
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Large scale autonomous computing systems

Permalink
https://escholarship.org/uc/item/3s96x9qc

Author
Nandy, Sagnik

Publication Date
2005

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3s96x9qc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Large Scale Autonomous Computing Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Sagnik Nandy

Committee in charge:

Professor Larry Carter, Co-Chair
Professor Jeanne Ferrante, Co-Chair
Professor Amin Vahdat
Professor Richard Carson
Professor Massimo Franceschetti

2005

Copyright

Sagnik Nandy, 2005

All rights reserved.

iii

DEDICATION

This dissertation is dedicated to all the people who have influenced me

and helped me be the person that I am today.

iv

“You are never given a dream without also being given the power to make

it true.”

– Richard Bach

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Tables . ix

List of Figures . x

Acknowledgements . xv

Vita, Publications, and Fields of Study xviii

Abstract . xx

1 Introduction . 1

2 Autonomous Computing Systems . 5
1. Definition of Autonomous Computing Systems (ACS) 5
2. Advantages of an ACS . 7

1. Scalability . 7
2. Fault Tolerance . 8
3. Economics . 8
4. Greater Community Building . 9

3. Challenges . 9
1. Resource Discovery . 10
2. Security . 10
3. Correctness . 10
4. Scheduling . 11
5. Programmability . 11
6. Fault Tolerance . 12

4. Degrees of Autonomy . 12
1. SETI@home . 14
2. XTRemWeb . 15
3. P3 : Parallel Peer-to-peer . 17
4. Javelin . 18

vi

3 Resource Discovery . 23
1. The Resource Discovery Problem . 23

1. Available Resources in an ACS 23
2. Locating Computing Resources 24

2. The GUARD Protocol . 26
1. The Basic GUARD Protocol . 26
2. Analysis of the Protocol . 27
3. GUARD for Multi-dimensional Queries 31
4. GUARD for Non-boolean Resources 32

3. Experimental Results . 33
1. Performance of Guard . 34
2. Effect of Various Parameters on GUARD 38
3. GUARD: Observed Performance Vs. Predicted Performance . . . 41
4. Revised GUARD (Multi-dimensional Queries) 42

4. Practical Issues Associated with GUARD 44
1. Propagation of Stale Information 44
2. Dealing with Failures . 45
3. Dealing with Multi-node Requests 45

4 Autonomous Task Scheduling . 47
1. Problem Definition . 49
2. The A-FAST Scheduling Protocol 49

1. Scheduling in Dynamic Heterogeneous Environments 50
2. Incorporating Reliability in A-FAST 53

3. Experimental Results . 54
1. Throughput . 56
2. A-FAST in Dynamic Networks 57
3. Reliability . 58
4. Practical Implementation . 61
5. Lessons Learnt . 63

4. Other Issues . 66
1. Latency . 66
2. Avoiding Infinite Wait . 66
3. Dealing with Multiple Submitting Nodes 67

5 Programmability . 69
1. Introduction . 69
2. System Architecture . 74

1. The Interaction API . 76
2. The Scheduler . 79
3. The Message Box . 82
4. The Performer . 83

3. Experimental Evaluation . 84
1. Computation based tasks . 85

vii

2. Communication based tasks . 87

6 Related Work . 90
1. Autonomous and Decentralized Computing 90
2. Resource Location . 91
3. Task Scheduling . 92
4. Programmability . 94

7 Conclusions . 96
1. Summary of Findings . 96
2. Future Work . 98

Appendices

A Isolated Computing Resources . 101
1. Introduction . 101
2. Experimental Setup and Methodology 102
3. Measurements . 103

1. An Average Isolated PC . 104
2. Collective Usage Patterns . 105
3. Usage Intervals . 105
4. Inter-user Usage Patterns . 108
5. Intra-user Usage Patterns . 111

B Ongoing Work - Value-centric Scheduling 113
1. Problem Definition . 113
2. Value-centric Scheduling . 115

1. Prioritizing Techniques . 115
2. Buffering Techniques . 117

Bibliography . 120

viii

LIST OF TABLES

A.1 Average measured value of various system parameters to give an

idea of what an average isolated desktop system looks like. 104

A.2 Average duration of continuous periods with given utilization con-

straints. Note that periods of continuous utilization above 10% are

very small. 106

A.3 The mean deviation in user behavior for a given interval. This shows

how much the values vary for an individual user with time. 108

ix

LIST OF FIGURES

2.1 High level architecture of the four examples (a) SETI@home - in-

teractions are strictly client-server; (b) XTremWeb - client-server

model with servers arranged hierarchically; servers in same layer in-

teract in a peer-to-peer fashion; (c) P3 - managers exchange tasks

among themselves in a decentralized fashion; a manager can (i) send

a task to the requesting compute-node directly or (ii) locate another

compute-node to share its task, in which case the task is transferred

directly between the two compute nodes; and (d) Javelin - brokers

can share tasks in a decentralized fashion; hosts ask brokers as well

as other hosts for work; thus unlike the other systems, hosts can

directly ask each other for work. 13

2.2 A comparison of the case studies in term of degree of autonomy

they show and the corresponding benefits. The first three columns

correspond to the three areas of autonomy that we mentioned. The

remaining columns refer to the associated issues. A lighter color

corresponds to greater autonomy and greater advantages. One can

see that there appears to be a direct correlation between the degree

of autonomy and the associated benefits. 21

3.1 The gossiping protocol that nodes in the system using GUARD

periodically follow. Each node has a routing table that maintains

the shortest distance to a specified resource and the neighbor it must

route messages for the resource to. 28

3.2 The routing protocol that nodes in the system using the GUARD

protocol use to locate a resource . 29

3.3 Percentage of queries successfully answered by the various strategies

for the Sensor-like Network (SN) 35

x

3.4 Percentage of queries successfully answered by the various strategies

for the Tree-like Network (TN) . 35

3.5 Percentage of queries successfully answered by the various strategies

when a first-fit approach is tried instead of a best-fit policy. 36

3.6 Average number of hops needed by the various strategies for the

Sensor-like Network (SN) . 36

3.7 Average number of hops needed by the various strategies for the

Tree-like Network (TN) . 37

3.8 Average number of hops needed by the various strategies when a

first-fit approach is tried instead of a best-fit policy. 37

3.9 Effect of the percentage of nodes that share their resources on the

percentage of queries answered by GUARD 39

3.10 Effect of the update (gossip) frequency on the percentage of queries

answered by GUARD . 39

3.11 Effect of the number of queries made on the percentage of queries

answered by GUARD . 40

3.12 Effect of the average task duration (mean task length) on the per-

centage of queries answered by GUARD 40

3.13 Comparison of upper bound on failure provided by our analysis vs.

actual failure rate of GUARD. Observe that the actual failure is

always below the predicted value. 41

3.14 Performance of the revised GUARD protocol that allows multi-

dimensional queries for a combination of 5 different types of resources 43

3.15 Performance of the revised GUARD protocol that allows multi-

dimensional queries for a combination of 6 different types of resources 43

3.16 Example showing the convergence problem. Imagine now that some

other node uses up DX in N1. N2 and N3 will then keep passing on

incorrect information to each other, slowing down the convergence

rate significantly. 45

xi

4.1 Protocol that nodes follow on receiving a request for a task. 51

4.2 Protocol nodes follow on receiving a response from a neighbor in

return to a task request. 52

4.3 Protocol that nodes follow to perform task computation. 52

4.4 Performance of A-FAST in Internet-like Graphs of different sizes. . 55

4.5 Performance of A-FAST in Cluster-like Graphs of different sizes. . . 55

4.6 Relative Performance of A-FAST vs RID on Communication-dominated

Graphs. 57

4.7 Performance of A-FAST in systems where system ability improves

with time. 59

4.8 Performance of A-FAST in systems where system ability decreases

with time. 59

4.9 Effect of adding reliability to A-FAST on system throughput. 60

4.10 Effect of adding reliability to A-FAST on number of tasks lost (note:

we do not deal with re-transferring lost tasks). 60

4.11 Performance of A-FAST in a real system with three different under-

lying topologies. 62

4.12 Example showing how topology can affect the maximum buffer ca-

pacity of a node. For the star topology shown above, having a large

buffer capacity might allow one of the leaves to become the bot-

tleneck by pulling more tasks than needed. For the tree topology

however we want a higher buffer size for the non-leaf nodes (N1, N2,

N3) in order to facilitate better task transfer. 63

5.1 Effect of number of subtasks on performance across two nodes of

dissimilar capabilities. 71

5.2 Effect of increasing the number of threads on performance of a single

node. While the performance degradation for MergeSort is smaller,

Integration gets affected more severely. 72

xii

5.3 Overall system architecture of our framework. Each node has one

Manager and a job it interacts with. Managers of neighboring nodes

interact with each other. 74

5.4 Example program (calculates the integral of a function between two

points) to perform integration in our system. The program adap-

tively divides itself at runtime to divide itself according to the num-

ber of available virtual resources. The calls made to the Manager

using our proposed interface is shown in bold. 78

5.5 Effect of the value of numResources (equals to the number of threads

created) on performance. It can be observed that increasing the

reported value of numResources improves performance till a certain

point, beyond which the performance degrades. The Scheduler can

thus decide on the granularity of task division at runtime based on

the underlying system, without involving the programmer in the

process. 86

5.6 Performance for communication based tasks with two different data

handling strategies. Note that having the data locally helps for

smaller problem sizes since the number of remote accesses is reduced. 88

A.1 Cumulative distribution of time node utilization is below a certain

percentage. 106

A.2 Cumulative distribution of time nodes have below a given amount

of free memory. 107

A.3 Cumulative distribution of time nodes transfer below a given amount

of data per minute. Both the download and upload rates (in kB/min)

are given. 107

A.4 Distribution showing trend of on-time (the period for which a node

is continuously on) across the various users. 109

A.5 Distribution showing trend of CPU utilization across the various

users. 109

xiii

A.6 Distribution showing trend of Available free memory across the var-

ious users. 110

A.7 Distribution showing trend of Data transfer rates (both upload and

download) across the various users. 110

xiv

ACKNOWLEDGEMENTS

I would like to thank the following people and institutions for the immense support

and encouragement they provided. Without them I wouldn’t have been the person

that I am today and this thesis wouldn’t have been a reality.

My family - my mother (Mummum), father (Bubin), sister (Pummy) and

my grandparents, for everything that they have done for me and for the immense

belief they have shown in me. I would specially like to thank my mother, who has

been the greatest influence on my life. She was the one who taught me to read,

write and think and without her love, blessings and guidance I wouldn’t have been

the person that I am today.

St. James’s School, Calcutta, where I spent the most amazing and for-

mative fifteen years of my high school life. I would like to thank all my friends

from high school for the great time I had there as a student. I have been lucky

to have had some of the best teachers one could possibly ask for. My teachers in

high school were an immense source of inspiration, encouragement and support.

They treated us like one big family and I feel fortunate to have been a part of that

family. I would specially like to thank Mr. Abhijit Sirkar, my computer teacher,

for introducing me to the area of Computer Science and making me fall in love

with it.

The faculty and students in BITS (Birla Institute of Technology and

Science), Pilani, where I did my undergraduate studies. It was here that my love

for Computers took greater shape. If St. James’s School gave me the ability to

think clearly, it was BITS that gave direction to those thoughts. BITS also made

me a more responsible person and introduced me to some really talented people

who inspired me to achieve.

My friends Nileen, Abhik, Ranajit, Haimanti, Megha and Arijit for always

being there for me. I would specially like to thank Nileen, who is one of the most

talented people I have ever come across. His talents and humility have been a

tremendous source of inspiration.

xv

The faculty and students of UCSD for making graduate student life so

much fun. The past few years have really taught me a lot and have also made me

appreciate and enjoy Computer Science a lot more. I am really thankful for the

wonderful experience leading to this thesis and it has been an absolute honor to

be a part of UCSD.

My friends Sid, Vipul, Siddhartha, Sudipta, Subhradyuti and Rishi for

making my stay in San Diego so easy and enjoyable.

Everyone in the HPCL group at UCSD, especially Shelly, Sean, Barbara,

Mike and Xiaofeng.

Professor Amin Vahdat, Professor Richard Carson and Professor Massimo

Franceschetti for agreeing to be in my defense committee and for the valuable

suggestions and feedback that they provided.

Finally, my fantastic professors, Professor Larry Carter and Professor

Jeanne Ferrante. I had read the following lines about Larry in an earlier thesis -

“I not only worked for a great scientist, but a great person” and I couldn’t have

said it better. He has had one of the greatest influences on me. I have learnt a

tremendous amount from him just by observing and interacting with him. Larry

taught me that every problem, irrespective of the field they are associated with, is

interesting and worth solving. This has been one of the most valuable lessons that

I have learnt as a student. Jeanne has had an equally important influence on me.

She is one of the warmest human beings that I have come across and has always

helped me through every problem that I faced here in UCSD. Jeanne always made

me feel like a friend first and then a student and I am really thankful to her for

that.

This work was supported by the CAL-IT(2) fellowship and in part by the

NSF grant ACI-0234233.

Portions of the text of Chapters 3 and 4 are a reprint of the material

as it appears in [72, 71]. The dissertation author was the primary researcher and

author and the co-authors listed on these publications directed and supervised the

xvi

research which forms the basis of these chapters.

xvii

VITA

1978 Born, Calcutta, India

1997 High School Diploma, St. James’ School,
Calcutta, India

1997–2001 B.E. (Hons) Computer Science and Engineering,
BITS (Birla Institue of Technology and Science),
Pilani, India

2001–2002 Cal-IT(2) Fellowship

2002–Present Research Assistant,
University of California, San Diego

2003 M.S., University of California, San Diego

2003 Summer Intern,
IBM T.J. Watson Research Center, New York

2005 Teaching Assistant,
University of California, San Diego

2005 Doctor of Philosophy,
University of California, San Diego

PUBLICATIONS

“TFP: Time-Sensitive, Flow-Specific Profiling at Runtime.” S. Nandy, X. Gao,
and J. Ferrante, In the 16th Workshop on Languages and Compilers for Parallel
Computing (LCPC), October, 2003.

“A-FAST: Autonomous Flow Approach to Scheduling Tasks.” S. Nandy, L. Carter,
and J. Ferrante, In the Proceedings of the 11th Interantional Conference of High
Performance Computing (HiPC), December, 2004.

“GUARD: Gossip Used for Autonomous Resource Detection.” S. Nandy, L. Carter,
and J. Ferrante, In the Proceedings of the 19th International Parallel and Distrib-
uted Processing Symposium (IPDPS), April, 2005.

“Interference-Aware Scheduling.” B. Kreaseck, L. Carter, H. Casanova, J. Fer-
rante, and S. Nandy, In the International Journal of High Performance Computing
Applications (IJHPC), Vol 20, February, 2006.

xviii

FIELDS OF STUDY

Major Field: Computer Science
Studies in Distributed Parallel Computing.
Professors Larry Carter and Jeanne Ferrante

Studies in High-Performance and Scientific Computing.
Professor Larry Carter

Studies in Compiler Technology.
Professor Jeanne Ferrante

xix

ABSTRACT OF THE DISSERTATION

Large Scale Autonomous Computing Systems

by

Sagnik Nandy

Doctor of Philosophy in Computer Science

University of California, San Diego, 2005

Professor Larry Carter, Co-Chair

Professor Jeanne Ferrante, Co-Chair

The growth in size and popularity of the Internet has led to several wide

area computing efforts where the computing power of several thousands of ma-

chines are combined together. As these systems grow in size, it becomes increas-

ingly difficult to control and monitor them using a client-server-like architecture.

Introducing decentralization and autonomy in these systems seems to be the ob-

vious solution. Autonomy has several advantages. These include easy scaling,

removal of single points of failure, cost-effective deployment and greater promotes

collaborative environments. However, autonomous systems present certain chal-

lenges as well. The absence of server-like nodes make it difficult to locate and

manage available resources, schedule tasks efficiently across them, assure security

and develop applications that can make use of these powerful platforms. This

dissertation addresses some of these issues. We present autonomous techniques

for resource location, task scheduling and programmability in large scale comput-

ing systems. Our work tries to answer the question “Do autonomous solutions of

these issues achieve same (or comparable) performance benefits as their centralized

counterparts?”.

We propose GUARD, a protocol for locating computing resources in a

completely autonomous environment. GUARD can locate resources matching sin-

xx

gle or multiple parameters and it provides a trade off between efficiency and prob-

ability of success.

We then discuss A-FAST, a decentralized scheduling technique for homo-

geneous independent tasks, that uses the notion of pressure from fluid networks

to autonomously guide tasks to resources. Simulations show A-FAST to achieve

a high level of efficiency (≈ 98% of optimal steady state throughput) for both

computation and communication dominated tasks.

The dissertation also discusses a programming platform that we designed

and implemented to allow the development of applications for decentralized en-

vironments. Our platform allows programmers to develop code without having

knowledge of the underlying system and allows platform-specific information to be

fed to the program at runtime. We show how this platform can be used to generate

code that adapts to several situations without changing the original program or

involving the programmer in the scheduling decisions.

xxi

Chapter 1

Introduction

The past few decades have witnessed a great deal of research towards

the development, maintenance and deployment of large scale distributed comput-

ing systems. These systems have grown from clusters of local machines [95] to

collections of such clusters [64, 33] to hundreds of thousands of isolated machines

connected over the Internet [91, 29]. This has made it possible to harness the

strength of thousands of isolated machines to produce computing power that is

comparable to the fastest of supercomputers 1.

As these systems grow in size and cross administrative boundaries, it

becomes increasingly difficult to control and monitor them using a strictly client-

server like architecture where a single (or group of) powerful machines control the

functioning of the entire system. Client-server systems, where a set of powerful

machines control the functioning of the other machines in the system, are often ex-

pensive to build and maintain (due to the expensive hardware and software needed

for the servers) and the server-like nodes are often the bottleneck of the systems.

One can therefore witness a growing trend of introducing decentralization in these

systems, shifting them from strictly centralized systems [91, 29, 89] to hierarchical

[40, 3] and even completely decentralized systems [98, 35, 41, 74, 77]. Decen-

1e.g. In 2002, SETI@home could operate at 50 TFlops, while IBM Blue Horizon operated at

about 36 TFlops.

1

2

tralization, where the control of the system is spread across all the nodes of the

system, helps in removing single points of failure from the system, eases scalability,

reduces the cost of deployment and maintenance and allows better collaborative

efforts (by allowing isolated users to set up collaborative environments without

requiring expensive hardware and software). However, decentralization introduces

several additional challenges. The absence of a centralized monitoring mechanism

makes it difficult to locate resources (since there is no centralized repository with

knowledge of all the individual nodes and their abilities), assign tasks across them

(since a scheduler might not be even aware of the overall strength and ability of

the underlying system and how they will change with time), ensure security (due

to the absence of a centralized authentication mechanism) and provide adequate

support for programmability (the programmer now has to develop code for a pos-

sibly unknown and dynamic system). In this dissertation we try to address some

of these challenges by developing autonomous (defined in Chapter 2) solutions

for them. Specifically, we address the following three questions with respect to

decentralization and large scale computing systems:

• Resource Allocation: How to keep track of and locate computing re-

source(s) meeting a given criteria, in the absence of centralized or hierarchical

book keeping? We present GUARD (Gossip Used for Autonomous Resource

Detection), a protocol that locates computing resources in a completely au-

tonomous fashion.

• Resource Scheduling: How to schedule a pool of homogeneous equal-sized

tasks across a heterogeneous and dynamic large scale system so that the

steady state throughput is maximized? We present A-FAST (Autonomous

Flow Approach to Scheduling Tasks), a protocol that uses the notion of

pressure in fluid networks to schedule tasks in a completely decentralized

manner.

• Programmability: What functionalities does a programmer need in order

3

to develop code for a large scale distributed system that is changing and

doesn’t have centralized nodes monitoring it? How can one hide the system

specific issues from the programmer and allow development of code that is

independent of the underlying system? We discuss the design and imple-

mentation of a platform that provides programmers with a simplified view of

the system, thereby hiding several underlying system complexities associated

with decentralization.

The dissertation describes decentralized and autonomous techniques that

address the above three issues while trying to maintain the advantages and effi-

ciency of a centralized solution. Our work supports the claim that:

Autonomous resource locating, task scheduling and programmability achieve

the same (or comparable) performance benefits as their centralized counterparts while

achieving the benefits of decentralization.

For resource locating, GUARD (Gossip Using Autonomous Resource De-

tection), uses gossiping and distance vectors to locate computing resources in a

decentralized scenario. GUARD can find resources meeting a single or multiple

criteria and can achieve a desired level of success (finding a resource using the least

number of hops) by varying the gossiping frequency alone (Section 3.2.2).

For task scheduling we discuss A-FAST (Autonomous Flow Approach to

Scheduling Tasks), which functions inspired by how pressure controls flows in fluid

networks. A-FAST schedules a pool of homogenous tasks across a heterogeneous,

dynamic and large scale system and works well (achieves ≈ 98% of optimal steady

state throughput) for both computation and communication based systems. A-

FAST also captures system issues like reliability. We implemented A-FAST in a

real system and present experimental results.

For programmability we designed and built a system architecture that

clearly separates the roles of the scheduler, the message handler and the program.

4

These three components then interact using a simple but strictly defined interface

that can feed runtime information to the program. The programmer can thus

be unaware of the complexities of the underlying system and the scheduler can

take the necessary actions. Experiments show that our architecture deals with

several different underlying issues without involving the programmer in the decision

making. This allows the programmer to write code only once and run it efficiently

across a range of platforms.

We hope that this work will help towards building large-scale decentral-

ized computing systems. Decentralized computing has made it possible for us to

build inexpensive but highly powerful computing systems that are solving a large

range of important problems. We hope that our work will complement existing

and ongoing research activities that seek to harness the true potential of the World

Wide Web, by allowing to people to connect their computers over the Internet and

build huge computing communities.

The rest of this thesis is organized as follows. Chapter 2 defines Au-

tonomous Computing Systems and describes their advantages, disadvantages, and

the various issues involved in using them. Chapters 3 and 4 describe GUARD

and A-FAST in detail. In Chapter 5 we discuss the issue of programmability in

distributed systems and provide our results associated with it. Chapter 6 takes a

look at the related research efforts in this area. Finally we end with a summary, a

discussion of the various lessons learned, and possible future work in this area in

Chapter 7.

