
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
A New Population-based MCMC Method

Permalink
https://escholarship.org/uc/item/3sc8w2n8

Author
Zhang, Di

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3sc8w2n8
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

A New Population-based MCMC Method

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Statistics

by

Di Zhang

Dissertation Committee:
Associate Professor Yaming Yu, Chair

Professor Michele Guindani
Assistant Professor Weining Shen

2019

c© 2019 Di Zhang

DEDICATION

To my parents, for their endless support.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xi

1 Outline 1

2 Background 3
2.1 A Review of MCMC methods . 3
2.2 The Metropolis-Hastings Algorithm . 4
2.3 Gibbs Sampler . 7
2.4 Convergence of the Metropolis-Hastings Algorithm 11
2.5 Strategies for Improving Convergence . 13

2.5.1 Reparameterization . 13
2.5.2 Auxiliary Variable Methods . 14
2.5.3 Annealing Method . 17
2.5.4 Reversible Jump MCMC . 21

2.6 Population-Based MCMC Methods . 23

3 A New Multiple Chain Method 26
3.1 Method Introduction . 26
3.2 An Illustrative Example . 29
3.3 Theoretical Aspects . 31

3.3.1 Reducibility . 31
3.3.2 Estimates of the Proportion in Truncated Binomial 36

3.4 Some General Guidelines . 49
3.4.1 When to Use the Multiple Chain Method? 50
3.4.2 Tuning of the Proposal Distribution 51
3.4.3 Issue in High Dimensions . 56

iii

4 Applications 58
4.1 Computing Bayes Factors for Bayesian Model Selection 58

4.1.1 Introduction of Bayes Factors . 58
4.1.2 Methods for Computing Bayes Factor 60
4.1.3 Pine Data Example . 63
4.1.4 Galaxy Data Example . 65

4.2 Estimating Variance Components in Mixed Effect Models 69
4.3 Sensor Network Localization . 74

5 Capella Data 81
5.1 Backgroud . 81
5.2 Models . 88

5.2.1 One Temperature Component . 91
5.2.2 Two Temperature Components . 92

6 Discussion 97
6.1 Summary . 97
6.2 Limitations and Future Work . 99

Bibliography 102

iv

LIST OF FIGURES

Page

2.1 Problems in the proposal distribution and the corresponding traceplots (Har-
tig, 2011). 12

3.1 Density plot of the normal mixture: λN(µ1, σ
2
1) + (1− λ)N(µ2, σ

2
2). 30

3.2 Dotplots of draws comparing Metropolis (left) and the multiple chain method
(right). 31

3.3 Proposed jump to y in between-chain jump for x1 35
3.4 Density plot of the normal mixture: λN(µ1, σ

2
1) + (1− λ)N(µ2, σ

2
2). 52

3.5 Traceplots (left) and autocorrelation plots (right) of λ̂ comparing different
between-chain jump step size from s = 10, 1, 0.1 to 0.01, with the correspond-
ing between-chain jump acceptance rate 21%, 57%, 28% and 5%. 53

3.6 Dotplots of point estimates of the potential scale reduction factor (PSRF)
decreasing through every 5000 (left panel) and every 100 (right panel) sim-
ulated draws comparing different between-chain jump step size from s =
10, 1, 0.1 to 0.01, with the corresponding between-chain jump acceptance rate
21%, 57%, 28% and 5%. 55

4.1 Graphical model for pines example showing the two models being simultane-
ously handled within a unified framework (Spiegelhalter et al., 1996, p. 48). . 64

4.2 Histogram of the galaxy data overlaid with the density estimation of a normal
mixture of six components. 67

4.3 Gibbs sampler in estimating group-level variance in conjugate hierarchical
models . 69

4.4 Autocorrelation plots (left) and scatterplots of draws overlaid by contours of
the exact posterior (right) comparing single chain drawn from Gibbs sampler
(top), the usual Metropolis (middle) and the multiple chain method (bottom). 74

4.5 The simulated distances yij among the six stationary sensor locations, x1, x2, . . . x6,
are displayed if observed. The observation indicator zij is one if yij is speci-
fied and is zero otherwise. The locations of the sensors are x1 = (0.57, 0.91),
x2 = (0.10, 0.37), x3 = (0.26, 0.14), x4 = (0.85, 0.04), x5 = (0.50, 0.30), and
x6 = (0.30, 0.70), where the first four locations, x1, x2, x3, and x4, are assumed
to be unknown (Tak et al., 2018). 76

4.6 Scatterplots of posterior draws of each sensor location (rows) from four meth-
ods (column), where true coordinates are denoted by dashed lines. 79

v

4.7 Histograms of posterior draws of each first coordinate (rows) from four meth-
ods (column), overlaid by the marginal posterior density based on 20 mil-
lion draws from each method, where true coordinates are denoted by vertical
dashed lines. 79

5.1 Images taken by the Chandra X-ray Observatory. Source: NASA/CXC/SAO 82
5.2 Schematic of grazing incidence, X-Ray mirror. Source: NASA/CXC/D.Berry 86
5.3 Auriga constellation map by Torsten Bronger (2003). 87
5.4 Spectra of ObsID: 18358, with different orders from the same grating 89
5.5 Traceplots of T comparing the single chain method (left) and the multiple

chain method (right). 92
5.6 Traceplots of T1 comparing the single chain method (top) and the multiple

chain method (bottom) in the 2-T model. 93
5.7 Traceplot of T1 in the multiple chain method in the 2-T model, half starting

from the major mode and half from the minor mode. 94
5.8 Dotplot of T1 in the multiple chain method in the 2-T model from two potential

modes and their mirror images, overlaid by the traceplot of 20-th chain. . . . 94

vi

LIST OF TABLES

Page

3.1 Frequency table of T for 1500 iterations . 34
3.2 Summary results comparing the sample proportion (naive estimator) with the

MLE. 44
3.3 Summary results comparing the sample proportion (naive estimator) with the

MLE from heavily dependent samples (ρ = 0.75). 48

4.1 Part of the data on 42 specimens of radiata pine 63
4.2 Summary results of different methods . 65
4.3 Velocities (in 103 km/s) for galaxies in the corona borealis region 66
4.4 A summary of the prior settings for two competing models 68
4.5 Summaries of these four methods for the length of a chain (20,000 burn-in

period included), the average number of posterior density evaluations per
iteration NX

π as well as its breakdown information, and the acceptance rate. 77

5.1 xsphabs Parameters (Source: Sherpa help page, CXC/SHERPA/ AHELP) . 90
5.2 xsvapec Parameters (Source: Sherpa help page, CXC/SHERPA/ AHELP) . 90

vii

LIST OF ALGORITHMS

Page
1 Metropolis . 5
2 Metropolis-Hastings . 6
3 Component-Wise Metropolis-Hastings . 8
4 Gibbs Sampler . 10
5 Slice Sampling . 15
6 Hamiltonian Monte Carlo . 18
7 Simulated Annealing . 19
8 Simulated Tempering . 21
9 Reversible Jump MCMC . 22
10 Parallel Tempering . 24
11 The Multiple Chain Method . 27

viii

ACKNOWLEDGMENTS

I would like to extend my greatest gratitude to my advisor Yaming Yu for his tremendous
support throughout my graduate career, as it is impossible for me to reach the finishing line
and obtain my Ph.D. degree without his guidance. His attitude towards research and passion
for science have always been a source of my career aspiration. I am proud and fortunate to
work with Yaming in the past few years, which definitely benefits me for life.

I would also like to thank my dissertation committee members Michele Guindani and Weining
Shen for their help and comments on my thesis. Many thanks to Hal Stern and Shuang Zhao
for being part of my candidate committee and thanks to my academic advisor Zhaoxia Yu
for her suggestions on both academic and professional life during the first two years. Special
thanks go to David van Dyk and Vinay Kashyap, as they lead me to the to the wonderful
field of astrostatistics and provide guidance along with the astronomical project. I appreciate
all the support from members in CHASC group. My sincere gratitude also goes to all the
professors and teachers and staff members in Department of Statistics at UC Irvine, for their
help and trust in my graduate education.

In addition, I would like to thank all my fellow students and friends who have made my life
easier in UC Irvine. Thanks also go to my friends that are not physically in Irvine, for their
help and sharing feelings; particularly, among this special group of fellow friends, I would
like to express my gratitude to the following few in Mingwei Tang, Zhengyang Wang and
Yuanji Xie, as they voluntarily helped on the polish of my thesis.

Last but not least, I would like to thank my family that love and support me throughout my
life, without them I cannot even start the very first step, and now we have made it this far.

All the guidance, support and love make it possible for me to reach the end of this journey,
and I am forever grateful.

ix

CURRICULUM VITAE

Di Zhang

EDUCATION

Doctor of Philosophy in Statistics 2019
University of California, Irvine Irvine, California

Bachelor of Science in Statistics 2013
Nanjing University Nanjing, China

RESEARCH EXPERIENCE

Graduate Research Assistant 2013–2019
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2013–2019
University of California, Irvine Irvine, California

SOFTWARE

R, Python, Bash Script, LATEX

x

ABSTRACT OF THE DISSERTATION

A New Population-based MCMC Method

By

Di Zhang

Doctor of Philosophy in Statistics

University of California, Irvine, 2019

Associate Professor Yaming Yu, Chair

Spectral analysis in high-energy astrophysics typically requires sampling from difficult poste-

rior distributions, e.g., multimodal distributions, in a highly structured model with complex

data collection mechanisms. Markov chain Monte Carlo (MCMC) methods have been widely

explored in such tasks. However, traditional MCMC methods suffer from slow convergence

incurred by the local trap problem. In this thesis, we propose a general population-based

MCMC strategy, which is able to speed up convergence significantly. Specifically, we ini-

tialize multiple chains from dispersed starting values and perform a two-step jump with our

proposed between-chain jump. The novel between-chain jumping proposal tries to move to

the neighborhood of the iterate in another chain, which encourages full exploration of the

parameter space. As for the numerical illustration, we apply the proposed method to fit

thermal models to Capella data. The results indicate that our method is effective in two

aspects. First, it can be applied in Bayesian model selection to decide which mixture model

is more appropriate; secondly, it can be served as an exploratory step to identify modes.

