error;
consequently programmers have to ensure
that they save anything they wish to save
in. such cases. Even now, this lesson does
not seem to have been fully learned: new
languages still appear with loose unde
fined values proliferating themselves all
over the place. This simply invites pro
grammer errors.

"(5) The while eleinent by itself creates a
three component loop: the assignment, the
test, and the loop body. These are execu
ted in this order respectively.

28

FOR-WORD Fortran Development Newsletter

"(6) Other problems can arise due to the non-ob
vious nature of this construct. For exam
ple, in:

FOR 1:=1,1+1 WHILE I $ 10 DO S;

does the while test refer to both the 1
and 1+1 type iterations, or just the 1+1
iterations, or what?

"(7) In actual programming practice the stric
tures on the for-while construct make it
less useful than it ought to be, since
though S may be omitted (a dummy state
ment), the test cannot (except by writing
the constant TRUE), and the assignment can
not be omitted nor expanded (though one
can put rubbish or side-effect calls).
Since in many loops the part of the loop
preceding the escape test may be null, in
standard Algol one has to resort to

FOR JUNK:=O WHILE ABS(ERR) > TOLERANCE
DO S;

or in other cases where a block of code is
needed in that position, resort to goto
constructs or even messier:

FOR JUNK:=FIRSTPARTOFLOOP WHILE ENDTEST
DO S;

where FIRSTPARTOFLOOP is a procedure call
containing the necessary statements. Ugh!

"I am afraid that the logical consequence to be
drawn from all this is that rose-colored Algol
blinkers are just as pernicious as Fortran dark
glasses. All too often, the responses of pro
grammers are conditioned by the languages they
know and have used. There is a good case for
breadth of experience here so that desirable
changes in habits and languages are not inhib
ited by habit-formed ruts. The designers of Al
gol 60 did a good competent job for the early
60s, but to expect that work to stand as up-to
date for all time is surely ridiculous."

What is Fortran?

John Bolstad, Stanford CA:

Thanks for your Fortran newsletter No.4.
Your comment, "Apparently many people are not
aware of the current status of standards for
the Fortran language" is definitely an under
statement. I'll bet not I percent of the pro
gramming population has any reasonable know
ledge of the standards. I was, until recently,
in this 99 percent. When I actually went to
the trouble to look into the standard, I was
appalled! For example, mixed mode arithmetic
is not allowed to the right of the equal sign.
I think most people would agree that this is a
silly restriction, and in fact all of the com
pilers I have used (CDC, IBM, Xerox) allow it.
I note in Engel's 1973 SIGPLAN Notices article
that this is under consideration for the new
standard.

No. 5 October]975 page 8

Conversely, if one declares an array
A(5, 5), it is perfectly permissible, according
to the standard, to reference A(6, 1). I think
this is rather unfortunate, especially since so
many Fortran errors are caused by out-of-bounds
memory references, but I think quite a few peo
ple would disagree with me on this.

You might be interested to know that the
front part of the ACM Collected Algorithms con
tains reprints of the three articles about the
Fortran standard that you mentioned were in
Communications of the ACM.

In general, I think Fortran is deplorable,
but, unfortunately, constraints such as porta
bility and support force me to live with the
"infant il e disorder." At least MORTRAN masks a
great deal of its ugliness.

Finally, I am greatly puzzled by referen
ces to the "spirit of Fortran." Do people also
speak of the "spirit of the IBM 704" or "the
spirit of 1954" or the "spirit of assembly lan
guage"? I think the problem is that most peo
ple have access to only one higher-level lan
guage, and this profoundly influences the way
they think. I do not know anyone who has pro
grammed in both Fortran and another high-level
language (Cobol excepted) who does not feel ill
when returning to Fortran. This is most evident
here with beginning programming students, who
are taught in Algol W. When they learn how
it's done in the "real world", they are horri
fied. Therein, I think, lies our only hope for
the betterment of programming languages.

Working Within Standard Fortran

Robert A. Ellis, St. Louis MO:

I was very interested to read in Datama
tion about the formation of a Working Group to
address the issue of structured programming us
ing Fortran. After observing that quite a bit
can be done working strictly with standard For
tran (for example, if program modules are small,
one listing page or less, very few GOTO's are
needed and those that are used do not necessar
ily make the module difficult to follow), I
would be most interested in being placed on
your mailing list and would be interested in
commenting on any proposals generated by your
group.

Fortran Development as ~ Key to Structured
Programming Principles

Waldo M. Wedel, Austin TX:

The SIGPLAN Fortran Development Committee
is a long overdue effort in support of a widely
used language. I see the greatest hope for
helping large numbers of programmers understand
many of the deeper principles of structured pro
gramming in this effort. Keep up the good work.

29

FOR-WORD Fortran Development Newsletter No. 5 October 1975 , page 9

On Pre-compilers and Structures

H.D. Baecker, Calgary, Alberta:

I am\not sure I understand the passion that
is generated by proponents and opponents of pre
compiler,s. Most compilers have several passes,
if you choose to call the first pass a pre-com
piler that's OK by me. You can of ,course debate
whether, your first pass is efficient or not.

In the structured programming controversy I
am not against· GO TO, but for better constructs.
I think that as an exit me'chanism I find an ex
plicit GO TO, far easier to understand than some
of the wierd constructs I have seen~ as in Bliss.
But that is just my, personal taste.

The notion of a programming language that
is in any manner wedded to a particular layout
on cards or paper, where, say, particular card
columns have special significance, is obscene.
I can make enough errors without such unneces
sary impositions. The total semantics of a pro
gram should be defined by marks on paper and its
spatial properties should be 9f no significance
whatever.

Agreed'wholeheartedlythat blocks (as op
posed to procedures) should not have local var
iables. After implementing an Algol compiler,
that is a pestilence I can do without, and I
don't think it buys the user much. If your'lo
cal block is that complicated it is probably
clearer to write it as a procedure, and easier
to debug thus.

In Favor of the Situation Case Statement

Redford Bond, Oklahoma City OK:

In my letter, excerpts from which were
printed in FOR-WORD for August, I said that the
n and a half repetition loop should not be im
plemented with Zahn's event indicators (now
,called a situation case statement) because it
was unnatural, hard to learn and rigid.

After seeing this construct presented in
a different way, in "Ill Chosen Use of ,'Event''',
it seems much more natural and easy to learn.
,I also find that it is quite flexible after
reading some of Zahn's programming examples
written in SGOL75.

Although the situation case statement will
handle all loops,' it is, as Knuth says, "big",
and I still want for my novices the construct
repe;lt S1 until B do S2 end, perhaps even gen
eralized to repeat,S1 until Bl do ... until Bn
do Sn end.

If a concensus is' reached that we need a
situation case statement in structured Fortran,
if then becomes necessary to decide how we will
present the labels which are necessarily in
such a construct. Statement numbers will not
do; the advant~ge of the situation case state-

ment is lost if the names of the situations do
not convey meaning. Difficulties are posed by
the fact that the use of the colon in Algol
like languages for labels may be foreign to
our users; besides, it may not even be in the
character set available to some of them. The
following is suggested to provoke 'discussion
'and not as a recommendation:

until Ll, L2, ... Ln do

so.
then case

Ll Sl

$L2$ S2

Ln Sn

end

Vector preprocesso~ available

M. Wayne Wilson, Yorktown Heights' NY:

r' am enclosing a technical repor't on
Vectran, co":authored by Dr. George Paul and
myself. It is a superset of Fortran, designed
within the philosophy of Fortran, to: provide
vector,and array capabilities in a natural ev
olutionary manner, and with a minimum of new
concepts. The report is available generally
from: Mrs. Jan Douglass, Palo Alto Scien
tific Center, Palo Alto CA 94304.

~ Subject for Debate?

Walter S. Brainerd, Pasadena CA:

I would like to see the following deba
ted: "Fortr1J.n is ready for a major revision
(not just adding more bells and whistles)." My
first thought is that it is, but would like to
,hear some arguments.' By the time the next
standard is prepared, I hope we will have deci
ded to some degree about such things as con
trol structures. Perhaps the Development
Group is an appropriate place to hold this
debate.

Lawrence D. Lopez, Urbana IL:

[From Introduction to "PLW Users Manual"]
The PLW compiler translates the PLW language
into FORTRAN for portability. The PLW language
resembles PL/I in many respects. This was done
in order to ease the transition for users who
already know'PL/I.

Procedures, DO loops, IF, and CASE state
ments are provided. List processing facilities
and dynamic allocation of list elements are
al so provided although this, facil i ty, is some
what limited.

30

FOR-WORD Fortran Development Newsletter

REVIEWS AND REFERENCES

Pratt, Terrence W. Programming Languages:
Design and Implementation (Prentice-Hall, 1975)

This book is written from a very practical
viewpoint, and it talks about issues in the im
plementation of real languages (including For
tran). The author believes that such questions
as binding time and referencing environment are
of crucial importance, while differences between
the syntactic details of various languages are
often mostly arbitrary. Therefore he spends
little time discussing, for example, the various
alternative methods of parsing arithmetic expres
sions.

About half of "Part I: Concepts" is devoted
to three chapters on Data, Data Control, and
Storage Management. Together, these give a very
clear view of the implications of static and dy
namic data structures upon the complexity and
efficiency of the language processors that must
cope with these structures. Especially lucid is
the explanation of issues involved in passing in
formation needed for the use of data structures
between various program modules. It seems to be
necessary to distinguish between various data
control operations concerned with identifier
associations, such as naming, activating, ref
erencing, and accessing. All of these may vary
according to the scope rules of the programming
language.

Part II consists of separate chapters dis
cussing the application of design and implemen
tation concepts to Fortran, Algol-60, Cobol,
PL/I, Lisp-l.5, Snobol-4, and APL. In these
chapters, the issues are illuminated in terms of
the vocabulary and of the general descriptions
of Part I. One could perhaps debate the auth
or's interpretation of some minor aspects of the
ANSI Fortran standard specification. However,
he gives a superb overall characterization of
Fortran as simple, inelegant, weak in control
structures, but efficient in execution; and he
summarizes the history of the language to show
how it came fo have these properties.

The final chapter, on language universality,
concludes that such desirable features as "clar
ity of structure, natural representations for
problem data and algorithms, ease of extension,
and efficiency" have to be compared in light of
the purpose to which a language is applied.

,~ carefully done treatise on programming
languages"

Conway, R. and Gries, D. An Introduction to
Programming: A Structured Approach Using pLII
and PLlc (Winthrop, 1973)

A splendid introductory programming text,
far surpassing the majority in clarity of
thought and direction. Contains a fairly simple
description of loop invariants.

No. 5 October 1975 page 10

Ledgard, Henry F.
tran Programmers

Programming Proverbs for For
(Hayden, 1975)

This book has been reviewed in ACM Comput
ing Reviews (see Nos. 28601 and 28602, Aug 75).
Noted here will be some points that refer par
ticularly to the Fortran language.

Proverb 6, "Prettyprinr", points out that
proper use of indentations for loops and other
constructs, even in standard Fortran, can be an
important aid to program comprehension. This
point is expanded in chapter 4.

Any modern programming methodology book
must of course include a discussion of top-down
programming. Most writings to date, however,
suffer from an overly simplistic approach which
gives inadequate attention to the difficulties
of this methodology, such as the need for back
up and the interaction among decisions at the
same level. As pointed out in the ACMreview,
this book suffers to some extent from this flaw.

The final chapter contains some useful com
ments on Fortran development. It includes a
recommendation that Fortran programmers "use
the GOTO, but use it sparingly," and a discus
sion that suggests we should conform to the
standards 'we have, for the sake of portability,
while we work toward incorporation of a number
of badly needed features into an improved stan
dard language. Features proposed here include
"a simple quote convention for Hollerith
strings, ... a good if-then-else structure, a
facility for grouping compound statements, alph
abetic statement labels, a facility for data
structures, and numerous, now well-accepted con
trol structures."

Einarsson, Bo Aids for Software Generation and
Evaluation -- A Draft Bibliography

A nine-page bibliography by the chairman
of IFIP Working Group 2.5. Includes Fortran,
numerical software, software evaluation, pre
processors, etc. Available from the author at
FOA Research Institute, Box 98, S-147-00 Tumba,
Sweden.

Ryder, B.G. and Hall, A.D., The PFORT Verifier:
User's Guide Bell Labs, Murray Hill, NJ [eS
Tech Report fll2]

The PFORT Verifier is a program which
checks a Fortran program for adherence to PFORT,
a portable subset of ANS Fortran. It diagnoses
errors in inter-program-unit communication and
Common usage which compilers often miss. The
Verifier itself is written in PFORT and can eas
ily be installed on a variety of computers.
This paper describes the use of the Verifier
and presents the portable subset in considerable
detail.

Related information concerning syntax def
inition of Fortran is al so availabl e from Bell
Labs.

31

= FOR - W 0 R 0 = >

Fortran Development Newsletter
/

Volume 1, Number 6; January 1976

Special Issue: PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

Prepared for the U. S. Energy Research and
Development Administration under Contract W-740S-ENG-48

For additional copies of this report,
or for copies of other issues of
For-Word, please send inquiries to

Loren P. Meissner
SO-B 3239
Lawrence Berkeley Laboratory
Berkeley CA 94720

32

TABLE OF CONTENTS
-------~~~~

1. INTRODUCTION

1. 1 BACKGROUND

1. 2 WHAT IS THE DOCUMENT
Conformance
Some features that are in the full

language but not in the subset
Some restrictions of the subset

language as compared to X3.9-l966

2. THE FORTRAN LANGUAGE

2.1 LANGUAGE ELEMENTS
Fortran characters
Lines
Statements
Executable statements
Nonexecutable statements
Statement labels
Program units
Ordering of statements and lines

2.2 STORAGE, DATA, fu~D CONSTANTS

page

1

1

1

2

2
2
2
2
3
3
3
3

Storage 3
Data types 3
Variables, arrays, and substrings 3
Definition status and value of a datum 4
Constants 4

2.3 NAMES
Symbolic names
Data type of a name
Association
Scope of names

2.4 ARRAYS AND SUBSTRINGS
Array names
Array declarator
Array element names
Array element ordering
Use of array names
Character substrings

2.5 SPECIFICATION STATE}ffiNTS AND DATA
STATEMENTS

DIMENSION statement
EQUIVALENCE statement
COMMON statement
Type-s tatements
IMPLICIT statement
PARAMETER statement
EXTERNAL statement
INTRINSIC statement
SAVE statement
DATA statement

2.6 EXPRESSIONS AND ASSIGNMENT
Arithmetic expressions
Character expressions
Relational expressions
Logical expressions
Precedence of operators
Evaluation of expressions
Equivalent expressions
Arithmetic, logical, and character

assignment statements
ASSIGN statement

4
5
5
6

6
6
7
7
7
7

7
7
8
8
9
9
9
9

10
10

10
11
11
11
12
12
12

12
l3

2.6 EXPRESSIONS AND ,ASSIGNMENT (cont.)
Events that cause entities to become

defined
Events that cause entities to become

undefined

2.7 CONTROL STATEMENTS
The execution sequence
GO TO statements
IF statements
DO statements and DO-loops
Other control statements

3. INPUT AND OUTPUT

3.1 CONCEPTS
Files
Records
Unit specifier
File position
REWIND, BACKSPACE, and ENDFILE
Error detection
Restrictions on input and output

statements

3.2 READ, WRITE, AND PRINT STATEMENTS
Statement forms
Specifiers
The input or output list
Execution

3.3 EXPLICIT FORMATTING
Format specification
Interaction with input or output list
Interaction with a file

3.4 LIST-DIRECTED FORMATTING
List-directed input
List-directed output

3.5 OPEN, CLOSE, AND INQUIRE STATEMENTS
Definitions
OPEN statement
CLOSE statement
INQUIRE statement

4. MAIN PROGRAM AND SUBPROGRAMS

4.1 MAIN PROGRAM

4.2 SUBPROGRAMS
Subroutine subprogram
Function subprogram
Subprogram entry
Dummy arguments

4.3 BLOCK DATA SUBPROGRAM

4.4 PROCEDURES

page

13

13

14
14
14
15
16

17
17
17
17
18
18

18

19
19
19
19

21
21
22

24
24

25
25
26
27

28

28
28
29
29

30

Statement functions 30
Subroutine procedure reference 30
Function procedure reference 30
External functions 34
Reference to a subprogram entry 34
Actual arguments for an external function

or subroutine procedure reference 34
RETURN statement 35

TABLE: Intrinsic Functions 33

33

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

by

Loren P. Meissner
Lawrence Berkeley Laboratory
Berkeley, California 94720

1. INTRODUCTION

1 . 1 . BACKGROUND

In 1966, after four years of effort, Fortran
became the first programming language to be stan
dardized in the United States. The 1966 Fortran
standard was developed under the sponsorship of
the American National Standards Institute, and is
embodied in two documents known as American Nat
ional Standard FORTRAN (ANS X3.9-l966) and Ameri
can National Standard Basic Fortran (ANS X3.l0-
1966) ~

Work toward clarification of those documents
was initiated in 1967, and it was later determ
ined that efforts should be undertaken toward re
vision and extension of the 1966 standard.

By late 1975, the Fortran standards commit
tee (ANSI X3J3) had produced a working document
describing a new "full" Fortran language and a
subset. This document has been forwarded to ANSI
X3 as a draft proposed American National Standard
FORTRAN, for further processing and possible re
placement of the two 1966 documents. (The com
mittee recommends that the single new document,
consisting of a description of the full language
and the subset, replace ANS X3.9-l966; and that
ANS X3.l0-l966 be withdrawn.)

This report is a paraphrase of the latter
document. Please note that further review of the
document, both by the committee and by the public
at large, may result in further revision of the
document before it is adopted as a new standard.

1. 2. WHAT IS THE DOCUMENT?

