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Abstract 

Models of general relativistic rotating neutron stars, constructed from Har­
tle's perturba.tive "slow" rotation formalism of massive relativistic objects, are 
compared with their counterparts obtained from the exact solution of Einstein's 
equations. It is found that both methods, perturbativc versus exact, lead to 
compatible results down to rotational periods P ~ 0 .. 5 msec, a. value which 

·is by far smaller than the smallest yet observed pulsar period. This finding 
rests on the reinvestigation of Hartle's method, ( 1) supplementing it by a self­
consistency condition inherent in the determination of the Kepler frequency, 
and (2) a. careful analysis of sequences of star models. A collection of seventeen 
representative neutron matter equations of state served as an input. Because 
of its simple structure, Hartle's method should prove to be a practical tool for 
testing models of the nuclear equation of state with data. on pulsar periods. 
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Applicability of Hartle's Method for the 
Construction of General Relativistic Rotating 

Neutron Star Models 

F. Weber and N. K. Glendenning 

April 23, 1991 

Introduction 

The discovery of the first millisecond pulsar in 1982 (Backer et al. 1982) has stim­

ulated interest in the rotation of neutron stars especially as concerns possible con­

straints on their structure. The realization that globular clusters are ideal environ­

ments for the formation of binaries including neutron star binaries in which accretion 

from the companion spins up the compact star, promises much more data (Backer 

and Kulkarni 1990). Indeed half of the ten known millisecond pulsars are in globular 

clusters. Although even the smallest observed period does not as yet place any serious 

constraint on the theory of pulsar structure, this situation could easily change. In 

this regard it is relevant to note that pulsar surveys involve compromises that impose 

a bias against the detection of pulsars with small periods. The large surveys have 

had biases against detection below 4 ms, thus presumably distorting the statistics on 

pulsa~ periods (Ta.yor and Stinebring 1986). 

Against this background we have reexamined Hartle's method (Hartle 1967, Hartle 

and Thorne 1968) of constructing rotating neutron star models. Because of their large 

mass densities(:=:::: 1015 g/cm3 in the cores of heavier neutron stars), the geometry of 

space-time deviates considerably from flat space. Therefore such objects must be 

treated in the framework of Einstein's theory of general relativity. However, solving 

Einstein's field eq~1ations for rotating objects is a very complicated and cumbersome 

task (see, for example, Butterworth and lpser 1976). It has been treated to date 

for the case of general neutron matter equations of state only by two groups, i.e., 

Friedman, lpser, and Parker (1986; 1989) and Lattimer, Prakash, Ma.sak, and Yahil 

(1990). These authors studied a collection of a. total of sixteen different neutron star 
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matter equations of state, covering realistic ones as well as equations of state which 

have meanwhile become outdated. 

Hartle's perturbative method of treating general relativistic, rotating massive ob­

jects provides an alternative to the exact numerical treatment. However since it is 

perturbative with respect to deviations from spherical symmetry caused by rotation, 

its applicability is restricted to "slow" rotation. The upper limit on rotation to which 

it is actually applicable remained to date an unanswered question. In comparison with 

the exact solution of Einstein's equations, Hartle's method is much easier to imple­

ment, and from this work we believe it is an appropriate tool for the construction of 

models ofrotating neutron stars in the framework of general relativity. In particular, 

the compatibility of different competing models of the nuclear equation of state with 

data on pulsar periods can be tested conveniently. This should help Clarify the behav­

ior of the nuclear equation of state at densities beyond normal nuclear matter density. 

We will find that the minimum periods so far observed of P = 1.6 msec in the case of 

pulsars PSR 1937+21 and PSR 1957+20 can easily be computed by Hartle's method, 

as well as those minimum periods which are likely to be achieved by neutron stars 

(Glendenning 1990). 

Our aim in this article is to provide evidence concerning the applicability of Har­

tle's method for the construction of rotating objects in the framework of general 

relativity. For this purpose the investigation deals with the following four major as­

pects: (1) A self-consistency condition implicit in the determination of the Kepler 

frequency is imposed on Hartle's method (Sect. 2). This essential ingredient has only 

recently been discussed in connection with Hartle's method by vVeber, Glendenning, 

and Weigel (1990a; 1990b). The Kepler frequency is calculated for a selected col­

lection of neutron matter equations of state (Sect. 3) in the following Sect. 4. (2) 

The empirical formula for the Kepler frequency is discussed in Sect .. 5. (3) For each 

of the equations of state, we construct the entire sequence of stars that are rotating 

at their Kepler frequencies in Sect. 6. For several of these, a detailed comparison 

between the results of the exact and perturbative method is performed, in particular 

for the Pandharipande (1971), Bethe-Johnson (1974), and Friedman-Pandharipande 

(1981) equations of state. (4) Finally an analysis based on the Hartle formalism is 

performed in Sect. 7 to motivate the empirically established formula for the Kepler 

frequency, which has become a practical and frequently used tool for estimating the 

absolute limit on rotational frequency of a neutron star model derived from a specific 
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equation of state. We summarize our results in Sect. 8 . 

. 2 Imposition of self-consistency on Hartle's stel­
lar structure equations 

The basic idea in Hartle's treatment is the development of a perturbation solution 

based on the Schwarzschild metric of a static, spherically symmetric object: 

(1) 

Rotation distorts the star away from spherical symmetry, and its perturbed metric, 

expanded through second order in the star's rotational velocity, n, has the form 

(Hartle 1967; Hartle and Thorne 1968) 

ds2 = -e2vdt2 + e2t/J (d¢>- wdt)2 + e211 d()2 + e2>..dr2 + 0 (n3
). (2) 

In this line element, w is the angular velocity of the star's fluid in a local inertial 

frame and depends on the radial coordinate r. It is related to n, which is a constant 

(i.e. uniform rotation) throughout the star's fluid, and is the rotational frequency 

seen by a distant observer. 