Chapter 2

Autonomous Computing Systems

This dissertation aims at providing autonomous and decentralized solu-

tions to some issues concerning distributed computing systems. It is therefore

important to clearly define what an autonomous or decentralized computing sys-

tems is and describe their advantages and challenges; this is the aim of the current

Chapter. We also look at the various degrees of autonomy that some of the present

distributed computing systems exhibit by presenting some case studies.

2.1 Definition of Autonomous Computing Sys-

tems (ACS)

A “decentralized computer system” is defined in [43] as “a collection of

autonomous computers which communicate with one another to perform a common

service”. By Autonomy we mean the ability to function independently without

control by other entities. Thus all the members of a Autonomous Computing

System (ACS) should ideally be able to control and monitor their own activity,

with no (or minimal) external intervention.

In our view autonomy is directly connected to decentralization and the

degree of autonomy a system exhibits is a direct measure of how decentralized

5

6

it is. For the rest of this dissertation we will use the terms decentralization and

autonomy interchangeably.

A growing group of modern systems that possess a high degree of au-

tonomy are the peer-to-peer content sharing systems [56, 73, 35]. Peer-to-peer

computing is defined as the sharing of computer resources and services by direct

exchange between systems. There are several similarities between “peer-to-peer

computing” and “autonomous computing”, the terms are often used interchange-

ably. However, even though these paradigms share several similarities, in our view

they are not the same. Peer-to-peer systems allow participants to directly interact

with each other but do not necessarily remove centralized intervention. For exam-

ple, Napster [73] and Javelin [74] support peer-to-peer paradigms while retaining

some form of centralized control. For the context of this dissertation, we would

judge the “degree of autonomy” present in a system based on the amount and kind

of decentralized functioning it exhibits in the following categories:

• Resource Discovery: To benefit from the vast range of resources that

distributed systems have to offer (CPU-cycles, memory, storage, software

etc.), it is necessary to discover and access these resources. Autonomous

resource discovery implies that nodes in the system should not make use

of centralized server(s) or global knowledge to locate the system’s available

resources, but instead rely on local information to accomplish what’s needed.

• Resource Control: One of the main reasons for having centralization in

distributed systems is to control and monitor the functioning of resources

available to the system. Centralized server(s) or server-like nodes determine

what the functionality of the participating nodes in the system should be

and pass on the corresponding control instructions. In a fully autonomous

environment, the task of resource control is spread across all the nodes of the

system, leading to an egalitarian computing environment.

• Resource Interaction: For the functioning of any distributed system, in-

7

dividual components of the system need to interact with each other and

exchange information. Traditional systems based on the client-server par-

adigm often have the server mediating the communication and interaction

between system components. This can hinder their autonomy. For a system

to be truly autonomous, components should be able to interact directly with

each other without any central mediation.

To summarize, an Autonomous Computing System (ACS) is a collection

of computational nodes that are capable of functioning independently without the

presence of centralized server nodes. Nodes in such a system are only aware of their

immediate neighbors and do not have a global view of the system. All decisions are

made based on this local information, and interaction requires no centralized inter-

vention.

Having described what an Autonomous Computing System is, we now

take a look at some of the principal advantages of using such a system.

2.2 Advantages of an ACS

The growing trend of autonomy in computing systems [55, 73, 98] sup-

ports the claim that autonomy is an attractive proposition. In this section we

outline advantages associated with building autonomous computing systems. The

include: scalability (2.2.1), fault tolerance (2.2.2), economics (2.2.3) and commu-

nity building (2.2.4).

2.2.1 Scalability

To make use of the growing number of computing resources around us, a

system has to be scalable. Scalability can be defined as the ability of a system to

handle an increase or decrease in resource volume without significant performance

8

degradation per node. For years researchers have worked towards improving scal-

ability of distributed systems. A single server managing these systems can only

support a limited number of users, limiting the system’s scalability scalability.

Thus as the number of computing nodes increase in the system, the number of

nodes that interact with the server also increases, thereby affecting the overall

performance. With decentralization, the task of managing and monitoring the

system gets delegated amongst all the participants, thereby reducing (or eliminat-

ing) the role of centralized servers. This allows the systems to scale to greater

sizes.

2.2.2 Fault Tolerance

As described in the previous segment, in a true ACS, each component

exhibits autonomy and is capable of making its own decisions. The functional

interdependence between components in these systems is therefore minimized and

any component can be inserted/removed from the system without affecting the

functioning of other components. Therefore, in an ideal ACS, any subset of the

system should also be able to function independently as a complete system. This

reduces the chances of a single member (or group of members) bringing down the

system completely, improving the fault resilience of the overall system. Distribut-

ing the components of the system also help in eliminating single points of failure

due to malicious attacks. This helps in reducing the vulnerability of the system,

making it more reliable.

2.2.3 Economics

One of the biggest advantages of building ACSs is the reduction in the

cost of set up and deployment. Traditionally servers (or server-like nodes) require

powerful hardware and software support along with regular maintenance. This

often makes these components a lot more expensive than the participating com-

9

puting nodes1. By delegating the server’s responsibilities among several low-end

machines, the cost of maintenance, along with the need for expensive hardware

and software to perform the specialized tasks, can be reduced considerably.

2.2.4 Greater Community Building

One drawback of many existing distributed computing systems is that

they do not support the growth of online communities. This is primarily due to

the expensive hardware, software and technical expertise often associated with

building these communities, restricting participation of users who are willing to

collaborate and build their own communities, but are not part of organizations

supporting such efforts. With the development of ACSs, the tasks performed

by high-end systems would get managed locally by the participating machines,

facilitating loosely knit isolated users to build their own computing communities

seamlessly. The popularity of some of the peer-to-peer computing systems [55, 12]

have supported this claim by allowing millions of isolated users to seemlessly form

their own communities over the Internet.

2.3 Challenges

Given the advantages of Autonomous Computing Systems, the obvious

question to ask is - why haven’t they been implemented widely till now? Even

though ACS as a concept is appealing, there exist several challenges in imple-

menting them in practice. This section presents some of the basic requirements of

distributed computing systems and identifies the challenges associated with meet-

ing these requirements in a decentralized fashion.

1A single high end 8-way server costs around $750,000 whereas a rack comprising of 100 PCs

costs only around $300,000.

10

2.3.1 Resource Discovery

To be part of a ACS and use its resources, one has to first discover these re-

sources. In a computing environment, some of the resources one wishes to discover

may even be dynamic in nature (e.g. a machine with less than two processes run-

ning). Several existing systems have used centralized registration and monitoring

mechanisms to keep track of resources and their current states [64, 34]. Resources

can then be located in these systems by querying the centralized server(s). In a de-

centralized environment, there are no global repositories maintaining system-wide

resource information and status, making resource discovery a more challenging

issue.

2.3.2 Security

One of the biggest issues in distributed computing is security. By making

a system available for computation, one opens it to a range of vulnerabilities. Code

executing on a participating systems can cause mayhem (damage the system, leak

system data etc.). It is therefore the responsibility of the system to ensure that

the participants are protected from malicious users and code. A common way of

dealing with security in distributed systems is to have trusted member(s) from

whom users download code. These members can either be well established names

that users trust [91, 29], or can take it upon themselves to ensure the safety of the

executing code [40]. In a truly decentralized environment, there exists no globally

trusted and secure member, putting the responsibility of security entirely upon the

members themselves.

2.3.3 Correctness

Correctness refers to the integrity of the results of a computation. Some

research efforts associate correctness with security. However, security deals with

the danger caused to the system by the executing code rather than the incorrect

11

execution of code. Popular techniques like Polling and Spot-checking can be imple-

mented in a decentralized manner to ensure correctness of results. However, these

techniques also try to identify the sources of the anomalies in order to blacklist

them. In the absence of centralized control, tasks may travel across the system

autonomously, making it more difficult to identify the actual source(s) of the errors.

2.3.4 Scheduling

Several distributed systems target performance by simply providing addi-

tional resources. However, since resources are expensive, one would ideally like to

make the best use of these resources. Efficient scheduling leads to better utilization

of resources. Several systems make use of centralized schedulers, which maintain

system-wide information (e.g. processor speeds, network topology etc.) to assign

tasks to workers [64, 40, 23]. Though this leads to better resource utilization, the

centralized controllers often become the bottlenecks for scalability. ACS solves the

problem of scalability but makes it more challenging to manage resources efficiently

without global knowledge and external supervision.

2.3.5 Programmability

One factor which is likely to determine the future and popularity of dis-

tributed systems is the amount of programmability it offers to the user. Program-

mability refers to the kind of programming support the system offers and the kind

of applications that can be run on it. A large range of distributed applications

require some form of centralized resource (e.g. shared memory) or involve some

variant of centralized control (e.g. BSP [17], divide- and-conquer etc). An ACS

has no knowledge of global resources, making it difficult to support these program-

ming models. Moreover, many of the existing programming models [70] assumes

the programmer has an idea of the size of the system, and are built to perform

well only with homogeneous resources. A large scale ACS is likely to be extremely

12

dynamic in nature and the components of the system are likely to heterogeneous

in terms of ability and availability. This makes the task of the programmer a lot

more difficult, since several system specific complexities then have to be taken care

of.

2.3.6 Fault Tolerance

Recent studies [40, 16] have shown node failures in distributed systems to

be commonplace. This, coupled with the long running times of several distributed

applications, makes fault tolerance a critical issue. Like programmability, many

existing systems use centralized control to detect and deal with failures [40] or use

centralized resources (e.g. shared tuple space) to reduce the effects of these failures

[20]. Decentralization makes the overall system more fault tolerant, by removing

single points of failures, but makes application fault tolerance more challenging,

since applications can no longer rely on centralized controllers to detect and deal

with failures.

2.4 Degrees of Autonomy

A distributed system need not be completely autonomous. Nor does it

have to be completely centralized. One can imagine these to be two ends of a

spectrum. Most existing distributed systems exhibit some form of autonomy in

the categories mentioned in Section 2.1, with the degree of autonomy varying.

To understand the contribution ACS’s further and appreciate the complexities

involved in designing solutions for them it is important to study some existing

computing systems and see how they fare in terms of the autonomy they exhibit.

We present four computing systems - SETI@home, XTremWeb, P3 and the Javelin

system, each with varying degree and forms of autonomy. Of these, SETI@home

is almost a strictly client-server system, while Javelin is closest to our definition of

an ACS.

13

Figure 2.1: High level architecture of the four examples (a) SETI@home - inter-

actions are strictly client-server; (b) XTremWeb - client-server model with servers

arranged hierarchically; servers in same layer interact in a peer-to-peer fashion;

(c) P3 - managers exchange tasks among themselves in a decentralized fashion; a

manager can (i) send a task to the requesting compute-node directly or (ii) locate

another compute-node to share its task, in which case the task is transferred di-

rectly between the two compute nodes; and (d) Javelin - brokers can share tasks

in a decentralized fashion; hosts ask brokers as well as other hosts for work; thus

unlike the other systems, hosts can directly ask each other for work.

14

2.4.1 SETI@home

Overview: SETI (Search for Extraterrestrial Intelligence) [4, 91] is a project that

harnesses the power of idle desktop machines in order to search for alien life forms.

It is one of the biggest examples of public resource computing (it has a user base

of nearly 4.5 million in 2002). The system is built upon a client-server architecture

as shown in Figure 2.1. SETI’s simple architecture and novelty of purpose have

been the main reasons for its enormous popularity. Other projects with similar

structure include distributed.net [29] and the GIMPS [68] project.

Analysis: SETI achieves resource discovery through the centralized server. All

users log on to this server, and it is responsible for controlling and monitoring all

the clients. Interaction in the system is strictly between the client and the server

as well. Thus the system does not meet any of the requirements of decentraliza-

tion stated in Section 2.1. Yet, SETI is one of the most successful and popular

distributed computing projects. In addition, the client-server architecture of SETI

helps it solve problems of security (trusted server is the only source of code) and

correctness (the server alone is responsible for correctness and achieves it by re-

dundancy). This raises the question of whether there is any need for decentralizing

distributed computing systems. To answer this question we evaluate SETI with

the benefits discussed in Section 2.2.

Scalability has not been a major issue for SETI since there are no strict

deadlines and the server can make a client wait indefinitely before servicing it.

Moreover, the computation to communication ratio of the system is very high, and

it doesn’t matter how fast the jobs are scheduled, reducing the responsibility of the

server further. However, the single server architecture has started causing serious

problems in outgoing bandwidth, with performance drops as high as 25% for the

system. Decentralizing the system would allow users to download tasks from each

other - reducing the bandwidth congestion of the server.

Having a single centralized architecture also makes SETI more sensitive

15

to faults since any damage to the server can cause the system to halt. However, due

to the loose deadline on the computation, the overall performance of the system is

not affected significantly. Nevertheless, decentralizing the system would increase

its resilience against faults.

Coming to the issue of economics - SETI is definitely not an easy project

to launch and manage. Nearly the entire cost of the project is due to the server

and back-end data base. Decentralizing it would definitely make the system more

economical to build and manage by allowing client machines to share some of the

responsibilities of the server.

Moreover, due to its single application approach, SETI does not provide

any support for programmability. The collaborative environment is one-sided, i.e.

users can only contribute resources but not jobs themselves. Thus even though

SETI is a successful system, it is monolithic in structure and does not support

several desired features of distributed computing systems. BOINC [3], a very

recent follow up of SETI, tries to overcome most of these shortcomings and has

already identified decentralization and autonomy as key issues. To summarize,

SETI@home is an example of an extremely successful system that does not use

the notion of decentralization. The centralized architecture and dedicated server

solves several challenges for the system, but does so at the expense of flexibility

and generality. General purpose applications, therefore, are unlikely to benefit

much from a SETI-like platform.

2.4.2 XTRemWeb

Overview: The XTremWeb system [40, 39] is a global computing effort that uses

a user-server-worker model. Unlike SETI, users in XTremWeb can submit tasks

themselves. These tasks are initially sent to XTremWeb servers, which use dis-

patchers to transfer them to schedulers. Schedulers are responsible for assigning

the tasks to collaborating workers, which execute them. Scalability is addressed by

having multiple servers arranged in a hierarchical fashion. Issues such as security,

16

interoperability and fault tolerance are also addressed by the servers. For security,

servers (or dedicated machines) test the code on themselves before sending it to the

workers. Interoperability is achieved by maintaining multiple binaries of the jobs

at the server and assigning them to compatible host machines. For fault tolerance

the servers monitor the “liveness” of workers, re-sending work if needed.

Analysis: XTremWeb, like SETI, follows a client-server like model. However,

unlike SETI, it has a hierarchical system structure, thereby making it more scalable

and robust.

XTremWeb achieves resource discovery in a centralized fashion using

servers. The servers and schedulers exercise complete control on the function-

ing of the workers, monitoring them and determining which tasks they execute.

Therefore, using our definition of decentralized systems, XTremWeb is predomi-

nantly a centralized system. However, resource interaction in XTremWeb exhibits

some element of decentralization, since servers in the same layer are allowed to

communicate directly with each other. Thus within the server peer group the in-

teractions are decentralized, and the advantages of this are evident - the system

achieves better load balancing (by distributing work to other servers) and fault

tolerance (by replicating work to other servers) without creating a central bottle-

neck. However, the user-worker interaction is still centralized, controlled by the

servers. This makes the XTremWeb server-layers the bottleneck of the system.

The hierarchical and semi-centralized architecture of XTremWeb has its

advantages - it achieves better scalability than completely centralized systems and

still provide a high degree of security and fault tolerance (by having dedicated

servers for this purpose). The main drawback, however, is the cost associated

with building the system. The XTremWeb servers are dedicated and persistent

machines supported by back-end data base support. With growing number of

users, the need for these servers will increase. This will affect the cost of deploying

large-scale XTremWeb systems. Decentralizing the system will reduce the need for

17

servers by distributing part of their work to the workers, bringing down the cost

of the system.

To summarize, XTremWeb is a good hybrid solution for connecting clus-

ters of machines but is not well suited for scenarios where one wishes to combine

large number of isolated machines for distributed computing.

2.4.3 P3 : Parallel Peer-to-peer

Overview: The aim of P3 [77], was building an ACS. The system has a lay-

ered structure comprising of clients, managers and compute- nodes. The manager

nodes are the more “capable” nodes with greater resources (in terms of network

connection, storage, processing speed etc.) and are responsible for controlling the

functioning of the system, while the compute nodes are less resourceful and pro-

vide temporary storage and processing cycles. Jobs are initially submitted by the

clients to the manager layer. Compute nodes request work from managers. The

managers either assign the node a new job or direct another compute node to

share its work with the requesting node. In the latter situation all communication

between the two compute nodes take place directly, in a peer-to-peer fashion. The

manager layer just identifies the source and target of a computation but does not

involve itself in the actual task transfer.

P3 also provides virtual shared memory (Object Space) support using a

decentralized distributed file system. This provides several benefits such as (i) syn-

chronization primitives to provide better programmability (ii) meta-data service

for the managers to achieve better scheduling and (iii) checkpointing support for

fault tolerance.

Analysis: P3 strongly supports the idea of decentralization. The Object Space

allows decentralized storage and retrieval of data in the system. This helps in

discovering resources such as code, checkpoint information and metadata. in a

decentralized fashion. Task transfer between compute nodes take place in a de-

18

centralized manner as well, without going through a manager. P3 thus exhibits

decentralization in resource discovery and interaction, qualifying as a largely de-

centralized system by our definition. However, the system still has a somewhat

centralized approach towards resource control. Even though task transfer between

compute nodes take place in a decentralized fashion, all transfers are initiated by

the manager layer. Managers thus exercise complete control over where a task

executes and when to convert a compute node to a manager node. This prevents

the compute nodes from exercising functional autonomy. Thus though P3 is pre-

dominantly a decentralized system it still has some elements of centralized control

in it.

Coming to the advantages of decentralization in P3, the ability to di-

rectly transfer tasks between compute nodes prevents managers from becoming

communication bottlenecks. For fault tolerance, manager nodes use storage in

other nodes as well to save check-pointed states. This reduces the required ca-

pability, responsibility and resources needed by manager nodes, allowing them to

create additional managers dynamically from compute-nodes, making the system

more scalable. The need for expensive and powerful machines is also reduced. In

a system such as XTremWeb, the servers are completely responsible for security,

communication, scheduling, fault tolerance, portability etc. Such servers often

must be high-end machines, preventing ordinary host machines to substitute for

them. P3 delegates part of the server’s work to the compute nodes (fault tolerance,

communication) leading to more scalable and cost effective systems.

To summarize, P3 has a layered design but introduces a fair degree of

decentralization within the layers. The system also reduces the differences between

its layers, thereby reducing the centralized control between them.

2.4.4 Javelin

Overview: The Javelin system [75, 74] is an initiative to support Java-based large-

scale parallel computing for adaptively parallel applications. The system is based

19

on a client(task provider)-broker- host(resource provider) architecture as shown in

Figure 2.1. The broker layer, like the manager layer in P3, provides centralized

control and monitors issues such as scheduling and resource discovery. In the initial

version of Javelin, client applications were written as Java-applets and uploaded

in a server. This solved the problems of portability (by making use of the JVM)

and security (by trusting Java’s built-in security mechanism for applets). A Cycle

Stealing approach, as introduced in the Cilk [13] system, was used for scheduling,

while fault tolerance was achieved using Eager Scheduling [10].

Javelin++, a follow up to the initial version, added further features to

the system. These included support for Java applications, a distributed broker

network to add scalability, and two different scheduling approaches - determinis-

tic, where hosts are arranged in a tree structure, and probabilistic, where each host

maintains a list of some other hosts and can perform cycle stealing directly without

intervention from the broker. We will concentrate on the probabilistic approach

due to it decentralized nature.

Analysis: The Javelin system, like P3, has a layered structure, with a fair amount

of decentralization within the layers. Javelin, however, not only allows its hosts

to directly interact with each other, but also lets them function in an autonomous

fashion. The probabilistic scheduling approach requires hosts to get some tasks

initially and host information from the broker layer, but lets these propagate among

the hosts in an autonomous fashion thereafter, without further interference from

the brokers. This satisfies most of the conditions of decentralization mentioned

in Section 2.2 - by piggy-backing information about resources with tasks, hosts

manage to discover additional resources in a decentralized fashion; hosts exhibit

a fair amount of functional autonomy by “stealing jobs” directly from other hosts

and interaction between hosts take place in a decentralized peer-to-peer fashion as

well.

The broker layer works in a similar fashion too. A broker passes on a

20

fraction of its current information to a new broker at the time of creation, and

interacts with other brokers in a peer-to-peer fashion. The client-host relation,

however, is controlled by the broker layer and all jobs initiate from a user to a bro-

ker, who then assigns it to some host. This leads to some amount of centralization

in the system since the interaction between clients and hosts is indirect, controlled

by the broker layer.

The benefits of decentralization are evident in Javelin. The responsibility

of the brokers is reduced even further when compared to servers in XTremWeb

or managers in P3. Unlike XTremWeb, Javelin allows host machines to directly

interact with each other and “steal jobs”. Though P3 allowed hosts to directly

interact with each other and provided storage for fault tolerance, the associated

decisions are always taken by managers. In comparison, brokers in Javelin are only

responsible for passing the tasks initially to the host layer. Thereafter, hosts can

autonomously find and perform these tasks by directly interacting with each other.

This allows the host layer to achieve additional load balancing without further in-

terference from the broker layer. Brokers do not interfere in fault tolerance as well.

The clients achieves fault tolerance through Eager Scheduling. Javelin also allows

brokers to dynamically create new brokers from existing hosts (secondary brokers)

if needed. P3 had similar options, but since Javelin reduces the responsibility of

brokers even further, the need for creating additional brokers will be less, leaving

more hosts available for computation.

To summarize, Javelin has a similar structure to P3, but achieves a greater

degree of decentralization by further reducing the role of the broker layer. How-

ever, the fact that all tasks reach a host initially through a broker creates a small

amount of functional dependency, so we do not classify Javelin as a completely

decentralized system.

We have taken a look at what we mean by an Autonomous Computing

System and the various levels of autonomy that some of the existing distributed

21

Javelin

P3

XTremWeb

SETI@home

CBEFTSRIRCRD

RD – Resource Discovery RC – Resource Control RI – Resource Interaction

S – Scalability FT – Fault Tolerance E – Economics CB – Community Building

Figure 2.2: A comparison of the case studies in term of degree of autonomy they

show and the corresponding benefits. The first three columns correspond to the

three areas of autonomy that we mentioned. The remaining columns refer to the

associated issues. A lighter color corresponds to greater autonomy and greater

advantages. One can see that there appears to be a direct correlation between the

degree of autonomy and the associated benefits.