1.2.1 Conformance [1.3]

The proposed revised ,Fortran standard docu
ment is primarily a specification of the form and
interpretation of a "standard conforming" Fortran
program. A standard conforming program in one
which uses only language elements that are de~
scribed in the document. A standard conforming
processor, however, may also incorporate compat
ible extensions.

The document describes a full Fortran lang
uage and a subset ("subset Fortran"). With re
gard to the subset, a conforming program must be
composed of language elements from the subest. A
processor may contain extensions that are part of
the full language, but only if they are implemen
ted in a manner compatible with the full lang
uage. A subset processor may also include compa
tible extensions that are not part of the full
language.

For example, section 3.3 states that "a
statement must not contain more than 1320 charac
ters." This means that if a programmer writes a

longer statement, then his program is not stand
ard conforming. This also implies that a stand
ard conforming processor must accept statements
up to 1320 characters long. It does not mean
that a standard-conforming processor ~prohib
ited from accepting longer statements. Accept
ing longer statements would be a compatible ex
tension.

Prohibited features thus have the same
status with respect to the standard as omitted
features (i.e., those that are not mentioned at
all in the document). For example, the document
does not mention a double precision complex data
type. Therefore, such a feature must not be
used in a standard-conforming program. A stand
ard conforming processor mayor may not provide
it or diagnose its use. The provision by a pro
cessor of such a feature would be a compatible
extension.

1. 2.2 Some features that are in the full lang
uage but not in the subset [22.3]

Double precision and complex types.

G, T, and -nX formats.

Alternate entry points and alternate re
turns for subprograms.

Generic intrinsic functions.

Parameter declarations -- i.e., compile
time symbolic names for constants.

List-directed ("format free") input and
output.

Format specification by reference to char
acter variables and arrays.

Expressions in output lists.

Charact'er subs trings, concatenation opera
tor, and functions of character type.

Variable length character items (analogous
to adjustable dimensions) as dummy arguments.

BLOCK'DATA subprograms.

Implied-DO lists in DATA statements.

DO parameters that are expressions or that
are of real or double precision types.

(In many other contexts also, such as dim
ension declarators and subscripts, forms are re
stricted to integer constants and simple integer
variables, and sometimes to a restricted class

34

PROPOSED ANS X3. 9 FORTRAN LANGUAGE REVISION

of integer expressions.)

Note. In this report, the symbol "#" is
used to mark items that are different in the sub
set.

1.2.3 Some restrictions of the subset language
as compa:red to X3.9-1966 - -- ----

Only 9 continuation lines are permitted in a
statement [3.3#].

DATA statements must precede all statement
function statements (and all executable state
ments) [3.511].

Double precision and complex types are not
included [4.1#, 4.5#, 4.6#].

A format specifier must not be a reference to

Page 2

2.1.2 Lines [2.3, 3.2]

A line in a Fortran program consists of 72
character positions called columns. A line is a
comment line, an initial line of a statement, or
a continuation line of a statement.

A line with the letter C or an asterisk in
column one is a comment line. A comment line
may contain any Fortran characters or non-For
tran characters in columns 2 to 72.

A line that does not have the letter C or
an asterisk in column one is an initial line if
it has a zero or blank in column 6; otherwise it
is a continuation line. Columns 1 to 5 of an
initial line must contain a statement label or
else be entirely blank. Columns 1 to 5 of a
continuation line must be blank.

an array [12.4#]. 2.1.3 Statements [2.3,3.3, 3.5]

The G edit descriptor is omitted [13.5#].

BLOCK DATA subprograms are not included.
[16.1#,16.2#].

2. TI-lE FORTRAN LANGUAGE

2.1 LANGUAGE ELEMENTS

A Fortran program is composed of characters.
Characters are grouped into lines; lines are
grouped into program units; and program units are
grouped into an executable program.

2.1.1 Fortran characters [3.1]

The Fortran character set consists of the 26
letters, 10 digits, and 13# special characters
including blank and the following 12# symbols:

+ * / $

A partial collating sequence among the characters
is specified: the letters are ordered from A to
Z, the digits are ordered from 0 to 9, and the
blank character is considered less than A and
less than zero.

The blank character is not significant ex
cept (a) in a character constant or a character
datum, (b) in an H or apostrophe edit descriptor
in a FORMAT statement, and (c) in column 6 of a
line to distinguish between an initial line and a
continuation line of a statement.

Non-Fortran characters are permitted in cer
tain contexts within a Fortran program, including
columns 2 to 72 of a comment line, the characters
of a character datum, and file names. However,
the use of characters not in the Fortran charac
ter set may inhibit portability.

A statement is written in columns 7 to 72
of one or more lines, the first of which must be
an initial line, while the remaining ones, if
any, must be continuation lines. Up to 19# con
tinuation lines are permitted.

A comment line may precede a continuation
line within a statement#.

An END statement must not have any continu
ation lines, and any other statement must not
have an initial line that looks like an END
statement.

A statement must not consist entirely of
blanks. (However, it may have a blank initial
line.)

A statement is executable or nonexecutable.

2.1.4 Executable statements [7.1]

Arithmetic, logical, and character assign
ment statements.

Statement label assignment (ASSIGN) state
ments.

Unconditional GO TO, assigned GO TO, and
computed GO TO statements.

Arithmetic IF and logical IF statements.

CONTINUE statements.

STOP and PAUSE statements.

DO statements.

READ, WRITE, and PRINT statements.

REWIND, BACKSPACE, ENDFILE, OPEN, CLOSE#,
and INQUIRE# statements.

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

CALL and RETURN statements.

END statements.

2.1.5 Nonexecutable statements [7.2]

PROGRAM, FUNCTION, SUBROUTINE, ENTRY#, and
BLOCK DATA# statements.

DIMENSION, COMMON, EQUIVALENCE, IMPLICIT,
PARAMETER#, EXTERNAL, INTRINSIC, and SAVE state
ments.

INTEGER, REAL, DOUBLE PRECISION#, COMPLEX#,
LOGICAL, and CHARACTER type-statements.

DATA statements.

FORMAT statements.

Statement function statements.

Note. Although DIMENSION statements and
type-statements are classified as nonexecutable,
these statements may include expressions that

.35

are evaluated when the program unit is referenced.

2.1.6 Statement labels [3.4]

A statement may be identified by a statement
label, which is a string of digits in a program.
A statement label consists of one to five digits;
leading zeros and imbedded or trailing blanks are
ignored. Any statement may have a label, but the
label of a nonexecutable statement except a FOR
MAT statement must not be referenced. Two state
ments in the same program unit must not have the
same label.

2.1.7 Program units [2.4, 3.5]

A program unit consists of lines containing
statements and comments, terminating with a final
line which is an END statement.

A program unit is a main program or a subpro
gram. A subprogram is a function subprogram, a
subroutine subprogram, or a" block data# subpro
gram. An executable program is a collection of
program units which contains exactly one main
program. "

2.18 Ordering of statements and lines [3.5]

Comment lines may appear anywhere# in a pro
gr"am unit, including ahead of the first state
ment.

A PROGRAM statement, if present, must be the
first statement of a main program. The first
statement of a subprogram must be a FUNCTION,
SUBROUTINE, or BLOCK DATA# statement.

A FORMAT statement may appear anywhere, and
an ENTRY# statement may appear anywhere in a

Page 3

function subprogram or subroutine "subprogram, ex
cept within the range of a DO-loop.

All specification statements must precede
all DATA statements, statement function state
ments, and executable statements.

All statement function statements must pre
cede all executable statements.

DATA statements may appear anywhere after
the specification statements#.

Among the specification statements, IMPLI
CIT statements must precede all other specifica
tion statements except PARAMETER# statements. A
PARAMETER statement must precede all other state
ments containing the symbolic names# of constants
that appear in that PARAMETER# statement.

The last line of a program unit must be an
END statement.

2.2 STORAGE, DATA, AND CONSTANTS

2.2.1 Storage [2.13]

The concepts of storage unit and storage
sequence, as used in the document, do not neces
sarily imply any particular realization or se
quential arrangement of physical storage.

A storage unit is a character storage unit
or a noncharacter storage unit.

2.2.2 Data ~ [4.1, 4.3 - 4.8]

Data is that which occupies storage. Each
datum has a type, which is integer, real, double
precision#, complex#, logical, or character.

An integer, real, or logical datum occupies
one noncharacter storage unit. A double precis
ion# or complex# datum occupies two consecutive
noncharacter storage units.

A character datum occupies one or more con
secutive character storage units. A character
datum is a fixed-length string of character posi
tions; the length of the string is the same as
the number of character storage units occupied by
the datum.

2.2.3 Variables, arrays, and substrings# [2.5 -
2.7,5.1 - 5.3,"5".7-]-

A variable is a single datum.

An array is a sequence of data occupying
consecutive storage units. Each datum in an ar
ray is an array element. All the elements of an
array are of the same type. The position of a
particular element within an array is designated
by a subscript value.

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

A'character datum may be a variable or an
array element. The position of a particular
character within a character datum is designated
by a character position number.

A set of one or more consecutive character
positions within a character datum is a sub
string#.

2.2.4 Definition status and value of a datum
[2.11, 4.1,~ 4.8]-- - ---

36

At any given time during execution of a pro
gram, each variable, array element, and sub
string# is either defined or undefined. A de
fined datum has a value, which does not change
until the datum becomes undefined or is rede
fined. A datum of character type is defined if
and only if all of its character positions are
defined.

A datum may be initially defined by means of
a DATA statement.

A standard-conforming program must not ref
erence an undefined datum.

The value of an integer datum is an integer
(whole number). The value of a real datum is a
processor approximation to a real number. The
value of a double precision# datum is a processor
approximation to a real number which is more
precise than that of a real datum.

The value of an integer, real, or double
precision# datum may be positive, negative, or
zero. The value zero is considered neither'pos
itive nor negative.

A complex datum# is an ordered pair of real
data; the first element of the pair represents
the real part and the second element represents
the imaginary part.

The value of a logical datum is "true" or
"false" .

The value of each character position of a
character datum is a representation of a Fortran
or non-Fortran character. Blank characters are
significant in a character datum.

2.2.5 Constar.ts [4.2 - 4.8]

A constant is a string of digits and other
characters in a program, representing a value
that does not change. The form of a constant de
termines its value and its type.

An integer constant consists of an optional
sign followed by a nonempty string of digits, to
be interpreted as a decimal number.

A real constant is a basic real constant, a
basic real constant followed by a real exponent,

Page 4

or an integer constant followed by a real expo
nent. A basic real constant consists of a
string of digits containing a decimal point,
with an optional sign. A real exponent is the
letter E followed by an optionally signed inte
ger constant, denoting a power of ten.

A double precision# constant is a basic
real constant or an integer constant, followed
by a double precision exponent. A double preci
sion exponent is the letter D followed by an op
tionally signed integer constant, denoting a
power of ten.

A complex# constant consists of an ordered
pair of optionally signed real constants, sepa
rated by a comma and enclosed in parentheses.

A logical constant has the form ,". TRUE." or
".FALSE."

A character constant consists of a nonempty
string of characters enclosed between apostro
phes. (The enclosing apostrophes are not inclu
ded in the string.) An apostrophe within the
string is represented by a pair of adjacent
apostrophes.

2.3 NAMES

2.3.1 Symbolic names [2.1, 2.6, 5.1, 8.6, 18.1,
18.2]

A symbolic name in a program consists of
from one to six alphanumeric characters, the
first of which must be a letter. Note that file
names, and some other sequences of characters
such as format edit descriptors and keywords,
are not symbolic names even though they may have
the same form as a symbolic name.

A symbolic name is the name of a constant#,
a variable, an array, a common block, a program
unit, or a procedure.

A symbolic name of a constant# is specified
in a PARAMETER# statement. An array name is de
clared in an array declarator. A common block
name is declared in a COMMON statement.

A program unit name is a main program name,
a subroutine subprogram name, a function subpro
gram name, a subprogram entry# name, or a block
data# subprogram name. A main program name ap
pears in a PROGRAM statement. A subroutine sub
program name is declared in a SUBROUTINE state
ment. A function subprogram name is declared in
a FUNCTION statement. A subprogram entry# name
is declared in an ENTRY statement in a subrou
tine or fUnction subprogram. A block data# sub
program name is declared in a BLOCK DATA# state
ment.

A procedure name is a subroutine procedure
name, an external function procedure name, an

PROPOSED ANS X3. 9 FORTRAN LANGUAGE REVISION

intrinsic function name, or a statement function
name. The name of a subroutine subprogram, a
function subprogram, or a subprogram entry is a
procedure name when it is used in certain con
texts, namely: in an executable statement as a
reference or as an actual argument, in an EXTER
NAL or INTRINSIC statement, in a type-statement,
or as a dummy argument.

A subroutine procedure name or an external
function'procedure name will also appear in the
same executable program as a program unit name,
unless it is the name of a subprogram specified
by means other than a Fortran subprogram.

37

A subroutine procedure name is used in a
CALL statement to reference a subroutine subpro
gram or subprogram entry#. An external function
procedure name is used in an expression to refer
ence a function subprogram or function subprogram
entry#.

An intrinsic function name is used in an ex
pression to reference a specific or generic# in
trinsic function. A name in the "Specific name"
or "Generic name"# column of the table of intrin
sic functions is classified as an intrinsic func
tion riame, except in a program unit in which the
name-appears in a conflicting type statement or
in an EXTERNAL statement.

A statement function name appears on the
left side of a statement function statement, and
may also be used in an expression in the same
program unit to reference the statement function.

A symbolic name that is not the name of a
constant#, an array, a common block, a program
Unit, or a procedure is a variable name. A name
that appears in a function subprogram as a pro
gram unit name is classified as a variable name
wnen it appears elsewhere in the same program
unit.

Note'that a symbolic name that appears in a
program unit only within a dummy argument list
and in an actual argument list may be the name of
a variable, an array, a subroutine procedure, an
external function procedure, or an intrinsic func
tion. If a name appears only in an EXTERNAL
statement and in an actual argument list, it may
be a subroutine procedure name or an external
function procedure name.

2.3.2 Data type of ~ name [4.1 - 4.8, 5.2, 8.6,
15.2 - 15.5, 15.7, 15.10]

The name of a constant#, a variable, an ar
ray, a function subprogram, a function subpro
gram entry#, an external function procedure, a
statement function, or an intrinsic function (ex
cept a generic# intrinsic function) has a defi
nite data type in a program unit. The name of a
common block, a subroutine subprogram, a subrou
tine subprogram entry#, a main program, a block

Page 5

data# subprogram, or a subroutine procedure,
does not have a data type.

The type of the symbolic name of a cons
tant# is determined by the form of the constant
rather than by the form of the symbolic name.

The type of the name of a variable, an ar
ray, a function subprogram, a function subpro
gram entry#, an external function procedure, or
a statement function may be established expli
citly in a type-statement. The type of the name
of a function subprogram may also be established
explici tly by the FUNCTION statement. For a
name whose type is not established in one of the
foregoing ways, the type is established implic
itly, and depends only upon the first letter.of
the symbolic name. The implicit type of a name
is established by default or by an IMPLICIT
statement. The default implicit type is integer
if the first letter is I, J, K, L, M, or N;
otherwise the default implicit type is real. An
entity of character type has a length, which is
specified explicitly or implicitly along with
the type.

The type of a function procedure name de
termines the type of the value supplied by the
procedure reference in 'an expression. (A pro
cedure name that-appears as a dummy argument of
a function subprogram, a subroutine subprogram,
or a subprogram entry# must not be of character
type.)

The type of a specific intrinsic function
name is given in the table of intrinsic func
tions [15.10]. The name may also appear in a
non-conflicting type-statement; its appearance
in a conflicting type-statement removes it from
the class of intrinsic function names for that
program unit. The type of a generic# function
name depends upon the type of the argument (as
shown in the table), and may vary within a pro
gram unit.

2.3.3 Association [17.1]

Association provides more than one name for _
a given datum.

Two variables, array elements, or sub
strings# are associated if they share at least
one character or noncharacter storage unit. Two
entities are totally associated if they both oc
cupy exactly the same storage units. Two enti
ties are partially# associated if some, but not
all, of their storage units are shared.

An EQUIVALENCE statement causes association
of entities in a program unit. A CO~~ON state
ment causes association of entities in different
program units. Procedure references cause asso
ciation between dummy and actual arguments. In
an external function subprogram, there is an as
sociation between the function subprogram name,

PROPOSED ANS X3. 9 FORTRAN LANGUAGE REVISION

all entry# names, and all local variable names
that are the same as the function subprogram
name or an entry# name.

Associated entities need not have the same
type; however, a character entity must not be
associated with a noncharacter entity.

38

Partial association# of noncharacter enti
ties may exist between a double precision# or
complex# entity on one hand and an integer, real,
logical, double precision#, or complex# entity
on the other hand. Such association must not
occur through argument association, but may be
specified by an EQUIVALENCE, COMMON, or ENTRY#
statement.

Partial association# of character entities
may occur through argument association, or may
be specified by an EQUIVALENCE, COMMON, or
ENTRY# statement.

2.3.4 Scope of names [2.9, 18.1, 18.2]

The scope of a program unit name, or of a
common block name, is an executable program. An
entity is a global entity if the scope of its
name is an executable program. Two global enti
ties in the same executable program must not
have the same symbolic name.

The scope of the symbolic name of a con
stant#, a variable, an array, or a procedure is
a program unit, with the following exceptions:
The scope of the name of a dummy argument of a
statement function is the statement function
statement. The scope of an implied-DO# variable
in a DATA statement is the implied-DO# list in
which it appears. An entity is a local entity
if the scope of its name is a program unit.

Two local entities in a program must not
have the same symbolic name. However, a local
entity in one program unit may have the same
name as a local entity in another program unit;
and a local entity in a program unit may have
the same name as a global entity whose name does
not appear in that program unit.

