
UC Irvine
ICS Technical Reports

Title
Performance of a dataflow computer (revised)

Permalink
https://escholarship.org/uc/item/3sc0571v

Authors
Gostelow, Kim P.
Thomas, Robert E.

Publication Date
1979-10-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3sc0571v
https://escholarship.org
http://www.cdlib.org/

Performance of a
Dataflow Computer*

by

Kim P. Costelow **
Robert E. Thomas

Technical Report #127 a

Department of information and Computer Science
University of California, Irvine

Irvine, CA 92717

October 1979

*This work was supported by NSF Grant MCS76-12460: The
UCI Dataflow Architecture Project.

**Authors appear in alphabetical order.

Copyright 1979, by Kim P. Gostelow and Robert E. Thomas.

Abst ract

Our goal is to devise a computer comprising large numbers of
cooperating processors (LSI). In doing so we reject the
sequential and memory cell semantics of the von Neumann model,
and instead adopt the asynchronous and functional semantics of
dataflow. We briefly describe the high-level dataflow
programming language Id, as well as an initial design for a
dataflow machine and the results of -detailed, deterministic
simulation experiments on a part of that machine. For example,
we show that a dataflow machine can automatically unfold the
nested loops of n-by-n matrix multiply to reduce its time
complexity from O(n^) to 0(n) so long as sufficient processors
and communication capacity is available. Similarly, quicksort
executes with average 0(n) time demanding 0(n) processors. Also
discussed are the use of processor and communication time
complexity analysis and "flow analysis", as aids in understanding
the behavior of the machine.

Index terms; dataflow, multiprocessor architecture, large-scale
integration, asynchronous execution, parallel computer,
distributed computer, concurrency, functionality, locality

I

1.0 INTRODUCTION •

The ability of LSI technology to inexpensively produce large

numbers of identical, small, yet complex devices should make possible

a general-purpose computer comprising hundreds, perhaps thousands of

asynchronously operating processors. Within such a machine each

processor accepts and performs a small task generated by the program,

produces partial results, and sends these results on to other

processors in the system. Many processors thus cooperate,

asynchronously, to complete the overall computation. A natural

consequence of such behavior should be decreased time for problem

solution as new processor modules are added to the machine. This

paper describes results of simulation experiments on an initial design

for such a machine based on the principle of dataflow.

1.1 Concurrency and the von Neumann Model

Several computers have been devised in attempts to synthesize a

single large machine from a collection of smaller processors, e.g.,

Illiac IV [10], Cm* [16], and C.mmp [39]. However, • multiprocessor

machines have riot yet achieved the ease of programming and level of

performance sought. For example, the programmer should not be

concerned with how a program is partitioned into concurrently

executable pieces nor how these pieces coordinate; nor should the

programmer have to consider the number or physical arrangement of the

processors comprising the system. Instead, a program should

automatically break apart into small pieces that are executed

asynchronously with minimum interference from one another. Several

K.p. Gostelow and R.E. Thomas Page 2

researchers [4,8,14,18] have concluded that this can be achieved only

with significant changes to the widely accepted "von Neumann model".

For the machine we have in mind, two particularly troublesome

attributes of the von Neumann model are "

1. (centralized) sequential control

2. (shared) memory cells.

Sequential, one-instruction-at-a-time control is inappropriate because

it prohibits the asynchronous behavior and distributed control we

consider essential. It also burdens the programmer with the need to

explicitly specify (or to employ an analyzer to determine) exactly

where concurrency is to occur. The second attribute, the memory cell,

presents a more subtle difficulty. A cell that is shared among

several asynchronous program modules often require^s complex

synchronization controls to ensure its orderly use. Such controls are

difficult to design into a highly distributed machine, niay be costly

in execution time, and are tedious for programmers to use.

The semantics of nearly every programming language so far

devised^ is closely related to the von Neumann model, a model we claim

to be contrary to the nature of asynchronous multiprocessing. In

contrast, we see dataflow as a more appropriate (though not

necessarily the only) basis for general-purpose, asynchronous.

^Some exceptions are VAL [1], Id [6], LUCID [7], FFP [8], LAPSE [17],
ISWIM [25], pure LISP [26], LAU [32] and SASL [37].

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

K.p. Gostelow and R.E. Thomas Page 3

computation.

1. 2 The Dataflow Model

The basic principles of dataflow semantics have been in existence

for some time [9, 14, 21, 22, 29]:

1. A dataflow operation executes when and only when all required

operands become available (asynchrony),

2. A dataflow operation is purely functional and produces n£

side-effects (functionality; no memory cells).

Operationally, these semantics are implied by the following model: A

dataflow program graph (Figure 1.1) is a directed graph where each

node (box or fork) is an operator with 1ines connecting an output port

of one operator to an input port of another, provided that no two

outputs are connected to the same input. Operators and lines may be

labeled (e.g., operator s and line a in Figure 1.1). Values are

carried by tokens which move along the lines between operators.

Execution of a program graph is "data driven" in that an operator

executes by absorbing exactly one token from each input, computing

results, and producing exactly one result token for each active

output. The function performed by each operator is indicated in the

box; a fork performs the identity function and serves only to

replicate values so that a single result may be sent (asynchronously)

to many different operators. The requirement that no two outputs can

be connected to a single input is the single-assiqnment rule, the

IK. p. Gostelow and R.E. Thomas Page 4 ^
purpose of which is to exclude races. Computation in a dataflow

program graph is determinate if the operators are determinate [3,27]. ||

By adopting dataflow semantics in place of the von Neumann

principles enumerated earlier, it is possible to realize the

asynchronous execution of programs without the need for special j|
parallel programming constructs (e.g., parbegin-parend, fork-join) or

parallel program analysis of any kind. The remainder of this paper

concerns a particular dataflow language, method of execution (Section

2), and architecture for a dataflow machine (Section 3). The results

of simulation experiments (Section 4) demonstrate the degree to which

we might actually realize that asynchrony.

Other dataflow machines have been proposed

[13, 15, 20, 23, 30, 32, 38], and some prototypes [13, 20, 32] have been

built. Our work, however, differs from each of the above in at least

one of the following three important respects: First, the underlying ^
interpretive mechanism is more asynchronous [3]; second, our

high-level dataflow programming language Id (for j[rvine dataflow)

[5,6], is more complete than other dataflow languages and has been

used to describe distributed database systems [5] and a basic

operating system as well as the smaller kinds of problems we will

discuss here. Third, there are important differences in goals. Our

goal is not just to devise, a machine that can execute programs |||
rapidly. We are also interested in how dataflow can help in solving

general system problems. For example, user protection [12] and

exception handling, facilities [28] are also being integrated into the

design.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
K. p. Gostelow and R.E, Thomas Page 5

2.0 DATAFLOW

Programs for our system are written in Id. An example of an Id

program is the expression

mmt(a,transpose(b,ra,n),^,m,n)

that utilizes the two Id procedures shown in Figure 2.1 to multiply an

£,-by-m matrix a by an m-by-n matrix b. Id programs are not executed

directly but are first compiled into dataflow program graphs which are

then executed on the machine. In this paper we do not discuss the

2compilation or execution of program graphs. Rather the discussion

and analyses that follow will be from the Id programmer's point of

view. The goal of the present section is to acquaint the reader with

Id and its execution behavior. We ask the reader's indulgence in our

claim that the principles which make matrix multiply and the various

test programs utilized in Section 4 exhibit their asynchrony extend to

other programs as well.

2. 1 Va1ues in Id

3
There are two classes of values in Id ; elementary and

^he interested reader may find the details of compilation in [4,6,19]
and an introduction to the execution of dataflow graphs in [36].

2
A third kind of value called a "stream" [6] is also defined but is

not discussed here.

