Title
Left main and triple vessel dissection 2 months postpartum.

Permalink
https://escholarship.org/uc/item/3sb8f5kp

Journal
Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 93(7)

ISSN
1522-1946

Authors
Shahandeh, Negeen
Miyamoto, Michael I
Tobis, Jonathan

Publication Date
2019-01-18

DOI
10.1002/ccd.28046

Peer reviewed
CASE REPORT

Left main and triple vessel dissection 2 months postpartum

Negeen Shahandeh MD1 | Michael I. Miyamoto MD2 | Jonathan Tobis MD3

1 Department of Medicine, University of California Los Angeles, Los Angeles, California
2 Providence St. Joseph Health, Division of Cardiology, Mission Heritage Medical Group, Mission Viejo, California

Correspondence
Negeen Shahandeh, MD, Ronald Reagan Medical Center, University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095.
Email: nshahandeh@mednet.ucla.edu

Abstract
Spontaneous coronary artery dissection (SCAD) is a rare cause of acute coronary syndrome. The majority of cases reported in the literature involve a single vessel; multivessel and left main (LM) coronary artery involvement is rare. We present a case of triple vessel and LM SCAD in a postpartum patient and review the literature regarding percutaneous coronary intervention in the setting of SCAD.

KEYWORDS
complications, coronary aneurysm/dissection/perforation, imaging, intravascular ultrasound, left main coronary disease, percutaneous coronary intervention, pregnancy, cardiovascular complications

1 | INTRODUCTION

Although spontaneous coronary artery dissection (SCAD) is a rare cause of acute coronary syndrome, it should be considered in young women presenting with chest pain. In women less than 50 years old presenting with acute coronary syndrome, up to 35% have been found to have SCAD, and many are initially misdiagnosed.2 The majority of cases reported involve a single vessel and can be treated medically. Multivessel and left main (LM) coronary artery dissections are rare but often require invasive management.2–4 We present a case of triple vessel SCAD involving the LM coronary artery, and review the diagnostic and management challenges of SCAD.

2 | CASE REPORT

A 41-year-old woman presented with sudden onset chest and back pain 10 weeks after delivery of twins via Cesarean section. An electrocardiogram demonstrated sinus rhythm, with nonspecific repolarization abnormalities. She had been in good health and denied substance abuse. The initial troponin-I was 3.85 ng/mL (normal ≤ 0.05 ng/mL) with elevation of CK-MB (11.0 ng/mL, normal ≤ 3.6 ng/mL). Physical examination was notable for tachycardia of 111/min. A chest X-ray was unremarkable.
small diameter, without discrete stenosis. The right coronary artery (RCA) was notable for two diffusely small caliber posterior left ventricular branches, with an irregular luminal appearance (Figure 2) with TIMI grade 3 flow.

Since the patient was a young woman without atherosclerosis risk factors, the findings were interpreted as consistent with SCAD, although it was unusual that multiple arteries were involved. The patient was treated medically with aspirin, clopidogrel and beta-blocker therapy. A transthoracic echocardiogram did not show wall motion abnormalities. A renal magnetic resonance angiogram was negative for findings of fibromuscular dysplasia (FMD). The cardiac enzymes trended downward.

On hospital day #3, she developed recurrent chest pain, accompanied by an increase in troponin-I to 9.49 ng/mL. A transthoracic echocardiogram demonstrated apical hypokinesis. The addition of oral calcium channel blocker and intravenous nitroglycerin therapy did not relieve her chest pain. She was transferred to a tertiary care center, where coronary CT angiography (CCTA) demonstrated dissection of the LM coronary artery, extending into the LAD and left circumflex coronary arteries (Figure 3). Despite the high-risk anatomical involvement, another attempt was made at medical therapy given resolution of chest pain and clinical stability at the time of these imaging findings. The patient initially responded and preparations for hospital discharge were initiated.

On hospital day #8, she developed severe chest pain and ventricular tachycardia. She was intubated and underwent emergent coronary angiography, which demonstrated dissection of the LM.
coronary artery from the ostium, extending the entire length of the LAD (TIMI grade 2 distal flow) and the left circumflex. The appearance of the RCA was unchanged. A non-selective ascending aortogram was used for guidance of a coronary guidewire into the LAD without selective injection of contrast into the LM artery (Figures 4 and 5).

Prior to selective coronary injections, intravascular ultrasound (IVUS) was used to confirm guidewire positioning in the true lumen.

Spontaneous coronary artery dissection should be considered in young women presenting with chest pain. Risk factors associated with SCAD include postpartum state, multiparity, FMD, hormonal therapy, extreme emotional stress, use of cocaine or amphetamines, and other

FIGURE 1 RAO caudal view of selective left coronary angiography. The white arrows designate diffuse narrowing of the distal left circumflex artery branches. The black arrow points to the left anterior descending artery, which does not appear to be affected by dissection in the initial angiogram.