22

systems support. Figure 2.2 gives a diagrammatic summary of our case studies,

comparing their degrees of autonomy with the associated benefits. It can be ob-

served that there seems to be a direct connection between autonomy and associated

benefits.

We next present a detailed overview of the related work in this area so that

we can have a better understanding of what the contributions of this dissertation

are and how they differ from existing research.

Chapter 3

Resource Discovery

3.1 The Resource Discovery Problem

Before we describe the GUARD protocol [72] and how it manages to

locate desired computational resources in an autonomous fashion it is important

to understand what a computational resource is and how it is often different from

pure data.

3.1.1 Available Resources in an ACS

One of the biggest advantages of using a large scale distributed system

is the large volume of resources that it can provide the user with. Recent studies

[57, 23, 1] have shown that a significant volume of computing resources stay idle

for a considerable amount of time. A user is thus no longer limited to using his

own computing resource but should “ideally” be able to use the strength of the

millions of idle machines connected over the Internet (Appendix A takes a look at

how powerful some of these isolated nodes are from a computing perspective). It

is not difficult to imagine the World Wide Web as a large supercomputer where

users can submit jobs and share resources. For our work we are concerned with

computing resources as opposed to just data (e.g. MP3s, video files etc.).

23

24

We define a computing resource as a resource that is used or required for a

computational task to run to completion. There are several computational resources

- processing power, memory, storage space, network bandwidth and available soft-

ware are just some computational resources. Each node in the system comprises

one or more of these resources. Resources have a set of possible values that they

can take, where the value of a resource is a parameter that a user might desire (e.g.

“Does this node have 256MB of free memory?” - here “free memory” is a resource

and 256MB is the value associated with it). Based on values, one can categorize

all computing resources into two broad categories:

• Permanent Resource: These are resources whose value doesn’t change

with time. Examples of permanent resource are architecture of processors,

installed software, presence of desired hardware etc. These resources can

thus be tracked by using a boolean value that denotes if they are present or

not. In other words, the answer a node returns for a query of this resource,

doesn’t change with time.

• Dynamic Resource: These are resources whose value changes with time.

Examples of this would be processor utilization, free memory, number of

active processes etc. where the same node can satisfy or fail the query for a

certain resource at different times.

3.1.2 Locating Computing Resources

A user might be interested in a node (or collection of nodes) meeting

one or multiple resource requirements (e.g. find a node that has Java installed

and has a CPU utilization less than 25%). In a centralized system, the server(s)

can query the participating nodes periodically and keep track of the values of the

various properties associated with a resource. Users can then directly query the

server for a desired node. In a decentralized scenario, nodes are only aware of their

immediate neighbors and can only communicate with them. It is therefore more

25

difficult to locate a desired resource in this scenario.

A computing resource is quite different from a data-centric resource and

hence the vast volume of research addressing the problem of decentralized data-

centric routing [55, 98, 88] cannot be directly applied to this scenario. Some of

the properties that make the computing resources different from their data-centric

counterparts include:

• Dynamic Nature: As mentioned earlier, many of the properties of comput-

ing resources like CPU utilization, amount of free memory etc. change with

time. Thus one cannot hash their information to unique locations [98, 88]

from where one can retrieve their information.

• Perishable: Many computing resources are perishable in nature i.e. they

get used up. For example, a node having 1GB of free memory, if located may

get used up and can no longer be used by other users seeking that property.

It therefore doesn’t make sense creating a one time index for these nodes

because they can often not be used by more than user.

• Non-replicable: Data can be replicated and hence one can eliminate per-

formance bottlenecks by replicating a highly accessed data in several places.

Many computing resources do not support the notion of replication (e.g.

how do you recreate a node that has Pentium IV and 4GB disk storage in a

different place?).

• Smaller Sample Space: Unlike data, which has a huge number of variants,

most computing demands are similar (or at least fall under a smaller set of

categories). One can therefore make use of this empirical knowledge of user

requirements more effectively in a computing scenario.

Having seen what computing resources are and how they differ from their

data-centric counterparts we will now study in detail the GUARD protocol and

how it can be used to locate computing resources in an autonomous fashion.

26

3.2 The GUARD Protocol

We first describe the basic GUARD protocol, whose goal is to locate

an instance of a given resource in a large heterogeneous system without the use

of centralized control or information. We also derive an analysis of GUARD’s

performance, and describe how the protocol can be extended to locate resources

that satisfy a set of properties simultaneously.

3.2.1 The Basic GUARD Protocol

GUARD uses distance vectors [81] to maintain likely distance from re-

sources. Unlike the use of distance vectors in routing IP addresses, where the

target of a node is a unique node, there are likely to be multiple resources sat-

isfying a request in a large distributed system. GUARD maintains the distance

from the closest node having a particular resource. This information is updated

via ”gossiping” (nodes exchange information with their neighbors periodically) to

reflect the consumption/addition/deletion of resources in the system. Nodes in

the system only interact with their immediate neighbors, and do not communicate

directly with any other node.

We will first introduce the various terms used in describing the protocol.

We assume that the underlying system is represented as a graph G = (V,E) with

N = |V | nodes. We shall initially assume that there are K types of trackable

resources (R1, R2, ..., RK) in the system, but later show how GUARD can be used

for resources, such as memory, that can be requested in different sizes. Nodes make

requests for one of the K types of resources (Section 3.2.3 shows how GUARD can

handle multidimensional requests) and the protocol tries to locate the closest node

that satisfies the request.

The way GUARD works is simple. Each node in the system maintains a

table of size K to track down the K different resources (we show in Section 3.2.3

how the table size can be reduced). The entries in the table are of the form < Di,

27

nbri > (i = 1, 2, ..., K), where Di is the node’s current knowledge on the number

of hops that need to be traveled to reach a resource of type Ri, and nbri is the

neighbor with the least value of Di. Initially all nodes have their tables initialized

with all Di’s set to ∞. If a node itself has any of the resources Ri, it sets the value

of Di in its table to 0. Periodically nodes gossip by sending a copy of its table of

Di’s to its neighbors. Whenever a received value D′
i from neighbor k, such that

D′
i + 1 < Di, the node updates the entry to < D′

i + 1, k >.

On receiving a request for Ri, a node checks if its value of Di is 0 (implying

it has the resource), in which case it services the request and sets the value of Di

to ∞ (similarly a node resets the value of Di to 0 once the resource is released). If

the node doesn’t have the resource it forwards the request to nbri. A request that

is forwarded more than TTL hops is killed. A node also kills a request in case a

node does not have a resource and has no neighbor it can route the message to

(Di = ∞) (the node can wait for a while and re-try to route the message but in

our implementation we haven’t done this).

The detailed algorithms for gossiping (updating) and routing of requests

in GUARD is shown in Figures 3.1 and 3.2.

3.2.2 Analysis of the Protocol

GUARD uses the distance vector approach that has been widely studied

in the networking community. While this approach is unscalable for its traditional

use of locating unique nodes in an Internet-like scenario, it is extremely well suited

for our resource location problem when the number of resources that users search

for is fairly limited. Also, there are likely to be multiple nodes that might satisfy

a particular request. This makes it easier to propagate resource information in

the system (since updates in a node’s status will only affect those nodes that

were using it as a closest resource source) and the problem often reduces from

locating a unique node (routing in the Internet) to locating one of several satisfying

nodes. This makes the distance vector approach more conducive to the dynamic

28

// Assume the node has N neighbors
// Assume there are K different types of resources in the system {R1, R2, …, RK}
// Each node maintains a K element table where each entry of the table is of the form <Di, nbri>
// where Di is the distance in number of hops from a node having Ri and
// nbri is the neighbor where requests for Ri should be forwarded

void gossip() { // Gossiping protocol performed periodically
// First update own information
for (i = 1 to K) {

if (node contains Ri) {
Di = 0; nbri = self;

}
}
// Communicate with neighbors
for (i = 1 to N) {

for (j = 1 to K) {
if (neighbor i’s Dj < (Dj-1)) {

Dj = neighbor i’s Dj+1; nbrj = i;
}

}
}

}

Figure 3.1: The gossiping protocol that nodes in the system using GUARD peri-

odically follow. Each node has a routing table that maintains the shortest distance

to a specified resource and the neighbor it must route messages for the resource

to.

29

// Assume that each node has a unique identifier – id of type Id
// Assume that a query Q comprises of the requested resource type RX and the number of

hops the message has traveled

Id route(Query Q) { // Returns the id of the closest node having Q.RX

// Check if node satisfies the request
if(DX == 0) // node has RX

return id; // returns id of itself

// Check if number of hops has exceeded maximum limit TTL
if(Q.hops == TTL)

return error;

// Pass on message to corresponding neighbor after updating number of hops
Q.hops++;
N = nbrX;
return N.route(Q);

}

Figure 3.2: The routing protocol that nodes in the system using the GUARD

protocol use to locate a resource

computing resource location problem.

We now give a theoretical estimate of GUARD’s performance. The esti-

mate is an upper bound that allows users to determine whether such an approach

is suited for their system and/or to tweak the protocol’s parameters to meet their

requirements.

We begin by introducing the terms used in our analysis. Let Fu be the

frequency at which nodes gossip about their information and Fr be the frequency

at which requests are made in the system. Resources are borrowed for an average

time length of L, i.e. a resource once allocated remains unusable on average for

L time. Pr denotes the percentage of nodes in the system that initially have a

resource of size r and are willing to share it.

Suppose a request for resource r (r ǫ {R1, R2, ..., RK}) originates in the

requesting node, nr, at time T . Let nd be the node we expect to be the final

destination of the query and lnr
be the distance (in number of hops) between nr

30

and nd, i.e. lnr
is the value of D corresponding to resource r in nr’s routing table.

For our derivation, we assume the latency of requests is negligible compared to the

frequency of gossiping. We also make the uniformity assumption that resources

and requests are distributed among all the nodes in a way that makes each re-

source be the “closest” resource to about an equal number of requests. While this

is not true for all topologies, it may hold for important scenarios including sensor-

like graphs and existing peer-to-peer systems like CHORD [98] (and it makes our

analysis possible).

Let P (r, T, nr) = probability of failure of request for r at time T , starting at node

nr.

≤ probability of r being taken in nd in time T − lnr

Fu
≤ t ≤ T

• The ≤ inequality is used because the request might be satisfied by a different

node.

≤ probability that any request for r is serviced by nd in time T − lnr

Fu
≤ t ≤ T

≃ 1 - e
−lnr .Fr

Fu.NrT , where NrT
is the number of nodes having resource r at time T .

• By our uniformity assumption, the number of other requests that are issued

in the time period T − lnr

Fu
≤ t ≤ T and which are closest to node nd is Poisson

distributed with mean lnr

Fu
. Fr

NrT

. The above expression is 1 - (probability of

no such request).

Now assuming we want the failure rate to be below a given fraction fF we can

write

1 - e
−lnr Fr

FuNrT ≤ fF

⇒ e
−lnr Fr

FuNrT ≥ (1-fF)

⇒ e
lnr Fr

FuNrT ≤ 1
1−fF

Now taking natural logarithm on both sides and simplifying we get

Fu ≥ lnr Fr

|ln(1−fF)|NrT

31

Now both lnr
and NrT

depend on several factors like the topology of the network,

the values of Pr, L etc. but can be estimated, given a particular scenario. This

implies that given a particular setup one can simply tweak the gossiping frequency

to achieve a desired rate of success. We verify these predictions in Figure 3.13.

3.2.3 GUARD for Multi-dimensional Queries

The GUARD protocol that we described is capable of locating nodes hav-

ing a specific resource. However, in a realistic scenario the application is likely to

need resources meeting multiple criteria (e.g. a Pentium IV processor with 1 GB

memory running Linux). We shall call these requests multi-dimensional requests

[97]. While we can use the already described version of GUARD to locate individ-

ual nodes meeting these requirements, there is no guarantee that these resources

will be in the same node. Moreover, the closest distance to nodes meeting indi-

vidual requirements might be different from nodes meeting all these requirements

(e.g. The closest node having 1GB RAM might be 3 hops away and the closest

node having a Linux OS might be 2 hops away, but the closest node having both

these properties might be 5 hops away).

One way to tackle this problem would be to track all possible request

types. While this would solve the problem, it is impractical since even a small

number of trackable properties can lead to a huge number of possible requests.

We therefore consider a variant of the GUARD protocol, similar to a technique

used for data-centric systems in [50], that populates the node tables with the most

popular queries.

Assume that there are K different types of resources < R1, R2, ..., RK >

(for simplicity we assume that a resource is Boolean, i.e. Ri = 1 if a node has the

resource, otherwise it is 0). A user may want to locate a node having one or more

of the K resource types. We use the following approach. Each node has a table of

fixed size, but now the table entries are of type <request type,distance,nbr,count>

where request type defines the set of types constituting the request, distance is

32

the number of hops from the resource, nbr refers to the neighbor of the node to

forward requests for this combination of resources, and count keeps track of how

many times this particular resources type has been requested. Initially all the

table entries are initialized with a single entry, with all fields corresponding to the

resources the node owns set to 1 in the entry.

Whenever a node gets a request, it makes a table entry for the request

(if it doesn’t already have one), or increments the entry’s count (if it does). Since

the table is of finite size, an entry with the minimal value of count is evicted1. If

the node can satisfy the request itself, it does so. If its table has an entry that

can satisfy the request or a superset, it forwards the request to the indicated node.

Otherwise, it sets the distance in the table to infinity, and the request fails. Via

gossiping, table entries are propagated to neighbors and beyond. Eventually, a

node is found with the resource and the gossiping results in table entries with

finite distances.

The above modification to the protocol maintains the simplicity and au-

tonomous behavior of GUARD while addressing the issue of multi-dimensional

requests. The table entries get populated with the more commonly issued request

types.

3.2.4 GUARD for Non-boolean Resources

Some resources, such as memory, are not Boolean but come in different

sizes. Any request for a particular size can be satisfied with a resource of greater

size. In this case, GUARD has a finite set of Boolean requestable sizes (e.g. 64,

128, ..., 2048 MB). We used a “best fit” strategy, where if a node cannot satisfy a

request itself, it forwards it to the node in its table that has the smallest acceptable

value (even if that node is further away than one with a larger resource). Other

strategies, such as “closest acceptable node”, are possible and worth investigating.

1One can try out other cache eviction policies too. e.g. Least Recently Used etc.

33

3.3 Experimental Results

In order to test the effectiveness of GUARD we built a simulator (a dis-

crete event simulator that was built from scratch) that allowed us to experiment

with several aspects of the protocol. We tested the protocol for two sets of topolo-

gies - (i) sensor-like2 networks (SN) where we randomly scattered the nodes over a

square grid and then connected all nodes within a given radius, and (ii) tree-shaped

networks (TN) that reflect the hierarchical topology of networked clusters. Each

experiment had a running time and a startup time. The startup time was provided

to have the system reach “steady state”. For all experiments the startup time was

fixed at 1000 seconds of simulation time. This value was chosen as sufficient in

our experiments for the performance to stabilize to a steady or periodic behavior.

The running time, after startup, was set to 10,000 seconds.

We begin by choosing plausible values of the parameters for our initial set

of experiments. (In Section 3.3.2 we will show how some of these parameters affect

the performance of GUARD.) The requests were distributed randomly across the

lifetime of the experiments. Resources once claimed remained with the requesting

node (the duration of a task was distributed randomly between 15-30 minutes i.e.

900-1800 seconds). Not all nodes in the system shared their resources (to make our

simulator more realistic) and the percentage of nodes that shared their resources

ps was set to 70% for the initial experiments. Nodes updated their information

once every 50 seconds. For the initial experiments we considered the resource to

come in six different sizes. Each of the nodes sharing their resource with others

had a resource of one of these sizes with the probabilities {.05,.1,.3,.3,.15,.1} and

the requests for these resources had a probability of {.05,.1,.2,.35,.15,.15} (chosen

to make some of the less available resources more heavily requested). For the

experiments shown in Figures 3.5 and 3.8 we used variable sized resources where a

first-fit approach was adopted for answering the queries, i.e. a request was routed

2We anticipate that one of the major uses of large scale decentralized computing will be sensor

networks.

34

to the closest node whose resource size was greater than or equal to the that of

the request. For all other experiments we used an exact-fit approach.

3.3.1 Performance of Guard

The main test for a protocol is its performance. We tested the perfor-

mance of GUARD by varying several parameters to test its efficiency and feasibility.

To test the basic protocol we created systems of size N = 1000, 2000, 4000, 8000,

16000 and 32000 for both the topologies SN and TN. For each experiment, the

number of requests was 2N and the requesting nodes were chosen randomly from

all the nodes. We compared GUARD to three other protocols used for similar

purposes described in [47], namely:

• RAND: In this protocol nodes randomly routes the request to one of its

neighbors until it is successfully answered or it reaches a maximum distance

TTL (for our experiments we set TTL = 100).

• HIST: Nodes keep a history corresponding to each resource type, tracking

the neighbor that successfully routed it the last time. Requests for a resource

are routed for a maximum of TTL times by this method, thereafter, RAND

is used for up to an additional TTL steps. On successful completion of a

request, all nodes on the path updated the entries to show the successful

route.

• FREQ: Nodes keep track of the number of requests (irrespective of the

resource type) that each neighbor answered. Requests are routed to the most

successful neighbor. Like HIST, on failure the protocol resorts to RAND.

The results for Boolean resources are shown in Figures 3.3 to 3.8. We

evaluated performance based on two criteria - (i) the percentage of requests that

were successfully answered (a failure means there existed a resource of a particular

35

Figure 3.3: Percentage of queries successfully answered by the various strategies

for the Sensor-like Network (SN)

Figure 3.4: Percentage of queries successfully answered by the various strategies

for the Tree-like Network (TN)

36

Figure 3.5: Percentage of queries successfully answered by the various strategies

when a first-fit approach is tried instead of a best-fit policy.

Figure 3.6: Average number of hops needed by the various strategies for the Sensor-

like Network (SN)

37

Figure 3.7: Average number of hops needed by the various strategies for the Tree-

like Network (TN)

Figure 3.8: Average number of hops needed by the various strategies when a first-fit

approach is tried instead of a best-fit policy.

38

size but the protocol failed to locate it; if there is no such resource, it is not counted

either way) and (ii) the average number of hops taken to reach the resource.

One can see that GUARD significantly outperforms the other protocols

in the percentage of requests answered, and it always uses a smaller number of

hops. GUARD is scalable and performs well for both topologies and all the graph

sizes. Intuitively, this improvement comes largely because the distance vector ap-

proach helps to identify the nearest resource while the other protocols target ”any

resource”. Though GUARD spends effort in periodically updating its informa-

tion, this effort helps in achieving significant benefits. It must also be mentioned

that the small value for the average number of hops needed by GUARD does not

mean it wasn’t suitable for locating distant resources. In our experiments GUARD

worked successfully even when the nearest resource was 30-40 hops away.

The results in Figures 3.5 and 3.8 use variable-sized resources. One can

see that even though the performance of RAND, HIST and FREQ improves both in

terms of percentages of requests answered and number of hops taken to locate the

resources, GUARD still consistently outperforms these heuristics. This suggests

that GUARD can be used to locate both resources having a Boolean value (like

OS, software, architecture etc.) or resources that can satisfy a range of values

(memory, storage etc.)3.

3.3.2 Effect of Various Parameters on GUARD

To test the effect of various parameters on GUARD’s performance, we

used the setup of the previous experiment for N=4000 and varied one of the

parameters, keeping the others constant. The parameters we studied were (i) the

percentage of nodes sharing their resources, (ii) the inter-update time at which

nodes update their information, (iii) the number of requests made and (iv) the

average duration of a task. We conducted the experiments for both topologies and

3The dividing of resources like memory, storage etc. into smaller categories can lead to

fragmentation of the resource and has not been dealt with in our work.

39

Figure 3.9: Effect of the percentage of nodes that share their resources on the

percentage of queries answered by GUARD

Figure 3.10: Effect of the update (gossip) frequency on the percentage of queries

answered by GUARD

40

Figure 3.11: Effect of the number of queries made on the percentage of queries

answered by GUARD

Figure 3.12: Effect of the average task duration (mean task length) on the per-

centage of queries answered by GUARD

41

Figure 3.13: Comparison of upper bound on failure provided by our analysis vs.

actual failure rate of GUARD. Observe that the actual failure is always below the

predicted value.

the results are shown in Figures 3.9 to 3.12. The results give an idea to how the

various parameters affect performance and support the analytical model presented

in Section 3.2.2.

3.3.3 GUARD: Observed Performance Vs. Predicted Per-

formance

To test the validity of the analysis presented in Section 3.2.2, we calcu-

lated the failure rate of the experiments mentioned above and compared it to the

upper bound provided by our analysis. The value of NrT
was calculated by the

simulator using the actual number of resources of a size that was left in the sys-

tem4. We have provided the results for both the topologies and have also provided

the ideal curve (where the predicted rate equals the observed rate) for comparison

4This might be difficult to do in an off-line context but can be estimated using an expected

steady state value based on the rate of requests and the rate of release of resources.

42

in Figure 3.13.

We see that the observed failure was always bound by the upper bound

that our analysis provided. This shows that the analysis does indeed provide an

upper bound that can be used to determine a desired value of Fu. It can also

be seen that the predicted rates are almost a constant factor higher than the

observed rates (this factor varies for the two topologies). We conjecture this is

due to the possibilities of multiple paths to destination nodes and the possibility

of multiple destination nodes. Moreover, the lnr
term appearing in the exponent

is representative of the worst case scenario. In case one desires a tighter upper

bound they can use the average value of lnr+1
2

for the analysis instead.

3.3.4 Revised GUARD (Multi-dimensional Queries)

We now evaluate the performance of the revised GUARD protocol (men-

tioned in Section 3.2.3)where nodes can request a combination of the K resources

and the lookup table has a limited size. Like the previous experiments each

node had a 70% probability of having a resource. All combination of requests

for a given number of resources occurred with equal probability. We tried ex-

periments with K=5 and 6. For K=5 the requests comprising of 1-5 resources

appeared with probabilities of {.35,.28,.21,.11,.05}. For K=6 these probabilities

were {.30,.27,.22,.08,.08,.05}. We ran experiments for both the topologies by

varying the size of lookup table (note: for size=2K the protocol reduces to the

standard version of GUARD, except for the startup time taken to propagate the

requests). The results are given in Figures 3.14 and 3.15.