K. P; Gostelow and R.E. Thomas Page 6

structured. An elementary value is an integer, real, boolean, string,

etc. arid needs no further discussion. A structured value, or

structure, is a tree where the branches from any given node are

uniquely labeled with a selector (or subscript) . Both x. and y in

Figure 2.2a are structures; Figure 2.2b shows a more complex

structure representing a 2x3 matrix in row major order. The empty

structure is denoted A.

Two functions on structures are select and append. Let the

values carried by tokens on lines x and y be the structures x and y,

respectively, from Figure 2.2a. Also, let the values carried by

tokens on lines i, j, and z be the respective values x, j, and z. >

Then select (x,i)., written x[i] in Id, outputs the value if it

exists, otherwise an error value is produced. Somewhat more complex

is append(x,j,z) which creates a new structure value identical to x

except that selector j is made to refer to value z. We emphasize that

the creation of this new structure by append does not modify the value

on line x; rather, a new (logical) copy x' of x is first made, then

the value z is associated with selector j in x', and finally the value

x' is produced as the result. Thus append (append (A, 1, x) , 2, y) gives

the structured value y shown in Figure 2. 2b.

2.2 The Matrix Multiply Program

In this subsection we consider in some detail the execution of

the previously introduced program call

mmt(a,transpose(b,m,n) ,£,m,n)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

K. p. Gostelbw and R.E. Thomas Page 7

for multiplying the two matrices a and b of dimensionality -f-by-m and

m-by-n, respectively.

Procedure transpose (Figure 2.1) comprises two nested loops, an

i-loop and a j-loop. Concentrating on the i-loop, we note that a loop

in Id is strictly an expression with inputs (the initial values, and

any values referenced but not defined within the loop i.e., b, m,

and n), and outputs (the return values). We represent this by the

diagram in Figure 2.3a. The phrase "for i from 1 ^ n" in the i-loop

is a generator that "unfolds" n copies or iterations of the loop body

(the statements between ^ and return) and sends successive values of

i to each such iteration. All such interations are independent except

when interconnected by a.so-called "new variable". In the case of the

i-loop the statement "new trans«- " induces the connection between

the successive iterations as shown in Figure 2.3b. In this fashion

the result computed by one iteration becomes an input value to. the

next. The first iteration receives the initial value of trans while

the value of new trans from the last iteration becomes the result of

the entire i-loop. Each i-loop iteration in Figure 2.3b contains a

j-loop, that is, each i-loop iteration produces inputs for and

receives a result from an entire j-loop. But all j-loops are

independent (i.e., none depends on the variable trans) and so may

compute concurrently. In essence, the rows of the transposed matrix

are being computed concurrently by the j—loops. These rows are then

gathered together by the i-loop to form the matrix in row major order.

The above analysis may be expressed concisely in time complexity

terms.^ The i-loop unfolds in time linearly proportional to n, i.e..

A brief introduction to complexity theory may be found in [11].

K. p. Gostelow and R. E. Thomas Page 8

in 0(n) time. Each j-loop instance created by the i-loop requires

0 (m) time, but all j-loop instances may execute concurrently (assuming

0(n) processors) giving procedure transpose 0(m+n) time complexity

rather than 0(mn) as would be the case on a sequential machine. A

similar analysis of procedure mmt reveals, its complexity to be

0(£+m+n) (assuming 0(£n) processors) rather than 0 (£mn) time as

required for a sequential machine. In the case of procedure mmt each

j-loop instance unfolds to create a total of £n concurrent k-loop

instances. The overall complexity of the original expression,

mmt(a ,transpose (b,m ,n) ,£,m,n) is thus 0 (£+nH-n) to multiply two

matrices.

The above analysis ignores communication costs and assumes

unbounded resources. The purpose of conducting an analysis under such

ideal conditions is simply to describe the potential concurrency in a

particular program. (Section 4, however, will again analyze the same

program but with the inclusion of communication costs and will compare

the results of that analysis with simulation results.)

Finally, we note that Id loops and procedures are very similar in

that both can give rise to independent and asynchronous computations

by creation of instances of nested loops and procedure applications.

Because of this similarity, each loop or procedure instance generated

during execution is called a logical domain. For example, procedure

I

I

K. P.: Gostelow and R.E. Thomas Page 9

transpose comprises n+2 logical domains generated at run-time -- one

for the procedure itself, one for the i-loop generated by the

procedure, and n for the n j-lodps generated by the i-lopp. Each

logical domain has a unique name, u, generated when the domain is

created. Within a loop logical domain each iteration is further

qualified with the name u.i (i^l) where i is the number of the

iteration. (Procedures always have i=l.) Logical domains may also be

broken down into smaller operations. For example, the compiler breaks

every computation into labeled operators such,as +, *, etc. to form

the nodes of a dataflow program graph (e.g.. Figure 1.1). Each loop

or procedure is then encoded by the compiler into a structure a such

that the value q:[s] is the encoding of the operator labeled s. Thus

each instance of execution of an operator, called an activity, may be

uniquely identified by an activity name of the form u.i .a.s; specifying

the operator labeled s in procedure or loop a executing in the ith

iteration of logical domain u. Activities are central . to the

operation of the machine described in the following section since

large numbers of activities can be created dynamically during dataflow

program execution.

K.p. Gostelow and R.E. Thomas Page 10

3.0 THE ARCHITECTURE

3.1 Principles

Three basic principles have guided the design presented below.

The first is concurrency achieved through distribution. This is the

most basic behavior we are trying to achieve in activity execution,

token transmission, land structure access. However, distribution

should be tempered by a second principle, locality, meaning that

activities logically close together should be executed physically

close together. We have selected the logical domain (Section 2.2) to

be the unit of localization. Each logical domain is confined to some

small sub-section of the machine since the activities within a logical

domain are more likely to communicate with one another than with

activities outside that domain. A third principle, redundancy, can

affect both concurrency and locality. For example, the memory system

may keep multiple copies of the same structure value in disjoint areas

of the machine to allow concurrent access to local copies of

information.

We wish to emphasize that the design discussed here is intended

to help discover how dataflow programs behave, and to test some ideas

for exploiting that behavior. It is not intended to be a final

design. With that in mind, we mention two important design goals that

we feel are more easily met in a dataflow system but which we have not

as yet attacked. These include:

- modularity: The machine should be constructed from only a
few different component types, regularly interconnected, but
internally these components will probably be quite complex
(e.g., a processor).

I

I

I

K. p. Gostelow and R.E. Thomas Page 1].

- reliability and fault-tolerancei Components should be
pooled, so removal of a failed component may lower speed and
capacity but not the ability to complete a computation. New
opportunity in this area is evidenced by the use of
redundant values in the memory system which may prove useful
in case a copy of data is lost through component failure.

3.2 Description of the Machine

3. 2. 1 Units of Measure -

We have experimented with various machine configurations and

5
component speeds in a detailed, deterministic simulation. The

following paragraphs describe the machine in detail according to a

standard configuration. Unless otherwise stated for any particular

experiment, each parameter assumes its standard configuration value.

6Time IS measured in terms of time units. Physical capacities, such

as storage words or queue lengths, have no physical limit in the

simulation. Although finite working storage at various points in an

actual machine can, if exceeded, lead to deadlock, we feel that work

on detailed deadlock avoidance schemes at the architecture level is

premature. (Deadlock at the Id program level can be detected at

compile-time.)

5
The simulator itself comprises a 4500 line program written in SIMULA

and runs on a PDP-10.

When necessary, for example, to determine the feasibility of a device
operating in x time units, we equate one time unit with 100
nanoseconds. All component speeds used in the experiments are
considered feasible, though no detailed design has been done.