FIGURE 2 AP cranial view of selective right coronary angiography. White arrows denote two posterolateral branches with abrupt tapering of the vessel caliber and extensive thinning consistent with dissection.

FIGURE 3 Coronary CT angiogram shows dissection of the left main artery as it branches into proximal left anterior descending artery (white arrow). (Figure 6). Five overlapping drug eluting stents were placed extending from the LM ostium into the distal LAD (Figure 7). An echocardiogram demonstrated a left ventricular ejection fraction of 35%. The troponin-I peaked at only 8.6 ng/mL, suggesting the possibility of myocardial stunning.

She was discharged on hospital day #16 on aspirin, clopidogrel, beta-blocker, statin, and a long-acting nitrate. She was placed on angiotensin receptor and aldosterone blockade. An echocardiogram 6 weeks later revealed an ejection fraction of 43% and 50% at 6 months.

3 | DISCUSSION

Spontaneous coronary artery dissection should be considered in young women presenting with chest pain. Risk factors associated with SCAD include postpartum state, multiparity, FMD, hormonal therapy, extreme emotional stress, use of cocaine or amphetamines, and other
remains reasonable in the clinically stable patient, if the patient is unstable or refractory to medical therapy, noninvasive imaging is also favored in the presence of new or refractory symptoms.

Although medical therapy should be considered. Intracoronary imaging is also useful during PCI to mitigate wiring of the false lumen and unintended propagation of dissection flaps. Coronary CT angiography is an imaging modality with the advantage of evaluating the coronary arteries without contrast injection extending dissections with the foramen of the coronary ostia. Despite this, CCTA is not recommended as a first-line diagnostic modality due to its limitations in evaluating the smaller arteries and distal segments where SCAD frequently occurs (high false negative rate). Therapeutic role for CCTA as an alternative to coronary angiography for follow-up in assessing resolution of SCAD.

3.1 | Diagnosis
Coronary angiography remains the primary modality for diagnosing SCAD. There are three angiographic patterns of SCAD: type 1 is pathognomonic with contrast staining of the arterial wall and multiple lumens; type 2 includes a diffuse and smooth stenosis >20 mm long, and is the most frequently observed pattern, with an abrupt transition from normal arterial caliber to diffuse stenosis; type 3 is focal or tubular stenosis <20 mm that is the most difficult to differentiate from atherosclerotic lesions and often requires intracoronary imaging to confirm the diagnosis. While this classification has increased the recognition of SCAD in recent years, diagnostic uncertainty can persist after conventional coronary angiography. In cases with clinical suspicion for SCAD where the diagnosis remains uncertain, intracoronary imaging such as IVUS or optical coherence tomography (OCT) is useful.

3.2 | Medical therapy
Medical therapy for SCAD is predominantly composed of antianginal therapy. Beta-blockers should be considered for patients with arrhythmia,
FIGURE 6: IVUS of the left anterior descending artery prior to selective angiography. Panel A (distal LAD) demonstrates the guidewire outside of the true lumen. The true lumen is compressed by the false lumen, which contains blood product representing hematoma or thrombus. Panel B (proximal LAD) demonstrates appropriate position of the guidewire in the true lumen. The guidewire had traveled from the proximal true lumen, into the false lumen, and back into the true lumen.
hypertension, or left ventricular dysfunction. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers should be used in the setting of myocardial infarction with left ventricular systolic dysfunction. Routine use in the setting of MI has not shown benefit in reducing recurrent SCAD. There is no evidence that anticoagulation or antiplatelet therapies are beneficial in SCAD, and there are theoretical concerns about the risk of bleeding into an intramural hematoma with extension of dissection with these therapies. Therefore, routine antiplatelet and anticoagulation is not recommended.

3.3 Revascularization

The majority of SCAD cases involve a single vessel, predominantly the LAD, with the site of dissection most frequently in the mid to distal artery. Left main coronary artery involvement is rare, and even fewer cases of triple vessel involvement were reported (Table 1). Patients with multivessel and/or LM involvement are often symptomatic unstable, requiring invasive management. When feasible, PCI should be attempted. Although coronary artery bypass grafting could be considered in these cases, it may be difficult to identify the true lumen and maintain patency.

SCAD involving multiple vessels, particularly the LM coronary artery, poses several challenges for interventional cardiologists. Care must be taken when wiring across lesions to minimize the risk of entering false lumens and propagating dissection flaps. The presence of intramural hematoma can extend proximally or distally when compressed during PCI. The intramural hematoma, which resolves over time, may also produce a false lumen and stent malposition and stent thrombosis. Finally, extensive involvement of distal, small caliber vessels often requires long stents with high rates of stent restenosis.

