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Abstract

Implicit particle filters for data assimilation update the particles by

first choosing probabilities and then looking for particle locations that

assume them, guiding the particles one by one to the high probability

domain. We provide a detailed description of these filters, with illustra-

tive examples, together with new, more general, methods for solving the

algebraic equations and with a new algorithm for parameter identification.

1 Introduction

There are many problems in science, for example in meteorology and economics,
in which the state of a system must be identified from an uncertain equation
supplemented by noisy data (see e.g. [7, 15]). A natural model of this situation
consists of an Ito stochastic differential equation (SDE):

dx = f(x, t) dt+ g(x, t) dw, (1)

where x = (x1, x2, . . . , xm) is an m-dimensional vector, f is an m-dimensional
vector function, g(x, t) is an m by m matrix, and w is Brownian motion which
encapsulates all the uncertainty in the model. In the present paper we assume
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for simplicity that the matrix g(x, t) is diagonal. The initial state x(0) is given
and may be random as well.

The SDE is supplemented by measurements bn at times tn, n = 0, 1, . . . .
The measurements are related to the state x(t) by

bn = h(xn) +GWn, (2)

where h is a k-dimensional, generally nonlinear, vector function with k ≤ m, G
is a matrix, xn = x(tn), and Wn is a vector whose components are independent
Gaussian variables of mean 0 and variance 1, independent also of the Brownian
motion in equation (1). The independence requirements can be greatly relaxed
but will be observed in the present paper. The task of a filter is to assimilate
the data, i.e., estimate x on the basis of both equation (1) and the observations
(2).

If the system (1) and equation (2) are linear and the data are Gaussian, the
solution can be found in principle via the Kalman-Bucy filter (see e.g. [12]).
In the general case, one often estimates x as a statistic (often the mean) of a
probability density function (pdf) evolving under the combined effect of equa-
tions (1) and (2). The initial state x0 being known, all one has to do is evaluate
sequentially the pdfs Pn+1 of the variables xn+1 given the equations and the
data. In a “particle” filter this is done by following “particles” (replicas of the
system) whose empirical distribution at time tn approximates Pn. One may for
example (see e.g. [1, 7, 8, 12]) use the pdf Pn and equation (1) to generate a
prior density (in the sense of Bayes) , and then use the data bn+1 to generate
sampling weights which define a posterior density Pn+1. In addition, one has
to sample backward to take into account the information each measurement
provides about the past. This process can be very expensive because in most
weighting schemes, most of the weights tend to zero fast and the number of
particles needed can grow catastrophically (see e.g. [14, 2]); various strategies
have been proposed to ameliorate this problem.

Our remedy is implicit sampling [5, 6]. The number of particles needed
in a filter remains moderate if one can find high probability particles; to this
end, implicit sampling works by first picking probabilities and then looking for
particles that assume them, so that particles are guided efficiently to the high
probability region one at a time, without needing a global guess of the target
density. In the present paper we provide an expository account of particle
filters, separating clearly the general principles from details of implementation;
we provide general solution algorithms for the resulting algebraic equations,
in particular for nonconvex cases which we had not considered in our previous
publications, as well as a new algorithm for parameter identification based on an
implicit filter. We also provide examples, in particular of nonconvex problems.

Implicit filters are a special case of chainless/Markov field sampling meth-
ods [3, 4]; a key connection was made in [16, 17], where it was observed that
in the sampling of stochastic differential equations, the marginals needed in
Markov field sampling can be read off the equations and need not be estimated
numerically.
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2 The mathematical framework

The conditional probability density Pn(x) at time tn, determined by the SDE
(1) given the observations (2), satisfies the recurrence relation (see e.g. [7]):

Pn+1(x
n+1) = Pn(x

n)P (xn+1|xn)P (bn+1|xn+1)/Z0, (3)

where Pn+1(x
n+1) is the probability of the sample xn+1 at time tn+1 given the

observations bj for j ≤ n+ 1, Pn(x
n) is the probability of a the sample xn at

time tn given the observations bj for j ≤ n, P (xn+1|xn) is the probability of a
sample xn+1 at time tn+1 given a sample xn at time tn, P (bn+1|xn+1) is the
probability of the observations bn+1 given the sample xn+1 at time tn+1, and
Z0 is a normalization constant independent of xn and xn+1. This is Bayes’
theorem.

