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Abstract: The pT-differential production cross sections of non-prompt D0, D+, and D+
s

mesons originating from beauty-hadron decays are measured in proton–proton collisions
at a centre-of-mass energy

√
s = 13 TeV. The measurements are performed at midrapidity,

|y| < 0.5, with the data sample collected by ALICE from 2016 to 2018. The results are in
agreement with predictions from several perturbative QCD calculations. The fragmentation
fraction of beauty quarks to strange mesons divided by the one to non-strange mesons, fs/(fu+
fd), is found to be 0.114± 0.016 (stat.)± 0.006 (syst.)± 0.003 (BR)± 0.003 (extrap.). This
value is compatible with previous measurements at lower centre-of-mass energies and in
different collision systems in agreement with the assumption of universality of fragmentation
functions. In addition, the dependence of the non-prompt D meson production on the centre-
of-mass energy is investigated by comparing the results obtained at

√
s = 5.02 and 13 TeV,

showing a hardening of the non-prompt D-meson pT-differential production cross section
at higher

√
s. Finally, the bb production cross section per unit of rapidity at midrapidity

is calculated from the non-prompt D0, D+, D+
s , and Λ+

c hadron measurements, obtaining
dσ/dy = 75.2 ± 3.2 (stat.) ± 5.2 (syst.)+12.3

−3.2 (extrap.) µb.

Keywords: Hadron-Hadron Scattering, Heavy Quark Production, QCD

ArXiv ePrint: 2402.16417

Open Access, Copyright CERN,
for the benefit of the ALICE Collaboration.
Article funded by SCOAP3.

https://doi.org/10.1007/JHEP10(2024)110

mailto:alice-publications@cern.ch
https://doi.org/10.48550/arXiv.2402.16417
https://doi.org/10.1007/JHEP10(2024)110


J
H
E
P
1
0
(
2
0
2
4
)
1
1
0

Contents

1 Introduction 1

2 Experimental apparatus and data sample 2

3 Data analysis 3

4 Systematic uncertainties 7

5 Results 9
5.1 Non-prompt D-meson pT-differential cross sections 9
5.2 Cross section ratios 11
5.3 Beauty-quark production in pp collisions at

√
s = 13 TeV 16

6 Summary 18

The ALICE collaboration 26

1 Introduction

Measuring the production of hadrons containing heavy-flavour quarks (i.e. charm and beauty)
in proton–proton, pp, collisions is essential to test perturbative Quantum Chromodynamics
(pQCD) calculations and provide a reference for analogous measurements in heavy-ion
collisions [1]. The ALICE [2–14], ATLAS [15–17], CMS [18–22], and LHCb [23–28] experiments
at the LHC have measured the production of charm and beauty hadrons and their decay
leptons in pp collisions at various centre-of-mass energies (

√
s) ranging from 2.76 to 13 TeV,

while RHIC [29–32], SppS [33], and the Tevatron [34–37] performed measurements at lower√
s values. The theoretical calculations rely on the factorisation of soft and hard processes [38]

to predict the production cross sections of charm and beauty hadrons as a function of the
transverse momentum (pT) and the rapidity (y). According to the collinear factorisation
approach, the pT- and y-differential cross sections can be computed as the convolution of
three ingredients: (i) the parton distribution functions (PDFs) describing the probability of
the parton to inherit a certain fraction (x) of the momentum of the colliding proton; (ii) the
partonic scattering cross section defining the scattering probability calculated as a perturbative
series expansion in the strong coupling constant (αs); (iii) the fragmentation function (FF)
that describes the non-perturbative transition of a heavy-flavour quark into a hadron. The
FF is parametrised from measurements performed in e+e− or e−p collisions [39, 40], thus
assuming the hadronisation process of charm and beauty quarks to be independent of the
collision system.

Calculations for LHC energies implementing the collinear factorisation approach, like
the General-Mass Variable-Flavour-Number Scheme (GM-VFNS) [41–46] and Fixed Order
plus Next-to-Leading Logarithms (FONLL) [47, 48], provide a Next-to-Leading Order (NLO)
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accuracy with all-order resummation of next-to-leading logarithms. In addition, calculations
with Next-to-Next-to-Leading-Order (NNLO) QCD radiative corrections are available for
beauty-quark production. GM-VFNS and FONLL calculations describe within uncertainties
the production of D mesons originating from charm-quark hadronisation (i.e. prompt) and
from beauty-hadron decays (i.e. non-prompt) as a function of pT at different centre-of-mass
energies, as well as the measured production cross sections of heavy-flavour decay leptons
and non-prompt J/ψ mesons originating from beauty-hadron decays [2, 7, 11, 16, 24, 25, 49–
54]. Recent D and B meson measurements in small collision systems from the LHCb
Collaboration [55, 56] indicate a larger production of strange over non-strange mesons when
moving to a small to larger number of tracks produced in the collision. These results are
strongly underestimated by predictions based on e+e− measurements and suggest the presence
of unexpected nuclear effects also in small systems. For charm and beauty baryons, however,
the pQCD calculations using FF from e+e− collisions severely underestimate the measured
cross sections [57–63]. For instance, the prompt Λ+

c -baryon production cross section at low
pT and midrapidity (|y| < 0.5) in pp collisions at

√
s = 5.02 TeV [58–60, 64] is underestimated

by a factor of 3 to 4 by GM-VFNS calculations adopting Λ+
c -baryon fragmentation functions

derived from the fit of OPAL data [65], and by a factor of 15 by the POWHEG predictions [66]
matched with PYTHIA 6 [67] to generate the parton shower. This discrepancy challenges the
assumption of universality of the hadronisation process, i.e. the hypothesis that the parton
fragmentation is independent of the collision system and energy, and can be determined from
measurements in e+e− collisions. It is therefore crucial to extend the study of fragmentation
fractions to different collision systems, centre-of-mass energies, and y intervals.