We observe that the modified version of GUARD performs well: Even

for small sizes of the table, GUARD manages to answer more than 80% of the

queries successfully. This is comparable to the performance of the other protocols

observed earlier in terms of the success rate, while GUARD uses many fewer hops

to answer these requests5.

5HIST, which was the second most efficient in terms of number of hops is likely to run into

43

Figure 3.14: Performance of the revised GUARD protocol that allows multi-

dimensional queries for a combination of 5 different types of resources

Figure 3.15: Performance of the revised GUARD protocol that allows multi-

dimensional queries for a combination of 6 different types of resources

44

3.4 Practical Issues Associated with GUARD

The basic GUARD protocol and its multi-dimensional variant can be

further modified to meet certain additional situations. In this section we discuss

some of the practical issues that we did not discuss associated with GUARD.

3.4.1 Propagation of Stale Information

One of the issues associated with a distance vector based approach is

that it is slow in propagating information of staleness i.e. when a resource is

actually consumed, it takes a long time for that information to propagate through

the system. This happens because nodes interact only with their neighbors. Take

the example shown in Figure 3.16. Now assume that N1 has some resource and

hence the corresponding distance counters of N2 and N2 are 1 and 2 respectively.

Now if the resource in N1 gets consumed then ideally N2 and N3 should reflect it

immediately but in reality both these nodes will keep reading incorrect information

from each other and slow down the convergence significantly.

We address this issue by associating 2 additional fields with each routing

table entry, the source (src) and time-stamp (ts) of the associated resource. The

src tag contains the unique id of the node where the resource actually exists and

the ts field is a time-stamp denoting when this information was propagated. This

time-stamp doesn’t have to be a system wide synchronized time value but is local

to each node. When a node sends its current routing table information to its

neighbors, it updates the field corresponding to any resource it owns, with the

current value of the time-stamp. If a neighbor realizes that the node is closer to

a resource than itself, it checks if they both depend on the same src value. If the

source values match, the node checks if the value of ts is a more recent one. In

other words, nodes only update their resource distance from a source if it is a more

recent value.

the same problem of a limited size lookup table.

45

N1 N2 N3

DX=0 DX=1 DX=2

Other
nodes

Figure 3.16: Example showing the convergence problem. Imagine now that some

other node uses up DX in N1. N2 and N3 will then keep passing on incorrect

information to each other, slowing down the convergence rate significantly.

3.4.2 Dealing with Failures

It is possible in GUARD for a node to believe that one of its neighbors

has a resource when it actually doesn’t. This happens due to the delay between

table updates. In our experiments whenever such a situation arose the request was

dropped and reported as a failure. However, in a practical implementation the

node can wait for a while before continuing the routing process. The time to wait

can either be a constant time or proportional to the frequency of updates and the

number of hops the message has already traversed.

3.4.3 Dealing with Multi-node Requests

Unlike SWORD [79, 80], the current version of GUARD does not support

requests asking for a pool of nodes. GUARD returns to the user the nearest node

satisfying a given requirement. It doesn’t specify anything about the handshaking

protocol between the two nodes thereafter. One can therefore easily implement a

resource grouping/pooling protocol on top of GUARD by making multiple resource

requests and booking them6.

6However, one has to ensure that resources are freed in case all requirements of a pool of

nodes is not met, avoiding unnecessary starvation.

46

In this chapter we studied the GUARD protocol. GUARD uses gossiping

with neighbors to propagate distance information of resources. GUARD is com-

pletely autonomous and each node only interacts with its immediate neighbors in

the underlying topology. We saw that GUARD significantly outperformed other

decentralized techniques. GUARD also supported multi-dimensional queries.

Having studied how computing resources can be detected in an autonomous

fashion, we now discuss the issue of using these resources effectively for autonomous

task scheduling.

Portions of the text of this chapter are a reprint of the material as it appears

in [72]. The dissertation author was the primary researcher and author and the

co-authors listed on this publication directed and supervised the research which

forms the basis of this chapter.

Chapter 4

Autonomous Task Scheduling

Task scheduling has been one of the most extensively studied areas in distributed

computing. The purpose of a distributed computing system is to use its avail-

able resources to facilitate computation. In order to achieve this objective it is

extremely important to schedule tasks efficiently to the right resource(s). Ideally,

in centralized systems, a dedicated scheduler is responsible for mapping tasks to

resources [48, 5, 21, 87, 32, 62, 65, 44, 101]. The scheduler is normally aware of the

number of resources, their availability, their computing ability and the capacity

and speed of the interconnecting network(s). The scheduler also often has a good

knowledge of the tasks and their requirements. This comprehensive knowledge

often allows the scheduler to do a good job of mapping a task (or group of tasks)

to a resource (or pool of resources).

However, in an autonomous scenario, there are no centralized schedulers

where nodes can submit their tasks. Thus the job of task scheduling is delegated

across all nodes in the system. Each node has to make its scheduling decision

locally, while ensuring that they are in the best interest of the overall system. This

is the problem that we address in this chapter.

We deal with homogeneous and independent tasks (other distributed com-

puting efforts have used a similar task model [91, 68]). All tasks are submitted by

a single user/node (we later discuss in Section 4.4.3 how one can easily extend our

47

48

solution to multiple users). This node has a huge pool of homogeneous tasks that

is submitted locally to one (or more) of the neighbors. A task, in our system, can

either get performed by the node, or get passed on along the system to its neigh-

bors. This process continues until some node executes the task. Performance is

measured in terms of steady state throughput and not total completion time since

we assume that the submitting node has an unlimited pool of tasks.

This chapter presents A-FAST (Autonomous Flow Approach to Schedul-

ing Tasks) [71], a protocol that provides an autonomous solution to the above

described problem. The autonomic behavior of fluid networks, using pressure as a

guiding force, forms the key inspiration for our work. One can imagine the nodes in

a grid as fluid reservoirs, and the links as pipes connecting these reservoirs. Tasks

are analogous to the circulating fluid in this scenario. In case of the fluids, pressure

helps in bringing the system to a steady state without the use of any centralized

control. We propose a similar approach where nodes autonomously measure their

own pressure. This pressure is then used to decide when to move a task to a neigh-

boring node, eliminating the need for centralized control over scheduling. A-FAST

shares similarities with well-known techniques like Cycle Stealing [13] and RID [69],

but differs from these techniques by taking both computation and communication

into account, which makes it better suited for a wider range of networks. We show

how several important scheduling-related issues, including fairness, throughput and

reliability, can be easily incorporated in our approach.

We begin with a formal description of the problem and then describe the

A-FAST protocol in detail. We then show how A-FAST can be used to achieve

high performance and also achieve greater reliability. Simulation results are then

provided that experimentally evaluate various aspects of the A-FAST. We also

present some real world experimental results and the lessons we learned from them.

49

4.1 Problem Definition

We begin with a formal description of the problem. We are given a

labeled, directed graph G = (N, E, P, C) representing the network. The nodes

of G is the set N = {0, 1, ..., n − 1}, with each node representing a computing

resource (processor, computer, cluster etc.) Each node i (i ǫ N) has a computing

speed represented by P (i) (P : N → R+), denoting the number of tasks the node

can complete in a unit time. E = {(i, j) : i, jǫN} represents the set of edges (links)

connecting the various nodes in this graph, and C(i, j) denotes the number of tasks

that can be sent from node i to node j in a unit time i.e. C : N × N → R+. All

tasks are of equal size (both in computation and communication)1 and initially

reside in the source node 0. The graph G is dynamic in nature, i.e. (N, E, P, C)

can change during execution. Nodes and edges can be added to or deleted from

N and E (except for node 0, which is always present) and the functions P (i) and

C(i, j) can also change. Our objective is to maximize the overall throughput of

the network i.e. maximize the number of tasks completed per unit time.

4.2 The A-FAST Scheduling Protocol

The A-FAST protocol exploits the fact that incoming tasks can be buffered

in a node. The protocol is divided into three parts - task receiving, task sending

and task processing. Nodes begin by advertising their current pressure (p) to their

immediate neighbors, requesting them for tasks. On receiving a request, a node

compares the requester’s p to its own to decide whether the request should be

serviced. Such an approach allows us to do away with the need for a centralized

scheduler, and instead make all scheduling decisions locally based on differences

in pressure, and yet develop a system-wide notion of need and equilibrium. If a

1Although we have not yet performed the experiments, we conjecture that if tasks are of

different sizes, but have a constant computation-to-communication ratio, that the behavior of

algorithms will be similar to the equal-size task problem. An interesting open question is how to

make scheduling decisions when the ratios are different but known.

50

node does not service a request, it informs the requestor of its decision. On being

serviced by a neighbor, a node requests another task. However, if its request is

denied, it waits for a set length of time before making another request. Nodes thus

periodically query their neighbors, requesting further tasks. To process a task,

a node takes a task from its buffer. If the buffer is empty the node waits till it

receives a task.

In its simplest form A-FAST tries to mimic fluid networks - transferring

tasks from locations of lesser need to those of greater need. There are however

several differences between the two mediums, and subsequent sections will explain

how we address these issues.

4.2.1 Scheduling in Dynamic Heterogeneous Environments

We now show how A-FAST can be used to schedule tasks in a heteroge-

neous system. We achieve this by defining the pressure, pi of node i, to be simply

the number of outstanding tasks in its task buffer, TBi. For each edge (i, j) ǫ E,

A-FAST makes use of an intermediate buffer, IBij, where IBij is a buffer on node

j that holds responses sent to it from node i. TBi has a capacity of mi “slots”,

where each slot can hold one task. Each of the slots in TBi is in one of the following

states:

• S1: the slot is “empty”.

• S2: a task is being transferred into the slot from one of the IBjis.

• S3: the task in the slot is getting executed by Ni.

• S4: the task in the slot is being sent to node Nj i.e. it is being transferred

from TBi into IBij.

• S5: the slot holds a task and is currently not in any of the above states.

Task buffers can have multiple slots in states S1, S2, S4 and S5, but for

simplicity we will allow only one task at a time to be in state S3. We define the

51

buffer occupancy, bi of a node to be the number of slots in state S5 at the current

time. We say “TBi is full” when the number of slots ei in state S1 is zero. In our

model each node has a limited number of buffers.

OnRecvReqest(j, bj) { // request from node j

	 i = CurrentNode;
	 pi = bi ; // pressure of node is equal to its buffer occupancy
	 pj = bj ;

	 if (pi-1 > pj) { // node has more tasks than requesting node
		 bi = bi - 1;
		 send(task, Nj); // send single task to Nj
		 ei = ei + 1;
	 } else {
		 send(refuseMsg, Nj); // refuse Nj
	 }
}

Figure 4.1: Protocol that nodes follow on receiving a request for a task.

A-FAST is divided into three sub-protocols for requesting tasks, respond-

ing to responses and performing a task. These algorithms have been provided in

Figures 4.1, 4.2 and 4.3 respectively. The shaded portions of the protocols need to

be performed in an atomic (synchronized) manner.

The advantage of this approach lies in the fact that the value of p is

independent of the dynamic system parameters like P and C etc. Thus every node

i can locally determine the value of its pressure pi. The protocol gauges the system

parameters by periodic querying instead, i.e. since each task transfer is followed

by a subsequent request, barring the overheads of latency the protocol should

make maximum use of the available bandwidth of a link. Similarly since each task

completion is followed by another task, each node tries to make maximum use of

its processing power.

Intuitively, the protocol should adapt to both a computation-dominated

system as well as a communication-dominated one: faster nodes empty their buffers

52

OnRecvData(j, rj) { // response from node j

	 i = CurrentNode;
	
	 if (rj is a task) {
		 flag = true;
		 while(flag) {
			 if(ei > 0) { // there is an empty slot
				 e i = ei - 1 ;
				 transfer task from IB ji to TBi ;
				 b i = bi + 1 ;
				 requestData(j, b i) ; // request more tasks from node j
				 flag = false;
			 } else {
				 wait for a while;
		 }
	 } else {
		 wait for a while
		 requestData(j, bi); // request tasks again
	 }
}

Figure 4.2: Protocol nodes follow on receiving a response from a neighbor in return

to a task request.

ProcessTask() {
	 i = CurrentNode;

	 if (bi > 0) { // There exists some task
		 dispatch task for processing;
		 bi = bi - 1;
		 perform task;
		 ei = ei + 1;
	 } else {
		 Wait(till pi > 0);
	 }
}

Figure 4.3: Protocol that nodes follow to perform task computation.

53

faster and their pressure decreases, making them likely to receive more tasks.

Similarly if a link is fast, tasks will be delivered faster across it, decreasing the

pressure at the provider node, leading to more tasks being sent to that node. We

will verify these claims in Section 4 through experimental verification of this variant

of A-FAST.

4.2.2 Incorporating Reliability in A-FAST

In this section we show how our generic idea of pressure can capture other

system properties such as reliability as well. To achieve this we shall modify the

definition of pressure to incorporate fault tolerance into the scheduling strategy as

well.

We define an unreliability parameter, τi, for each node in the system,

which reflects the average time a node remains online. A fair estimate of the value

of τi can be computed completely independently by each node. This can be done

by maintaining a three tuple of <num of readings,τi,last val> in the persistent

storage of each node. Every time a node i comes online it increments the value of

num of readings, sets τi to (τi+last val)
num of readings

, saves these values, assigns last val to 0

and then begins functioning. The variable last val is periodically updated to the

elapsed time and saved back to persistent memory. The last recorded value of this

variable can then be used as an estimate of how long the node remained online (the

accuracy of this value will depend on the frequency of updates). τi is the average

of all the values of last val and gives an estimate of the expected duration node i

is likely to remain online.

To incorporate reliability into A-FAST we modify our existing definition

of pressure to be equal to pi = bi

τK

i

, where bi is the buffer occupancy of node i and

K is some real positive constant (we shall term it Assurance Constant) denoting

the importance of fault tolerance to the system.

By doing this we make the pressure of a node inversely proportional to a

power of to its chances of breaking down. Thus for two nodes with similar buffer

54

occupancies, the node with a smaller value of τ (hence more unreliable) will have

a higher pressure and therefore tasks will flow out of it towards a more “reliable”

node. It must however be mentioned that giving too much importance to fault

tolerance might have adverse effects on throughput, since slower but more reliable

nodes will start getting more jobs assigned to them. This can be controlled by

choosing an appropriate value of K. We will observe the effect of K more in the

experimental evaluation section next.

4.3 Experimental Results

We wanted to test if A-FAST works for different types and scales of

systems. We generated two types of networks topologies - internet-like graph

topologies generated using the network-emulator package (NEM) [76] (G1) and

cluster-like topologies (G2). For generating a graph with n nodes in G2 we built

k clusters of equal size (k ≈ √
n). Nodes in these clusters were heavily connected

(average connectivity of k/2). These clusters were then connected to each other in

a random tree topology. The purpose of two totally different underlying topologies

was to study if A-FAST’s performance is topology dependent.

We generated graphs of four different sizes (n = 200, 400, 600 and 800).

For each of the generated topologies, each node i in the graph was assigned a ran-

dom processing speed, P (i), uniformly distributed between 1 and MAX SPEED.

This value represented the number of tasks node i can process in one timestep.

Every edge (i, j) was assigned a random value for C(i, j), uniformly distributed be-

tween 1 and MAX BANDWIDTH, denoting the number of tasks that can be sent

along the link in a given time unit. For our simulations we set both MAX SPEED

and MAX BANDWIDTH to the same value, namely 40. This was done to pro-

vide equal chances that the generated underlying system would be computation

or communication dominated. All experiments were repeated multiple times (at

least 5) and the average value of all the runs was taken.

55

0 10 20 30 40
Simulation Time

0.9

0.92

0.94

0.96

0.98

1

Fr
ac

tio
n

of
 M

ax
im

um
 T

hr
ou

gh
pu

t
n = 200
n = 400
n = 600
n = 800

Figure 4.4: Performance of A-FAST in Internet-like Graphs of different sizes.

0 10 20 30 40
Simulation Time

0.9

0.92

0.94

0.96

0.98

1

Fr
ac

tio
n

of
 M

ax
im

um
 T

hr
ou

gh
pu

t

n = 200
n = 400
n = 600
n = 800

Figure 4.5: Performance of A-FAST in Cluster-like Graphs of different sizes.

56

4.3.1 Throughput

We compared the performance of the first variant (Section 4.2.1) of the

protocol as a percentage of the maximum throughput of the system. The maximum

throughput was calculated using the maxflownet package [67] on the generated

network. The results for the two types of topologies, G1 and G2, are shown in

Figures 4.4 and 4.5.

It can be observed that A-FAST performs very well, averaging over 99.5%

of the maximum throughput for both the topologies and all the different system

sizes. This supports our contention that A-FAST is generic and scalable, although

the size of our graphs are small. It can also be observed that the startup time

of A-FAST is also small with almost all the simulations reaching 98% efficiency

within 5 minutes of simulated time (5 minutes corresponded to approximately 750

completed tasks in our simulation setup)2.

We also implemented a version of the RID algorithm [69] to compare its

performance against A-FAST for communication-dominated systems. We gener-

ated these systems by generating the G1 type graphs described above but assigning

link speeds that were less than the processing speed of the two nodes joining the

links. The version of RID balanced the load every time the number of tasks in the

Task Buffer fell below 5. The experiments were run for 60 simulated minutes to

allow the RID algorithm to reach steady state throughput. The results are shown

in Figure 4.6. We observe that while A-FAST achieves nearly 99.5% of the optimal

throughput RID only achieves only around 95% of the optimal throughput. RID

also takes a larger amount of time to reach the steady state throughput.

2It must be mentioned that we assumed zero latency networks for our simulations. This

might be unreasonable in certain scenarios where the frequent exchange of request messages and

the single task transfer approach of the protocol might affect the performance of the system.

Section 4.4.1 shows how we can deal with scenario

57

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Time

F
ra

ct
io

n
of

 M
ax

im
um

 T
hr

ou
gh

pu
t

rid n=400

rid n=200

a−fast n=200
rid n=200
a−fast n=400
rid n=400

Figure 4.6: Relative Performance of A-FAST vs RID on Communication-dominated

Graphs.

4.3.2 A-FAST in Dynamic Networks

For the experiments in the previous section the underlying system was

static i.e. it did not change with time. Real systems over time can have their

processor and link speeds changing. One of the strengths of A-FAST lies in the fact

that it does not use the values of the processor speed, P , and the communication

speeds, C, for its scheduling strategies. A-FAST’s supply-on-demand approach

coupled with the notion of pressure allows the protocol to adapt to system changes

autonomously. To test this we repeated the experiments described in the previous

section on G1 again, changing the underlying system (both node and link speeds)

every 2 minutes of simulation time. Every node in the system had a 20% probability

of changing by a magnitude of 20%. This meant that there was a fair chance

of the system properties changing marginally every 2 minutes. The new value of

maximum throughput was re-calculated after these changes. Different experiments

were conducted to study the effect of increase and decrease of system performance.

58

The results are shown in Figures 4.7 and 4.8.

One can observe that A-FAST adjusts to system changes in an efficient

and autonomous fashion. The yardstick used for comparison is the newly calcu-

lated max-flow value for the topology. While this value will always represent the

optimal performance in systems with increase in performance A-FAST can do bet-

ter than this yardstick (as it is evident from Figure 4.8) for systems with decreasing

performance. This is because A-FAST can buffer up more tasks and then use them

to sustain the performance temporarily even after the performance has decreased.

4.3.3 Reliability

In this section we test the validity of the Fault-tolerance-aware A-FAST

variant described in Section 4.2.2. Each node in the system was randomly assigned

a value τ uniformly distributed between (5, 75). Since we conducted our experi-

ments for 40 simulation time steps, this gave every node in the system an equal

chance of failing or not failing in the life time of the experiments (a failed node did

not restart). The nodes which failed were also uniformly distributed along the life-

time of the experiments. We then tested A-FAST with four different values of the

unreliability constant K, denoting the importance of reliability for the experiments

(note that for K = 0 the protocol reduces to the standard buffer based pressure

approach described in Section 4.2.1 and is provided as a base case). We measured

the change in throughput and amount of lost tasks (tasks that were assigned to

nodes when they broke down). The results are given given Figures 4.9 and 4.10.

In all our experimental scenarios, the throughput of the fault-tolerant

version of A-FAST achieves better throughput when compared to the standard

version. Though the changes in throughput are not too large, it shows that the

notion of pressure can successfully incorporate a range of features in it. However,

we could not conclude anything definitive about the impact of K on throughput.

This is because a smaller value of K reduces the importance of reliability and

increases the chance of a potentially faulty node getting more tasks while a larger

59

0 10 20 30
Simulation Time

0

50

100

150

200

250

T
hr

ou
gh

pu
t

n = 200 optimal
n = 200 actual
n = 400 optimal
n = 400 actual
n = 600 optimal
n = 600 actual

Figure 4.7: Performance of A-FAST in systems where system ability improves with

time.

0 10 20 30
Simulation Time

0

50

100

150

200

T
hr

ou
gh

pu
t

n = 200 optimal
n = 200 actual
n = 400 optimal
n = 400 actual
n = 600 optimal
n = 600 actual

Figure 4.8: Performance of A-FAST in systems where system ability decreases with

time.

60

Figure 4.9: Effect of adding reliability to A-FAST on system throughput.

Figure 4.10: Effect of adding reliability to A-FAST on number of tasks lost (note:

we do not deal with re-transferring lost tasks).

61

value of K might make slower and more reliable nodes get more tasks, thereby

affecting performance. However, it is evident that the introduction of reliability as

a parameter to pressure does pay off.

We, however, see a marked improvement in the reduction of task losses

with A-FAST. In our simulations we did not take any measures when a task was

lot. In a real system, a task loss might eventually require re-transmitting the task

and reducing the task loss can eventually improve the system-throughput even

further.

4.3.4 Practical Implementation

We also implemented the A-FAST protocol in a real system as part of our

Java-based programming platform described in Chapter 5. This section describes

some of the results and the lessons we learnt during the process. The experiments

were run on the UCSD Fast Wired and Wireless Grid Project (FWGrid) [37] plat-

form as a test bed. FWGrid is a cluster of Dual 1.6GHz AMD Opteron processors

connected by high speed network. The system provides exclusive access to nodes

i.e. a node is assigned to only one user at a time. We imposed a virtual topology on

top of these clusters whereby nodes could only communicate with their immediate

neighbors in the topology.