~ local entity in a program 'unit must not
have the same name as a global entity whose name
appears in that program unit, with the following
exceptions:

(1) A function subprogram name or entry#
name in a function subprogram may be the same as
the name of a local variable in the same subpro
gram.

(2) A common block name in a program unit
may be the same as an array name, a subroutine
procedure name, a statement function name, or an
external function name in the same program unit.
A common block name in a program unit may be the
same as'a variable name in that program unit, ex
cept for a variable name that is the same as the
subprogram name or an entry# name. When a common

Page 6

block name in a program unit is the same as the
name of a local entity, the appearance of that
name in any context other than as a common block
name in a COMMON or SAVE statement identifies
only the local entity.

An entity may have a name whose scope is
less than a program unit. The scope of the name
of a dummy argument of a statement function is
the statement function, and the scope of the
name of an implied-DO# variable in a DATA state-
ment is the implied-DO list.

Two or more entities may have the same name
if the scope of each is less than a program unit
provided that rio part of the program unit is in
cluded in the scope of the name of more than one
of the entities. Such an entity may also have
the same name as a local entity or a common
block in the same program unit.

An IMPLICIT statement or a type-statement
in a program unit, including the length specifi
cation for a character entity, also applies to
names whose scope is less than the program unit.
Use of a name that appears in the table of in
trinsic functions, as a name whose scope is less
than a program unit, removes it from the class
of intrinsic function procedure names for that
program unit.

2.4 ARRAYS AND SUBSTRINGS

2.4.1 Array names [2.6]

The symbolic name of an array refers to a .
sequence of consecutive data called array ele
ments. Each array element may be referenced by
the array name qualified by a subscript, whose
value specifies the particular element within
the array. All the elements of an array are of
the same type, which is the type of the array
name.

2.4.2 Array declarator [5.1]

An array declarator is used to designate a
'symbolic name as an array name. It consists of
the array name followed by a parenthesized list
containing at least one and not more than seven#
dimension declarators. Each dimension declara
tor consists of an upper dimension bound expres
sion, optionally preceded by a lower# dimension
bound expression and a colon#. The number of
dimensio~s of the array is the number of dimen
sion declarators in the array declarator.

Each dimension bound expression must be
composed of integer constants, symbolic names#
of integer constants, and integer variable
names. (No function references, array element
names, or exponentiation operations are permit
ted.) Integer variable names are permitted only
in adjustable array declarators. If a lower#
dimension bound is omitted, the default lower

39

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

bound is one. The value of each upper dimension
bound must be greater than that of the correspond
ing lower bound.

An array name must not appear in more than
one array declarator in a program unit. An array
declarator may appear in a DIMENSION statement or
a type-statement. If the array name is not a
dummy argument in a function or subroutine subpro
gram, the array declarator may appear in a COMMON
statement.

2.4.3 Array element names [5.3]

An array element name consists of an array
name followed by' a subscript, which is a paren
thesized list of subscript expressions (s,eparated
by commas), one for each dimension of the array.

, Ea'ch subscript expression is an integer,
real#,' or double precision# expression, and may

contain array element# references or function# ref
erences. The value of a real# or double precision
expressioh# is truncated to determine the effec
tive subscript value. This value must not be less
than the corresponding lower dimension bound, nor
greater than the corresponding upper dimension
'bound.

'2.4.4 Array 'element ordering [5.2, 5.4]

The elements of an array are @rdered accord
ing to the sequence of their subscript values.
The subscript value is determined from the sub
script expression values along with the dimen
sion bounds, according to the formula

n i-1
V = 1 + ~i=l (si - Zi) IT j =l (u j - Zj + 1)

where s. is the (integer part# of the) ith sub-
'!.

script expression, Zi is the ith lower dimension

bound, and n is the number of dimensions. (Note
that if each s. equals Z. then V is one.) If each

'!. '!.

si equals ui ' then the value of V is equal to the

number of elements in the array.

2.4.5 Use or-array names [5.6]

An array name may be used (without a sub
script) to identify the entire array in certain
contexts. These are: (1) in an input or output
list; (2) as a dummy argument; (3) as an actual
argument in a subroutine or external function
procedure reference; (4) in a COMMON statement;
'(5) in a type-statement; (6) as the format
identifier in an input or output statement#;
(7) in an EQUIVALENCE statement; (8) in a DATA
statement; (9) in' an array declarator; (IO) in
a SAVE statement; (11) as the unit identifier
for an internal file in a READ or WRITE state
ment#.

Page 7

2.4.6 Character substrings# [5.7]

The character positions in a string (i.e.,
in a variable or array element of character
type) are consecutively numbered, in storage se
quence order, beginning with position 1. (The
positions of characters in a character constant
are numbered from left to right.) A substring#
is a set of characters having consecutively num
bered positions within a string.

A substring name consists of a character
variable name or a character array element name,
followed by a parenthesized substring specifi
cation. There must be a colon inside the paren
thenes; to the left and, right are optional sub
string expressions specifying the smallest and
1 arges t character pos i t'ion numbers, respecti ve
ly, for the substring. If there is no expres
sion to the left of the colon, the default smal
lest character position is one; if there is no
expression to the right of the colon, the de
fault largest character position numb:er is the
length of the string.

The substring specification expressions,
if present, must be of integer, real, or double
precision type. The value of a real or double
precision expression is truncated to de,termine
the effective substring expression value. The
smallest character position number must be at
least one, and must be, less than or equal to the
largest character position number, which in turn
must not exceed the length of ,the string.

2.5 SPECIFICATION STATEMENTS AND DATA STATEMENTS

2.5'.1 DIMENSION statement [8.1]

A DIMENSION statement consists of the'key
word DIMENSION 'followed by a list of array dec
lators separated by commas. Array declarators
may also appear in COMMON statements or type
statements.

2.5.2 EQUIVALENCE statement [8.2]

An EQUIVALENCE statement specifies associ
ation of entities within a program unit. ,It
consists of the keyword EQUIVALENCE followed by
a, list of equivalence classes separated by com
mas.

Each equivalence class is enclosed in par
entheses, and consists of two or more'variable
names, array element names, array names, or
character substring# names, separated by commas.
(Note that the 1966 Fortran standard allowed the
name of a multiply dimensioned array to appear
with a single subscript in an equivalence
class.) When a program unit name is also used
as a variable name in a function subprogram,
that name must not appear in an equivalence
class.

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

Character and noncharacter entities must
not appear in the same equivalence class. Char
acter entities of different. lengths may appear
in the same class.

Appearance of names in an equivalence
class may cause association of other entities
whose names do not appear explicitly, due to
storage sequence rules for array elements, char
acters in a string, items in a common block,
etc. An EQUIVALENCE statement must not contra
dict other storage sequence specifications im
plied by such rules.

2.5.3 CONNON statement [8.3]

A COMMON statement specifies association
of entities in different program units, and
may also contain dimension information" It
consists of the keyword COMMON followed by a
list of common classes.

Each common class consists of a common
block name followed by a list of variable names,
array names, and array declarators, separated
by commas. The variable names and array names
must not be subprogram dummy arguments.

Each common block name appears between a
pair of slashes. A'pair of slashes with noth
ing between them may also be used to specify
the blank common block; and if the first common
class in a COMMON statement refers to the blank
common block, the first pair of slashes may be
omitted.

If a'common block name (or omitted name
specifying blank common) appears more than once
in the COMMON statements of a program unit, the
lists of names in all the common classes for
that common block name are interpreted as form
ing a single common class in the order of their
appearance.

Character and noncharacter entites must
not be included in the same common class.

A common block storage sequence is formed
from all of the storage units occupied by the
variables and arrays whose names appear in a
common class. This storage sequence may be ex
tended beyond the last storage unit, if neces
sary, to include storage units occupied by en
tities associated by eqyivalence association.
Such associated entities must not occupy stor
age units that precede the first storage unit
of a common block sequence.

Within an executable program, all common
blocks with the same common block name (but not
the blank common block) are required to have a
storage sequence that includes the same number
of storage units.

Entities in named common blocks may be ini-

40

Page 8

ially defined by means of DATA statements, but
entities in blank common must not be initially
defined. Execution of a RETURN or END state
ment in a subprogram may cause entities in
named common blocks, but not in blank common,
to become undefined.

An equivalence class in an EQUIVALENCE
statement must not include entities from more
than one common block.

.2.5.4 ~-statements [8.4]

A type-statement explicitly establishes
the type'of the name of a.variable, an array, a
function subprogram, a function subprogram en
tr~f, an external function procedure, or a
statement function. A character type statement
also specifies length.

Nore than one explicit type specification
for a name within a program unit is prohibited.
When an explicit specification for a function
subprogram name appears in the FUNCTION state
ment, any other explicit type specification for
the name within that program unit is prohibited.

The type of the symbolic nam~1 of a con
stant is determined by the form of the constant.
Explicit type specifications for such names are
prohibited.

If a conflicting type specification is giv
en for a specific intrinsic function name, then
the name is not an intrinsic function name in
the program unit. If any explicit type specifi
cation is given for a generic# intrinsic func
tion name, then the name is not a generic# func
tion. name in the program unit.

A non-character type statement consists of
the keyword INTEGER, REAL, DOUBLE PRECISION#,
CONPLEX#, or LOGICAL, followed by a list of var
iable names, array names, array declarators,
function subprogram names, function subprogram
entry# names, statement function names, or func
tion procedure names (separated by commas).

A character type-statement consists of the
keyword CHARACTER, followed by an optional
length specifier, followed by a list of charac
ter variable names, character array names, C'.har
acter array declarators, character fnnctioIl;'f
subprogram names, character functio~f subpro
gram entry# names, or character functio~f pro
cedure names· (separated by commas). Each name
or declarator in the list is followed by an op
tional length specifier.

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

If a length specifier immediately follows
the keyword, it applies to each name or declar
ator in the list that does not 'have its own
length specifier. (This first length specifier,
if present, may be followed by an optional com
ma.) Any entry for which no length is speci
fied has the length one by default. Note that
all elements of a character array have the same
length.

A length specifier consists of an asterisk
followed by one of the following: an unsigned,
nonzero integer constant; an integer expression
enclosed in parentheses; or an asterisk in par
entheses#. If an integer expression is used,

41

it must be composed of integer constants, sym-'
bolic names of integer constants, and integer
variable names#. (No function references or ar
ray element references are permitted.) An ex
pression# containing a vari,able name is permit
ted only in an adjustable length specifier#.

The length specifier in a character type
statement for a function# subprogram name or
function entry# name may be an adjustable
length specifier, or it may contain an asterisk
in parentheses#. In the latter case, the func
tion assumes the length specified in the ref
erencing program unit. In any case, the length
specified in the referencing program unit must
not conflict with the specification in the sub
program.

A character entity whose length specifier
is an adjustable length# specifier or an aster
isk enclosed in parentheses# must not be used
as an operand of a concatenation operator# ex
cept in a character assignment statement.

2.5.5 IMPLICIT statement [8.5]

An IMPLICIT statement specifies rules for
establishing the implicit type of the name of a
variable, an array, a function subprogram, a
function entry#, an external function procedure,
or a statement function, based upon the first
letter of the name. These rules also establish

,implicit lengths for character entities. Impli
cit type rules do not apply to intrinsic func
tions, nor to symbolic names# of constants.

An IMPLICIT statement consists of the key
word IMPLICIT, followed by a list of implicit
type specifications separated by commas. Each
implicit type specification consists of the key
word INTEGER, REAL, DOUBLE PRECISION#, COMPLEX/I,
LOGICAL, or CHARACTER, followed by a parenthe
sized list of single letters or ranges of let-
ters, separated by commas.

An IMPLICIT statement specifying CHARACTER
typ~ may include an asterisk and an integer con
stant expression# denoting the implicit length,
between the keyword CHARACTER and the parenthe
sized list; if the implicit length specifica-

Page 9

tion is omitted, the default implicit length is
taken as one.

A range of letters is denoted bya pair of
letters (which must be in alphabetical order)
separated by a minus, and is interpreted as in
cluding all letters between those mentioned.

A letter must not appear more than once,
as a single letter or within a range of letters,
in all the IMPLICIT statements of a program
unit.

2.5.6 PARAMETER statement# [8.6]

A PARAMETER statement specifies the sym
bolic name of a constant. It consists of the
keyword PARAMETER followed by a list of param
eter specifications, separated by commas. Each
parameter specification consists of a symbolic
name, an equals sign, and a constant, in that
order. The symbolic name of a constant must
not appear to the right of the equals sign. A
name must not appear more than once as a sym
bolic name in the PARAMETER statements of a
program unit.

The type of the symbolic name of a con
stant is determined by the form of the constant.
The length specification for the symbolic name
of a character constant is the length of the
character constant.

2.5.7 EXTERNAL statement [8.7]

An EXTERNAL statement permits an external
procedure name to be used as an actual argument,
or it indicates the existence of an external
procedure or block data# subprogram having the
same name as an intrinsic function.

An EXTERNAL statement consists of the key
word EXTERNAL, followed by a list of external
procedure names or block data# subprogram names,
separated by commas. (Note that the name of a
statement function is not permitted.) A symbol
ic name must not appear more than once in the
EXTERNAL statements of a program unit.

2.5.8 INTRINSIC statement [8.8]

An INTRINSIC statement permits an intrin
sic function name to be used as an actual arg
ument. An INTRINSIC statement consists of the
keyword INTRINSIC, followed by a list of intrin
sic function names separated by commas. The
names of intrinsic functions in the "MAX" or
"MIN" families must not be used as actual argu
ments (because the functions in those families
have an indefinite number of arguments). The
appearance of a generic# function name in an
INTRINSIC statement does not remove thegener
ic property. A function must not appear more
than ,once in the INTRINSIC statements and EX
TERNAL statements of a program unit.

42

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

2.5.9 SAVE statement [8.9]

A SAVE statement maintains the definition
status of entities in a subprogram upon execution
of a RETURN or END statement. A SAVE statement
must not appear in a main program or in a BLOCK
DATA# subprogram. A subprogram may contain more
than one SAVE statement.

Entities whose definition status is main
tained may include common blocks, variables, and
arrays. Variables and arrays within a common
block must not be included except by specifying
the entire block.

A SAVE statement may consist simply of the
keyword SAVE. This specifies that the definition
status of all common blocks, variables, and ar
rays in the program unit (but not that of dummy
arguments) is to be maintained.

The list form# of the SAVE statement con
sists of the keyword SAVE followed by a list of
common block names (enclosed between slashes),
variaQle names, and array names, separated by
commas. A name must not appear more than once in
the SAVE statements of a program unit. The names
of dummy arguments, of procedures, or of varia
bles or arrays within a common block, must not
appear ina SAVE statement.

2.5.10 DATA statement [9.1 - 9.4]

A DATA statement provides initial values
for variables, arrays, array elements, and sub
strings#. At the beginning of execution of an
executable program, all entities in all program
units are undefined except those for which ini
tial values have been provided in DATA state
ments.

.II DATA statement consists of the keyword
DATA followed by one or·more pairs (optionally
separated by commas), each pair consisting of a
list of names followed by slashes enclosing a
list of constants.

A list of names includes variable names,
array names, array element names, substring#
names, and implied-DO lists#, separated by com
mas. The list must not contain names of dummy
arguments, functions, or entities in blank com
mon (or entities associated with those in blank
common). Also prohibited is the name of a var
iable in an external function subprogram that
is also the function name or an entry# name (or
is associated with one of these).

A list of constants consists of items sep
arated by commas; each item is a constant or
the symbolic name# of a constant, or one of
these preceded by a repeat count and an asterisk.
A repeat count is a nonzero, unsigned integer
constant or the symbolic name# of such a con
stant.

Page 10

An implied-DO list# in a DATA statement
consists of a list of array element names and
implied-DO lists, followed by a control part,
all enclosed in parentheses. The control part
includes an implied-DO variable which must be
an integer variable, an equals sign, and two or
three expressions separated by commas. The it
eration count is established from these expres
sions exactly as for a DO-loop, except that the
iteration count must not be zero. An implied
DO-variable in a DATA statement is local to the
implied-DO list. Each of the expressions, as
well as each subscript expression in the list
part of the implied-DO, is an integer constant
expression, except that it may contain implied
DO variables of enclosing implied-DO lists.

There must be a one-to-one correspondence
between the names in the list of names and the
constants in the list of constants, in each
pair in a DATA statement. In this correspon
dence, an array name in the list of names in
cludes all elements of the array, an implied-DO
list# includes the names of all referencedar
ray elements, and repeat counts are applied to
items in the list of constants.

The type of each name must agree with the
type of the corresponding constant when either
is of type character, complex#, or logical. 'A
constant of integer, real, or double precision#
type may correspond wi th a name of any o·f these
types; type conversion# will be applied to the
constant if necessary. A character constant
will be padded with blanks on the right or trun
cated# from the right, if necessary, to the
length of the corresponding character entity in
the list of names.

An entity, or two associated entities,
must not be initially defined more than once in
an executable program.

2.6 EXPRESSIONS AND ASSIGNMENT

2.6.1 Arithmetic expressions [6.1]

An arithmetic primary is an unsigned arith
metic constant, a symbolic name# of an arithmet
ic constant, a variable reference, an array ele
ment reference, a function procedure reference,
or an arithmetic expression enclosed in paren
theses.

A factor consists of one or more primaries
separated by the exponentiation operator "**".
In the interpretation of a factor containing
two or more exponentiation operators, the pri
maries are combined from right to left.

A term consists of one or more factors sep
arated by either the multiplication operator "*,,
or the division opera tor "/". In the interpre
tation of a term containing two or more mUlti
plication or division operators, the factors are

43

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

combined from left to right.

An arithmetic expression consists of one"or
more terms separated by either the addition oper
ator "+" or the subtraction operator "_". The
first term may optionally be preceded by the
identity (unary "+") or the negation (unary "_")
operator. In the interpretation of an expres
sion containing two or more addition or subtrac
tion operators, the terms are combined from left
to right.