We estimate Pn+1 with the help of M particles, with positions Xn
i at time tn

andXn+1

i at time tn+1 (i = 1, . . . ,M), which define empirical densities P̂n, P̂n+1

that approximate Pn, Pn+1. We do this by requiring that, when a particle moves
from Xn

i to Xn+1

i the probability of Xn+1

i be

P (Xn+1

i ) = P (Xn
i )P (Xn+1

i |Xn
i )P (bn+1|Xn+1

i )/Z0, (4)

where the hats have been omitted, P (Xn
i ), the probability of Xn

i , is assumed
given, the pdf P (Xn+1

i |Xn
i ), the probability of Xn+1

i given Xn
i , is determined

by the SDE (1), the pdf P (bn+1|Xn+1

i ), the probability of the observations bn+1

given the new positions Xn+1

i , is determined by the observation equation (2).
We shall see below that one can set P (Xn

i ) = 1 without loss of generality.
Equation (4) defines the pdf we need to sample for each particle; this pdf is

known, in the sense that once one has a sample, one can evaluate its probability
(up to a constant); the difficulty is to find high probability samples, especially
when the number of variables is large. The idea in implicit sampling is to define
probabilities first, and then look for particles that assume them; this is done by
choosing once and for all a fixed reference random variable, say ξ, with a given
pdf, say a Gaussian exp(−ξT ξ/2)/(2π)m/2), which one knows how to sample so
that most samples have high probability, and then making Xn+1

i a function of
ξ, a different function of each particle and each step, each function designed so
that the map ξ → Xn+1

i connects highly probable values of ξ to highly probable
values of Xn+1

i . To that end, write

P (Xn+1

i |Xn
i )P (bn+1|Xn+1

i ) = exp(−Fi(X)),

where on the right-hand side X is a shorthand for Xn+1

i and all the other
arguments are omitted. This defines a function Fi for each particle i and each
time tn. For each i and n, Fi is an explicitly known function of X = Xn+1

i .
Then solve the equation

Fi(X)− φi = ξT ξ/2, (5)

where ξ is a sample of the fixed reference variable and φi is an additive factor
needed to make the equation solvable. The need for φi becomes obvious if one
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considers the case of a linear observation function h in equation (2), so that the
right side of equation (5) is quadratic but the left is a quadratic plus a constant.
It is clear that setting φ = minF will do the job, but this is not necessarily
the best choice (see below). We also require that for each particle, the function
Xn+1

i = X = X(ξ) defined by (5) be one-to-one so that the correct pdf is
sampled, in particular, it must have distinct branches for ξ > 0 and ξ < 0. The
solution of (5) is discussed in the next section. From now on we omit the index
i in both F and φ, but it should not be forgotten that these function vary from
particle to particle and from one time step to the next.

Once the function X = X(ξ) is determined, each value of Xn+1 = X (the
subscript i is omitted) appears with probability exp(−ξT ξ/2)J−1/(π)m/2, where
J is the Jacobian of the mapX = X(ξ), while the product P (Xn+1|Xn)P (bn+1|Xn+1)
evaluated at Xn+1 equals exp(−ξT ξ/2) exp(−φ)/(2π)m/2. The sampling weight
for the particle is therefore exp(−φ)J . If the map ξ → X is smooth near ξ = 0,
so that φ and J do not vary rapidly from particle to particle, and if there is an
easy way to compute J (see the next section), then we have an effective way
to sample Pn+1 given Pn. It is important to note that though the functions F
and φ vary from particle to particle, the probabilities of the various samples are
expressed in terms of the fixed reference pdf, so that they can be compared with
each other.

The weights can be eliminated by resampling. A standard resampling algo-
rithm goes as follows [7]: let the weight of the i-th particle be Wi, i = 1, . . . ,M .
Define A =

∑
Wi; for each of M random numbers θk, k = 1, . . . ,M drawn

from the uniform distribution on [0, 1], choose a new X̂n+1

k = Xn+1

i such that

A−1
∑i−1

j=1
Wj < θk ≤ A−1

∑i
j=1

Wj , and then suppress the hat. This justifies
the statement following equation (4) that one can set P (Xn) = 1.

