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PRELIMINARY TESTING OF A PROPORTIONAL COUNTER 
FOR NEUTRON SPECTROSCOPY WITH HELIUM-3 

John N. Green 

Radiation Laboratory 
University of California 

Berkeley, California 
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ABSTRACT 

The He 3 (n, p )T reaction can be utilized in a proportional count~r 
for neutron-energy determination in the region 100 kev to 1 Mev. This 

has already been demonstrated and the reaction cross section in this 

energy region has been measured with a counter. For practical 

application of the counter as a spectrometer, such as in health physics 

work, it is desirable to increase the counter efficiency. A proportional 

counter utilizing an anticoincidence ring to reduce wall effect has been 

constructed for this purpose. Some preliminary tests of the proposed 

system are described. · 
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CHAPTER I 

INTRODUCTION 

The detection of neutrons and especially the measure(nent of 

their energy have from the first attempts presented a more difficult 

problem than for the other common nuclear particles. This is be­

cause tne usual methods depended on effects resulting from the charges 
~ 

of the particles. The experiments by Dee in which he investigated the 

ionization produced in air in a cloud chamber irradiated by fast 

neutrons[ 1] were reported at the same time as Chadwick 1 s announce­

ment of the discovery of the neutron. Dee concluded that, if the 

neutron interacts with atomic electrons at all, the process produces 

not more than one ion pair per three meters of the neutron's path. 

If we accept an arbitrary description of neutron energy, E , as 
n 

intermediate neutrons: 1 kev to 500 kev, fast neutrons: 0. 5 Mev to 

10 Mev, then we may say in general that the predominant reaction of 

intermediate neutrons with nuclei is elastic scattering, and that in the 

fast' range many other reactions appear, the most important of which 

is inelastic scattering[Z]. Hydrogen- or methane-filled ionization 

chambers or proportional counters became an important method of 

detecting fast neutrons because the neutron can impart practically all 

of its energy to a proton in a head-on collision, and the recoil proton 

is then the particle causing the action of the counter. However, a 

determination of the neutron energy spectrum by the recoil method 

requ,ire s a thin radiator and a double collimation- -first of the neutron 

beam and then of the recoil protons-- resulting often in too low an 

efficiency. Theoretically, the second collimation,_ may not be 

necessary because the neutron spectrum can be obtained from the 

recoil spectrum by differentiation, but this leads to large errors since 

we are effectively taking the differences of numbers of about. the same 

size. Nuclear emulsions and organic scintillation counters have be­

come very important detectors in neutron spectroscopy, espec'ially for 

neutron energies above 1 Mev. 
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For energies below l Mev it became apparent that exothermic 

nuclear reactions might be usefulfor neutron spe~troscopyo New 

methods were especially needed in health physics applications, where 

any schemes requiring collimation are automatically ruled out. Fast 

neutrons are of major concern to health physicists because of the· 

difficulty of shielding against them, and their large relative biological 
.. [ 3] . . 

effectiveness . In 1946 Feld proposed that a proportional counter 

utilizing the (n, p) reaction might be useful for neutron ~pectroscopy 

in the 10- to 1000-kev range, with the advantage over recoils of 

detecting lower energies and making collimation unnecessary[ 4 ] 0 He 

considered the most promising reactions at that time: 

Nl4 (n, p)C 14, 

Cl
35 

(n, p)s
35

0 

However, as he expected, these do not very well fulfill the first of 

the general requirements, which might be listed as follows: 

0) ~he reaction cross section should be fairly large and its 

variation with neutron energy smoqth and free from resonances in 

the energy region of interest (and accurately known)o 

(2) The Q value of the reaction should be small, because (E + Q) 
n 

is the total energy measured by 'a counter, and for accuracy En 

cannot be too small a fraction of the tota~L 

(3) There should be no low-lying exci.ted states of the residual 

nucleus to cause an ambiguity in the energy of the reaction particleso 

We can look for these requirements to be met over appreciable 

ranges only in light nuclei, in which the energy levels are more 
. . -

widely spaced, avoiding .resonances and excited state So Also, for 

small Q values appreciable penetration of the Coulomb barrier for 

(n, p) or (n, a) charged-particle reactions would be limited to light 

nucleL. 

Two (n, a} possibilities are 

Li6 (n, a)T, 

B 
10 

(n, a}Li 70 

- z..: 



The first has a large Q (4" 78 ·Mev) and a resonance at En = 0" 27 Mev" 

The second, widely used for thermal neutron detection, has an ex- , 

cited state and fairly large Q values {2. 79 and 2" 31 Mev)" 

With supplies of helium-3 becoming more available and a likely 

possibility being He 3 {n, p)T, helium-3-filled proportional counters 

came under consideration" in 1950 Coon showed that the cross 

section in the 1-Mev region was about 1 barn[ 5], comparable to the 

scattering cross section- of hydrogen" The thermal cross section for 

this reaction is large (5400 ± 300 barns)[b]: These types of reaction' 

cross sections obey the 1/v law for a wide range, but intermediate 

neutrons may depart from the 1/v law. 

Some work on helium- 3-filled proportional counters has been 

done by Batchelor and others at Harwell, England[?]" They used a 

small amount of helium-3 admixed with xenon or krypton as the 

counting gas and stopping gas to reduce wall effect. Also, a small 

amount of carbon dioxide was added to stabilize the multiplication 

process" In their final filling the pressure of krypton use_d wa,s 164 

em of mercury" Since they found that, for E~ = 1 Mev, a pressure 

of 8 atmos of krypton is required to reduce the wall effect to 10o/o, 

they set up a computer program to correct for wall effecL Their 

work remeasured the neutron eros s section in the range 120 kev .to 

1 Mev- more accurately than previously, showing a much flatter 

energy dependence than the 1/v law" J 
'I They also pointed out a basic source of ambiguity in energy' 

determination other than counter defects. As we show in.Chaper VIII, 

-the maximum recoil energy of a He
3 

nucleus is EHe 3 = 3/4 En. The' 

true energy counts run from Q for En = 0 to En + Q. Thus, for 

3/4 E :: Q, the recoil spectrum begins to over'lap the reaction ', 
n 

spectrum" On the basis of Batchelor's value 'of Q as 770 kev, this 

means that ambiguitie's exist if neutrons of gre<l:ter energy than L03 

Mev are presenL The scattering cross section up to about 20 Mev is· 

comparable in size to the reaction cross section of interest, but of 

course only a fraction of those neutrons scattered deliver a large 
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. 3 
portion of their energy to the He recoilso In any case, the presence 

of high- energy neutrons reduces the accuracyo 

Gaseous counters have notoriously low efficie,ncy, and as 

helium-3 has become more plentiful and less expensive, it se~ms 

. wor,thwhile to investigate the feasibility of incre.asing the coll:nting 

rate by increasing. the quantity of helium:-3 in the counter. As we go 

to higher pressures, special problems ari?e, such as the demands 

for gas purity, higher voltages, and better insulation [S]. Also, the 

container must be more massive, and proper consideration should 

be given to the effects of the masses upon the spectral distribution 

of the neutrons, primarily caused by inelastic collisions (trans-

parency correction). For these reasons it would be de sir able to 

use helium- 3 alone as the primary filling, utilizing it for ~he count­

ing and stopping action. However, we soon find it very difficult to 

decrease wall effect to a reasonable value by helium-3 pre_ssure­

alone because stopping powers decrease with lower atomic numbers. 

For instance, the following ranges of a 5.3-Mev alpha particle at one 

atmosphere have recently been measured[ 9 ]: 

helium-- 21 em, 

krypton- -'3 0 0 em, 

xenon-- 2. 2 em. 

For this reason it is desirable at the same time to determine the 

practicality of reducing the wall effect by surrounding the sensitive 

volume of the counter with an anticoincidence ringo 

Since helium- 3 is quite valuable, a fairly elaborate filling 

system must be devised to insure no loss of gas in filling and sub­

sequent recoveryo The purity requirements are not so great as in 
. ' 

noble gas scintillation counting, in which a small amount of contam­

inant such as oxygen or other polyatomic gases may completely 

quencl;l the useful scintillation property, but some purifica,tion arrange­

ments will probably be needed in the filling system to achieve good 

energy resolution and to remove impurities which inevitably get in 

to the gas during filiing _and recoveryo It is important that the 

-4-
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loss of helium-3 be ke.pt small during the purification process. Purifi­

cation procedures for noble gases .using metallic calcium have been 

applied successfully for some time in removing all electroi:,negative 

impurities,· nitrogen, hydr~gen, and to a lesser degree carbon dioxide[lO]. 

Also, the method of physical adsorption of impurities in an activated 

charcoal trap cooled to liquid nitrogen temperatures has been used 

successfully in a helium- 3 system, and has the advantage of greater 

ease ahd convenience[ ll]. However, it appTar s there I!fay be a special 

problem due to the radioactive background from tritium contamination 

of helium- 3, ·and this problem is increased by using higher helium- 3 

pressure. 

It was felt that useful information about these two techniques, {a) 

using heliu~- 3 as the dete~ting me~\um and primary counting gas- and 

{b) reducing wall effect with an anticoinciden~e ring, could be obtained. 

by 'testing a counter with a filling of ordinary helium. The natural 

abundance of helium-3 is about 0.00013, so that it is not ordinarily 

noticeable. Owing to the large cros·s section at thermal energies, it 

can be d~tected in tank helium by use of a nuclear reactor as a source 

of neutrons; and this has been suggested as a way of surveying world 

helium supplies for helUm.- 3 content[ lZ]. Because it is a double­

magic~ number nucleus, He 4 is very stable, and the detection of 

neutrons i'n a helium-filled counter is due to the recoil alpha particles. 