K.p. Gostelow and R.E. Thomas Page 12

3. 2. 2 A Ring Domain ^ ,

A ring domain (Figure 3.1) comprises an interconnection of

processing elements (PE), memory controllers (MC), and memory boxes

(M). All PEs within a ring domain are connected to a pair of

shift-register token buses. The buses are connected at their ends

(points A and A' in Figure 3.1) to form a pair of counter-rotating

rings. Each ring is partitioned into as many slots as there are PEs

and each slot is either empty or holds one fixed-length token.

Physically, each token carries a <value, destination activity name>

pair, as well as a physical PE destination address (explained later).

We assume this plus other control information totals 100 bits per

token. The rings shift in unison, so each shift brings two new token

slots to the ring interface port of each PE, If the physical

destination address on the token at a PE's ring interface port matches

the PE's address, the PE removes the token from the ring replacing it

with an empty slot. A PE may fill any empty ring slot at its

interface port with an output token. For the standard configuration

we have assumed a token bus shift requires 4.0 time units, or

equivalently a maximum of one tpken in and one token out of each PE

every 2.0 time units.

The basic unit of computation is the activity. l-^Hien a result

token with its (logical) destination activity name is being produced,

the PE evaluates an assignment function that maps the logical

destination activity name onto a physical PE address. Any two PEs

intending to send a token to the same activity must use the same

assignment function. Since there is a fixed number of PEs but an

unbounded number of activities, more than one activity may be assigned

I

I

I

I

I

I

I

I

K.P. Gostelow and R.E. Thomas Page 13

to the same PE for execution. Thus each PE must accept all tokens

that are sent to it and sort those tokens into groups by activity

name. When all input tokens for an activity have arrived, the PE may

execute that activity. Tokens output by an: activity are queued in the

PE to await empty token bus slots.

To reduce communication load, structure values are not explicitly

carried by tokens but rather are kept in a memory, so a token need

only carry a pointer to the structure that it logically transmits.

(We emphasize again that this memory system is hot seen by the Id

programmer.) In the standard configuration, four PEs are connected

together and to a memory controller by a one-message-at-a-time local

bus. Each memory controller is a fairly sophisticated machine that

controls the random-access memory box (assumed to be interleaved

arrays of 32-bit words) associated with it. All memory controllers in

a ring domain are themselves interconnected by a one-message-at-a-time

global bus so that every PE has (indirect) access to any structure

value held in the machine. Although the memory of the dataflow

machine, is distributed over the memory boxes, it is organized into bne

unified address sp^ce to facilitate sharing. For example, say a PE is

to execute an activity that performs a select on structure a. The PE

must ask the memory system to do the operation by sending a request

over the local bus to the memory controller to which that PE is

attached , called the local memory controller . If a is available in

the local controller's memory box, the controller can carry out the

select request oh a and return a response to the requesting PE. If a

is not local then the local memory controller must forward the select

request to the proper distant memory controller for servicing. The

K.P. Gostelow and R.E. Thomas Page 14

distant controller then returns its response to the local controller.

Both the request and response messages traveling between memory

controllers move on the global bus. Finally, whether a was local or

distant, when the local memory controller has the result it is

returned to the PE that initiated the original request.

3. 2. 3 Inside a P& -

Figure 3.2 shows details of a PE organized as a pipelined

processor.^ Each box in the figure is a unit that performs work on

one item at a time drawn from FIFO input queue(s). Logically, tokens

enter the PE from the two token bus rings at the top of the figure

while new tokens are output to the (same) rings at the bottom. The

local memory bus connection is shown at the left.

I

Functional Operation of a PE

7
The PE architecture described here was pipelined to simplify the

simulator. The degree of concurrency appropriate within a PE has not
yet been determined.

I

I

I

I

I

I

I

I

I

I

The function of the sorter is to group tokens by activity name.

The sorter requires 4.0 time units to process each token with the aid j|
of an associative table keyed on activity names. When an activity

name is presented, the table returns a pointer to the list of tokens

already gathered for that activity (kept in a "fast" local scratch pad

memory). The tpken is then added to that list. Each token carries a

number specifying the total number of input tokens required to

complete an activity. If the newly arrived token completes the

activity, an activity item pointing to the list of input tokens is |

I

I

I

I

I

I

K.p. Gostelow and R.E. Thomas Page 15

created and sent to the code fetch box.^ Each successive box in the

figure will Include more information in the activity item until

processing is completed.

Upon receipt of an activity item with name u.i.a.s, the code

fetch box is responsible for retrieving the operation code a[s] . To

speed operation, the code fetch box employs a local cache to hold

previously fetched dataflow code. If the needed code is already

present in the cache, no time is charged, and the code is immediately

attached to the activity item which then moves to the next stage in

the PE. If the code is not present in the cache, a code structure

select request is placed in the local bus input queue and the activity

Item is held in the code fetch box until the selected item is

returned-.- (This does not prevent the code fetch box from initiating

work on the next activity item in its input queue.) Responses from

the memory system to the PE are returned over the local bus. These

responses are queued and then serviced in FIFO order by the

appropriate box within the PE. A response to a code fetch request

contains the activity's operation code and the information necessary

for the PE to qonstruct the output tokens' destination activity names.

The code fetched is also entered into the PE cache with keys d and s .

Note that the order in which acti\/ity items leave the code fetch box

is not necessarily the order in which they entdr.

After code fetch, the activity item moves to one of two boxes.

8
This description of code fetch corresponds to the simulator

implementation. Alternatively, code fetch could be initiated as soon
as the first token for an activity arrives.

K. p. Gostelow and R.E. Thomas Page Ifi

The data fetch box issues memory requests and receives memory

responses for structure operations (select and append) ; the

arithmetic/logical unit > or ALU, carries out all dataflow operations

not requiring the memory system (such as +, *, etc.). The data fetch

box operates similar to the code fetch box, sending requests and

receiving responses from the memory, except bhat there is no cache.

The time an activity item remains in the data fetch box is determined

solely by the response time of the memory to each request. On the

other hand, each ALU operation is fixed at 10 units of time.

After proceeding through either the data fetch or ALU boxes, an

activity item (with the result of the particular operation attached to

it) moves to the output box. Tokens are manufactured by the output

box at a rate sufficient to match the token bus, which in the standard

configuration is a maximum of two tokens every 4 units of time.

During this time the box must copy the result, assign a destination
Q

activity name (Section 2.2) , and map the activity name to a physical

PE address by evaluating the assignment function. The output box then

selects the token ring that gives the shortest path from the present

PE and places the token in the appropriate output queue. From there

tokens move in FIFO order into empty token slots as they appear at the

PE's ring interface port.

The Assignment Function

The assignment of activities to physical PEs is very important.

9
This is true except when a new logical domain is created. In such

cases we have assigned this work to the ALU and charge 10 units of
time.

I

I

K.p. Gostelow and R.E. Thomas Page 17

A good assignment function promotes concurrency and locality, while a

poor one can destroy machine performance. (In Section 4 we

demonstrate some results on different assignment functions.)

Concurrency is achieved by distributing the activity workload

over the PEs of the ring domain. Locality is promoted by mapping all

activities within a single logical domain onto the same physical

dpmain, defined to be the set of PEs directly attached to the same

memory controller. Thus a ring domain with 32 PEs and four PEs per

memory controller has eight physical domains. When the number of

logical domains created exceeds the number of physical domains,

several logical domains will be assigned to the same physical domain

and compete for PE resources. (The competition is actually at the

level of the activities within each logical domain.)