Among the arithmetic operators, the exponen
tiation operator has highest precedence, the mul
tiplication and division operators have interme
diate precedence, and the addition and subtrac
tion operators have lowest precedence.

The data type of an expression containing
one or more arithmetic operators is determined
from the data types of the operands. In an ex
pression consisting of an operand preceded by an
identity or negation operator, the type of the
expression is the same as the type of the oper
and. For an expression consisting of a pair of
operands separated by an addition, subtraction,
multiplication, or division operator, the type of
the expression is determined as follows: If both
operands are 'Of the same type, then the type of
the expression is the same also. If either op
erand is of integer type, then the type of the
expression is the same as the type of the other
operand. If one operand is of real type and the
other is of double precision# or complex# type,
then the type of the expression is double precis
ion# or complex# respectively. An operator must
nDt have 'One 'Operand 'Of dDuble precisiDn type and
the 'Other 'Operand 'Of cDmplex type.

The type 'Of an expressiDn cDnsisting 'Of a
pair 'Of primaries separated by an exponentiatiDn
DperatDr is determined by the same rules. HDW
ever, a cDmplex 'Operand is prDhibited in an expo
nentiatiDn DperatiDn except fDr the case 'Of a
cDmplex 'Operand raised tD an integer power.

Except fDr a value raised tD an integer
pDwer, type cDnversiDn is applied tD the operand
(if any) that differs in type frDm the resulting
expressiDn. ND type cDnversiDn is required when
a value 'Of any type is raised tD an integer
pDwer.

NDte that the type 'Of an expression cDnsist
ing 'Of an DperatDr 'Operating 'On a single 'Operand
Dr 'On a pair 'Of 'Operands is determined by the
types 'Of those 'Operands -- i.e., "locally" -- and
nDt by the type 'Of any 'Operand in any larger ex
pressiDn cDntaining it.

If the qUDtient of tWD expressions 'Of inte
ger type is nDt a whDle number, it is truncated
to the next lDwer integer in magnitude.

Page 11

2.6.2 Character expressiDns [6.21

A character primary is a character con
stant, a SymbDlic name 'Of a character cDnstant#,
a character variable reference, a character ar
ray element reference, a character substring#
reference, a character functiDn procedure refer
ence#, or a character expression# enclDsed in
parentheses.

A character expressiDn consists of 'One Dr
more primaries separated by the concatenatiDn#
'Operator "//". In the interpretatiDn 'Of a char
acter expressiDn cDntaining tWD Dr mDre cDncat
enatiDn# DperatDrs, the primaries are cDmbined
frDm left tD right. The 'Operands fDr a CDncat
enatiDn DperatDr must have CDnstant length ex
cept in a character assignment statement.

Note that parentheses have nD effect in a
character expressiDn.

2.6.3 RelatiDnal expressiDns [6.31

A relational expressiDn consists 'Of a pair
of arithmetic expressiDns Dr a pair 'Of charac
ter expressiDns, separated by 'One 'Of six rela
tiDnal DperatDrs: .LT. (less than), .LE. (less
than Dr equal tD), .EQ. (equal tD), .NE. (nDt
equal tD), .GT. (greater than), Dr .GE. (great
er than Dr equal tD).

A relatiDnal expressiDn involving a pair
'Of arithmetic expressions of different types is
interpreted as cDmparing the difference 'Of the
two expressiDns with zero. CDmplex expressiDns#
may be compared only with the .EQ. and .NE. rela
tional operators. (A complex expression must not
be cDmpared with a double precision expression.)

A relatiDnal expressiDn invDlving a pair
of character expressiDns 'Of different lengths
is interpreted as if the shDrter 'Operand were
extended on the right with blanks to the length
of the lDnger 'Operand.

2.6.4 LDgical expressiDns [6.4]

A lDgical primary is a lDgical cDnstant, a
symbolic name# 'Of a logical cDnstant, a lDgical
variable reference, a lDgical array element ref
erence, a lDgical functiDn prDcedure reference,
a relational expressiDn, Dr a lDgical expres
siDn enclDsed in parentheses.

A lDgical factDr is a logical primary, Dr
the lDgical negation 'Ope rat Dr ".NOT." fDllowed
by a lDgical primary.

A logical term is a sequence of lDgical
factors separated by the logical conjunctiDn
operator ".AND." In the interpretatiDn 'Of a
logical term containing two or more lDgical CDn
junction 'Operators, the logical factDrs are com
bined from left to right.

44

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION Page 12·

A logical expression is a sequence of log
ical terms separated by the logical disjunction
operator ".OR." In the interpretation of a log
ical expression containing two or more logical
disjunction operators, the logical terms are com
bined from left to right.

Among the logical operators, the logical
negation operator has highest precedence, the
logical conjunction operator has intermediate
precedence, and the logical disjunction opera
tor has lowe'st precedence.

2.6.5 Precedence of operators [6.5]

Precedence within the class of arithmetic
operators, and within the class of logical op
erators, is established by the interpretation
rules for expressions. There is only one char
acter operator#. A relational expression con
tains exactly one operator. In an expression
containing operators of more than one of these
classes, arithmetic operators have highest pre
cedence, followed by character operators, then
by relational operators, and finally by logical
operators which have the lowest precedence.

2.6.6 Evaluation of expressions [6.6]'

Any datum referenced as an operand in an
expression must be defined at the time the ref
erence is executed, and the type of the datum
must agree with the type of the name used to
reference it. An integer operand must have an
integer value (i.e., it must not have a state
ment label value as a result of the execution
of an ASSIGN statement). Any arithmetic opera
tion whose result is not mathematically defined
is prohibited in a standard-conforming program.

Side-effects of functions must not alter
the value of any other entity within the same
statement, and must not alter the value of any
entity in a common storage area that affects the
value of any other function reference in the
same statement. In particular, if an actual
argument is defined during execution of a func
tion, that argument or any associated entities
must not appear elsewhere in the statement.

(An exception is made, however, in that
function references in the logical expression
of a logical IF statement may have side-effects
that affect the contingent statement.)

A processor is required to evaluate only
as much of an expression as is necessary to de
termine the value of the expression. For char
acter expressions#, a processor needs to evalu
ate only as many characters of the result as
are required by the context.

If a function reference appears in a part
of an expression that does not need to be eval
uated, all entities that would become defined

during execution of the function become unde
fined when evaluation of the expression is com
pleted.

If a statement contains more than one func
tion reference, the references may be executed
in any order, except for the ordering specified
for expressions in input or output list ele
ments, logical IF sta'tements, and function argu
ment lists containing function references. The
value provided by each function reference must
be independent of the order of evaluation of
the references.

2.6.7 Equivalent expressions [6.7]

A processor may evaluate an expression
different in certain respects from that ob
tained by application of the interpretation
rules. However, any expression contained in
parentheses must be treated as an entity.

For arithmetic expressions, the processor
may evaluate any expression that is mathematic
ally equivalent to that obtained from the inter
pretation rules, provided that the integrity of
parentheses is respected. Integer division is
not considered mathematically equivalent to
real'division. [Note that there is no mention
in the document of the equivalence or non-equiv
alence of real and double precision expressions.]

For relational expressions, the processor
may evaluate any expres'sion that is relation
ally equivalent.

For logical expressions, the processor may
evaluate any expression that is logically equiv
alent, provided that the integrity of parenthe
ses is respected.

2.6.8 Arithmetic, logical, and character as
signment statements [10.1, 10.2, 10.4]

An arithmetic assignment statement consists
of the name of a variable or an array element of
integer, real, double precision#, or complex#
type, followed by an assignment operator "=",
followed by an arithmetic expression.

A logical assignment statement consists of
the name of a variable or an array element of
logical type, followed by an assignment opera
tor "=", followed by a logical expression.

A character assignment statement consists
of the name of a variable, an array element, or
a substring# of character type, followed by an
as:;ignment operator "=". followed by a charac
ter expression. Character positions within the
datum designated on the left of the assignment
operator must not be referenced by the expres
sion on the right.

Execution of an assignment statement be-

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

gins with evaluation of the expression to the
right of the assignment operator. The rules
for evaluation of expressions require that this
expression has a defined value. The datum des
ignated by the variable name, array·element
name, or substring name# to the left of the as
signment operator becomes defined with this val
ue, after conversion if necessary, upon execu
tion of the assignment statement.

In the case of arithmetic assignment, con
version may' consist of type conversion, whose
effect is the same as applying the appropriate
generic type conversion function. For charac
'ter assignment, the value of the expression
will be padded with blanks on the right or. trun
cated from the right, as necessary to achieve
the required length.

Execution of a character assignment state
ment having a substring# on the left defines
only the characters of the specified substring#.
The definition status of other characters of ~he
same string is not changed by the execution of
the assignment statement.

2.6.9. ASSIGN statement [10.3]

An ASSIGN statement consists of the key
word ASSIGN, a statement label, the keyword TO,
and an integer variable name (in that order).
The statement label must be the label of an ex
ecutable statement or a FORMAT statement in the
same program unit.

Execution of an ASSIGN statement defines
the integer variable, with the statement label
as its value. The variable becomes undefined
with respect to use in integer (arithmetic) ex
pressions or in any other way, except for ref
erence by an assigned GO TO statement or as a
format identifier in an input or output state
ment. The variable may later be redefined with
another statement label value, or with an int
eger (arithmetic) value.

2.6.10 Events that cause entities to become
defined [17.2]

Execution of an arithmetic, logical, or
character assignment causes the entity named on
the left of the assignment operator to become
defined.

As executio'n of an input statement pro
ceeds, each entity that is assigned a value (of
the correct type) from the input medium becomes
defined at the time of this assignment.

Execution of a DO statement causes the
DO-variable to become defined.

Beginning execution of an implied-DO list
in an input or output statement causes the im
plied-DO variable to become defined.

45

Page 13

A DATA statement causes entities to become
initially defined at the beginning of execution
6f an executable program.

Execution of an INQUIRE# statement causes
any entity that is assigned a value 'during exe
cution of the statement to become defined if no
error condition occurs.

Execution of an ASSIGN statement causes
the variable in the statement to become defined
with a statement label value.

When an entity of a given type becomes de
fined, all totally associated entities of the
same type become defined.

A reference to a subprogram causes a dUmmy
argument to become defined if the corresponding
actual argument is defined and if the actual
argument has a form compatible with the dummy
argument.

When a complex# entity becomes defined, all
partially# associated real entities become de
fined. If both parts of a complex# entity be
come defined as a result of partially associa
ted real or complex entities becoming defined,
the complex# entity becomes defined.

2.6.11 Events that cause entities to become
undefined [17.3]

All entities are undefined at the begin
ning of execution of an executable program, ex
cept those entities initially defined by DATA
statements.

When an entity of a given type becomes de
fined, all totally associated entites of diff
erent types become undefined.

Execution of an ASSIGN statement causes
the variable in the statement, as well as any
associated entities, to become undefined for
use as integers.

When an entity of type other than charac
ter becomes defined, all partially# associated
entities become undefined, except for partial
association between a complex# entity and a real
or complex# entity.

If a reference to a function appears in an
expression in which the value of the function
is not needed to determine the value of the ex
pression, and if evaluation of the function
would cause an argument of the function of an
entity in common to become defined, then the
argument or the entity in common becomes unde
fined when the expression is evaluated.

The execution of a RETURN statement or an
END statement within a subprogram causes all
entities within the subprogram to become unde-

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

fined, except for the following: (a) ~ntities

in blank common; (b) initially defined entities
that have neither been redefined nor become un
defined; (c) entities specified by SAVE state
ments; (d) entities in .named common blocks that
appear in the subprogram and in at least one
other program unit that is referencing the sub
program either directly or indirectly. Note
that any integer variable to which a statement
label value has been assigned becomes undefined
upon execution of a RETURN or END statement.
Note that at the beginning of execution of an.
external function subprogram, all local varia
bles whose names are the same as the function
name or an entry# name are undefined.

When an error condition or an end-of-file
condition occurs during execution of an input
statement, all of the entities in the input list
of the statement become undefined.

Execution of a direct access input state
ment that specifies a record that has not been
previously written causes all of the entities
in the input list of the statement to become
undefined.

Execut~on of an INQUIRE# statement may
cause entities to become undefined.

When an entity becomes undefined as a re
sult of the foregoing conditions, all totally
associated entities, and all partially associa
ted entities of types other than character, be-
come undefined. ..

2.7 CONTROL STATEMENTS

2.7.1 The execution sequence [3.6]

Execution of a program begins with the
first executable statement appearing in the
main program, and continues with the statements
in order of their appearance except when the ·se
quence is interrupted by execution-of a proced
ure reference or a control statement.

A subprogram procedure reference causes
interruption of execution of the program unit
where the reference appears; execution contin
ues from the first executable statement follow
ing the subprogram header statement or ENTRY#
statement referenced. A statement function
reference causes execution of the statement
function statement.

A control statement is a GO TO, arithmetic
IF, RETURN, or STOP statement, an input or out
put statement containing an error specifier# or
an end-of:-file specifier (s·tatement label), a
CALL statement with an alternate return speci
fier#, a logical IF statement containing any of
the foregoing, a DO statement, the terminal
statement of a DO-loop, or an END statement.

46

Page 14

2.7.2 GO TO. statements [11.1 - 11.3]

An unconditional GO TO statement consists
of the keyword GO TO followed by the statement
label of an executable statement in the same
program unit'. - Execution of a GO TO statement
causes interruption of the sequence of execu
tion of statements;-executioncontinues with
the statement having the designated label.

A computed GO TO statement consists of the
keyword GO TO, a parenthesized list of state
ment labels (separated by commas), an optional
comma, and an integer, real# ," or double precis
ion# expression# in that order. Execution of a
computed GO TO statement begins with evaluation
of the expression, and conversion# (if neces
sary) to integer type. If the (integer) value
of the expression is between 1 and the number
of labels in the list-, then the effect is an
unconditional GO TO, to the label whose posi
tion in the'list corresponds to the value of
the expression. Otherwise, the execution se
quence continues with the statement following
the computed GO TO.

An assigned GO TO statement consists of
the keyword GO TO, followed by an integer var
iable name. - (This may optionally be followed
bya parenthesized list of labels of state
ments _in the same program unit, separated by
commas; an optional comma may appear between
the variable name and the left parenthesis.)
At the time of execution of an assigned GO TO,
the integer variable must be in a defined state
(as a result of the execution of an ASSIGN
statement) and its value must be the statement
label of an executable statement in the same
program unit. If the parenthesized list of
labels is present, the value of the integer
variable must be one of the labels in the list.
Execution of an assigned GO TO statement has
the effect of an unconditional GO TO to the
designated label.

2.7.3 IF statements [11.4 - 11.5]

An arithmetic IF statement consists of the
keyword IF, followed by a parenthesized integer,
real, or double precision# expression, followed
by the labels of three executable statements in
the same program unit (separated by commas).
The expression is evaluated, and the execution
sequence continues with the statement having
the first, second, or third label, according as
the value of the expression is less than, equal
to, or greater than zero, respectively.

A logical IF statement consists of the key
word IF, followed by a parenthesized logical ex
pression, followed by a contingent statement.
The contingent statement must be an executable
statement, but it must not be a DO statement, a
logical IF statement, or an END statement. The
logical expression is evaluated, and the contin-

. 47

PROPOSED ANS 3.9 FORTRAN LANGUAGE REVISION.

gent statement is execu~ed if the logical expres
sion is true. If the logical expression is ,
false, the contingent statement is ignored.
(Note that the logical expression may contain
references to functions having side effects;
such side effects are permitted to affect the
value of the contingent statement.)

2.7.4 DO statement and DO-loops [11.6)

A DO statement is the opening statement of
a DO-loop. It consists of the keyword DO, fol
lowed by a statement label and an optional com
ma, followed by a control part. The control
part includes a DO-variable, an equals sign,
and two or three expressions of integer, real#,
or double precision# type separated by commas.

The statement label references the terminal
statement of the DO-loop, which must appear fol
lowing the DO statement in the program unit, and
which must be an executable statement but must
not be an unconditional GO TO statement, an as
signed GO TO statement, an arithmetic IF state
ment, a RETURN statement, a STOP stateme~t, an
END statement, or ,a DO statement. '

The DO-variable is an integer" real#, or
double precision# variable, and each of the
control expressions is an integer, real#, or
double precision# expresslon#.

The range of a DO-loop consists of all exe
cutable statements in the program unit that are
in the block following the DO statement and end
ing with the terminal statement. If a DO state
ment appears within the range of a DO-loop, the
corresponding terminal statement must also be
within the same range. A statement may be the
terminal statement of more than one DO-loop.

A DO-loop is either active or inactive. It
is initially inactive, and becomes active only
during execution of its DO statement. An active
DO-loop becomes inactive only when one of the
following occurs:

(1) its iteration count is found to be zero
during loop control processing;

(2) its DO-variable becomes undefined or is
redefined by means other than incrementation pro
cessing;

(3) its DO statement is in the range of an
other DO-loop that becomes inactive;

(4) its DO statement is in the range of an
other DO-loop whose DO statement is executed; or

(5) a RETURN, STOP, or END statement in the
program unit is executed.

j.,lien a DO-loop becomes inactive, its DO-var
iable retains its value (if any).

Note that transfer of control to statements
outside the range does not cause a DO-loop to be
come inactive (unless the DO-variable is rede
fined or becomes undefined).

Page 15

Transfer of control into the range of an
inactive DO-loop is prohibited. Transfer to a
statement in the range of one or more DO-loops
all of which are active is permitted. (Note
that if a statement is in the range 'of two or
more DO-loops, some of which are active while
others are inactive, the ranges of all of these
inactive loops must be contained in the ranges
of all of the active loops. The inner loops
cannot be reactivated without execution of
statements in the range of some active outer
loop.)