This paper presents the pT-differential production cross sections of non-prompt D0, D+,
and D+

s mesons at midrapidity in pp collisions at
√
s = 13 TeV. Sections 2 and 3 are devoted

to the description of the experimental apparatus and the analysis strategy employed in this
study, respectively. The sources of systematic uncertainty affecting the measurement of the
production cross section and their magnitudes are detailed in section 4. Section 5 reports the
non-prompt D-meson cross sections compared to pQCD predictions, the ratios of D-meson
species yields at

√
s = 13 and 5.02 TeV, and the fragmentation fraction of beauty quarks

together with the total production cross section of beauty quarks at
√
s = 13 TeV. This latter

result supersedes the one of ref. [68] by using a non-prompt D0-meson measurement with finer
granularity in pT and by including the contributions from non-prompt D+ and D+

s mesons.

2 Experimental apparatus and data sample

A detailed description of the ALICE detector and its performance can be found in refs. [69, 70].
Heavy-flavour hadron decays are reconstructed with the detectors of the central barrel, which
cover the pseudorapidity range |η| < 0.9 and are located inside a cylindrical solenoid that
produces a magnetic field of B = 0.5 T along the beam direction. Charged-particle trajectories
are reconstructed by the Inner Tracking System (ITS) and the Time Projection Chamber
(TPC). The ITS detector is composed of six layers of silicon detectors, which delivers precise
measurements of track parameters near the interaction point, and additionally provides a
resolution on the track impact parameter in the transverse plane better than 75 µm for
tracks with pT > 1 GeV/c. The TPC provides track reconstruction featuring up to 159
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three-dimensional space points per track, as well as charged particle identification (PID)
through specific energy loss (dE/dx) measurements. Additionally, the Time-Of-Flight (TOF)
detector measures the flight time of charged particles, providing additional constraints for the
identification of the decay products of heavy-flavour hadrons. Trigger and event selections
are performed using the V0 detector, which comprises two scintillator arrays located on
either side of the collision point and that cover the pseudorapidity ranges −3.7 < η < −1.7
and 2.8 < η < 5.1.

The measurements reported in this article were performed on the data sample of pp
collisions at

√
s = 13 TeV collected with the ALICE experiment from 2016–2018. The pp

collisions were recorded using a minimum bias (MB) trigger that required coincident signals in
both V0 scintillator arrays. Beam-induced background events, including beam-gas interactions
and pileup of collisions from different bunch crossings, were removed offline using the timing
information from the V0 arrays and correlating the number of measured clusters and tracks
reconstructed in the two innermost layers of the ITS. Events with pileup of collisions within
the same bunch crossing were eliminated by rejecting events with more than one reconstructed
primary vertex. Moreover, to ensure uniform pseudorapidity acceptance, only events with
a primary vertex position within ±10 cm from the nominal centre of the apparatus along
the beam direction were considered. The analysed data consisted of about 1.8 × 109 MB
collisions, corresponding to an integrated luminosity Lint = 31.9 ± 0.5 nb−1 [71].

To correct for detector acceptance and efficiency and to train the machine learning
algorithms that are used in this analysis as described later, Monte Carlo (MC) simulations
of pp collisions at the same centre-of-mass energy were utilised. These MC samples were
generated using the PYTHIA 8.243 [72] event generator, requiring the production of at least
one cc or bb pair in each simulated event. The produced charm hadrons were forced to
decay in the decay channels of interest. The generated particles were transported through
the apparatus with GEANT3 [73], including a realistic description of the detector conditions
during the data taking.

3 Data analysis

The D mesons and their charge conjugates were reconstructed through the following hadronic
decay channels: D0 → K−π+ with BR = (3.95 ± 0.03)%, D+ → K−π+π+ with BR = (9.38
± 0.16)%, and D+

s → ϕπ+ → K+K−π+ with BR = (2.22 ± 0.06)% [74]. The D-meson
candidates were reconstructed by combining tracks with |η| < 0.8 and pT > 0.3 GeV/c. Only
tracks crossing at least 70 pad rows in the TPC, having at least one associated hit in the
two innermost ITS layers, and passing the track-quality criteria described in ref. [3] were
considered. Pions and kaons were identified by requiring the dE/dx and time-of-flight signals
to be compatible with the expected values within three times the detector resolution. The
selections applied to the single tracks affect the D-meson reconstruction and acceptance as a
function of the rapidity, which decreases steeply for |y| > 0.5 at pT < 5 GeV/c and |y| > 0.8
for pT > 5 GeV/c. For this reason, a pT-dependent selection was applied on the D-meson
rapidity to define a fiducial acceptance, |y| < yfid(pT), with yfid(pT) increasing from 0.5 to
0.8 in 0 < pT < 5 GeV/c and yfid = 0.8 above 5 GeV/c. This is also taken into account when
computing the acceptance term in the cross section formula.

– 3 –



J
H
E
P
1
0
(
2
0
2
4
)
1
1
0

A Boosted Decision Tree (BDT) algorithm was employed to reduce the sizeable com-
binatorial background and to improve the separation between the contributions of prompt
and non-prompt D mesons through a multi-class classification approach [75]. The imple-
mentation of the BDT algorithm provided by the XGBoost [76, 77] library was employed
for the results presented in this work. The machine learning algorithm was provided with
signal examples of D mesons from simulations based on the PYTHIA 8.243 event generator,
while the background samples were obtained from the “sideband” region of the D-meson
candidate invariant-mass (M) distributions in data. For D0 and D+, this region was defined
as the invariant-mass intervals |∆M | > 5σ with respect to the nominal value of their respec-
tive mass (i.e. M < 1.80 GeV/c2 and M > 1.95 GeV/c2 for D0 and M < 1.82 GeV/c2

and M > 1.92 GeV/c2 for D+). For D+
s mesons, the regions M < 1.82 GeV/c2 and

M > 2.01 GeV/c2 were considered, corresponding to masses of the order of 5σ below the
nominal D+ mass and 5σ above the nominal D+