To see what has been gained, compare our construction with the usual
“Bayesian” particle filter, where one samples P (Xn+1|Xn)P (bn+1|Xn+1) by
first finding a “prior” density Q(Xn+1) (omitting all arguments other than
Xn+1), such that the ratio W = P (Xn+1)/Q(Xn+1) is close to a constant,
and then assigning to the i-th particle the importance weight W = Wi evalu-
ated at the location of the particle. The pdf defined by the set of positions and
weights is the density Pn+1 we are looking for. An important special case is the
choice Q(Xn+1) = P (Xn+1|Xn); the prior is then defined by the equation of
motion alone and the posterior is obtained by using the observations to weight
the particles. We shall refer to this special case as “standard importance sam-
pling” or “standard filter”. Of course, once the positions and the weights of the
particles have been determined, one should resample as above.

The catch in these earlier constructions is that the prior density Q and the
desired posterior can come close to being mutually singular, and the number of
particles needed may become catastrophically large, especially when the number
of variables m is large. To avoid this catch one has to make a good guess for
the pdf Q, which may not be easy because Q should approximate the density
Pn+1 one is looking for- this is the basic conundrum of Monte Carlo methods, in
which one needs a good estimate to get a good estimate. In contrast, in implicit
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sampling one does a separate calculation for each sample and there is no need
for prior global information. One can of course still identify the pdf defined by
the positions of the particles at time tn+1 as a “prior” and the pdf defined by
both the positions and the weights as a “posterior” density.

Finally, implicit sampling can be viewed as an implicit Monte Carlo scheme
for solving the Zakai equation [18], which describes the evolution of the (unnor-
malized) conditional distribution for a SDE conditioned by observations. This
should be contrasted with the procedure in the popular ensemble Kalman filter
(see e.g. [9]), where a Gaussian approximation of the pdf defined by the SDE
is extracted from a Monte Carlo solution of the corresponding Fokker-Planck
equation, a Gaussian approximation is made for the pdf P (bn+1|xn+1), and
new particle positions are obtained by a Kalman step. Our replacement of the
Fokker-Planck equation that corresponds to the SDE alone by a Zakai equation
that describes the evolution of the unnormalized conditional distribution does
away with the need for the approximate and expensive extraction of Gaussians
and consequent Kalman step.

3 Solution of the algebraic equation that defines

a new sample

We now explain how to solve equation (5), F (X) − φ = ξT ξ/2, under several
sets of assumptions which are met in practice. Note the great latitude this
equation provides in linking the ξ variables to the X variables; equation (5) is a
single equation that connects 2m variables (the m components of ξ and the m
components of X) and can be satisfied by many maps ξ → X ; these are useful
as long as (i) they are one-to-one, (ii) they map the neighborhood of 0 into a set
that contains the minimum of F , (iii) they are smooth near ξ = 0 so that the
weights exp(−φ) and the Jacobian J not vary unduly from particle to particle
in the target area, and (iv) they allow the Jacobian J to be calculated easily.
The solution methods presented here are far from exhaustive; further examples
and refinements in the context of specific applications.

Algorithm (A) (presented in [5, 6]) : Assume the function F is convex
upwards. For each particle, we set up an iteration, with iterates Xn+1,j, j =
0, 1, . . . , (Xj for brevity), with X0 = 0, that converge to the next position Xn+1

of that particle. The index i that identifies the particle is omitted again. We
write the equations as if the system were one-dimensional; the multidimensional
case was presented in detail in [6]. First we sample the reference variable ξ. The
iteration is defined when one knows how to find Xj+1 given Xj.

Expand the observation function h in equation (2) around Xj:

h(Xj+1) = h(Xj) + (Dh)j(Xj+1 −Xj), (6)

where (Dh)j is the derivative of h evaluated at Xj . The observation equation
(2) is now approximated as a linear function of Xj+1, and the function F is the
sum of two Gaussians in Xj+1. Completing a square yields a single Gaussian
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with a remainder φ, i.e., F (X) = (x− ā)2/(2v̄) + φ(Xj), where the parameters
φ, ā, v̄ are functions of Xj (this is what we called in [5] a “pseudo-Gaussian”).
The next iterate is now Xj = ā +