For our tasks we used an integration application where we tried to find

the area under a curve by repeatedly adding up small rectangles under it. The

task was divided into 160 equal sized sub-tasks (by dividing the X axis range of

the integral uniformly). We tested the performance of A-FAST on three different

topologies - star, a fully-connected graph and a binary tree. The results are shown

in Figure 4.11. We have also provided an estimate of optimal performance by

reporting the time ⌈ T
N
⌉ as a yardstick where T is the time the task took to run on

a single node (averaged over several runs) and N is the number of nodes used. Even

though the results are preliminary in nature and system size was not too large,

one can observe that the A-FAST’s performance is comparable to the estimated

62

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400
Number of Threads = 160

Number of Nodes

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Star Topology
Tree Topology
Full Graph Topology
Estimated Optimal Execution Time

Figure 4.11: Performance of A-FAST in a real system with three different under-

lying topologies.

63

N0

N2N1 N8

N0

N1 N2

N3 N4 N5 N6

N8N7

Figure 4.12: Example showing how topology can affect the maximum buffer capac-

ity of a node. For the star topology shown above, having a large buffer capacity

might allow one of the leaves to become the bottleneck by pulling more tasks than

needed. For the tree topology however we want a higher buffer size for the non-leaf

nodes (N1, N2, N3) in order to facilitate better task transfer.

optimal throughput for all three topologies. A-FAST also scaled well over all three

topologies across all the system sizes. This validates our claim that A-FAST is not

only efficient as a scheduling technique but a practical one too.

4.3.5 Lessons Learnt

While implementing the practical version of A-FAST, described in the previous

section, we ran into several interesting issues that are worth mentioning.

1. Overlap of Computation and Communication: Our earlier work [60]

showed that even though it is traditionally assumed that computation and

communication overlap perfectly, it is often not the case in practice. In an

actual system (like our implementation) it is often the case that computation

and communication get performed by parallel threads that are scheduled one

at a time. By making unnecessary communication(requests) we might affect

the performance of the computation thread significantly, thereby reducing the

overall throughput of the node. In our experiments we experienced this effect

64

several times when excessive requests for tasks and unnecessary task transfer

(to be explained in next section) affected the throughput of the node. It is

therefore important to (i) avoid unnecessary communication and (ii) ensure

that the individual threads performing computation and communication get

scheduled proportionally (in our implementation, all threads were assigned

equal priority).

2. Buffer Sizes: The basic A-FAST protocol described in Section 4.2.1 and

our simulations assumed an unlimited number of tasks in the initial submit-

ting node and also an unlimited buffer capacity in the participating nodes.

However, for our implementation we were dealing with a fixed number of

tasks. We were thus concerned about the overall running time and not the

steady state throughput. While we didn’t have to modify A-FAST much to

adapt to this yardstick, we did run into some interesting issues due to our

assumption of unlimited buffer sizes.

Consider the two different cases - that of the star topology and that of the

binary tree topology shown in Figure 4.12. In the star topology all par-

ticipating nodes (except for the root) are leaf nodes. “Ideally” all the leaf

nodes should get an equal number of tasks. However, in a real system the

requests of nodes take place in multi-threaded fashion and it is likely that

the root node gets more requests from one of the participant than the others.

As an example consider a case when, due to thread management issues, the

root gets more requests from N1. Therefore N1 ends up with more tasks

than the rest of the nodes and becomes the bottleneck for overall runtime.

Since all edges in our graphs are bidirectional in nature, it is expected that

finally when N1 is the only node left with tasks, the root will draw out tasks

from N1 and redistribute it to other nodes. However, this would be unnec-

essary communication and can affect performance further (due to the effect

of communication on computation).

65

To solve this problem we put a limit on the buffer capacity of the nodes. Each

node had a Maximum Buffer capacity (MB). Nodes checked if the number

of outstanding tasks in the task buffer was less than MB before requesting

further tasks. For the results shown in Figure 4.11 we set MB to 4 for

the star and fully connected topologies. This ensured that no single node

drew too many tasks without actually completing them. However, when we

tried the same value of MB for the tree topology the performance reduced

significantly. This happened because reducing the number of outstanding

tasks in the task buffer made it more difficult for tasks to actually trickle

down the system to other nodes. This happened because the possible pressure

difference between nodes decreased when we set a low value for MB. This

lead to a greater waiting period for nodes before they could get a task from

their neighbors. With increase in the time to actually receive a task, the time

to pass that task on to other nodes also increased (e.g. it would longer for the

pressure in N1 and N3 to build and hence take even longer for tasks to reach

N7 and N8. We thus noticed that the overall throughput of nodes decreased

as we went down the tree. To deal with this situation we increased the value

of MB for the tree topology. This improved our results considerably. For

the results in Figure 4.11, the value of MB was set to 6 for the tree topology.

It must be mentioned though, that some of these issues only occurred because

we did not have an unlimited supply of tasks and were concerned about the

overall runtime and not the steady state throughput. However, since many

applications fall into this category, it is important to understand the effect

the underlying topology can have on the value of MB and how this affects

the overall system throughput.

66

4.4 Other Issues

We now discuss some issues and special situations related to A-FAST and

how they can be handled.

4.4.1 Latency

For all our simulations we ignored the effects of latency. This was done

under the assumption that the size of a task and the time to transfer it will be

significantly larger than the overheads of latency. Given that a lot of distributed

computing tasks are long running and involve large volumes of data transfer, this

is a reasonable assumption. However, if the tasks are small in size, with relatively

small running times, then latency can have a noticeable effect on the performance,

due to the per-task transfer approach of A-FAST. This can be dealt with by group-

ing a set of tasks together to increase the “effective task size”. Even though this

takes us away from the one-task approach of A-FAST that makes it adapt to both

computation and communication dominated tasks, we will not lose out much since

by assumption these tasks are small in size and runtime.

4.4.2 Avoiding Infinite Wait

With the suggested implementation of A-FAST it is possible for submitted

tasks to get passed around the system without actually getting executed. One

way to avoid this is to time-stamp the tasks. Since we assume that all tasks

originate from a single node, this could be easily done without requiring system-

wide synchronization. Participating nodes could just arrange the tasks in a queue

sorted by their time-stamps and perform tasks from the front of this queue. This

would ensure that earlier tasks get performed first.

67

4.4.3 Dealing with Multiple Submitting Nodes

Till now we assumed only one source (submitting) node. In an ideal

autonomous system that supports collaborative community building, it is likely

that multiple nodes will submit jobs into the system. We would thus want to

ensure some kind of fairness among the various submitters.

One way to deal with this problem is to have a tag associated with

each job, denoting its originating node. Jobs in a participating node can then

be arranged in queues corresponding to their originating nodes3. Tasks should

then be executed and sent to other nodes by traversing these different queues in

a circular fashion. This ensures that all users who have submitted jobs get equal

priority in terms of both communication and computation4.

It must also be mentioned that the time-stamped approach described in

the previous section to avoid infinite wait applies to this setting as well. Each sub-

mitting node can time-stamp its jobs locally without worrying about the system-

wide nature of the time stamps (hence we do not need system-wide synchronization

of the relative values of the time-stamps). Jobs will then get selected, performed

and passed on to other nodes in a circular fashion giving equal priority to all sub-

mitting nodes. Thus, as long as each node time-stamps the jobs it submits, the

jobs will get a priority equal to all other jobs submitted by other nodes. Since jobs

will also get prioritized based on their time-stamps (even though within a single

node) it will also prevent them from getting into infinite waits.

In this chapter we studied the A-FAST protocol for autonomous schedul-

ing of homogeneous independent tasks. A-FAST achieves ≈ 98% of the optimal

steady state throughput and scales well to different systems sizes and changes. We

also discussed variants of A-FAST that can incorporate greater reliability and sup-

port multiple submitting nodes, without compromising on the autonomous nature

3It is not necessary that there is one unique queue corresponding to each originating node

since that would affect scalability. In case there are too many originating nodes then jobs can be

hashed to queues based on their originating node.
4It must be mentioned that we still assume all jobs to be of similar nature. If different users

submit different jobs the problem scenario changes completely.

68

of the protocol.

Portions of the text of this chapter are a reprint of the material as it appears

in [71]. The dissertation author was the primary researcher and author and the

co-authors listed on this publication directed and supervised the research which

forms the basis of this chapter.

Chapter 5

Programmability

One of the biggest challenges towards making distributed systems more popular

is to facilitate the development and deployment of a wide range of applications

for them. The various complexities associated with these systems make it difficult

for programmers to develop code that makes efficient use of available resources.

Autonomy and heterogeneity makes the problem of code development for these

systems even more difficult by removing centralized sources of information that

developers can use. In this chapter we propose a system architecture that allows

developers to produce code for these systems by giving them a simplified view of the

available resources. We then show how the scheduler can make runtime decisions to

adapt this code for various scenarios, without requiring the programmer to change

his code.

5.1 Introduction

Decentralized control, coupled with the growing heterogeneity of indi-

vidual nodes of large scale autonomous computing systems, makes programming

extremely challenging. Code that is fine-tuned to perform efficiently for a given

set of resources may not scale to a larger or different set of available resources.

On the other hand, code that is generic runs the risk of of substantial overheads

69

70

that lead to sub-optimal performance. In the presence of centralized monitoring

and control, programmers can gather detailed information about the system (size,

topology, processing strength etc.). They can then use this information to pro-

duce optimized code that makes efficient use of the resources. In a dynamic and

autonomous computing environment programmers have a very limited view of the

system and its abilities. It is likely that, in a truly large-scale autonomous com-

puting system, resources will be continuously added and removed from the system.

The system topology, size and ability is likely to change too. It will be extremely

difficult for the programmer to write code for such a dynamic system without hav-

ing complete knowledge about it. This is the problem that we try to address in

this chapter.

We propose a system architecture that provides the programmer with a

virtual view of the system as a given number of virtual homogeneous resources.

This view makes it easier for programmers to produce efficient code by hiding

several complexities of the underlying system. Nevertheless, as our experiments

show, this virtual view of the system allows the code to adapt to the parameters of

the underlying system, without having to change the original program or involving

the programmer in the decision making.

To motivate our approach, consider two common programming options

for distributed systems - MPI or PVM-like approach [70, 99] and an ATLAS [8, 14]

like programming model. In the former case, the user normally deals with a pool

of homogeneous nodes. The programmer breaks up the given task into a fixed

number (usually equal to the number of available resources) of sub-tasks that are

then assigned to the various resources. This allows the programmer to fully specify

the granularity of parallelism and easily address issues such as message passing and

scheduling. The systems for which PVM was initially designed were “client-server-

like” by nature, where the server assigned tasks to individual client resources.

In a decentralized system where nodes only interact with their imme-

diate neighbors, it is possible that the local view of the system is very different

71

Figure 5.1: Effect of number of subtasks on performance across two nodes of

dissimilar capabilities.

from its overall capability. This suggest that provisions for allowing the tasks to

get progressively divided into smaller sub-tasks, based on the run-time ability and

topology of the system, are needed. Moreover, given that many present day dis-

tributed systems consist of heterogeneous nodes with varying capabilities, dividing

a task into as many subtasks as resources might lead to performance degradation.

Figure 5.1 illustrates this possibility, where a divisible task was executed across

two nodes, a Pentium IV 1.5GHz PC with 512MB of memory and a Pentium III

600 MHz machine with 256MB memory. Creating just two tasks makes the slower

node the bottleneck of the system and affects performance significantly. This sug-

gests the need for an easy interface for feeding such runtime information into the

program.

On the other end of the spectrum, in ATLAS (and similar systems like

Satin [100]) the programmer is expected to progressively break up tasks into smaller

sub-tasks that are then spread across the system using Cycle Stealing [14]. This

task division is done by the programmer and does not necessarily depend on the

configuration of the underlying system. Breaking up a divisible task progressively

72

Figure 5.2: Effect of increasing the number of threads on performance of a single

node. While the performance degradation for MergeSort is smaller, Integration

gets affected more severely.

in the absence of adequate resources can be detrimental to the performance of

the program, creating unnecessarily small threads that can adversely affect perfor-

mance. Figure 5.2 illustrates this point. We plot the performance of two simple

programs (a merge sort and an integration function that adds up small rectangles)

run on a single machine (Pentium IV, 1.5 GHz, 512MB), by varying the number

of threads. While the performance degradation is much smaller for Merge Sort

(because at any given instant at least half the threads are waiting for the other

threads, and the memory and computation operations can also be overlapped),

there is a significant drop in the performance for the computation-dominated in-

tegration task. Thus increasing the number of threads without having adequate

resources can affect code performance adversely. Creating more tasks than needed

can also increase the communication overhead significantly. Thus while an ATLAS

like approach can work very well for a large set of tiered resources in a computation-

dominated environment, it might not work as well in other scenarios.

We propose a programming model that lies between these two - where

73

the programmer produces divisible code for a number of virtual resources but

this number is given to the program at runtime through a node’s scheduler. The

actual granularity of a job is thus decided at runtime. The ATLAS like divisible

structure allows the program to be divided into smaller tasks if additional resources

are available, while the runtime information provided by the scheduler ensures that

the granularity is in proportion to the actual scale and heterogeneity of the system,

and doesn’t affect performance adversely. We also show how using this simple

programming model allows the scheduler to adapt to several runtime scenarios. In

summary, the main contributions of this section are as follows:

• A simple programming model based on a virtual resource interface that eases

the programmer’s task by hiding the complexities of the decentralized plat-

form.

• A minimal API through which the program and the decentralized system

interact at runtime.

• A Java-based systems architecture which supports adaptive parallelism, and

different scheduling and communication strategies, without involving the pro-

grammer.

• Experiments using FWGrid which show how the use of this architecture can

lead to significant performance gains in several different decentralized run-

time scenarios, including different numbers of nodes and network topologies,

for both compute- and communication intensive applications, without having

to change the program or involve the application programmer.

The rest of this chapter is organized as follows. We begin by discussing

the architecture of our proposed system and shows how code produced can scale

using different network topologies and sizes and then present results from our

experiments on the FWGrid system.

74

5.2 System Architecture

Program

Manager

Performer Message
Box

Scheduler

communicates with
other schedulers

communicates
with other

message boxes

Program

jobId

messageBox

Job

Program-Scheduler
interaction (submit,
numResources, join
getJobResult, getId)

Program-MessageBox
interaction (send, recv,

getMessageBox)

parent

Figure 5.3: Overall system architecture of our framework. Each node has one

Manager and a job it interacts with. Managers of neighboring nodes interact with

each other.

In this section we describe the architecture of our proposed system. We

present the interface between the program and the scheduler, the communication

paradigm used, and the components of the architecture. Figure 5.3 gives a basic

overview of our system. The system has two principal components:

• Job: A Job in our system is any Java program that extends the Thread class.

All task transfers and execution in our system takes place at the granularity

of a Job. We encapsulate the program within a Job class that automatically

embeds additional information, such as a unique jobId and the associated

Message Box Id (used for message passing), in the code. Programmers can

thus create a stand alone Java task that can execute as a thread and en-

capsulate it as a Job and make it executable in our system. Jobs also have

75

a groupId and priority field that can be used to group them together and

assign relative priorities to them. We will later discuss in Section 5.2.2 how

these two fields can be used to deal with situations like irregular tasks.

• Manager: Each node in our system has a single Manager application run-

ning on it. The Manager is a collection of utilities that we felt should be

independent of the program. The programmer can therefore develop code

that is independent of underlying system issues and allow the Manager to

deal with them at runtime. In our system a Manager consists of a Sched-

uler (that schedules the various submitted jobs and interacts with Schedulers

of neighboring nodes), a Message Box (which acts as a message repository

that the jobs can use to communicate) and a Performer (the component that

actually runs a job and deals with local Thread Management).

By keeping these two components separate in terms of functionalities we

ensure that the programmer doesn’t have to worry about system-specific issues.

The Manager provides the programmer with a simplified virtual view of the re-

sources available that hides many of the underlying complexities that are dealt

with by the Manager. The programmer has the application-specific knowledge to

break up the program into subtasks; the scheduler has the knowledge and respon-

sibility to adapt to runtime conditions. All interactions between a Job and the

Manager happen through a well-defined API. It is therefore possible to replace an

existing scheduler with a new one that might be better suited for a specific envi-

ronment, while the program remains oblivious to the change. This is supported

by our experience: during our experiments, we changed the scheduling component

several times to meet particular system specific needs, but these did not require

any changes to the original program. We next describe the API through which the

program and the Manager interact.

76

5.2.1 The Interaction API

Our objective while designing the system was to choose a simple and

minimal interface between the program and the Manager to ease the programmer’s

effort, yet rich enough to allow code to run efficiently in different scenarios without

additional programming effort. The following are the basic methods that our

system provides for a Job to interact with the Manager.

• void submitJob (Job j) - Used by the program to create and submit Jobs to

a virtual resource’s Scheduler. Any job in the system can thus create further

(sub)jobs and submit them to the system and facilitates adaptive parallelism.

Note that the jobs created need not be aware of the location where they get

created or are submitted.

• int numResources () - Used by the program to query a node’s Scheduler to

find out how many virtual resources are available. This is one of the biggest

features of our system where the Manager provides the program with a virtual

view of the size of the system. The programmer is expected to believe that

the returned value represents a pool of homogeneous nodes that are similar

in their capabilities. This simplifies the programmer’s view of the system.

We will later show how, by varying the value of this number, the Scheduler

can adapt to a range of situations at run-time, ensuring scalability, efficiency

and fairness.

• void join (Id jobId) - Used by a program to synchronize Jobs where Jobs

can wait for a particular Job (identified by the jobId) to complete before

continuing execution.

• Job getJobResult (Id jobId) - Used to retrieve the results of a completed

Job. If a Job is incomplete at the time of invocation the method waits till

the result is available and then returns it. Programmers are thus expected to

gather their results as part of the Thread Object they create and encapsulate

77

with the Job class. They can then retrieve the associated Job and extract

the actual result from the Object. Another way of retrieving result(s) would

be to use the message passing Section 5.2.3. The example given in Figure 5.4

will explain this further.

• void send (Id from, Id to, int messageId, Object message) - Used to send a

particular message to a desired Job (identified by its unique id).

• void recv (Id from, Id to, int messageId, Object message) - Used to receive a

particular message from a desired Job (identified by its unique id).

Other than these methods that the Manager must provide for the pro-

gram(s) to function properly, the manager must also provide two other methods

that the Job class uses to hide necessary information from the programmer. These

are:

• Id getId () - This method is used to assign each Job a unique system-wide

jobId. Every time the programmer creates a new Job this method is auto-

matically invoked to assign a unique id to the Job.

• MessageBox getMessageBox (Id id) - A Message Box in our system is like a

mailbox where messages for a Job are stored. This method is used to assign

a Message Box to every Job that gets created. This message box is then

used to send all messages intended for that particular job. We later show

in Section 5.2.3 how this method can be used to prevent any one node from

becoming a data bottleneck in the system.

Having presented the basic API that the system provides, we now look at

an example program to better understand the various issues. Figure 5.4 shows a

sample program written using our API. The program finds the integral of a function

between two limits. When the program starts execution on a node, it queries the

number of locally known, virtual resources, and assumes all resources are similar

78

int numOfNodes = Manager.numResources(); // gets the number of nodes
if(numOfNodes == 1)
{

result = doIntegration(); // just perform the integration by adding the rectangles
}
else
{

Job rThreads[] = new Job[numOfNodes]; // create as many Jobs
double interval = (end-start)/numOfNodes;

for(int i=0; i<numOfNodes; i++) // assign each Job a range
{

rThreads[i] = new Job(new Integrate(start+i*interval,start+(i+1)*interval,range));
Manager.submitJob(rThreads[i]);

}

for(int i=0; i<numOfNodes; i++) // wait for each job to finish and combine results
{

Manager.join(rThreads[i].jobId));
result += ((Integrate)((Job)Manager.getResult(rThreads[i].jobId)).job).result;

}
}

Figure 5.4: Example program (calculates the integral of a function between two

points) to perform integration in our system. The program adaptively divides itself

at runtime to divide itself according to the number of available virtual resources.

The calls made to the Manager using our proposed interface is shown in bold.

79

as part of the programming methodology. The program is written to break up the

task, based on this number, by the programmer, who can use application-specific

knowledge. These subtasks can then be executed on the original node, or passed

on to any other nodes in the system, as determined by the node’s Scheduler.

In turn, when a subtask executes a job on this new node, it queries the new

node’s Scheduler. If the Scheduler says there are additional resources, then the job

will be further broken down adaptively to make use of these additional resources.

Thus, even though all decisions are made locally, the program adapts to the actual

runtime environment.

We will later see how the Scheduler can tweak the value of numResources

to adapt to various situations. It should also be mentioned that the value of num-

Resources and the actual breaking down of a job into sub-jobs is done at run-time.

Thus the program can behave differently when run under different environments

without the programmer being aware of it.

We now provide details of our implementation of the Scheduler, Message

Box and the Performer. Once again, it must be mentioned that the system pro-

grammer is free to provide any implementation of the these three components and

the program will still run as long as the Interaction API remains constant.

5.2.2 The Scheduler

The Scheduler (S) is the component of our system that is largely respon-

sible for deciding the granularity at which tasks are broken down and also for

scheduling these tasks on other virtual resources. The program queries the Sched-

uler to find the number of available resources in the system at runtime, based

on which the actual sub-task creation takes place. The interesting aspect of this

interaction is that the Scheduler can report the number of resources to the pro-

gram to be other than the exact number in the system, and the program will still

be run successfully to completion. The Scheduler can therefore set this reported

number to meet several requirements, without involving the programmer. As an

80

example consider the following two situations where “misreporting” the value of

numResources to the programmer actually aids the process of scheduling.

1. Scenario 1 - Suppose all the neighbors of a node are currently busy per-

forming some task. In such a situation the Scheduler should ideally report

the number of resources to be 1 to the program. In this case, the program

will then not break itself into smaller tasks, and just run as is to completion.

However, if at a later time, any neighbor of the node frees up, then there is no

way of distributing the work dynamically to it1. Instead the Scheduler can

report a higher value to the program (say 3), so the program will break itself

up into three tasks. In the worst case scenario the node performing the job

does all three sub-jobs itself (which will still be a smaller overhead compared

to a static partition approach taken by ATLAS, as illustrated in Figure 5.5

in Section 5.3.1). However, if a neighbor frees up later, the Scheduler can

assign the sub-job to it to speed up the execution.