The metric functions in the perturbed line element of Eq. (2) have the form 

e2 v(O) e2 ~[1 + 2 (ho + h2P2(cosB))], (3) 
e2ti•(O) r2 sin2B[1 + 2 ( v2 - h2) P2( cos B)], (4) 
e2 11 (n) r 2[1 + 2 (v2 - h2) P2(cosB)], (5) 

e2 >..(O) ( 2 maG+ m2P2) ( 2mG)-l (6) 1 +;: 1 _ 2mG 1---
r 

r 

The quantity <(>(r) in Eq. (3) denotes the metric function of a spherically symmetric 

object and m(r) the mass within r for the corresponding spherical star, and P2 is the 

Legendre polynomial of order 2. The perturbation functions m0 , m2, h0 , h2 , and v2 , 

all functions of r and n, are to be calculated from Einstein's field equations and are 

given as solutions of Hartle's stellar structure equations (for more details see Hartle 

1967; Hartle and Thorne 1968; Datta 1988). 

Next we introduce the general relativistic Kepler frequency, denoted by nK. It is 

given as the solution, n, of (Friedman, Ipser, and Parker 1986) . 

n = ev-t/J \1(!1) + w(n), 
w' 

\1(!1) = 2'1/J' et/1-v + v' w' 2 - + (- et/1-v) 
'1/J' 2'1/J' . (7) 
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In Eq. (7) all functions are to be evaluated at the star's equator. The quantity V 

denotes the orbital veloCity measured by an observer with zero angular momentum 

in the ¢-direction. Primes refer to derivatives with respect to the radial coordinate. 

The dependence of 'ljJ and v on n is suppressed in Eq. 7 for the purpose of brevity. 

An essential point is that in order to find the Kepler frequency defined in Eq. (7), 

a self-consistency problem must be solved, a fact apparently not recognized before in 

applications of Hartle's method. The reason for self-consistency lies in the dependence 

of nK on the metric functions at the equator. These in turn can be found only as the 

solution to the initial value problem posed by Einstein's equations. The initial values 

are those of the central density ( tc) and angular velocity in the local inertial frame (we)· 

Each stellar mass and the Kepler frequency for that configuration correspond to a 

unique value for this pair of initial values. Only one of them can be chosen arbitrarily, 

say the central density, because obviously at this stage one does not know the Kepler 

frequency, not even the mass, belonging to this choice, so it is not known how to 

choose the other. In other words, Eq. (7) is to be understood as a transcendental 

equation in the Kepler frequency, in which all quantities on the right depend on this 

frequency. In this work we calculate nK for the sample of equations of state listed in 

Table 1. A detailed procedure for finding the Kepler frequency is outlined in Weber, 

Glendenning, and ·weigel {1990a; 1990b) and will not be repeated here. 

3 Collection of selected equations of state 

A sample of a total of seventeen neutron matter equations of state is used for the 

construction of models of rotating neutron stars. These are listed in Table 1. Among 

those are the equations of state of Bethe and Johnson (1974), Friedman and Pand­

haripande (1981), and Pa.ndharipande {1971), ·abbreviated by respectively BJ(I), 

FP(V14+TNI), Pan(C), which have also been used by Friedman, lpser and Parker 

for their study of rotating neutron stars in which they solve Einstein's equations ex­

actly. These equations of state therefore allow for an immediate comparison of both 

methods. The equations of state labeled "1" through "11" in Table 1 have been de­

rived in the fra.mev.·ork of relativistic nuclear field theory, while those labeled "12" 

through "17" are based on nonrelat.ivist.ic potential models of the nucleon-nucleon 

force. An inherent feature of the former is that they do not. violate causality, i.e. 

es/c = J8P/8t < 1 (cs denotes the velocity of sound), which is not the case for 

the potential models. Among the latter only the \VFF(UV14+TNI) equation of 
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Table 1: Equations of state (EOS) of this work 

t Label EOS Description f Reference 

1 G3oo R,H,K=300 Glendenning 1989a 
2 HV R,H,K=285 Glendenning 1985 

t' 3 GDCM2 
Bl80 R, Q, K =265, Glendenning, Weber, 

B 114 = 180 and Moszkowski 1991 
4 GDCM2 

265 R,H,K=265 Glendenning, Weber, 
and Moszkowsi 1991 

5 G;oo R, H, 1r, K =300 Glendenning 1989a 
6 G2oo R, H, 1r, K =200 Glendenning 1986 
7 A~~nn + HV R,H, K=186 Weber, Glendenning, 

and Weigel 1990a 
8 GDCMl 

225 R, H, K=225 Glendenning, Weber, 
and Moszkowski 1991' 

9 GDCMl 
B180 R, Q, K =225, Glendenning, Weber, 

B 114 = 180 and Moszkowski 1991 
10 HFV R, H, ~' J( =376 Weber and Weigel 1989 
11 A~~A + HFV R,H,~,K=115 Weber, Glendenning, 

and Weigel 1990a 
12 ct BJ(I) NR,H,~, Bethe and Johnson 1974 
13 \VFF(UV14+TNI) NR, NP, K =261 Wiringa, Ficks, 

and Fabrocini 1988 
14 ppt FP(V14+ TNI) NR, N, f{ =240 Friedman and 

Pandharipande 1981 
15 WFF(UV 14+ UVII) NR, NP, K =202 Wiringa, Ficks, 

and Fabrocini 1988 
16 WFF(AV14+UVII) NR, NP, K =209 Wiringa, Ficks, 

and Fabrocini 1988 
17 Bt Pan( C) NR, H, ~' K =60 Pandharipande 1971 

t The following abbreviations are used: R = relativistic; NR = non-
. ., relativistic; N = pure neutron; NP = n, p, leptons; 1r = pion condensa-

tion; H = composed of n, p, hyperons, leptons; ~ = ~1232-resonance; 

Q = quark hybrid composition; f{ = incompressibility in MeV; B 114 = 
bag constant in MeV. 