√
v̄ξ. In the multidimensional case, when

each component of the function h in equation (2) depends on more than one
variable, finding X as a function of ξ may require the solution of a linear system
of equations, which can be performed e.g. by a Choleski factorization, as in [6],
or by a rotation, as in [5]. If the iteration converges, it converges to the exact
solution of equation (5), with φ the limit of the φ(Xj). Its convergence can
be accelerated by Aitken’s extrapolation [10]. The Jacobian J can be evaluated
either by an implicit differentiation of equation (5) or numerically, by perturbing
ξ in equation (5) and solving the perturbed equation (which should not require
more than a single additional iteration step). It is easy to see that this iteration,
when it converges, produces a mapping ξ → X that is one to one and onto.

An important special case occurs when the observation function h is linear
in X ; it is immaterial whether the SDE (1) is linear. In this case the iteration
converges in one step; the Jacobian J is easy to find; if in addition the function
g(x, t) in equation (1) is independent of x, then J is independent of the particle
and need not be evaluated; the additive term φ can be written explicitly as a
function of the previous position Xn of the particle and of the observation bn+1.
We recover an easy implementation of optimal sequential importance sampling
(see e.g. [1, 7, 8]).

This iteration has been used in [6]. It may fail to converge if the function
F is not convex (as happens in particular when the observation function h is
highly nonlinear). One may resort then to the next construction.

Algorithm (B). Assume the function F is U -shaped, i.e., in the scalar
case, it is at least piecewise differentiable, F ′ vanishes at a single point which
is a minimum, F is strictly decreasing on one side of the minimum and strictly
increasing on the other, with F (X) = ∞ when X = ±∞. In the m-dimensional
case, assume that F has a single minimum and that each intersection of the
graph of the function y = F (X) with a vertical plane through the minimum is
U -shaped in the scalar sense (note that a function may be U -shaped without
being convex).

Find z, the minimum of F (note that this is the minimum of a given real
valued function, not a minimum of a possibly multimodal pdf generated by the
SDE; finding this minimum is not equivalent to the difficult problem of finding
a maximum likelihood estimate of the state of the system). The minimum z
can be found by standard minimization algorithms.

Again we are solving the equations by finding iterates Xj that converge to
Xn+1. In the scalar case, given a sample of the reference variable ξ, find first
X0 such that X0 − z has the sign of ξ, and then find the next iterates Xj by
standard tools (e.g. by Newton iteration), modified so that the Xj are prevented
from leaping over z.

In the vector case, if the observation function is diagonal, i.e. each com-
ponent of the observation is a function of a single component of the solution
X , then the scalar algorithm can be used component by component. In more
complicated situations one can take advantage of the freedom in connecting ξ
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to X .
Here is an interesting example of the use of this freedom, which we present

in the case of a multidimensional problem where the observation function is
linear but need not be diagonal. Set φ = minF . The function F (X) − φ can
now be written as (X − a)TA(X − a)/2, where a is a known vector, T denotes
a transpose as before, and A is a positive definite symmetric matrix. Write
further y = X − a. Equation (5) becomes

yTAy = |ξ|2, (7)

where |ξ| is the length of the vector ξ. Make the ansatz:

y = λη,

where λ is a scalar, η = ξ/|ξ| is a random unit vector and ξ is a sample of of
the reference density. Substitution into (7) yields

λ2(ηTAη) = |ξ|2. (8)

It is easy to see that E[ηiηj ] = δij/m, where E[·] denotes an expected value,
the ηi are the components of η, m is the number of variables, and δij is the
Kronecker delta, and hence

E[ηTAη] = trace(A)/m.

Replace equation (8) by
λ2Λ = |ξ|2. (9)

where Λ = trace(A)/m. This equation has the solution λ = |ξ|/
√
Λ, and

substitution into the ansatz leads to yi = ξi/
√
Λ, a transformation with Ja-

cobian J = Λ−m/2. The difference between equations (8) and (9) can be
compensated for by adding to φ the term λ2[(ηTAη) − Λ]. Notice now that
as m → ∞, (ηTAη) → Λ (a stochastic weak law of large numbers), so that
when the number of variables is sufficiently large, the perturbation one has to
compensate for becomes negligible. Generalizations and applications of this
construction will be given elsewhere in the context of specific applications.