s mass. This selection was tuned to efficiently
reject the contribution from D+ mesons decaying in the same decay channel. Loose selection
criteria were applied to the D-meson candidates before the BDT training, following the same
procedures described in refs. [3, 78, 79]. For the D+

s -meson candidates, an additional selection
was applied on the reconstructed value of the K+K− invariant mass to be consistent with the
Particle Data Group world average of the ϕ-meson rest mass (M(ϕ) = 1019.461± 0.016 [74])
with ±15 MeV/c2. The variables provided to the BDT algorithm to classify the candidates as
either D mesons originating from beauty-hadron decays, prompt D mesons, or background
candidates, include those related to the decay-vertex topology and single-track PID, which
have proven to strongly influence the score assigned by the BDT. In particular, the impact
of each input variable was assessed via the SHAP package [80]. The complete list of input
variables can be found in ref. [78]. The information about variables related to the decay-
vertex topology was found to be the most relevant to discriminate signal and background
candidates, as expected. Independent BDTs were trained for the different pT intervals of
the analyses and the resulting optimised algorithms were applied to the data, where the
type of candidate is unknown. The BDT provides three different outputs, one for each class,
representing the estimated probability of a candidate to be a prompt D meson, a non-prompt
D meson, or combinatorial background. Selections were applied on both the probability to
be a non-prompt D meson and on the probability to be combinatorial background. The
first selection was meant to enhance the non-prompt contribution within the selected signal,
and the second one was employed to reject the largest possible amount of combinatorial
background as possible, while preserving the signal candidates. Different selection criteria on
the BDT outputs were used in the analysis in order to build samples with different fractions
of non-prompt (and prompt) D mesons [75, 78, 79].

The raw yields of D mesons (sum of particles and antiparticles) were measured in the
range 1 < pT < 24 GeV/c for D0 and D+ mesons and 2 < pT < 24 GeV/c for D+

s mesons. The
raw yields were extracted by performing a binned maximum-likelihood fit of the invariant mass
distributions of candidates satisfying the BDT selection criteria. These criteria enhance the
fraction of non-prompt D mesons, f raw

non-prompt, in the sample, referred to as the non-prompt
enhanced sample. The signal peak was parameterised with a Gaussian function, whose
width was constrained to match the one extracted from fits to the prompt-enhanced sample
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evaluated in this work, i.e. candidates passing BDT selection criteria providing a significant
fraction of prompt D mesons. For the D0 meson, the contribution of signal candidates to the
invariant-mass distribution with the wrong mass assigned to the D0-decay tracks (reflections)
was included in the fit. It was estimated based on the invariant-mass distributions of the
reflected signal in the simulation, which were described as the sum of two Gaussian functions.
The contribution of reflections to the raw yield is about 0.5–1.5%, depending on pT. This
constraint improved the stability of the fits because the prompt-enhanced sample has a higher
statistical significance compared to the non-prompt enhanced one due to the larger abundance
of prompt D mesons compared to non-prompt D mesons. The background was modelled
with an exponential function. In the fit to the invariant-mass distributions of D+

s -meson
candidates, an independent Gaussian function was adopted to model the peak related to
D+ → ϕπ+ → K+K−π+ decays. Figure 1 shows examples of fits to the invariant-mass
distributions of D0, D+, and D+

s candidates for the non-prompt D-meson enhanced samples
in the lowest pT interval accessible in the respective analyses.

The pT-differential cross section of non-prompt charm hadrons at midrapidity was
computed as:

dσD
non-prompt

dpT

∣∣∣∣∣
|y|<0.5

= 1
2

1
∆pT

f raw
non-promptN

D+D
|y|<yfid

c∆y(Acc× ε)non-prompt
· 1

BR ·
1
Lint

. (3.1)

The term ND+D
|y|<yfid

refers to the raw yields in the various pT intervals, extracted as
described above. This quantity was then scaled by the non-prompt fraction f raw

non-prompt
to account for prompt D-meson signals in the raw yield, and divided by 2 to obtain the
averaged yields between particles and antiparticles. The raw yield was corrected by the
c∆y(Acc× ε)non-prompt term, which accounts for the fiducial interval in rapidity (c∆y ≃ 2yfid),
the detector acceptance, and the reconstruction and selection efficiency of the non-prompt
D-meson signal. The production cross section in each pT interval was then obtained by
scaling the corrected yield of non-prompt D mesons by the pT-interval width (∆pT), the
branching ratio of the decay channel chosen to reconstruct the signal (BR), and the integrated
luminosity (Lint).

The c∆y(Acc × ε)non-prompt and the f raw
non-prompt terms for D0, D+, and D+

s mesons are
reported as a function of pT in the left and right panels of figure 2, respectively. The
(Acc× ε)non-prompt is obtained as the product of the selection efficiency ϵ, accounting for the
D mesons simulated with PYTHIA 8 surviving the selection criteria, and the geometrical
acceptance of the experimental apparatus estimated with GEANT3. The c∆y term is
introduced to normalise the D-meson yield to one unit of rapidity, thus accounting for the
rapidity coverage of the measurements in |y| < yfid(pT), and is found to be compatible with
unity in PYTHIA simulations. The fraction f raw

non-prompt was estimated with a data-driven
procedure based on constructing data sub-samples with different abundances of prompt and
non-prompt candidates. The samples were built by gradually varying solely the selection
criterion on the BDT output related to the candidate’s estimated probability to be a non-
prompt D meson, while keeping the criterion on the probability to be background fixed to
the nominal one. An equation relates the BDT selection efficiency of prompt and non-prompt
D mesons and the extracted raw yields from each BDT selection criterion to the true yields
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Figure 1. Invariant-mass distributions of non-prompt enhanced D0- (top-left), D+- (top-right), and
D+

s -meson (bottom) candidates, and their charge conjugates in 1 < pT < 2 GeV/c, 1 < pT < 2 GeV/c,
and 2 < pT < 4 GeV/c, respectively. For the D+

s meson, the left-side peak emerges due to the
contribution of the D+ meson decaying in the same channel as the D+

s meson. The blue solid line
shows the total fit function and the red dashed line the combinatorial-background contribution. The
values of the mean (µ), width (σ), and raw yield (S) of the signal peak are reported together with
their statistical uncertainties resulting from the fit. The width is fixed to the one obtained from
the prompt-enhanced sample. The fraction of non-prompt candidates in the measured raw yield is
reported with its statistical and systematic uncertainties.
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s mesons in
the raw yield as a function of pT. The vertical bars and boxes display the statistical and systematic
uncertainties, respectively.