2. Scenario 2 - This is the same scenario as shown in Figure 5.1, where there are

two neighbors available to a node, and the Scheduler reports back the number

of nodes as 2 to the program, which then divides itself into two sub-jobs that

are then assigned to each node. However, if one of these nodes is twice as

fast as the other, then the slower node will become the bottleneck. The

Scheduler could have instead reported the value 3 to the program, resulting

in 3 sub-jobs which can be divided between the neighbors in proportion to

their processing speeds.

Hence we see that it might actually be beneficial to either increase or de-

crease the reported value of numResources to the program. While in our program-

ming methodology, the programmer assumes the reported number of homogeneous

resources, the Scheduler can take care of issues such as heterogeneity, fairness and

dynamic property of the system by setting this number accordingly.

1The programmer can insert regular checks in his code but that makes the job of the pro-

grammer difficult and fails to serve the purpose of this work.

81

The Scheduler is also responsible for propagating jobs by interacting with

its neighboring Managers. In our current implementation, we use a modified ver-

sion of the A-FAST protocol described in Chapter 4 to schedule across nodes. Each

node runs a Manager, and the Scheduler of neighboring Managers query each other

periodically. Jobs are passed along nodes one at a time from a region of higher

pressure to lower pressure, where pressure is defined as the number of outstanding

jobs + number of running jobs. We modified A-FAST by putting a bound on the

maximum size of the task buffers. A-FAST allows jobs to trickle through the sys-

tem, while avoiding cycles (thus unlike ATLAS we can deal with arbitrary network

topology, not just trees) and maintaining efficiency. While reporting the value of

numResources to a job, our A-FAST Scheduler starts by reporting a value that is

proportional to the number of neighbors, and thereafter adapts itself by reporting

a value that is a multiplicative factor of the sum of the pressure differences between

the node and its neighbors2.

In Section 5.2 we mentioned that the programmer can group jobs to-

gether using their groupId field and prioritize them using their priority field. The

programmer can give a group of jobs the same group id3. Jobs can also be priori-

tized in a relative scale ranging between 0 and 1. This priority is used to hint the

Scheduler about the relative importance of jobs within the same group. It must

be noted that this is an added feature for the programmer (in case he wishes to

prioritize his tasks or implement more sophisticated techniques such as irregular

partitioning) and can be completely ignored if the programmer considers all tasks

to be uniform in nature. It is the responsibility of the Scheduler to try and assign

the higher priority tasks of a group to the faster available resources. Appendix B

describes some of our ongoing work on how such a priority can be set effectively

by users and how the Scheduler can use this value for scheduling a pool of tasks

2One can consider propagating information along the system to get a better estimate of the

actual number of nodes but such techniques are beyond the scope of this paper.
3In our present implementation we do not provide a mechanism to ensure that jobs provided

by different users do not have conflicting group ids but this is not very difficult to enforce using

the Manager to generate group ids.

82

efficiently.

Once again, it must be mentioned that the program is created indepen-

dently of the scheduling algorithm used, and one can replace A-FAST with any

other scheduling technique without affecting the functioning of the program.

5.2.3 The Message Box

We now describe the communication mechanism supported by our system.

As described earlier, all communication takes place using just two methods - send

and receive. In our current implementation both these calls are blocking in nature.

The basic abstraction for message passing in our system comes in the

form of a Message Box. Each node in our system has a single Message Box where

it saves all incoming messages. Messages are saved by hashing them to a key value

using their from, to and id fields, which uniquely identifies every message in the

system. Whenever a Job is created it gets a Message Box assigned to it. All

messages directed to the Job then gets sent to (and retrieved from) the assigned

Message Box.

As mentioned in Section 5.2.1, every Manager provides a getMessageBox

method which allows a node to locate the Message Box associated with a job.

When a Job gets created it invokes the getMessageBox method with its unique

jobId. Each Manager keeps an index of all jobs created on it along with their

associated Message Box locations. When the Manager realizes from the Id of a

job that it has never been assigned an Id (implying that the job is getting created)

it assigns it a new Message Box. It must be mentioned that it is not necessary

that the assigned Message Box be on the same node as the one where the Job is

created. This allows nodes to share the message passing load if they desire, without

involving the programmer in the process. This mechanism also allows messages

for a Job to be moved around to a new Message Box as long as the parent node of

the Job makes a record of it.

Whenever a send or recv call in made, the local Manager invokes the

83

getMessageBox method of the Job’s parent node (which is embedded in the Job)

and identifies the Message Box from where the actual data has to be retrieved. If

the node realizes that Message Box location is the same as itself, it just returns

(or saves) the desired value. Otherwise the request is passed on to the destina-

tion Message Box. The entire process is thus transparent to the program or the

programmer and prevents any one node from becoming the data bottleneck in the

system. Moreover, in a decentralized environment it is possible that tasks travel

across the system to many nodes before finally getting executed; our technique and

architecture can prevent unnecessary data transfer by shipping data only when a

job needs it.

In our implementation when a Job gets created it is assigned the Message

Box located in the node where it is created. If the Job creates further sub-jobs,

then they all get assigned the Message Box of the node where the sub-jobs are

created. Thus if a Job J1 is created in node N1 and creates further sub-jobs J2

and J3 then both these Jobs get assigned the Message Box in N1. However, if J2 is

finally assigned to node N2 and creates new sub-jobs J4, J5 and J6, then all three

new sub-jobs get assigned to the Message Box in N2.

It is also possible to implement fancier message handling (e.g. buffering

and prefetch information from a remote mailbox) and message box assigning op-

tions that improve performance. Our architecture makes it possible to try any of

these options without changing the original program as long as the send, recv and

getMessageBox methods are implemented correctly.

5.2.4 The Performer

In our system the Scheduler interacts with other managers to delegates

Jobs, but the actual Jobs must still be executed. Since resources that the Sched-

uler reports available via numResources might indeed might not be there, it is the

system’s responsibility to ensure that Jobs get completed in their absence. Run-

ning every created Job as a parallel thread may adversely affect performance, and

84

launching only one thread at a time might prevent a Job from completing. This

makes thread management a very important issue. The Performer both sched-

ules and executes threads at the node. In our current implementation, each node

launches a maximum of 2 Jobs simultaneously (since FWGrid consists of dual-

core processors). Every time a Job finishes, the task queue is checked, and if

there is a waiting Job, it is scheduled. However, it is possible that two threads

are not enough to complete a Job. Our present implementation of the Performer

periodically searches for blocked Jobs (via the Manager, which can easily detect

them since all blocking methods are invoked via the Manager) and launches the

necessary additional Jobs to eliminate blocking.

5.3 Experimental Evaluation

In this section we present results from experiments where our objectives

were twofold - (i) to generate parallel code for different types of applications (both

computation and communication based) and (ii) run these programs under different

scenarios (scale, topology etc.) to show their performance without having to change

the original program.

We used the UCSD Fast Wired and Wireless Grid Project (FWGrid)

[37] platform as a test bed. FWGrid is a cluster of Dual 1.6GHz AMD Opteron

processors connected by high speed network. The system provides exclusive access

to nodes i.e. a node is assigned to only one user at a time. We imposed a virtual

topology on top of these clusters whereby nodes could only communicate with their

immediate neighbors in the topology.

We now describe the various experiments we conducted and the issues we

faced in adapting to different situations.

85

5.3.1 Computation based tasks

The results of the practical implementation of A-FAST shown in Fig-

ure 4.11 were performed using the architecture described in this chapter. As men-

tioned in Section 4.3.5, we faced an interesting situation while dealing with the

three different topologies. A-FAST’s pull-based model led to situations with the

star and fully connected topologies where a single node would draw more tasks

than needed, thereby starving the other nodes. This made the single node with

more tasks the bottleneck of performance. To combat this problem we put a limi-

tation on the maximum number of outstanding tasks that a node could have, which

worked well. However, the same approach, when used on the tree topology, led

to significant performance degradation. We realized that this was because of the

small bound on buffer size in the Manager prevented tasks from spreading across

the system. Consequently, for the tree topology, we increased the buffer size and

this improved the performance significantly. Thus we used two different scheduling

strategies (one for the tree topology and another for the remaining topologies) but

we did not have to make any changes to original program. The clear separation

of the Manager and the Program allowed us to replace a scheduler that is better

suited for a scenario without having to change the original program at all. This is

precisely what we had hoped to achieve.

We then tested the effect of varying the reported value of numResources

on the performance. Figure 5.5 shows these results for the tree shaped graph.

Nodes reported a value of numResources that was a multiplicative factor of their

number of neighbors. We see that increases in this factor improved performance

up till a certain level (even better than a constant value of 160), after which the

performance degraded. This shows that the granularity at which a job is broken

down is important and can affect performance significantly (hence an ATLAS-like

repeated breaking down of jobs in not advisable). It must be noted that we have

not determined the optimal granularity, but our system provides an architecture

where the programmer can be freed from the responsibility of dealing with this

86

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

450
Binary Tree Topology with different settings on Number of Threads

Number of Nodes

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Fixed 160 threads
#of Threads=4X#of Nodes
#of Threads=8X#of Nodes
#of Threads=20X#of Nodes
Estimated Optimal Execution Time

Figure 5.5: Effect of the value of numResources (equals to the number of threads

created) on performance. It can be observed that increasing the reported value of

numResources improves performance till a certain point, beyond which the perfor-

mance degrades. The Scheduler can thus decide on the granularity of task division

at runtime based on the underlying system, without involving the programmer in

the process.

87

issue and the scheduler can decide the granularity at runtime.

5.3.2 Communication based tasks

To test how our architecture handles tasks with significant communica-

tion, we use a 4-point stencil Jacobi Iteration method as our sample program. The

initial array size was around 1GB. The job was broken down into further sub-jobs

that were then transferred around the system. Each sub-job got assigned an equal

set of consecutive columns of the array. Before each array iteration began, jobs

dealing with adjacent columns exchanged border information (through message

passing with their neighbors). This example also illustrates synchronization be-

tween jobs (an iteration can only begin when the previous iteration of the neighbors

of a job are over). We used the message passing technique described in Section

2.3. We tried two different strategies for assigning Message Boxes to the jobs:

• Local: where the Message Box of the node where the job was initially sub-

mitted was used as the default Message Box

• Remote: where all nodes interacted with a separate remote Message Box

running in a node that did not run any tasks (like a Data Server).

While the former strategy has the advantage of making many of the data accesses

local to the node (hence avoiding expensive remote invocations) it also runs the

risk of interfering with the actual task running ability of the node, slowing down

performance. The results are shown in Figure 5.6 for the star and full graph

topologies.

We see that all the experiments scale reasonably well till a certain prob-

lem size. We can also see that for the local experiments, where the Message Box

was on one of the running nodes, the performance is better for smaller system sizes

since most of the data accesses could be made locally. Our architecture made it

possible to try out two different data handling techniques without having to change

88

0 5 10 15 20 25
30

40

50

60

70

80

90

100

110

120

Number of Nodes

E
xe

cu
tio

n
T

im
e(

se
co

nd
s)

Star−local
Star−remote
Full Graph−local
Full Graph−remote

Figure 5.6: Performance for communication based tasks with two different data

handling strategies. Note that having the data locally helps for smaller problem

sizes since the number of remote accesses is reduced.

89

the original program or exposing the underlying complexities to the programmer.

Similarly, one can try out other data handling strategies (like spreading the Mes-

sage Boxes across multiple nodes) and adapt the program to a desired scenario.

In this Chapter we discussed the issue of programmability in large scale decentral-

ized systems. To use the true potential these systems can possibly offer it is very

important to program them efficiently. This will allow a growing range of parallel

applications to be easily deployed across these systems. Our proposed architec-

ture provides a simple interface that can be used to feed granularity information

to the program at runtime. This information can then be used to determine the

granularity of the application. The Message Box architecture gave us an easy way

of dealing with message passing in the absence of centralized message repositories.

Programs, programmers and the task scheduler are therefore freed from the mes-

sage handling issues, which can be changed at anytime without affecting the rest of

the system. Our real-life results, although not large scale in nature, supported our

claims. We hope that this work will help in making programming for decentralized

systems easier and more efficient.

Chapter 6

Related Work

In the previous chapters we studied autonomous computing in general and the

issues associated with it. We suggested autonomous solutions to resource location,

task scheduling and programmability. We now take a look at some of the related

literature in these areas. This will help us get a better understanding of the subject

and also help to compare our suggested solutions to other similar approaches.

6.1 Autonomous and Decentralized Computing

There has been a growing volume of research towards decentralizing dis-

tributed systems. Several computing systems have introduced various degrees of

autonomy and decentralization in them. Even widely successful centralized sys-

tems like SETI@home [4] have introduced a hierarchical approach with BOINC

[3]. In this section we take a look at some other computing systems and the kind

of autonomy they have supported.

Several computing systems can be characterized by a model compris-

ing of three layers - (i) a layer where users submit tasks, (ii) a layer where bro-

kers/managers/schedulers schedule these tasks, and (iii) a worker layer, where the

tasks actually get executed. A true ACS can be imagined to be one where every

node in the system is capable of functioning as part of any of these layers. Systems

90

91

such as Atlas (derived from Cilk) [8, 14] had the worker layer arranged in a tree like

decentralized fashion, where workers communicated only with neighboring work-

ers and transferred tasks through Cycle Stealing. XTremWeb, discussed in Chap-

ter 2.4.2, supports decentralization by introducing the notion of an XTremWeb

Collaborator [40], that allows grouping of a set of workers to give the system a

hierarchical structure. The Javelin++ system [74] supports further autonomy by

allowing the nodes in the broker layer to communicate directly between themselves,

thereby further reducing the need for centralized severs. However, the system still

expects broker nodes to be more reliable compared to worker nodes, therefore

differentiating between them. The SuperWeb system [2] followed a similar archi-

tecture but allowed brokers and workers to be on the same node. The system

also supported direct communication between the workers and the job-submitter,

thereby reducing the communication bottleneck further. However, the scheduling

was still done in a centralized manner. Sun Microsystem’s JXTA platform [53] has

a hierarchical structure where nodes are associated with groups (dispatcher group,

monitor group and worker group). Nodes in the system can belong to any of these

groups and can even change groups dynamically to balance the system load.

6.2 Resource Location

There has been a large volume of research addressing the issue of de-

centralized locating of data-centric resources in distributed systems [98, 88, 104,

54, 85, 66]. However, these efforts try to locate unique data or a unique node

(address). The unique and constant value of data make it difficult to apply the

same techniques for mapping computing resources. For example, with comput-

ing resources there is a limited number of resource types, and they often have a

small set of values that they can assume. Using a DHT (Distributed Hash Table)

based approach would save all the information in a few select nodes and make

them the potential bottleneck of performance. Similarly, the value of computing

92

resources often change rapidly, and a DHT-based approach would mean making

several unnecessary updates.

However, there have been some efforts that directly address the issue

of locating computing resources in distributed systems. Condor [64, 83] uses a

Matchmaking algorithm where nodes periodically update their state information

with server-like Matchmaker nodes that are arranged in a hierarchical fashion.

While this solution is more scalable than a completely centralized approach it

might not be scalable enough for global scale distributed systems. The SHARP

system [36] deals with the issue of trusted resource sharing in a decentralized

fashion in context of the PlanetLab [82] system. This work deals with providing

resource reservation in a trusted fashion rather than the mechanism of locating

these resources.

In [47] the authors address the same issue as ours and evaluated the other

heuristics we discuss in this paper (random forwarding, history-based forwarding,

frequency-based forwarding etc.). [97] suggested giving virtual coordinates to the

resources in a multi-dimensional co-ordinate space based on their attribute values,

but did not provide a way of traversing this space. In recent times, the SWORD

[79, 80] system attacks a problem similar to ours and uses a Distributed Hash Table

based approach for the purpose. While their system supports queries requesting

a set of resources, the solution uses a hierarchical approach that is not completely

decentralized. Moreover, such a solution will not work for certain scenarios (e.g.

a sensor network) where it is not possible to impose a virtual topology on top of

the existing network.

6.3 Task Scheduling

Task scheduling has been one of the most extensively studied research

areas in distributed computing. Scheduling independent tasks across heterogeneous

sets of resources is a well known problem. We differ from many of these approaches

93

[49, 6, 22, 61, 45] in that we are developing an autonomous scheduling strategy

that does not require centralized control or knowledge for scheduling.

Several research efforts have formulated the problem of scheduling tasks

across heterogeneous systems as a max-flow problem [28, 103]. However, the most

popular max-flow algorithms, including Ford-Fulkerson [52] and Edmonds-Karp

[31] use global information to make network-wide decisions. Golberg’s algorithm

[42] is closer to being autonomous but still requires a notion of height that depends

on the total number of nodes in the network (hence it is a global information). In

[93], the authors provide a parallel solution to the max-flow problem. However,

their approach uses a notion of timesteps that are consistent across the network.

This involves network-wide synchronization and is difficult to achieve in large net-

works. Moreover, all these techniques were designed specifically for static systems.

In practice, system properties, such as node speed, bandwidth, network topology,

change over time, making these techniques unsuitable.

A-FAST shares similarities with the RID (Receiver Initiated Diffusion)

[69] and other similar gradient-based approaches [63, 96]. In these approaches

nodes use some notion of gradient to balance their workload among their neighbors.

However, they make their scheduling decisions completely based on the load at a

node without taking communication abilities of the node into account. A-FAST

adopts a diffusion-like approach similar to these techniques, but requests tasks

based on the supply rate of a node similar to [14, 40]. This ensures that more tasks

are received from nodes connected by faster link-speeds, and makes the protocol

applicable to both computation and communication dominated systems. Moreover,

in A-FAST all communication decisions for a pair of nodes is done independently

of their remaining neighbors, reducing the synchronization requirements among

nodes.

In [14, 8] variants of the Cycle Stealing technique addresses a similar

problem as ours. In Cycle Stealing, a node that has exhausted all its work ran-

domly asks its neighbors for additional work. While this approach is autonomous

94

and works well for computation intensive applications, it requires the nodes to be

arranged in a hierarchical fashion to avoid unnecessary transfer of tasks. More-

over, Cycle Stealing does not take communication time into account and does not

differentiate between nodes connected by different connection speeds.

Other autonomous algorithms for independent task scheduling are pre-

sented in [11, 59, 58], which when the network is a tree, achieves the optimum

throughput for a static network. Experiments showed that the protocol reacted

quickly to changes in the network as well. However, it may not be desirable to

impose a tree-structure on large networks. In [9], it is proven that the problem of

finding the best tree from a given network is NP-complete, and even if one could

find the best tree, there are networks for which the performance of the optimal

tree is unboundedly worse than the whole networks performance. Thus, finding an

autonomous optimal solution for a generic network is still open.

6.4 Programmability

There is a large body of work in programming models for parallel systems,

and the idea of dynamically adapting a program with runtime information is well-

known. However, there is little work specifically targeting the programming of

large-scale decentralized systems. We have already mentioned that our work lies

between the programming styles of MPI [70] and ATLAS [8]. ATLAS itself grew

out of the Cilk System [14]. The Satin project [100] also adopted a divide and

conquer approach similar to Cilk. The notion of writing programs that can adapt

to resources as adaptive parallelism has been studies too in efforts such as [20,

102, 30]. Our work in Chapter 5 differs from these efforts because we provide an

interface that allows the granularity of paralleism to be determined at runtime.

We also provide relative priorities to the tasks. Efforts like OpenMP [78, 90] and

PVM [99] are also related to our work. While the former allows programmers to

include directives in the program specifying the parallelism, the latter is a software

95

solution that treats a collection of computers as a single virtual machine. However,

OpenMP is targeted at shared memory processors and is difficult to scale to a large

set of resources. Even though PVM provides a unified system view, it does not

provide a mechanism by which the Scheduler can feed runtime information to the

program, aiding task creation. In [38] versions of a task are chosen dynamically at

runtime without the programmer’s interference; the technique targets a centralized

pool of homogenous resources.

Recently, there have been additions to Java like RMI [86], JXTA[53]

and Proactive Java [19, 46] that are intended to facilitate Parallel Computing. All

these efforts allow the programmer to deal with remote resources in a local fashion.

However, it is the responsibility of the programmer to deal with scheduling issues of

the actual nodes. We use Java RMI as the underlying protocol in our system, but

provide an architecture that hides further complexities (like scheduling and data

management) from the programmer. To summarize, our work shares similarities

with many of these works but provides a simple programming model that hides

the complexities of the decentralized system, while allowing adaptive parallelism

at runtime in such systems.

Chapter 7

Conclusions

In this dissertation we studied certain aspects of Autonomous Computing

Systems, namely - resource location, task scheduling and programmability. We

began with a description of Autonomous Computing Systems, their advantages and

disadvantages and investigated if it was possible to design autonomous solutions to

the mentioned problems that achieved performance comparable to their centralized

counterparts. In this section we provide a summary of our findings and possible

future work in this direction.

7.1 Summary of Findings

To address the problem of locating computing resources in an autonomous

manner we proposed GUARD (Gossip Used for Autonomous Resource Detection),

a protocol that uses a gossip based distance-vector approach. GUARD does not

assume anything about the underlying system topology and is especially well suited

for situations where there might be actual physical limitations on the ”neighbors”

of a node, e.g. sensor networks. The distance vector approach used by GUARD

makes routing extremely efficient and almost optimal in terms of number of hops

used (unless the table information is stale). GUARD clearly outperformed three

other decentralized protocols mentioned in literature (Random, History-based and

96

97

Frequency-based) in terms of success rate (the number of queries answered) and

efficiency (number of hops used). GUARD also handled multi-dimensional requests

successfully, even under limitations on the routing table size. We also showed how

one can put a probabilistic bound on the success rate of GUARD by controlling the

gossiping frequency alone. Our experiments supported this claim and the observed

results were bounded by the value predicted by our analysis. It is therefore possible

to determine the required gossiping frequency based on the amount of failure that

can be tolerated.

We also addressed the issue of scheduling independent homogeneous tasks

in an autonomous fashion. We presented A-FAST (Autonomous Flow Approach

to Scheduling Tasks), a protocol influenced by the way fluid networks function. A-

FAST combined the pressure based approach of diffusion-based scheduling along

with an on-demand requesting approach like Cycle Stealing. Our simulations

showed that A-FAST achieved ≈ 98% of the optimal steady state throughput for

different topologies and systems sizes. A-FAST also adapted well to dynamically

changing systems. We also suggested how A-FAST could be used to incorporate

greater reliability in the system. Simulations showed A-FAST to significantly re-

duce task losses in faulty systems. A-FAST was also implemented and tested as

part of a real system and the performance closely matched that of the estimated op-

timal performance for three different topologies and different system sizes. Though

the test system sizes were not large, these results suggested that A-FAST is a prac-

tical protocol that can be used in a real system.