The strength shown from the second aspect can help determine the importance of those

temperature components and decide upon the relative proportion among those modes. In

addition, we show that our method is also useful in other applications including Bayes factor

computation for Bayesian model selection, variance component estimation in mixed effect

models, and sensor network localization.

xi

Chapter 1

Outline

We introduce a new population-based MCMC method which is motivated by a problem in

astronomy where our goal is to sample from the posterior distribution in a highly structured

model without an excessive amount of parameters. The key issues lie in high time cost

during each iteration along with concerns on convergence. In addition, the posterior surface

is complicated and potentially multimodal as it comes from a mixture model. In order

to overcome the above obstacles, we propose the new method which is able to speed up

convergence significantly. The following chapters will first introduce the methodology and

illustrate how the method works with a few examples; eventually we proceed to the final

chapter which summarizes all the work, along with discussions on the pros and cons as well

as future work.

In Chapter 2, we provide the background information on MCMC methods led by Metropolis-

Hastings, Gibbs sampler and simulated tempering.

In Chapter 3, a new population-based MCMC method is proposed and developed to sample

from complicated posterior distributions with possibly multiple modes. First we explain the

mechanism of the proposed method, followed by an intuitive example so as to have a better

1

understanding. Secondly, we discuss more about the theoretical aspects of the method as

well as the general suggestions of how to apply the method.

In Chapter 4, we evaluate our method on several applications. To be more specific, we

apply the multiple chain method in computing Bayes factors for Bayesian model selection,

estimating variance components in mixed effect models, and sensor network localization.

In Chapter 5, we focus on the astronomical data, particularly to serve the study on spec-

tral analysis of X-ray astronomy. The model is highly structured with continuum, emis-

sion/absorption lines and the instrument response. It is potentially multimodal with a

complicated likelihood function that takes time to evaluate. We apply the multiple chain

method to estimate the parameters of interest, and find our method useful in two aspects.

First, it can still be applied in Bayesian model selection to decide which mixture model

is more appropriate; secondly, it can be served as an exploratory step to identify modes.

The latter feature can help determine the importance of those temperature components and

decide upon the relative proportion among those modes.

In Chapter 6, we summarize our work and discuss the limitations as well as prospective

future work of our proposed method.

2

Chapter 2

Background

In this chapter, we review a few different existing MCMC methods.

2.1 A Review of MCMC methods

In Bayesian statistical inference (Gelman et al., 1995), we aim to learn from the posterior

distribution of parameters of interest. For example, we seek inferences about a parameter,

to compute expectations or to make predictions. These types of posterior estimations often

involve computations of integrals. It is quite common that the integrals do not have analytical

forms thus we often employ a sampling approach.

Markov chain Monte Carlo (MCMC) method is a widely applied sampling approach devel-

oped from the Monte Carlo integration. Essentially, it is Monte Carlo integration using

Markov chains. Gilks et al. (1996) provides more details. The key idea is to construct a

Markov chain that has the desired distribution as its stationary distribution. After we ac-

quire samples from the chain, we can use them to draw inference about a parameter or to

compute expectations, etc. Some well known MCMC methods include Metropolis-Hastings

3

(Hastings 1970) and Gibbs sampler (Geman and Geman, 1987), which will be discussed later.

With advancing of computers more efficient and scalable MCMC algorithms are created

and widely applied. The development of computing power makes MCMC methods well

known by statisticians and we are able to use them to solve real world problems. Geyer

(2011) provides some examples in detail. In Section 2.2 and 2.3, we review two fundamental

MCMC algorithms, the Metropolis-Hastings algorithm and Gibbs sampler.

2.2 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a generalization of the Metropolis algorithm. Let us

start by describing the Metropolis algorithm proposed by Metropolis et al. (1953).

Suppose we want to sample from a probability distribution with the corresponding unnormal-

ized density p. For the Metropolis algorithm, it initializes a Markov chain at some arbitrary

point x0. At each iteration, the algorithm proposes a candidate point y given the current

state x, according to some proposal density q(·|x). Note that the proposal q here is sym-

metric, i.e., q(y|x) = q(x|y). A typical example would be Gaussian type random walk, in

other words, q(·|x) is a Gaussian distribution centered at x. And the term random walk here

means q satisfies that q(y|x) = q(|x− y|). Next, we calculate the acceptance ratio

r(y|x) =
p(y)

p(x)

and then accept the proposed point y with probability

α(y|x) = min (1,
p(y)

p(x)
).

The pseudocode for the Metropolis algorithm is shown in Algorithm 1. So after each iteration,

4

Algorithm 1 Metropolis

1: Initialize x0 ∼ π(x) // π(·) is the initial distribution
2: for t = 0 to T − 1 do
3: y ← X ∼ q(·|xt)
4: α← min (1, p(y)

p(xt)
)

5: u← U ∼ U [0, 1]
6: if u ≤ α then
7: xt+1 ← y
8: else
9: xt+1 ← xt

10: end if
11: end for

the current state could be updated with certain probability. To be specific, if p(y) > p(xt),

the chain will move to y for sure, otherwise it will move to y with probability p(y)
p(xt)

. In

other words, the uphill move always gets accepted while the downhill move is accepted

stochastically. This acceptance-rejection mechanism is the general approach for MCMC

algorithms. The transition kernel for the Metropolis algorithm is

T (xt+1|xt) = q(xt+1|xt)α(xt+1|xt) + I(xt+1 = xt)

∫
q(y|xt)(1− α(y|xt))dy, (2.1)

where I(·) denotes the indicator function and α is the acceptance probability. In order to

ensure that the Markov chain converges to the stationary distribution p, we have to show that

the Metropolis update is reversible with respect to p, in other words, the detailed balance

condition (2.2) is fulfilled:

p(xt)T (xt+1|xt) = p(xt+1)T (xt|xt+1). (2.2)

It is trivial that the equation holds if xt+1 = xt, in the cases that either y is rejected or y

equals to xt, which is very rare. If xt+1 6= xt, we drop the second term in Equation 2.1 and

5

Algorithm 2 Metropolis-Hastings

1: Initialize x0 ∼ π(x) // π(·) is the initial distribution
2: for t = 0 to T − 1 do
3: y ← X ∼ q(·|xt)
4: α← min (1, p(y)q(xt|y)

p(xt)q(y|xt))

5: u← U ∼ U [0, 1]
6: if u ≤ α then
7: xt+1 ← y
8: else
9: xt+1 ← xt

10: end if
11: end for

it becomes:

T (xt+1|xt) = q(xt+1|xt)α(xt+1|xt) = q(xt+1|xt) min (1,
p(xt+1)

p(xt)
). (2.3)

Note that q(·|·) is symmetric, Equation 2.2 is then satisfied. Thus, once we move to a state

that comes from the target distribution p, all further draws can be safely treated as coming

from that distribution.

However, it is not always very efficient to use the symmetric proposals. For example, if

the target distribution is defined on [0,∞), using an asymmetric proposal might be more

appropriate. In this situation, it is more desirable to have the proposal distribution that

fits the support of the target distribution. In such cases, the Metropolis-Hastings algorithm

comes into play and we provide the pseudocode in Algorithm 2 to compare. We no longer

have the constraint that the proposal distribution has to be symmetric. Compared with

Algorithm 1, Hastings changed the acceptance ratio r to ensure the algorithm would work.

In other words, the Metropolis-Hastings algorithm satisfies the detailed balance condition.

To see how the above statement is valid, we need to prove Equation 2.2. Recall that Equation

2.1 is true for Metropolis-Hastings and we follow the exactly same steps as in the previous

6

page. The only difference is that Equation 2.3 now has the form:

T (xt+1|xt) = q(xt+1|xt)α(xt+1|xt) = q(xt+1|xt) min (1,
p(xt+1)q(xt|xt+1)

p(xt)q(xt+1|xt)
)

= min (q(xt+1|xt),
p(xt+1)q(xt|xt+1)

p(xt)
).

Substituting T (xt+1|xt) and T (xt|xt+1) into Equation 2.2 with the above form, we can see

that both sides of Equation 2.2 now equal to min (p(xt)q(xt+1|xt), p(xt+1)q(xt|xt+1)). Thus

the Metropolis-Hastings transition kernel satisfies detailed balance, and p(·) is the invariant

distribution of T (·|x). Once the chain passes through the initial burn-in period that removes

the dependence on the starting value, all the subsequent draws will come from p(·).

