UCLA

Posters

Title

Tenet: An Architecture for Tiered Sensor Networks

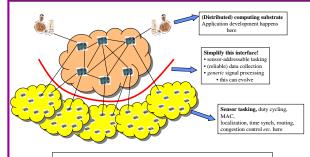
Permalink

https://escholarship.org/uc/item/3s94w7v2

Authors

Gnawali, Omprakash Jang, Ki-Young Paek, Jeongyeup <u>et al.</u>

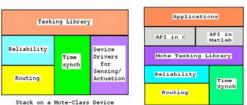
Publication Date


2007-10-10

Tenet: An Architecture For Tiered Sensor Networks

Omprakash Gnawali, Ki-Young Jang, Jeongyeup Paek, Marcos Vieira, Karen Chandler, Vinayak Naik Deborah Estrin, Ramesh Govindan, Eddie Kohler

http://tenet.usc.edu


Design Principles of Tenet

Multi-node data fusion functionality and complex application logic should be implemented only on the masters, since the cost and complexity of implementing this in motes outweighs the performance benefits of doing so.

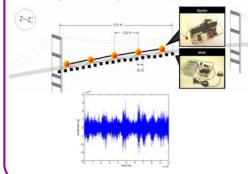
Software and Tools

The Tenet Stack

Deployment and Testing tool: Tenetrun

Stack on a Gateway Node

To simplify deployment and testing, "Tenetrun":


- · Daemonizes the processes that constitute the master stack and restarts them if they fail.
- · Instantiates multiple copies of the master stack to emulate multiple masters in a single physical host.

Applications and Deployments

Ambient Structural Vibration monitoring

Continuous structural monitoring and event detection

"sample(3 channels, 20 Hz) \rightarrow send(stream)" (http://enl.usc.edu/projects/bridge/)

Pursuit Evasion Game

Tasking API

Tasking API provides functions to

describe a task to run on the motes.

- Pursuer robots estimate the location of evaders and corral them.
- "sample(0xaa, RSSI) \rightarrow compare(LT, 0xaa, 125, $(0xbb) \rightarrow deleteactivetaskif(0xbb) \rightarrow send()'$

(http://enl.usc.edu/projects/peg/)

Wildlife (Lizard/snake) monitoring

Cyclops take pictures of the trap, run image processing algorithms to detect the animals, and the result directs the biologists to the trap that has captured lizards or snakes.

"periodic(2 mins) \rightarrow detect_lizard(0xbb, 0xaa) \rightarrow not(0xaa) \rightarrow deleteactivetaskif(0xaa) \rightarrow send(stream)"

Asymmetric Task Communication

Any and all communication from a master to a mote takes the form of a task. Any and all communication from a mote is a response to a task.

Addressability

Any master in a Tenet can communicate with any mote or master in that Tenet. Any mote in a Tenet can communicate with at least one master in that Tenet.

Task Library

Motes provide a limited library of generic functionality, such as timers, sensors, simple thresholds, data compression, and FFT transforms. Each task activates a simple subset of this functionality.

Transport API

Transport API provides functions to disseminate tasks and collect data from the network:

Example: sample(), actuate(), send_task(task_description) attr* read_response(wait_interval)

Centralized Routing: Centroute

Tenet supports Centroute for mote-to-master and master-tomote routing. Centroute features:

- · Low control and state overhead on the motes
- Low churn routes are determined during initialization or to recover from packet loss
- State and route management on the masters thereby simplifying the code on the motes

send(), count(), avg()