of prompt and non-prompt D mesons, forming a system of equations used to estimate the
f raw

non-prompt. The effectiveness of this method was demonstrated in previous similar analyses,
as documented in refs. [75, 78, 79]. Fractions of non-prompt candidates larger than 70%
(60%) were obtained for D0 (D+ and D+

s ) mesons in all the pT intervals of the analysis. This
shows that the BDT-based selections substantially enhance the non-prompt component in
the raw yields with respect to the naturally produced fractions of non-prompt mesons, which
range from 5% at low pT to 15% at high pT.

4 Systematic uncertainties

The following sources of systematic uncertainty were considered for the non-prompt D-meson
production cross sections: (i) the raw-yield extraction, (ii) track-reconstruction efficiency
estimation, (iii) PID efficiency evaluation, (iv) non-prompt fraction estimation, (v) D-meson
selection efficiency determination, and (vi) D-meson simulated pT shape estimation. The
sources (ii)–(vi) originate from possible differences between data and simulation due to
imperfections in modelling particle interactions, the description of the detector response and
alignment, or the underlying physics processes in the simulation. The resulting systematic
uncertainties on the non-prompt D-meson production cross section in representative pT
intervals are summarised in table 1. The systematic uncertainty assigned to the measured pT-
differential cross section is computed as the sum in quadrature of the uncertainties listed below.

The systematic uncertainty on the raw-yield extraction was assessed by varying the
background fit function (linear and parabolic), the binning of the invariant-mass distribution,
and the upper and lower fit limits. The sensitivity to the line shape of the D-meson peak
was tested by comparing the raw-yield values from the fits with those obtained by counting
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the candidates in the invariant-mass region of the signal after subtracting the background
estimated from a fit to the sidebands. For non-prompt D0 mesons, an additional contribution
due to the description of signal reflections in the invariant-mass distribution was estimated
by varying the shape and the normalisation of the templates used for the reflections in
the invariant-mass fits. The magnitude of this source of systematic uncertainty is assessed
by considering the shift and the root mean square of the trial raw yield distribution with
respect to the reference value and it ranges between 2% and 10% depending on the D-meson
species and pT.

The systematic uncertainty on the track-prolongation reconstruction efficiency accounts
for possible discrepancies between data and MC in the TPC–ITS prolongation efficiency
and the selection efficiency on track-quality criteria in the TPC. The per-track systematic
uncertainties were estimated by varying the track-quality selection criteria and comparing
the TPC tracks’ prolongation probabilities to the ITS clusters in data and simulations. They
were then propagated to the non-prompt D meson systematic uncertainty via their decay
kinematics. Furthermore, a non-optimal description of the material budget in MC could
cause a bias in the estimation of the selection efficiency. This discrepancy was handled by
comparing the selection efficiency obtained using simulations with different material budgets.
The magnitude of this source of systematic uncertainty depends on pT, and it ranges from
4% to 6% for the two-body decays of D0 mesons and from 5% to 8% for D+ and D+

s mesons,
which are reconstructed via three-particle decay channels.

A possible systematic uncertainty on the PID selection efficiency was also considered.
This source was evaluated in the prompt D-meson analysis [14], and it was found to be
negligible for the adopted PID strategy for all the three D meson species.

The systematic uncertainties on the estimation of the BDT-selection efficiency and the
non-prompt D-meson fraction account for discrepancies between data and MC simulations
in the distributions of the variables used in the BDT-model training (i.e. the D-meson
decay-vertex topology, kinematics, and PID variables). The former was studied by repeating
the entire analysis, varying the BDT selection criteria. The uncertainty was computed as
the quadratic sum of the root mean square (RMS) and the shift in the distribution of the
corrected yields derived from the variation of the BDT selection in relation to the reference
value. The systematic uncertainty of the non-prompt fraction was estimated by varying
the configuration of the BDT selections included in the data-driven method described in
section 3. The selections based on the BDT probabilities were varied considering looser and
tighter conditions on the probability of the D-meson candidates being non-prompt D mesons.
The non-prompt D-meson fraction was computed for each configuration, and the systematic
uncertainty was assigned considering the variation with respect to the reference case. The
magnitude of these uncertainties ranges between 2 and 5% for the non-prompt D-meson
fraction and from 2 to 10% for the BDT selection efficiency, depending on the D-meson
species and pT. In particular, the uncertainty due to the selection efficiency is larger at low
pT where more stringent selection criteria are applied.