2.3 Gibbs Sampler

In Section 2.2, we present the classic Metropolis-Hastings algorithm. One issue with this

algorithm is that as the number of dimensions gets higher, it becomes harder to find the

appropriate proposal distribution. Since the behavior of the target distribution for each

dimension varies, the proposal distribution has to match the behavior in all dimensions. For

example, in a random walk type of Metropolis algorithm, as the dimension increases, the

acceptance rate drops dramatically, which is known as the curse of dimensionality (Robert,

2014). In such a situation, instead of updating all the dimensions at once, we can divide the

dimensions into blocks and update sequentially, which is known as the block-wise Metropolis-

Hastings. That is to say, if x ∼ p(·) is defined over a D-dimensional space, we can split x into

k small blocks {x[1], x[2], ..., x[k]}, such as x = (x[1], x[2], ..., x[k]). Ideally we hope that within

the same block, components are correlated and they are as independent as possible between

blocks. Then we can update each x[d] at one time, holding all other blocks fixed. This method

ignores the correlations of components between blocks and enables specialized sampling

7

Algorithm 3 Component-Wise Metropolis-Hastings

1: Initialize x(0) ∼ π(x) // π(·) is the initial distribution
2: for t = 0 to T − 1 do
3: for d = 1 to D do
4: y ← Xd ∼ qd(·|x(t)

d , x
(t)
−d)

5: α← min (1,
p(y,x

(t)
−d)qd(x

(t)
d |y,x

(t)
−d)

p(x
(t)
d ,x

(t)
−d)qd(y|x(t)d ,x

(t)
−d)

)

6: u← U ∼ U [0, 1]
7: if u ≤ α then
8: x

(t+1)
d ← y

9: else
10: x

(t+1)
d ← x

(t)
d

11: end if
12: end for
13: end for

strategy for different blocks. If each block contains exactly one component, this becomes

a component-wise update procedure. We now only need to work on a univariate case, one

component at a time. Now x = (x1, x2, . . . , xD) and we let x−d = (x1, . . . , xd−1, xd+1, . . . , xD),

i.e., all components except xd. Then {xd, x−d} contains all components of x and we also let

x
(t)
−d = (x

(t+1)
1 , . . . , x

(t+1)
d−1 , x

(t)
d+1, . . . , x

(t)
D), the fixed components when updating xd at the t-th

iteration. The pseudocode for component-wise Metropolis-Hastings is outlined in Algorithm

3. Note that the specialized proposal distribution qd(·|·) here is a univariate function of

xd. It may depend on the most recent values of any other components of x. While we

are updating the d-th dimension, we keep all other dimensions fixed at the current values.

The subscript (t + 1) in the definition of x
(t)
−d reveals that the corresponding components in

dimension 1 up to d − 1 are newly updated whereas the others are kept at values at their

previous iterations. Also note that in line 5 of Algorithm 3, we can further simplify the form

of the acceptance rate α because of the component-wise update. Let p(·|x−d) stand for the

8

conditional distribution of xd under p(·), we have

α = min (1,
p(y, x

(t)
−d)qd(x

(t)
d |y, x

(t)
−d)

p(x
(t)
d , x

(t)
−d)qd(y|x

(t)
d , x

(t)
−d)

)

= min (1,
p(y|x(t)

−d)p(x
(t)
−d)qd(x

(t)
d |y, x

(t)
−d)

p(x
(t)
d |x

(t)
−d)p(x

(t)
−d)qd(y|x

(t)
d , x

(t)
−d)

) (2.4)

= min (1,
p(y|x(t)

−d)qd(x
(t)
d |y, x

(t)
−d)

p(x
(t)
d |x

(t)
−d)qd(y|x

(t)
d , x

(t)
−d)

). (2.5)

Note that in Equation 2.4 the term p(x
(t)
−d), the marginal distribution of x

(t)
−d, cancels out

because it does not change during this update. The simplified form of α (Equation 2.5)

maybe more convenient to compute. For instance, it simplifies the computation if the target

distribution p(·) is intrinsically defined by the form of conditional distributions, as is often

the case in Bayesian hierarchical models. Sometimes the conditional distribution of each

component may be known and not hard to sample from, which leads to a special case of

the component-wise Metropolis-Hastings algorithm, Gibbs sampler. It was first described by

Geman and Geman (1987) and then introduced to the statistical community by Gelfand and

Smith (1990). As just stated, the method is applicable when the conditional distribution of

each component has an analytical form, conditioning on all other components. This allows

us to update each component iteratively. Specifically, we set the conditional distribution

as the proposal distribution, i.e., qd(·|x) = p(·|x−d), when updating the d-th component.

Putting this back into Equation 2.5, we get

α = min (1,
p(y|x(t)

−d)qd(x
(t)
d |y, x

(t)
−d)

p(x
(t)
d |x

(t)
−d)qd(y|x

(t)
d , x

(t)
−d)

).

= min (1,
p(y|x(t)

−d)p(x
(t)
d |x

(t)
−d)

p(x
(t)
d |x

(t)
−d)p(y|x

(t)
−d)

)

= min (1, 1)

= 1,

9

which shows that the proposals are accepted for sure. By decomposing the target distribu-

tion into full conditionals that are tractable, the method attempts to alleviate the problem

with high dimensional targets. The pseudocode for Gibbs sampler is outlined below. Again,

p(·|x−d) denotes the conditional distribution of xd under p(·) and while we are updating the

d-th dimension, we keep all other dimensions fixed at the most recent values.

Algorithm 4 Gibbs Sampler

1: Initialize x(0) ∼ π(x) // π(·) is the initial distribution

2: for t = 0 to T − 1 do

3: for d = 1 to D do

4: x
(t+1)
d ← Xd ∼ p(·|x(t)

−d)

5: end for

6: end for

So far we have briefly introduced the Metropolis-Hastings algorithm and Gibbs sampler.

Essentially, Gibbs sampler is a special Metropolis-Hastings algorithm. It is a hybrid type of

algorithm, where in each step the method has a Metropolis-Hastings jumping kernel. The

algorithm can be very helpful in certain scenarios, e.g., in Bayesian hierarchical models. The

conditionals are in closed forms whereas the multidimensional target distribution as a whole

is hard to handle. A famous example would be the Ising model, where the joint distribution

has 2n possible states but each conditional is just a coin flipper (Geman and Geman, 1987).

The conditional-independence structure can be utilized to simplify the calculation of the

full conditionals at each step, especially if these are well-known distributions like Gamma,

Poisson or Binomial. However, if components are highly correlated, Gibbs sampler can be dif-

ficult to move around efficiently. It is hard to update one component without simultaneously

changing others. Metropolis-Hastings is a more general method. For instance, in Bayesian

model selection problems, which is introduced in Chapter 3, different candidate models may

10

have parameter spaces of different dimensions. In such a situation, Gibbs sampler cannot be

applied. Like Gibbs sampler, Metropolis-Hastings also suffers from the convergence problem.

Section 2.4 describes the case of the Metropolis-Hastings algorithm.

2.4 Convergence of the Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is widely used to construct a Markov chain with some

stationary distribution. However, sometimes the algorithm is slow to converge. Two variables

that significantly affect convergence are the starting value and the proposal distribution.

The choice of the starting value will affect the length of the burn-in period, thus affect the

efficiency of the convergence. If the rate of convergence is not excessively slow, one possible

solution is to simply run the chain longer. As long as the chain is irreducible, by the Ergodic

Theorem it will eventually converge (Roberts et al., 2004). The other variable to specify is

the proposal distribution, that will greatly affect the speed of convergence. The choice of

the proposal distribution is much more crucial, which requires fine tuning. For example, in

random walk type Metropolis, the most popular proposals include the multivariate normal

and multivariate t distributions. Even the type of the proposal distribution has been selected,

we still need to carefully decide the scale of the proposal distributions. In multivariate normal

case, we need to consider the scale of the variance for each parameter. This determines the

size of a potential move, also known as the step size. For the random walk type Metropolis

algorithm, step size is a crucial parameter. An inappropriate step size will result in a slow

mixing Markov chain. The term mixing here is to describe how well the chain explores the

posterior sample space. We use Figure 2.1 from Hartig (2011) to illustrate. It represents

two random walk type of Metropolis situations and perfectly shows the trade-off between

the step size and the acceptance rate. In the upper panel, suppose our proposal distribution

is narrow compared to the target distribution. Each step it will only move slightly away

11

Figure 2.1: Problems in the proposal distribution and the corresponding traceplots (Hartig,
2011).

from the current iteration. Hence the successive iterations are very heavily correlated. Even

though the chain has a high acceptance rate, it has difficulty moving around. The traceplot

shows tiny vacillation and indicates a bad mixing, as the chain explores the parameter space

very slowly. In the lower panel, the proposal distribution is too wide compared to the target

distribution, and the proposed moves are highly likely to be rejected because typically they

land in low density regions. Hence the acceptance rate is near zero and most of the time

the chain stays where it was. This simple example highlights the importance of choosing

a good proposal distribution, especially the step size in the random walk type Metropolis

proposal. Ideally one would like to choose a step size so that the acceptance rate is not

too extreme. In these random walk Metropolis algorithms, Roberts et al. (1997) suggests

an asymptotically optimal value of around 0.23 based on multivariate normal targets with

multivariate normal proposals. Note that in this unimodal case (Figure 2.1), we can adjust

the step size to get a reasonable acceptance rate. It could be an issue even in unimodal

cases, and the issue becomes more exasperate when we have multimodal distributions. For

multimodal cases, poor convergence can happen if chains are near reducible. For example,

12

the Metropolis-Hastings algorithm has difficulties exploring the sample space if modes are

well separated. The chain is easy to get stuck at the local mode. This is known as the local

trap problem due to the inability of the Metropolis-Hastings algorithm to step over valley of

low density and move to another mode. The local trap problem needs to be addressed and

we are motivated to alleviate the problem and to design more efficient Metropolis-Hastings

algorithms.

Our goal is to make the Markov chain to converge faster, and we have discussed possible

remedies to improve the convergence. To sum up, if the chain converges slow, we may run it

longer; if really slow, we may tune the algorithm to make it converge faster. For instance, we

can adjust the scale of the proposal distribution in random walk type Metropolis algorithms.

However, if the chain converges super slow, we may have to alter the algorithm in a serious

way. For example, we can do some reparameterization or add some auxiliary variable, to

encourage jumps between modes. See Kass et al. (1998). In Section 2.5 we discuss sev-

eral new strategies for improving convergence including reparameterization, slice sampling,

Hamiltonian Monte Carlo, simulated annealing, simulated tempering and reversible jump

MCMC.