One can readily devise algorithms also for cases where F is not U -shaped,
for example, by dividing F into monotonic pieces and sampling each of these
pieces with its predetermined probability. An alternative that is usually easier
is to replace the non-U -shaped function F by a suitable U -shaped function F0

and make up for the bias by adding F0(X)− F (X) to the additive term φ; see
the examples below.

4 Backward sampling and sparse observations

The algorithms of the previous sections are sufficient to create a filter, but ac-
curacy may require an additional step. Every observation provides information
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not only about the future but also about the past- it may, for example, tag as
improbable earlier states that had seemed probable before the observation was
made; in general one has to go back and correct the past after every observation
(this backward sampling is often misleadingly motivated solely by the need to
create greater diversity among the particles in a Bayesian filter). A detailed
construction has been presented in [6]; the examples in the present paper are
simple enough so that backward sampling does not significantly enhance their
performance, so we will be content here with presenting the construction in
principle, without much detail; it is a straightforward extension of the work
above.

Consider the i-th particle, and suppose we have sampled its positions Xn−1,
Xn, Xn+1 at times tn−1, tn, tn+1. Now we would like to go back and resample
a new position Xn at time tn, given Xn−1 and Xn+1. The probability density
of X = Xn is proportional to P (X) = P (X |Xn−1)P (bn|X)P (Xn+1|X). Write
P (X) = exp(−F (X)), sample a Gaussian reference variable ξ, solve F (X)−φ =
ξT ξ/2 as above, and you are done. If need be, one can then go further back and
resample Xn−1, Xn−2, . . . Note that backward sampling relates Pn+1 to Pn−k

for k ≥ 0.
A similar construction can be used when the observations are sparse in

time, for example, if the time step needed to discretize the SDE accurately is
shorter than the time interval between observations. Suppose we have sam-
pled Xn−1, have an observation at time tn+1 but not at time tn, so that
we have to sample simultaneously Xn and Xn+1 from the SDE and the ob-
servation bn+1. The joint probability of X = (Xn, Xn+1) is proportional
to P (Xn|Xn−1)P (Xn+1|Xn)P (bn+1|Xn+1). Again, write this probability as
exp(−F (X)) and equate F (X)− φ to ξT ξ/2, where ξ is a 2M -dimensional ref-
erence variable. Detailed expression for the vector case, as well as examples,
can be found in [6].

5 Examples

We now present examples that illustrate the algorithms we have just described.
For more examples, see [5, 6].

We begin with a response to a comment we have often heard: ”this is nice,
but the construction will fail the moment you are faced with potentials with
multiple wells”. This is not so- the function F depends on the nature of the
noise in the SDE and on the function h = h(x) in the observation equation
(2), but not on the potential. Consider for example a one dimensional particle
moving in the potential V (x) = 2.5(x2 − 0.5)2, (see Figure 1), with the force
f(x) = −∇V = −10x(x2 − 1) and the resulting SDE dx = f(x)dt + σdw,
where σ = .1 and w is Brownian motion with unit variance; with this choice of
parameters the SDE has an invariant density concentrated in the neighborhoods
of x = ±

√
1/2. We consider linear observations bn = x(tn) +W , where W is a

Gaussian variable with mean zero and variance s = .025. We approximate the
SDE by an Euler scheme [11] with time step δ = 0.01, and assume observations
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Figure 1: The potential in the first example.

are available at all the points nδ. The particles all start at x = 0. We produce
data bn by running a single particle and adding to its positions errors drawn
from the assumed error density in equation (2), and then attempt to reconstruct
this path with our filter.

For the i-the particle located at time nδ at Xn
i the function F (X) is

F (X) = (X −Xn
i )

2/(2σδ) + (X − bn+1)2)2/(2s),

which is always convex. A completion of a square yields minF = φ = (1/2)(Xn
i −

bn+1)2/(σδ + s); the Jacobian J is independent of the particle and need not be
evaluated. In Figure 2 we display a particle run used to generate data and
its reconstruction by our filter with 50 particles. This figure is included for
completeness but both of these paths are random, their difference varies from
realization to realization, and may be large or small by accident. To get a quan-
titative estimate of the performance of the filter, we repeated this calculation
104 times and computed the mean and the variance of the difference ∆ between
the run that generated the data and its reconstruction at time t = 1, see Table
I. This Table shows that the filter is unbiased and that the variance of ∆ is
comparable to the variance of the error in the observations s = 0.025. Note
that even with one single particle (and therefore no resampling) the results are
still acceptable.

