
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Power-Aware Core Management Scheme for Heterogeneous Many-Core Architecture

Permalink
https://escholarship.org/uc/item/3sb7v8hq

Author
Kim, Myoungseo

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3sb7v8hq
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Power-Aware Core Management Scheme for Heterogeneous Many-Core Architecture

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Engineering

by

Myoung-Seo Kim

Thesis Committee:

Professor Jean-Luc Gaudiot, Chair

Professor Nader Bagherzadeh

Professor Alexandru Nicolau

2015



c© 2015 Myoung-Seo Kim



DEDICATION

To my father and mother,

Youngkyu Kim and Heesook Park

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

ABSTRACT OF THE THESIS viii

1 Introduction 1

2 Related Work 3

3 Architecture 7
3.1 Heterogeneous Many-Core System . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Discrete L2 Cache Memory Model . . . . . . . . . . . . . . . . . . . . . . . . 8

4 3-Bit Power Control Scheme 11
4.1 Active Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Hot Core Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Cold Core Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Idle Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Powered Down Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Power-Aware Thread Placement 21

6 Evaluation And Methodology 27

7 Future Work 34

8 Summary 35

A Sniper: Scalable and Accurate Parallel Multi-Core Simulator 45
A.1 Intel Nehalem Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.2 Interval Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.3 Multi-Core Interval Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.4 Instruction-Window Centric Core Model . . . . . . . . . . . . . . . . . . . . 52

iii



B McPAT: Power Analysis Framework for Multi-Core Architectures 53
B.1 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iv



LIST OF FIGURES

Page

3.1 Heterogeneous Many-core architecture. . . . . . . . . . . . . . . . . . . . . . 9
3.2 4-way cuckoo directory structure. . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 3-bit core power control scheme under FSM. . . . . . . . . . . . . . . . . . . 13
4.2 3-bit core power control scheme under the operating sequence. . . . . . . . . 14
4.3 Power and clock distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Hardware-Software Thread Interaction. . . . . . . . . . . . . . . . . . . . . . 23
5.2 Outline of Heuristic Thread Cosolidation Method. . . . . . . . . . . . . . . . 26

6.1 Architectural Topology of FFT and FFT-HETERO Test Case. - Generated
Results from McPAT framework . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Power Consumption of FFT and FFT-HETERO Test Case. - Generated Re-
sults from McPAT framework . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 CPI Stack of FFT and FFT-HETERO Test Case. - Generated Results from
McPAT framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



LIST OF TABLES

Page

4.1 Processor Power Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Each Core Power Approximate Calculation . . . . . . . . . . . . . . . . . . . 19

6.1 Simulation Configuration Parameters . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Feature’s Summary of Existing Well-Known Simulators . . . . . . . . . . . . 29

vi



ACKNOWLEDGMENTS

First of all, I would like to thank and praise God to give me wisdom, knowledge, and
strength, that I make all these possible against every temptation and adversity. I am also
deeply respectful and grateful to my advisor, Dr. Jean-Luc Gaudiot, for his encouragement,
guidance and patience during my study. I was very fortunate to meet him as an advisor. In
addition, I have learned many aspects of computer science and engineering from his incredible
and creative insight and been inspired by his passion for work.

I would also like to say thank you to my committee members: Professor Nader Bagherzadeh
for his trust; and Professor Alexandru Nicolau for his kindness support and encouragement. I
wish to express best regards and blessing to all my colleagues in parallel systems & computer
architecture lab (PASCAL).

Additional support is provided by the National Science Foundation under Grant No. CCF-
1065448. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

Special thanks to Korean graduate student members for being my great supporter and for
helping me on everything to be enriched the life in Irvine.

Finally, I give my sincerest gratitude and honor to my family who have patiently supported
and prayed for me to move forward and to achieve my dream finally.

vii



ABSTRACT OF THE THESIS

Power-Aware Core Management Scheme for Heterogeneous Many-Core Architecture

By

Myoung-Seo Kim

Master of Science in Computer Engineering

University of California, Irvine, 2015

Professor Jean-Luc Gaudiot, Chair

The main challenge in designing the future heterogeneous many-core architecture on the

same chip is to provide a solution that has low power consumption, in addition to trade off

a small decrease in performance and throughput. Our design incorporates heterogeneous

cores representing different points in the power-performance design space during an appli-

cations execution. Under this circumstance, system software dynamically chooses the most

appropriate core to meet specific performance and power requirements. In this paper, the

authors present a power-aware core management scheme based on efficient control of the

core resources on heterogeneous many-core architecture as a mechanism to reduce a huge

latency and a power dissipation for powering the core up from powered down. Operation is

based on distinct scenarios by 3-bit core power control scheme through 5 statuses switching

such as active, hot core, cold core, idle, and powered down. In addition, for more elaborated

control to be power-performance efficient, this kind of status switching is exactly triggered by

power-aware thread placement through heuristic thread consolidation approach. To achieve

this objective, we have tried to deal with this scheme in terms of calculating peak and typical

power consumption and managing core resources efficiently.

Index Terms - Power Management, Heterogeneous Many-Core Architecture, 3-bit Core Power

Control Scheme, Power-Aware Thread Placement, Heuristic Thread Consolidation.
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Chapter 1

Introduction

As processors continue to increase in performance and speed, processor power consumption

and heat dissipation have become key challenges in the design of future heterogeneous many-

core architecture of a dark silicon era. In addition, heterogeneous system architecture (HSA)

foundation [1] and international technology roadmap for semiconductor (ITRS) organization

[2] including top-tier industry researchers have advocated future many-core chips [3] over

heterogeneous multicore systems such as AMD Fusion [4], Intel Haswell [5], Nvidia Denver [6],

and ARM big.LITTLE [7], power consumption for future large-scale processors nevertheless

remains a serious concern. Increased power consumption and heat dissipation typically leads

to higher costs for thermal packaging, fans, electricity, and even air conditioning. Higher-

power systems can also have a greater incidence of failures.