2.5 Strategies for Improving Convergence

2.5.1 Reparameterization

Both Metropolis-Hastings and Gibbs sampler can be sensitive to the choice of the model

parameterization. Using a different parameterization may help to decorrelate parameters or

the transformed posterior may be easier to sample from. The former, for example, Gelfand

et al. (1995) demonstrate the hierarchical centering approach that aims to reduce the corre-

lations between parameters in the joint posterior distribution; and the latter, for example,

13

to deal with a target distribution that is heavily right-skewed, taking the log of a parameter

can help so as to get rid of the fat tails. Such methods are important in the sense that they

are both straightforward and effective. Another classic example is illustrated by Gilks and

Roberts (1996), where we only need to do a simple linear transformation. The posterior

becomes roughly spherical and the Metropolis algorithm works. For more complex reparam-

eterization strategies, one way is to add auxiliary variables, e.g., by putting jumps between

different regions of the posterior. We give a detailed introduction in Section 2.5.2.

2.5.2 Auxiliary Variable Methods

Recall that in Gibbs sampler, we manage to sample from a lower dimensional space by

updating one parameter at a time. Sometimes, however, we can reverse the idea and sample

from a higher dimensional space by introducing auxiliary variables. Auxiliary variables are

additional variables that are not in the original model but are introduced to help the chain

move more rapidly towards the target distribution. While the original target distribution

is hard to sample from, exploring the joint space may be more efficient. In other words,

suppose we want to sample from p(x) and we introduce an auxiliary variable y such that

p(x) =
∫
p(x, y)dy, where p(x, y) is the joint distribution of (x, y). We can also specify

the conditional distribution p(y|x) and then p(x, y) = p(x)p(y|x). If p(x|y) and p(y|x) are

easy to sample from, we can construct a Markov chain on (x, y) via e.g., Gibbs sampler,

and alternately update x and y. In this way we make it easier to navigate p(x, y), and

hence p(x). We discard the auxiliary variable y and only the original variable x is retained

in the Monte Carlo samples. Another family of auxiliary variable methods is to construct

a joint distribution on (x, y) such that the target distribution p(x) equals the conditional

distribution p(x|y = y∗), i.e., on some set of values y∗ of y. An example that acts in this

manner is simulated tempering and is discussed in Section 2.5.3. Before that, we first discuss

two methods, slice sampling and Hamiltonian Monte Carlo, that add auxiliary variables to

14

facilitate sampling.

Slice Sampling

Slice sampling is a family of auxiliary variable methods that adopts the principle of the

acceptance-rejection algorithm. That is, to sample from a distribution, it is equivalent to

sample uniformly from the region under that target distribution. Suppose we want to sample

from p(x), we introduce an auxiliary variable y that is uniformly distributed on the interval

(0, p(x)) conditioning on x. Let U = {(x, y) : 0 < y < p(x)} and now the joint distribution

p(x, y) is uniformly distributed over U :

p(x, y) = p(x)p(y|x) ∝


1, 0 < y < p(x),

0, otherwise.

The introduction of auxiliary variable y allows us to sample under the density function plot

p(x). We can use Gibbs sampler to get samples of (x, y) jointly and then simply discard y.

The pseudocode for slice sampling is outlined below.

Algorithm 5 Slice Sampling

1: Initialize x0 ∼ π(x) // π(·) is the initial distribution

2: for t = 0 to T − 1 do

3: Sample yt+1 from U(0, p(xt))

4: Sample xt+1 uniformly from the slice {x : f(x) > yt+1}

5: end for

The algorithm updates y and then x alternately from the conditional distributions, where x

can be multiple dimensional. At each iteration, the auxiliary variable y defines a horizontal

slice of the distribution, and next x is sampled uniformly over the union of intervals that

15

comprises this slice (Neal, 2003). Compared to the Metropolis methods, slice sampling has

the advantage of no parameter tuning. It automatically adapts to the local characteristics

of the target distribution so we do not need to tune the proposal distribution or the step

size manually. Thus slice sampling is a good choice if we do not have much knowledge of

the target distribution. Like Gibbs sampler, slice sampling has no rejections and can suffer

from the serial correlation. In contrast to Gibbs sampler, it does not require the conditional

distributions to be in analytical from. Slice sampling is useful to sample from multimodal

distributions, if modes are not separated by large valleys of low probability, since it is free to

move between modes within a slice. However, one problem of slice sampling is that sampling

uniformly from the region {x : f(x) > y} can be hard or unfeasible. We either need to

inverse the target distribution or to find appropriate estimates. Next we briefly introduce

Hamiltonian Monte Carlo, which takes advantage of auxiliary variables to generate new

proposals.

Hamiltonian Monte Carlo

In high dimensions, the Metropolis-Hastings method and Gibbs sampler are often inefficient

due to random walk type proposals. To reduce the random walk behavior that leads to slow

mixing, Duane et al. (1987) propose Hamiltonian Monte Carlo, an MCMC method that uti-

lizes gradient information to better explore the target distribution p(x). So far we have seen

target distributions only being used to evaluate the density, but they are often differentiable

and the gradients can be helpful in guiding the updates of samples. Hamiltonian Monte

Carlo introduces an auxiliary variable y, a vector of momentum variables with the same

length as x. This allows us to simulate Hamiltonian dynamics as the Metropolis proposal

distribution. We have the total energy or Hamiltonian function H(x, y) = U(x) +K(y) and

it is related to the joint distribution p(x, y) through the canonical distribution 1
Z
e
−H(·)
T with

16

T = 1 :

p(x, y) ∝ e−H(x,y)

∝ e−(U(x)+K(y))

∝ e−U(x)e−K(y),

where U(·) denotes the potential energy of location x and K(·) denotes the kinetic energy

of momentum y. Since p(x, y) is decomposed into two parts, we see that x and y are

independent. Therefore we can use arbitrary distribution for x and one convenient option

is a standard normal distribution so as the resulting density is exactly the quadratic kinetic

energy with unit mass, i.e., K(y) = yTy/2. For the potential energy function U(·), we usually

define it as the negative logarithm of the target distribution p(·), i.e., U(x) = − log p(x). We

implement the leapfrog method to update the pair of (x, y) jointly in the augmented space

and the momentum variable y will guide the move of the target variable x. Let ∇U(·) be

the gradient of the potential energy function U(·), L be the number of leapfrog steps and

δ be the step size. The pseudocode for Hamiltonian Monte Carlo is outlined in Algorithm

6. After we get samples from the Markov chain we can just simply discard the momentum

variable y. The advantage of Hamiltonian Monte Carlo over Metropolis-Hastings is that the

draws are less correlated and more efficient. The disadvantage is that tuning L and δ can be

very difficult. See Neal et al. (2011). Besides, the method struggles with multimodality. In

Section 2.5.3, we introduce a family of MCMC methods that aims to sample from multimodal

distributions.

2.5.3 Annealing Method

Annealing is a process to heat the metal and then to cool it down slowly to become hard.

In a thermodynamic system, to minimize the free energy, we want to slowly decrease the

17

Algorithm 6 Hamiltonian Monte Carlo

1: Initialize x0 ∼ π(x) // π(·) is the initial distribution
2: for t = 0 to T − 1 do
3: yt ← N(0, I)
4: x∗ ← xt, y

∗ ← yt
5: for l = 1 to L do
6: y∗ ← y∗ − δ

2
∇U(x∗)

7: x∗ ← x∗ + δy∗

8: y∗ ← y∗ − δ
2
∇U(x∗)

9: end for // leapfrog method
10: α← min (1, eH(xt,yt)−H(x∗,y∗))
11: u← U ∼ U [0, 1]
12: if u ≤ α then
13: xt+1 ← x∗

14: else
15: xt+1 ← xt
16: end if
17: end for

temperature of the system. When the temperature is high, random kinematic fluctuation

is strong and the system can be trapped in local minima. By lowering the temperature

slowly, we are able to decrease the defects in the metal and reach the minimum system

energy. Inspired by this, the annealing algorithm is an optimization method that mimics such

dynamics. It was first proposed by Metropolis et al. (1953) and then further developed by

Kirkpatrick et al. (1983). Specifically, we briefly describe simulated annealing and simulated

tempering, and leave the topic of parallel tempering in Section 2.6.

Simulated Annealing

Simulated annealing combines the idea of the thermal cooling process into the Metropolis

algorithm. Suppose p(x) is denoted in terms of the energy function E(x):

p(x) ∝ e−E(x)

18

Algorithm 7 Simulated Annealing

1: Initialize x0 ∼ π(x) // π(·) is the initial distribution
2: for t = 0 to N − 1 do
3: T ← A(t

N
) // A(·) is the annealing schedule

4: y ← X ∼ q(·|xt)
5: α← min (1, pT (y)

pT (xt)
)

6: u← U ∼ U [0, 1]
7: if u ≤ α then
8: xt+1 ← y
9: else

10: xt+1 ← xt
11: end if
12: end for

and we define a modified distribution pT (x) that

pT (x) ∝ e−
E(x)
T .

where the exponent is proportional to the inverse temperature 1
T

. The Metropolis algorithm

is then applied on pT (x) instead. We initialize the temperature parameter T at a high value

and gradually decrease it to 1. When T = 1, pT (x) corresponds to the target distribution

p(x). When T is high, pT (x) is flat so it is easy to access anywhere in the support. In other

words, the chain can escape from local modes when the temperature is high enough. As the

temperature slowly decreases at each iteration, it becomes possible to communicate between

high probability regions for the target distribution. In cases where E(x) can be decomposed

into two terms, i.e., E(x) = E1(x) +E2(x), we have a refined simulated annealing algorithm

in which pT (x) has the form

pT (x) ∝ e−E1(x)−E2(x)
T ,

where E1(x) has nice properties such as a convex function of x and the more nasty term E2(x)

is controlled by the temperature T . The pseudocode for the simulated annealing algorithm is

outlined in Algorithm 7. By properly handling the temperature parameter T, simulated an-

19

nealing provides a way to sample from a potentially multimodal distribution p(x). However,

we can see the method as described above does not guarantee exactly sampling from the

target distribution. Moreover, Brown and Head-Gordon (2003) suggest that the algorithm

can still get stuck in local optima even the cooling is carefully scheduled. To remedy this,

Marinari and Parisi (1992), Geyer and Thompson (1995) proposed the simulated tempering

algorithm that treats T as an augmented random variable.