We now discuss the relation between the posterior we wish to sample and
the prior in several special cases, including non-convex situations. We want to
produce samples of the pdf P (x) = exp(−F (x))/Z, where Z is a normalization
constant and

F (x) = x2/(2σ) + (h(x) − b)2/(2s) (10)
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Figure 2: A random path (broken line) and its reconstruction by our filter (solid
line).

Table I

Mean and variance of the discrepancy between the observed path and the re-
constructed path in example 1 as a function of the number of particles M, with
s = 0.025.

M mean variance
100 -.0001 .021
50 -.0001 .022
20 -.0001 .023
10 .0001 .024
5 -.0001 .027
1 -.0001 .038
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and h(x) is a given function of x (as in equation (2)) and σ, s, b are given param-
eters. This can be viewed as a the first time step in time for a filtering problem
where all the particles start from the same point so that exp(−F (x))/Z = P1,
or as an analysis of the sampling for one particular particle in a general filtering
problem, or as an instance of the more general problem of sampling a given pdf
when the important events may be rare. In standard Bayesian sampling one
samples the variable with pdf exp(−x2)/(2σ))/

√
2πσ and then one attaches to

the sample at x the weight exp(−(h(x) − b)2/(2s)); in an implicit sampler one
finds a sample x by solving F (x)−φ = ξ2/2 for a suitable φ and ξ and attaching
to the sample the weight exp(−φ)J . For given σ, s, the problem becomes more
challenging as |b| increases.

In both the standard and the implicit filters one can view the empirical pdf
generated by the unweighted samples as a “prior” and the one generated by
the weighted samples as the “posterior”. The difficulty with standard filters is
that the prior and posterior densities may approach being mutually singular,
so it is of interest to estimate the Radon-Nikodym derivative of one of these
with respect to the other. If that derivative is a constant, we have achieved
perfect importance sampling, as every neighborhood in the sample space is
visited with a frequency proportional to its density. We estimate the Radon-
Nikodym derivative of the prior with respect to the posterior as follows. In this
simple problem one can evaluate the probability of any interval with respect to
the posterior we wish to sample by quadratures. We divide the interval [0, 1] into
K pieces of equal lengths 1/K, then find numerically points Y1, Y2, . . . , YK−1,
with YK = +∞, such that the posterior probability of the interval [−∞, Yk] is
k/K for k = 1, 2, . . . ,K. We then find L = 105 samples of the prior and plot of
a histogram of the frequencies with which these samples fall into the posterior
equal probability intervals (Yk−1, Yk). The more this histogram departs from
being a constant independent of k, the more samples are needed to calculate
the statistics of the posterior.

If h(x) is linear, the weights in the implicit filter are all equal and the his-
togram is constant for all values of b. This remains true for all values of b, i.e.,
however far the observation b is from what one may expect from the SDE alone.
This is not the case with a standard Bayesian filter, where some parts of the
sample space that have non-zero probability are visited very rarely. In Table II
we list the histogram of frequencies for a linear observation function h(x) = x
and b = 2 in a standard Bayesian filter, with K=10. We used 104 samples;
the fluctuations in the implicit case measure only the accuracy with which the
histogram is computed with this number of samples.

As a consequence, estimates obtained with the implicit filter are much more
reliable than the ones obtained with the standard Bayesian filter. In Table III we
list the estimates of the mean position of the linear problem as a function of b,
with 30 particles, σ = s = 0.1, for the standard Bayesian and the implicit filters,
compared with the exact result. The standard deviations are not displayed, they
are all near 0.01.