One of the biggest challenges associated with distributed computing is

to provide the end user with an easy framework for programming and using it.

The ease and effectiveness of programming a collection of machines is likely to

play a big role in making it more popular and widespread. Decentralization makes

it difficult to gauge the scale and ability of the underlying system and exposes

the programmer to a much wider range of issues one has to handle. We designed

and implemented a system that hides some of the underlying system complexities

98

like scale, heterogeneity and data handling from the programmer. Our system

provides a fixed and minimal set of functionalities that presents a simplified view

of the system to the programmer. The programmer is expected to write adaptively

parallel applications for a uniform set of homogeneous resources. Message passing

was also handled in a transparent fashion where the data could be migrated across

the system without requiring the programmer to be aware of it. We showed how the

Scheduler can use this simple interface to deal with several system specific issues.

Initial results show that the platform and interface is conducive for programming

different kinds of applications and allows the programmer to be unaware of several

system specific issues.

From our simulations and experimentation we could see that our proposed

solutions compared with centralized solutions with respect to performance and

efficiency. Though preliminary in nature these results hint at the tremendous

potential Autonomous Computing Systems offer.

7.2 Future Work

Distributed Systems have been and continues to be a tremendously well

studied research area. Autonomous Computing is a continuously evolving area and

there is a large volume of immediate work that can be done in building better and

more efficient Autonomous Systems.

One of the biggest issues we faced during our work is the absence of a test

bed that is truly representative of the scale and potential of large scale systems.

While efforts like Planetlab [82], FWGrid [37] etc. provide users with a collection of

machines for use, the scale and ability of the nodes in these systems is very different

from what one is likely to expect if one imagines a truly large scale decentralized

system (e.g. Kazaa, Napster etc.). Thus, it would be really helpful to have a truly

large scale decentralized computing platform for experimentation.

We have already seen large scale decentralized content-based systems like

99

Kazaa, Napster, Gnutella etc. However, with the exception of efforts such as

SETI@home, distributed.net etc. large scale computing efforts have not yet tapped

the potential of isolated machines. During our efforts to gather traces of desktop

PC behavior (Appendix A), we realized that two of the biggest reasons for this is

the fear of security breaches and the lack of incentives to the end user. It is therefore

necessary to build systems that assure the end user of a safe execution environment

in the absence of centralized control. We also need to develop applications that

scale well and are able to use the large number of resources Autonomous Computing

can possibly offer. This will motivate users to form computing communities where

one can benefit from each other’s computing power.

There are several ways in which the work presented in this dissertation

can be further improved. While GUARD does an efficient job of locating individ-

ual computing resources meeting a given criteria, it does not address the issue of

gathering a collection of nodes meeting a given criteria. Systems such as SWORD

have addressed this issue. It would be interesting to take the completely decen-

tralized approach of GUARD and extend it to locate a pool of nodes. GUARD

currently uses a model where all nodes have a fixed gossiping frequency. One can

reduce the gossiping overheads of GUARD by varying the gossiping frequency of

a node adaptively.

A-FAST dealt with independent and homogeneous tasks. An immediate

extension of the technique would be to support multiple task categories (especially

where the tasks have different computation to communication ratios). This would

allow individual users to submit different kinds of jobs and still make use of A-

FAST for autonomous scheduling. Similarly, it would be nice to support task

dependencies within A-FAST as that would allow a greater range of tasks to benefit

from it.

Programmability of distributed systems is a vast and dormant area. Our

proposed architecture was just one of the possible solutions to provide greater

programming ease towards developing applications for these systems. We hope

100

to implement a richer set of communication paradigms (like broadcast and multi-

cast) in the future. One of the biggest challenges we faced during designing this

platform was to determine a way to test the effectiveness of a programmability

solution. The success of a programmability solution lies in its ease of use and the

range of applications one develops on it. This can only be tested once we have

large scale decentralized computing platforms and develop applications for them.

We hope that with the development and deployment of these systems we would

be able to find out a larger set of issues concerning them and hence build better

solutions.

Work in the area of Autonomous and Decentralized Computing Systems is still

in its nascent stage and far from over. We hope that the work presented in this

dissertation will contribute towards making it easier to build, deploy and use large

scale autonomous systems in the future.

Appendix A

Isolated Computing Resources

A.1 Introduction

In Chapter 3 we discussed detecting computing resources in an autonomous

fashion so that users can benefit from these resources. The “ideal scenario” would

be one where the millions of isolated computers connected by the Internet can form

ad-hoc communities of their own and benefit from each other. However, there is

little work characterizing these isolated machines and their behavior. A good un-

derstanding of these machines will allow us to build truly large scale autonomous

computing systems that can harness the huge potential that isolated desktop ma-

chines offer. We thus conducted some profiling experiments to get an estimate of

what these desktop machines are capable of. We hope that these results will help

towards modeling better and more realistic large scale autonomous systems.

There have been some very useful studies of computer usage in recent

times [57, 1, 15]. These studies measured the usage patterns of collections of

computers in fairly homogeneous work environments. Studies like [24, 84] ana-

lyzed host-availability in enterprise and peer-to-peer systems while [60] measured

the interference between communication and computation for a set of distributed

machines. In [25], a detailed study of the workload and failure characteristics in

the PlanetLab system is provided but these machines are part of a large academic

101

102

test-bed and does not necessarily reflect the behavior of isolated desktop machines.

In this chapter we try to see the extent to which these results and observations

of those studies carry over to isolated personal computers. Since these isolated

machines are fast emerging as a highly attractive source of computational power,

it makes sense to study them separately in order to better understand how they

are used. To achieve this, we monitored a set of isolated personal computers for

a period of time. Particularly we tried to study the following: (i) availability of

these machines (ii) their CPU usage (iii) memory usage and (iv) network usage.

These parameters are often the most important ones for computing purposes and

we believe a better understanding of them will lead to better techniques for uti-

lizing these resources. We also tried to detect usage trends (i) between different

machines so that we can understand if these isolated systems have common trends

betwee them and (ii) the same machines at different times in order to see how

volatile these systems are. Our results show that an average personal computer is

quite powerful and conducive for large scale computational purposes. However, our

measurements also reveal that individual users vary between themselves in their

usage trends and even the same users usage patterns vary significantly with time.

A.2 Experimental Setup and Methodology

The purpose of our experiments was to monitor the way individual users

use their machines. We decided to monitor the CPU utilization, main memory

consumption and network utilization of these machines. We also tracked how long

these machines were on and the amount of free disk space they had. For our work

we restricted ourselves to machines running Windows OS. We wrote our own per-

formance monitor that queried the WMI (Windows Management Instrumentation)

database and the system registry periodically (once per second) to get the values

of CPU utilization and main memory consumption. These values were then aver-

aged for every 10 second interval. Once every minute we dumped these average

103

values to a log file. We also recorded the amount of data transferred (both incom-

ing and outgoing) over the network once every minute and saved this information.

The whole application ran in the background as a Windows service that was au-

tomatically started every time the machine booted. Every time the program was

restarted (when the system is restarted) we made a note of the free disk space

in the system. The application itself used less than 1% CPU on an average and

occupied 3-4 MB of the memory and did not use the network at all (these values

are presented so that the effect of the performance monitor on the measurements

can be better understood).

We sent out this application to over 50 different individuals (known to

us and not randomly selected) for installing it on their machines. We took special

care to ensure that the machines used are not part of an existing cluster and are

truly isolated in nature. Of the 50 people we contacted 35 users responded and

allowed us to install the application on their system. Ideally, we wanted to send

out the performance monitor to a much larger group of people, but realized that a

lot of people were unable (wary) to install external applications on their machines

(some of these machines were part of corporate organizations and this reluctance

reflects similar problems one is likely to face while dealing with these machines

for actual computational purposes). Of these machines 14 were home machines,

5 machines were in corporate organizations and the remaining were located in

universities across USA and India. The volunteers ran the monitoring application

on their machines for a time period of 1-3 weeks, at the end of which they sent us

back their log files.

A.3 Measurements

This section forms the basis of our findings where we report the measure-

ments gathered from our experiments. Our findings are divided into three different

categories - (i) basic system information, (ii) inter-user usage patterns and trends

104

Table A.1: Average measured value of various system parameters to give an idea

of what an average isolated desktop system looks like.

Parameter Avg 25%ile 50%ile 75%ile

on-time 61.66% 19% 65.4% 99%
disk space 37.9GB 12.5GB 22GB 69GB

RAM 483MB 480MB 512MB 512MB
free memory 208.9MB 152.2MB 202.8MB 256MB

cpu-utilization 5.49% 0.85% 4.3% 6.07%
download rate 0.329MB/min 0.060MB/min 0.134MB/min 0.276MB/min
upload rate 0.021MB/min 0.008MB/min 0.017MB/min 0.044MB/min

and (ii) intra-user patterns and trends.

A.3.1 An Average Isolated PC

Table A.1 describes the average values of some of the basic parameters we

monitored. We present the on-time of these machines i.e. the percentage of time

these machines were on, size of the main memory, the amount of free memory, cpu-

utilization, data transfer rate (both uploading and downloading) and the amount

of free hard disk space available in these systems. We have provided the mean and

the 25, 50 and 75 percentile values of these parameters across all the machines we

monitored.

The mean values of CPU, memory and network utilization was deter-

mined by averaging the value of all the individual readings across all the user

machines. The size of the main memory and hard disk were constants that were

reported once and averaged across all the machines. To determine the average

on-time of these machines we calculated the difference between the last and first

logged time stamp (∆TS), the total number of time stamps recorded (NTS) and the

frequency between respective logs (fTS). The average on-time percentage was then

determined by the value fTS∗NTS∗100
∆TS

. For determining the average data transfer

rate, we considered each interval (fTS) and the data transfer that took place in it

105

(it must be mentioned that all our measurements for data transfer rates are taken

on a per-minute basis and do not reflect the bandwidth of the network since we

were more interested in measuring the actual volume of data that gets transferred

in these systems). The upload and download rates are provided separately.

It is interesting to note that the average computational abilities of an

isolated PC are quite powerful (available ≈ 60% of the times with a fairly low

CPU utilization and a fair amount of free memory). This further strengthens the

motivation behind commodity computing since one can easily build highly efficient

and powerful systems out of these isolated machines.

A.3.2 Collective Usage Patterns

We now provide further insight into the overall view of these systems.

Figures A.1-A.3 show the distribution of CPU-utilization, free-memory and data

transfer rates. These values were calculated by finding the cdf (cumulative dis-

tribution of frequencies) across all the entries across all the readings we took. It

is interesting to observe that the CPU is rarely introduced above 10% (94% of

all our CPU utilization readings were below 10%). This hints at the tremendous

amount of idle computing resource around us that we can make use of. Similarly,

the data transfer rates (Figure A.3) show that seldom do these machines trans-

fer more than a megabyte of data (< 8% of the times) and that means that the

network is also highly under-utilized. The graph for fee memory is more skewed

and that is largely because the available sizes of the main memory differed across

these machines. Still, almost 60% of the times one can find at least 200MB of free

memory in these machines.

A.3.3 Usage Intervals

We are often interested in providing dedicated service of resources to a

computation, with little or no interruption (e.g. [23] only runs when the host

106

Table A.2: Average duration of continuous periods with given utilization con-

straints. Note that periods of continuous utilization above 10% are very small.

CPU Utilization Average Continuous Duration

< 1% 15.20 mins
< 5% 29.44 mins
< 10% 50.46 mins
> 1% 5.30 mins
> 5% 3.60 mins
> 10% 3.20 mins

Figure A.1: Cumulative distribution of time node utilization is below a certain

percentage.

107

Figure A.2: Cumulative distribution of time nodes have below a given amount of

free memory.

Figure A.3: Cumulative distribution of time nodes transfer below a given amount

of data per minute. Both the download and upload rates (in kB/min) are given.

108

Table A.3: The mean deviation in user behavior for a given interval. This shows

how much the values vary for an individual user with time.

Duration CPU Use Free Memory Download/min Upload/min

10 mins 3.47% 23.78MB 338.15kB 877.40kB
1 hour 4.53% 21.40B 351.60kB 891.70kB

10 hours 4.93% 20.46MB 161kB 356.32kB

machine is completely idle). We thus tried to determine the average duration a

node remained below a particular utilization continuously, without any interrup-

tion. Table A.2 show the value of intervals for which a node was completely below

a particular utilization. For each utilization constraint, we observed the log file to

see how many continuous entries adhered to the desired constraint. The values of

these durations were then averaged across all the entries of all the users. One can

see that on an average a user can get almost 50 minutes of dedicated time if he

wants the machine to have less than 10% CPU utilization. This is very important

for jobs with stringent QoS requirements. Even for requirements of less than 1%

utilizations the average uninterrupted interval length is more than 15 mins. We

have also shown that, when used, a machine doesn’t get used for too long at a

stretch. Even when a machine has a CPU-utilization > 10%, the period lasts less

than 3 and a half minutes on an average. Therefore a task has to wait for only

small periods before the machine is under-utilized again.

A.3.4 Inter-user Usage Patterns

In the previous section we presented an overall view of what an isolated

system is capable of and how it gets used. However, it is likely that individual users

use their systems differently and it is important to investigate if we can generalize

these users as a single uniform group. That is what we try to do in this section.

Figures A.4-A.7 shows how the values of the various usage parameters,

presented in the previous section, differed across the individual users. We calcu-

109

Figure A.4: Distribution showing trend of on-time (the period for which a node is

continuously on) across the various users.

Figure A.5: Distribution showing trend of CPU utilization across the various users.

110

Figure A.6: Distribution showing trend of Available free memory across the various

users.

Figure A.7: Distribution showing trend of Data transfer rates (both upload and

download) across the various users.

111

lated the average value of these parameters across all the readings for each user

separately and plotted how the mean values differed across users. This gives us an

idea of how different individual users are in terms of their system usage.

One can observe that while data transfer patterns remain quite constant

across most users, other parameters (on-time, cpu-utilization and free-memory)

vary widely across users. The graph of on-times show that almost 40% of the

users leave their machines on all the time (100% on-time). That coupled with

the fact that more than 85% users have a mean CPU-utilization of less than 10%

(Figure A.5)) shows the tremendous potential of these isolated machines.

A.3.5 Intra-user Usage Patterns

In the previous two sections we showed how an average isolated personal

computer functions and the differences between the average performance of these

machines. We now show how the performance of these same machines change with

time. Users are likely to use their machines differently at different times and this

section is intended to give an idea of how different user behavior is over time.

To determine the variation in user behavior we divided each users be-

havior over a given amount of time and found the standard deviation of the per-

formance across the different intervals. This would reflect how much the users

behavior differs across different intervals of the given duration. We then averaged

these values across all the users. The values are given in Table A.3 and reflect the

mean deviation in an users behavior for the given interval. We calculated these

values for intervals of length 10 minutes, 1 hour and 10 hours.

It is interesting to observe that there exists a fairly strong variation in user

behavior in terms of CPU-utilization (considering the mean CPU utilization in our

findings to be around 6.5%) and data transfer rates over time, even for individual

users. The usage of memory however remains more constant. This shows that

a machine is unlikely to perform in a fixed way and algorithms and applications

built for commodity computing should take this volatility into account.

112

In this chapter we tried to study the behavior of isolated desktop com-

puters in order to better understand their abilities and to use them more efficiently

for the purpose of commodity computing. We found that an average isolated PC

is quite powerful (Section A.3.1) and conducive for computing purposes. We also

saw that individual users show different usage trends between themselves (Sec-

tion A.3.4) and at different times (Section A.3.5). These variations, if taken into

account, will help in designing better scheduling techniques. This hints that one

should definitely try to tap the potential of the millions of isolated PCs across

the world but at the same time design algorithms and application that take into

account their variability and volatility.

Appendix B

Ongoing Work - Value-centric

Scheduling

In Section 5.2.2 we mentioned that it is possible for users to prioritize

individual tasks. The scheduler can then try to schedule tasks based on the user

assigned priority. This allows users to set the relative importance of their jobs by

assigning a certain degree of importance to them. Recent efforts have modeled

computational grids as a marketplace [18, 92, 26, 94] where users ”pay” for the

computational resources that they use. As part of our ongoing research we are

considering various strategies for scheduling in such a scenario where users assign

costs to their jobs. This chapter mentions some of our suggested approaches.

B.1 Problem Definition

In this section we formally define the problem we are dealing with and

the various assumptions that we make about the underlying system.

Our system comprises of a single scheduler (S). A job, j, in the system

is defined as a 2-tuple < f(t), l > where f(t) is a function that denotes the price

of the job (the value the system gets on completing the job) and is a function of

the turnaround time (t) of the job; l is the length of the job in terms of number

113

114

of instructions (unlike previous works [51, 27] which assumed a single resource or

homogenous resources we cannot represent the length of the job in terms of time).

The scheduler has a pool of N processing units under its control where p1, p2, ..., pN

denotes the speed of these processors in terms of the number of instructions that

they can execute in a unit of time. Without any loss of generality we assume that

p1 ≥ p2 ≥ ... ≥ pN . A total of K jobs (j1, j2, ..., jK) arrive in an online fashion

(i.e. S has no idea about the arrival time of the jobs) and get submitted to the

scheduler. Once a job arrives S can either assign it to one of the idle processing

units pi, or it can choose to put it in a wait queue. If assigned to a processor the

job begins execution immediately. In our model jobs are non-preemptive i.e. once

a job gets assigned to a processor, the job runs till completion on that processor.

We do not consider failures in our system. Each processor can only run one job

at a time and each job can run on only one processor at a time (i.e. jobs are

not divisible or parallelizable). All jobs, once submitted to the system, have to

be completed and cannot be discarded before completion. The objective of the

scheduler is to maximize the value/gain of the system (i.e. maximize
∑K

i=1 f(ti),

where ti is the total time job i spends in the system.

Ideally speaking users should be able to set any function fi(t) of their

choice for each job ji. However, traditionally people have used functions that pe-

nalize the systems (for delay) linearly with time [51, 27]. While some work has tried

to deal with step functions that changes the yield of a job discretely, a growing vol-

ume of research has accepted linearly decaying yield as a standard pricing strategy

for such market based systems even though such a pricing strategy doesn’t address

several issues (e.g. partial payment for partial completion or providing additional

incentives for completing a job quickly).

For the rest of this chapter we assume that every job ji’s associated value-

function fi(t) is given by fi(t) = ai - bi.t. Thus every job ji has a basic value ai

that the system get’s on completing the job and has an associated penalty given

115

by bi.t that the systems pays to the user1. The constant bi is called the penalty

coefficient of the job and is a reflection of how critical a job is to delay. Since

the system has to complete any job that it accepts, the order and time in which

the jobs get completed doesn’t affect the earning from the a values of the jobs

(since they are time invariant). Thus, in order to maximize the gain, one has

to minimize the overall penalty paid by the system (i.e. maximize
∑K

i=1 f(ti) ≡
minimize

∑K
i=1 bi.ti). It is therefore possible to think of each job, ji, as a 2-tuple

given by < bi, li >. This is the formulation we will use for the rest of this chapter.

B.2 Value-centric Scheduling

The problem described in the previous section is very similar to the total

weighted completion time (TWCT) problem [7]. In TWCT, every job is charac-

terized by a 2-tuple < b, t > where b is a penalty coefficient similar to ours and

t is the duration of the job. TWCT deals with only one processing unit and the

objective of the system is to minimize
∑

bi.Ci where Ci is the total completion

time of the job. The off-line instance of TWCT itself is NP-hard and it is easy to

show that every instance of a TWCT problem can be reduced to our scenario (by

setting N = 1 and setting the li of each job to ti). It is therefore unlikely to come

up with optimal scheduling strategies. In this section we suggest 3 different prior-

itizing heuristics and 3 different buffering techniques and discuss their individual

properties.

B.2.1 Prioritizing Techniques

We now discuss different prioritizing techniques and our motivation for

trying each one out. It must be mentioned that it is possible to come up with

situations where each technique will outdo the others and therefore there is no

clear winner.

1It is therefore possible for the system to actually pay for a job if bi.t > ai.

116

Technique T1

In this strategy we prioritize all the jobs in the system based on their b/l

value i.e. the job in the task queue with the highest value of b/l gets the fastest

available processor. A higher value of l implies that the job will be running for

a longer period of time and it is therefore possible that a task of greater penalty

would enter the system and suffer due to the unavailability of the resource(s). The

objective of this approach is thus to give jobs with higher penalties greater prece-

dence while discounting them by their expected time of completion (proportional

to l). This is similar to the approach used in [51].

Technique T2

In this technique we prioritize the jobs based on their expected expected

net penalties i.e. based on their values of b.l. It is easy to see that this is quite the

opposite of T1 and tries to assign the fastest processor to the job which is likely

to cost us the most. While such a technique would do well in systems where most

jobs are long running with infrequent arrivals, it would be a bad strategy to use

in systems where lots of high priority short jobs are present.

Technique T3

None of the strategies described till now consider the heterogeneity of the

processing units explicitly. The amount of disparity between the various processing

units can play a significant role on the scheduling decision and this strategy tries

to address that issue.

This technique begins by assigning random unique processors to the jobs (if there

are more jobs than processors, one can imagine an infinite number of additional

processors with p = 0). The jobs are then sorted based on the condition: C(jm, px)+

C(jn, py) > C(jn, px)+C(jm, py), where C(jm, px) is the cost we pay for running job

jm on processor px (for our system C(jm, px) = bm.lm/px. Thus in this technique,

we test if swapping two jobs is more profitable than their present assignment and

117

if so we do it. It is interesting to see that unlike the previous three techniques this

technique is not tied to the pricing policy of linear penalty that we have adopted

and can be used in any generalized pricing scenario.

B.2.2 Buffering Techniques

In most existing research in scenarios similar to ours, if there is a job in

the wait queue and a processing unit that is available, then then scheduler always

assigns the job to the processing unit that is best suited for it. While this seems

like an obvious thing to do, it might not be the best strategy. In an online scenario

where jobs are continuously entering the system, it might make sense to wait and

buffer up tasks even though there is an available processor. This might help make

better decisions if more valuable future jobs come and since they can then get an

available resource. Such a buffering strategy would mean starving existing jobs in

expectation of more lucrative deals for the available processing units. It must be

mentioned though, that the buffering techniques only decide whether a task should

wait or not and does not affect the prioritization of a task. Thus they have to be

used along with some scheduling technique (like the ones described above). In this

section we discuss three different buffering strategies that we adopted in our work.