Simulated Tempering

In simulated tempering, the temperature T is no longer in a decreasing order of cooling down.

Instead, it is introduced as an auxiliary random variable and the algorithm will sample x

and T jointly. Since the purpose is to sample from p(x), we form a temperature ladder

T1 > T2 > · · · > Tm = 1 and define pi(x) as

pi(x) =
1

Zi
e
−E(x)

Ti , i = 1, 2, . . . ,m,

where Zi is the normalizing constant and pm(x) = p(x) is the target distribution. We perform

a random walk on the temperature ladder {Ti}mi and allow the current temperature go to

nearest neighbors. Specifically, let A(j|i) be the transition probability from Ti to Tj, we have

A(2|1) = A(m−1|m) = 1 and A(i+1|i) = A(i−1|i) = 0.5 for 1 < i < m, according to Geyer

and Thompson (1995). We denote it as the temperature level at the t-th iteration, start with

i0 = 1 and alternatively update x and T in a Gibbs sampler fashion. The pseudocode for the

simulated tempering algorithm is outlined in Algorithm 8. By enabling pacing up and down

between different temperature levels, simulated tempering is successful to locate multiple

modes for a multimodal distribution. As the temperature goes up, the chain moves freely to

explore the sample space. As it goes down, the chain converges to the mode. The algorithm

outperforms the simulated annealing method in terms of the ability to escape from local

20

Algorithm 8 Simulated Tempering

1: Initialize (i0, x0) ∼ π(·) // π(·) is the initial distribution
2: for t = 0 to N − 1 do
3: y ← X ∼ q(·|xt, it)
4: α← min (1,

pit (y)q(xt|y,it)
pit (xt)q(y|xt,it)

)

5: u← U ∼ U [0, 1]
6: if u ≤ α then
7: xt+1 ← y
8: else
9: xt+1 ← xt

10: end if
11: j ← A(·|it) // A(·|·) is the temperature transition operator

12: β ← min (1,
c(j)pj(xt+1)A(it|j)
c(it)pit (xt+1)A(j|it)) // c(·) is the tunable constant

13: v ← U ∼ U [0, 1]
14: if v ≤ β then
15: it+1 ← j
16: else
17: it+1 ← ii
18: end if
19: end for

optima because of the varying temperature. On the other end, since the system is moving

up and down within the temperature ladder and we only need the samples with T = 1,

simulated tempering may be slow and inefficient (Li et al., 2004). In addition, estimation

of the normalizing constants Z ′is can also be computationally expensive. Regarding the

computational cost, we introduce an efficient variant, the parallel tempering method, in

Section 2.6 after we introduce yet another algorithm called reversible jump MCMC.

2.5.4 Reversible Jump MCMC

In this section we introduce another type of MCMC method that is designed to sample

from complicated distributions, reversible jump MCMC. It is proposed by Green (1995) as

an extension to the general Metropolis–Hastings algorithm. The method is very useful in

cases where the dimension of the sample space may vary from one iteration to the next in

21

Algorithm 9 Reversible Jump MCMC

1: Initialize (i0, x0) ∼ π(·) // π(·) is the initial distribution
2: for t = 0 to T − 1 do
3: j ← R ∼ r(·|it)
4: u← Q ∼ qit,j(·)
5: (x′, u′)← hit,j(xt, u)

6: α← min (1,
p(j,x′|D)r(it|j)qit,j(x

′,u′)

p(it,xt|D)r(j|it)qj,it (x,u)
| det (

∂hi,j(x,u)

∂(x,u)
) |)

7: v ← U ∼ U [0, 1]
8: if v ≤ α then
9: (it+1, xt+1)← (j, x′)

10: else
11: (it+1, xt+1)← (it, xt)
12: end if
13: end for

the Markov chain. For example, in Bayesian model selection, we are comparing multiple

models and are often interested in conducting the joint inference. We describe a concrete

example in Chapter 4. The method is described as follows. We observe data D and have

m candidate models {Mi}mi . Let θi and ni denote the model parameters and the model

dimension respectively for the i-th model, i.e., dim(θi) = ni for i = 1, 2, . . . ,m. Note that

the models need not have the same dimensions. The joint posterior of (i, θi) is given by the

product of the data likelihood l(D|i, θi) and the joint prior p(i, θi):

p(i, θi|D) ∝ p(i, θi)l(D|i, θi) ∝ p(i)p(θi|i)l(x|i, θi), (2.6)

where p(i) denotes the prior of model i and p(θi|i) denotes the prior of θi under Mi. Equation

2.6 is the target distribution of the Markov chain. The reversible jump MCMC method

samples over the joint state space
⋃m
i=1({i}×Rni) and the goal is to be able to move among

different models. Remember that they may no have the same dimensions, so to successfully

perform trans-dimensional moves, we introduce an auxiliary random variable u that is used

for dimension matching. This is necessary to construct a reversible chain. So after proposing

a new model j given the current model i with probability r(j|i), we generate u from qi,j(·)

to match the dimension. Then the current state (x, u) under model i is mapped to the

22

proposed new state (x′, u′) under model j through a deterministic bijection function hi,j(·).

And this proposal is updated according to the Metropolis-Hastings rule. If we consider the

reverse jump from x′ to x, u′ is generated from qj,i(·) and the mapping from (x′, u′) to (x, u) is

through hj,i(·), the inverse function of hi,j(·). The pseudocode for the reversible jump MCMC

algorithm is outlined in Algorithm 9. It is widely used in trans-dimensional sampling but

choosing the efficient proposals is very challenging. In Section 2.6 we introduce a family

of MCMC method that can be used in complicated problems including trans-dimensional

sampling.

2.6 Population-Based MCMC Methods

An alternative approach to alleviate the local-trap problem is known as the population-

based MCMC method. The idea is that instead of running a single Markov chain, we run a

population of chains in parallel. The corresponding stationary distributions can be different

but are related. The feature is that information exchange among parallel chains enables the

target chains to learn from sampling history and to adjust the sampling distribution, so as

to improve the convergence of the target chains. Examples of this type of method includes

adaptive direction sampling, parallel tempering and so on. Following the previous section of

annealing methods, we now briefly describe parallel tempering.

Adopting the same settings in Section 2.5.3, we have p(x) as the target distribution over

a state space X . Formulated by Geyer (1991), the parallel tempering method simulates m

parallel chains at different temperature levels {Ti}mi . The method can also be interpreted as

constructing a single Markov chain on the product space Xm, where the target distribution

is
∏m

i=1 pi(x). That is, we have a temperature ladder T1 > T2 > · · · > Tm = 1 and the

method simulates a sequence of the corresponding distributions

pi(x) ∝ e
−E(x)

Ti , i = 1, 2, . . . ,m,

23

Algorithm 10 Parallel Tempering

1: Initialize x0
1, ...x

0
m ∼ π(·) // π(·) is the initial distribution

2: for t = 0 to N − 1 do
3: for i = 1 to m do
4: x← X ∼ q(·|xti)
5: α← min (1,

pi(y)q(xti|y)

pi(xti)q(y|xti)
)

6: u← U ∼ U [0, 1]
7: if u ≤ α then
8: xt+1

i ← x
9: else

10: xt+1
i ← xti

11: end if
12: end for // within-chain update
13: for some i′s do
14: j ← S ∼ A(·|i)
15: β ← min (1, e

(H(xt+1
i)−H(xt+1

j))(1
Ti
− 1
Tj

)
)

16: v ← U ∼ U [0, 1]
17: if v ≤ β then
18: xt+1

i
⇀↽ xt+1

j

19: end if
20: end for // state swapping update
21: end for

where pm(x) = p(x) is the target distribution. Interactions are made by swapping states

between adjacent chains to improve mixing. Let A(j|i) be the probability that chain j is

proposed to exchange state with chain i, we have A(2|1) = A(m−1|m) = 1 and A(i+ 1|i) =

A(i − 1|i) = 0.5 for 1 < i < m. Similar to simulated tempering, the swap is usually

proposed between neighbors as their target distributions are less different thus the proposal

is less likely to be rejected. The Metropolis-Hastings rule is applied to the state swapping

operation to ensure the chains converge to the desired distributions. The pseudocode for

the parallel tempering algorithm is outlined in Algorithm 10. By allowing state swaps, the

target chain is able to visit states explored by those high temperature chains. The parallel

tempering method is a modification to the standard Metropolis-Hastings algorithm and

proves to be very powerful in sampling complicated distribution. Compared with simulated

annealing, parallel tempering is an exact method. Compared with simulated tempering,

24

parallel tempering does not require estimates of the normalization constants. However, the

method struggles if modes are completely separate in the target distribution. They cannot

communicate with each other even raising the temperature. To overcome the problem, we

propose a novel population-based MCMC method in Chapter 3. In addition, we present

more aspects of the family of the population-based MCMC methods.

25

Chapter 3

A New Multiple Chain Method

As we have introduced and reviewed the existing MCMC methods in the previous chapter,

we now describe our proposed population-based MCMC method, the multiple chain method.