Helium-3 and helium-4 have the same electronic configuration, and 

we can obtain information about the counting characteristics of one 

by experimenting with the, other. 

-5-



CHAPTER II 

COUNTER·SYSTEM 

A method of reducing wall effect in proportional counters is to 

detect the particles that escape from the sensitive volume and exclude 

them from the measurements. To accomplish this it is desirable that 

. __ .the _wc:~.!l~. of the main counter be transparent and completely surrounded 
- ~ - - --- - -·~-- -- --

by transparent-walled counters i~ ·a-nti~oincl.derice.~ 1-The fea:sibi-li-ty ef-- --

Geiger- Mueller counters with transparent walls -- so that wall thick­

ness would not limit the radiation to that above a minimum-- was 

investigated in 1944, and it was found that sy~metrically placed wires 

could approximate a cylinderr 1 "3 ]. Single counters of triangular type 

were constructed with good results. However, when two such counters 

were placed cl()se together, there was a deleterious effect due to 

distortion of the field at the central wire. Better results were obtained 

with a regular hexagonal shape. 

COUNTER CONSTRUCTION 

. i 
A counter has been constructed in which a layer of gas surround:.. 

ing the main counter is in effect turned into a separate detecting device 
l •. 

by a circular array of wires. The geometry is shown in Figs. 1 and 2. 

The inner circle of wires, grounded te the cylinder, serves as the:cafhode 

for the main counter and as the inner cathode wall for the ring counter. 

In the outer circle of wires alternate wires serve as cathode and 

counting .wires for the ring counter. Since there are 36 wires in each 

circle, we effectively have the main counter surrounded by 18 separate 

counters. 

An arrangement similar to this, referred to as a "wall.:,.Less 

counter 11
, has been applied to low- energy beta spectroscopy and proved 

to be a practical instrument [ 14]. As point~d out, this prevents 

escaping high-energy particles from having an effect on the low-energy 

end of the spectrum, but the effective sensitive volume now depends 

on energy. However, inaccuracies because of this circumstance will 

-6-
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Fig. 1. Arrangement of counter. 
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Fig. 2. Cross section of counter wiring. 
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be much less than from uncorrected wall effect. Another application 

of this type of counter ge·ometry is the so-called "Giles telescope" 
- - [15] 

neutron spectrometer _ . In this arrangement the counter is long 

and narrow, and neutrons are collimated along the long axis. The 

requirement of a thin radiator is obviated by using gas recoils and the 

anticoincidence method to prevent registration of pulses that recoil 

oblique to the chamber axis. Monoenergetic neutrons then have a 

pulse-size distribution with a well-defined peak. A recent applica­

tion of this scheme, utilizing hydrogen and propane fillings at 

various pressures, has resulted in energy spreads of 10o/o for neutron 
' - [ lB] 

energies fro~ a few hundred kev to 10 Mev. . 

Some of the constructional details of our counter follow. The -

counter cylinder has 1/ 16-inch-thick brass walls and is 4 inches in 

outside diameter. The total gas volume less the inlet piping is 1.93 

liters. The vessel has been pressure- and leak-tested with helium at 

20 atmospheres, making operating pressures up to 10 atmospheres 

possible withinJ safety requirements. All wires are stainless steel of 

3-mil diameter. The central wire is supported by kovar insulators 

and is electrically available only at the base. Its length between 

_thickened supports is 8. 5 inches. If we a~sume that, owing to a fa, H­

off in field strength ~ear the ends, o~ly~90% of this length defines the 

sensitive volume, the sensitive volume 'of the main counter is 888 cc. 
. ) 

The ring-counter anode wires and a1;r cathode wires are each strung 

from a continuous piece of stainless steel wire and threaded through 

holes in t-inch-thick lava insulators at top and bottom, the anode 

wire system being electrically available through another kovar at the 

base. A major drawback to this method of stringing is the difficulty 

of repair in ,case of wire breakage. The volume defined by the ring 

counter is 600 cc. 

The an.ticoincidence ring also cancels out particles that enter 

the counter from the outside or are emitted owing to contamination of 

the brass walls. Korff says a well-cleaned surface should emit 0.36 

alpha particle per em 2 per hour within a factor of ten[ 17 ], and 
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2 
Sharpe gives 0.09 alpha particle per em per hour for commercial 
- [18] . . 
brass . In normal operation the counte~ wili probably riot be 

sensitive to single secondary electrons knocked from the walls by 

gamma rays, but unwanted counts due to pile-up will be more likely 

in the ring counter, where the density of secondary electrons will be 

greater. A proportional counter wit}l walls of copper tubing 1/32 

inch thick has been used for counting gamma rays of energy up to 1.6 

Me) 19 ]. The gamma- ray attenu~tion "tenfolding l~ngth 11 is 

approximately 60 g/ em 2 for all materials in the energy region where 

Compton scattering is the m~st important proc.ess [ 20]. This extends 

from less than one to several Mev for all elements .. Multiplying by 

density, we find our bras~ wall is 1. 34 g/ em 
2 

thick. The tenfolding 

length converted to a 1/e.length is ~6.1 g/cm 2 . We have " 

¢xp (-1.34/26.1) = 95o/o,. therefore about 5% of all gamma rays imping­

ing on the counter wall will be converted to secondary electrons. Of 

course, many of these electrons will be absorbed in the wall befo:r:-e 

reaching the counter gas, but gamma-ray counting efficiency would 

be reasonably high if the counter were operated at high gas , 

multiplication. 

The voltage at which a counter under given conditions is operated 

determines the gas multiplication. For a given counter Rossi and 

Staub have shown the functional relationship of multiplication[Z 1] to be, 

where 

M = M(..Y_ 
b ' In-
a 

a = wire radius, 

p~ 

b.= cathode radius, 

P =gas pressure, 

V ::tvoltage across counter. 
I 

.? 

Since multiplication usually takes 'place in a cylindrical region of 

small diameter near the wire,· we might assume our two counter 

systems identical for purposes of figuring multiplication, ·except fo-r 

-10-
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the difference in ln b/a, The multiwire potential problem would be 

very difficult ~o compute, but if we take an average b. value for one 

of the ring-counter wires (averaged over measurements to the inner 

circle o~ wires, to an adjacent wire in same ring, or to the wall), 

for the ring counter w.e obtain b/ a = 225 and for main counter b/ a = 1000, 

The ratio of the logarithms is 1, 27, therefore for the same value 

of gas multiplication,· this indicates that the main counter should have 
) . 

a higher voltage by a factor of 1.27, Of course, the determining .~ 

factor on multiplication of the ring counter will be to make it as sensi­

tive a;_ possible in order to detect all particles that leave the main . 

coun!,er, but not so sensitive that a large number of background counts 

keep the desired counts from the main counter gated ouL 

ELECTRONIC GIRGUITRY 

A block diagram of the electroi7ic circuitry used with the 

counter is given in Fig, 3. The blocks below the dotted line complete· 
-

the neutron- spectrometer system, but investigation of the operation 

of the system was made without this by scaling both coincidences and 

anticoincidences, A list of units actually used is given in Table I. 

One channel of the dual-channel variable gate and delay unit can be 
. ' 

used .for the variable.,. gate block, and the use of this unit for the 

pulse- shaping function could be replaced by simpler electronic cir­

cuitry, This unit is very useful, however, for experimenting with 

different values of discriminator setting and of delay and length of 

output pulses, If two pulses arrive at the pulse-shaping block at 

about the. same time, we want to insure that there is no anticoincidence' 

pulse to gate the pulse-height analyzer on. To do this we delay 

channel No. 1 slightly so that the channel No. 2 output pulse will· 
' 

definitely be at the coincidence unit before the channel No. 1 pulse 

arrives.· Also, channel No. 2 pulse is made longer so that the 

coincidence unit will see it during the entire time that it sees the 

channel No. 1 pulse. The count on Scaler 1 + 2 indicates the number 

-11-



CHANNEL I 
:•. SCALER I 

¢. 

MAIN LOW- NOISE liNEAR 
~ COUNTER ~ PREAMP 

~ 

AMPLIFIER 

SCALER 2 
CHANNEL 2 1' 

RINC LOW- NOISE LINEAR FIXED 

COUNTER 
~ ~ DELAY 

PREAMP AMPLIFIER I 

METER AND A SCALERI+2 
DIVIDERPANEL PULSE. 

niL 1' 

·t SHAPING COINCIDENCE 
-----

REGULATED A _n_ coincidence 

HIGH VOLT AGE PU LS.E unit 

500 TO 3000 ANTICOINCIDENCE 
SHAPING '· 

1-2 
----------~--------~ 

VARIABLE 'II 'II 

GATE AND WINDOW AMPLIFIER· 
DELAY 

PULSE- HEIGHT 
ANALYZER 

MU-15,210 

Fig. 3. Block diagraii'l: of counter elect~ohic Circuitry. 
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Table L Units used in counter electronic circuitry. 

Function 

Regulated High Voltage Supply 

Meter and Divider Panel 

Linear Amplifier, ch. II 1 

Preamplifier, ch. # 1 

Linear Amplif:l.er, ch. # 2 

Preamplifier, ch.' # 2 

Pulse Shaping 

Coincidence Unit 

Scaler 1 + 2 

Scaler 1, 2 

Unit. 