t Notation of Friedman, Ipser, and Parker (1986;1989). 
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state does not violate causality. The BJ (I) and Pan( C) equations of state violate 

causality at ~ 23 times normal nuclear matter density, not much above the central 

density of the limiting star of the sequence. The equations of state FP(V 14+ TNI), 

WFF(AV14+UVII), and WFF(UV14+UVII) do so at considerably smaller densities of 

~ 6 - 7 times normal nuclear matter density, which is less than the central densities 

encountered in neutron star models constructed from them. We will turn back to 

the discussion of this subject in Sect. 6. Four equations of state of our collection, 

G~2~Ml, G~6~M2 ; GRf:J'1 , and G~fl~2 have only recently been calculated (Glendenning, 

Weber, and Moszkowski 1991) for electrically charge neutral neutron star matter in 

generalized f3 equilibrium from the derivative coupling Lagrangian of Zimanyi and 

Moszkowski (1990). Those labeled DCM1 correspond to the Lagrangian of Zimanyi 

and Moszkowski, while those labeled DCM2 correspond to the "hybrid" coupling in­

troduced in Glendenning, Weber, and Moszkowski (1991). The possibility of a phase 

transition of the dense core to quark matter is taken into account in equations of 

state GRfl'J1 and G~flJ2 , where B180 refers to the bag constant of B 114 = 180 MeV. 

Important features of aU of the selected equations of state are listed in Table 1. 

4 Results for the Kepler frequency 

In Figure 1 we plot our results obtained for OK as a function of rotational star 

mass, -Mr_ot, calculated from the equations of state of Sect. 3. The limiting value 

of Mrot for each equation of state (labels "1" through "17" of Table 1) represents 

the equilibrium configuration of a. star of limiting gravitational mass, rota.tingat its 

Kepler frequency. It is remarkable that most of the potential models of our collection 

lead, in comparison with the field-theoretic equations of state, to relatively large 

Kepler frequencies. In particular, with the exception of the BJ(I) equation of state 

(label "12"), all potential models lead to considerably larger OK values than the field-. 

theoretic ones. The softness at low and intermediate nuclear densities but rather 

stiff behavior at large densities of the former equations of state accounts for this 

behavior (Glendenning 1989b; Lattimer et al. 1990; Weber, Glendenning, and Weigel 

1990a ). From the relativistic models we find that the AYPEA + HFV equation of state 

leads to the largest Kepler frequency, i.e. OK = 1.18 · 104 s-1
• The (Fock) exchange 

contribution contained in HFV, stiffening the equation of state at large densities, 

has been shown to be responsible for this behavior (\Vcber, Glendenning, and Weigel 

1990a). However, though behaving rather stiffly at larger nuclear densities, this 
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Figure 1: Kepler frequency S1K (solution of Eq. (7)) as a function of rotational neutron 
star mass, shown for a sample of the equations of state of Table 1. 

equation of state stays causal in contrast to the potential model equations of state. 

As already mentioned among the latter only the UV14+TNI equation of state of 

Wiringa, Ficks, and Fahrocini fulfills the condition of causality. 

The rapid change of nK in the vicinity of the limiting mass is apparent from Fig. 

1. This is particularly so for the equations of state labeled "8", "9", "12", and "17". 

A careful investigation of the dependence of OK on Mrot. has been performed by Weber 

and Glendenning (1991) (referred to as Paper I). It was found that an uncertainty 

in the limiting-mass model of 1% leads to an uncertainty in nK of ± ~ 10%! Such 

a sensitive dependence of the limiting-mass model on nK is a problem for the exact 

method for which a compromise between numerical accuracy and radial grid spacing is 

to be made, implying errors in mass and radius of respectively 1% and 5% (Friedman, 

Ipser, and Parker 1986). 
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5 Empirical formula for the Kepler frequency 

A useful result of the work of Friedman, lpser and Parker (1986; 1989) is that the 
) 

Kepler frequency of a neutron star rotating at its mass limit can be estimated from the 

mass and radius of the corresponding nonrotating limiting-mass star. This "empirical" 

relation is given by: 

.. (8) 

The quantities Ms and Rs denote the gravitational mass and radius, respectively, of 

the spherical star of limiting mass. The quantity C in Eq. (8) is a constant for which 

values of CFIP = 7200 s-1 (Friedman, lpser, and Parker 1989) and CHz = 7700 s-1 

(Haensel and Zdunik 1989) have been extracted. By direct numerical solution of 

Einstein's field equations for the same sample of neutron matter equations of state, it 

was· found that Eq. (8) approximates the exact value of nK to better than 10% in the 

case of C = CFIP (Friedman, lpser, and Parker 1989) and 5% for C = CHz (Haensel 

and Zdunik 1989; cf. also Lattimer, Prakash, Masak, and Yahil 1990). 

A striking feature is the independence of C of the particular star model (and hence 

of the equation of state itself). To date the numerical value of C has not been derived 

from theory. To the best of our knowledge, only motivation for an expression as given 

by Eq. (8) from heuristic considerations has been given (Shapiro, Teukolsky, and 

Wasserman .1983). In Sect. 7 we will turn back to this topic and motivate, in the . 

framework of Hartle's theory, an approximate analytic expression for C. (We will find . 

that C indeed depends on the equation of state. Thus considering it as a constant 

applies only with reservation!) The remaining quantity in Eq. (8) is the Newtonian . 

expression for the Kepler frequency. The importance of the simple relation of Eq. 

(8) lies in the fact that only the properties of the spherical neutron star are needed. 

These can be easily obtained by solving the Oppenheimer-Volkoff equations. 