The calculation of the (Acc × ε) factor can be influenced by differences between the
hadron pT distributions generated in the simulation and those in data. To estimate the
uncertainty the simulated pT distributions were weighted to match the pT spectra derived
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D0 D+ D+
s

pT (GeV/c) 1–2 12–16 1–2 12–16 2–4 12–24

Signal extraction 4% 3% 5% 5% 3% 5%
Tracking efficiency 4% 5% 6% 8% 5% 8%

Non-prompt fraction 2% 2% 5% 3% 4% 2%
Selection efficiency 4% 2% 10% 4% 3% 3%

MC pT shape 6% 1% 7% 2% 3% 2%

Branching ratio 0.8% 1.7% 2.7%
Luminosity 1.6%

Total uncertainty 9.5% 7.9% 15.5% 12.0% 8.7% 10.6%

Table 1. Relative systematic uncertainties of the measured cross sections of non-prompt D0, D+,
and D+

s mesons at midrapidity in pp collisions at
√
s = 13 TeV. The values reported in the table refer

to representative pT intervals of the different channels.

from FONLL calculations instead of those from PYTHIA 8 simulations. In particular, the
FONLL and PYTHIA 8.243 predictions for D mesons were used to compute the weights for
prompt D mesons, while for non-prompt D mesons, the spectra of the beauty-hadron parents
were considered. The (Acc× ε) correction factor and the raw non-prompt D meson fraction
were then recomputed employing the weighted spectra, and a comparison was made between
the reference and the weighted cases. The difference between these two results was assigned
as a systematic uncertainty. The magnitude of this uncertainty ranges between 1 and 7%
and it is larger in the low-pT intervals where the efficiency steeply increases with pT.

Finally, the uncertainties on the BR of the analysed decay channel of the three D-meson
species (0.8% for D0, 1.7% for D+, and 2.7% for D+

s ) [74] and the integrated luminosity
in pp collisions (1.6%) [71] were considered.

5 Results

5.1 Non-prompt D-meson pT-differential cross sections

The pT-differential production cross sections of non-prompt and prompt D0, D+, and D+
s

mesons at midrapidity, |y| < 0.5, in pp collisions at a centre-of-mass energy of 13 TeV are
shown in the left panel of figure 3. The prompt D-meson cross sections are from ref. [14].
The vertical lines and empty boxes represent the statistical and systematic uncertainties.
Note that the systematic uncertainties shown in the plots do not include contributions from
luminosity and branching ratio.

The right panels of figure 3 display the ratios among the pT-differential production cross
sections of non-prompt and prompt D0 (top panel), D+ (middle panel), and D+

s (bottom
panel) mesons at both

√
s = 5.02 [78] and 13 TeV. The systematic uncertainties of the ratio

calculations are treated as uncorrelated among prompt and non-prompt D mesons, except
for those associated with the tracking, luminosity, and BR, which are considered as fully
correlated.
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Figure 3. Left: pT-differential production cross sections of prompt [14] and non-prompt D0, D+,
and D+

s mesons at midrapidity, |y| < 0.5, in pp collisions at
√
s = 13 TeV. Right: ratios between

the production cross sections of non-prompt and prompt D0 (top), D+ (middle), and D+
s (bottom)

mesons at
√
s = 5.02 [78] and 13 TeV. The vertical bars and empty boxes represent the statistical and

systematic uncertainties, respectively.

The uncertainties on the luminosity and the BR cancel out in the ratio. The production
of prompt D mesons exceeds that of non-prompt D mesons for all D-meson species by about
a factor of 20 at low pT. The larger abundance of prompt charm mesons is expected owing to
the lower mass of charm with respect to beauty quarks. The ratios exhibit an increasing trend
as a function of pT up to approximately 12 GeV/c, consistent within uncertainties between
the two centre-of-mass energies. This rise reflects the harder transverse-momentum spectrum
of beauty hadrons (hb) with respect to that of prompt charm mesons.

In figure 4, the pT-differential cross sections of non-prompt D mesons are compared
with the predictions obtained from FONLL [47, 48] and GM-VFNS [41, 42, 81] calculations.
In these models, the fragmentation fractions of beauty quarks into different beauty-hadron
species, denoted as f(b→ B), are derived from e+e− collisions [39]. The results of calculations
based on the TAMU model [82], which adopts the pT-differential beauty-quark cross section
from FONLL along with the same fragmentation functions employed in FONLL and a
statistical hadronisation approach for f(b→ B), are also shown in figure 4. In this statistical
approach, chemical equilibrium among beauty-hadron species is assumed, and the relative
abundances of different hadrons are determined by their masses and a universal hadronisation
temperature. In the case of FONLL and TAMU predictions, the resulting beauty hadron
cross section is convoluted with the decay kinematics and branching ratios of hb → hc + X
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obtained using PYTHIA 8.243 [72, 83] to compute the non-prompt D-meson cross section. In
the context of GM-VFNS, the transition from the beauty quark to the observed charm-hadron
state is described via a two-step approach. This involves the hadronisation of the beauty
quark into the beauty hadron (b→ hb) and its subsequent decay into the measured charm
meson (hb → D+X). Even though an alternative decay path that accomplishes this transition
in a single step exists (b→ D + X), it significantly underestimates the predictions derived
from the former approach and the measured cross sections, as already observed in ref. [78].
The theoretical uncertainties associated with the FONLL and GM-VFNS predictions are
shown as boxes. These uncertainties encompass variations in the factorisation scale (µF),
renormalisation scale (µR), heavy-quark mass value, and the uncertainty of the CTEQ6.6 [84]
and CT14nlo [85] parton distribution functions, respectively. Consistent with previous studies
at lower collision energy [78], FONLL calculations describe the measured non-prompt D-
meson production cross sections within uncertainties. In particular, the central values of the
FONLL+PYTHIA 8 predictions are consistent with the data for the three D-meson species.
The TAMU predictions using the statistical hadronisation approach for the abundances of
different hadron species agree with the measured cross sections of non-prompt D0 and D+

mesons. However, they tend to overestimate the yield of non-prompt D+
s mesons. The

GM-VFNS calculations underestimate the measurements in the low-pT region, whereas at
higher pT a better agreement is found.

5.2 Cross section ratios

The pT-differential D+/D0 and D+
s /(D0 + D+) yield ratios are shown in the top row of

figure 5 for both non-prompt and prompt production in pp collisions at
√
s = 5.02 and 13 TeV.