3.1 Method Introduction

We propose a novel population-based MCMC method for sampling from complicated multi-

modal distributions, which is particularly challenging when modes are completely separate,

i.e., modes cannot communicate with each other. Based on the Metropolis type algorithm,

we construct a multiple chain method by proposing a novel between-chain jump to encourage

full exploration of the parameter space. To be specific, after we initialize multiple chains

from dispersed starting values, we perform a two-step jump with the usual within-chain

jump and our proposed between-chain jump. The intuition behind our method is that, by

running multiple chains exploring different modes and enabling between-chain jumps, each

chain jumps between modes efficiently and explores the entire parameter space. As a result,

we are able to sample from complicated multimodal distributions with completely separate

26

Algorithm 11 The Multiple Chain Method

Input: Current state xt = (xt1, . . . , x
t
m), within-chain jumping kernel q, between-chain jump-

ing kernel g0

Output: Next state xt+1 = (xt+1
1 , . . . , xt+1

m)
1: for i = 1 to m do
2: x← X ∼ q(·|xti)
3: α← min (1, p(x)

p(xti)
)

4: u← U ∼ U [0, 1]
5: if u ≤ α then
6: xti ← x
7: end if // within-chain jump
8: j ← S ∼ {1, 2, ...,m}\{i}
9: y ← Y ∼ g0(y|xtj)

10: β ← min (1, p(y)
p(xti)

gi(x
t
i)

gi(y)
)

11: v ← U ∼ U [0, 1]
12: if v ≤ β then
13: xt+1

i ← y
14: else
15: xt+1

i ← xti
16: end if // between-chain jump
17: end for
18: return xt+1

1 , . . . , xt+1
m

modes. Our method has two highlighted features: first, we introduce a new proposal func-

tion in between-chain jump, i.e., the average of densities of the proposed point evaluated at

all other chains; secondly, our method allows trans-dimensional moves, which is beneficial

since samples may not have the same dimensions, as further illustrated by the Bayes factor

example in Chapter 4.

As an illustration, consider a multimodal distribution with the corresponding unnormalized

density p(·), whose modes are completely separate. Our method is able to sample from p(·).

Basically, we run m Markov chains in parallel for N iterations. Note that our method does

not aim at finding new modes. Therefore, we initialize the starting state x0 = (x0
1, . . . , x

0
m)

based upon the principle that there is at least one chain near each mode, and update the

state iteratively with predefined within-chain jumping kernel q and between-chain jumping

kernel g0. Algorithm 11 illustrates one iteration of our proposed method. In detail, at each

27

iteration, we propose a two-step jump from the current state: a within-chain jump followed

by a between-chain jump. As shown by lines 2 − 7 of Algorithm 11, in the within-chain

jump, a candidate point is proposed from the neighborhood of the current state, which helps

the chain explore the local mode. On the contrary, in the following between-chain jump

described by lines 8 − 16, a candidate point is proposed from the neighborhood of another

chain’s current state, which allows the chain to jump between modes and capture the global

structure. Specifically, when updating the i-th chain, we generate a proposal of evaluating

the average density at all chains except the current chain:

gi(y) =
1

m− 1

∑
k 6=i

g0(y|xtk). (3.1)

As our method is a Metropolis-Hastings algorithm, we need to work out the Metropolis-

Hastings rule. Since we are running m parallel chains and they have the same target density

p(·), the target distribution here is actually a product of the target density for individual

chains, i.e.,
∏m

i=1 p(xi) = p(xi)
∏

j 6=i p(xj). Note that we keep all other iterates fixed at

their current values when updating xi,
∏

j 6=i p(xj) thus cancels out in the acceptance ratio

evaluation at line 10 of Algorithm 11, leaving only one term p(y)
p(xi)

. The proposal distribution

g(·), as we just mentioned above, is to keep other iterates unchanged while the current chain

moves to a random sample from the neighbors of other iterates. Therefore, the form of

such proposal distribution is a mixture of densities of g0(·) as is shown in Equation 3.1.

The example of g0(·) here can be a univariate normal random walk type kernel, or much

more general if necessary. Such specific proposal and the Metropolis-Hastings algorithm

guarantee the validity of our algorithm with the resulting Metropolis-Hastings acceptance

ratio in p(y)
p(xi)

gi(xi)
gi(y)

.

Note that this type of between-chain jumping transition kernel is closely related to but also

different from adaptive MCMC (Athreya and Atuncar, 1998; Roberts and Rosenthal, 2009).

For adaptive MCMC, we can construct a kernel density estimator based on past samples and

28

propose new samples from this estimator. To be concrete, we specify a kernel, place it on

every past sample and obtain a mixture distribution as the proposal. For example, we run

1,000 iterations and obtain a number of samples. Since the sampling distribution of these

samples are supposed to be close to the posterior distribution, we attempt to approximate

the posterior from these samples, e.g., to construct a kernel smoother based on the samples.

In our method, we also use a kernel density estimator as the proposal. However, our method

differs from adaptive MCMC in the fact that the proposal distribution is constructed from

all current iterates in other chains. Instead of building the kernel density based on past

samples (horizontally), we form the mixture density with all current iterates in other chains

(vertically). Suppose we run 20 chains, the proposal we have is a mixture of normals centered

at those 19 iterates; then we sample from this proposal for the future draws. In other words,

we randomly pick one different iterate from the other 19 chains in the current sample, move

it around a little bit, and make such an iterate the new proposal for the next iteration. We

will present an illustrative example to show how our method works in the next section.

3.2 An Illustrative Example

In this toy example, we aim to sample from a normal mixture of two components. Suppose

the target distribution is a mixture of two univariate normals. One is centered at 0 and the

other is centered at 100. Both variances are equal to 1 and the mixing proportion is 0.7 for

the left mode. That is, we have the target distribution as

λN(µ1, σ
2
1) + (1− λ)N(µ2, σ

2
2),

where λ = 0.7, µ1 = 0, µ2 = 100 and σ2
1 = σ2

2 = 1. The density plot is shown in Figure 3.1.

29

Figure 3.1: Density plot of the normal mixture: λN(µ1, σ
2
1) + (1− λ)N(µ2, σ

2
2).

We apply the usual Metropolis method and the multiple chain method with 20 parallel

chains. Parameters such as the step size are tuned so that both methods have reasonable

and comparable acceptance rates (25%). Figure 3.2 shows the dotplots of simulated draws

comparing Metropolis and our method. We plot 1500 draws after burn-in the first 25%,

of three replications. In the left panel, we see that Metropolis is stuck in one mode. The

top chain only explores the normal centered at 0 (left mode) while the other two chains

are stuck at the right mode. This is due to its inability of stepping over valleys of low

density and jumping to another mode. Our method, however, is able to visit both modes

frequently and keep the right proportion. Note that in the right panel, all three chains jump

between and within modes. By checking the values of samples, we can see that 70% of the

time samples stay in the left mode, which matches the correct mixing proportion. This toy

example demonstrates that the multiple chain method is able to sample from multimodal

30

Figure 3.2: Dotplots of draws comparing Metropolis (left) and the multiple chain method
(right).

distributions. Next, we study the theoretical properties of the proposed multiple chain

method before giving more numerical examples.

3.3 Theoretical Aspects

3.3.1 Reducibility

In this subsection we highlight a particular feature of the multiple chain method in certain

situations. Let f(x) be the target distribution that we sample from. It is multimodal with

completely separate modes. We assume that in both within-chain and between-chain jumps,

the Metropolis-Hastings algorithm proposes local jumps in the sense that if an iterate is near

31

one mode, it cannot ever jump to the vicinity of another mode. Note that a Markov chain

is reducible if it has zero probability to move from one state to some other particular state

in a finite number of steps. To sample from f(x) by a single chain of Metropolis-Hastings

where the jumping kernel proposes local moves, we may experience reducibility problem as

we start from one mode and hence we cannot visit any other modes because the jump is

local. The multiple chain method also has the reducibility problem but it is slightly different

from what we have in the single chain method. So for our method, if we start all chains

from one mode, there is zero chance of visiting any other completely separate mode, as all

chains would stay in the vicinity of this mode through within-chain jumps or between-chain

jumps. In other words, if the vicinity of some mode does not contain any starting values,

we will never visit that mode. Then if we start at least one chain near each mode, it will

respect the constraint that we cannot have the situation where one mode is completely

without any chains in the simulation. Suppose we have some chains starting from one mode

and some chains from another, there are always going to be some chains staying in each of

the modes. We run in total n parallel chains so the desired target distribution would be∏n
i=1 f(xi), where xi is the variable for the i-th chain. These chains explore different modes

and jump to each other from time to time. However, they cannot all exit one mode and

land in other modes. In other words, once we start from the state with at least one chain

near each mode, we have zero chance of getting to states of which some mode is not visited,

which means that our algorithm has the reducibility issue that it will never get rid of any

modes. Suppose we run a length of N iterations for each chain and let ntj be the number

of chains near the j-th mode at t-th iteration and nj = {ntj : t = 1, 2, . . . , N}, we have∑
j

ntj = n for t = 1, 2, . . . , N and ntj ≥ 1 for ∀j, t. So if we start at least one chain near

each mode, nj’s will never drop to zero for all subsequent iterations. Thus the actual target

distribution for the chains is no longer the multimodal target multiplied by itself many times.

It is that target restricted to at least one chain near each mode:
∏n

i=1 f(xi)I{nj ≥ 1 for ∀j},

because of the reducibility problem. The reason that we have such reducibility problem is

32

in the design of our algorithm: the nature of the Metropolis-Hastings rule and the idea of

jumping to neighborhood. Let us see this through the normal mixture example in Section

3.2.