6 Bulk properties of self-consistent neutron star 
models 

Up to now our discussion was focused on the Kepler frequency of the limiting-mass 

models. Of course, to provide strong evidence for the applicability of Hartle's method, 

an extensive comparison of the properties of rotating stars (like equatorial radius, 

equatorial velocity, dragging of local inertial frames, eccentricity, etc.) calculated from 
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Figure 2: Comparison of rotational neutron star mass as a function of central energy 
density, tc, obtained from Hartle's method (solid line) with the exact results (crosses) 
of Friedman, lpser, and Parker (1986). The underlying equation of state is BJ(I) (see 
Table 1 ). The numbers refer to the values of the Kepler frequency DK (in units of 
104 s-1 ) of Eq. (7). The exact values are given in round brackets. 

both the exact as well as Hartle's method is necessary. This will be performed in this 

section where we present sequences of models of rotating neutron stars constructed 

from the set of neutron matter equations of state of Table 1. 

6.1 Comparison with exact results 

We begin with the comparison of the properties of rotating neutron stars calculated 

from the equations of state of BJ(I), FP(V14+TNI), and Pan(C) (labels "12", "14", 

and "17", respectively). 

Figure 2 exhibits the rotational neutron star mass as a function of central energy 

density, tc, calculat.('d for the BJ(I) equation of state (solid line). The crosses denote 

the mass values obtained from the exact calculation (taken from Friedman, Ipser, and 

Parker 1986). For a sample of tc values the Kepler frequencies DK (in units of 104 s-1 ) 

are displayed too. The numbers in round brackets refer to the exact values. One 

sees that the rotational star masses obtained from Hartle's method are in very good 
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Figure 3: Same as Fig. 2, but calculated for the Friedman-Pandharipande equation 
of state FP(V14+TNI). 

agreement up to Mrot ~ 1.85A10 (which corresponds tonK ~ 9000 s-1 ). Rotating star 

models of larger masses are characterized, in the exact treatment, by being slightly 

more massive. For the limiting-mass model a mass difference of~ 3% between the 

two treatments is obtained. The location of the mass limit occurs, according to Fig. 

2, in both treatments at more or less the same central energy density. The limiting 

Kepler frequency for BJ(I) has in our treatment a value of nK = 1.11 · 104 s-t, in 

close agreement with the exact value of 1.12 · 104 s-1 ( cf. Table 2). 

Figure 3 is the analog of Fig. 2, but calculated for the FP(V14+TNI) equation 

of state. The rotating neutron star masses in this case are in good agreement up to 

Mrot ~ 2.1M0 . The Kepler frequencies related to the latter mass value are 1.198 · 

104 s-1 (Hartle) and 1.038·104 s-1 (exact). The limiting Hartle mass is~ 4% smaller 

than the exact value. As for the BJ(I) equation of state, the mass limit occurs in 

both treatments at more or less the same Ec value. 

We emphasize once again that the self-consistency problem outlined in Sect. 2 has 

not been previously imposed by other authors who have employed Hartle's method ( cf. 

Hartle and Thorne 1968; Ba.ym, Pethick, and Sutherland 1971; Datta and Ray 1984; 
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Ray and Datta 1984; Datta 1988). Our results clearly demonstrate that by means of 

the self-consistent determination of stellar models, a rotation-induced mass increase of 

~ 15-25% (depending on the equation of state, see Weber, Glendenning, and Weigel 

1990a; 1990b) can be obtained. Such a mass increase is in very good agreement with 

the one established from the exact solution of Einstein's equations. The magnitude of 

this mass increase cannot be obtained without solving the fnll general relativistic stellar 

structure equations self-consistently. For that reason too small a mass increase ( ~ 8%, 

see, for example, Datta 1988) was obtained in earlier non-selfconsistent applications of 

Hartle's method and was viewed as an inherent weakness of the method ( cf. Friedman, 

Ipser, and Parker 1986). The findings of this work show that this objection looses its 

validity when self-consistency is imposed on Hartle's equations. 

In Table 2 we summarize rotating neutron star properties derived from Hartle's 

method, where the equations of state FP(V14+ TNI), BJ(I), and Pan( C) served as an 

input. Mass models rotating below their mass limits are labeled "a", those rotating 

at the mass limit are given in the rows labeled "b". The exact results, taken from 

Friedman, Ipser and Parker (1986, 1989), are listed in rows labeled "exact". All Hartle 

models shown in rows "a" have been determined self-consistently such that these 

possess the same rotational mass as the exact models. From the above discussion it is 

known that Hartle's method leads to ~ 3-4% less massive limiting-mass star models 

than the exact treatment. For that reason the limiting-mass models of rows "b" have 

slightly different masses. One sees from Table ~ that the central energy densities, 

Kepler frequencies, values of central frame dragging (wc/f!K), ratios of rotational 

energy to gravitational energy (T /W), equatorial velocities CVeq/ c), and eccentricities 

(e) of both methods are in good agreement. The equatorial radii (Req) of the Hartle 

models coincide to a less extent with the exact outcome. (It should be kept in 

mind that the latter have errors of ~ 5% (Friedman, lpser, and Parker 1986).) The 

origin of this may lie in the neglect of the higher-order (i.e. higher than quadrupole) 

perturbation functions in Hartle's perturbative method. 

In summary Figs. 2 and 3, and the promising agreement of the perturbative 

rotating neutron star models with their exact counterpa.rts, demonstrated in Table 

2, provide strong evidence for the applicability of Hartle's method up to (at least) 

nK ~ 1.2 · 104 s-1 , corresponding to a rotational period of P ~ 0.5 msec, which is a 

fraction of the smallest yet observed period (1.6 msec). It should be noted that this 

conclusion rests on the comparison of sequences of star models, which cover a large 
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Table 2: Comparison of the properties of rotating neutron star models calculated from · 
Hartle's method with those of the exact method for the equations of state V 14 + TNI, 
BJ(I), and Pan(C) (see Table 1). The properties listed are: Mrot/M0 , rotational star 
mass in units of the solar mass; Ec, central energy density; OK, Kepler frequency; Req, 
equatorial radius; wc/OK, percentage of central dragging; T /W, ratio of rotational 
energy to gravitational energy; Veq/ c, equatorial velocity of a comoving observer; and 
e, eccentricity. Comparisons labeled "a" are carried out at the same mass, "b" at the 
limiting mass. 