All the systematic uncertainties are propagated in the ratios treating them as correlated
among different D-meson species, except for the ones related to the raw-yield extraction, the
selection efficiency, the raw non-prompt fraction estimation, and the BR, which are treated
as uncorrelated. While the prompt D+

s /(D0 + D+) ratio [14] indicates a hint of an increase
with increasing pT for pT below 8 GeV/c, no significant dependence is visible for the strange-
to-non-strange ratio for non-prompt mesons and no firm conclusions can be drawn given the
current experimental uncertainties. Also, no significant dependence on

√
s is observed. This

indicates that the ratios of fragmentation fractions of charm and beauty quarks into D mesons,
as determined in pp collisions, exhibit no dependence on the collision energy, as detailed in
ref. [14]. The ratios are found to be compatible with those measured in e+e− collisions [86],
indicating that the fragmentation fractions of heavy quarks into mesons are independent of
the collision system. Note that this does not apply to the baryon sector, where noticeable
differences have been observed between e+e− and pp (or p-Pb) collisions [14, 58, 68].

In the bottom panels of figure 5, the ratios of prompt and non-prompt D-meson cross
sections measured at

√
s = 13 TeV are compared to the FONLL calculations for prompt

D mesons and FONLL+PYTHIA 8 for the non-prompt ones. In the case of prompt D+
s

mesons, no FONLL prediction is currently available. The theoretical predictions agree with
the measured ratios in the pT range of the analyses.

From the measured non-prompt D+
s /(D0 + D+) ratios, it is possible to compute the

fragmentation fraction ratio of beauty quarks into strange (fs) and non-strange (fu and
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Figure 4. pT-differential production cross sections of non-prompt D0 (top-left), D+ (top-right), and
D+

s (bottom) mesons at midrapidity, |y| < 0.5, in pp collisions at
√
s = 13 TeV compared with the

predictions from FONLL + PYTHIA 8 [47, 48], GM-VFNS [41, 42], and TAMU + PYTHIA 8 [82]
calculations. The lower panels report the data-to-model ratios. The vertical bars and empty boxes
represent the statistical and systematic uncertainties, respectively.
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Figure 5. Top: ratios of prompt and non-prompt D-meson production cross sections as a function of
pT in pp collisions at

√
s = 5.02 [78] and 13 [14] TeV. Bottom: ratios of prompt [14] and non-prompt

D-meson production cross sections as a function of pT in pp collisions at
√
s = 13 TeV compared

with FONLL+PYTHIA 8 predictions. The vertical bars and empty boxes report the statistical and
systematic uncertainties, respectively.

fd) B mesons at a centre-of-mass energy of
√
s = 13 TeV. It is important to consider

that a significant portion of the non-prompt D+
s mesons originates from decays of non-

strange B mesons. Therefore, a correction factor is applied to the pT-differential non-prompt
D+

s /(D0 + D+) ratio. The correction factor is calculated from the FONLL+PYTHIA 8
predictions as

αFONLL+PYTHIA 8
corr. =

[
N(D+

s ← B0
s )

N(D+
s ← hb)

× N(D0,D+ ← hb)
N(D0,D+ ← B0,+)

]FONLL+PYTHIA 8

, (5.1)
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where N(D+
s ← B0

s ) is the number of D+
s mesons produced in the decays of B0

s mesons,
N(D0,D+ ← B0,+) is the number of non-strange D mesons originating from non-strange
B-meson decays, and N(D+

s ← hb) is the number of D+
s from beauty-hadron decays. The

correction factor is found to be around 0.5. Given that the majority of the non-prompt D0

and D+ originate from non-strange B mesons, this indicates that about half of the non-prompt
D+

s mesons originate from decays of strange B mesons.
The ratio of the beauty-quark fragmentation fractions fs/(fu + fd) is computed as(

fs
fu + fd

)
beauty

= αFONLL+PYTHIA 8
corr. ×

(
D+

s
D0 + D+

)
non-prompt

, (5.2)

where, in addition to the uncertainty related to the D+
s /(D0 + D+) measurement, the

uncertainty on the correction factor αFONLL+PYTHIA 8
corr. was considered. The latter was

estimated by varying the beauty-quark fragmentation fractions and the branching ratios
adopted for the hb → D + X decays in PYTHIA 8.243 besides the uncertainties of FONLL,
as discussed in detail in ref. [78]. The ratio fs/(fu + fd) was calculated in the pT intervals of
the non-prompt D+

s /(D0 + D+) ratio measurement and it was found to be independent of
pT within the experimental uncertainties. It was fitted with a constant function to obtain
the pT-integrated fragmentation fraction. The result is:(

fs
fu+fd

)
beauty

=0.114± 0.016 (stat.)± 0.006 (syst.)± 0.003 (BR)± 0.003 (extrap.), (5.3)

where “stat.” denotes the statistical uncertainty, “BR” is the uncertainty on the BR of the
considered decays, and “extrap.” denotes the uncertainty due to the pT extrapolation. The
systematic uncertainty is denoted as “syst.” and it takes into account the yield extraction, track
reconstruction and selection, D meson selection, non-prompt fraction, and simulated pT shape.
In figure 6, the fragmentation fraction ratio is compared to previous measurements in pp and pp
collisions at different

√
s values from the CDF [87], ALICE [78], ATLAS [17], and LHCb [57, 63]

Collaborations. The ATLAS measurement of fs/fd was downscaled by a factor of two,
assuming isospin symmetry for the u and d quarks (i.e. fu = fd). Figure 6 also shows that the
beauty-quark fragmentation fractions extracted from the measurements in pp (pp) collisions
are compatible with those computed by the HFLAV Collaboration [86] using measurements
in e+e− collisions at LEP. Similarly to the ATLAS measurement, the HFLAV results were
scaled by a factor of two. The larger data sample collected by ALICE at

√
s = 13 TeV,

compared to lower collision energies, enables a significant improvement in the precision of the
measured beauty-quark fragmentation fraction ratio. Notably, the fragmentation fraction
ratio for beauty quarks presented in this work is comparable to the one measured for charm
quarks, which was determined to be 0.116± 0.011 (stat.)± 0.009 (syst.)± 0.003 (BR) [14] at
a centre-of-mass energy of 13 TeV and 0.136±0.005 (stat.)±0.006 (syst.)±0.005 (BR) [78] at
5.02 TeV. It is also consistent with the value of the strange to non-strange ratio for light-flavour
particles predicted by the statistical hadronisation model [88], which is about 0.1, and with
the outcome of PYTHIA 8.243 simulations with the Monash-13 tune [83].