Execution Qf~ DO statement includes all of
the following steps:

(1) The expressions in the control part
are evaluated and converted#, if necessary, to
the type of the control variable. The (conver
ted#) values of the first two expressions become
the values of ml' the intial parameter, and m2,
the terminal parameter, respectively. If there
is a third expression, then its value (which
must not be zero) becomes the value of the in
crementation parameter, m3; otherwise the de
fault value of m3 is one.

(2) The DO-variable becomes de'fined, with
the value of mI' The DO"':loop becomes active,
and all DO-loops whose DO statements are con
tained within its range become inactive.

(3) The initial value of the iteration
count is established, as the value of the ex
pression

(4) Loop control processing, as described
in the following paragraph., completes the execu
tion of the DO statement.

Loop control processing consists of testing
the iteration count. If it is greater than
zero, then execution of the range of the DO-loop
begins. If the iteration count is zero, the
DO-loop becomes inactive. If, as a result, all
of the DO-loops sharing the terminal statement
of this DO-loop are now inactive, normal execu
tion continues with execution of the next execu
table statement following the terminal state
ment. However, if some of the DO-loops sharing
the terminal statement are active, execution
continues with incrementation processing, as
described below.

Execution -2i the range of a DO-loop begins
at the first executable statement following the
DO statement in the program unit. IVhen (if
ever) the terminal statement is reached, ,it is
executed. Unless execution of the terminal
statement results in a transfer of control, ex
ecution then proceeds with incrementation pro
cessing, as described in the following para
graph.

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

Incrementation processing includes the fol
lowing steps:

(1) Among the active DO-loops sharing this
terminal statement, that one is selected whose
DO statement was executed most recently. (The
foregoing description implies that the loop sel
ected will be the innermost active loop sharing
this terminal statement.)

48

(2) The value of the DO-variable of the sel
ected loop is incremented by the value of the in
crementation parameter m3.

(3) The iteration count for the selected
loop is decremented by one.

(4) Execution continues with loop control
processing (described above) for the selected
DO-loop.

Note. A loop with ml less than m2 was pro
hibited in the 1966 standard, but most processors
extended the language to permit such loops, and
interpreted them so that the statements in the
range of the loop were executed once. The effect
of this widely implemented extension can be
acheived with a program that conforms to the new
language description, by writing

DO label index = ml, MAX (ml, m2)

2.7.5 Other control statements [11.7 - 11.10]

CALL and RETURN statements are described
later (see "MAIN PROGRAM AND SUBPROGRAMS").

A CONTINUE statement consists of the keyword
CONTINUE. Execution of a CONTINUE statement has
no effect.

A.STOP statement consists of the keyword
STOP, optionally followed by a string of not more
than five digits, or by a character constant.
Execution of a STOP statement causes termination
of execution of the executable program, and makes
the string of digits or the character constant
(if any) accessible.

A PAUSE statement consists of the keyword
PAUSE, optionally followed by a string of not
more than five digits, or by a character con
stant. Execution of a PAUSE statement causes in
terruption of the execution of the executable
program, in such a way that execution can be re
sumed, and makes the string of digits or the
character constant (if any) accessible.

An END statement consists of the keyword
END, written only in columns 7 to 72 of an ini
tial line. An END statement must not have a con
tinuation line. The last line of every program
unit must be an END statement. If an END state
ment is executed, its effect is that of a RETURN

Page 16

statement in a subprogram, or a STOP statement
in a main program.

49

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

3.1 CONCEPTS

3.1.1 Files [12.2]

A file is unformatted or formatted. Data
transferred to or from an unformatted file is
not edited. Data transferred to or from a for
matted file is edited, either by an explicit
format (specified by a reference in a READ,
WRITE, or PRINT statement to a FORMAT statement
or to a character datum containing a format
specification) or by list-directed# formatting
(specified by an asterisk used as a format spec
ifier in the READ, WRITE, or PRINT statement.)

A file is an internal file, a sequential
access (external) file, a stream access# (ex
ternal) file, or a direct access (external)
file. An internal file is formatted, and is
edited by an explicit format. A sequential ac
cess file is formatted or unformatted; if for
matted, it is edited by an explicit format or
by list-directed# formatting. A stream access#
file is formatted, and is edited by list-direc
ted formatting. A direct access file. is for~
matted# or unformatted; if formatted#, it is
edited by an explicit format.

3.1.2 Records [12.1]

A record of an internal file is a charac
ter variable, character array element, or char
acter substring#. If the file has more than
one record#, the file must be a character array
consisting of one record for each element of
the array. Each input or output statement be
gins with the first record of the file; if the
statement transfers more than one record#,
these are read or written in array element se
quence.

The records of a sequential access file or
of a stream access fileD are read and written
in record number order.

Each record of a direct access file has a
unique record number, which is established when
the record is written and does not change. Rec
ords may be written in any order. Each input
or ,output statement transfers data to or from
one record. There is no way to delete a record,
but a record may be rewritten. A file has a
maximum record number, which is specified
either explicitly or by default.

The length of a record of a sequential ac
cess or stream access II file is established at
the time the record is written.

The length of a record of an internal file
is the length of the character datum containing
the record. If the number of characters writ
ten is less than the length of the character da
tum, the remainder is filled ,with blanks.

Page 17

The length of a record 'of a direct access
file is a property of the file, and is the same
for all 'records of the file. If the values
specified by the output list do not fill the
record, the remainder is filled with blanks if
the file is formatted#, or with integer zeros
if the file is unformatted.

Writing a record to an internal file caus
es the corresponding character datum to become
defined. A character datum that is a record of
an internal file may also become defined or be
referenced by means other than input or output
statements. A record must not be read if the
corresponding character datum is undefined.

On a formatted sequential access file, rec
ords written with explicit format editing must
not be read by list-directed format editing t,! ,
and records written with list-directed format
editing# must not be read. A BACKSPACE state
ment must not be executed on a file if the pre
vious record was written with list-directed#
formatting.

3.1.3 Unit specifier [12.3]

A unit specifier has the form [UNIT =]#
unit, where unit is a reference to an internal
file or to an external unit.

A reference to an internal file is the
name of the character variable, character
array#, character array element, or character
substring/! containing the data' of the internal
file.

A reference to an external unit is an int
'eger, reall', or double precision/! expressionll
which, when truncated (if necessary) to an int-

'eger has a positive or zero value which is as
sociated with a particular external unit. The
integer value associated with an external unit
is the same throughout an executable program,
and is used for all references to a file con
nected to the unit.

3.1.4 File position [12.9, 12.10']

A direct access file is implicitly posi
tioned during execution of a READ, WRITE, or
PRINT statement. Prior to data transfer, the
file is positioned at the initial point of the
record specified in the control list. This rec
ord becomes the current record during data
transfer. After data transfer, if no error has
occurred, the file is positioned at the end of
this record, and the nextrec specifier in an
INQUIRED statement may be used to determine the
record number of the record following the one
just written.

An internal file is implicitly positioned
during execution of a READ, WRITE, or PRINT
statement. Prior to data transfer, the file is

50

PROPOSED ANS X3.9 FORT~~ LANGUAGE REVISION

positioned at the initial point of its first
record. This. record becomes the current record
when data transfer begins. If more than oneD
record is transferred, these are read or written
in array element sequence. After data transfer,
if no error has occurred, the file is positioned
just beyond the last record read or written [how
ever, this fact is not useful].

A stream access fileD is implicitly posi
tioned during execution of a READ, WRITE,
or ENDFILE statement, and may be explicitly posi
tioned by execution of a REWIND statement. Exe-
cution of a READ or WRITE statement chan-
ges the position of the file during data trans
fer, but not prior to data transfer or after data
transfer. If no error has occurred, the position
after data transfer is just after the last value
read or written. A stream access fileD consists
of zero or. more formatted records, followed by at
most one endfile record. Execution of an ENDFILE
statement on a stream access fileD creates an
end file record as the next record of the file,
and positions the file after the endfile record.
Execution of a REWIND statement positions the
file at its initial point.

A sequential access (external) file is im
plicitly positioned during execution of a READ,
WRITE, PRINT, or ENDFILE statement, and may be
explicitly positioned by execution of a BACK
SPACE or REWIND statement. The position of the
file is not changed prior to data transfer. Each
data transfer statement begins a new record. The
file will have been positioned just ahead of some
record, which becomes the current record during
data transfer. (On output, the current record is
a previously empty record that becomes the last
record of the file.) One or more records are
read or written during formatted data transfer;
one record is read or written during unformatted
data transfer. If no error occurs, the position
after data transfer is just after the last record
read or written and that record becomes the pre
ceding record. (If the last value "transferred by
a READ statement is within a record, the file is
moved to the end of that record following data
transfer.) Execution of an ENDFILE statement on
a sequential access (external) file creates an
endfile record, and positions the file after the
endfile record. Execution of a REHIND statement
positions the file at its initial point. Execu
tion of a BACKSPACE statement causes the file to
be positioned before the preceding record (if
any); if there is no preceding record, the posi
tion of the file is unchanged.

3.1.5 REWIND, BACKSPACE, and ENDFILE [12.10]

A control list for a REWIND, BACKSPACE, or
ENDFILE statement has either of the following
forms:

unit

Page 18

I.here c1ist/f consists of a unit specifier, or of
a unit specifier and an error specifier. (An
error specifier has the form ERR = label, where
label is the label of an executable statement in
the same program unit. See Error Detection,
below.)

A REWIND', BACKSPACE, or ENDFILE statement
consists of the appropriate keyword followed by
a control list of either of the foregoing forms.

A BACKSPACE statement must reference a
unit that is connected to a sequent:ia1 access
file that exists.

Execution of a REWIND statement for a file
that is connected but does not exist, is per
mitted but has no effect.

Execution of an ENDFILE statement for a
file that·is connected but does not exist cre
ates the file.

3.1.6 Error detection [12.6]

An error specifier has the form ERR =
label, where label is the label of an executable
statement in the same program unit. When an er
ror is detected during execution of an input or
output statement" containing an error specifier,
control is transferred to the statement having
the specified label.

An error is detected in the following
cases: (The processor may also detect other
condi tions.)

An attempt to execute a READ or WRITE
statement referencing a direct access file, with
a record number less than one or greater than
the maximum record number for the file.

An attempt to execute an unformatted WRITE
on a formatted direct access file, or a format
ted WRITE on an unformatted direct access file.

An attempt to transfer more data to or
from a record than the record holds.

An attempt fo execute an OPEN statement
with. improperly valued specifiers.

Note. The position of a file, upon detec
tion of an error, becomes indeterminate.

3.1. 7 Restrictions on input and output state
ments [12.11 - 12.12]

An input or output statement must not con
tain a function reference that causes a further
input or output statement to be executed.

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

A function reference anywhere in a list
item or specifier in an input or output state
ment must not have any side effects that affect
the value of any other entity in the same state
ment.

An input or output statement must not ref
erence a unit if the unit or the file connected
to the unit does not have all of the properties
re~uired for execution of the statement.

J

3.2 READ, WRITE, AND PRINT# STATEMENTS

3.2.1 Statement forms [12.8]

A READ, WRITE, or PRINT# statement has one
of the following forms:

READ (clist) [list]

READ fmt [, list]#

WRITE (clist) [list]

PRINT fmt [, list]/I

A control list, clist, has one of the following
forms:

unit, kwlist

where unit and fmt are unit and format specifi
ers in non-keyword form, and kwlist is a list of
specifiers all of which are in keyword form.
The control list must include a unit specifier,
and may include at most one of each of the fol
lowing: a format specifier, an error specifier,
and either an end-of-file specifier or a record
specifier. A format specifier is included for
a formatted file. A record specifier is includ
ed for a direct access file. An end-of-file
specifier may be included in a READ statement
for a sequential access or stream access# file.

The forms that do not include control lists
must not be used for a direct access file (since
a record number specification is needed, and can
only be gi~en in a control list).

The optional list must be present if list
directed editing # is specified, or for a WRITE
statement to an unformatted file.

51

Page 19

3.2.2 Specifiers [12.3 - 12.7]

A specifier in a READ, WRITE, or PRINTII
statement is a unit specifier, a format speci
fier, a record sper.ifier, an error specifier,
or an end-of-fi1e specifier. Unit specifiers
and error specifiers are described above.

A format specifier (for a formatted file)
has the form [FMT = III fmt, where fmt is one of
the following:

(1) the statement label of a FORMAT state
ment in the same program unit;

(2) the name of an integer variable# that
has a statement label value referencing a
FORMAT statement in the same program unit;

(3) a character constant;

(4) a character array nameD,

(5) a character expression# that does not
involve concatenation of variable-length oper
ands; or

(6) an asterisk.

A record specifier (for a direct access
file) has the form REC = rec, where rec is an
integer, real# or double precision# expression#
whose in,teger part is positive.

An end-of-file specifier (for a READ state
ment on a sequential access or stream access#
file) has the form EOF = eof, where eof is the
label of an executable statement in the same
program unit.

3.2.3 The input or output list [12.8]

The list of a READ, WRITE, or PRINT#state
ment specifies the data whose values are to be
transferred.

A basic list item in a READ statement is a
variable name, an array element name, a charac
ter substring# name, an array name, or an array
block item#. A basic list item in a WRITE or
PRINT statement is any of the foregoing, or any
expression# except a character expression that
involves concatenation of variable length oper
ands.

An array block item# includes a colon. To
the left and right of the colon, respectively,
are specifications of the first and last array
element in the block. Each of these specifica
tions is an array element name, except that one
(but not both) may be omitted. If both are pre
sent, they must be names of elements of the same
array, and the subscript value for the element
name on the right must be greater than for the

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

one on the left. If the specification on the
left is omitted, the default first array ele
ment of the block is the first element of the
array; if the specification on the right is
omitted, the default last element of the block
is the last element of the array.

An array name or an array plock ite~! ap
pearing as a basic list item is equivalent to
a sequence of basic list items that includes in
order all the array elements of the array or 6f
the array block#.

Each item of an input or output list is a
basic list item or an implied-DO list. An im
plied-DO list consists of a list of basic list
items or implied-DO lists, followed by a con
trol part, all of which is enclosed in parenthe
ses. The control part includes an implied-DO
variable, a~ equals sign, and tW0 or three ex
pressions separated by commas. The implied-DO
variable is an integer, real#, or double precis
ion# variable, and the control expressions are
integer, real# or double precision# expressions.
The iteration count and the sequence of values
of the implied-DO-variable are established from
these expressions exactly as for a DO-loop. In
an input list, the implied-DO-variable must not
appear as a list item in the same implied-DO
list. The implied-DO list is equivalent to a
sequence of items that includes the list items
once for each iteration of the implied-DO list.

3.2.4 Execution [12.9]

Data transfer is specified by the input or
output list and. in so~e cases, by the format.
File positioning may occur even when the list
is omitted and no data transfer is specified by
the format. A READ statement transfers data
from an internal file, or from a unit connected
to an external file. A WRITE or PRINT statement
transfers data to an internal file, or to a
unit connected to an extern~1 file.

A READ or PRINT statement that
does not contain a control list is interpreted
as if it included a default unit specifier for
an external unit or for an internal file. The
default unit specifier is processor-determined.
A default file for the PRINT statement must be a
sequential external file.

For a READ statement that includes
a unit specifier, the specifier must refer eith
er to an internal file, or to an external unit
that is connected to a file at the time the
statement is executed.

A READ, WRITE, or PRINT statement for a
formatted file includes a format specifier. If
it is a reference to an explicit format, the'
referenced FORMAT statement or character datum
controls editing during data transfer: If the
format specifier is a reference to a character

52

Page 20

datum and the unit specifier (or default speci
fier) refers to, an internal file, the datum con
taining the format specification must not be
contained within the internal file.

If the format specifier is an asterisk, it
specifies list-directed editingH; therefore the
file for the specified (or default) unit must be
a sequential access external file or a stream
access# file, and the input or output list must
not be omitted.

All values needed to determine which enti
ties are specified by a list item are estab
lished at the beginning of the processing of
that item. All data specified by a list item
is transfer'red prior to' the processing of any
succeeding list item. A DO-variable of an im
plied-DO list becomes defined at the beginning
of processing of the items of that implied-DO
list.

All data referenced in an output list must
be defined. An attempt to read a record of a
direct access file that has not previously been
written causes all entities specified by the in
put list to become undefined.

If the format specifier is a reference to
a character datum, an input list item or any
associated entity must not include any part of
the character datum that contains a part of the
format specification.

If the unit specifier (or default unit spe
cifier) refers to an internal file, an input or
output list item or any associated entity must
not be contained within the internal file.

Unformatted data transfer causes exactly
one record to be read or written. No editing
occurs during data transfer.

One or more records'are written during for
matted data transfer. For a direct access file,
the record number is increased by one as each
succeeding record is read or written.

A WRITE or PRINT statement may transfer
formatted data to a sequential (external) file
connected to a unit (or default unit) that is
a printer. The first character of each record
is not printed, but is used to determine verti
cal spacing. The remaining characters, if any,
are printed on one line (beginning at the left
margin). Vertical spacing before printing is
one line (normal) if the first character is
blank, two lines if the first character is "0"
(zero), skip to first line of next page if the
first character is "1" (one), ,and no advance if
the first character is "+" (plus). A record
with no characters has the same effect as a
record containing a single blank character.

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

3.3 EXPLICIT FORMATTING

3.3.1 Format specification [13.1 - l3.Z]

An explicit format is specified by a refer
ence to a format statement or to a character da
tum containing a format specification. A refer
ence to a format statement may consist of the
label of the FORMAT statement appearing in the
READ, WRITE, or PRINT statement, or of a refer
ence in the statement to an integer variable#
that has a statement label value referencing

53

the FORMAT statement. A reference to a charac
ter datum is either a character constant in the
READ, WRITE, or PRINT statement, or a character
array ~ame#or character expression# in the state
ment, specifying a character string that is a,
valid foimat specification.

A FORMAT statement must be labe~led, and
consists of the keyword FORMAT followed by a
format specification enclosed in parentheses.