Equation Method =.t2!. Ec nK Req ~ T ~ e 
M0 nK w c 

of state [1015g/cm3] [1 04s-1] [km] 

a exact 0.77 0.63 0 . .542 15.1 0.27 0.102 0.27 0.72 
Hartle 0.77 0.66 0 . .570 13.7 0.23 0.080 0.26 0.71 

Vt4+TNI a exact 1.30 0.92 0.70.5 14.9 0.43 0.120 0.3.5 0.77 
Hartle 1.30 0.98 0.780 13.10 0.40 0.094 0.39 0.71 

b exact 2.30 2 . .5 1.23 12. 0.83 0.133 0.49 0.67 
Hartle 2.21 2.7 1.37 10.7 0.77 0.117 0.62 0.68 

a exact 0.78 0.51 0.410 18.1 0.25 0.071 0.25 0.71 
Hartle 0.78 0.47 0.406 17.5 0.21 0.066 0.25 0.70 

BJ(I) a exact 1.29 0.77 0.570 16.9 0.40 0.093 0.38 0.74 
Hartle 1.29 0.75 0.606 15.6 0.34 0.081 0.35 0.70 

b exact 2.16 2.7 1.11 12.9 0.79 0.110 0.47 0.68 
Hartle 2.09 2.7 1.197 11.6 0.72 0.099 0.57 0.68 

Pan( C) b exact 1.65 5.16 1.57 9.2 0.107 0.66 
Hartle 1.58 5.16 1.81 8.0 0.76 0.108 0.61 0.67 

" 
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range of different nK values, i.e. 4. 103 s-1 ~ nK ~· 1.8 . 104 s-1. Therefore Hartle's 

method should prove to be a practical tool for the construction of models of pulsars 

down to rotational periods of 0.5 msec. 

As concerns the limiting-mass model related to the Pan( C) equation of state, given 

in the last row of Table 2, we find a value for nK which is roughly 15% larger than the 

one ofthe exact numerical treatment (OK = 1.57·104 s-1 
). However the determination 

of OK for the Pan(C) equation of state is pa.rticularly complicated by the fact that 

nK depends very sensitively - much more than is the case for all other equations of 

state of our collection - on Afrot ( cf. Fig. 1 and also Fig. 1 of Paper I). Our precise 

determination of the mass limit gives nK = 1.81 . 104 s-1
• This is compatible with 

the exact method if one assumes that the mass is determined only within 2% in the 

latter case (Paper I). The properties of the limiting-mass models of both methods 

agree very well with each other (Table 2). For example the central energy density 

turns out to be the same in both treatments. Furthermore the instability parameter, 

T jl¥, and the eccentricity, e, are in remarkable good agreement. As before the Hartle 

star is slightly less massive. The difference is ~ 4%. 

6.2 Models of rotating neutron stars derived from the col­
lection of equations of state 

We present in the following the properties of neutron star models calculated from 

the complete sample of equations of state of Table 1 that are rotating at their abso­

lute maximum rate. Such a systematic investigation enables one to demonstrate the 

impact of different models of the nuclear equation of state on the bulk properties of 

rotating neutron stars. Of special interest is the investigation of the compatibility 

of the nuclear equation of state with data on pulsar periods. Different models of 

the equation of state lead to different neutron star properties, and not all of them 

may accommodate observed data (e.g. masses and radii of magnetic X-ray burster 

(Fujimoto and Taam 1986), neutron star redshifts (Liang 1986)). This attains its 

particular interest in view of the rapid discovery pace of millisecond pulsars (Backer 

and Kulkarni 1990). 

From the survey of both rotating as well as nonrotating neutron star properties 

presented in Table 3, it follows that the equations of state of our collection lead to 

limiting Kepler fre<pwncies in the range of 9.28 · 103 s-1 ~ nK ~ 1.81 . 104 s-1. The 

lower and upper hounds are established by the relativistic G300 ("1") and nonrela-
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tivistic Pan(C) ("17'') equations of state, respectively. With the exception of G200 

("6"), G~fl~1 ("9"), and Pan (C), all equations of state are able to support nonro­

tating neutron star models of gravitational masses M ~ 1.5 M0 . Nonrotating masses 

of M ~ 2M0 can only be derived from the relativistic equations of state "10" and 

".11" (because of their rather stiff behavior a.t large densities) a.s well a.s two of the 

_potential model equations of state , i.e .. "15" and "16". The influence of rotation on 

gravitational mass and equatorial radius is shown in columns 6 and 7 of this table. 

Because of the mass increase permitted by rotation, the equations of state "6", "9", 

and "17" then lead to neutron stars of rotational masses 1\frot > 1.5.1\10 , and eleven 

of the seventeen rotating star models possess Mrot > 2!110 . The largest rotating mass 

value, Afrot = 2.47 !lf0 , is obtained for HFV ("10") and A~0EA + HFV ("11"). Here 

the latter equation of state is supplemented by two-particle correlation effects derived 

from a. relativistic T matrix calculation, using the HEA meson-exchange potential for 

the.nucleon-nucleon interaction as a.n input (Weber, Glendenning, and Weigel1990a ). 