Technique B1

Our first buffering technique is the simplest one to implement. We define

a parameter B and postpone all scheduling decisions until we have at least B jobs

in the job queue. While this is easy to implement and gives the scheduler a broader

window to make its decisions, it is easy to see that in a system where jobs arrive

infrequently, such a buffering technique would lead to large volumes of unnecessary

starvation.

118

Technique B2

In this technique, once a job is assigned to a processor, we check to see

if any of the already occupied faster processors are better suited for the job and if

so we make free the processor the job has currently been assigned to and make it

wait for the higher priority processor to free up. Each processor pi also has a flag

fi that denotes if the processor has already been booked for a future job using this

buffering technique (this is done to prevent multiple jobs from waiting for the same

processor). Formally speaking, if a job ji is assigned to processor px we search for

the first available py (y < x) such that ((fy = false) && (bi.(li + l′)/py < bi.li/px)

), where l′ is the number of instructions left for the job currently running on py to

finish. If we find such a y we set the value of fy = true.

Since this strategy only makes a task wait if it can do better than currently

running it - it should always do well. However, it is possible that while a task

waits for a processor to free up another higher priority task enters the system and

occupies the processor, thereby making the wait futile (a new task clears all the

values of fis and the assignments are done afresh). Thus it is possible for this

strategy too to have negative effects as well.

Technique B3

Our third buffering technique tries to achieve the benefits of B1 while

preventing the possibility of unnecessary starvation due to infrequent job arrivals.

We define a parameter F that denotes the acceptable fraction of loss for a job

due to waiting. When a job ji gets assigned to a processor px, it is made to wait

an additional amount of time determined by F.li/px. The job thus waits for an

additional amount of time that is determined by the fraction of loss the system

is willing to suffer. Once a job’s wait is over it is considered for scheduling along

with all other jobs with higher priority that are waiting in the system. It must be

noted that a job might get assigned to a processor, even if it’s wait time is not

over, provided the wait of a job with lower priority is over. This is done to ensure

119

that at no point does a lower priority job ever get assigned to a processor while

there is a more critical job waiting.

As mentioned earlier, this technique tries to give the scheduler a broader

window of jobs to make it’s decision while putting a bound on the amount of loss

the system suffers when waiting for this window to build up.

In this chapter we took a look at some of our ongoing work in scheduling tasks

based on user given priorities. We dealt with a specific group of non-preemptive

tasks where buffering techniques might be very useful. However, it is too early to

comment on the usefulness of these techniques and as value functions evolve and

the nature of market-based computational grids are better understood, we look

forward to verifying the usefulness of these techniques further.

Bibliography

[1] Anurag Acharya, Guy Edjlali, and Joel Saltz. The Utility of Exploiting Idle
Workstations for Parallel Computation. In SIGMETRICS ’97: Proceedings
of the 1997 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, pages 225–234, New York, NY, USA,
1997. ACM Press.

[2] Albert D. Alexandrov, Maximilian Ibel, Klaus E. Schauser, and Chris J.
Scheiman. SuperWeb: Research Issues in Java-based Global Computing.
Concurrency: Practice and Experience, 9(6):535–553, 1997.

[3] David P. Anderson. BOINC: A System for Public-Resource Computing and
Storage. In GRID, pages 4–10, 2004.

[4] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. SETI@home: An Experiment in Public-resource Computing.
Commun. ACM, 45(11):56–61, 2002.

[5] D. Andresen and T. McCune. Towards a Hierarchical Scheduling System for
Distributed WWW Server Clusters. In Proceedings of the Seventh Interna-
tional Symposium on High Performance Distributed Computing (HPDC-7),
July 1998.

[6] D. Andresen and T. McCune. Towards a Hierarchical Scheduling System for
Distributed WWW Server Clusters. In HPDC ’98: Proceedings of the The
Seventh IEEE International Symposium on High Performance Distributed
Computing, page 301, Washington, DC, USA, 1998. IEEE Computer Society.

[7] Ivan D. Baev, Waleed Meleis, and Alexandre E. Eichenberger. An Experi-
mental Study of Algorithms for Weighted Completion Time Scheduling. Al-
gorithmica, 33(1):34–51, 2002.

[8] J. Baldeschwieler, R. Blumofe, and E. Brewer. ATLAS: An Infrastructure for
Global Computing. In Proceedings of the Seventh ACM SIGOPS European
Workshop on System Support for Worldwide Applications, 1996.

120

121

[9] C. Banino, O. Beaumont, A. Legrand, and Y. Robert. Scheduling Strate-
gies for Master-Slave Tasking on Heterogeneous Processor Grids. Technical
Report RR2002-12, ENS-Lyon, LIP, 2002.

[10] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wijckoff. Charlotte: Meta-
computing on the Web. Future Gener. Comput. Syst., 15(5-6):559–570, 1999.

[11] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-
centric Allocation of Independent Task on Heterogeneous Platforms. In Pro-
ceedings of the International Parallel and Distributed Processing Symposium
(IPDPS’02), Fort Lauderdale, Florida, April 2002.

[12] BitTorrent. http://www.bittorrent.com/.

[13] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou.
Cilk: An Efficient Multithreaded Runtime System. In Proceedings of the 5th
Symposium on Principles and Practice of Parallel Programming, 1995.

[14] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded
Runtime System. In PPOPP ’95: Proceedings of the fifth ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 207–
216, New York, NY, USA, 1995. ACM Press.

[15] William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer. Fea-
sibility of a Serverless Distributed File System Deployed on an Existing set
of Desktop PCs. SIGMETRICS Perform. Eval. Rev., 28(1):34–43, 2000.

[16] George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles
Fedak, Cecile Germain, Thomas Herault, Pierre Lemarinier, Oleg Lodygen-
sky, Frederic Magniette, Vincent Neri, and Anton Selikhov. MPICH-V: To-
ward a Scalable Fault Tolerant MPI for Volatile Nodes. In Supercomput-
ing ’02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing,
pages 1–18, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[17] BSP Worldwide. http://www.bsp-worldwide.org/.

[18] Rajkumar Buyya, David Abramson, and Jonathan Giddy. A Case for Econ-
omy Grid Architecture for Service Oriented Grid Computing. In IPDPS ’01:
Proceedings of the 10th Heterogeneous Computing Workshop, HCW (Work-
shop 1), page 20083.1, Washington, DC, USA, 2001. IEEE Computer Society.

[19] Denis Caromel, Wilfried Klauser, and Julien Vayssière. Towards Seamless
Computing and Metacomputing in Java. Concurrency: Practice and Expe-
rience, 10(11–13):1043–1061, 1998.

[20] Nicholas Carriero, Eric Freeman, David Gelernter, and David Kaminsky.
Adaptive Parallelism and Piranha. Computer, 28(1):40–49, 1995.

122

[21] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for
Scheduling Parameter Sweep Applications in Grid Environments. In Proceed-
ings of the 9th Heterogeneous Computing Workshop (HCW’00), May 2000.

[22] Henri Casanova, Dmitrii Zagorodnov, Francine Berman, and Arnaud
Legrand. Heuristics for Scheduling Parameter Sweep Applications in Grid
Environments. In HCW ’00: Proceedings of the 9th Heterogeneous Com-
puting Workshop, page 349, Washington, DC, USA, 2000. IEEE Computer
Society.

[23] Andrew Chien, Brad Calder, Stephen Elbert, and Karan Bhatia. Entropia:
Architecture and Performance of an Enterprise Desktop Grid System. J.
Parallel Distrib. Comput., 63(5):597–610, 2003.

[24] J. Chu, K. Labonte, and B. Levine. Availability and Locality Measurements
of Peer-to-peer File Systems. Proceedings of ITCom: Scalability and Traffic
Control in IP Networks, july 2003.

[25] B. Chun and A. Vahdat. Workload and Failure Characterization on a Large-
scale Federated Testbed. Technical Report IRB-TR-03-040, Intel Research
Berkeley, November 2003.

[26] Brent N. Chun, Philip Buonadonna, Alvin AuYoung, Chaki Ng, David C.
Parkes, Jeffrey Shneidman, Alex C. Snoeren, and Amin Vahdat. Mirage: A
Microeconomic Resource Allocation System for Sensornet Testbeds. In 2nd
IEEE Workshop on Embedded Networked Sensors (EmNetS-II), May 2005.

[27] Brent N. Chun and David E. Culler. User-Centric Performance Analysis
of Market-Based Cluster Batch Schedulers. In CCGRID ’02: Proceedings
of the 2nd IEEE/ACM International Symposium on Cluster Computing and
the Grid, page 30, Washington, DC, USA, 2002. IEEE Computer Society.

[28] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms, MIT
Press. 1990.

[29] Distributed.net. http://www.distributed.net.

[30] Guy Edjlali, Gagan Agrawal, Alan Sussman, and Joel H. Saltz. Data Par-
allel Programming in an Adaptive Environment. In IPPS ’95: Proceedings
of the 9th International Symposium on Parallel Processing, pages 827–832,
Washington, DC, USA, 1995. IEEE Computer Society.

[31] Jack Edmonds and Richard M. Karp. Theoretical Improvements in the Algo-
rithmic Efficiency for Network Flow problems. Journal of the ACM (JACM),
19, 1972.

123

[32] S. Flynn Hummel, J. Schmidt, R. Uma, and J. Wein. Load-Sharing in Het-
erogeneous Systems via Weighted Factoring. In Proceedings of the 8th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA’96), Jun
1996.

[33] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure
Toolkit. The International Journal of Supercomputer Applications and High
Performance Computing, 11(2):115–128, Summer 1997.

[34] Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure
Toolkit. The International Journal of Supercomputer Applications and High
Performance Computing, 11(2), Summer 1997.

[35] FreeNet. http://freenet.sourceforge.net/.

[36] Yun Fu, Jeffrey Chase, Brent Chun, Stephen Schwab, and Amin Vahdat.
SHARP: An Architecture for Secure Resource Peering. In SOSP ’03: Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles,
pages 133–148, New York, NY, USA, 2003. ACM Press.

[37] FWGrid. http://fwgrid.ucsd.edu/.

[38] Kang Su Gatlin and Larry Carter. Architecture-cognizant Divide and
Conquer Algorithms. In Supercomputing ’99: Proceedings of the 1999
ACM/IEEE conference on Supercomputing (CDROM), page 25, New York,
NY, USA, 1999. ACM Press.

[39] C. Germain, G. Fedak, V. Néri, and F. Cappello. Global Computing Systems.
Lecture Notes in Computer Science, 2179, 2001.

[40] Cile Germain, Vincent, Gilles Fedak, and Franck Cappello. XtremWeb:
Building an Experimental Platform for Global Computing. In GRID ’00:
Proceedings of the First IEEE/ACM International Workshop on Grid Com-
puting, pages 91–101, London, UK, 2000. Springer-Verlag.

[41] Gnutella. http://www.gnutella.com.

[42] Andrew V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel
Computers. PhD thesis, Department of Electrical Engineering and Computer
Science, MIT, 1987.

[43] James N. Gray. An Approach to Decentralized Computer Systems. IEEE
Trans. Softw. Eng., 12(6):684–692, 1986.

[44] T. Hagerup. Allocating Independent Tasks to Parallel Processors: An Ex-
perimental Study. Journal of Parallel and Distributed Computing, 47, 1997.

124

[45] Torben Hagerup. Allocating Independent Tasks to Parallel Processors: An
Experimental Study. J. Parallel Distrib. Comput., 47(2):185–197, 1997.

[46] Fabrice Huet, Denis Caromel, and Henri E. Bal. A High Performance Java
Middleware with a Real Application. In Proceedings of the Supercomputing
conference, Pittsburgh, Pensylvania, USA, November 2004.

[47] Adriana Iamnitchi and Ian T. Foster. On Fully Decentralized Resource Dis-
covery in Grid Environments. In GRID ’01: Proceedings of the Second In-
ternational Workshop on Grid Computing, pages 51–62, London, UK, 2001.
Springer-Verlag.

[48] O. H. Ibarra and C. E. Kim. Heuristic Algorithms for Scheduling Independent
Tasks on non-identical processors. Journal of the ACM (JACM), 24(2), 1997.

[49] Oscar H. Ibarra and Chul E. Kim. Heuristic Algorithms for Scheduling In-
dependent Tasks on Nonidentical Processors. J. ACM, 24(2):280–289, 1977.

[50] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Di-
rected Diffusion: A Scalable and Robust Communication Paradigm for Sen-
sor Networks. In Mobile Computing and Networking, pages 56–67, 2000.

[51] David E. Irwin, Laura E. Grit, and Jeffrey S. Chase. Balancing Risk and
Reward in a Market-Based Task Service. In HPDC ’04: Proceedings of
the 13th IEEE International Symposium on High Performance Distributed
Computing (HPDC’04), pages 160–169, Washington, DC, USA, 2004. IEEE
Computer Society.

[52] L. R. Ford Jr. and D. R. Fulkerson. Flow in Networks, Princeton University
Press. 1962.

[53] Project JXTA. http://www.jxta.org.

[54] M. Frans Kaashoek and David R. Karger. Koorde: A Simple Degree-optimal
Distributed Hash Table. In Proceedings of the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS ’03), 2003.

[55] Kazaa Networks. http://www.kazaa.com.

[56] Derrick Kondo, Henri Casanova, Eric Wing, and Francine Berman. Models
and Scheduling Mechanisms for Global Computing Applications. In IPDPS
’02: Proceedings of the 16th International Parallel and Distributed Processing
Symposium, page 216, Washington, DC, USA, 2002. IEEE Computer Society.

[57] Derrick Kondo, Michela Taufer, Charles L. Brooks III, Henri Casanova, and
Andrew A. Chien. Characterizing and Evaluating Desktop Grids: An Em-
pirical Study. In IPDPS, 2004.

125

[58] B. Kreaseck, L. Carter, H. Casanova, J. Ferrante, and S. Nandy. Interference-
Aware Scheduling. In International Journal of High Performance Computing
Applications (IJHPCA), 2006.

[59] B. Kreaseck, L. Carter, H. Casanova, and J.Ferrante. Autonomous Protocols
for Bandwidth-Centric Scheduling of Independent-task Applications. In Pro-
ceedings of the International Parallel and Distributed Processing Symposium
(IPDPS’03), Nice, France, April 2003.

[60] Barbara Kreaseck, Larry Carter, Henri Casanova, and Jeanne Ferrante. On
the Interference of Communication on Computation in Java. In Proceedings
of the 3rd International Workshop on Performance Modeling, Evaluation and
Optimization on Parallel and Distributed Systems (PMEO-PDS’04), Santa
Fe, New Mexico, April 2004.

[61] Clyde P. Kruskal and Alan Weiss. Allocating Independent Subtasks on Par-
allel Processors. IEEE Trans. Softw. Eng., 11(10):1001–1016, 1985.

[62] C.P. Kruskal and A. Weiss. Allocating Independent Subtasks on Parallel
Processors. IEEE Transactions on Software Engineering, 11, 1984.

[63] Frank C. H. Lin and Robert M. Keller. The Gradient Model Load Balancing
Method. IEEE Trans. Softw. Eng., 13(1):32–38, 1987.

[64] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - A Hunter
of Idle Workstations. In Proceedings of the 8th International Conference of
Distributed Computing Systems, June 1988.

[65] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund. Dynamic
Matching and Scheduling of a Class of Independent Tasks onto Hetero-
geneous Computing Systems. In 8th Heterogeneous Computing Workshop
(HCW’99), pages 30–44, Apr. 1999.

[66] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A Scalable and
Dynamic Emulation of the Butterfly. In PODC ’02: Proceedings of the
twenty-first annual symposium on Principles of distributed computing, pages
183–192, New York, NY, USA, 2002. ACM Press.

[67] Max-Flow. http://elib.zib.de/pub/Packages/mathprog/maxflow/index.html.

[68] Great Internet Mersenne Prime Search (GIMPS).
http://www.mercenne.com.

[69] Willebeek-LeMair M.H. and A.P Reeves. Strategies for Dynamic Load Bal-
ancing on Highly Parallel Computers. In Parallel and Distributed Systems,
IEEE Transactions, 1993.

[70] The MPI-Forum. http://www.mpi-forum.org/docs/docs.html.

126

[71] Sagnik Nandy, Larry Carter, and Jeanne Ferrante. A-FAST: Autonomous
Flow Approach to Scheduling Tasks. In HiPC, pages 363–374, 2004.

[72] Sagnik Nandy, Larry Carter, and Jeanne Ferrante. GUARD: Gossip Used
for Autonomous Resource Detection. In IPDPS, 2005.

[73] Napster. http://www.napster.com.

[74] Michael O. Neary, Sean P. Brydon, Paul Kmiec, Sami Rollins, and Peter
Cappello. Javelin++: Scalability Issues in Global Computing. Concurrency:
Practice and Experience, 12(8):727–753, 2000.

[75] Michael O. Neary, Bernd O. Christiansen, Peter Cappello, and Klaus E.
Schauser. Javelin: Parallel Computing on the Internet. Future Gener. Com-
put. Syst., 15(5-6):659–674, 1999.

[76] Network Emulator. http://clarinet.u-strasbg.fr/nem/.

[77] Licnio Oliveira, Lus Lopes, and Fernando Silva. P3: Parallel Peer to Peer -
An Internet Parallel Programming Environment. In International Workshop
on Peer-to-peer Computing, 2002.

[78] OpenMP. http://www.openmp.org/.

[79] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Distributed
Resource Discovery on PlanetLab with SWORD. In First Workshop on
Real, Large Distributed Systems (WORLDS04), December 2004.

[80] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and
Implementation Tradeoffs for Wide-Area Resource Discovery. In HPDC ’05:
Proceedings of the 14th IEEE International Symposium on High Performance
Distributed Computing (HPDC’05), July 2005.

[81] Charles Perkins and Pravin Bhagwat. Highly Dynamic Destination-
Sequenced Distance-Vector Routing (DSDV) for Mobile Computers. In ACM
SIGCOMM’94 Conference on Communications Architectures, Protocols and
Applications, pages 234–244, 1994.

[82] PlanetLab. http://www.planet-lab.org/.

[83] Rajesh Raman, Miron Livny, and Marv Solomon. Matchmaking: An Exten-
sible Framework for Distributed Resource Management. Cluster Computing,
2(2):129–138, 1999.

[84] Geoffrey Voelker Ranjita Bhagwan, Stefan Savage. Understanding Availabil-
ity. In The 2nd International Workshop on Peer-to-Peer Systems (IPTPS),
February 2003.

127

[85] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott
Shenker. A Scalable Content-addressable Network. In SIGCOMM, pages
161–172, 2001.

[86] RMI. http://java.sun.com/products/jdk/rmi/.

[87] A. Rosenberg. Sharing Partitionable Workloads in Heterogeneous NOWs:
Greedier Is Not Better. In Proceedings of the IEEE International Confer-
ence on Cluster Computing (Cluster’01), Newport Beach, California, Octo-
ber 2001.

[88] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, Decentral-
ized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In
Middleware 2001: Proceedings of the IFIP/ACM International Conference
on Distributed Systems Platforms Heidelberg, pages 329–350, London, UK,
2001. Springer-Verlag.

[89] Luis F. G. Sarmenta and Satoshi Hirano. Bayanihan: Building and Study-
ing Web-based Volunteer Computing Systems using Java. Future Gener.
Comput. Syst., 15(5-6):675–686, 1999.

[90] Alex Scherer, Honghui Lu, Thomas Gross, and Willy Zwaenepoel. Transpar-
ent adaptive parallelism on NOWs using OpenMP. In PPoPP ’99: Proceed-
ings of the seventh ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 96–106, New York, NY, USA, 1999. ACM Press.

[91] SETI@home. http://setiathome.ssl.berkeley.edu, 2001.

[92] Jahanzeb Sherwani, Nosheen Ali, Nausheen Lotia, Zahra Hayat, and Rajku-
mar Buyya. Libra: A Computational Economy-based Job Scheduling System
for Clusters. Softw. Pract. Exper., 34(6):573–590, 2004.

[93] Y. Shiloach and U. Vishkin. An O(n2log n) Parallel MAX-FLOW Algorithm.
Journal of Algorithms, 1982.

[94] Jeffrey Shneidman, Chaki Ng, David Parkes, Alvin AuYoung, Alex C. Sno-
eren, Amin Vahdat, and Brent N. Chun. Why Markets Could (But Don’t
Currently) Solve Resource Allocation Problems in Systems. In 10th USENIX
Workshop on Hot Topics in Operating Systems (HotOS-X), June 2005.

[95] John F. Shoch and Jon A. Hupp. The Worm Programs: Early Experience
with a Distributed Computation. Commun. ACM, 25(3):172–180, 1982.

[96] W. Shu and L. V. Kale. A Dynamic Scheduling Strategy for the Chare-
Kernel System. In Supercomputing ’89: Proceedings of the 1989 ACM/IEEE
conference on Supercomputing, pages 389–398, New York, NY, USA, 1989.
ACM Press.

128

[97] David Spence and Tim Harris. XenoSearch: Distributed Resource Discovery
in the XenoServer Open Platform. In HPDC ’03: Proceedings of the 12th
IEEE International Symposium on High Performance Distributed Computing
(HPDC’03), page 216, Washington, DC, USA, 2003. IEEE Computer Society.

[98] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. In SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer commu-
nications, pages 149–160, New York, NY, USA, 2001. ACM Press.

[99] V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing.
Concurrency: Practice and Experience, 2(4):315–339, 1990.

[100] Rob van Nieuwpoort, Thilo Kielmann, and Henri E. Bal. Satin: Efficient
Parallel Divide-and-Conquer in Java. In Euro-Par, pages 690–699, 2000.

[101] B. Veeravalli, D. Ghose, and T. G. Robertazzi. Divisible Load Theory: A
New Paradigm for Load Scheduling in Distributed Systems. Cluster Com-
puting, 6(1), January 2003.

[102] Michael Voss and Rudolf Eigenmann. Dynamically Adaptive Parallel Pro-
grams. In ISHPC ’99: Proceedings of the Second International Symposium on
High Performance Computing, pages 109–120, London, UK, 1999. Springer-
Verlag.

[103] Kevin Daniel Wayne. Generalized Maximum Flow Algorithms. PhD thesis,
Cornell University, 1999.

[104] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and Routing. Technical
report, University of California at Berkeley, 2001.