Prior chip-level many-core architecture has been proposed using multiple copies of the same

core, namely homogeneous [8]. For many applications, core diversity is of higher value

than uniformity, offering much greater ability to adapt to the demands of applications [9].

We present a heterogeneous many-core architecture where all cores execute the different

instruction set, capabilities and performance levels.

1



As the increasing scale of cores on a chip, the more communications and data movements

among cores will be occurred, and the whole computing performance would be decreased

while the power dissipation would be increased sharply if there is not a good solution for

it. All of the prior work inspired us to eliminate the overhead of power consumption. And,

we figured out an efficient core power management method by designing a 3-bit control

scheme in consideration of power-aware thread placement for real heterogeneous many-core

architecture.

One of the motivations for this proposal is that typical programs go through phases with

different execution characteristics [10], [11]. Thus, the best core during one execution flow

may not fit into for the next execution flow. This observation motivates the ability to switch

cores dynamically among execution flow. In addition, unused cores are completely powered

down in this situation, rather than left idle. Therefore, unused core suffer no static leakage or

dynamic switching power. This approach, however, has a huge latency penalty for powering

a new core up. The latency penalty is in approximately one thousand cycles of 2GHz clock

[9]. It is more severe in an increasing clock frequency under many cores near future.

In this paper, we propose an advanced core power management scheme for designing hetero-

geneous many-core architecture. The key idea is to process 3-bit core power control scheme

through status switching based on power-aware thread placement. Using this approach, per-

core can be controlled independently, thereby reducing processor power dissipation, while

maintaining consistent performance possibly.

The remainder of this paper is organized as follows. After Chapter 2, which presents the

related works, Chapter 3 introduces the target architecture. Then, detailed structure and

functions of the proposed method are introduced in Chapter 4. Chapter 5 discusses about

power-aware thread placement. Chapter 6 shows the evaluation and methodology based on

our previous and current work, followed by future work in Chapter 7. Finally, Chapter 8

summarizes this work.
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Chapter 2

Related Work

Previous work on power-related optimizations for processor design can be broadly classified

into four categories:

(1) work that uses voltage and frequency scaling of the processor core to reduce power [12].

Dynamic voltage and frequency scaling (DVFS) is a popular method for power management

due to the cubic dependency of dynamic power about frequency scales with voltage squared.

To identify the best voltage-frequency (V-F) setting, the main stream of recent work on DVFS

control relies on information gathered from performance counters during runtime. In this

case, the need for special compiler support or modications to the applications is ignored [25],

[26]. Some approaches for power control via software require application-level or compiler-

level support [27], [28]. Most methods focus on optimizing metrics such as energy, energy-

delay-product (EDP) and energy-delay-squared-product (ED2P). The paper by Canturk Isci

et al. [29] derives phase categories based on a metric for the memory operation rate (mem/µ-

op), and each category is a mapped to an optimal V-F setting. Similarly, in the paper by

Gaurav Dhiman et al. [30], propose an online learning model for single-core processors. In

order to characterize workloads, they break down the cycles per instruction (CPI) metric
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into various components such as baseline CPI, miss events CPI, and stall CPI. This approach

guarantees convergence to the optimum V-F setting using online learning. These approaches

focus on energy, EDP or ED2P minimization without considering power caps.

Most multicore processors support independent frequencies control for the cores but a com-

mon voltage level is usually set to support the highest frequency. Independent voltages

require extensive design investments in the power-delivery network and the off-chip power

regulators. To increase the granularity of DVFS control, multiple clock domain design and

voltage frequency island partitioning have been proposed [36], [37]. To reduce the overhead

of runtime voltage conversion, the paper by Wonyoung Kim et al. [38] explores designing

on-chip regulators and perform core-level DVFS.

(2) work that uses gating technique in terms of the ability to turn on and off portions of the

core for power management [13]. Power gating is a circuit-level technique that allows to cut

off the power supply to a logic macro. It is implemented with the help of a sleep transistor

that is inserted as a series header or footer device in the VDD-to-VSS circuit path that

includes the targeted macro. In particular, per-core power gating (PCPG) [55] is becoming

an increasingly common knob in todays microprocessors [56], [57], [58]. Nevertheless, how

to make the most proper use of PCPG is still an open question. For example, actuating

PCPG every time a core becomes idle may lead to negative power-performance benefits if

the core idleness period is not long enough. Evidently, processes and software threads have

to be scheduled accordingly across cores to generate opportunities beneficial for PCPG, with

minimal impact on performance.

(3) work that enables larger degrees of freedom in job scheduling and allocation. Rangan

et al. propose a scalable DVFS scheme for multicore systems that enables thread migration

among homogeneous cores with heterogeneous power-performance capabilities [31]. Rather

than changing the V-F settings on demand, they assign fixed V-F settings to different cores

and migrate the applications to reach the desired level of performance within a given power
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budget. For applying DVFS under power constraints, Etinski et al. propose a job scheduling

policy that optimizes performance for a given power budget [32]. Isci et al. evaluate global

power management policies with objectives such as prioritization, power balancing and op-

timized throughput for various benchmark combinations and power budgets [34]. However,

their approach does not provide dynamic adaptation to different workloads. Teodorescu et

al. propose algorithms for power management through scheduling and DVFS under process

variations [35].

(4) work that makes thread consolidation and motion based on thread migration betwwen

cores with different voltage and frequency settings. The paper by Cochran et al. [59] is

most closely related to this work. Also, Tam et al. [60] propose a mechanism for thread

clustering based on data sharing patterns. It is implemented at operating system (OS)

kernel level with information from hardware event counters. This work closely relates to

ours in the methodology they use, which is also based on dynamic analysis of processor

counters. However, they just tackle performance improvement while we also consider power

reduction. Rangan et al. [61] present thread motion, a technique capable of fine-grained

power management based on thread migration between cores with different V-F settings.