Northern Scientific Co., ser. # 1 

UCRL 3 kv Divider Panel 

UCRL Mod.5, Dwg. IX5334 

UCRL Dwg. IX4353D 

UCRL Mod. 3, Dwg. 2T4404 

UCRL Dwg. 3T2393 

. UCRL 'variable Gate and Delay Unit 
Dwg. 2T8084F and' 2T8154 . 

UCRL 8 Channel Quadruple Mixer 
Dwg. 3T5894-1 

UCRL 1024 sc·aler, Mod. 2 
Dwg. 3T8934 

UCRL 2 Channel 1024 Scaler, Mod. 1 
Dwg. 4T6895 
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of pulses fr.om channel No .. l·not registered by the pulse-height 

analyzer. The versatile variable gafe and delay unit, used with one 

input pulse, and in conjunction with the coincidence unit, can also be 

used as a ~ingle~cha.nnel p'ulse-height analyzer if desire'd. · 

IONIC MOTION 

With this size of counter one may have to worry about the time 

lag between formation of the pulse by the main collnter and by the ring 

counter when ionization occurs ,close to the edge of the main counter. 

We can compute the travel time fpr ions if we know the mobility .and 

how drift velocity depends on mobility and the field. Shaq>e· has 

developed convenient equations for computing ionic motion in 

chambers[ 
18

]. ·In general, in cylindrical or spherical fields, the field 

is 

where 

E = 

y =b/a 

-n 
Vr 
ln y 

r = radius,. 

V = voltage across counter.,, 

and for a cylinder n = l. 

An ion crosses the system from one electrode to the· other in a time 

given by 

T = [anp+ 1 (ynp+l_l)] / [(np+l) K (V/ln y)P] , 

where p = ± for electro~s and l for ions in the equation relating drift 

velocity w to ·rnobitify, K, 

w = Ke p. 

We are concerned with the time for an electron to travel across the 

counter because most of the pulse is for~ed near the wire owing to the 

concentration of the field at the wire whether there is multiplication or 

operation as an ion chamber. If we take a case of V = 1000 volts, 

P = 2.5 atmospheres of helium, and use Sharpe's value of 
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K = 3. 5 · 104 
em 

3
/

2
/ ,.J volt - sec:-,.J atmos , we find for electrons 

T = 7.55 f.LSec. However, we expect that the mobility of a helium­

carbon dioxide mixture may easily be greater by a factor of ten, 

based on the way C0
2 

increases the drift velocity of electrons in other 
I . 

no1:>,le gases. This is explained for argon on the ba~is of the Ramsauer 

effect and the high first excitation potential for argon, ll.5 volts, in 

co~parison with the low excitation levels in a C0
2 

molecule [ 10]. The 

firs~ excitation potential of helium is even higher, 19.77 volts, 

Extensive work has been done on. collection times in argon, krypton, 

and xenon, and it is reported that o~ce a fraction of one percent of 

co; is added, the effect of original polyatomic impuvities in a noble 

gas may be assumed insignificant[ 22]. The transit time computed 

above is reduced by the same factor as that by which the mobility is 

increased, and should not _be too long for the coincidence requirements. 

The transit time for a He+ ion in pure helium to cross the system 

from wire to wall, comp:uted for the same conditions as for the electron 

and on the basis of a mobility of 10.8 em. 
2 
/volt- sec-atm. is 185~ f.LSec. 

This time is not too important, since the pulse can be shortened by 

shortening the amplifier time constant. 
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· CHAPTER III. 

ENERGY .RESOLUTION 

A discussion of energy resolution depends on the complete theory 

of proportional- counter action. This has been well covered in several 

books and articles[ lO, 17 • IS, 21 • 23 • 24• 25 • 26 ]. The attempt here is 

to point out important factors concerning the energy resolution of this 

particular c~unter, using developments from any of thebasic sources 

but modifying the terminology as necessary in order to be consistent. 

INHERENT LIMI.TATIONS 

Inherent fluctuations in a proportional counter are from (a) the 

. number of ion pairs released by monokinetic radiation, and (b} the 

size of the avalanche each ionization electron produces. From 

theoretical work based on the assumption that the first was a Poisson 

distribution (it was found experimentally to be smaller than this) and 

expanded upon experimentally, it was shown that relative variance of 

total size ofavalanche.; is approximately given by 

( III- 1) 

where 

.V p = variance (mean square deviation) of size of avalanche, 

m 0 = mean of number of ions initially liberated, 

m A = mean of number of ions produced in avalanche by one 

electron. 

We note that this inherent spread is no longer a significant 

factor at the energies at which we will be working because in the 1-Mev 

energy range and at an assumed mean energy to produce an ion pair 
4 

of 30 ev, m 0 is greater than 10 These theories .were useful, and 

experiments were done down in the kev: region where roo was a smaller 

number. For our magnitude of m 0 , the relative variance would be 

around O.Olo/o. Since experience has shown that the relative spread of 

pulse height (relative standard deviation of pulse height from a mono­

kinetic radiation) is at least lo/o or 2o/o (owing to mechanical defects of 
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a counter or defects in gas filling) at these energies, the inherent 

spread is not a significant factor. The mean energy per ion pair, 

which determin~s rno, is expected to be practically constant over the 

(E + Q) range. . This may not be true in very pure helium, in which 
n 

the mean energy has been measured as 41.3 ev, in contrast to 29.7 ev 

when a small fraction of another gas is present. A possible explana­

tion on the basis of charge exchange and the metastable states of helium 

is given by Sharpe with reference to experimental findings[ 18 ]. 

NEGATIVE-ION FORMATION 

An important gas defect is negative-ion formation due to electron 

attachment to a gas molecule, It does not occur it; pure noble gases 

nor in N
2

, H
2

, CO; C0
2

, or CH
4

. However, it is likely to occur in 

the collisions of electrons with the halogens, 0
2

, or water vapor. In 
. . 

the development of Eq. (III- l) the following equation was derived for 

the case where a fraction h u of ionization electrG>"ns reaches the wire 

without forming negative ions: 

(
1.68 

hi 

', 

(III- 2) 

where V 0 = variance of number of ions initially liberated. For h 1 = l 
(no negative-ion formation), this equation leads to the previous 

approximation that relative variance is about l/m
0 

when we use an 

experimental result that V O = m 0/3. That is, the relative variance is 

approximately 

(A bibliographical review on the development of Eqs. (III-I) and (III-2) 

is given in Reference 26 ). 

Thus, for accuracy in low-energy work it is recommended that 

the gas be purified to remove negative-ion-forming impurities. How­

ever, since the factor in brackets in the e~pression for relative 
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variance is multfp.ied by': tre recip'rocal of m
0

, ·we expeCt-that in our 

case the purification requirements may not be so stringent. This can 

be roughly checked by an approximate expr·ession[lS] for the con­

centration C of electronegative gas in a mixh.ire in terms ofthe gas 

pressure P (in atmospheres), and Shubweg 6 (in em) based on gas­

discharge theory: 

(III- 3) 

The Shubweg 6 is the product of the mean free life of the electron and 

its drift velocity under the' applied field. Values repre sen:ii. tative of 

the case in many gases were assumed for the electron mobility and 

probability of attachment per collision, h, fo~ the gas. 

Suppose we wanted a gas purity that would make h 1 in our 

expression for relative variance equal 0.99. If an electron started a 

distance r frorri the central wire of a counter, the probability of its 

reaching the wire without attachment, by the definition of the 
-r/6 · -r/6 Shubweg o, would be e . Therefore we set e . :::: 0. 99 or 

6 ::::: 100 r. For a counter in which 3 em would be a representative 

value for rand at a pressure of 2.5 atoms we get, from Eq. (III-3), 

C = 0. 01 o/o, a fairly stringent requireme~t. If we try h n = 0. 9 and· 

make the same assumptions, we get C :::::. O.lo/o, or 99.9% purity 

required. Now, going back to the approximate expression for relative 

variance and assuming m 0 = 10
4

, we can solve for a value of h 1 that 

would give a relative variance of, say, 0.1 o/o. · This turns out to be a 

seemingly very easy criterion, h' = 0.179. However, making the 

same assumptions as before,· we find Cis about 1o/o. But in the 
\ 

equation for c the assumptions for electron mobility and h, which 
~ 

exhibits resonances for so:rne gases depend'eht on electron energy, 

could both conceivably be off by almost a factor of ten, and considering 
I 

also other approxim·ations, we could easily be back to our 99 .. 99%' 

purity requirement. The parameters in the gas-discharge theory, are 

not accurately known for all the pure gases and cannot be predicted 

for mixtures, especially if the percentages are not very accurately 

known. 
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RADIOACTIVE BACKGROUND 

The problem is different if there. is an appreciable tritium 

impurity in the helium-3 supply. The loss of energyresolutionis then) 

due to the pile-up of low-energy background counts due to the radio-
. -·~·--·· 1 

active decay of the tritium. This decay has an end-point beta energy 

of about 18.9 kev [z7]. 

To estimate the required purity of helium- 3 with respect to 

'tritium we must first analyze the effect of pile-up in general[Zl]. 

Consider the piling up of square pulses of uniform height W and equal 

width T A pulse height n W is produced if n pulses occur within a 

time .T. If a scaler discriminator level were set at n W, an erroneous .· ,. . 

count would then be registered. We can get approximate values for a 
' 

counter by taking ,7' eq1:1al to _the equipment resolving time. 