The following is a simple assignment function which promotes both

locality and concurrency: The jth logical domain to be created, in

time order IP, Is assigned to physical domain (j mod q) where q is the

number of physical domains (numbered 0 through q-1) in the ring

domain. Within a physical domain, activity u.i.a.s is mapped onto PE

number (s mod 4) as there are four PEs (numbered 0 through 3) per

physical domain. Since PEs select the token ring bus which provides

the shortest distance path for each output token, tokens in adjacent

physical domains do not intermingle, save for the passing of arguments

and returning of results. Figure 3.3 represents the concurrency in

IQ
This implies the existence of a centralized memory cell or other

resource to keep track of the latest value of j. We chose this method
for ease of simulator programming though we envision using a
distributed method (with similiar effect) in an actual machine.

K.p. Gostelow and R.E. Thomas Page 18

execution and in token transmission that can be achieved when physical

domains are active at the same time.

3.2.4 Inside £ Memory Controller -

To discuss the operation of a memory controller, we must first

discuss data representation. Program code is a special case of

structures so the following covers both data and program

representation.

Representation of Structures in Memory

Each level of a structured value v may be represented in the

system in either vector or 2-3 tree form, each of which implies its

own space requirements and time complexity for select and append

operations. Table I gives these requirements for a structure with n

selectors at a given level. The contiguous vector representation

allows for quick access and is essentially the technique used for

one-dimensional arrays in FORTRAN, ALGOL, and other von Neumann jjj
languages. Select is straightforward and requires only constant time.

However, since dataflow values are never modified, append in general

requires that the vector first be copied^^ and the new value inserted

at the correct position to create the result. An important exception

occurs when there is only one pointer referencing v (which can be

determined using a reference count or reference weight [35] scheme).

11
Only the "top level" of the original structure need be copied in an

append operation. Sub-structures, if any, need not be physically
copied as shown in [14,19].

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

; K. Po GosteloW and R.E. Thomas Page 19

Here the input value u will no longer be used after the append anyway,

so y can be updated in place to give the result directly. In this

case append requiresf only constant time (assuming sufficient

contiguous space is available for the new value if a new selector is

being appended). An alternative representation for structures is a

2^-^ tree which requires 0 (log n) time for append and select as

discussed in [19,33].

The standard configuration uses vector representation for program

code. Vector representation is also used for each input data

structure until the first append, at which point it is automatically

converted to 2-3 tree format. The structure then remains in 2-3 tree

form in anticipation of further appends. However, in many algorithms

the automatic conversion on append is best overridden to reduce the

time complexity of subsequent structure accesses. For example, in

procedure mmt (Figure 2. 1) only one pointer to a given row of the

result matrix exists at any given time during its formation. Thus if

enough contiguous space is allocated^^ when computation of a row

begins, then each append can be done in constant time resulting in a

matrix in vector format. Hence, ignoring conflicts, memory access

heed not increase the time complexity of matrix multiply.

The Memory Cache System

To increase concurrency and locality we. have devised a cache

system (independent of the PE cache) wherein each memory controller

acts as a cache to the rest of the memory system. Assume that a

12
This is analogous to dinam.ic allocation of vectors in ALGOL and

could be specified, by the programmer or perhaps by compiler analysis.

K. p. Gostelow and R.E. Thomas Page 20

memory controller receives a select(a,i) request from a PE and that a

is not local. , The local controller then requests the distant
V

controller to send a copy of the top level of structure oe to the local

controller, rather than have the distant controller do the select.

When the copy is received by the local controller, it makes an entry

with key cx in an associative table which points to where the copy a'

of a is locally held. Any subsequent operations on a can then be

carried out on a' independent of those carried out on a. (Recall that

dataflow structures are never modified.) Also, the internal

representations of the structure at a and at a' need not be the same.

Functional Operation of £ Memory Controller

Figure 3.4 shows a detailed view of a memory controller and

associated memory box. The transmission of an entire level of a

structure resulting from a copy request can require significant global

bus time. For this reason, and to make sender-receiver coordination

easier, there is a separate copy processor and memory port provided

for copy data transmissions. Thus when a distant memory controller's

request processor services a copy request, it gives the request to the

copy processor which then transmits the structure over the global bus

to the copy processor at the local controller. In the standard

configuration, the sending copy processor transmits only the leaves of

2-3 trees which are then converted back to 2-3 format by the receiving

copy processor. Structures in vector format are transmitted and

stored without conversion.

The time required by a memory controller to process a request

depends upon several factors including data representation, memory

I
j K. p. Gostelow and R.E. Thomas Page 21

speed, and memory controller speed. In general, the simulator charges

m 6units of overhead time for each request message, plus the time to do
the actual operation. Select and append require the number of

qperations specified in Table I multiplied by 1.5 time units per word.

Overhead for a minimal amount of storage management activity' such as

reference weight manipulation is included in this figure. More

extensive "storage reclamation" is assumed to be accomplished during

, memory controller "idle periods" which typically range from 30 to 60%

with the optimum number of processors. Each select and append request

message is four words and requires 0i4 units of transmission time per

word. Structure copy bus transmission time is as specified in Table I

mul tipl led by , 0, 4 time units per word.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

4.0 MACHINE PERFORMANCE ,

A full scale machine will contain a large number of ring domains

(Section 3). although we have limited this initial study to just one.

Our intent was 'to answer some simple questions: Does the asynchrony

of the unfolding mechanism actually provide for increased speed of

execution as more processors are added to the pool? And to what

extent do our working hypotheses — the anticipated relationships

between locality, distribution, concurrency, and redundancy —

actually operate?

The experiments involved running dataflow programs on a simulated

machine which! monitored the programs' executions. All programs'-^ were

13- - •
! The programs used were matrix multiply (procedure mmt) , optimal
binary search tree generation, Gauss-Seidel linear equation solver,
Gaussian elimination, recursive quicksort, and fast Fourier transform
(both an iterative and a recursive version)*

r

K. P. Gostelow and R.E. Thomas Paqe 2?

written in Id and then machine compiled and loaded into the simulator

for execution. Many experiments were repeated on more than one type

of dataflow program, though due to cost not all experiments could be

repeated on all programs. Also, only the mmt procedure part (Figure

2.1) of matrix multiply was used in the matrix multiply experiments

presented here. (The presence of procedure transpose in matrix

multiply has no effect on the overall time complexity since transpose |||
requires only 0 (m+n) time. This prediction was confirmed by test

cases as was the physical distribution of the transposed matrix to

ensure satisfaction of procedure mmt*s input assumptions.) Finally,

we have concentrated in this paper on the matrix multiply program for

two reasons; it places a heavy asynchronous load on the machine, and

it is easy to analyze.

4.1 Speedup Ex per iments

The graphs of Figure 4.1 are speedup graphs. Each curve plots

the execution time (y-axis) of a particular dataflow program against

the number of PEs (x-axis) in the standard configuration. (Although

experiments were conducted by varying the number of PEs in a ring

domain, we anticipate an actual machine would have fixed-size ring ||
domains.) The' percentage efficiency of ALU utilization is indicated

on the graphs at each experimental point, where

I

I

I

I

I

I

I

I

I

I

I

I

I
cummulative actual busy time of all ALUs I

efficiency = * 100 •
cummulative potential busy time of all ALUs

i.e., efficiency is directly related to the mean ALU duty cycle,
I

I

I

K. p. Gostelow and R.E. Thomas Page 23

Figure 4.1a shows, for example, how procedure mmt performs on two 7x7

matrices when run on machines with PE resources varying from 1 to 120

PEs. This curve demonstrates two important points:

1. For even this small (though highly asynchronous) computation,
a significant number of PE resources can be usefully
employed. For example, execution time was reduced by a
factor of almost 14 (43468 time units for a system with 1 PE
versus 3123 units for 60 PEs).

2. Small increments in the size of the domain (number of PEs)
are effective; in fact, they are very effective when scarce,
while increments beyond the optimum result in very slow
performance fall-off.