To further explore the relationship of non-prompt D-meson production with the pp
collision centre-of-mass energy, the ratios between the pT-differential non-prompt D-meson
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Figure 6. Beauty-quark fragmentation-fraction ratio fs/(fu + fd) calculated from non-prompt
D-meson measurements in pp collisions at

√
s = 13 TeV compared with previous measurements

from CDF [87], ALICE [78], ATLAS [17], CMS [19] and LHCb [57, 63], with the average of LEP
measurements [86], and with the results of PYTHIA 8.243 simulations with Monash-13 tune [83].

cross sections at
√
s = 13 and 5.02 TeV [3, 78] were computed for D0, D+, and D+

s mesons. The
results are shown in the left panel of figure 7. The systematic uncertainties were propagated
treating them as uncorrelated between the two collision energies, with the exception of
those related to the non-prompt fraction estimation and the branching ratio, which were
treated as fully correlated. The ratios for the different D-meson species are compatible
within the experimental uncertainties and share a common trend in pT. The ratios hint at a
common increase with increasing pT, as also reported for charm-hadron ratios [14] and the
equivalent ratio for B+ mesons in the rapidity interval 2.0 < y < 4.5 [26]. These findings
suggest that there is a similar hardening of the pT-differential production cross section of
heavy-flavour hadrons with increasing

√
s, which is independent of the species or origin of the

hadron. In addition, a comparison was made between the measured 13-to-5.02 TeV ratio for
non-prompt D0 and the FONLL+PYTHIA 8 predictions, which is shown in the right panel
of figure 7. The non-prompt D0 results were chosen for this comparison due to the larger
pT coverage of the measurement and the higher precision compared to the other D meson
species. The theoretical calculations also indicate an increasing trend of the non-prompt D0

ratio as a function of pT, and they reproduce the measurement within uncertainties. However,
the current experimental uncertainties do not allow us to draw a firm conclusion on the
dependence of the ratios on the D-meson pT.
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Figure 7. Ratios of non-prompt D-meson production cross sections at
√
s = 13 and 5.02 TeV [78] as

a function of pT. Left: comparison of measurements for D0, D+, and D+
s mesons. Right: comparison

of D0 results with FONLL+PYTHIA 8 calculations. The vertical bars and empty boxes report the
statistical and systematic uncertainties, respectively.

5.3 Beauty-quark production in pp collisions at
√

s = 13 TeV

The production cross section of bb pairs per unit of rapidity at midrapidity was computed
independently for the non-prompt D0, D+, D+

s mesons, and Λ+
c baryons taken from ref. [68]

by combining two ingredients: (i) the measured visible cross sections for that specific species
and (ii) the extrapolation factor to the bb-pair cross section (αbb

extrap) taken from FONLL
calculations. These two quantities were estimated following the procedure presented in
refs. [68, 78] and summarised below. Finally, the total bb cross section per unit of rapidity
at midrapidity was estimated as the weighted average of the single bb cross sections of the
various charm hadron species, hc, adopting as weights the inverse of the quadratic sum of the
absolute statistical and uncorrelated systematic uncertainties, encompassing the systematic
uncertainty associated with the raw-yield extraction and the non-prompt fraction estimation.

The visible cross sections of the different non-prompt charm-hadron species were obtained
by integrating the pT-differential cross section in the measured pT interval. In this calculation,
the statistical uncertainty and the systematic uncertainty on the raw-yield extraction were
treated as uncorrelated among the different pT intervals. All the other sources were considered
fully correlated. The extrapolation factor was computed for each measured non-prompt
charm-hadron state from FONLL+PYTHIA 8 predictions, as the ratio of the beauty cross
section and the visible cross sections of the measured non-prompt charm-hadron states in
the pT range of the analyses, as:

αbb
extrap. =

dσFONLL
bb /dy||y|<0.5

dσFONLL+PYTHIA 8
hc←b /dy||y|<0.5(pmin hc

T < pT < pmax hc
T )

. (5.4)

The systematic uncertainty on the extrapolation factor was determined by considering
different sources of uncertainty including the ones associated with FONLL calculations, the
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hc Kinematic range dσvis./dy||y|<0.5 αbb
extrap. FONLL+PYTHIA 8

(GeV/c) (µb) (µb)

D0 1 < pT < 24 33.3 ± 1.2 (stat.) ± 2.5 (syst.) 1.241 +0.009
−0.047 30.7 +13.7

−12.2

D+ 1 < pT < 24 18.4 ± 2.4 (stat.) ± 2.3 (syst.) 1.243 +0.009
−0.048 14.8 +6.6

−5.9

D+
s 2 < pT < 24 5.8 ± 0.6 (stat.) ± 0.4 (syst.) 1.858 +0.037

−0.170 6.3 +2.7
−2.3

Λ+
c [68] 2 < pT < 24 10.5 ± 1.3 (stat.) ± 0.9 (syst.) 1.847 +0.108

−0.152 5.9 +3.3
−2.4

Table 2. Measured visible cross section (dσvis./dy||y|<0.5), extrapolation factor (αbb
extrap.), and

FONLL+PYTHIA 8 predictions of non-prompt charm-hadrons in pp collisions at
√
s = 13 TeV at

midrapidity.

uncertainties on the fragmentation fractions, and the uncertainties on the BR as was done for
the estimation of the beauty-quark fragmentation fractions described in section 5.2. Table 2
reports the kinematic range of the analyses together with the measured visible cross sections,
the extrapolation factor, and the predictions of FONLL+PYTHIA 8 calculations for each
non-prompt charm-hadron species [68].