A characteristic feature of rotating neutron star models is the decrease of the 

central energy density, Ec, caused by rotation. This decrease can only be obtained 

in the framework of a self-consistent stellar structure calculation. The Ec values for 

both nonrotating and rotating stars are listed in columns 4 and 8, respectively. One 

sees that matter in the center of a rotating neutron star constructed from the Pan( C) 

equation of state nevertheless is compressed to ~ 21 times normal_ nuclear matter 

density. (We recall that causality is violated for this equation of state at ~ 23 

times normal nuclear matter density.) At such extreme nuclear densities neutron 

star matter can certainly not be thought of as being made up of individual neutrons 

i_nt.eracting via potential forces. In this respect the equations of state G~fJ!P and 

G~fJ!F are of particular interest since these account for the transition of electrically 

charge neutral baryon matter to quark matter (consisting of u, d,s quarks) a.t higher 

densities (Glendenning, \Veber, and Moszkowski 1991). The Ec values determined 

for the remaining equations of state of our collection are clearly smaller than in the 

case of Pan(C). They lie, for the potential model equations of state, in the range 

11.5 ~ Ec/Eo ~ 12.8 for nonrotating stars, decreasing to 10 ~ Ec/Eo ~ 10.8 when 

rotation is taken int.o account. For the field-theoretic equations of state we find 

respectively 9.3 ~ fc/Eo ~ 13.9 and 7.1 ~ Ec/Eo ~ 12. The decrease of Ec due to 

rotation is found to be largest for the equations of state HFV and G300 , and is given 

by respectively 26% and 24%. The smallest reduction, 10%, is obtained for G;00 and 
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'i\ Table 3: Calculated properties of rotating limiting-mass neutron star models, cal-
culated from the collection of equations of state of Table 1. The properties listed 
are explained in table caption 2, with the exception of l'.fs/ M0 and Rs which denote 
respectively graviational mass and radius of the nonrotating limiting-mass model. 

Equation & Rs I t nK M.rJl.l. Req €c/€o 
T ~ e 

M0 
€c Eo M0 w c 

of state [km] [104s-1] [km] 

1 1.792 11.12 9.37 0.93 2.04 13.60 7.16 0.10 0.50 0.70 
2 1.976 11.34 9.29 0.99 2.25 13.43 7.83 0.10 0.54 0.69 
3 1.605 10.48 11.36 1.01 1.87 12.42 9.43 0.09 0.51 0.69 
4 1.510 10.14 . 11.99 1.01 1.72 12.17 10.29 0.09 0.49 0.69 
5 1.808 10.97 9.57 1.02 2.06 12.87 8.67 0.10 0.54 0.69 
6 1.458 10.12 12.10 1.03 1.67 11.91 10.84 0.09 0.48 0.69 
7 1.969 10.97 9.29 1.04 2.24 12.97 7.96 0.11 0.55 0.69 
8 1.525 9.84 12.79 1.06 1.73 11.91 10.61 0.09 0.50 0.69 
9 1.494 9.48 13.93 1.13 1.69 11.31 12.07 0.09 0.51 0.68 

10 2.198 10.70 9.64 1.16 2.47 12.34 7.12 0.11 0.60 0.69 
11 2.19.5 10.63 9.64 1.18 2.47 12.24 7.66 0.12 0.61 0.68 
12 1.843 9.77 12.50 1.12 2.09 11..59 10.81 0.10 0.57 0.68 
13 1.848 9.24 12.79 1.29 2.09 10.97 10.02 0.11 0.59 0.69 
14 1.971 9.29 12.16 1.37 2.21 10.82 10.62 0.12 0.62 0.68 
15 2.197 9.56 11.54 1.45 2.44 10.70 10.07 0.13 0.66 0.64 
16 2.135 9.17 12.50 1.51 2.38 10.31 10.51 0.13 0.67 0.65 
17 1.412 6.90 24.07 1.81 1..58 7.98 20.73 0.11 0.61 0.67 

.. t The quantity t:0 =140 MeV /fm3 
( = 2.5 · 1014 gjcm3

) denotes the density of normal 
nuclear matter. 
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G~00 • A special feature of the latter two equations of state is the inclusion of pion 

condensation at supernuclear densities. 

The value of the "instability" parameter, t = T/W, obtained for all models of 

Table 3 takes on values 0.088 :::; t < 0.13. Hence all rotating models reach their 

respective limiting-mass limit before t = 0.14. The latter value indicates the onset of 

an instability caused by a bar mode ( cf. Friedman, Ipser, and Parker 1986). Indeed 

all models constructed from relativistic neutron matter equations of state lead to 

t :::; 0.11 with the exception of equation of state A?&A + HFV for which t = 0.12. 

We recall that the latter leads to the largest Kepler frequency, OK = 1.18 · 104 s-1 , 

among the relativistic models for the equation of state. The largest value obtained for 

the instability parameter, t = 0.13, is calculated for the potential model equations of 

state "15" and "16" of \Viringa, Ficks, and Fabrocini. In general all potential models 

have t 2: 0.10. 

The equatorial velocity, Yeq, amounts at most to 67% of the velocity of light 

(equation of state "16"), followed by 66% in the case of "15". Above we have found 

that OK (and t) are in general smaller for the relativistic equations of state. These 

smaller Kepler frequencies imply lower equatorial velocities than those of the potential 

model equations of state: we find 0.48:::; Yeq/c:::; 0.61 (relativistic equations of state) 

and 0.57:::; Veqfc:::; 0.67 (nonrelativistic). 

The eccentricities, defined bye= J,.--1---(R_p_/ R-eq_)_2 (Rp and Req denote respectively 

the polar and equatorial radius), are listed in the last column of Table 3. One sees 

that these do not change very much though the bulk properties of the limiting-mass 

models of our collection are rather different from each other. The ratio of polar radius. 

to equatorial radius however is rather independent of the underlying equation of state. 

We typically find Rp/ Req ~ 3/4. 

7 Motivation of the empirical formula for nK from 
Hartle's method 

To date it has remained an open problem why the simple, empirically established 

expression for nK of Eq. (8) for the limiting-mass star so successfully approximates 

the exact solution of Eq. (7). We recall that the empirical formula expresses OK in 

terms of J MsG / R;, i.e. mass and radius of the non rotating neutron star of limiting 

mass, times a constant C (see Eq. (8)). Obviously the rotating and nonrotating star 
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models are two completely different physical objects which are not related by any 

quantity with each other. Nevertheless the empirical formula is known to work very 

well (Friedman, Ipser, and Parker 1989; Lattimer et al. 1990) and one is tempted 

to understand this from theory. (Heuristic arguments have been given by Shapiro, 

Teukolsky, and Wassermann (1983).) 