Such speedup graphs are produced without changing the dataflow

programs — only a single parameter is altered to tell the simulator

the number of PEs available. In the Introduction we noted such

behavior would be desirable because it demonstrates independence of

physical processor configuration (both size and shape) from the

programs executed. Moreover, even the small degree of, performance

fall-off that was present can be blamed on an unsophisticated

assignment function that forces computations to be distributed over

the ring domain even when such distribution is inappropriate. The

result is under-utilized PEs and increased communication delays since

there is an increase in mean token distance and a decrease in the

probability that any given structure resides in a monory local to the

PE need ing it.

The other: curves in Figure 4.1 show similar. If not as dramatic,

results for other programs except for the iterative fast Fourier
1 • '

transform (FFT) , Figure 4. le, which did not do well at all. . Although

the behavior of iterative FFT is not completely understood, it appears

I
K.P. Gostelow and R.E. Thomas Page 24 ^

to be a combination of several factors. These factors include

scheduling anomalies and unwanted synchronization imposed by the |
append operation in constructing structured values.Recursive FFT

performs well because it uses a "divide-and-conquer" method, and

because the size of the data structures progressively decreases at

each recursive call. Under dataflow, pairs of divide—and—conquer

recursive calls are done asynchronously (i.e., a new pair of logical ||
domains is created). This means that recursion is often faster than

looping. H

4. 2 Complexity Experiments

I

I

I

I
Recall from the analysis of matrix multiply in Section 2.2 that

the processor time complexity (ignoring communication complexity) was |
0 (r) for procedure mmt on two r-by-r matrices. To experimentally

determine execution time complexity, we performed the speedup |
experiment for all problem sizes from r=2 through r=8 . The results

appear in Figure 4.2 where each point is the minimum execution time

for each problem size; the number of PEs used to achieve that minimum

appears adjacent to each point. The bottom curve represents the

standard configuration and shows that execution time was indeed 0(r). |
In addition, when processor efficiency (ALU duty cycle) is accounted

for, processor utilization is O(r^) as predicted by the analysis. To

explain the other curves in Figure 4.2 we must first discuss time

I

I

I

14_ ...In some programs, this synchronization can be removed by using a new
pipelined or stream append operation. Although we have not tested the
method, we expect it to significantly improve performance.

I

I

I

I

K. p. Gostelbw and R.E. Thomas Page 25

complexity a bit more.

Processors are just one of the resources being demanded by a

program. We must also consider other resources —memory controllers,

the global memory bus, and the token bus — and their effect on

execution time complexity. Consider the memory controllers. Exactly

one copy of each input matrix exists initially, the rows of which are

distributed, over the available memory boxes. (Matrix multiply

produces a result in this configuration.) The analysis in Section 2

assumed that the number of PEs available, and thus memory controllers,

is O(r^) while the number of input rows is 0(r). Thus there are

plenty of controllers and memory boxes. Fiowever, procedure mmt

requires access to all elements of each row r times since each row

participates in r inner products. So each of as many as 2r memory

controllers (the number of rows) sees O(r^) accesses, giving a memory

controller time complexity of O(r^). (Note that it is irrelevant to

the memory controller complexity analysis whether a row is copied from

a distant to a local memory controller or not, even though such

copying is often highly relevant to actual elapsed time as will be

shown in Section 4^.4.)

The global memory bus experiences an even heavier demand than the

memory controllers. The O(r^) accesses to each of the possible 2r

memory controllers must traverse the single global bus. Thus the

global memory bus time complexity is O(r^). (This might not be the

case were there more than one ring domain^)

Finally we consider the bi-directional shift register token bus

with its intensive intra-logical domain communication. To determine

K. p. Gostelow and R.E. Thomas Page

the token bus time complexity, note that both the number of logical

domains and the physical domains to which they are assigned is O(r^),

since for these experiments it is assumed that 0(r2) PEs are

available. Since the intra-logical domain communication on the bus is

concurrent (Figure 3.3), then these domains are non-interfering and

have essentially constant token communication time within each domain.

(This agrees with experimental results where the overall mean token

communication time was always between 4.0 and 8.0 units when the

standard assignment function was used.) However, all r^ inner product

domains (instances of k-loops) were originally produced from a single

initial domain (the outer i-loop). This means that a chain of tokens

must have passed from this initial domain to each of the r^ inner

product logical domains distributed along the bus. But the length of

the bus is directly proportional to the number of processors — O(r^).

Thus the length of the longest token path from the initial logical

domain to the last of the r^ inner product logical domains is O(r^) —

the token bus time complexity.

By the above analysis the global memory bus is the limiting

resource and constrains performance to O(r^). Nevertheless, the

bottom curve in Figure 4.2 is (almost) linear because the constants in

the global memory bus time complexity term do not allow it to become

dominant when r£8 . For r>8 the above analysis predicts that the

apparently straight line will eventually become a cubic. Due to

constraints' in the simulator on the PDP-10 we were not able to go

beyond r=8 ; but to verify the expected behavior, we instead

unbalanced the machine and lowered the memory system speed by the J
factors indicated in the other two plots in Figure 4.2 . Lowering

I

I

I

I

K. p. Gostelow and R. E. Thomas Page 27

memory system speed increases the constants in the global bus and

memory controller time complexity terms, causing the machine to reach

more quickly the predicted execution time complexity of ©(r^).

Another example of a time complexity experiment is Figure 4.3a

which shows measured execution time for both the recursive and

iterative versions of FFT. Processing time complexity analyses for

thesei two programs give 0(n) and 0(n log n) respectively. These

results are borne out by the experimental curves. On a sequential

machine both times are d(n log n) . Figure 4.3b shows time complexity

graphs for a Gaussian elimination algorithm to solve simultaneous

linear equations. The time complexity for a single processor is O(n^)

while the processing time complexity for the dataflow system is OCn'^)

as demonstrated by the experimental results. Similarly, recursive

quicksort has an average time complexity of 0(n) on the ' dataflow

machine as shown in Figure 4,3c ; on a sequential machine quicksort

has 0{n log n) average time complexity.

Time complexity analysis is a useful tool in understanding

dataflow machine behavior and in aiding selection among design

alternatives. Overall execution time complexity has been shown to

include not only processing complexity but also token bus, memory bus,

and memory controller time complexities which together represent a

"communication time complexity factor" not explicitly present in

algorithmic analysis on standard von Neumann systems. However, it is

probable that communication time complexity ,wi11 be the dominant term

in future systems and algorithmic design, a conclusion similar to that

reached by Sutherland & Mead in their speculative article [31].

K. p. Gostelow and R. E. Thomas Page 28

4.3 Flow Analysis

A major difficulty in evaluating a system is devising adequate

measures. Section 4.2 has shown that time complexity can be a useful

tool for understanding system behavior. The usual measures such as

queue lengths, time to execute a program, and the duty cycle of

various units are also helpful. However, flow analysis^^ was most

useful in determining resource balance and the location of bottlenecks

(imbalances) .

When flow analysis is applied to the actions related to the

execution of activities, it is referred to as activity flow analysis.

Let the term item refer to both a token and to an activity item, and

let the block diagram of a PE (Figure 3.2) represent a sequence of

stations through which items must pass (each queue is also interpreted

as a station distinct from the station it serves). Activity flow

analysis consists of measuring the mean time spent by all items at

each station, and interpreting this time as the time spent at a

station by some hypothetical "mean" item. For instance. Table II

shows an activity flow analysis for two runs of procedure mmt at r=7

where column (a) is the result for the standard configuration. The

mean token time in the sorter queue over all PEs was measured as 0.81

units. Thus we say that the hypothetical token spent 0.81 time units

waiting in the sorter queue.. The other measures are taken in a

similiar manner, except that no single activity item passed through

both a data fetch box and an ALU box. Here we weight the means and

15
Flow analysis is a generalization of "longest path" analysis

discussed in [34].