If the occurrence rate of events in the counter each giving rise 

to an energy E has a mean rate of n
0

, the mean number of events 

during a resolving time is n
0

r _and the standard deviation is ..J n~·; for 

noT>> 1. Thus, the energy dissipated per resolving time is 

n 0T E± ..J~~fE . Now suppose the threshold energy of the system is 

such that it takes an energy of nTE to produce a spurious count. Then . ~ 

the following expression gives the number of standard deviations by 

which the number of counts during a resolution time must exceed the 

mean number in order for a spurious count to be produced: 

(III- 4) 

From this we can estimate the probability ps of receiving a spurious 

count during the re s_olving time for a given. n 0 and T. The spurious 

counting rate is given by I = p /'T. If we estimate T as 0.5 f-LSec and - -- . s s 
- • - ~ < 

wish to keep I less than 0.1 count per minute, p must be less than 
. ·. .. . ,s,9 s 

Is r =_5/6 · 19~ This probability corresponds to a deviation above 

flie mean between 5 and 6 standard deviations. Let us require that 

n 0 be less· th~n nby, ~ standard deviatior::s. The average energy of the 

tritium beta spectrum is about 5. 7 kev, therefore let E equal'this 
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value ... The range of beta particles of this energy is such that most 

of the beta energy will be spent in the counter gas, as _shown in 

Chapter VI. Since the Q of the He
3 

(n, p) T reaction is. 770 kev, a 

value of nTE less than this will not be detected as a spurious count. 

Of course, a value of n7'E that is an appreciable fraction of 770 kev 

destroys the accuracy of neutron-energy determination if enough of 

the pile-ups occur in coincidence' with- valid neutron counts. However, 

the number of accidental coincidences between two counting rates is 

proportional to the product of the rates .:and the resolving time; in 

this case the true and spurioti_s rates are expected to be small enough 

that the problem of modificatic~n of true pulse-height counts will not-

be as. serious as the number of spurious counts recorded compared_ to 

the number of true counts. If~we set nTE = 770 kev, n is approximately 

3 · 10
8

. Using:Eq. (III-4), we obtain 

-[3 .· 10
8

- n 0 J(O,S. 10-6)1/2 
6 - . 1/2 

no . . 

Solving, we have n
0 

= 1.86 · 10 8 disi~tegrations per second. 

If this is the allowable mean di~i!ltegration rate, we can solve 

for the allowable number of tritium atoms in the counter from the 

disintegration equation: 

dN/dt = - (0.693/T 1/ 2 ) N = - n 0 , 

where 

N = number of tritium atoms 

T 
1
;

2 
=tritium half life= 12.26 years. 

This gives N = L 03 · 10 17 tritium atoms. o:r· if eachmolecule is 
. • 1;6 . 

diatomic, the allowable number is 5.65 · 10 · molecules. The 
\ 

sensitive volume of the central counter is V ""88~ cc, and at P = 2.5 
c 

atmospheres, the total number .or:nolec'ules is D P V = 5.66 · .10
22 

molecules, where D == Loschmidt1 s number at 15° C, ~r 2.55 · 10
19

. 
/ 

This gives a tritium composition of about o;6001%. This looks like a 
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very serious purification problem if there 1s significant tritium contam­

ination in the helium-3 supply. 

SATURATION EFFECTS 

It is apparent that for high-energy particles ~nd high enough 

multiplication, saturation effects near the wire should eventually 

destroy the proportionality of the multiplication process. Experiment­

ally, the ratio of pulse sizes has been found accurate to 1.5;o/o forM 

less than a critical value of M (E) at which saturation effects begin[
28

]. 
c . 

For the counter used the experimenters found 

E · M (E) = constant = 10
8 

ev. c . (III- 5) 

Using this for our counter application, where the maximum (E + Q) is 
n 

1.77 Mev, and allowing a safety margin of a factor of two, we have 

M (E=1.77Mev)::::: 28. 
c 

If we also check expected charge-to-length ratio in avalanche compared 

to charge-to-length ratio on the'wire, a ratio of 4% corresponding to 

Eq. (III- 5), it appears that adoption of the equation for this counter 

should ensure no significant loss of proportionality due to saturation. 

High values of multiplication are also not desired; owing to increased. 

voltage- stability requirements, because the curve of multiplication 

versus counter voltage in most cases starts out rather flat but soon 

rises into a steep ascent. 

POSITION OF 'IONIZATION 

Because of the long travel time of positive ions to the cathode, 

amplifier time constants must be used that ignore part of their con­

tribution to the pulse. This makes the size of the pulse dependent on 

the position of ionization. A general rule is to use M >1 0 to avoid 

this effect when counter radius is 100 times wire radius. Let us 

investigate the effect for our counter' for y = b/ a = 1000, and for no 

multiplication. On the basis of the expressions for fraction of total 
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induced voltage due to electrons.and positive ions, Staub shows that 

the fraction of the volume of the chamber in which the ionization can 

originate so that m?re than half of the pulse is ca~sed by the fast 

electron collection is b/ (b+a), since the contribution to the pulse i:s. 

evenly divided when r = .JTa~ is the position of original ioniza~ 

tion[ 1o]. Or this is YAy+l), which equals 1000/1001, which seems to 

indicate that multiplication might not be necessary for large y values. 

This assumed position corresponds tor = 31.6a for our counter. As 

a further check we assumed the ionization took place at r = 316 a, 

and calculated the fraction of the pulse due to electron motion 

(ionization in about 90o/o of the volume would give larger pulses), 

using the assumptions about ionic motion used in Chapter II and 

some other equations from Reference 18. This fraction was 0.835 .. 

Amplifier time constants in reality would be long enough to register 

some o£ the positive-ion motion, which would improve this fraction. 

H,owever, starting from r = 316a under the same conditions and 

assumptions, we calculate the ionic motion to contribute only about 

0. 002 to the total pulse in a collection time of 5 f.1Sec. Thus we con­

clude some multiplication is necessary to remove effects due to 

·position of ionization. 

END EFFECTS 

With no preventive measures there would be an abnormally 
' ' ;;") 

high electric field at the ends of a counter wire. The loss in 

resolution thereby can be partially eras~d by having the wire 

shielded or thickened near the ends to give a low field. The variation 

of M along a counter wire has been measured and found to oe import­

ant at a distance on the order· of a counter radius from the thickened 

ends[ 29]. In a high-pressure proportional counter designed.to be 

used for neutron spectroscopy it was found.that the pulse-height 

distribution varied 'radically over the extent of the counter in a' pre­

liminary design without field tubes[ 12 ]. The loss of resolutionrcom­

pared with the resolution at the center, was significant when the 
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investigators ~oved a narrow 'pericil of thermal neutl-ons with which 

they were probing the counter 0. 5 inch away from the center. The 

wire was about 8 inches long. The sim:pie st way of overcoming end 

effects is to use a long counter- -that is, long compared with the 

radius. Of course, this is not always practicable. Our counter, 

with wire length 21.6 em and CC?Unter diameter: 7. 6 2 em, is not a 

very long counter; • and we might expect .considerable loss of resolu­

tion due to end effects. The end effects .. can be eliminated by mech~n­

ical methods, which add complexity to the counter .. A divided counter 

was constructed in which a bead divided the· wire into two unequal 

lengths[ 30]. Subtracting one 'Spectrum from,the other eliminates 

end effects. Field tubes extending over a guard tube eliminate end 

effects when field-tube potential is adjusted to a proper value an~ 

field and guard tubes are correctlv.: located__, Field tubes were proposed 

.. in 1951[ 31 ] and used the same year[ 32 ] to investige;te the low-energy 

spectrum of tritium down to approximately 200 ev. 

WALL, EFF.E1CTS 

Wall effects as outlined for a gas recoil chamber by Rps si and 

Staub [ 2 1 ] . f 'h d . 1 . . . b h are pertlnent or, c arge -partlc e reactions, s1nce 1n ot 

cases the loss in resolution results when the particle that causes the 

ionization in the gas does not expend its full range in the sensitive 

volume. Three cases ,are: (a) The reaction takes place in the 

sensitive volume but one of the charged particles produced crosses 

the end boundary; (b~ . The reaction takes place in the sensitive 

\volume but the charg~d particle hits the lateral wall; {c) The 

reaction takes place outside the sensitive volume, but one of the 

charged particles ~nters the sensitive volume. The anticoincidence 

ring does not help in those instances in which the charged particle 

crosses the ends. Thus, it is desirable to have a small ratio of area 

of ends to lat~ral area, or--what is the ·same thing--ailong counter, 

as in reducing end effect. Pulses reduced in size by the wall effect 

contribute a continuum of energies from zero to (E + Q) to the . . n 
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pulse-height distribution. Without the use of an anticoincidence ring or 

a magnetic fieldto curve the paths of the charged particles, the wall 

effect can be reduced only by increased size of the counter and in­

creased gas pres sure. 

OTHER EFFECTS 

Inaccuracies in energy resolution can also come from variation 

in applied voltage, variation in position and diameter of the wire,. and ,. 
·dust partiCles on the wire. These are discussed in .the general 

references. Any alone could be ve-ry detrimental, but it appears 

that all can be avoided with careful techniques. 
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CHAPTER IV 

GAS FILLINGS . 