We have a random variable X with target distribution f(x) as

λN(µ1, σ
2
1) + (1− λ)N(µ2, σ

2
2) =

2∑
i=1

λifi(x), (3.2)

where
∑2

i=1 λi = 1 and fi = N(µi, σ
2
i). Now we introduce a latent random variable Z to

indicate which normal component X is drawn from. To be specific, we have

Z ∼ Bernoulli(λ), (3.3)

X|Z = 1 ∼ f1(x) and X|Z = 0 ∼ f2(x). (3.4)

That is to say, to sample from f(x), we could first decide which normal component X comes

from and then sample from that component accordingly. If we apply this in the multiple chain

method, we can record the component indicator Z for each sample in the Markov Chain. As

in Section 3.2, it is done implicitly in the post analysis since the component assignment can

be easily determined by the sample’s value. We actually use this information of component

indicators (70% samples come from the first component) to verify the correctness of the

multiple chain method. Now let us take a further look of this proportion. Note that we have

20 chains run in parallel for 1500 iterations. If we look at each iteration, we have 20 samples

which contain 20 component indicators Z ′is, i = 1, 2, . . . , 20, where Zi ∼ Bernoulli(λ = 0.7).

Let

T = Z1 + Z2 + · · ·+ Z20, (3.5)

we would have T ∼ B(20, 0.7) by the definition of binomial distribution if Z ′is are i.i.d

(independent and identically distributed). From the posterior draws, however, we see that

33

this is not true. Although we have a large value of λ = 0.7, T does not take the value of 20

(see Table 3.1).

T 7 8 9 10 11 12 13 14 15 16 17 18 19

Frequency 1 3 24 41 85 166 229 280 292 208 51 110 10

Table 3.1: Frequency table of T for 1500 iterations

Because of the symmetry of λ, T cannot be 0 either. It turns out that there is always at

least one chain in one mode and at least another chain in another mode. In other words,

T subjects to the constraint that we cannot have all 20 samples in one mode or all 20 in

another. We have to have at least one chain in one mode, and at most 19 in another. So in

equilibrium, the sum of component indicators Z ′is at each iteration, T , goes to a truncated

binomial, where the boundaries (0 and 20) are excluded. And the target distribution for

the chains, will be the product of these target densities subject to this constraint. Thinking

about all 20 draws at each iteration as one sample, it is a reducible Markov chain because

we cannot go from 1 to 0, or from 19 to 20. This reducibility problem, or this truncation is

due to the nature of the proposal distribution in the multiple chain method. It has specific

rules for doing jumps that tries to jump to the neighborhood of other chains. Let us take a

closer look at the theoretical reasons for this truncation.

Consider a bimodal distribution where modes are completely separate. We start n parallel

chains with a few chains in each mode. Since our method updates the chains sequentially,

we need to reach the state where 1 sample is in one mode and n − 1 in another at some

time before having all the samples in one mode. Without loss of generality, suppose for the

current iteration we have n chains with chain 1 in the first mode and the remaining chains

(chain 2 to chain n) in the other. Now we update x1 from the first chain that is currently in

mode 1, as is shown in Figure 3.3. We will see that by looking at the Metropolis-Hastings

ratio, the chance of jumping out of mode 1 is zero.

According to the multiple chain method, we propose y from the neighborhood of one other

34

Figure 3.3: Proposed jump to y in between-chain jump for x1

chain. Denoted by the red dot in Figure 3.3, the proposed point y will be in mode 2 as any

of these n − 1 other chains will be staying in mode 2 after proposing a local move. Then

we have the current point x1 in mode 1 and the proposed point y in mode 2, while two

modes are completely separate. Recall that the proposal density is the mixture of normals

centered at all other n−1 iterates, let us look at the acceptance ratio of Metropolis-Hastings

in Algorithm 11:

β = min (1,
p(y)

p(x1)
× g1(x1)

g1(y)
), (3.6)

where g1(y) = 1
n−1

∑
k 6=1

g0(y|xk) denotes the average density evaluated at all chains except

chain 1. In Equation 3.6 there are two ratios p(y)
p(x1)

and g1(x1)
g1(y)

and we focus on the ratio

for the proposal, g1(x1)
g1(y)

. On the numerator, g1(x1) = 1
n−1

n∑
k=2

g0(x1|xk) denotes the proposal

density of which the original point x1 being evaluated at others. Since two modes are

completely separate, the probability of proposing to go to x1 in mode 1 from the mixture

of n − 1 normals is just zero (or very close to zero). In other words, g1(x1) ≈ 0. Then the

35

probability of acceptance β is almost zero. Because of that, we cannot move the current

point x1 from mode 1. It has to stay there because of the zero chance of jumping. It is fine

that we propose, as the proposal density g1(y) is positive for the proposed point y. But that

is one side. On the other side, let us calculate the probability that we end up being in the

current state x1 given this proposal. This backward proposal has a density close to zero. We

cannot propose back and get accepted. Hence the chain will never jump out of the mode.

If otherwise we have irreducible moves within each mode, we can go in mode 1 by itself and

go in mode 2 by itself. But we cannot communicate between mode 1 and mode 2. Then the

only restriction we have is we cannot have all chains in mode 1 or all chains in mode 2. To

sample a multimodal distribution with completely separate modes, we will start at at least

one chain in each mode. That is why we state in Algorithm 11 that we start at dispersed

starting values. Eventually the chains will converge, not to the correct target distribution,

but to the product of these target densities under the constraint that at least one chain in

each mode. That is the reducibility of the multiple chain method in the case when we have

completely separate modes. If we miss a mode, we will not find it. The algorithm is not

designed to find new modes while it aims to portion the mass between modes that we assign

the chains to, in particular we have the situation where ordinary Metropolis does not really

jump out of the mode. Nevertheless, the evaluation of the bias due to the reducibility is of

interest, as discussed in Section 3.3.2.

3.3.2 Estimates of the Proportion in Truncated Binomial

In Section 3.3.1 we highlight the reducibility issue of the multiple chain method in the case

of completely separate modes. In such a situation, the target distribution for the chains

is actually not the correct one, but the correct one restricted to having at least one chain

in each mode. As a result, in bimodal case if we denote the mode indicator as Z ′is that

specifies which mode the i-th chain is in, and compute the sum of these indicators as T that

36

indicates how many chains are in each mode, we then have the distribution of T through the

iterations with its target a truncated binomial. Suppose that the posterior probability of one

mode is λ and we have n parallel chains, this distribution does not converge to B(n, λ) but

TB(n, λ), truncated at 0 and n, as it is impossible to have zero chains at either mode. More

generally, if we get multiple modes that are completely separate, the chains will converge to

a multinomial distribution with truncations of these particular pattern. This is an ongoing

topic for further exploration but in this subsection we focus on the problem of dealing with

estimating λ given the truncated binomial in the bimodal case. In other words, how do we

estimate the proportion of a truncated binomial?

We adopt the naive estimator, sample proportion. Namely, we estimate the binomial pro-

portion by simply counting the frequency of posterior draws that are from mode 1:

λ̂1 =
#of{Z = 1}

Nrep

,

where Nrep is the total number of draws summing up all chains. In this case, suppose we

have N iterations in total, Nrep is then equal to nN as we have n parallel chains. This naive

estimator ignores the fact of truncation, so it is a biased estimator. Also note that we do

not have independent samples because of the Markov chain. There exists serial correlation

and thus we may lose some efficiency. However we can show that the sample proportion is

still a decent estimator.

For a truncated binomial distribution, Patil (1962) shows that there is no uniformly minimum-

variance unbiased estimator (UMVUE). As based on the sufficient and complete statistic

S =
N∑
j=1

Tj (assuming independent samples) where Tj is defined in Equation 3.5, there is

no unbiased estimator. In this problem, we suggest three candidate estimators: (1) sample

proportion (naive estimator); (2) maximum likelihood estimator (MLE); (3) asymptotically

UMVUE proposed by Cacoullos and Charalambides (1975). Specifically, we will compare

between the first two estimators. The third estimator, which is the minimum variance un-

37

biased estimator, has a complicated form and is hard to compute. There exists a possibility

that the asymptotically UMVUE can be served as an alternative to the naive estimator but

we will not discuss here.

For our problem, we have n parallel chains so we get truncated binomial samples truncated

at 0 and n, with some unknown parameter λ to estimate. Assuming independence, we can

formulate the maximum likelihood equation. This likelihood equation can be further reduced

to:

T̄ =
nλ− nλn

1− (1− λ)n − λn
, (3.7)

where T̄ on the left-hand side denotes the sample mean. Say we observe draws from 1, 2 up

to n− 1 many times and the simple average of those is the sample mean T̄ . In other words,

T̄ is the sum of the sample proportions over n parallel chains: T̄ = nλ̂1. The MLE λ = λ̂2

satisfies Equation 3.7 and it does not have a closed form solution for large n. However, it

is helpful to know how good the MLE is and if we compare between two estimators (naive

estimator v.s. MLE). And the question is under what circumstance is the MLE a better

estimator compared to the naive one, and vice verse. For this purpose, we need to be able

to compute the MLE. For small n, we can simplify Equation 3.7 to:

T̄ =


1, n = 2;

λ+ 1, n = 3;

2(1+λ+λ2)
2−λ+λ2

, n = 4.

(3.8)

If we have n = 2 parallel chains, each mode has exactly one chain and the chain would stay

in that mode forever. Ti is constant 1 and thus T̄ = 1. There is no MLE and the naive

estimator λ̂1 = T̄ /n = 1/2. The multiple chain method fails since there is no between-

chain jumping. When n = 3, the MLE λ̂2 = T̄ − 1 ∈ [0, 1] as Ti is between 1 and 2. The

naive estimator λ̂1 = T̄ /n = 1/3 + λ/3 ∈ (1/3,∞). Again, the multiple chain method does

38

not provide any meaningful results as we only run three chains. When n = 4, Equation 3.7

becomes a quadratic equation of λ and we have the unique solution (the other one is discarded

considering the range of λ):

λ̂2 =


1/2, T̄ = 2;

T̄+2−
√
−7T̄ 2+28T̄−12

2(T̄−2)
, T̄ 6= 2.