I
K, p. Gostelow and R.E. Thomas Page 29

say the hypothetical mean item spent (d/n)*td of its time in a data

fetch box (where d of the n total activities passed through a data

fetch box with measured mean time td) , and ((n-d)/n) *tALU of its time

in an ALU box« For example, in the case of Table Ila 15.6% of the

activity items passed through data fetch boxes with mean service time

of 21.79 units; this yields a data fetch time of 3.4 units for the

hypothetical mean item. The sum of the times for all boxes and queues

listed^ is the cycle time of a hypothetical activity. Table lib shows

a flow analysis for the same program but on a machine differing from

the standard configuration only in the speeds of the local and global

buses. These analyses pinpoint the resulting system imbalances.

Memory request flow analysis is concerned with the memory system

portion of activity flow analysis, i.e., the time a hypothetical mean

memory request spends in the memory system until its originating PE

receives and processes the corresponding hypothetical response. The

fact that not all messages require the global bus or a distant memory

controller is accounted for by weighting the measured times by the

fraction of reque'^ts that did access the global bus and some distant

memory controller. Table III presents the memory request flow

analyses for the same runs that produced the respective activity flow

analyses of Table II. Again the imbalances in resources are

immediately evident.

We consider the weighted means given by flow analysis to be more

indicative of overall performance for ^n asynchronous (dataflow)

machine than the corresponding raw means. Flow analysis factors out

"waiting time" such asthe time between the arrival of the first token

I
K. p. Gostelow and R.E. Thomas Page 30

I
of an activity and the last token. Although waiting time is important

in considering buffer requirements, it appears otherwise to have |
little effect on average machine performance. For comparison with a

more traditional measure. Table IV shows the duty cycles of the

various units for the same runs that produced Tables II and III.

4.4 Locality. Concurrency, Pi stribution and Redundancy

Aprimary effect we wish to achieve is concurrency of execution |
induced by distributing (more or less) independent activities over

many processors. But activities should not be distributed

ihdiscriminantly — program locality should be considered. Locality

is evidenced in token and memory communication distances and is

largely determined by the assignment function used.

Figure 4.4 shows a speedup curve for procedure mmt with r=7

utilizing four different assignment functions called A, B, C, and D.

Functions A, B, and C promote token communication locality (as

illustrated in Figure 3.3) by mapping onto physi^cal domain d the jth

logical domain that is created according to the formula |

d = j mod q

where q is the number of physical domains in the machine. This

confines all activities in logical domain u to physical domain d,

regardless of how large that logical domain might be.

Assignment function A (described previously) maps activity

u.i.a.s onto PE p wi thin physical domain d by the formula

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

K„P. Gostelow and R.E. Thomas Page 31

p = s mod 4

Consider what happens when recursive procedures or nested loops are

present in a program. In assignment function distinct initiations

of the same procedure or loop (which are assigned to the the same

physical domain) are assigned identically within that physical domain.

The same PE then executes the same operators within those logical

domains resulting in very effective use of the PE's code fetch cache.

Assignment function B is used for the standard configuration;

p = (s+ j) mod 4

and is similar to A except that distinct initiations of the same

procedure or loop assigned to the same physical domain do not

necessarily have their activities assigned identically within that

physical domain. The result is a "wider" distribution of activities,

and a lessening in cache effectiveness, i.e., reduced locality. As

evidence of locality reduction in the case of procedure mmt with 60

PEs, the mean code fetch hit ratio in the PE cache was reduced from

0.93 for assignment function A to 0.82 for assignment function B.

A third assignment function C distributes activities within a

physical domain to a greater extent than either functions A or B by

including the term i in mapping u.i.a.s to PE p within physical domain

d ;

p = (s+ j+ i) mod 4

The fourth assignment function D is present for the purpose of

comparing assignment functions A through C with a function which

K. Po Gostelow and R.E. Thomas Page 32

distributes activites without regard to physical domain. Function D

is

p = (s+j) mod (q*4)

where (q*4) is the number of PEs in a ring domain and the PEs are

numbered 0 through q*4-l.

Another view of the comparison among the four assignment

functions is offered by the activity flow analyses of Table V taken at

the 60 PE point from each of curves A-D (Figure 4.4). Note the effect

of locality on code fetch, output, and token bus times. If locality

were not present, then average token bus time would be half way around

that ring bus which gives the shortest path to the destination, or

0.5 X (0.5 X :60) X 4. 0 time units = 60 time units. (This demonstrates

that even assignment function Dpromotes considera|ble locality; this
is due to favorable statement numbering by the compiler.) Performance

differences for the locality-exploiting assignment functions A-C are

slight compared to the clear performance loss of assignment function

D. Although reasons for performance differences among A-C are

interesting to hypothesize, we have not yet conducted sufficient

experiments to explain the differences in detail.

The following experiments concern the structure copy mechanism

discussed in Section 3.2.4, whereby a local controller acts as a cache

to the other memory controllers. Redundancy of data provides for

improved performance potential in two respects. First, copies of data

in disjoint memories allow concurrent access where not previously

possible. Second, congestion may be reduced because only one request

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

K. p. Gostelow and R.E. Thomas Page 33
6 ,

and response (rather than many) have required the global bus and have

suffered the various , queueing and processing delays. Figure 4.5

demonstrates how data redundancy affects execution behavior for the

case of procedure mmt. Here we have included the three time

complexity curves from Figure 4.2 for comparison with a system

differing from the standard configuration only in that the structure

copying mechanism has been inhibited. That is, all requests for

select and append on non-local structures are forwarded to the proper

distant controller for execution.

5.0 CONCLUSIONS

Our eventual goal is to design a system that exploits the full

potential of LSI technology. To achieve this, we have adopted the

semantics ojE dataflow as the basis for a machine and programming

language since it allows us to avoid many of the problems that

confront current multiprocessor systems.

This paper has shown the results of experiments on a simulated

version of a particular architecture executing programs written in a

high-level dataflow language. Our purpose in experimenting with this

machine was not to show that it was fast in any absolute sense, but

rather to answer some basic questions about dataflow and its

feasibility as the basis of a machine. In particular, we demonstrated

that the system can generate large numbers, of activities, and that the

independence of these activities allowed for increased execution speed

as additional processors were made available to the system,. We

verified several expectations concerning locality, distribution, and

K, P, Gostelow and R.E, Thomas , Page 34

redundancy, and their effects on the concurrency achieved in the

machine. We also confirmed our analyses of program time complexity

and concluded that communication time complexity is at least as

important as processor time complexity. In general, we feel

complexity analysis is a useful tool for designers of such systems as

is flow analysis for uncovering bottlenecks and resource imbalances.

Of course, much work remains to be done. In particular, we plan

to revise several aspects of our initial design (e.g., the busing

systems) and to extend the machine from one to many ring domains.

Also planned is further research into the assignment and scheduling of ||||
activities and determination of the proper size or "grain" of an

activity, aspects which are certain to have significant impact on

machine performance. Another area scheduled for investigation is the

incorporation of streams to avoid the unnecessary synchronization of

dataflow structures.

In summary, the results appear encouraging. The highly

asynchronous behavior we hoped to observe was indeed found in many

programs to a degree suggesting that dataflow may be one way to

utilize the power apparent in LSI technology, while also giving the

programmer a clean and useful semantic basis [5,12].