The counter was first tested by filling from a bottle of argon 

plus 4% carbon dioxide. The filling and evacuation system used. had 

an oil diffusion pump and liquid qitrogen trap, but no special purifica­

tion procedure or trap was used in the gas-filling line. Satisfactory 

operation· was obtained in co~n.ting gamma rays at pressures' of ·one, 

three, and fiv·e atmosphere~. Since the secondary electrons have a 

continuous distribution of pulse heights, we would not expect a flat 

plateau in the curve of counting rate versus voltage in the proportional 

region, but we do de si~e a slope that does n'ot place too exacting 

requirements on volta,ge regulation. At 5 atmos we found about. i% 
increase in counting .rate· per volt in the 26 00-to- 2700-volt range on 

·;. 

the main counter. This was at a high value of M; the range of pulse 
' heights available was several thousand times the minimum detectable . 

pulse height. At 3 atmos in the same voltage range, the change in 

counting rate per volt wa~ about 3%. Of course, the M was greater 

owing to the lower pres sure. The ring counter at 5 atmos had about 1% 

increase per volt ir: the 2100-to-2200-volt range. Its counting rate 

was higher owing to its proximity to the wall. 

The helium filling w~s frorn a bottle of 99.99% pure helium; the 

desired percentage of carbon dioxide was previously introduced through 

a separate filling line. Both filling lines were run through dry ice­

acetone slush traps when C02 was used or a liquid nitrogen trap if 

helium alone was· used.·· (C0
2 

would be frozen out by a liquid-nitrogkn 

trap.) The use of the traps did not seem to have-a large effect. ~ 

C02 was found very necessary to avoid spurious discharges in the -counter.· 

The stabiHzing effect of polyatomic gases mixed with noble gases 

seems to depend on their ability to absorb photons, in contrast to the 
n 

small-photon captur~ cross section of the noble gases (many of these 

photons are produced Qy~talJ.lg__gj:~ and also possibly on their 
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ability to receive energy from metastable states that have high 

excitation energies. Colli has investigated ultraviolet photons in the 

decay of metastable argon atoms and found them to be responsible, 

through a photocathodic process, for the starting and maintenance of 
. . 1·. d. . 1 [ 3 3 ] Th h t corona current 1n cy 1n r1ca argon counters . · e p o ons were 

·produced in the Townsend avalanche on the wire. Another effect of 
~ ) ' . . 

metastable atoms is the release of secondary electrons from metal 

·surface s[ 34 ]. The.-positive ions can als9 ej~ct se~ondary electrons 

from metals, the requirement being that the energy of.ionization be ' . 

greater than twice. the ·work function of the metal, which is about 5 ev 

for common cathode walls. Helium is expected to be -more trE}ubl,esome. 

than other gases because of its high ionization potential, abo:ut 24.5 ev, , 
and the high energies of its metastable atoms~_uL20-e¥-,_;_ Evidence 

for the difficuity of interpreting experiments with helium has been 

presented[ 35 ] on the basi·s of. the e-xistence of the helium molecule-ion 

·and metastable molecule. It ha.d been shown the He; ion is present 

at very low pressure·s,-: and the concentration increases with pressure 

relative to the- concentr~tion of He+. 

The stabilizing effect of C0
2 

was demonstrated in the counter by 

determining the approximate maximum voltage on the main counter ·. 

that could be applied without causing a rapid breakdown when a rad.i?­

active source was placed a given distance from the counter. TotaL 

pres sure was 5 atmos. The results are lis'ted in Table II.. The break­

down caused by background radiation alone occurs with pure helium. 

at 800 volts. 

However, adding more C0
2 

was not a .s.olution because the 

. pulse heights were thereby drastically reduced. It had been found 

previously that in. mixture of argon plus lOo/o C0
2 

there was a loss of 

pulse height above pressures of 3 atmos, probably due to columnar 

recombination, which is high in C0
2

. This refers to. re.combination 

along the track of a densely ionizing particle.. It was -not possible to 

attain .a. large eno:ugh range of pulse heights above a minimum dis­

criminator setting for counting· recoils from a Pu-Be (a, n) neutron 
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Table II. Percentage of C0
2 

in helium versus voltage 
for breakdown·on main counter. 

\ Percentage of C0
2 

4 

6 

12 

20 

25 

33-1/3 

Critical Voltage 

1500 

2000 

2500 

'2800 

3000 

source without going to a counter voltage at which spurious discharges 

would occur. The situation improved with decreasing pressure. 

A final filling at 2. 5 atmos with 2o/o C0
2 

was chosen for further 

experimentation. The curve of counting rate versus voltage for count­

ing neutron recoils from. the Pu-Be source showed a slope of 0.84o/o 

change in counting rate per volt in the range of 1100 to 1200 volts on the 

main counter wire. 'E:'or the outer wire there was a 4. 3o/o change in 

counting rate per volt in the range from 800 to 1000 volts. The 

voltage- stability requirements at 5 atmos at a voltage at which the 

spurious discharges did not occur were not significantly different. 

One advantage of helium as the counting gas is readily apparent-­

its reduced sensitivity to background gamma radiation. The range of 

the secondar•y electrons in g/ em 
2 

is about the same, but heli-um has 

about 1/10 the density of argon. The low atomic number of helium is 

also an advantage in that the interaction of gamma rays directly with 

the gas is smalL 

... ' 
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CHAPTER V 

COUNTING RATE AND EFFICIENCY 

·For an isotropic neutron flux in a 

ingrate may be expressed[ 2] as 

proportional counter the count-

where 

I=NVc r CJ(En) cpE 
n 

N = density of reacting nuclei (nuclei/ em 
3

), 

V =volume of absorbing material (cm
3

), 
c 

CJ (E } 
.n 

cpE 
n 

""neutron cross section of absorbing nucLei 

(cm2}, 

neutron flux per energy interval (neutrons/ em 
2 -

_·sec- erg), 

F(E ) = detection efficiency defined as ratio of count­
n 

ing rate to rate Of reading. events. 

Ideally, for an exo~rgic reactio_n and integral detection, F(En) is a 

step function: zero for E < B and unity for E > B, where B is n · n _ 
threshold bias energy for equipment.· This step function is modified 

by a geometric factor, G(En)' for wall effect as shown below. For 

differential detection, F(E ) is ideally a difference between two step. 
n. 

functions with thresholds B
1 

and B 2 . For a recoil-detection process 

in which, with no collimation, a neutron of any energy may give 

pulses from zero to a maximum, we must evaluate F(B/E. ), which . n 
gives the fractional number of recoils giving pulses larger than B. 

Thus, for a recoil detector, one has 

F(E ) = G(E ) F(B/E ), 
n n . n 

The term f(E ) above is a correction factor for perturbation of 
n 

flux caused by insertion of the absorber. 

the rest of the discussion. 

This factor is neglected in 

A solution of-the equation for counting rate would in most cases 

be extremely complicated. Some insight can be gained by considering 

the simpler case of a moooergic neutron flux. Then we can eliminate 

the differential and replace cpE with cp (E ) in neutrons/ em 
2

- sec. n . 
n 

.,.,..,_ 

.. 

.. 



.• 

For neutrons-of a given energy this leads to 

I = N V CT (E •) <j> (E ) F (E ) 
c . n n n 

The efficiency of a couhter is defined as I/ q, where q is the 

number of neutrons per second traversing the counter volume; 

q = <j>(E )A, where A is the effective exposed area of the counter. Then n 
counter efficiency·<·is 

NV CT(E .) <j>(E )F(E) 
c n n n 

e = C <j>(E ) A 
,n 

NV CT(E )<j>(E) 
, c .n n 

A 

If we call V /A = d, the average distance traveled by a. neutron in 

crossing thee counter[ 24], counter efficiency is 

eC = N CT (E ) d F(E } = eR F(E ) , n n, . n 

where eR = N CT (En) dis the efficiency of radiation defined as the 

ratio of the rate of reacting events to rate of neutrons traversing the 

counter volume, 

The quantity N is readily calculated by expressing it as D P, 

where Dis Loschrnidt 1 s Number and Pis the pressure in atrnos. 

For the counter, we have d = 1.59 ern if we take the totai sur­

face area of the main counter as the effective exposed a_rea for an 

isotropic flux. If we assume 2.5 atrnos of helium-3 and a neutron 

energy for which the (n, p) cross section is one barn, we have -

eR;::;: O.Olo/o. For the counter filled with ordinary helium at the same 

pressure and for a neutron energy for which the scatteringcross 

section is 2 barns, we ha~e eR;::;: 0.02% for recoils. 

The opposite extreme to an isotropic flux is a collirna'ted neutron 

beam. Here the general equation for counting rate is 

I= A f <j>E (l-e-N er(En} T) F(En) dEn, 
n 

where 

A = area perpendicular to beam, . 

T =thickness in ern of material parallel to beam. 



Assuming a monoergic neutron beam as before, we can write 

e = [1- e-Na(En) T] F (E)= eR F(E.), C n n · 

In this case we see that the radiation efficiency of a cylindrical counter 

in a neutron beam is dependent on its orientation with respect to the 

beam; If the beam direction is peq)endicular to the long axis of a 

counter of radius b, solving for the avergge thickness of path gives 

( n /2\} b or 5o 98 em for the main counter 0 Thus, the counter has a 

higher radiation efficiency under these conditions by the factor 

T/d = 30 76, Of course, eR would be even higher for a beam down 

the long axis of a cylindrical countero 

EXPERIMENTAL SET UP 

However, in experimental setups the counter usualiy is neither 

in an isotropic flux nor exactly in a beamo Consider placing a neutron 

source at point P, a distance c from the counter axis and opposite the 

center of its length, as shown in Figo 4o If c is not too small and the 

counter dimensions not too large, it seems we could approximate the 

expected counting rate by as signing an average neutron flux to the 

counting volume: 
2 

<!> = Q / 4nr ff ' av s e 

where Qs =rate of emission of neutrons by the source and 

r eff = .J (c d) , where d = J~z + f 2 + c 2 
Then, -

I = N v a- Qj 4nc d c . 
(assuming F(En) = 1 for the time being)o The rate for neutrons 

traversing the counter in neutrons per sec'Ond can then be expressed 

as this average flux times the area of the central rectangle, or 
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Fig. 4. Geometrical arrangement of neutron source and 
counter. 
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q = 4ncd . 2b . 2f = 
'TT 

bf 
Cd 

This expression was set down to show that this method is equivalent 

to a common method of computing the solid angle subtended by a finite 
. . [18] 

rectangular counter . For one of the small rectangles of area b f 

in the geometry shown the equation for solid angle given is 

tan n = b f/ c d. 