The use of hardware event counters in the context of multi-threaded applications is also

leveraged in prior studies. In addition to Tam et al.’s work, Bhattacharjee et al. [62] also

propose the use of processor counters to dynamically predict thread criticality. A critical

thread is the slowest thread in an application, which limits its performance. They propose

to exploit thread criticality prediction for load balancing and energy saving purposes.

As the need for power capping and peak power management grows, some of the recently

proposed techniques have explicitly focused on meeting power budgets or peak power con-

straints at runtime. Cebrian et al. propose a power balancing strategy that dynamically

adapts the per-core power budgets depending on the workload characteristics [39]. How-

ever, for balanced workloads which have even power consumption among cores in the Parsec
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benchmark suite [17], this strategy would not perform well as it relies on borrowing power

budgets from cores that consume lower power than the others. Sartori et al. propose a peak

power management technique for multicore systems by choosing the power state for each

core that meets the power constraints [40].

The power capping strategy proposed by Gandhi et al. meets the power budget by inserting

idle cycles during execution [41]. This approach targets controlling the average power con-

sumption, and does not provide peak power guarantees. A number of approaches meet the

power budgets through hardware reconfiguration. Meng et al. propose a power management

strategy through dynamic reconfiguration of cores by cache resizing [42]. Kontorinis et al.

propose a table-driven adaptive core reconfiguration technique that configures core resources

such as floating point units and load-store queues to meet peak power constraints [43].

Current processor and system vendors have begun to provide peak power management fea-

tures in commercial products. AMD has introduced PowerCap Manager for 45nm Opteron

processors [44]. For data center power management, HP and Intel jointly offer a power

capping technique which adjusts power caps according to busy/idle states of the nodes [24].

This technique utilizes the DVFS states and the throttling capabilities for idle cycle inser-

tion at the chip-level. Besides sleep modes, power nap modes, in which the system can enter

and exit from low-power modes in milliseconds, have been also proposed to cope with the

demand variation patterns in data centers [45].

Our many-core heterogeneous architecture does not preclude the use of these techniques and

can potentially address the drawbacks of these techniques to provide much greater power

savings.
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Chapter 3

Architecture

This Chapter gives an overview of a potential heterogeneous many-core architecture and

discrete second level cache memory model.

3.1 Heterogeneous Many-Core System

In Fig. 3.1, the architecture consists of 3-level computing elements such as core, quart,

and tile. The cluster is characterized by a group of cores containing CPU and GPU. The

heterogeneity of core in such architecture can be made 4 CPU cores and 12 GPU cores

sharing adaptive L2 cache among each type of cores. In default, each CPU and GPU core

has its private L1 cache independently. Then, each cluster is a quarter of a tile, and each

quarter shares their data by input and output queues over high throughput network on

chip. Thereby, each tile has 16 CPU and 48 GPU cores. This composition is similar to the

architecture which is introduced by [8], [15].
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3.2 Discrete L2 Cache Memory Model

Growing core counts have highlighted the need for scalable on-chip cache coherence mech-

anisms. The increase in the number of on-chip cores exposes the power and area costs of

scaling the directories. Therefore, for separate L2 cache for CPUs and GPUs cluster, we used

a 4-way cuckoo directory [14] (see Fig. 3.2) for each CPUs and GPUs cluster in order to

decrease the possibility of replaced block because of the high reusable frequency of interior

data blocks. To find an element in the cuckoo directory, all ways are looked up in parallel

using hashed values of the searched address. Inserting an entry into the directory requires

a lookup followed by a write of an entry in one of the ways. If the write replaces a valid

directory entry, the insertion procedure is repeated for the victim entry, iterating until an

insertion finds a vacant location.
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Chapter 4

3-Bit Power Control Scheme

So far we have discussed about our heterogeneous architecture model using many of small

cores. Now we discuss how to fit the heterogeneous many-core architecture in an affordable

power envelope.

The best lever to reduce power with minimal impact on performance is to use voltage scaling.

Applying voltage scaling indiscriminately to the entire architecture would lower power, but

may not be optimal. Instead we propose to exploit the fact that there are many of cores,

and each core can be 3-bit power controlled separately, therefore employing fine grain power

management.

Individual cores can be voltage and frequency scaled to any arbitrary voltage and frequency

in the possible range, but this could be cumbersome and hard. Also, different core running

at different voltages and frequency would create asynchronous interface, additional latency,

meta-stability, and would require complex power delivery scheme.

We propose a much simpler method of 3-bit core power management scheme in Fig. 4.1 and

Fig. 4.2. As shown in the finite state machine (FSM) in Fig. 4.1, On/Off indicators around

11



arrows between statuses represent that it is triggered by the OS. A core operates at one of

the five statuses: active, hot core, cold core, idle and powered down. The 3-bit core power

management scheme always assigns a 3-bit counter to an each core when each application

program switches. And, idle status must keep twice before it is changed to the powered

down. The counter value is between 0 and 2n-1, n is 3 bits in this case. The 3 bits are

used to encode the 5 states in this architecture. When the counter is greater than or equal

to one-half of its maximum value (2n-1), the power status is either active or hot/cold core;

otherwise, it is idle or powered down. In a counter operation, the counters are incremented

when a status is On and decremented when a status is Off; the counters saturate at 000 or

100. In case of the dotted arrow located on the FSM in Fig. 4.1, idle status can be changed

to powered down status to remove a static leakage when a transition status is continuously

Off over 2 times iterations.

Fig. 4.3 shows the power and clock distribution used in the heterogeneous many-core archi-

tecture, assuming upper four cores (see red colored cores, namely hot cores) are all frequently

used and lower four cores (see blue colored cores, namely cold cores) are all less frequently

used. Also, two main contributions from peripherals can be observed: the upper line which

goes to cores shows the power line and the lower line which goes to cores represents the clock

line.