ACKNOWLEDGEMENTS

I

I

I

I

I

I

I

I

I

I

I

I

I

I
We would like to acknowledge that part of the work (reported ||

elsewhere) of Arvind and Wi1 Plouffe on the design of Id, the base

language, and the unfolding mechanism. We also acknowledge the

excellent PDP-10 SIMULA system implemented by the Swedish National.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

K. p. Goste.low and R.E. Thomas Page 35

Defense Research institute. We would like to thank Shirley Rasmussen

for typing the manuscript, and the UCI Computing Facility for

providing computer support.

a fork

Figure 1.1

An example dataflow graph

Page 36

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

procedute transpose (b, m, n)
(initial trans 4- A
for i from 1 to n do

new trans 4- append(trans,i,(
initial row 4- A
for j from 1 to m do

new row 4* append (row, j ,b [j ,i])
return row))

return trans) ;

procedure mmt (a, bt, I, m, n)
(initial c 4- A
for i from 1 ^ t ^

rowa 4- a[i] ;
new c 4rappend(c,i,(

initial rowc 4- A

Page 37

for 3 from 1 to n do
colb 4r bFTj] ;
new rowc 4- append (rowc, j , (.

initial innerprod 4-0
for k from 1 ^ m do

new innerprod 4- innerprod + rowa [k] *colb[k)
return innerprod))

return rowc))
return c)

Figure 2.1

The call mmt(a, transpose(b,m,n),£,m,n)
is the product of the £-by-m matrix a

and the m-by-n matrix b.

r
12 3

i 11
1X

X

(a)

I I

i

I

~1 1
2 3

I I

^2 ^3

X. ^2 ^3

12 3

I I I

(b)

Figure 2.2

Examples of structured values

Page 38

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

INITIAL trans-A

fe em n

INITIAL trans

1
i-loop

RETURN trans

Figure 2.3a

A loop is an expression

'lb m i" 2 b m • • a i'n b m

j-

body body

of of

i- loop i-loop

ra • e '

i-loop

Page 39

RETURN trans

Figure 2.3b

A loop unfolds and produces many iterations, i.e.,
instances of its body, which might execute concurrently

physical domain d physical domain d 1

PE, PE PE

token buses

PE o e

locol bus

giobol bus

Figure 3.1

A ring domain

M e o. o.

Page 40

I

I

I

I

I

I

I

I

I

I

1

I

I

I

I

I

I

I

I

I

I

I

I

I

I

input to

output
from

locol bus

local
bus

queue

(requests)

input from
token bus

SORTER

CODE FETCH

TqT
—r

-f-
mem.

response
queue

DATA FETCH

PE

OUTPUT

output to
token bus

Figure 3.2

A processing element (PE)

a physical domain

The pipelining of
tokens within

a physical dotnoin

The counter—

rotating token
ring buses

Figure 3.3

Physical domains operating concurrently

Page 41

REQUEST

PROCESSOR

memory

controller

local bus

local bus
queue

(responses)

COPY

PROCESSOR

global bus

memory

box

Figure 3.4

A memory controller and
attached memory box

Page 42

I

I

I

I

I

I

I

I

I

33_27 o, 19 13 rtlO %

0 20 40 60 80 100 120

PEs

Figure 4.1a

Matrix multiply (7x7)

The efficiency of ALU utilization appears
at each experimental point.

Page 43

99%

Figure 4.1b

Recursive quicksort (30 items)

The efficiency of ALU utilization appears
at each experimental point.

Page 44

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

100

80

« 60w

o

K

UJ

40

20

0

>93%

10 15

I X

20 25

PE®

X X

30 35 40

Figure 4.Ic

Gaussian elimination (10x10)

The efficiency of ALU utilization appears
at each experimental point.

Page 45

100 r

O 40

Figure 4.Id

Recursive FFT (32 point)

The efficiency of ALU utilization appears
at each experimental point.

Page 46

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

no r

80

Figure 4.le

Iterative FFT (32 pointj-

The efficiency of ALU utilization appears
at each experimental point.

Page 47

lO

O

8r

6

ijJ
4

0 _L

3 4 5
PROBLEM SIZE

Page 48

120

8

Figure 4.2

Execution time complexity curves for matrix multiply.
Each point plots the minimum execution time
for a given problem size, where the number of PEs used
to achieve that minimum appears adjacent to each point.
The ramily of curves shows that as memory speed is
slowed, communication time complexity effects begin to
dominate.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

A Iterative FFT

o Recursive FFT

8 12 16 20

PROBLEM SIZE

Page 49

Figure 4.3a

Execution time complexity curves for recursive and iterative
FFT: 0(n) and 0(n log n) with optimal number of PEs,
respectively, while both are 0(n log n) on a sequential
machine. The total number of PEs used appears adjacent to
each point.

a One PE

o Optimal number

of PEs

2 4 6 8

PROBLEM SIZE

Page 50

Figure 4.3b

Execution time complexity curves for Gaussian elimination;
the curve for one processor is OCn^) and is similar to
what would be achieved on a sequential machine, while the
dataflow machine gives 0(n2). The total number of PEs
used appears adjacent to each point.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

80

« 60
O

o One PE

o Optimal number of PEs

15 20 25 30
PROBLEM SIZE

Page 51

35 40

Figure 4.3c

Execution time complexity curve for recursive quicksort: the
average behavior is 0(n) on the dataflow machine with

® sequential machine,total number of PEs used appears adjacent to each point.

L. 1processor
(oil times equal)

10 20 30 40
X

50

PEs

Page 52

X X X J

60 70 80 90 100

Figure 4.4

Speedup curves for 7x7 matrix multiply under four different
assignment functions. Functions A-C encourage locality while
D does not.

I

I

I

I

I

I

I

I

I

I

8

6

lO

O

uj 4
S

4-Without structure
redundancy

Oi o. • - With redundancy

J. X X

2 3 4 5 6

PROBLEM SIZE

Page 53

140

X

8

Figure 4.5

curves of Figure 4.2 comparedObtained from a system without reSSSant
oonoSrr^noy data aids locality and

Page 54

Representation

Time Space

select append copy (words)

vector 1 1 or n n n

2-3 tree log n 2 log n 2n
(leaves
only)

8n

TABLE I

Structure representations
and their assigned costs

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Page 55

• (b)
(a) memory buses

standard @0.27 speed of
station configuration standard configuration

-

sorter queue .81 .53

sorter 4.00 4.00

ALU' queue 3.34 2.20

ALU 8.44 8.44 .

code fetch* 3.15 16.67

data fetch* 3.40 25.72

output* , 3.80 3.35

token bus 5.58 5.56

mean activity
cycle time 32.51 66.47

*

Includes box and associated queues

TABLE il

Activity flow analyses for

7x7 matrix multiply using 60 PEs

(a) (b)
standard. memory buses

station configuration @0.27 speed

local bus queue* .58 55.77

local bus* 3.20, 12.00

local request
4.88 2.62processor queue

local request
processor 6.88 6.61 ,

'global time** 2.14 8.00

memory response
.1.98queue (in PE) 1.82

mean memory request
86.97cycle time 19.49

Sum of request (from PE) and response (from memory

controller), time

**Mean cycle time of all inter-memory controller

messages proportioned by fraction Of such messages
out of aril memory messages ''

TABLE III

Memory request flow analyses
for 7x7 matrix multiply using 60 PEs

Page 56

(b)

(a) memory buses
standard @0.27 speed of

unit configuration. staridard configuration

sorter* .39 .28

ALU* .44 .32

memory
.35controller* .47

local bus* .20 .58

global bus .48 .88

token bus .29 . 21

*mean duty cycle

TABLE IV

Duty cycles for 7x7 matrix
multiply using 60 PEs

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

sorter queue
sorter

ALU queue '
ALU

code fetch*
data fetch*
output*
token bus

• standard

configuration
B

Page 57

.90 .81 .68 .22

4.00 4.00 4 .00 4.00

5.75 3.34 3.53 .88

8.44 8.44 8.44 8.44

1.23 3.15 5.36 2.54,

2.86 3.40 3.51 2 .45

3.85 3.80 5.86 23.94

5.16 5.58, 6.54 19.11

mean activity
cycle time 32.20 32.51 37.93 61.57

Includes box and associated queues

TABLE V

Activity flow analyses for run using 60 PEs from
each of curves A, B, C, D (Figure 4.4)

Page 5 8

REFERENCES

1. Ackerman^ W.B, and J.B. Dennis, "VAL—a value-oriented
algorithmic language," Preliminary Reference Manual,
Laboratory for Computer Science, MIT, Cambridge, MA, June
1979.