If a format is specified by a reference to
a character datum, the datum must be defined
with a string consisting of matching left and
right parentheses that enclose a valid format
specification. Blank characters may precede
the left parenthesis, and character positions
following the right parenthesis may contain ar
bitrary characters or may be undefined. If the
reference is to a character variable# or charac
ter array element#, the format specification
must .be contained within the referenced datum.
If the reference is to a character array#, the
format must be contained within the array, but

,may continue beyond the first array element
into other consecutive elements.

The format specification consist.s of a
list of items, each of which is either an edit
descriptor or a format specification enclosed
in parentheses, optionally preceded by a repeat
count specification (which is a nonzero, un~
signed integer constant). The items in the
list are separa~ed by commas, except that the
comma may be omitted between a P edit descrip
tor and an immediately following F, E, D# or G#
edit descriptor, before or after a slash edit
descriptor, or before or after a colon edit de
scriptor. Each edit descriptor is one of the
following:

I w # D w.d # T .s:.

I ~.~ /I G ~ • .s! b X

F ~ • .s! Lw # s, SP, SS

E ~ • .s! A k P

E w.d E ~ Aw BN, BZ

E ~ • .s! D ~ / #

'hI hZ h
,

.!l H hI hZ h
--n --n

Page Zl

where £1' £Z' ••• , ~are Fortran or non-Fortran

characters~ and ~, ~I .s!, ~# .s:.# b, and k are int
eger constants. (All of these constants except
~I ~, and k must be nonzero; all except band k
are unsigned, and these two are optionally
signed.) The T# X, S# P, BN, BZ, H, slash,
colon# and apostrophe edit descriptors must not
be preceded by a repeat count specification.

3.3. Z Interaction with input or output list
[l3.3] ---

Explicitly formatted input or output in
volves a sequence of input or output list items,
and a sequence of edit descriptors. If the
READ, WRITE, or PRINT statement that references
the format specification contains an input or
output list, then the format specification must
include at least one I, F, E, D# G# L, or A
edit descriptor.

Each input or output list item comprises
one element of the list sequence (taking into
account all of the items specified by ar-
ray names, array block items, and implied-DO
lists), except that each list item that is a
reference to a datum or expression of complex
type comprises a pair of consecutive elements
of the list sequence,.

Each format specification item that is pre
ceded by a repeat count r has the same effect
as if the item were written r times consecutive
ly in the format specification.

The sequence of edit descriptors is as
written, from left to right, taking into ac
count all repeat specifications. In effect
the last edit descriptor on the right is foi
lowed by an implicit colon and slash.

Each I, F, E, D# G# L, or A edit descrip
tor (counting repetitions) is associated with
one element of the input or output list sequence.
The T# X, sf! P, BN, BZ, H, slash, colon# and
apostrophe edit descriptors are not associated
with any element of the list sequence.

If the number of associated edit descrip
tors is insufficient, then a "rescan point" is
determined as follows: If any item of the for
mat specification is a format specification en
closed in parentheses, then the rescan point is
at the beginning of the last such item in the
main list, and includes its repeat count (if
any). Othewise, the rescan point is the begin
ning of the format specification. The total
effective format specification is the original
format specification, followed by as many rep
etitions as are required of that portion of the
original specification to the right of the re
scan point. Each repetition includes the im
plicit colon and slash at the end. (If this
repetition is required, the reppatpd part must
contain at least one I, F, E, D# G# L, OT A.)

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

Format control begins with the first edit
descriptor in the effective format specifica~
tion, and continues in sequence.

When a T# X, S# P, BN, BZ, H, slash, or
apostrophe edit descriptor is encountered, the
appropriate editing is performed without refer
ence to the 'input or output list sequence.

When an I, F, E, D# G# L, A, or colon
descriptor is encountered, reference is made to
the input or ou~put list sequence. If the se
quence has been completed, format control term
inates. If there are items remaining, then if
the edit descriptor is a colon# nothing happens;
otherwise, the associated item from the input
or output list sequence is edited as required.

3.3.4 Interaction with ~ file [13.5]

Each record of a formatted file is a se
quence of characters. A field is a part of a
formatted record that is transmitted to or

54

from the file as a result of a single edit op
er.ation. A field corresponds to one I, F, E, ~f,
G# L, or A edit descriptor ahd to one item in
the input list sequence, or to one H or apos
trophe edit descriptor (with no corresponding
list item). The field width is the number of
characters in the field.

Numeric input editing. Leading blanks in
a field are not significant. Plus signs are op
tional. A field of all blanks is interpreted
as zero.

An I w or I ~.Edfedit descriptor is asso
ciated with an input list item of integer type.
The value of w specifies the field width; EYf is
ignored.

An F w.d, E w.d, E w.d E e# E w.d D e# or
G w.d#edit-d;script~r is-a;sociated-with a real
or-d~uble precision#itemin the input list se~
quence. The input field consists of an optio
nal sign, followed by a string of digits op
tionally containing a decimal point, optional
ly followed by an exponent consisting of an E
or D#followed by an optionally signed integer
constant. If no decimal point. appears in the
input field, the value.of d is used to deter
mine the implied position of the decimal point,
counting from the last character position of
the field, or the last character preceding the
exponent if there is one in the field. If
there is a decimal point in the field, it over
rides the d specification of the edit descrip
tor. The input field may contain more digits
than are considered significant by the proces
sor.

The P edit descriptor specifies a scale
factor, which is an optionally signed integer
constant. The value of the scale factor in e£-

Page 22

fect at the beginning of execution of an input
or output statement is zero. The effective
scale factor value does not change during exe
cution of the statement, except when a P edit
descriptor is encountered. The scale factor
has no effect upon input, except for F, E, llif

or G#editing of a field that does not contain
an expli~it exponent. If there is no exponent
in the input field, the field is interpreted as
if it were followed by the exponent -~.

Numeric output editing. A (nonzero) nega
tive value produces a minus sign in the output
field; a zero value does not produce a minus
sign; a positive or zero value has an optional
plus sign. The external representation is right
justified in the field, with leading blanks.
If the number of characters exceeds the field
width, or if an exponent exceeds its specified
length using E w.d E·e#or E w.d D e# editing,
then the entire-o~tput field-i; filled with as
terisks. However, if the field width is not
exceeded when optional characters are omitted,
then the field is not filled with asterisks.
(Note that a plus sign is not an optional char
acter when SP sign control# is in effect.)

An I ~ or I ~.~#edit descriptor is associ
ated with an input or output list sequence item
of integer type. The value of ~ specifies the
field width. The value of m# if present, must
not exceed that of ~; this ;alue specifies the
minimum number of non-blank characters to be
transmitted, including leading zeros if neces
sary. If ~#is zero, a zero datum will be trans
mitted as a field of blank characters regard
less of the sign control#in effect.

An F w.d edit descriptor is associated
with an outP~t list sequence item of real or
double precision type. The field width is spec
ified as w, with a fractional part consisting
of d digits. The output field consists of
bla~ks, if necessary, followed by a minus sign
or an optional plus sign,. followed by a string
of digits that includes a decimal point and rep
resents the magnitude of the data value, as mod
ifiedby the scale factor currently in effect,
and with the fractional part rounded to d deci
mal digits.

An E ~.Q., D ~.Q., E ~.Q. E ~/f or E ~.Q. D ~#
edit descriptor is associated with an output
list sequence item of real or double precision#
type. The field width is ~, with a fractional
part consisting of ~ digits, and an exponent of
e#digits. The output field consists of an op
tional sign, followed by an optional zero, fol-
19wed by a decimal point, followed by ~ signif
icant digits obtained by rounding the datum,
followed by an exponent.

The exponent may have any of several forms.
If egis not specified, the exponent value must

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

not exceed 999; if it exceeds 99, the exponent
occupies four character positions including a
sign and three digits. If ~Iis specified, the
exponent occupies ~I+ 2 character positions, in
cluding a ~/or E (whichever letter precedes the
ell specifier) , a sign, and ~/exponent digits.
If ellis not specified and the exponent is 99 or
less, the exponent occupies four character posi
tions; either it is in the same form as if the
exponent exceeds 99 (with an extra zero leading
exponent digit) or it is in the same form as if
e#were specified with the value 2 (and with an
E in the output field for E ~.~ editing, and
with either an E or a Dfl for D ~.~ editing).

The scale factor is specified by a P edit
descriptor, in the same manner as for numeric
input editing.

For F output editing, the scale factor val
ue is added to the exponent of the internal val
ue.

For E or Dfloutput editing, the scale fac
tor must be greater than -~ and less than
d + 2. If -d < k $ 0, there will be exactly
Tkl leading ~eros and ~ - I~I significant dig
its after the decimal point. If 0 < ~ < ~ + 2,
there will be exactly k significant digits to
the right of the decim~l point and ~ - ~ + 1
significant digits to the right of the decimal
point (thus a total of ~ + 1 significant digits
in the output field).

A G ~.~/edit descriptor is associated with
an output list sequence item of real or double
precision# type. The field width is specified
as ~, with a fractional part consisting of ~
digits. Editing is the same as F or the same
as E, depending upon the magnitude of the datum.
If the exponent would be between 0 and ~, inclu
sive, the F mode is used, but the value of w is
decreased by 4 and the value of ~ is adjust;d
so that the total number of significant digits,
both to the right and to the left of the decimal
point, is the original value of ~ in the G# edit
descriptor; the scale factor has no effect in
this case. If the exponent is negative or is
larger than d, then editing (including scale
factor effects) is identical to E w.d .

L editing. An L w edit descriptor is as
sociated with a list item of logical type. The
value of ~ specifies the field width. The in
put field consists of one or more blanks, fol
lowed by a T for true or an F for false. Char
acters in the field after the first non-blank
character are not significant. The output
field consists of w - 1 blanks followed by a T
for true or an F for false.

A editing. An A or A w edit descriptor is
associated with a list sequ;nce item of charac
ter type. The value of ~, if present, speci
fies the field width; the default field width

55

Page 23

is the length of the character datum specified
as the list item. If ~ is specified, the string
will be truncated from the right or padded with
blanks on the right, if necessary, according to
the length of the character datum.

Apostrophe editing. Apostrophe editing
must not be used on input. The field width is
the same as the number of characters in the
edit descriptor when interpreted as a character
constant. The specified character string is
transmitted to the output record, without ref
erence to the output list.

~ editing. This form of editing must not
be used on input. The n H edit descriptor caus
es the n characters (in~l~ding blanks) immedi
ately f~llowing the H in the format specifica
tion to be transmitted to the output record.
The field width is ~.

TIland ! editing. These edit descriptors
specify the position, within the record, of
the next character transmitted. The position
may be in either direction with respect to the
current position. On input, the specified po
sition may be beyond the end of the record if
no characters are transmitted from those posi
tions. On output, the effect is as if the
record were initially filled with blank charac
ters, which are replaced as specified during
editing. On output, an X edit descriptor caus
es all skipped positions to be transmitted, and
therefore may increase the length of the record.
A T#edit descriptor does not change the length
of the record.

The T cRedit descriptor indicates that the
character position of the next character to be
transmitted to or from the record will be c

The b X edit descriptor indicates that the
character-position is to be increased or de
creased#by ~ positions relative to the current
position.

Slash editing. The slash edit descriptor
causes the input or output file to be positioned
at the initial point of the next record, which
then becomes the current record.

Colon editing# The colon#edit descriptor
terminates format control if there are no more
items in the input or output list sequence. If
there are more items, this edit descriptor has
no effect.

~ editing#. The ~Iedit descriptor has no
effect on input. For output, it affects only
I, F, E, WI and ~Iediting. The output fields
produced by these edit descriptors include posi
tions in which the processor may insert an op
tional plus sign. At the beginning of execution
of each output statement, the processor option
is in effect. An SP (sign print) edit descrip-

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

torn requires the processor to insert plus
signs in those positions; an SS (sign suppress)
edit descriptor# requires that those positions
be left blank; and an S (sign optional) des
criptor restores the option to the processor.

BN and BZ editing. These specifiers have
no effect on output. On input, they affect only
I, F, E, D# and ~/editing. Blank characters,
other than leading blanks, in fields edited by
these descriptors may be interpreted as zeros
or ignored. At the beginning of execution of
each input statement, the interpretation is as
specified when the file was connected (unless
changed by execution of a subsequent OPEN). A
"BN" edit descriptor causes blanks to be ignored
(except that a field of all blanks has the val
ue zero); a "BZ" edit descriptor causes blanks
to be interpreted as zeros.

3.4 LIST-DIRECTED FORMATTING

List-directed formatting is specified by
a format specifier consisting of an asterisk.

3.4.1 List-directed input [13.6]

The characters in
one or more records constitute a sequence of
values and value separators. The end of a rec
ord has the same effect as a blank character,
unless it is within a character constant.

Each value is a constant, a null value,
the form ~ * ~, or the form ~ * , where ~ is
a constant representing a value and ~ is an un
signed, nonzero integer constant representing a
repeat count. These forms must not contain
embedded blanks, except where permitted within
a constant.

56

A value separator is a (maximum-length) non
empty string of characters consisting of zero or
more blanks and at most one comma or slash.

Each constant must be of a form acceptable
for the corresponding input list item; an inte
ger constant is also acceptable corresponding
to a real or double-precision list item.

A constant corresponding to a complex list
item must consist of a pair of real constants
or integer constants enclosed in parentheses
and separated by a comma. Blanks are permitted
only within a character constant, or on either
side of the comma separating the two parts of a
complex constant. The end of a record, when it
is not within a character constant, has the
same effect as a blank; when it is within a
character constant, it is ignored, except that

Page 24

that it must not separate a pair of consecutive
apostrophes denoting a single apostrophe. A
character constant may be of different length
than the corresponding list item; the character
constant will be truncated from the right or
padded with blanks on the right if necessary.

A null value is specified by successive
value separators with no constant between them
or with the form ~ *. The list item correspon
ding to a null value retains its previous value
(or remains undefined). A single null value
may represent an entire complex constant, but
must not be used for the real or imaginary part
separately. Initial blanks read at the begin
ning of execution of a list-directed input
statement are not significant, and are not in
terpreted as constituting an initial null value
followed by a separator.

When a slash is encountered within a sepa
rator during list-directed input, execution of
the statement terminates. The effect is as if
null values had been supplied for any remaining
list items.

3.4.2 List-directed output [13.6]

Values are produced in sequence, as speci
fied by the output list. Except for character
constants, values are separated by a string of
characters consisting of blanks and at most one
comma (as specified by the processor). The rec
ord structure of the output file is determined
by the processor. The processor may begin a
new record at any point except within a con
stant, and under certain conditions may begin a
new record within a character constant or com
plex constant.

For a list item of logical" type, the char
acter T or F is produced.

For a list item of integer type, a string
of decimal digits is produced.

For a list item of real or double precis
ion type, a constant is produced in approximate
ly the same form as by G ~.~ editing, for some
processor-defined values of ~ and ~.

For a list item of complex type, a pair of
real constants is produced, enclosed in paren
theses and separated by a comma. If the entire
constant is not longer than an entire record,
blanks or the end of a record must not occur
within a complex constant. If the constant is
longer than a record, blanks may be inserted
between the comma and the end of the record,
and one blank may appear at the beginning of
the following record.

The torm of a character constant is differ
ent for a sequential file and for a stream file.

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

List-directed output to a sequential file is
"printable": character constants are not de
limited by apostrophes, are not preceded or
followed by value separators, have each apos
trophe in the string represented by one apos
trophe in the file, and have blank characters
(for vertical spacing control) inserted at the
beginning of any record that contains the con
tinuation of a character constant from a pre
ceding record; character constants in this
form are not suitable for list-directed input.
List-directed output to a stream file is "read
able": character constants are delimited by
apostrophes, are preceded and followed by val
ue separators, have each apostrophe in the
string represented by a pair of apostrophes
(without intervening blanks or end of record)
in the file, and do not have blank characters
inserted at the beginning of a record that con
tains the continuation ~f a character constant
from a preceding record; character constants in
this form are not suitable for printing.

If two or more successive values have iden
tical values, the processor has the option of
producing a single value preceded by a repeat
count, for output to a "printable" (sequential)
file but not to a "readable" (stream) file.

Slashes as separators, and null values,
are not produced by list-directed output format
ting.

Except for character constants continued
from the previous record in a stream file, each
output record begins with a blank character (to
provide vertical spacing control when the output
file is printed).

3.5 OPEN, CLOSED, AND INQUIRE# STATEMENTS

3.5.1 Definitions [12.10]

At any given time, there is a processor-de
termined set of files that are said to exist
for an executable program. (Internal files al
ways exist.) To create a file means to cause a
file to exist that did not previously exist.
To delete a file means to terminate the exist
ence of a file. Any input or output statement
may reference a file that exists. An INQUIRE#,
OPEN, CLOSED, WRITE, PRINT, or ENDFILE state
ment may also reference a file that does not
exist. If a file does not exist, successful ex
ecution of a WRITE, PRINT, or ENDFILE statement
creates the file if it is preconnected; othewise
successful execution of an OPEN statement cre
ates the file.

An external unit may be in a connected
state with respect to a file, in which case the

57

Page 25

file is said to be connected to the unit and
the unit to the file. A unit may be preconnec
ted by the processor, or it may become connec
ted by execution of an OPEN statement. An in
put or output statement other than an OPEN,
CLOSEt!, or INQUIRE# statement must reference
(an internal file or) a unit that is connected
to a file.

A unit must not be connected to more than
one file at a time, and a file must not be con
nected to more than one unit at a time. How
evert!, the connected relationship between a file
and a unit may be terminated by execution of a
CLOSED statement, after which the unit may be
reconnected to the same file or a different'
file, and the file (if it is a named file) may
be reconnected to the same unit or to a differ
ent unit.