This scheme focuses on predictively transitioning the power status that some hot cores will

change again soon from slow active status to active status. Thus, the strategy avoids the

power dissipation due to the latency and associated leakage penalty incurred by accessing

from an idle status. Since sequentiality among jobs running on core is the norm in execution

flow in heterogeneous many-core architecture, the OS predictively decides on a power status

of hot cores as the slow active for preparing the future usage. Also, hot cores can be exactly

decided by the OS based on both the cores usability profiling information and real time

sensing information getting from the temperature sensor of an each core. Hot spot on the
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chip gives a clue to make a decision more clear with regard to hot cores.

Table 4.1 summarizes the various core status supported by 3-bit core power control scheme

of the heterogeneous many-core architecture and various hardware that is related to our

scheme. The following describes the various actions that are performed in the various core

statuses supported by the 3-bit core power control scheme of our heterogeneous many-core

architecture.

4.1 Active Status

When the core is in the active status, the core is also defined to be in status A as an acronym.

In status A, instructions are actively be executed by a particular core or all cores, depending

on the current job scheduling.

4.2 Hot Core Status

When the core is in the hot core status, the core is also defined to be in status HC as an

acronym. If the core is decided to the hot core by OS, some instructions are being executed

with slow clock to stay alive. Based on the cores usability profiling information and real time

sensing information getting from the temperature sensor of an each core, we can predict that

this core might be soon reused near the future.
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4.3 Cold Core Status

When the core is in the cold core status, the core is also defined to be in status CC as an

acronym. If the core is decided to the cold core by OS, no instructions are being executed.

Also, the clocks of all clock trees pertaining to the cold cores are turned off. Although the

clocks are off by utilizing a technique known as clock gating, the phase-locked loop (PLL)

is still alive in this status. Therefore, we can significantly reduce the latency rather than

changing from Idle status to Active status. The only power still consumed is caused by

leakage current. However, it is compensated by the power saving according to the latency

reduction.

4.4 Idle Status

When the core is in the idle status, the core is also defined to be in status I as an acronym.

While in idle status, the core PLL is turned off, and the core cache is flushed. A core in this

status is considered an inactive core. The wakeup time for this status is significantly longer

than in slow active since the core cache must be restored. In addition, the PLL needs a time

to be stabilized for generating the correct frequency.

4.5 Powered Down Status

When the core is in the powered down status, the core is also defined to be in status PD

as an acronym. While in powered down status, the core PLL is turned off, and the core

cache is also flushed. And, the core status is saved to the L3 cache, namely the last level

cache (LLC) here. Additionally, the core is power gated to reduce power consumption to the

core to approximately zero watts. A core in this status is considered an inactive core. The
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Table 4.1: Processor Power Design Space

Active Hot1 Cold2 Idle Powered

Core Core Down

Core On On Off Off Off

Clock (Full) (Slow)

PLL On On On Off Off

Core On On On On Off

Power

PMU On On On On Off

Core Keep Keep Keep Flushed Flushed

Caches

Shared Keep Keep Keep Keep Keep

Cache

Wakeup Active Few Few Few Few

Time Cycles Ten Hundred Thousand

Cycles Cycles Cycles

1Hot core: the frequently used core
2Cold core: the less frequently used core

wakeup time for this status is the longest. The core status has to be restored from the L3,

the core PLL must be stabilized, the power gating must be deactivated, and core clock must

be turned back on.

An interesting situation may occur in idle and powered down status. Since I and PD make

the significant latency for powering up to A status in this architecture model, the energy cost

to transition to and from these statuses is very high, particularly in PD status. Frequent

transition in and out of these statuses can result in an extreme energy loss. To prevent

this, our 3-bit core power control scheme is very useful to determine when SA status savings

justify the energy cost of transitioning into I and PD status and then transition back to A.

If there is not enough justification to transition to PD status, the power management unit

(PMU) requests the OS to stay I status.
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Table 4.2: Each Core Power Approximate Calculation

Fine Grain Models for an Each Core Status

Active Hot Cold Idle Powered

Core Core Down

Active MaxD MaxD N/A N/A None

(Dynamic) x

CV2F 50%

Standby N/A N/A MaxL MaxL None

(Leakage) x

VIoff 60-80%

Total1 MaxD ≥ MaxL ≥ None

(MaxD (MaxL

x x

50%) 60-80%)

Wakeup2 N/A Few Few Few Few

Cycles Ten Hundred Thousand

x 200W3 Cycles Cycles Cycles

x 200W3 x 200W3 x 200W3

1Total = Active + Standby
2Wakeup = Cycle count x Power per cycle3

3Power per cycle: Approximately 200Watts at 2GHz

Table 4.2 shows fine grain power models along with an each core status such as active,

standby, total, and wakeup power.

We assumed that the power consumption per cycle is approximately 200W at 2GHz. Also,

each job was characterized in the same operating conditions and during its execution no

competing tasks were performed. Additionally, Equation (4.1) shows the full chip level

power consumption by combining with the summation of all cores power consumption (i.e.,
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1 ≤ i ≤ n , n is the total number of cores) and some peripherals power consumption.

Pchip =
n∑

i=1

Pcore(n) + Pperipherals (4.1)
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Chapter 5

Power-Aware Thread Placement

This is a sub-part to elaborate our 3-bit core power control scheme. In Chapter 4, I told

that status changing between various core statuses is triggered by OS. This type of status

transition is made by core’s On/Off singnal as shown in Fig. 4.1, namely the FSM of 3-bit

core power control scheme. The meaning of “core status changing is triggered by OS” is

exactly based on the power-aware thread placement. Thread placement is performed today

in a largely power-aware manner. In particular, consolidation of active threads into fewer

cores exposes opportunities for power savings. In this situation, power saving opportunity

is especially high because PCPG is becoming viable. It is applicable to unused cores which

is excluded from thread consolidation.

The incorporation of multiple threads and cores into the same chip affects the hardware-

software interaction signicantly. The allocation of software threads across available hardware

threads is a software-level responsibility, with little or no hardware control. Therefore,

programmers rely on OS schedulers to allocate software threads across hardware threads.