2. A. V. Aho, J. E, Hopcroft, and J.D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, MA,

3. Arvind, and K.P. Gostelow, "Some relationships between
asynchronous interpreters of a dataflow language," Formal
Description of Programming Languages, E.J, Neuhold, Ed.,
North-Holland, NY*]! 1977, pp. 849-853.

4. , "A computer capable of exchanging processing elements
for time," Information Processing 77, B. Gilchrist, Ed.,
North-Holland, NY, 1977.

5. Arvind, K.P. Gostelow, and W.E. Plouffe, "Indeterminacy,
monitors, and dataflow," Proc. Sixth ACM Symp. on Operating
Systems Principles, Nov. 1977, pp. 159-169.

6. Arvind, K.P. Gostelow, and W.E. Plouffe, "An asynchronous
programming language and computing machine," TR. 114A,
Dept. of Inf . and Comp. Science, Univ. of Ca., Irvine, CA,
Sept. 1978.

7. E.A. Ashcroft, and W.W. Wadge, "LUCID - a formal system for
writing and proving programs," SIAM J. Comp.,
5, 3 (Sept. 1976) , pp. 336-354.

8. J. Backus, "Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs," CAGM
21, 8 (Aug. 1978), pp^ 613-641.

9. A. Bahrs, "Operation patterns: an extensible model of an
extensible language," Proc. International Symposium on
Theoretical Programming, Lecture Notes in Computer Science 5,
Springer-Verlag, NY, 1574, pp. 217-246.

10. G. H. Barnes, R.M. Brown, M. Kato, D. J. Kuck, D. L. Slbtnick,
and R.A. Stgkes, "The ILLIAC IV computer," IEEE Transactions
on Computers, C-17, 8 (Aug. 1968), pp. 746-757.

11. J.L. Bentley, "An introduction to algorithm design,"
Computer, February 1979, pp. 66-78.

12. L. Bic, "Protection and security in a dataflow system,"
TR. 126, (Ph.D. dissertation) Dept. of Inf. and
Comp. Science, ;Univ. of Ca., Irvine, CA, Oct. 1978..

Page 59

13. A.L. Davis, "The architecture and system methodology of
DDMl: a recursively structured data driven machine,"
Proc. Fifth Symposium on Computer Architecture, April 1978,
pp. 210-215.

14. J.B. Dennis, "First version of a data flow procedure
language," Lecture Notes ^ Computer Sc ience, 19,
Springer-Verlag, NY, 1974, pp. 362-376.

15. j.B. Dennis, and D. Misunas, "A preliminary architecture for
a basic data flow processor," Proc . Thi rd Sym pos i urn son
Computer Architecture, Dec. 1974, pp. 126-132.

16. S.H. Fuller , . D. P. Siewiorek, and R.j; Swan, "Computer
Modules: an architecture for large digital modules," AFIPS
Conf. Proc., vol. 46 (1977), pp. 637-643.

17. J.W. Glauert., "A single assignment language for data flow
computing," M.S. Thesis, Department of Computer Science,
University of Manchester, January 1978.

18. V.M. Glushokov, M.B. Ignatyev, V.A. Myasnikov, and
V.A. Torgashev, "Recursive machines and computing
technology," Information Processing . T4, v61i 1,
J.L. Rosenfeldj Ed., North-Holland, NY, 1974, pp. 65-70..

19. K.P. Gostelpw, and R. E. Thomas, "A view of dataflow,'' AFIPS
Conf. Proc.!, vol. 48 (June 1979), pp. 629-636.

20. D. Johnson, et al., "Automatic partitioning of programs in
multiprocessor systems," CCM PC ON/8 0, San Francisco
(Feb. 25-28, 1980), (to appear).

21. R.M. Karp, and R.E. Miller, "Properties of a model for
parallel computations: determinacy, termination, queuing,
SIAM J. Appl. Ma th., 14, 6 (November 1966), pp. 1390-1411.

22. R.M. Keller, "Parallel program schemata and maximal
parallelism II; construction of closures," JACM 20, 4
(Oct. 1973), pp. 696-710.

23. R.M. Keller, G. Lindstrom, and S. Patil, "A loosely-coupled
applicative multi-processing system," AFIPS Conf. Proc.,
vol. 48 (June 1979), pp. 613-622.

24. P.R. Kosinski, "A data flow language for operating systems
programming," ACM SIGPLAN Notices 8, 9 (Sept. 1973),
pp. 89-94.

25. P.J. Landin, "The next 700 programming languages," CACM, 9, 3
(March 1966), pp. 157-166.

26. J. McCarthy, "Recursive functions of symbolic expressions and
their computation by machine. Part I", CACM 3, 4 (Apr. 1960),
pp. 184-195.

Page 60

28. W. Plouffe, "Exception handling and recovery in a dataflow
system," Ph.D. Dissertation, Dept. of Inf. and Comp, Science,
Univ. of Ca., Irvine, CA (in preparation).

TR-64, Dept. of EE, Project MAC, MIT, Sept. 1969.

30. J.E. Rumbaugh, "A dataflow multiprocessor," IEEE Transactions
on Computers, C-26, 2 (Feb. 1977), pp. 138-146.

I

•27. S.S. Patil, "Closure properties of interconnections ot
determinate systems," Record of the Project MAC Conf. on
Concurrent Systems and Parallel Computations, June 1970, •
pp. 107-116. *

I

29. J.E. Rodriguez, "A graph model for parallel computations," I
TD—KZl Donh _ nf RP! - Prnnpr-h MAC. MTT. Sent. 1969. ®

I
31. I.E. Sutherland, and C.A. Mead, "Micro-electronics and

computer science," Scientific American, 237, 3 (Sept. 1977), •
pp. 210-228. •

32. J.C. Syre, D. Comte, and N. Hifdi, "Pipelining, parallelism
and asynchronism in the LAU sytem," Proc. 1977 International
Conf. on Pa rallei Processing, Aug. 1977, pp. 87-92.

33. R.E. Thomas, "A comparison of methods for implementing I
dataflow structures," Dataflow Note '35, Dept. of Inf. and •
Comp. Science, Univ. of Ca., Irvine, CA, May 1978,

I

34. , "Performance analysis of two classes of dataflow
computing systems," TR. 120 (M.S. Thesis) , Dept. of Inf. and
Comp. Science, Univ. of Ca . , Irvine, CA, 1978,

35. , "A weighted reference counting scheme for distributed
memory management," Dataflow Note 44, Dept. of Inf. and
Comp. Science, Univ. of Ca,, Irvine, CA, 1979.

36. P.C. Treleaven, "Exploiting program concurrency in computing
systems". Computer, January 1979, pp. 42-50.

37. D.A. Turner, "A new implementation technique for applicative
languages," Softwa re-Practice and Experience, Vol. 9 (1979),
pp. 31-49.

I

I

I

I

I
38. I. Watson, and J. Gurd, "A prototype dataflow computer with

token labelling," AFIPS Conf. Proc., vol. 48 (June 1979),
pp. 623-628. I

39. W.A. Wulf, and S.P. Harbison, "Reflections in a pool of
processors - an experience report on C.mmp/Hydra," AFIPS
Conf. Proc., vol. 47 (1978), pp. 939-951. I

I

I

I