Our aim in this section is to provide theoretical evidence for the validity of the 

empirical formula. To be specific, we analyze the general relativistic expression for 

the Kepler frequency of Eq. (7) in the framework of Hartle's method. The investi­

gation leads to an analytic expression for C which exhibits a weak dependence on 

the equation of state. The range of C values is extracted from the collection of star 

models of Sect. 6.2, and is found to be compatible with the empirically established 

range of C ~ CFIP = 7200 s-1
, CHz = 7700 s-1

, and CHartle ~ 8500 s-1 (see Sect. 5). 

To simplify the following discussion, we distinguish between two different cases: 

In the first case, (i), we will neglect the pure general relativistic effect of dragging 

of local inertial frames. By this a rather straighforwa.rd investigation of nK can be 

performed. In the second step, case (ii), the dragging effect is taken into account and 

its impact on the results of item (i) is demonstrated. 

7.1 Dragging of local inertial frames neglected 

The dragging effect of local inertial frames describes the onset of rotation of these in­

ertial frames induced by a rotating mass (see, for example, Honl and Soergel-Fabricius 

1961; Honl and Dehnen 1962; Brill and Cohen 1966; Misner, Thorne, and Wheeler 

1973). Values of fractional dragging at the center of rotating neutron stars, wc/0, are 

listed in Table 2 for rotation at n = nK (8th column). The dragging effect was shown 

to be largest at the center of rotating neutron stars with decreasing magnitude (i.e. w 

considerably smaller than 0) toward its surface (Hartle and Thorne 1968; Friedman, 

Ipser, and Parker 1986; Weber, Glendenning, and Weigel 1990b). In the limit when 

the rotational frequencies of the local inertial frames, w( r ), are small in comparison 

with the star's rotational frequency n, the dragging effect can be ignored. Only in this 

limit is the angular velocity, that determines the magnitude of the centrifugal force 

acting on the star's matter, equal to the star's angular frequency n (Hartle 1967). We 

restrict ourselves in the first part of the investigation to w /0 <t: 1! By substituting 

Eqs. (3) and ( 4) into Eq. (7), one obtains for the orbital velocity Vs of a mass element 

rotating at the star's equator (we assume spherical symmetry throughout this section 
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which is indicated by means of attaching a subscript "s" to the relevant quantities) 

(9) 

(Newtonian limit) . (10) 

We recall that the relation for V(D) posed a self-consistency problem in Sect. 2 

since knowledge of the properties of the rotating neutron star ( e~g. total mass, radius), 

which themselves depend on the rotational frequency D, is necessary for the calcula­

tion of V(DK)· The self-consistency is avoided here by replacing the rotating neutron 

star configuration by its nonrotating one of limiting-mass. This approximation makes 

sense since the amount of dragging, in which we are interested, is determined by the 

mass of the star (Drill and Cohen 1966; Misner, Thorne, and \i\lheeler 1973). The 

rotation-induced mass increase however was found to be ~ 15% (compare columns 

two and six of Table 3), which is too small to have a crucial impact on dragging. 

Therefore by means of setting Mrot ~ Ms (and Req ~ Rs), one can expect to account 

for the impact of very massive objects on the frame dragging to a reasonably good 

approximation. We turn back to this topic in Sect. 7.2. 

The frequency De in Eqs. (9), (10) is defined by De = j AfsG / R~. From Eq. (9) 

one arrives for the general relativistic Kepler frequency, with the neglect of frame 

dragging, 

DK Is, no dragging = De . (11) 

One sees that the relativistic expression for the Kepler frequency DK, with the neglect 

of frame dragging, coincides with the one of classical mechanics, expressing the cir­

cular movement of a massive particle in that stable orbit for which balance between 

centrifuge and gravity occurs ( cf. Misner, Thorne, and \Vheeler 1973). 

7.2 Inclusion of the dragging effect 

In the next step we take the rotational dragging effect of the local inertial frames into 

account, i.e. we investigate the case w( r) "# 0. It is convenient to define the difference 

between the star's angular velocity and the rotational frequency of the local inertial 
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frame by introducing the function w(r) = n- w(r) (Hartle 1967; Hartle and Thorne 

1968). Cases (i) and (ii) then differ by w(r) lnodragging= nand w(r) !dragging= n-w(r), 

respectively. After substituting Eqs. (3) and ( 4) into the second relation of Eq. 

(7), one finds for Vs, instead of Eq. (9), the more general expression (w(Rs) = 

(2IsG/R~) · n, see Hartle 1967) 
\ 

Vs, dragging( n) = - 0: n + f3 nc . (12) 

To arrive at Eq. (12), the term (w' e.P-v /2'1/J') 2 has been neglected in the second of 

Eqs. (7), which turned out in our calculations to be two orders of magnitude smaller 

than v' /'1/J'. The quantities o: and f3 in Eq. (12) are defined by 
\ 

(13) 

f3 (14) 

The star's moment of inertia, I, occuring in Eqs. (13) and (14) is given by 

Is= S1r [R. drr4 E + P(t:) w e-<I> 

3 lo J1- 2msG/r n 
(15) 

The striking feature of Eq. (12) is that in the case when dragging is taken into 

account, Vs,dragging depends on the star's angular velocity n. This behavior is to be 

compared with Eq. (9), where the only dependence on angular velocity occurs in nc. 

The latter frequency is determined by the bulk properties, i.e. mass Ms and radius 

Rs, of the nonrotating, sperically symmetric neutron star. 

It is interesting to look at the impact of dragging on the velocity l';.. From Eqs. 