They can also explicitly establish preferred thread allocations by setting affinities between

software and hardware threads.
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The use of the optimum combination of core-wise simultaneous multi-threading (SMT) level

and number of active cores needs to achieve a desired power-performance efficiency. Based

on my survey, this kind of approach is not been explored in previous work nor implemented

as part of the OS task scheduler. However, we have a limitation through this approach.

Under multi-threaded workloads, the best thread allocation policy to improve performance

is not always evident and how thread allocation might impact the power consumption is also

not always evident. But, it is an inevitable trend for this research field. So, we are now

trying to figure out an optimal solution.

In Fig. 5.1, conguration “4x2” allows us to switch the four cores that are left unused to

idle state. Software threads are pinned to specic hardware threads by setting CPU afnities.

Total HW threads (T) is to multiply the number of cores (C) by SMT threads per core (S).

For instance, in this case, 16 is to multiply 8 by 2. We benet from unused cores to reduce

power consumption (e.g. by switching them to an hot/cold core status or idle/powered-

down status). In addition, each core can effectively access shared data located in remote

L2 and L3 caches through the coherence fabric. Execution time is increased by just 5%

when conguration “4x2” is adopted, chip power consumption is cut down by slightly more

than 20% [52], [53]. The reason for such small performance degradation when the number of

cores is halved relies on the signicant inter-thread data sharing present in this application.

When software threads are executed closer (sharing the same cache hierarchy), the number

of accesses to remote cache regions in the chip decreases signicantly. The idea of thread

consolidation in SMT-enabled Chip Multiprocessors (CMP) is discussed in very few prior

works. Among them, the most good work which I think is as follows [59]. It packs software

threads onto a variable number of cores to t a given power budget, in conjunction with

DVFS. The work examines different thread packing and DVFS congurations to maximize

performance within variable power caps. However, it does not take into account the actual

software-hardware thread mapping and SMT is deliberately disabled.
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Program A

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Program A

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

Unused CoresUnused Cores

means SW Threadsmeans SW Threads means HW Threadsmeans HW Threads

(a) ＂8x1" Thread Mapping(a) ＂8x1" Thread Mapping (a) ＂4x2" Thread Mapping(a) ＂4x2" Thread Mapping

Figure 5.1: Hardware-Software Thread Interaction.
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Multi-threaded applications may not benet from statically pinning software threads to fewer

cores. It strongly depends on the applications characteristics during its different execution

phases. Therefore, we need to find sweet spots dynamically which represent particular soft-

ware thread placements to maximize power-performance efficiency. It is more convenient to

use a thread consolidation which is the method of using fewer cores at higher SMT levels.

Our objective is to detect (during an applications execution) when it is possible to consolidate

threads with minimal or zero impact on performance. Similarly, if threads placed in the

same core face high inter-thread conicts , the heuristic unconsolidates them to mitigate the

situation. To build and evaluate a heuristic capable of nding the most power-performance

efcient thread mappings at runtime, we required to have a metric to quantify such efficiency.

This is a efficiency of thread consolidation (E TC) as shown in Equation (5.1). It is also

used in [54]. If E TC is larger than 1, the new new mapping (mapping A) provides larger

power-performance efciency than the previous one (mapping B). Ideally, we are interested

in actions (consolidations or unconsolidations) with E TC values larger than one. If E TC

is smaller than 1, the new mapping is less power-performance efcient than the previous one.

At last, if E TC is equal to 1, both mappings perform equally in terms of power-performance

efciency. For example, lets assume that consolidation reduces chip power consumption by

20% or 50% and, at the same time, degrades performance by 5% or 40%. This results in E TC

= 0.95/0.80 or 0.60/0.50 = 1.20 (almost same). Even if the new mapping is more power-

performance efficient (with 50%), we will not accept such a severe performance degradation

(with 40%).

E TC =
Perf(mapping A)/Perf(mapping B)

Power(mapping A)/Power(mapping B)
(5.1)

Based on this metric, we figured out heuristic thread consolidation approach in Fig. 5.2.
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This approach aims to benet from thread consolidation at runtime to minimize power con-

sumption with minimal (or zero) impact on performance. Also, it evaluates E TC during

run time in terms of application’s performance and power consumption. In this situation,

performance means throughput which represents the total number of instructions completed

by all the threads per cycle, and power means chip power consumption. It is triggered every

T milliseconds, but makes decisions only if it is enabled. In the initial step, this heuristic

approach sets the most unconsolidated mapping for that particular thread bucket to not

harm application performance. Before making any consolidation and unconsolidation de-

cision, heuristic thread consolidation method check a bunch of available hardware threads.

Based on the number of current software thread (N), a bunch of threads (bucket) is defined

as the minimum number of hardware threads (power of 2) required to support the current

number of software threads. For example, if the current number of software threads is N =

4, the bucket to be used is 4, or if N = 13, the bucket is 16. By choosing the right bucket,

heuristic thread consolidation method knows what are the possible thread mappings it can

play with. All possible thread buckets in POWER7 [58] are surveyed: 1, 2, 4, 8, 16 and

32 threads. Once the bucket is chosen, heuristic thread consolidation method sets the most

unconsolidated mapping for that particular bucket to not harm application performance.

Throughout the example, we will refer to this mapping as mappingprev. The first action of

heuristic thread consolidation method is consolidation. Just after a bucket selection, there is

no power-performance history because the previous bucket may have a completely different

power-performance footprint. Hence, heuristic thread consolidation method begins judging

the effects of consolidation on power-performance efciency. We refer to this new mapping as

mappingnext. To compare mappingnext versus mappingprev, E TC is then computed and an-

alyzed. If E TC is larger than average profiled E TC, heuristic thread consolidation method

assumes that the application is traversing a consolidation-friendly phase, and further con-

solidates threads if it is possible. If, instead, E TC is smaller than average profiled E TC,

heuristic thread consolidation method considers that mappingnext is less power-performance
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TC is enabled?