A processor may permit named files#. The
name of a named file is a character string; the
set of allowable names is processor dependent.
The name of a named file is established by exe
cution of an OPEN statement. An INQUIRE# state
ment may reference the name of a named file.
If a file is not named, there is (in general)
no way to identify it in order to reconnect it,
if it has been disconnected by execution of a
CLOSED statement.

3.5.2 OPEN statement [12.10]

An OPEN statement consists of the keyword
OPEN followed by a parenthesized list of speci
fiers, which must include an external unit spe
cifier (of the same form as for a READ, WRITE,
or PRINT statement) and may include at most 'one
of each of the following:

ERR = ~, where ~# is the label of an execu
table statement in'the same program unit;

FILE = file where fileD is a character ex
pression giving' the name of a named filet!;

STATUS = status, where status# is 'OLD',
'NEW', 'SCRATCH', or 'UNKNO~

ACCESS = access, where access is 'SEQUEN
TIAL'#, 'STREAM'#, or 'DIREC~

FORM = form#, where form is 'FORMATTED' or
'UNFORMATTED-';-

RECL = recl, where recl is an integer,
real#, or double precisionlr-expression# which,
when truncated (if necessary) to an integer has
a positive value;

MAXREC = maxrec, where maxrec is an inte
ger, real#, or double preciSionU-;xpression#
which, when truncated (if necessary) to an int
eger has a positive value;

58

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

BLANK
'ZERO' .

blanNI, where blank is 'NULL' or

Execution of an OPEN statement in a pro
gram unit causes connection for purposes of all
other program units of the same executable pro
gram as well. An OPEN statement must not cause
a unit to become connected to a file that is al
ready connected to a different unit. An OPEN
statement that .causes a unit to become connec
ted or to remain connected to a file that al
ready exists must not change the~, for~f,
recl or maxrec specification of the file.
(The'blank# specification may be changed, howe
ver.) An error condition occurs if an attempt
is made to execute an OPEN statement with im
properly valued specifiers. The meaning of the
specifiers is as follows:

If the fileR specifier is given, and the
unit is not already connected to a file, then
it becomes connected to the specified file,
which is created if it does not already exist.

If the fileR specifier is given, and the
unit is already connected to the specified
file, then it remains connected to the same
file. If the file does not already exist (is
preconnected), it is created.

If the fileR specifier is given, and the
unit is already connected to a different file,
then it is disconnected from the previous file
and becomes connected to the specified file,
which is created if it does not already exist.

If the fileR specifier is omitted, and the
unit is already connected to a file, then it re
mains connected to the same file. If the file
does not exist (is preconnected), it is created.

If the fileR specifier is omitted, and the
unit is not already connected to a file, then
it becomes connected to a processor-determined
file, which is created if it does not already
exist.

If the status# specifier is 'OLD' or 'NEW',
a fileR specifier must be given. If it is
'OLD', the file must already exist. If it is
'NEW', the._file must not already exist; the
file will be created and its status will be
changed to 'OLD'. If the status specifier is
'SCRATCH', a file specifie~ not be given.
The default status is 'UNKNOWN'.

The default access specification for an ex
isting file is the existing property; the de
fault access specification for a file being cre
ated is 'SEQUENTIAL'.

The form#specifier must not be given except
for a direct access file. The default for an
existing file is the existing property; the de
fault for a file being created is 'UNFORMATTED'.

Page 26

The recl specifier gives the length of
each record in a direct access file. It is the
number of character storage units per record
for a formatted file, and the number of non char
acter storage units for an unformatted file.
The default for an existing file is the exist
ing length. This specifier must not be omitted
for a direct access file that is being created.

The ~ specifier gives the maximum rec
ord number. If this specifier is given when
the file is created, the file is said to have
the maxrec property. If the specifier is not
given when the file is created, the file does
not have the maxrec property. For an existing
file that has the maxrec property, this speci
fier must be omitted, or if given must have a
value that agrees with the existing value. For
an existing file that does not have the maxrec
property, this specifier must not be given. A
file that does not have the maxrec property has
a processor-dependent maximum record number.

The blank# specifier determines whether
blank characters in numeric formatted input
fields in the file are to be treated as zeros
or ignored (except that an entirely blank numer
ic field is always given the value zero). The
default value is 'ZERO'. (Note that a 'NULL'
specifier from a previous OPEN will not be pre
served, if this specifier is omitted on a sub
sequent OPEN, since the default value is 'ZERO'
independent of the previous specification.)

3.5.3 CLOSE statement# [12.10]

A CLOSE statement consists of the keyword
CLOSE followed by a parenthesized list of speci
fiers, which must include an external unit spec
ifier and may include at most one of each of
the following:

ERR = ~, where ~ is the label of an execut
able statement in the same program unit;

STATUS
'DELETE' •

status, where status is 'KEEP' or

Execution of a CLOSE statement causes term
ination of the connected relationship between
the specified external unit and the file to
which it is connected. (If the unit is not con
nected to a file, the CLOSE statement has no
effect.) The effect of a CLOSE statement ap
plies to all program units of the executable
program. After execution of a CLOSE statement,
the unit may be reconnected to the same file or
to a different file, and the file (if it is a
named file) may be reconnected to the same unit
or to a different unit. If a file is not named,
there is (in general) no way to identify it in
order to reconnect it, if it has been disconnec
ted by execution of a CLOSE statement.

If the status specifier 'KEEP' is given,

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

then after execution of the CLOSE statement the
file continues in its previous state of-exist
ence or nonexistence. If the specifier 'DELETE'
is given, the file does not exist after execu
tio~ of the CLOSE statement. If the specifier
is omitted, the default specifier is 'KEEP', ex
cept that if the file was previously a 'SCRATCH'
file the default specifier is 'DELETE'.

At termination of execution of an execut
able program for reasons other than an error
condition, all units that are connected are im
plicitly closed with the appropriate default
status specifier.

3.5.4 INQUIRE statement# [12.10]

An INQUIRE statement consists of the key
word'INQUIRE followed by a parenthesized list
of specifiers, which must include either an ex
ternal unit specifier or a file specifier (but
not both) and may include at most one of each
of the other specifiers in the list below.

FILE = file, where file is the name of a
named file;

ERR = s, where ~ is the label of an execut
able statement in the same program unit;

EXIST = exist, where exist is a logical
variable or array element;

OPENED = opened, where opened is a logi
cal variable or array element;

NUMBER = number, where number is an inte
ger variable or array element;

NAMED = named, where named is a logical
variable or array element;

NAME = name, where name is a character
variable or array element;

ACCESS = ~, where access is a charac
ter variable or array element;

FORM = form, where form is a character var
iable or array element;

RECL = recl, where recl is an integer vari
able or array element;

MAXREC = maxrec, where maxrec is an inte
ger variable or array element;

NEXTREC = nextrec, where nextrec is an int
eger variable or array element.

If a file specifier is given, the INQUIRE
statement relates to the specified named file.
If no file having the specified name exists,
the data referenced by named, name, access,

59

Page 27

form, recl, maxrec, and nextrec become unde
fined.

If a unit specifier is given and the speci
fied unit is connected to a file, the inquiry
relates to that file. If the specified unit is
not connected to a file, the data referenced by
number, named,. name, ~, form, recl, maxrec,
and nextrec become undefined. [Do they become
undefined if the unit is (pre-) connected to a
file that does not exist?]

If the file is not a direct access file,
the data referenced by form, recl, maxrec, and
nextrec become undefined.

An INQUIRE statement may be given for a
file or unit, regardless of whether it is con
nected. The data referenced by the exists and
opened specifiers always become defined unless
an 'error condition occurs. If an error condi
tion occurs, the data referenced by all of the
specifiers become undefined. Any datum refer
enced by more than one specifier in an INQUIRE
statement becomes undefined.

The datum referenced by exists becomes
true if a file specifier is given and a named
file with the specified name exists, or if a
unit specifier is given and the unit exists [!
What does it mean for a unit to exist? Should
the exists inquiry be restricted to the case
where a file name is given?] otherwise the
datum becomes false.

The datum referenced by opened becomes
true if a file specifier is given and the speci
fied file is connected to a unit, or if a unit
specifier is given and the specified unit is
connected to a file; otherwise the datum becomes
false. (This datum becomes undefined if exists
becomes undefined, or if exists becomes defined
as false.)

The datum referenced by number becomes de
fined ·if a file specifier is given and the spec
ified file exists, or if a unit specifier is given
and the unit is connected to a file. If a file
specifier is given and the specified file is not
connected .to a unit, the datum is given the val
ue zero; otherwise the datum is given the unit
number of the unit connected to the file.

The datum referenced by named becomes true
if the file is a named file; othewise the datum
becomes false.

The datum referenced by name is assigned
the name of the file if the file is a named file;
otherwise it becomes undefined. (This name is
not necessarily the same as the name given as
the file specifier.)

The datum referenced by access is assigned

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

'SEQUENTIAL', 'STREAM', or 'DIRECT'.

The datum referenced by form is assigned
'FORMATTED' or 'UNFORMATTED',~the file is a
direct access file.

The datum referenced by recl is given the
record length (measured in character storage
units for a formatted file, or in noncharacter
storage units for an unformatted file) if the
file is a direct, access file.

The datum referenced by maxrec is given
the maximum record value if the file has the
maxrec property; for a direct access file that
does not have the maxrec property, the datum is
given the value zero.

The datum referenced by nextrec is given a
value one greater than the reco.rd number of the
last record read or written, if any. The datum
is given the value 1 if the file is connected
but no records have been read,or written since
the file was connected. The datum becomes unde
fined if the position of the file is indetermi
nate due to a previous error condition (or if
the file is not a direct access file). [What
if the file exists but is not connected?]
(Note that the value given to this datum may be
as large as maxrec + 1.)

4. MAIN PROGRAM AND SUBPROGRAMS

4.1 MAIN PROGRAM

4.1.1 Main program [14.1, 14.2]

A main program is a program unit that does
not have a FUNCTION, SUBROUTINE, or BLOCK DATU!
statement as its first statement; it may have a
PROGRAM statement as its first statement.

A main program must not contain a BLOCK
DATAl!, FUNCTION, SUBROUTINE, ENTRYI!, or RETURN
statement* and must not contain a PROGRAM state
ment except as its first statement.

There must be exactly one main program in
an executable program. Execution of an execu
table program begins with the execution of the
first executable statement of the main program.
A main program must not be referenced as a (sub
routine or external function) procedure.

60

A PROGRAM statement consists of the keyword
PROGRAM followed by a symbolic name. This name
must not be used as the name of any other program
unit, or of a common block, in the same executa
ble program.

* Note: SAVE statements are also prohibited in
a main program or BLOCK DATA subp!ogram.

Page 28

4.2 SUBPROGRAMS

4.2.1 Subroutine subprogram [15.1, 15.6]

A subroutine subprogram is a program unit
that has a SUBROUTINE statement as its first
statement. A SUBROUTINE statement consists of
the keyword SUBROUTINE, followed by a symbolic
name which is the subroutine subprogram name,
optionally followed by a parenthesized list of
dummy arguments. (If there are no arguments,
the enclosing parentheses are omitted.)

Each dummy argument (if any) is the symbol
ic name of a variable, an array, or a procedure,
or is an asteriskH indicating an alternate re
turn# •

A subroutine subprogram may contain any
statements except a BLOCK DATAH, FUNCTION, or
PROGRAM statement or another SUBROUTINE state
ment.

A subroutine subprogram must not reference
itself, either directly or indirectly.

4,2.2 Function subprogram [15.5]

A function subprogram is a program unit
that has a FUNCTION statement as its first
statement. 'A function statement consists of an
optional type specification, followed by the
keyword FUNCTION, followed by a symbolic name
which is the function subprogram name, optional
ly followed by a parenthesized list of dummy ar
guments. (If there are no dummy arguments, the
enclosing parentheses are optional.)

'A type specifier consists of the keyword
INTEGER, REAL, DOUBLE PRECISION#, COMPLE~!, or
LOGICAL, or of the keyword CHARACTER followed
by an unsigned, nonzero integer constant, an
integer constant expression# enclosed in paren
theses, an asteriskH in parentheses, or the name
of an integer variableH that is in a cornmon
block or is in every dummy argument list in the
function subprogram. If no type specifier ap
pears in a FUNCTION statement, the function sub
program name may appear in a type statement.
If the name is of character type, the length
specifier for the name must have one of the
forms permitted for a length specifier in a
FUNCTION statement.

Each dummy argument (if any) is the name
of a variable, an array, or a procedure.

The function subprogram name must not ap
pear as a dummy argument name in the FUNCTION
statement nor in anyENTRY# statement, and it
must not appear in any other nonexecutable
statement except a type-statement, in the sub
program.

The function subprogram name must be asso
ciated with the name of a local variable of the

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

'" same type. This local variable must have the
same name as the function subprogram or an en
try#in the subprogram. This variable must be
come defined during execution of the subprogram;
its value when a RETURN'or END statement is ex
ecuted is the value returned to the referencing
program. If this variable is a character varia
ble of non-constant length#, it must not appear
as an operand of a concatenation# operator ex-

'cept in a character assignment statement.

A function subprogram may contain any
statement except a BLOCK DATA#, SUBROUTINE, or
PROGRAM statement or another FUNCTION state
ment.

A function subprogram must not reference
itself, either directly or indirectly.

4.2.3 Subprogram entry# [15.7]

An ENTRY# statement may cause execution of
a subprogram to begin with a statement other
than the first executable statement. A subpro
gram may have zero or more ENTRY statements.
An ENTRY statement is nonexecutable, and may
appear anywhere within a subroutine or function
subprogram except within the range of a DO-loop.

An ENTRY statement consists of the keyword
ENTRY, followed by a symbQlic name which is the
subprogram entry name, optionally followed by a
parenthesized list of dummy arguments. (If

61

there are no arguments, the parentheses are omit
ted in subroutines, optional in functions.)

The dummy arguments (if any) are of the
same form as for the subprogram containing the
ENTRY statement. The dummy argument list of an
ENTRY statement need not agree with that of the
FUNCTION or SUBROUTINE statement nor with that
,of any other ENTRY statement in the subprogram.

A name that appears as a dummy argument in
an ENTRY statement must not appear in the same
program unit in an executable statement, or in
a statement function statement except as a dum
my argument of the statement function, if such
appearance would precede its first appearance
in the program unit in a FUNCTION, SUBROUTINE,
or ENTRY statement.

Function subprogram entry#. Each entry,
name in a function subprogram must be of char
acter type, if and only if the 'function subpro
gram ~ame is of character type. All such names
of character type must be of the same length.

The entry name must not appear as ,a dummy
argument name in the FUNCTION statement nor in
any ENTRY statement, and must not appear in any
nonexecutable statement except a type-statement
in the subprogram. If the name appears in a
character type-statement, the length specifier
must have one of the forms permitted in a FUNC-

Page 29

TION statement.

The name of a local variable that is the
same as the entry name must not appear in any
statement except a type~statement, if such ap
pearance would precede the ENTRY statement.

4.2.4 Dummy arguments [15.9]

A dummy argument is the symbolic name of a
variable, an array, or a procedure, or in a sub
routine it may be an asterisk# indicating an al
ternate return#.

A dummy argument that,is a symbolic name
must not appear in an EQUIVALENCE, DATA, PARAM
ETER#, SAVE, or INTRINSIC statement, nor in a
COMMON statement except as a common block name.

A dummy argument may be used as an actual
argument in a procedure reference in ,the subpro
gram.

A dummy argument name of integer type may
appear in an adjustable array declarator orin
an adjustable length speci£ier#.

A character dummy argument of non-constant
lengtht! must not appear as an operand of a con
catenation/t operator except in a character as
signment statement.

The array declarator for a dummy argument
that is an array name may be an adjustable ar
ray declarator; i.e., one or more of its dimen
sion bound expressions may contain integer var
iable names.

The length specifier for a dummy argument
of character type may consist of an asterisk#
in parentheses, or it may be an adustable
length specifier#. In the former case, the
character entity assumes the length of the actu
al argument. An adjustable length specifiero
is an expression that contains one or more inte
ger variable names.

The name of each variable that appears in
a dimension bound expression# of an adjustable
array declarator, or in an adjustable length
specifier#, must appear in the subprogram either
in a common block or in every dummy argument
list that contains the array name. The actual
dimension bound values or length valuesfl are
established at the time of the subprogram refer
ence, and do not change (even though the varia
bles involved may be redefined or become·'unde
fined) during execution of the subprogram.

If an intrinsic function name appears in a
dummy argument list, the name must not be used
as an intrinsic function name in the subprogram.

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

4.3 BLOCK DATA SUBPROGRAM#

4.3.1 BLOCK DATA Subprogram# [16.1 - 16.2]

A block data subprogram provides initial
values for variables and array elements in
named common blocks.

A block data subprogram is a program unit
that has a BLOCK DATA statement as its first
statement. There may be more than one block
data subprogram in an executable program, but
an executable program must not include more
than one unnamed block data subprogram.

Entities not in a named common block must
not be initialized in a block data subprogram.
More than one named common block may have enti
ties initialized in a single block data subpro
gram. A named common block must not be speci
fied in more than one block data subprogram in
an executable program. A named common block
must have a storage sequence of the same length
in a block data subprogram as in all other pro
gram units in which it appears.

A BLOCK DATA statement consists of the
keywords BLOCK DATA, optionally followed by a
symbolic name. A BLOCK DATA statement must
not appear except as the first statement of a
block data subprogram.

A block data subprogram must not contain
any other statements except IMPLICIT, PARAME
TER#, DIMENSION, COMMON, EQUIVALENCE, DATA,
END, and type-statements. A block data subpro
gram must not contain any executable statements.

4.4 PROCEDURES

4.4.1 Statement functions [15.4]

62

A statement function is a procedure speci
fied by a single statement that is similar in
form to an assignment statement. A statement
function statement is a non-executable statement.
It must follow all specification statements and
precede all executable statements in the program

·unit.