For a small angle we have tan Q:f:::Q and for th~ entire rectangle the solid 

angle would be 

4 b f/c d. 

Thus, we have 

' ( bf ~ ' q = 4 C:d / 4n/ Qs =(0/n) · (bf/cd), . 

as above. Also one should note that we have as signed the same 

radiation efficiency in this geometry as for a beam, as we can show 

eR = I/ q = N a V /4 bf (still neglecting F(E ). c n 
But we have V /4 b f = Tib2 · 2 f/ 4 b f = (n/ 2)b, the average thickness 

c ' 
found for a beam through the counter. 

An arrangement like this was used with a Pu-Be neutron source 
6 . 

of Q = 1.54 · 10 neutrons/sec and d = 21.2 em. Then we compute s 
I/F(En) = 1662 cpm for a pressure of 2.5 atmos of helium, and using 

an ave·rage scattering cross section of 2 barns corresponding .to an 

average neutron energy of about 4Mev. (Actually the Pu-Be neutron 

spectrum is complex from zero to about 11 Mev, and no attempt has 

been made to compute an accurate average value. ) 

If we obtain curves at different values of high voltage, as shown 

1n Fig. 5, we can estimate the point where they tend to zero pulse 

height. At this point F(E ) is unity and the experimental value of 
n 

counting rate should correspond to 1662 cpm. It appears to be only 

about 400 cpm', not a cloke ~orrespondence, but there were so many 

inexactly known quantities and dubious averaging processes that it is 
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Fig. 5. Integral bias curves for main counter at various 
counter voltages, 

A. 1200 volts, 
B. ll65volts, 
C. ll35volts, 

and using neutron source in arrangement of Fig. 4. 
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hard to draw definite conclusions. The scattering cross section is 

rapidly varying in this energy range and the manner in which the inte­

gral bias curve approaches zero is not known. Also consider the count­

ing rate of 17 5 cprn for the highest counter voltage used at a pulse 

height of 10 volts, the lowest discriminator setting for which counts 

were recorded. If we let G(En) = 0.83--a :alue -computed for an 

average alpha recoil in Chapter VI then, for a 10..,volt bias, we have 

F (B/E ) = 0. 127, which would indicate a deteCtion of a small fraction 
n 

of the recoil alpha particles. The curves for the ring counter, Fig. 6, 

seem to tend to a much higher zero-·point counting rate, but it is 

believed that other events than the r~coils are being counted, since the 

volume of the ring counter is less than that of the central counter. 

RECOIL-SPECTRUM CONSIDERATIONS 

It should be much easier to draw some definite conclusions about 

the suitability of the tube cs multiplication factor for_ obtaining usable 

pulse heights if a monoergic neutron source were used, preferably one 

giving a recoil alpha in the energy range of interest, 770 kev to 1.80 

Mev. The counting results from a monoergic source would be much 

easier to analyze. 

This is illustrated as follows. For a monoergic source the 

neutron spectrum, N(E ) versus E , is ideally a spike and N(E ) is n - n n 
the total number of neutrons; the differential pulse-height spectrum 

due to the recoils, n(W) versus W, where W is pulse height, is a 

rectangle; and the integral bias recoil spectrum, N(W) versus W, is 

ideally a constant- slope line. These are sketched in Fig. 7. These 

shapes of the differential and integral bias curves are justified as 

follows. The pulse height depends on the energy of the recoil nucleus; 

the counter and amplifier convert that energy into pulse height. The 

recoil nucleus, as shown in Chapter VIII, can have a maximum energy 

of K E , whe_re K- = 4 A/ ( 1 + A) 2 , if we user;mas s numbers for the a n a 
masses. Let W be the energy of recoil nucleus (converted into volts 

of pulse height by the counter system). Then W can vary from 0 to 

... 
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Fig. 6. Integral bias curves for ring counter at various 
counter voltages, 

A. 1025 volts, 
B. 975 volts, 
C. 925 volts, 

and using neutron source in arrangement of Fig. 4. 
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Fig. 7. Ideal curves for monoenergetic neutron spectrum. 
A. Neutron spectrum. 
B. Differential bias recoil spectrum. 
C. Integral bias recoil spectrum. 
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K E and the number of pulse heights from recoils from the monoer_gic a n , 
source are spread out over this range of W values. The question is 

whether or not the distribution is uniform over the range, giving a 

rectangle. At the values- of E of interest here, and for light nuclei, n 
it is accurate to assume that n~utron scattering is mainly S-wave and 

spherically symmetric in the center-of-mass system of coordinates. 

We wish then to express the recoil energy in terms of E and the 
n 

angle of scattering in. center-of-mass coordinates (both e_nergies in 

laboratory- system coordinates). Using conservation of energy and 

an equation developed[ 36 ] for relating the velocities of the neutrons 

in lab coordinates before and after scattering with e, the angle of 

scattering in c. m. coordinates, we can show W :=~: ~~K E {1-cos e); 
- . a n 

then dW = -2
1 K E sin() de. But in spherical coordinates, we have a n • 

de = drl/21T sin e ' where dQ =element of solid angle, therefore 

dW=K E (drl/41T). Wecansay Frob(W)dW=(a(e)/a )drl, a n - s 
where 

a (e) =differential scattering cross section (c. m. ), 

(J 
s 

=integral scattering cross section, 

Frob (-W) d W = probability for recoil nucleus to acquire an energy 

between Wand W + dW, 

(a (e)/a )dn =probability that neutron will be scattered through 
s 

angle e into d n 
It follows: Frob (W) = a (e)/ a · 4TI/K E For an isotropic s a n 
scattering distribution {a ( e)/ a = 1/ 41T) and monoergic neutrons, s - -
Frob(W) is thus a constant, 1/K E , and n(W) is a rectangle of 

a n 
constant value proportional to N(E ). The integral bias distributibn - n 
is an integral of the rectangle, integrating from maximum W to zero, 

giving the triangular shape. 

· For a non-:ma-ioergic; neutr'on spectrum, N(E )--instead of being 
n 

the total number of neutrons--represents the number of neutrons per 

energy interval, and we must integrate over the spectrum. We can 

say 
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n(W) = K 1. r Prob (W)N (E ) u (E ) dE = K
1 
f 1/K E · N(E } c:r:(~<' )dR n s n n . an n s'-'n '-'n 

where K
1 

is an arbitrary constant and us (En) is the elastic scattering 

cross section as a function of neutron energy. Thus, for a complex 

neutr.on spectrum the shapes of the differential and integral bias 

curves. are very difficult to predict. For performing :: the integration 

in analytical form an expression for N(E ) and u (E )must be used. 
n s n 

Generally, for most sources N(E } goes from zero atE = 0 to a . n n 
maximum and back to zero at E = E {max). The intervening · n n 
structure may be quite complicated. Let us assume us (En) va~de.s as 

1/.IE Th' , . 1. (18] f . 
"J 1s 1s approx1mate y true · or scatter1ng on protons 

n 
for E between 0. 2 and 5 Mev, an approximate relation being (.u ) ::::: 
~ . Sp 

4. 5/ ~ E for E in Mev and u in barns. It is less true for helium, n n s . 
which has a peak of about 6.6 barns at 1.15 Mev and then tails off. 

Then if, for illustrative purposes, we assume 

N(E ) :: E 3/ 2 sinE , 
n n n 

where E goes from zero toE (max) = 1T in arbitrary units, we have n n 
a spectrum shape that can be readily integrated: 

n(W) = K
1 

E =1T 
n 

J 1/ (K E ) E 3/ 2 
a n n 

E =W/K n a 

K1 
= !( ( 1 + cos (W /Kc)), 

a 

sip E 
n 

E - 1/ 2 dE 
n n 

where W goes from 0 to Ka 1T. To save writing W /Ka as the variable 

on the next integration, let us change W from energy to arbitrary 

voltage units where W goes from 0 to 1T. Since we have divided the 

W scale by K , we must multiply the density dis'tribution by K . The a . a 
differential distribution . becomes 

n(W) = K
1 

(1 +cos W). 
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The integral bias distribution is obtained by integrating this from 

the right: 

N(W) = - K
1 

w 
1 ( l + cos W) d W :::: K

1 
(1r - W .:: 

1T 

sin 

The value of this distribution at W = 0 is the total number of scattering 

events, 1rK 1. This should equal the number of neutrons times the 

probability of scattering or 

1T 1T 

K 1 i N(En) a~ (En) dEn= K 1 j En sin En dEn = 1rK1 . 