Check available 

hardware threads 

Consolidated before? Unconsolidated before? 
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Consolidate

* TC means a thread consolidation

* E_TC means an Efficiency of TC

* TC means a thread consolidation

* E_TC means an Efficiency of TC

NoNo

YesYes

NoNo

NoNo

Unconsolidate No decision

YesYes NoNoYesYes

E_TC > avg.(E_TC) E_TC < avg.(E_TC)

Unconsolidate

NoNo

Consolidate No decision

YesYes NoNoYesYes

NoNo

ConsolidateConsolidate

YesYes

Figure 5.2: Outline of Heuristic Thread Cosolidation Method.

efcient than mappingprev, and goes back to mappingprev. Heuristic thread consolidation

method continues in this way, analyzing the E TC of the last action, and making a new

decision based on that. Every time, if E TC is not changed, heuristic thread consolidation

method makes no decision.
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Chapter 6

Evaluation And Methodology

In our previous work [15], we simulated the execution of 10 benchmarks from the Rodinia

benchmark suite [16]. Benchmarks are simulated using the recent architectural simulator,

namely gem5GPU [22], which combined with gem5 [20] and GPGPU-Sim [21] on an un-

modified x86 64bits Linux 2.6. They simulated 256 in-order x86 CPU cores at 2GHz and

distributed into 16 tiles, and 768 GPU cores at 600MHz and also distributed into 16 tiles.

The gem5GPU system obeys traditional MOESI cache coherence protocol [23], and the GPU

caches are write-through and obey the VI-based cache coherence protocol. The detail pa-

rameters of the simulation infrastructure are reported in Table 6.1.

We get some benefits from this work [15], especially focusing on the design of fusion coherence

by two-level directory. It is directly accessing uniformed L3 data cache, which sharply

decrease the execution time and latency of accessing memory system. It is due to bypassing

L3 data cache guided by fusion directory, directly accessing memory space instead of copying

data between each other and transmitting over system bus. As a result, the average speedup

is 2.4X and the maximum speedup is more than 4X. However, some benchmarks do not

achieve the high speedup. These benchmarks are mainly computing-intensive, and spend a
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Table 6.1: Simulation Configuration Parameters

L1 L1 L2 L3

D-Cache I-Cache D-Cache D-Cache

CPU 64KB 64KB 2MB, 32MB (uniformed),

4x4-way 16-way

GPU 64KB 64KB 8MB, 32MB (uniformed),

8x4-way 16-way

* In-order CPU cores at 2GHz / GPU cores at 600MHz

* Number of cores: CPU (768) / GPU (256)

significant execution time on CPU core instead of transferring a large mount of data between

CPU and GPU memory.

Emerging manycore processors have also brought new challenges under available power bud-

gets to the architecture research community. Manycore processors are highly integrated com-

plex system-on-chips with complicated core and uncore subsystems. The core subsystems

can consist of a large number of traditional and asymmetric cores. The uncore subsystems

have also become unprecedentedly powerful and complex with deeper cache hierarchies, ad-

vanced on-chip interconnects, and high-performance memory controllers. In order to conduct

research for emerging manycore processor systems, a microarchitecture-level and cycle-level

manycore simulation infrastructure is needed. Numerous processor and system simulators

are already available. All of these simulators have their own merits and serve their differ-

ent purposes well. However, according to our specific research goal with regard to power

awareness, we try to compare the existing two remarkable simulators such as gem5GPU and

Sniper with various dimensions of features as shown in Table 6.2.

Based on Table 6.2, we are able to know that Sniper provides the detail necessary to estimate

power across many-core architecture. Sniper [63], [64], [65] is also satisfied with fast and

scalable simulation under two major trends in high-performance computing, namely, large

numbers of cores and the growing size of on-chip cache memory. By bringing together
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Table 6.2: Feature’s Summary of Existing Well-Known Simulators

gem5GPU Sniper Which one is more proper?

1 Simulation Speed Somewhat slow(+) Faster(+++) Sniper

2 Simulation Accuracy N/Av Within 25%

3 Power Estimation N/Ap Yes Sniper

4 Many-Core Support P/S Yes Sniper

5 Caches Y/A Yes gem5GPU

6 Heterogeneous

Configuration Y/A Yes gem5GPU

Support

7 Advanced

Visuable N/Ap Yes Sniper

Support

* N/Ap: Not Applicable

* N/Av: Not Available

* P/S: Partially Support

* Y/A: Yes with Advanced Future Support

accurate high-abstraction analytical models with fast parallel simulation, architects can trade

off accuracy with simulation speed to allow for longer application runs, covering a larger

portion of the hardware design space. In addition, Sniper is integrated with McPAT [66],

an integrated power, area, and timing modeling framework that supports comprehensive

design space exploration for many-core architecture under processor configurations ranging

from 90nm to 22nm and beyond. An extended description of these simulators categorized

by specific features is introduced, which sections in Appendix A and B on the last part of

the thesis.

In our work, we utilize the data from offline profiling of Parsec benchmarks and implement a

binning approach to categorize unknown threads as their nearest neighbor in Parsec bench-

marks. Furthermore, we plan to extend this profiling by using Rodinia, Spec omp [18], and

Splash-2 [19] benchmarks for considering a variety of exceptional cases. Based on some test
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cases such as fft, and fft-hetero, we have shown an architectural topology, power consump-

tion, and cycle per instruction (CPI) stack (see Fig. 6.1, 6.2, 6.3) under visualization support

to gain insight into lost cycles.
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Figure 6.1: Architectural Topology of FFT and FFT-HETERO Test Case. - Generated
Results from McPAT framework
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Figure 6.2: Power Consumption of FFT and FFT-HETERO Test Case. - Generated Results
from McPAT framework
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Figure 6.3: CPI Stack of FFT and FFT-HETERO Test Case. - Generated Results from
McPAT framework
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Chapter 7