Although there are no randomized studies of revascularization in SCAD, observational studies have shown a high risk of complications associated with PCI. PCI failure rates range between 27% and 36% in the three largest case series (Table 1). Even in cases of successful PCI, complication rates remain high. Saw et al. reported that greater than 50% of cases of successful PCI were complicated by extension of dissections, including three patients with extension to the LM coronary artery. PCI failure was attributed to wiring of the false lumen, extension of dissection resulting in reduced TIMI grade flow, or loss or reduction in flow after stent placement, and residual stenosis >30%. These findings are present across multiple smaller case series as well, highlighting the technically challenging aspects of PCI in patients with SCAD.

Several strategies for invasive management are associated with lower complication rates. When possible, a femoral approach is recommended, as radial access has been associated with increased risk of iatrogenic coronary dissection in retrospective studies. This may be due to non-coaxial engagement of the coronary ostium and tortuosity of the upper extremity vessels resulting in the need for more aggressive catheter manipulation. Another potential benefit of femoral access is the ability to screen for associated arteriopathies with iliofemoral and renal angiography, which are common sites of extra-coronary vascular involvement in FMD. Given the strong association of FMD and other arteriopathies with SCAD, screening with vasculature imaging from the brain to the pelvis should be considered.

CT angiography is the preferred non-invasive screening method; however, invasive angiography remains the gold standard due to superior resolution. Once the decision to treat with PCI is made, stent length enough to cover both the proximal and distal edges of a lesion should be selected to minimize the risk of intramural hematoma extension. For long lesions requiring multiple stents, one strategy to prevent intramural hematoma extension is stenting of the distal edge first, followed by the proximal edge and ending with stenting of the middle of the lesion. Placement of additional stents can be confirmed by intracoronary imaging to ensure satisfactory coverage.

Biodegradable vascular scaffolds (BVSs) may re-emerge as an alternative to metallic stents with the advantage of complete resorption over 2-3 years. This is an

TABLE 1 PCI failure rates in large case series

<table>
<thead>
<tr>
<th>Type</th>
<th>Left main</th>
<th>Multi-vessel</th>
<th>PCI as initial</th>
<th>PCI technical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 7 PA cranial view of selective left coronary artery angiography post-stenting of the left main and left anterior descending arteries. Note the lack of septal perforator branches at the distal LAD, most likely due to occlusion of the vessels after PCI.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Patients, n</th>
<th>involvement, %</th>
<th>involvement, %</th>
<th>therapy, n (%)</th>
<th>failure rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saw et al</td>
<td>2014</td>
<td>168</td>
<td><1</td>
<td>10</td>
<td>28 (16)</td>
<td>36</td>
</tr>
<tr>
<td>Tweet et al</td>
<td>2014</td>
<td>189</td>
<td>4</td>
<td>15</td>
<td>89 (47)</td>
<td>30*</td>
</tr>
<tr>
<td>Lettieri et al</td>
<td>2015</td>
<td>134</td>
<td>3</td>
<td>13.4</td>
<td>51 (38)</td>
<td>27.5</td>
</tr>
</tbody>
</table>

*Technical failure rate was calculated using SCAD-specific criteria (flow-based). By conventional criteria for failure (residual stenosis >30%), failure rate was 53%.
attractive option in SCAD, as patients are often young without atherosclerosis, and have lesions requiring multiple stents. One limitation of BVS is the observation that scaffold thrombosis is more likely in small arteries, which is where SCAD typically occurs. Despite attempts to manage our patient conservatively, the extensive multivessel involvement resulted in severe hemodynamic and electrical instability. Therefore, emergent revascularization was performed, which was successfully guided by intracoronary imaging.

4 | CONCLUSION

SCAD is an uncommon but increasingly recognized cause of chest pain and acute coronary syndrome, particularly in young women with minimal risk factors for coronary artery disease. The diagnosis often requires a high index of suspicion and the use of intracoronary imaging in addition to conventional coronary angiography. In uncomplicated cases without high-risk anatomy, a conservative approach should be attempted due to the high risk of technical failure associated with PCI. Surgical evaluation is appropriate in patients with high-risk anatomy (LM or proximal two-vessel dissection). In patients with hemodynamic instability or active ischemia, urgent revascularization is warranted. Intracoronary imaging may facilitate identification of the true lumen during PCI.

CONFLICT OF INTEREST

Nothing to report.

ORCID

Negeen Shahandeh https://orcid.org/0000-0002-7811-8063

REFERENCES

How to cite this article: Shahandeh N, Miyamoto MI, Tobis J. Left main and triple vessel dissection 2 months postpartum. Catheter Cardiovasc Interv. 2019;1–5. https://doi.org/10.1002/ccd.28046