0 

The three distributions are sketched in Fig. 8. The significant 

trend is the way the integral bia_s distribution rises rapidly near zero 

pulse height, even with this assumed netitron spectrum weighted 

heavily toward the high-energy end of the spectrum. With a complex 

neutron-energy spectrum--as obtained, for example, from (a, n) 

sources'[ 3 ?] --the shape of the integral bias curve and the manner in 

which it tends to the zero pulse-height counting rate becomes very 

difficult to predict. 
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Fig. 8. Assumed neutron spectrum and recoil spectrum 
. for assumed conditions. 

A. Neutron spectrum. 
B.' Differential bias recoil spectrum. 
C. Integral bias recoil spectrum. 
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CHAPTER VI 

PARTICLE RANGE AND WALL EFFECT 

Knowing the range of an alpha particle ·or proton in air, we can 

compute the range in helium if we know the relative atomic stopping 

power of helium compared with air. The range-energy curves to be 

used for alpha particles and protons in air at 15° C and 760 mm 

pressure are those of Bethe, [ 3S] which, on the bas1s of experiment, 

corrected for low energies the original curves by Livingston and 

Bethe[39]. The original work was a theoretical treatment based on the 

Born approximation but also modified by experimental data then 

available. 

The basic equation giving energy loss per em of path 'defines 

stopping power: 

where 

- dE/ dR "" (4rr e 
4

z
2 
/mv

2
) NB, 

E = energy of incident particle, 

R = path length, 

e = electron charge, 

z = atomic number of incident particle, 

m:;;: electron mass, 

v ::;;: velocity of incident particle, 

N -· number of atoms per cc of stopping material, 
. 2 

B · = stopping number :;;;: Z ln (2m v /I ), where 
av 

Z =·atomic number of stopping material, 

I = K Z = average excitation potential of atom of stopping 
av 

material, 

K = Bloch constant (which is not actually a constant but vades 

somewhat for different atoms and is usually determined 

experimentally because it is difficult to calculate 

theoretically). 
1._,. 

The relative stopping power, compared with air, is defined: 
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where the zero subscripts refer to air: Here sis seen to be a function 

of incident-particle velocity, and for different atoms increases more 

slowly than Z alone. We find it accurate enough for the purpose at 

hand to use this equation, although many modifications to the theory 

can be made in computing B, as done by Hirschfelder and Magee[ 
40

] 

for several different substances for proto'ns. 

We take ~xperimentally determined values of air from 

Reference 39: r0 = 80.5 ev and z 0. = 7. 22. For helium, Iav = 44 e) 41
]. 

The calculation shows, for 1-Mev protons, sHe = 0.328. To convert 

the range in em in air at NTP (15° C, 760 mm) to that in helium und~r 

the same conditions we note that stopping pov.:er is proportional to 

N and B, therefore the range in em must be inversely proportional to 

these quantities. The range in helium is 

where t]:).e zero subscripts again refer to air and s 0 = 1. Now, N 0/N 

is approximately 2, since air is mostly diatomic. The calculation 

yields R = 6.13 R
0

. This should be fairly accurate for helium-3 or 

helium-4. For a 1-Mev proton, R 0 is 2.28 em, therefore R is 14.0 em. 

The range is ,inversely proportional to gas pressure, since density is 

proportional to pres sure. Thus, at 2::;:5 at<tnos this proton range in 

helium becomes 5.60 em, and at 5 atmos, 2.80 em. 

To find the range of an ion of other isotopes of hydrogen (given 

the relation for protons) we note that of all' terms in the stopping 
. ' ' 2 
power formula only v is different for a given energy. Thus, a 

triton of energy E experiences the same stopping power as a proton 

of energy 1/3 E; but it goes three times as far since it has three times 

the ene:t:gy. The maximum triton energy with which we will be con­

cerned in the He 3 disintegration is about 1 Mev, and we figgre its 

range to be 8.54 em in 1 atmos of helium. Since this is less than a 

representative p:Z..oton range from a He
3 

disintegration and represents 

an upper bound on the triton range, the order of magnitude of the 
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wall- effect difficulties. can best be estimated by considering the 

proton range. As::;ointed oufbyBatchelor[?] in explaining his computer 

. program for wall-effect computation, the correlation between proton · 

and triton tracks plus a cylindrical geometry makes exact calculatioqs 

impracticable; also the angular distribl.ltion of the He 3 (n, p)T reaction 

is not very well known. 

In integral bias counting involving the (n, p) reaction, detection 

efficiency is defined as the counting rate divided by rate of emission 

of protons. :When the total range of particles is small compared with 

lin~2r dimensions of a counter and distribution is isotropic, a value 

for detection efficiency often given is 

where we have an active cylindrical volume of radius b and length L, 

and RE is that portion of total range of protons necessary to produce 

a pulse above the bias energy E of the discriminator[ 
10

]. The terms 

in the expression for F(E) reducing it from unity represent the 

magnitude of the wall effect and indicate the loss at the lateral bound­

ary and end face, respectively. 

The expression for F(E) can be shown to be plausible as follows: 

Consider the fraction of the volume of a cylinder of radius b within a 

distance R of the side walls. This fraction is (2 bR - R 2 )/b 2 . 

Consider charged particles originating with equal probability along a 

radial line with ends defined 1Jy the outer volume. If any direction of 

emission is equally probable, one-half of the particles will be emitted 

with a radial component toward the center' and not intercept the wall. 

For that half of the particles having a positive radial component, 

those originating on the inner edge of the fractional volume have 

practically zero probability of intercepting the walls (since only one 

direction of emission allows the particles to reach the w~ll), while 

those originating at the wall have lOOo/o probability of reaching the walL 

Assuming that this increase in probability is linear as we move out­

ward toward the wall, we estimate that one-fourth of all the particles 
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originating in the fractional volume reach the wall. Then the wall 

effect i13 1/4 time the fraction of the volume, or 

R/2b - (R/2b)
2 

. 
\ 

For R << 2b, this is approximately R/2b .. Similarly, the fractional 

volume within a distance R of the ends of a cylinder is 2R/L, and-­

again taking 1/4 of this value-- we get. R/ 2L as the wall effect due to 

the ends. 

In our case the condition of large dimensions is not well ful­

filled; also we assumed that the ionization from the particle other 

than a proton was confined to a very small region, which is not so 

true for a He
3 

reaction as for one involving heavier nuclei. In 

differential detection F(E) is ideally the difference between two step 

functions with different energy thresholds. Therefore, the deviation 

from unity is a rough indication of the magnitude of wall effect on 

energy determination for a proton of given energy.· For a 1-Mev 

proton in 2. 5 atmos of helium, the geometric factor is 

G(E=l Mev) = 1 - R/2b - R/2L, 

and with 2b = 7.62 em, 2L = 38.9 em, R = 5.60 em, we have 

G(E)=0.12 or the wall effect is 88o/o. Doubling the pressure would 

reduce the wall effect to 44o/o, and at 10 atmospheres to 22o/o. 

For. counting neutrons in ordinary helium we are concerned 

with the range of the alpha recoil. The maximum energy of the alpha 

particle is 16/25 E , as shown in Chapter VIII. If we consider: the 
n . 

. average energy of the Pu-Be neutron spectrum to be 4 Mev, this 

corresponds. to a maximum alpha energy of 2. 56 Mev, or an average 

Ea of about half this amount. Figuring the range of this alpha 

particle in 2.5 atmospheres of helium by o.ur previous method, we 

get 1.38 em. Tl)_e wall effect is 22o/o for ~his range, Experimentally, 

a coincidence counting rate of about l6o/o of the total counting rate in 

the main counter was measured. This is a very rough check, but it 

at least appears that the ring counter is capable of reducing the wall 

effect. 
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ELECTRON RANGE 

To obtain the range and energy loss of electrons in estimating the 

effect of tritium decays or background gamma counts, one can take the 

nearest tabulated valuel
41

] of stopping power for helium as a function . . 2 . . 
of electron energy, given in units of Mev per g/ em , For example, at 

10 kev, we have 

- dE/dx = 22.5 Mev/g/cm
2 

If we take D. x as the average path in the counter, 159 em, times the 
-4 I 2 density of helium at 2;5 atmospheres, D..x = 7.53 · 10 g em , Then 

D.E is greater than 16.9 kev (the product of - dE/ dx. , D..x), be sa use 

the stopping power increases with decreasing energy. · For higher­

energy electrons it is fairly accurate to use ·Feather1 s Rule or 

Flammersfeld 1s formula [ 20] to find x and then multiply D..x/x times 

the energy of the electron, 
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CHAPTER VII 

NEUTRON GENERATOR 
., 

.Eo,t testing purposes one de sires a monoenergetic neutron 

source. The complex spectru:in of (a., n) sources has been mentioned; 

the other class of neutron sources using radioactive nuclei are 'the 

photoneut:ron or ('{, n) sources. These use deuterium or beryllium 

because other nuclei have thresholds above 6 Mev. To get high enough 

intensity the gamma source is surrounded so that there is an intrinsic 

energy spread due to different angles between neutron emission and 

incident gamma ray, This is small; for example, it is 3:37.o/o for a 

Na 24 +Be 9 source[ 2o]_ However, this is not the. main cause of 

energy spread. Owing to the large quantity of beryllium there .is 

considerable neutron s·cattering in the source, and gamma-ray loss 

of ener·gy by Compton scattering. 

·It has been found possible to construct neutron generators 

utilizing the deuteron- deuteron reaction, D(d, n}He3 , with useful 

neutron intensities without elaborate high-voltage equipment; for 

example, the generator of Zinn and Seely[ 42 ] was·built in 1937. 