Future Work

Power depends not only on the configuration of a processor, but also on the circuit design

style and process parameters. Also actual power dissipation varies with activity, though

the degree of variability again depends on the technology parameters as well as the gating

style used. No existing architecture-level power modeling framework accounts for all of these

factors. Therefore, we explore well-known McPAT modeling framework, analyze it, and

compare it with Wattch [69], we should at last apply our case study to McPAT in Sniper

architectural simulator by a proper modification and estimate our power management scheme

in terms of peak and typical power consumption running various applications, and further

the chip’s area.
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Chapter 8

Summary

In this paper, we have introduced and sought to gain some insights into the power benefits

available for the future architecture, that of a heterogeneous many-core architecture on

the same chip, using a 3-bit core power control scheme and heuristic thread consolidation

approach. The particular opportunity examined is for powering a new core up from powered

down when we have an application switching among cores. As a result, it reduces a huge

latency and a power dissipation for power the core up from powered down. Operation is based

on distinct scenarios by 3-bit core power control scheme through 5 statuses switching. In

addition, for more elaborated control to be power-performance efficient, this kind of status

switching is exactly triggered by power-aware thread placement thorugh heuristic thread

consolidation approach.
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Appendix A

Sniper: Scalable and Accurate

Parallel Multi-Core Simulator

Sniper is a next generation parallel, high-speed and accurate x86 simulator. This multi-core

simulator is based on the interval core model [67] and the Graphite simulation infrastructure

[68], allowing for fast and accurate simulation and for trading off simulation speed for ac-

curacy to allow a range of flexible simulation options when exploring different homogeneous

and heterogeneous multi-core architectures.

The Sniper simulator allows one to perform timing simulations for both multi-program work-

loads and multi-threaded, shared-memory applications with 10s to 100+ cores, at a high

speed when compared to existing simulators. The main feature of the simulator is its core

model which is based on interval simulation, a fast mechanistic core model. Interval simula-

tion raises the level of abstraction in architectural simulation which allows for faster simulator

development and evaluation times; it does so by ‘jumping’ between miss events, called inter-

vals. Sniper has been validated against multi-socket Intel Core2 and Nehalem systems and

provides average performance prediction errors within 25% at a simulation speed of up to
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several MIPS.

This simulator, and the interval core model, is useful for uncore and system-level studies that

require more detail than the typical one-IPC models, but for which cycle-accurate simulators

are too slow to allow workloads of meaningful sizes to be simulated. As an added benefit, the

interval core model allows the generation of CPI stacks, which show the number of cycles lost

due to different characteristics of the system, like the cache hierarchy or branch predictor,

and leads to a better understanding of each component’s effect on total system performance.

This extends the use for Sniper to application characterization and hardware/software co-

design.

A.1 Intel Nehalem Architecture

Nehalem-based microprocessors, as can be seen in Figure A.1 and Figure A.2, use the 45nm

process, run at higher clock speeds, and are more energy-efficient than the older micropro-

cessor. Hyper-threading is reintroduced, along with a reduction in L2 cache size, as well as

an enlarged L3 cache that is shared among all cores. It involved some technologies as shown

in Table A.1.

It has been reported that Nehalem has a focus on performance, thus the increased core

size. Compared to the older microprocessor, Nehalem has 10-25% better single-threaded

performance / 20-100% better multithreaded performance at the same power level 30%

lower power consumption for the same performance. On average, Nehalem provides a 15-

20% clock-for-clock increase in performance per core. Overclocking is possible. Nehalem

processors incorporate SSE 4.2 SIMD instructions, adding seven new instructions to the

SSE 4.1 set in the Core 2 series. The Nehalem architecture reduces atomic operation latency

by 50% in an attempt to eliminate overhead on atomic operations.
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Figure A.1: Nehalem Microarchitecture. - Image from Nehalem Processor at Intel.com
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Figure A.2: Nehalem Core Die. - Image from Nehalem Processor at Intel.com
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Table A.1: Technology of Nehalem

Technology

Hyper- Reintroduced

Threading

Cache L1 64KB Per Core

L2 256KB Per Core

L3 4MB to 24MB Shared

Second Branch Predictor

Level Translation Lookaside Buffer (TLB)

Interconnect Quickpath

ETC Integration of PCI Express and DMI

Integrated Memory Controller

20 to 24 Pipeline Stages

TLB Sizes

Cache Page Sizes

Name Level 4KB 2MB

DTLB 1st 64 32

ITLB 1st 128 7 / Logical core

STLB 2nd 512 None

A.2 Interval Simulation

Interval simulation is a recently proposed simulation approach for simulating multi-core

and multiprocessor systems at a higher level of abstraction compared to current practice of

detailed cycle-accurate simulation. This technique leverages a mechanistic analytical model

to abstract core performance by driving the timing simulation of an individual core without

the detailed tracking of individual instructions through the core’s pipeline stages. As shown

in Fig. A.3, the foundation of the model is that miss events (like branch mispredictions, cache

and TLB misses, serialization instructions, etc.) divide the smooth streaming of instructions

through the pipeline into intervals. Branch predictor, memory hierarchy, cache coherence and

interconnection network simulators determine the miss events; the analytical model derives
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Figure A.3: Interval Simulation. - Image from Sniper Simulator at Snipersim.org

the timing for each interval. The cooperation between the mechanistic analytical model

and the miss event simulators enables the modeling of the tight performance entanglement

between co-executing threads on multi-core processors.

A.3 Multi-Core Interval Simulator

Fig. A.4 shows the multi-core interval simulator which models the timing for the individ-

ual cores. The simulator maintains a window of instructions for each simulated core. This

window of instructions corresponds to the reorder buffer of a superscalar out-of-order pro-

cessor, and is used to determine miss events that are overlapped by long-latency load misses.

The functional simulator feeds instructions into this window at the window tail. Core-level

progress (i.e., timing simulation) is derived by considering the instruction at the window

head. In case of an I-cache miss, the core simulated time is increased by the miss latency.