4 statement function statement consists of
a symbolic name (which is the statement func
tion name) followed by a parenthesized dummy
argument list, followed by an equals sign (as
signment operator), followed by an expression.

The dummy argument list contains zero or
more dummy arguments (separated by commas);
each dummy argument is a variable name, and the
same name must not appear more than once in the
list. The length specification of a dummy argu-

Page 30

ment of character type must be an integer con
stant expression/! or an asterisk!l.

Both the expression and the statement func
tion procedure name must be of integer, real,
double precision#, or complex typed; or both
must be of logical type. A statement function
procedure must not be of character type.

Variables referenced in the expression may
be dummy arguments of the statement function,
or variables local to the program unit. The ex
pression must not contain a reference to a
statement function unless that statement func
tion appears in a preceding statement function
statement in the program unit.

The expression must not include a refer
ence to an external function having side ef
fects that alter the value of a dummy argument
of the statement function.

A statement function must not be refer
enced except in the program unit that contains
the statement function statement. The actual
arguments in a statement function reference
must agree in number and type with the corres
ponding dummy arguments, and each may be any
expression except a character expression that
involves concatenation of variable length# op
erands.

4.4.2 Subroutine procedure reference [15.6]

A subroutine is referenced by a CALL state
ment, which consists of the keyword CALL fol
lowed by the symbolic name of a subroutine pro
cedure or subroutine entry#, optionally fol
lowed by a parenthesized list of actual argu
ments. The actual argument list consists of
zero or more actual arguments (separated by com
mas); each actual argument is an expression (ex
cept a character expression!'! involving conca ten
ation# of variable length# operands), the name
of an array or of a procedure (except a func
tion procedure name of character typed or a
statement function name), or an alternate re
turn specifier# (consisting of an asterisk fol
lowed by the label of an executable statement
in the same program unit).

A subroutine procedure reference in a pro
gram unit must not cause a direct or indirect
reference to that program unit.

4.4.3 Function procedure reference [15.2, 15.3]

A function procedure reference appears in
an expression in a program unit. It consists
of an external function name, an intrinsic func
tion name, or a statement function name, fol
lowed by a parenthesized actual argument list.

The actual argument list contains zero or
more actual parameters (separated by commas);

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

each actual argument is an expression or the
name of an array or procedure (except a func
tion procedure name of character typeD or a
statement function name). Execution of a
function reference causes evaluation of those
'actual arguments that ,are expressions'.

Intrinsic functions. Intrinsic functions
are predefined functions supplied by the pro
cessor. The intrinsic functions are listed in
the table on pages 32 and 33.

An actual argument of an intrinsic func
tion is an expression. (Array names and pro
cedure names are not permitted.)

An intrinsic function may be referenced
as a procedure by a specific name or by a gen
ericH name. The type of a function procedure
reference using a generic# intrinsic function
name depends upon the types of the arguments.
If there are two or more actual arguments, they
must all be of the same type.

63

If a specific intrinsic function name ap
pears in a non-conflicting type statement, and
the name is not used as an array name, state
ment function name, or dummy argument name in
the same program unit, then the name remains
available for use as an intrinsic function name.
If a specific intrinsic function name appears
in a conflicting type statement, the name must
not be used as an intrinsic function name in
that program unit.

The names MAX, MIN, LOG, and LOG10 are gen
eric/I intrinsic function names but are not spe
cific intrinsic function names; therefore these
names are not intrinsic function names when
they appear in a type-statement.

If a specific or generic# intrinsic func
tion name appears in the dummy argument list of
a subprogram" the name must not be used as an
intrinsic function name in the program unit.

Notes for the table of intrinsic functions.

(1) For a of type integer, int (a) = a.
For a of type real or double precision#, there
are two cases: if lal < 1, int (a) = 0; if
I~I ~ 1, int (~) is-the integer ;hose magnitude
is the largest integer that does not exceed the
magnitude of a and whose sign is the same as the
sign of~. For ~ of type complex#, int (~) is
the value obtained by applying the above rule to
the real part of a. For a of type real,
IFIX(~) is the s'ime as INT (~) .

(2) For a of type real, REAL (a) = a.
For a of type ~teger or double precisiowl,
REAL-(~) is as much precision of the signifi
cant part of a as a real datum can contain.
For ~ of type-comp1e~/, REAL (~) is the real

Page 31'

part of a.

(3) For ~ of type double precisio~/,
DBLE (a) = a. For a of type integer or real,
DBLE (~) is-as much-precision of ,the signifi
cant part of a as a double precision. datum can
contain. For-a of type comp1e~/, DBLE (a) is
as much precisiOn of the real part of ~ as a
double precision datum can contain.

(4) CMPLXlI is a genericf/functionthat may
have one or two arguments. If there is one arg
ument, it may be of type integer, real, double
precision, or complex. If there are two argu
ments, they must poth be of type integer, real,
or double precision. For a of type complex,
CMPLX (a) = a. For a of type integer, real, or
double preci;ion, CMPLX (~) is the complex val
ue whose real part is REAL (a) and whose imagi
nary part is O. CMPLX (~1' ~2) is the'comp1ex

value whose real part is REAL (~1) and whose
imaginary part is REAL (~2).

(5) A complex/! value is expressed as an
ordered pair of rea1s, (ar, ai), wherear is
the real part and ai is the imaginary,part.

(6)
is zero.

SIGN (~1' ~2) is not defined .. if ~2

(7) All angles are expressed in radians.

(8) ATAN is a generiq'1 function that may
have one or two arguments. If there is one
argument, it may be of real or double precisiOI~#
type. If there are two argu~ents, they must
both be of real or double precisio~1 type.

(9) The result of a comp1e~f function is
the principal value.

(10) All arguments of an intrinsic func
tion must be of the same type.

Restrictions on range of arguments and re
sults. The following restrictions apply to in
trinsic functions referenced by their specific
names:

(1) The result for MOD, AMOD, and DMOD is
undefined when the value of the second argument
is zero.

(2) If the value of the first argument of
ISIGN, SIGN, or DSIGN is zero, the result is
zero, which is neither positive nor negative.
The result is undefined when the value of the
second argument is zero.

(3) The value of the argument of SQRT or
DSQRT# must be non-negative. The result of
CSQRT#has non-negative real part, and has 'non
negative imaginary part when the real part is
zero.

64

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION Page 32

Intrinsic Functions

! Number of GenerIc Specific Type of
I IntrInsic Function Definition Arguments Name Name Argument Function
!

,- Type- Conversion Conversion 1 INT - Integer Integer
I to Integer INT Reel Integer

in t (.It) I F IX Reel Integer
See Note 1 IDINT Double Integer

- Complex Integer

Conversion 1 REAL FLOAT Integer Real
I to Reel - Reel Reel
I See Note 2 SNGl Double Reel

REAL Complex Reel

Conversion t DBlE DFlOAT Integer Double
to Double DBLE Reel Double
See Note 3 - Double Double

- Complex Double
I Conversion 1 or 2 CMPlX Integer Complex -

to Complex CMPLX Reel Complex
See Note 4 - Double Complex

- Complex Complex

Truncation In t (.It) 1 AINT AINT Real Real
See Note 1 DINT Double Double

Nearest Whole in t (.It+ . 5) if ~)O 1 ANINT ANINT I Real Real
Number in t (.It-. 5) i f .It (0 DNINT i Double Double

Nearest Integer in t (.It + • 5) ; f .It~ 0 1 NINT NINT Real Integer
Int(r.5) i f .§. (0 I IDNINT Double Integer I

Absolute Value !.It! 1 ABS lABS

I
Integer Integer

ABS Reel Real
See Note 5 DABS Double Double
(.!l.L'+ti') ' /' CABS Complex Reel

Remalnderlng .It,(modulo .It,) 2 MOD MOD Integer Integer
.It, - I n t (.It, / .It,) '.It, AMOD Real Resl
See Note 1 D110D Daub! e Double

-Transfer of Sign !t~! ! i f .It, > 0 2 SIGN I SIGN Integer Integer
if.\!., < 0 SIGN Real Reel

See Note 6 DSIGN Double Double

Positive Difference .\!., - Min (.§., • .\!..) Z DIM IDIM Integer Integer

I
DIM Real Resl
DDIM Double Double

Double Precision .It, '.It, Z - DPROD Real Double
Product

Choosing Largest Mex (.It, d!.a ••••) ~Z MAX MAXO Integer Integer
Velue AMAX1 Real Real

DMAX1 Double Double

- AMAXO Integer Resl , - MAX1 , Reel Integer
I

Choosing Smallest Min (.l!., • .l!., ••••) ~2 MIN MINO Integer Integer
Value AMIN1 Reel Real

DMIN1 Double Double

- AMINO Integer Real
MIN 1 Real Integer

65

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION Page 33

Intrinsic Functions (continued)

I
INumber ofl GenerIc Specific Type of

Intr Ins Ic FunctIon DefinitIon Arguments Neme Neme Argument FunctIon

Length Length of 1 - LEN Cherecter Integer
Character Entity ,

ImagInary Part of ,ti 1 - AIMAG Complex Reel
C.omplex Argument

.Conjugate of a (ll,-,ti) 1 - CONJG Complex Complex
Complex Argument See Note 5

SQuare Root (.a.) • 1 a. 1 SQRT SORT Reel Reel
DSORT Double Double
CSORT Complex Camp I e~'

Exponential e" .a. 1 EXP EXP Real Real
DEXP Double Double
CEXP Complex Complex

Natural Logarithm log(.a.) 1 LOG ALOG

I
Real Re.e I

DLOG Double Doub I e ..
CLOG Complex Complex

Common LogarIthm log10(.1) 1 LOG10 ALDG10 Reel Real
DLOG10 Double Double

Sina sin(.1) 1 SIN SIN Re e I Real
DSIN Double Double
CSIN Complex Complex

CosIne cos (.1) 1 COS COS Real Real
DCOS Double Double
CCOS Domplex Complex

Tangent ten (.1) 1 TAN TAN I Real Real
DTAN I Double Double

I ,
Arcsine ercs;n(.1) 1 ASIN ASIN I Reel Real

DASIN I Double Double I

Arccosine erccos(.1) 1 ACOS ACOS Raal Real
DACOS Double Double

- Arctangent arcten(j!) 1 ATAN ATAN Reel Reel
See NO't e 8 -. DATAN Double Double

arctan<'lt. l.1a) Z ATAN ATAN2 Re a I Real
See Note 8 DATAN2 Double Double

Hyperbol ic Sine sinh(.1) 1 SINH SINH Real Real
DSINH Double Double

Hyperbo lie Cosine cosh(.1) 1 COSH COSH Real Real
DCOSH Doub'le Double

Hyperbo lie Tangent tanh(.1) 1 TANH TANH Rea I' Reel
DTANH Double Double

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

(4) The value of the argument of ALOG,
DLOG#, ALOGlO, and DLOGlO# must' be positive.
The value of the argument of CLOG# must not be ,
(0.0, 0.0). The range of the imaginary part of
the result of CLOG is: n < imaginary part ~ TI.

The imaginary part is n when the real part of
the argument is less than zero and the imagi
nary part of the argument is zero.

66

(5) The absolute value of the argument of
SIN, DSIN#, COS, DCOS#, TAN, and DTAN# is not re
stricted to be less than 2n.'

(6) The absolute value of the argument of
ASIN and DASIN# must be less than or equal to
one.. The result is between -n/2*and n/2~

(7) The absolute value of the argument of
ACOS and DACOS# must be less than or equal to
one. The range of the result is from 01'to n':'

(8) The range of the result for ATAN and
DATAN# is from -n/2*to n/2~ If the value of
the first argument of ATAN2 or DATAN2 is posi
tive, the result is positive. If the value of
the first argument is zero, then the result is
zero if the second argument is positive and n
if the second argument is negative. Both arg
uments must not be zero. If the value of the
first argument is negative, the result is neg
ative. The range of the result is from -n to n~

These restrictions also apply to the in
trinsic functions when they are referenced by
their generic# names.

4.4.4 External functions [15.5]

An external function procedure name is the
same as the name of a function subprogram or
function subprogram entry# in the same execut
able program. The type of the corresponding
subprogram name or entr~1 name must be the
same as the type of the procedure name, and if
these are of character type their lengths must
agree. (The length specifier for an external
function procedure of character type must not
be an adjustable length specifier or an aster
isk enclosed in parentheses.)

Each actual argu~ent in an external func
tion procedure reference must be an expression
(except a character expression involving concat
enation of variable length operands), an array
name, an intrinsic function name, or an exter
nal function procedure name (except the name of
a character function).

An external function procedure reference
in a program unit must not directly or indirect
ly cause a reference to that program unit.

* Endpoint so marked is included in range.

Page 34

4.4.5 Reference ~~ subprogram entry# [15.7]

An entry name in a subroutine subprogram
is referenced as a subroutine procedure name
(i.e., by means of a CALL statement). An entry
name in a function subprogram is referenced as
an external function procedure name (i.e., by
the appearance of the name in an expression).

Association of function .subprogram entry
names#. In an external function subprogram,
there is an association between the function
subprogram name, all entry names, and all lo
cal variable names that are the same as the
function name or an entry name. These associa
ted names are not required to be all of the
same type (unless one of them is of character
type), but at least one associated name of each
different type must be a local variable name.

All of these associated entites become un
defined at the time the function is referenced
(either by the function subprogram name or by
an entry name). When an associated local vari
able becomes defined, all associated entities of
the same type become defined and all associated
entities of .different types become undefined.

An associated local variable of the same
type as the name used for the current reference
must· be in a defined state when a RETURN or END
statement in the subprogram is executed.

4.4.6 Actual arguments for an external function
or subr~ procedure reference [15.9]

The actual arguments in a procedure refer
ence must agree in number with the dummy argu
ments of the subprogram.

Corresponding to a dummy argument that is
a variable name, the actual argument must be a
variable name, an array element name, a sub
string# name, a constant (including the symbol
ic nam~f of a constant), or an expression other

. than one of the foregoing. If the dummy argu
ment becomes defined during execution of the
procedure, the actual argument must, be a varia
ble name, an array element name, or a substrin~1
na.me. The types of the dummy and actual argu
ments must agree. The length of an actual argu
ment of character type must be greater than or
equal to the length of the corresponding dummy
argument.

If the actual argument is an expression,
it is evaluated at the time the procedure refer
ence occurs. If it is an array element name or
a substrin~1 name, the subscript value or delim
iting character positiorel values are determined
at the time the procedure reference occurs.
These values do not change during execution of
the procedure, even though they may involve var
iables that are redefined or become undefined.

PROPOSED ANS X3.9 FORTRAN LANGUAGE REVISION

Corresponding to a dummy argument that is
an array name, the actual argument must be an
array name or an array element name. If the ac
tual argument'is the name of an array, its size
(number of elements) must equal or exceed that
of the dummy array. If it is the name of an ar
ray element, then the number of elements be
tween it and the end of the actual array must
equal or exceed the size of the dummy array.
The types of the dummy and actual arrays must
agree. If the dummy array is of character
type, then if the actual argument is a charac
ter array the total number of characters in
the array must equal or exceed the total num
ber of characters in the dummy array; if the
actual argument is a character array element,
the total number of characters in all the array
elements between it and the end of the acutal
array must equal or exceed the total number of
characters in the dummy array.

Corresponding to a dummy argument name
that is a subroutine procedure name, the actual
argument must be a subroutine procedure name.

Corresponding to a dummy argument name
that is a procedure name other than a subrou
tine procedure name, the actual argument name
must be an external function name of type other
than character, or a specific intrinsic func
tion name. Names of intrinsic functions in the
"MAX" and "MIN" families must not be used as ac
tual arguments (because the functions in those
families have an indefi~ite number of arguments).
Generic intrinsic function names# that are not
also specific intrinsic function names are pro
hibited as actual arguments. Statement func
tion names are prohibited as actual arguments.

If the actual arguments corresponding to
two dummy arguments in a procedure, or an enti
ty in a common block in the procedure and an ac
tual argument correspond'ing to a durinny argument
in the same procedure, are the same or associa-

'ted entites in the referencing program unit,
then the dummy arguments must not be redefined
nor become undefined during execution of the
procedure reference.

4.4.7 RETURN statement [15.8]

A RETURN statement consists of the'key
word RETURN, optionally# followed by an integer,
real, or double precision# expression#. A
RETURN statement must not appear in a main pro
gram.

Execution of a RETURN statement or an END
statement in a subprogram terminates the subrou
tine procedure reference or external function
reference.

In the execution of an executable program,
a subroutine procedure reference or an external

67

Page 35

function reference must not occur twice without
the intervening execution of a RETURN or END
statement in the referenced procedure.

Execution of a RETURN or END statement ter
minates the association between dummy arguments
and actual arguments.

Alternate return#. If no expression ap
pears in a RETURN statement of a subroutine sub
program, or if the value of the expression (af
ter truncation to an integer, if necessary) is
less than one or greater than the number of as
terisks in the dummy argument list of the SUB
ROUTINE or ENTRY statement referenced by the
currently active CALL statement, then execution
of tne RETURN statement returns control to the
statement following the CALL statement. Other
wise, the value of the expression in the RE
TURN statement (after truncation to an integer,
if necessary) designates a particular one of
the asterisks in the dummy argument list; con
trol returns to the statement whose label ap
pears in the corresponding alternate return
specifier of the actual argument list of the
CALL statement.

Definition status. Upon execution of a
RETURN or END statement in a subprogram, all lo
cal entities become undefined except for the
following:

Entities specified by SAVE statements;

Entities in blank common;

Initially defined entities that have not
been redefined nor become undefined;

Entities in named common blocks that appear
in the subprogram and in at least one other pro
gram unit that is currently referencing the sub
program either directly or indirectly.

This work was supported by the United
States Energy Research and Development Adminis
tration, under contract W-7405-ENG-48.

LPM 760127