Voltages on the order of 100 ,kv can give useful yields even though the 

reaction is not very efficient at this energy. With this low voltage we 

also have· the advantage of almost monoenergetic and gamma-free 

neutrons. For a thick target the deuteron energy at the time of the 

reaction can vary from a maximum to zero. In the generator used 

in this experiment the maximu.m deuteron energy is 120 kev. Thus, 

using equations developed in Chapter VIII and Q = 3. 28 Mev, we find 

that in the forward direction the neutron energy can vary from 2.46 

to 2. 91 Mev. At a laboratory- system angle of 90 degrees the energy 

spread is from 2.46 to 2.4':9 Mev, or little more than 1o/o .. The energies 
I 

are weighted toward higher values because y1e1d increases rapidly 

with deuteron energy. This neutron-energy r~nge i~ convenient for 

checking the operation of the counter because the maximum recoil­

alpha energy is about the same as the maximum (E + Q) energy we· 
n 
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wish to measure in heli'um-3, and about half the recoils are above the 

lowest sensitivity needed. 

PULSED- NEUTRON GENERATOR 

The neutron generator that is being putinto operation provides a 

pulsed source of neutrons and is similar to the one described by 
[43] . . 

Ruby except for the method of mounting the accelerater system and 

the vacuum equipment. The accelerator system is described in 

Reference 43; briefly, the deuterons are generated in a pulsed Philiips 

Ion Gauge type of ion source supplied with deuterium gas through a 

palladium leak and accelerated to impinge upon a circular target of 

1- I/ 8-inch diameter. The; targets· are prepared by occluding deuterium 

in titanium. This type of target allows simpler equipment than one 

with heavy ice, by requiring no special cooling. It is planned to try a 

deuterated paraffin target to see if the yield is increased. The 

objection of non-monoenergetic neutrons due to the C ~ 2 (d, n)N
13 

re­

action is not pertinent here because we are below the reaction 

threshold. The generator was designed so that adjustment of param.., 

eters would not be critical; the yield is largely determined by the 

accelerating voltage and the condit:lon of the target. (The reaction 

cross section decreases with deuteron energy, and the targets have a 

tendency to form a carbonous surface after a -few hours 1 use. ) 

The pulsed operation is particularly convenient for experiments 

that require a reference time, such as in neutron-diffusion experiments; 

single pulsing has been usedfor cloud chamber experiments. In normal 

operation the ion source is pulsed at 60 cycles per second with 200-

·f-Lsec pulses. In this manner we can get an integrated yi-E!ld; Qs' of 

. more than 106 nE;!utrons per sec. This is a duty cycle of 0.012, or 

during a pulse the instantaneous neutron yield is Q /o. 012 neutrons s 
per second. For a cloud chamber experiment we used an external 

oscillator o~tion of 400 cycles per second and increased the width of 

the pulse by an adjustment in the arc pulser to 5PO f-LSec. .This is a 

duty cycle of 0.2. This mode of operation was gated on, when it was 

-4 7-



desired to take a picture, for 100 milliseconds, giving a total pulse-on 

time of 20 msec per gate. Then the neutron yield per gate should be 

Qs/0.012 times 20 msec, or more than 10
6 

neutrons in each burst, 

assuming the same e~fectiveness of the ion source when pulsed at 400 

cycles per sec. as at 60 cycles. It would be more realistic to calibrate 

at 400-.cycle s steady operation, but this increases the risk of damage 

to the ion source. 

NEUTRON YIELD 

In order to measure the integrated yield one should determine. 

if the anisotropy of the yield is significant. It has been found that in 

the energy region below 0. 5 Mev, the neutron yield as a function of 

angle in center- of-mass coordinates can be represented [ 44] by 

N( 8) =A (l + B cos
2 

8), 

where A is a constant and B is a number that increases with deuteron 

energy. Thus, the yield is smallest at 8 ·:e: 90 degrees. The quantity 

B has been determined experimentally[ 45 ] down to 500 kev, and the 

curve extrapolates fairly well into a theoretical 

low .energies based on the D(d, p) H 3 reaction. 

d 
. . [ 46] 

eterm1nat1on at 

It is believed the 

angular asymmetry is the same for the companion reactions at 

corresponding voltages. We estimate B as 0.6 at 120 kev. This 

means the neutron flux at 8 = 0 should be (l + B) times the neutron· 

flux at 8 = 90 degre·es. Or, performing an integration, we find that 

if Q is determined by measurements at (;I = b, we should divide this s 
by (1 -t(B/2+BH for the true yield or 1.23 forB= 0.6. This.is a high 

estimate of the anisotropy, because not all the deuterons have the 

maximum energy. With these small deuteron energies, we expect 

that the laboratory- system angles will not be much different from the 

c.enter-of-mass angles. We need not outline the calc.ulations here 

·(a de scription of the two coordinate. systems and some convenient 

equations may be found in Reference 47), but for 8 == 90 degrees, 

we find the lab angle (} L = 85.6 degrees for 120 kev, and for 'HL =90 

degrees, e = 94..4 degrees. 
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The generator yield has been monitored with a BF 
3

. proportional 

counter surroundt;d by ,2. 5 inches of lucite moderator and a thin sheet 

of cadmiurn. Care must be taken in its calibration since this 

arrangement does not give equal sensitivity over a wide range of 

neutron energies. For a particular counter we found a sensitivity of 
2 

0.29 counts per neutron per em when a Pu-Be source was used, and' 

0.37 counts per neutron per t'm
2 

when a mock fission source with a 

smaller energy range of neutrons was used. However, it can be 

calibrated on the D-d neutrons by comparison with a calibrated 
' [ 48] 

Hanson and McKibben type long counter .. The lucite embedded 

counter is easier to place and adds less scattering objects to the 

experimental arrangement. 
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. CHAPTER VIII 

NUCLEAR REACTION DYNAMICS 

v4 
~· 

~ .. 

. Consider the general case sketched above of a particle of mass 

M 1 and velocity v 
1 

colliding with a target nucleus of mass M
2 

assumed 

at rest. After the reaction the resulting particle of mass M 3 flies off 

with velocity \F3 at angle eLO The nucleus of mass M 4 has velocity 

v 4 at angle <j>Lo We will use nonrelativistic dynamics, mass numbers 

for masses, and laboratory coordinateso 

First, write two equations for conservation of nw~ntum for 

components parallel and 'perpendicular· to v
1

: 

(VIII< l) 

(VIn-:z) 

By transposing the last term of Eqo (l) to the other side, 

squaring both equations and adding, we can eliminate 4> Lo ·Then 

repla,i::ing velocities by use of E = i M v
2 

for energy and rearranging, 

we obtain 
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We can write another equation for E4 from the definition of the 

Q of the reacti'on. Having assumed E
2 

= 0, we write 

E4 = Q + El - E3 

For the He
3 

(n, p)T reaction, using Q = 0. 77 Mev and similar 

symbolism, we write two equations for thetriton ~nergy: 

E = _!_E t.!.E 
T 3 n 3 p 

E 
p 

With these two equations we can solve for ,the proton an~ 

triton energies for given varues of En and eL. 
For En= 0, the proton receives 75o/o of the Q energy andthe 

triton receives the remaining 25o/o. That is, 

E = o.·577 Mev, 
p 

ET = 0. 193 Mev . 

For E = 1 Me·v, a tabulation is given below. 
n 

- e 
L Proton Triton 

(degrees) 

0 

45 

90 
135 

- 180 

E 
p 

(Mev) 

1.74 

l. 52 

1.08 

0. 77 

0.67 

o/o of 

(E + Q) n 

98.3 

85.8 

61.0 

43.5 

37.8 

ET % of 

(Mev) (E- + Q) 
n 

0.03 1.7 

0.25 14.2 

0.69 39.0 

1.00 56.5 

l. l 0 62.2 

It is often desirable to have a convenient expression 'for the 

energy of the ejected particle at 8L:::: O'and at 90 degrees as a function 

of the bombarding. particle energy .. · For the forward -direction the two 

equations become 
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M'l ·, M3 2 .i 

E4 = M4 El + M4 E3 ,- M4 (El E3 Ml· M3)2;, ,-

E4=Q+E1~E3,o 

A solution for E
3 

yields 

where 

AI =M4Q+E1 (M4-·M1)' 

A
2 

= 2A
1 

(M
3 

+ M
4

) + 4 E 
1 

M
1 

M
3 

, 

•. . . ·. 2 
A 3 = (M3 + M

4
) · o 

For the He 3 (n, p) T reaction this gives 

For the D(d, n) He 3 reaction, 

E = 2_ Q + _!_ E (l + .!_ [ 3+ , ~ 6 Q ]'~ ) . 
. n 4 2. d Z E . d 

For B L = 90 degrees, the two equations are 

. E 4 '=_a+ ~ 1 - E 3 o. 

Solving, w~ obtain 

E3 o r4/(M~+ M41 Q + [(M4-Ml )/(M4 + M3)] El .. 

:-

For the two reactions above, at 90 degrees, 
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E 
3 1 

E =-Q+-p 4 2 n 

E 
3 1 

E =-Q+-n 4 4 d 

For the case. of elastic. scattering we set Q = 0 and M
3 

= M
1
, 

therefore the two equations become 

We are interested in the energy given to the recoil nucleus, 

therefore we· eliminate E
3 

fr.om the first equation by using the second. 

Then we set eL = 180 degre~s for maximum E
4 

corresponding to a. 

backward recoil. Solving for E 4 1rnax), we have 

For neutron scattering in helium- 3, 

and for neutron scattering in helium..:4, 

E ( ) __ 16 E · max · 
a. l5 n 
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