In case of a branch misprediction, the branch resolution time plus the front-end pipeline

depth is added to the core simulated time, i.e., this is to model the penalty for executing the
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Figure A.4: Multi-Core Interval Simulator. - Image from Sniper Simulator at Snipersim.org

chain of dependent instructions leading to the mispredicted branch plus the number of cycles

needed to refill the front-end pipeline. In case of a long-latency load (i.e., a last-level cache

miss or cache coherence miss), we add the miss latency to the core simulated time, and we

scan the window for independent miss events (cache misses and branch mispredictions) that

are overlapped by the long-latency load-second-order effects. For a serializing instruction, we

add the window drain time to the simulated core time. If none of the above cases applies, we

dispatch instructions at the effective dispatch rate, which takes into account inter-instruction

dependencies as well as their execution latencies.
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A.4 Instruction-Window Centric Core Model

Large core counts and complex cache hierarchies are increasing the burden placed on com-

monly used simulation and modeling techniques. Although analytical models provide fast

results, they do not apply to complex, many-core shared-memory systems. In contrast,

detailed cycle-level simulation can be accurate but also tends to be slow, which limits the

number of configurations that can be evaluated. A middle ground is needed that provides

for fast simulation of complex many-core processors while still providing accurate results.

In the group of snipersim.org, they explore, analyze, and compare the accuracy and sim-

ulation speed of high-abstraction core models as a potential solution to slow cycle-level

simulation. We describe a number of enhancements to interval simulation to improve its

accuracy while maintaining simulation speed. In addition, we introduce the instruction-

window centric (IW-centric) core model, a new mechanistic core model that bridges the gap

between interval simulation and cycle-accurate simulation by enabling high-speed simula-

tions with higher levels of detail. We also show that using accurate core models like these

are important for memory subsystem studies, and that simple, naive models, like a one-IPC

core model, can lead to misleading and incorrect results and conclusions in practical design

studies. Validation against real hardware shows good accuracy, with an average single-core

error of 11.1% and a maximum of 18.8% for the IW-centric model with a 1.5X slowdown

compared to interval simulation.
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Appendix B

McPAT: Power Analysis Framework

for Multi-Core Architectures

Sniper integrates the Multicore Power, Area, and Timing (McPAT) framework for power

and area specific modeling for of manycore architectures. The McPAT that is installed with

Sniper is based on McPAT which is available from Hewlett-Packard Labs, for increased per-

formance and functionality. McPAT is a new power, area, and timing modeling framework

that enables architects to estimate new metrics combining performance with both power and

area, which are useful to quantify the cost of new architectural ideas. At the microarchi-

tectural level, McPAT includes models for the fundamental components of a chip multipro-

cessor, including in-order and out-of-order processor cores, networks-on-chip, shared caches,

integrated memory controllers, and multiple-domain clocking. At the circuit and technol-

ogy levels, McPAT supports critical-path timing modeling, area modeling, and dynamic,

short-circuit, and leakage power modeling for each of the device types forecast in the ITRS

roadmap including bulk CMOS, SOI, and double-gate transistors. McPAT has a exible XML

interface to facilitate its use with many performance simulators. Combined with a perfor-

mance simulator, McPAT enables architects to consistently quantify the cost of new ideas
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and assess tradeoffs of dierent architectures using new metrics like energy-delay-area2 prod-

uct (EDA2P) and energy-delay- area product (EDAP). This paper explores the interconnect

options of future manycore processors by varying the degree of clustering over generations

of process technologies. Clustering will bring interesting tradeoffs between area and perfor-

mance because the interconnects needed to group cores into clusters incur area overhead, but

many applications can make good use of them due to synergies of cache sharing. Combining

power, area, and timing results of McPAT with performance simulation of Parsec bench-

marks at the 22nm technology node for both common in-order and out-of-order manycore

designs shows that when die cost is not taken into account clustering 8 cores together gives

the best energy-delay product, whereas when cost is taken into account configuring clusters

with 4 cores gives the best EDA2P and EDAP.

B.1 Operation

Rather than being hardwired to a particular simulator, McPAT uses an XML-based interface

with the performance simulator. This interface allows both the specication of the static

microarchitecture configuration parameters and the passing of dynamic activity statistics

generated by the performance simulator. McPAT can also send runtime power dissipation

back to the performance simulator through the XML-based interface, so that the performance

simulator can react to power (or even temperature) data. This approach makes McPAT very

exible and easily ported to other performance simulators. McPAT runs separately from a

simulator and only reads performance statistics from it. Performance simulator overhead is

minor - only the possible addition of some performance counters. Since McPAT provides

complete hierarchical models from the architecture to the technology level, the XML interface

also contains circuit implementation style and technology parameters that are specic to

a particular target processor. Examples are array types, crossbar types, and the CMOS
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technology generation with associated voltage and device types.

B.2 Related Work

Cacti [70] was the first tool to address the need for rapid power, area, and timing estimates for

computer architecture research, focusing on RAM-based structures. Cacti uses the method

of logical effort to size transistors. It contains optimization features that enable the tool to

find a configuration with minimal power consumption, given constraints on area and timing.

Using generic circuit models for pipeline stages, it estimates the RC delay for each stage and

determines the critical path.

Wattch is a widely-used processor power estimation tool. Wattch calculates dynamic power

dissipation from switching events obtained from an architectural simulation and capaci-

tance models of components of the microarchitecture. Wattch has enabled the computer

architecture research community to explore power-ecient design options, as technology has

progressed; however, limitations of Wattch have become apparent. First, Wattch models

power without considering timing and area. Second, Wattch only models dynamic power

consumption; the Hot Leakage package partially addressed this deciency by adding models

for subthreshold leakage. Third, Wattch uses simple linear scaling models based on 80nm

technology that are inaccurate to make predictions for current and future deep-submicron

technology nodes.

Orion [71] is a tool for modeling power in networks-on-chip (NoC). Orion includes models for

area, dynamic power, and gate leakage, but does not consider short-circuit power or timing.
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