Two additional corrections were considered, following the procedure of refs. [14, 68, 78].
The first correction factor accounts for the different rapidity distributions of beauty quarks and
beauty hadrons, while the second correction accounts for the different rapidity distributions
of bb pairs and beauty quarks. The first correction factor was estimated to be unity within
the relevant rapidity range, based on FONLL calculations. An uncertainty of 1% was
derived from the deviation between FONLL and PYTHIA 8.243. The second correction
factor was computed from the rapidity distributions of b quarks and bb pairs obtained with
POWHEG [89] simulations. The resulting value of the second correction factor is 1.06± 0.01
within the range |y| < 0.5, where the uncertainty was derived by varying the factorisation
and renormalisation scales in the POWHEG calculation.

The measured bb production cross section per unit of rapidity at midrapidity in pp
collisions at

√
s = 13 TeV is

dσbb
dy

∣∣∣∣pp,
√

s=13 TeV

|y|<0.5
= 75.2± 3.2(stat.)± 5.2(syst.)+12.3

−3.2 (extrap.) µb, (5.5)

where the uncertainty on the extrapolation of the cross section is reported separately and
denoted as “extrap.”. The left panel of figure 8 reports a compilation of bb cross section
measurements in pp collisions from the ALICE [9, 10, 50, 90–92] and PHENIX [30] Collabo-
rations and in pp from the CDF [35] and UA1 [33] Collaborations, as a function of

√
s. The

experimental results are compared with the predictions from FONLL and NNLO calculations.
The measured bb cross sections and their dependence with

√
s are described by the pQCD

calculations within the theoretical uncertainties, especially in the case of NNLO calculations
that show smaller uncertainties compared to FONLL calculations. The central values of the
NNLO calculations are closer to the data, as expected by the higher perturbative accuracy.

Finally, the dependence of the bb production cross section on the rapidity interval was
investigated. The right panel of figure 8 reports the beauty cross section at midrapidity
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Figure 8. Left: beauty-quark production cross section per unit of rapidity at midrapidity as a function
of the centre-of-mass energy measured in pp and pp collisions by the ALICE [9, 10, 50, 90–92] and
PHENIX [30] Collaborations, and the CDF [35] and UA1 [33] Collaborations. The solid and dashed
lines, accompanied by shaded bands, represent the central values and the associated uncertainties
predicted by FONLL [47, 48, 93] and NNLO [94] calculations, respectively. Right: beauty-quark
production cross section per unit of (pseudo)rapidity as a function of (pseudo)rapidity measured by the
ALICE Collaboration (LHCb Collaboration [53]). The solid and dashed lines, accompanied by a shaded
band, represent the central values and the associated uncertainties predicted by FONLL [47, 48, 93] as
a function of y and η, respectively. The vertical bars and boxes report the statistical and systematic
uncertainties, respectively.

presented in this work, along with the measurements performed in pseudorapidity intervals by
the LHCb Collaboration at forward rapidity [53]. The experimental results are compared to
FONLL predictions, which are shown both for dσbb/dy and dσbb/dη, to match the observables
reported by ALICE and LHCb, respectively. The measured bb cross sections generally lie
close to the upper boundary of the FONLL theoretical uncertainty band, except for the LHCb
data point in 2 < η < 2.5 which is compatible with the central value of the predictions.

6 Summary

The pT-differential production cross sections of non-prompt D mesons were measured at
midrapidity in pp collisions at

√
s = 13 TeV. The measurement of the non-prompt D0 meson

was performed in the 1 < pT < 24 GeV/c range with a finer granularity in pT compared to
previously published measurements [68]. The measurements of the non-prompt D+ and D+

s
mesons were performed for the first time at this energy and cover the 1 < pT < 24 GeV/c
and 2 < pT < 24 GeV/c ranges, respectively. The results were compared with FONLL and
GM-VFNS pQCD calculations as well as with predictions from the TAMU model. A good
agreement was found considering the current experimental uncertainties.

The non-prompt D+/D0 and D+
s /(D0+D+) pT-differential production ratios were studied

at
√
s = 13 TeV and were compared to the 5.02 TeV results. No significant dependence on

the collision energy nor on the D-meson pT was observed. A comparison was made with the
predictions based on FONLL+PYTHIA 8, which describe the measured ratios well. These
results were further employed to test the universality of the fragmentation function of beauty
quarks in pp collisions by measuring the fraction of beauty quarks fragmenting into strange
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mesons relative to those fragmenting into non-strange mesons. The result is compatible with
previously published measurements in e+e−, pp, and pp collisions at different energies and
with the analogous measurement in the charm sector [14]. Our results are consistent with
the scenario in which the ratio of the fragmentation fraction of charm and beauty quarks
into D mesons is universal, i.e. independent of the collision system and energy, even though
violations of this universality are observed when considering heavy-flavour baryons [57–63].
In addition, the ratio of the non-prompt D meson production between

√
s = 13 and 5.02 TeV

was measured for the three meson species. A hint of a common increase with increasing pT
was observed for all species, similar to what was already reported in analogous measurements
of charm hadrons [14], even though the current experimental uncertainty does not allow firm
conclusions to be drawn. Predictions based on FONLL+PYTHIA 8 calculations qualitatively
describe these ratios.

Finally, the total bb production cross section at midrapidity per unity of rapidity in pp
collisions at

√
s = 13 TeV was determined. This result supersedes the previous measurement

presented in ref. [68] in terms of precision. The measured bb production cross section lies on
the upper edge of the theoretical uncertainties of the predictions from FONLL and NNLO
pQCD calculations.
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