The results in this one-dimensional problem mirror the situation with the
example of Bickel et al. [2, 14], designed to display the breakdown of the stan-
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Table II

Histogram of the Radon-Nikodym derivative of the prior with respect to the
posterior, standard Bayesian filter vs. the implicit filter, 10000 particles, b = 2,
σ = s = 0.1, h(x) = x.

k standard implicit
1 .987 .099
2 .006 .108
3 .002 .097
4 .001 .099
5 .004 .101
6 .003 .099
7 .001 .101
8 .001 .101
9 .000 .102
10 .000 .093

Table III

Comparison of the the estimates of the means, implicit vs. standard filter, 30
particles, together with the exact results, linear case, as explained in the text.

b exact standard implicit
0 0 -.05 .02
0.5 .25 .10 .27
1. .5 .18 .51
1.5 .75 .23 .76
2. 1. .26 1.01
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Figure 3: A non-convex function F (solid line) and a U -shaped substitute (bro-
ken line).

dard Bayesian filter when the number of dimension is large; what happens there
is that one particle hogs almost the whole weight, so that the number of parti-
cles needed grows catastrophically; in contrast, the implicit filter assigns equal
weights to all the particles in any number of dimensions, so that the number of
particles needed is independent of dimension, see also [6].

We now turn to nonlinear and nonconvex examples. Let the observation
function h be strongly nonlinear: h(x) = x3. With σ = s = 0.1; the pdf (10)
becomes non-U -shaped for |b| ≥ .77. In Figure 3 we display the function F
for b = 1 (the solid curve). To use the algorithms above we need a substitute
function F0 that is U -shaped; we also display in Figure 3 (the broken line) the
function F0 we used; the recipe here is to link a point above the local minimum
on the left to the absolute minimum on the right by a straight line. There are
many other possible constructions; the only general rule is to make the minimum
of F0 equal the absolute minimum of F , for obvious reasons. As described above,
we solve F0(x)−φ = ξT ξ/2 and set φ = minF0 +F0(x)−F (x). It is important
to note that this construction does not introduce any bias. The function F0

constructed in this way is U -shaped but need not be convex, so that one needs
algorithm (B) described above. In Table IV we compare the Radon-Nikodym
derivatives of the prior with respect to the posterior for the resulting implicit
sampling and for standard Bayesian sampling with σ = s = 0.1, b = 1.5.

The histogram for the implicit filter is no longer perfectly balanced. The
asymmetry in the histogram reflects the asymmetry of F0 and can be eliminated
by biasing ξ, but there is no reason to do so; there is enough importance sampling
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Table IV

Radon-Nikodym derivatives of the prior with respect to the posterior, h(x) =
x3, σ = s = 0.1, b = 1.5, 10000 samples, F0 as in the text.

k standard explicit
1 .9948 .0899
2 .0028 .0537
3 .0011 .0502
4 .0004 .0563
5 .0003 .0696
6 .0002 .1860
7 .0001 .1107
8 .0001 .1194
9 .0001 .1196
10 0. .1446

Table V

Comparison of the the estimates of the means, implicit vs. standard filter, 1000
particles, together with the exact result, when h(x) = x3, as explained in the
text.

b exact standard implicit
0. 0. -0.00 ±.01 -.00 ±.01
.5 .109 .109 ±.01 .109±.01
1.0 .442 .394 ± .04 .451±.02
1.5 .995 .775±.09 .995±.01
2.0 1.18 .875±.05 1.18±.01
2.5 1.30 .895 ±.02 1.29±.02

without this extra step.
In Table V we display the estimates of the means of the density for the

two filters with 1000 particles for various values of b, compared with the exact
results (the number of particles is relatively large because with h(x) = x3 and
our parameter choices the variance of the conditional density is significant, and
this number of particles is needed for meaningful comparisons of either algorithm
with the exact result).

As mentioned in the previous section, there are alternatives to the replace-
ment of F by F0; the point is that for each particle the function F is an explicitly
known non-random function, and this fact can be used in multiple ways.
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6 Parameter identification

One important application of particle filters is to parameter identification, where
the SDE contains an unknown parameter and the data are used to find this
parameter’s value. One of the standard ways of doing this (see e.g [7]) is system
augmentation: one adds to the SDE the equation dσ = 0 for the unknown
parameter σ, one offers σ a gamut of possible values, and one relies on the
resampling process that eliminate the values that do not fit the data. With the
implicit filter this procedure fails, because the particles are not eliminated fast
enough. The alternative we are proposing is finding the unknown parameter σ
by stochastic approximation. Specifically, Find a statistic T of the output of
the filter which is a function of σ, such that the expected value E[T ] vanishes
when σ has the right value σ∗, and then solve the equation E[T ] = E[T (σ)] = 0
by the Robbins-Monro algorithm [13], in which the equation E[T ] = 0 is solved
by the iteration:

σn+1 = σn − αnT (σn), (11)

where which converges when the coefficients αn are such that
∑

αn → ∞ while∑
α2
n remains bounded.
As a concrete example, consider the SDE dx = dW , where W is Brownian

motion with variance σ, discretized with time steps δ, with observations bn =
xn+η, where η is a Gaussian with mean zero and variance s. Data are generated
by running the SDE once with the true value σ∗ of σ, adding the appropriate
noise, and registering the result at time nδ as bn for n = 1, 2, . . . , N . For the
functional T we choose

T (σ) = C
∑

(∆i∆i−1)/
(
(
∑

∆2
i )(

∑
∆2

i−1)
)1/2

, (12)

where the summations are over i between 2 and N , ∆i is the estimate of the
increment of x in the i-the step and C is a scaling constant. Clearly if the σ used
in the filtering equals σ∗ then by construction the successive values of ∆i are
independent and E[T ] = 0.. We picked the parameters N = 100, σ = 10−2, s =
10−4, δ = 0.01 (so that that the increment of W in one step has variance 10−4).

Our algorithm is as follows: We make a guess σ1, run the filter for N steps,
evaluate T , and make a new guess for σ using equation (11) and a1 = 1, rerun
the filter, etc., with the an, the coefficient in equation (11) at the n-th step,
equal to 1/n. The scaling factor in (11) was found by trial and error: if it is too
large the iteration becomes unstable, if it is too small the convergence is slow;
we settled on C = 4.

This algorithm requires that the filter be run without either resampling
or backward sampling, because resampling and backward sampling introduce
correlations between successive values of the ∆i and bias the values of T . In a
long run, in particular in a strongly nonlinear setting, one may need resampling
for the filter to stay on track, and this can be done by segmentation: divide
the run of the filter into segments of some moderate length L, perform the
summations in the definition of T over that segment, then go back and run that
segment with resampling, then proceed to the next segment, etc.
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Table VI

Convergence of the parameter identification algorithm.

Iteration new estimate σ/σ∗

0 10.
1 .819
2 .943
3 1.02
4 1.05
5 1.08
6 1.10
7 1.13
8 1.15
9 1.16
10 1.17
11 1.18
12 1.18
13 1.18

The first question is, how well is it possible in principle to reconstruct an
unknown value of σ from N observations; this issue was already discussed in
[5]. Given 100 samples of a Gaussian variable of mean 0 and variance σ, the
variance reconstructed from the observations is a random variable of mean σ
and variance .16 · σ; 100 observations do not contain enough information to
reconstruct σ perfectly. A good way to estimate the best result that can be
achieved is to run the algorithm with the guess σ1 equal to the exact value σ∗

with which the data were generated. When this was done, the estimate of σ
was 1.27σ∗. This result indicates the achievable accuracy.

In Table VI we display the result of our algorithm when we start with the
starting value σ1 = 10σ∗ and with 50 particles. Each iteration requires that one
run the filter once.

7 Conclusions

We have presented the implicit filter for data assimilation, together with several
algorithms for the solution of the algebraic equations, including cases with non-
convex functions F , as well as an algorithm for parameter identification. The key
idea in implicit sampling is to solve an algebraic equation of the form F (X)−φ =
ξT ξ/2 for every particle, where the function F is explicitly known, X is the
new position of the particle, φ is an additive factor, and ξ is a sample of a
fixed reference pdf; F varies from particle to particle and step to step. This
construction makes it possible to guide the particles to the high-probability
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area one by one under a wide variety of circumstances. It is important to note
that the equation that links ξ to X is underdetermined and its solution can be
adapted for each particular problem.

Implicit sampling is of interest in particular because of its potential uses in
high dimensional problems, which are only briefly alluded to in the present pa-
per. The effectiveness of implicit sampling in high-dimensional settings depends
on one’s ability to design maps ξ → x that satisfy the criteria above and are
computationally efficient. The design of such maps is problem dependent and
we will present examples in the context of specific applications.
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