(9) and (12), it readily follows 

l~. no dragging - Vs, dragging( n) = 0: n > 0 . (16) 

From Eq. (16) one sees ·explicitly that in the case when dragging of the local inertial 

frames is taken into account, the velocity of a mass element rotating at the star's 

equator is smaller than in the case when dragging is neglected. The actual magnitude 

19 



of the difference is proportional to the star's rotational frequency n and, in particular' 

vanishes if n-+ 0. 

In the next step we determine the Kepler frequency, OK, which was given, in the 

general treatment, as the solution of Eq. (7). In the framework of the approximations 

introduced in this section, nK is obtained by combining Eq. (12} with the first of 

Eqs. (7). The latter is given by 

OK = ~ j1 - 2MsG/ Rs · 'Vs,dragging(OK) + 2IsG/ R~ . (17) 

The quantities Ms and Rs are those of the nonrotating, limiting-mass neutron star 

(cf. discussion at the end Qf Sect. 7.1). The velocity "Vs,dragging(OK) is given in Eq. 

(12). It can be substituted in favor of OK and the functions a and (3 of Eqs. (13) and 

(14), respectively. One obtains for nK after some algebraic manipulations (compare 

with Eq. (11)) 

f!K ls,dragging ' (18) 

( < 1 ) . (19) 

Because of the dragging of the local inertial frames one obtains a maximum rotation 

rate which deviates from Oc by a function D (referred to in the following as "dragging 

factor"). It is striking that D of Eq. (19) depends only very weakly on its argument 

Is/ R;. To demonstrate this for masses and radii which are typical for static neutron 

stars at their mass limits, we express Is in terms of Ms and Rs. Using Is ~ R;Afs, 

Eq. (19) can be written as 

D(M D)= ( ~ Ms/M0)-1 
s, -'Ls 

1 + 2 Rs/km (20) 

To answer the question how strongly D(Afs, Rs) reduces OK below the classical 

value Oc, we resort to our outcome of Ms and Rs for spherical, static star models of 

limiting mass listed in Table 3. From these results we find 0.74 ~ D(Ms, Rs) ~ 0.81, 

which implies C-values of 8500 s-1 ~ C ~ 9300 s-1 . 

Thus from the perturbation treatment we have established the approximate pro­

portionality of nK to the classical value J MsG I R~. The proportionality constant 
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depends only weakly on the mass and radius. The values obtained for C are rather 

close to those established from numerical investigations (Friedman, Iper, and Parker 

198; Haensel and Zdunik 1989; Weber and Glendenning 1991). For the purpose of 

comparison we recall CFIP = 7200 s-1 (Friedman, Ipser, and Parker), CHz = 7700 s-1 

(I-Ia.ensel and Zdunik), and CHartle ~ 8500 s-1 (our result, see Paper I). 

7.3 Conclusions 

In summary, the following points arise from the above investigations: 

1) The reduction of the relativistic Kepler frequency compared to the classical value 

has its origin in the dragging of the local inertial frames. (The amount of 

dragging is given by the function D ("dragging" factor) of Eq. (20)); 

2) D _ 1 if dragging is neglected. This is a good approximation in the case of less 

massive rotating stars like white dwarfs; 

3) The magnitude of the dragging factor is rather insensitive to variations of the 

bulk properties of :Q.eutron stars (i.e. masses and radii). This has been inferred 

from investigating the dragging factor for a variety of different limiting-mass 

neutron star models, constructed from a representative collection of neutron 

matter equations of state. We find that for neutron stars, D is less than unity 

and for a variety of the models studied, falls in a narrow range, which we have 

understood by the analysis of this section. 
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8 Summary 

In this work we construct sequences of models of general relativistic, rotating neutron 

stars up to the limiting-mass model of each sequence. For this purpose Hartle's 

perturbative method, originally developed for "slowly" rotating massive objects, is 

applied. To date it remained an open question tip to which rotational star frequencies, 

n, this method is applicable. We have clarified this question by means of a detailed 

comparison of models of rotating neutron stars constructed from Hartle's method with 

their exact counterparts. For this purpose the equations of state of Pandharipande 

(1971), Bethe and Johnson (1974), and Friedman and Pandh~ripande (1981) (cf. 

Table 2) served as input. Furthermore a collection of a total of seventeen neutron 

matter equations of state has been applied for investigating the impact of the nuclear 

equation of state (i.e. the functional dependence of pressure on energy density) on . 

the structure of rotating as well as nonrotating neutron star models. These equations 

of state cover nonrela.tivistic potential models as well as field-theoretic ones. 

In essence, our results confirm the applicability of Hartle's perturbative method 

up to (at least) f!K ~ 1.2 · 104 s-1. (The application of the method up to f!K = 

1.81 · 104 s-1 has been performed, and we find good agreement even for such extreme 

frequencies.) The above Kepler frequency corresponds to a rotational period of P ~ 

0.5 msec which is a. fraction of the smallest yet observed periods (PSR 1937 +21 and 

PSR 1957+20, P = 1.6 msec.) · Therefore Hartle's method should prove t9 be a 

practical tool for testing competing models of the nuclear equation of state on data 

of millisecond pulsars. 

Finally we have performed an analytic investigation concerning the empirical for­

mula for the general relativistic Kepler frequency. \Ve arrived at an expression for 

f!K which exhibits two essential features: firstly it relates the masses and radii of 

spherically symmetric, limiting-mass stars with the Kepler frequency, i.e. nK = 

C · J[Ms/M0 ]/[Rs/10 km)3, and secondly an expression for· the "constant" C could 

be derived, which indicates that considering C as a constant applies only with re­

striction. In the framework of the approximations introduced in Sect. 7, we find that 

C changes at most by ~ 800 s-1 for all the equations of state treated in this work. 

Hence only by ignoring a dependence of C on the properties of a particular star model 

(and hence on the equation of state itself) up to such amounts, can it be viewed as a 

constant. 
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