(3.9)

For n = 5, we can still have the closed form solution but we will just come up with the

numerical approximations for simplicity. For n > 5, it is a high degree polynomial equation

and we cannot derive in analytic form. Instead, we turn to numerical methods to get λ̂2.

We run simulations for different n and λ values and compute the sample mean T̄ . Then

we attempt to solve Equation 3.7. Note that the right-hand side of Equation 3.7 is the

population mean of the truncated binomial distribution. To see this, we have the probability

mass function (PMF) of the truncated binomial random variable T as:

P (T = k) =

(
n
k

)
λk(1− λ)n−k

1− λn − (1− λ)n
, k = 1, 2, ...n− 1.

Then,

ET =
n−1∑
k=1

k
(
n
k

)
λk(1− λ)n−k

1− λn − (1− λ)n

=
1

1− λn − (1− λ)n

(
k∑
k=0

k

(
n

k

)
λk(1− λ)n−k − 0− nλn

)

=
nλ− nλn

1− λn − (1− λ)n
.

So in fact, Equation 3.7 equates the sample mean to the population mean. In other words,

this likelihood equation also gives the method of moments (MOM) estimator. If we denote

the right-hand side of Equation 3.7 as f(λ), f(λ) is actually a monotone increasing function

of λ. Given the sample mean T̄ , there is only one λ that satisfies this equation since f(λ) is

39

monotone. Imagine if we do not have truncation, population mean goes up as the Bernoulli

mean λ goes up. Now with truncation, we conclude the same is true: the population propor-

tion λ goes up, the theoretical mean goes up. The proof is given by Patil (1962) where we

treat the truncated binomial as a generalized power series with parameter θ = λ/(1−λ). It is

proved that f(·) is increasing in θ. As θ = λ/(1−λ) is increasing in λ, f(·) is increasing in λ

too by the chain rule. By L’Hospital’s rule, we have lim
λ→0

f(λ) = lim
λ→0

n−n2λn−1

n(1−λ)n−1−nλn−1 = n
n

= 1

and lim
λ→1

f(λ) = n − 1. Thus f(λ) is monotone increasing from 1 to n − 1. It has correct

boundaries which confirms with the range of T̄ . So as long as T̄ does not take the value 1

or n− 1, we can do bisection to solve for λ at the very worst. If T̄ = 1, we set the value of

the MLE λ̂2 as 0 and if T̄ = n− 1, we have λ̂2 = 1. Bisection can be slow, in which case we

can switch to other numerical methods such as Newton-Raphson method. It is faster but

is less stable compared with bisection, in the sense that it may not converge. We actually

apply both methods and they give the same solution. If we plug in the solution back to f(λ),

it returns the correct T̄ so numerical methods do solve Equation 3.7. Then we can safely

compare the MLE obtained by bisection to the naive estimator that we adopt.

As mentioned earlier, we run simulations under different n and λ values. Specifically, we con-

sider truncated binomial with n = 3, 4, 5, 10, 200 parallel chains. Truncation is at both ends

(0 and n−1) and the probability of success p is p = 0.02, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50. For

each experiment setting, We run 100 replications of simulating 1000 independent truncated

binomial samples. Each time we compute the sample proportion (naive estimator) and the

MLE. Then we have 100 estimators so we can get the average (treated as the expected value

of the estimator) as well as the variance. Bias is then computed as the expected value of the

estimator minus the true value. Summary results of comparing the bias/standard deviation

(sd) of two estimators are displayed in Table 3.2. For example, the third row represents the

experiment results of truncated binomial of p = 0.02 with n = 3 parallel chains. Because of

the symmetry of truncation, we consider different p values up to 0.5. As for example, p = 0.9

would mimic the behavior of p = 0.1.

40

Experiment Settings
Naive Estimator MLE

Bias Sd Bias Sd

n = 3

p = 0.02 0.320053 0.0015278 0.000160 0.004583

p = 0.05 0.300263 0.002504 0.000790 0.007513

p = 0.10 0.266703 0.003284 0.000110 0.009853

p = 0.20 0.200797 0.004381 0.002390 0.013143

p = 0.30 0.133807 0.004593 0.001420 0.013778

p = 0.40 0.066997 0.005407 0.000990 0.016220

p = 0.50 -0.000087 0.005302 -0.000260 0.015907

41

Experiment Settings
Naive Estimator MLE

Bias Sd Bias Sd

n = 4

p = 0.02 0.237923 0.001492 0.000756 0.003843

p = 0.05 0.219720 0.002238 0.000455 0.005513

p = 0.10 0.190293 0.003254 -0.000688 0.007461

p = 0.20 0.137463 0.004476 0.000990 0.009123

p = 0.30 0.088283 0.005219 -0.000006 0.009787

p = 0.40 0.043960 0.005583 0.001369 0.009935

p = 0.50 -0.000348 0.005954 -0.000608 0.010422

n = 5

p = 0.02 0.188164 0.001512 -0.000008 0.003625

p = 0.05 0.170980 0.002291 -0.000125 0.005196

p = 0.10 0.144034 0.002763 -0.000322 0.005694

p = 0.20 0.097086 0.004303 -0.000142 0.007511

p = 0.30 0.058374 0.005294 -0.000586 0.008079

p = 0.40 0.027532 0.006154 0.000209 0.008636

p = 0.50 0.000646 0.005599 0.000881 0.007636

n = 10

p = 0.02 0.089218 0.001045 -0.000247 0.002162

p = 0.05 0.074381 0.001571 -0.000436 0.002938

p = 0.10 0.053422 0.002348 -0.000200 0.003787

p = 0.20 0.024084 0.003490 0.000016 0.004455

p = 0.30 0.008965 0.0042791 0.000264 0.004750

p = 0.40 0.002512 0.0045012 0.000143 0.004670

p = 0.50 -0.000060 0.004752 -0.000061 0.004838

42

Experiment Settings
Naive Estimator MLE

Bias Sd Bias Sd

n = 20

p = 0.02 0.040236 0.000734 0.000116 0.001352

p = 0.05 0.027890 0.001289 -0.000088 0.002010

p = 0.10 0.013843 0.001789 -0.000003 0.002271

p = 0.20 0.002123 0.002861 -0.000225 0.003005

p = 0.30 0.000190 0.003459 -0.000051 0.003480

p = 0.40 0.000312 0.003209 0.000297 0.003210

p = 0.50 -0.000324 0.003467 -0.000324 0.003467

n = 50

p = 0.02 0.011510 0.000557 0.000081 0.000852

p = 0.05 0.004198 0.000904 0.000031 0.001069

p = 0.10 0.000476 0.001318 -0.000044 0.001350

p = 0.20 0.000031 0.001676 0.000028 0.001677

p = 0.30 0.000144 0.002089 0.000144 0.002089

p = 0.40 -0.000074 0.002306 -0.000074 0.002306

p = 0.50 -0.000232 0.002126 -0.000232 0.002126

n = 100

p = 0.02 0.003063 0.000363 0.000003 0.000458

p = 0.05 0.000292 0.000613 -0.000007 0.000629

p = 0.10 -0.000115 0.000817 -0.000118 0.000817

p = 0.20 0.000083 0.001316 0.000083 0.001316

p = 0.30 -0.000054 0.001257 -0.000054 0.001257

p = 0.40 0.000076 0.001530 0.000077 0.001530

p = 0.50 0.000229 0.001630 0.000229 0.001629

43

Experiment Settings
Naive Estimator MLE

Bias Sd Bias Sd

n = 200

p = 0.02 0.000387 0.000285 0.000030 0.000302

p = 0.05 0.000013 0.000422 0.000012 0.000422

p = 0.10 -0.000007 0.000675 -0.000007 0.000675

p = 0.20 0.000032 0.000896 0.000032 0.000896

p = 0.30 -0.000017 0.001013 -0.000017 0.001013

p = 0.40 -0.000026 0.001075 -0.000026 0.001075

p = 0.50 -0.000216 0.001076 -0.000216 0.001075

Table 3.2: Summary results comparing the sample proportion (naive estimator) with the
MLE.

From Table 3.2 we can see that the MLE estimates the true p fairly well. That is not

surprising as MLE suggests that we can estimate the truth if we have infinite samples. Now

we have 1000 samples and we do see that the MLE is a consistent estimator. However to

compute the MLE, note that when n = 3 or 4, we have the exact solution by solving the

quadratic equation; when n ≥ 5, we have a high degree polynomial equation and thus apply

the numerical method. The solution can be found using bisection, and we just need to fix

up the cases regarding endpoints (T̄ = 0 or n − 1). With all these efforts, is it worth it to

compute the MLE? Now we can answer this question by examining the other half of Table 3.2.

We see that when n is huge and p is not too small or too large, the sample proportion has

negligible bias and is very close to the MLE. Both estimators are approximately unbiased

and that is what we expect. For example, when we have n = 200 parallel chains and the

true p is around 0.5, two estimators are comparable (almost the same), even for the standard

deviation. That still holds true when n = 200 and p = 0.05. In such a case, n = 200 is fairly

44

large, and the only cases we are excluding in the truncation is 0 and 200. And p = 0.05 is

still far away from the boundary because 1/200 is only 1/10 of that. The sample proportion

(naive estimator) is consistent by the central limit theorem (CLT), when p is close to 0.5.

However, we do not always have the luxury of running 200 parallel chains. Then there is

some benefit using the MLE when p is far away from 0.5. For example, if we run 20 parallel

chains and the true p is 0.02, one chain will get stuck in one mode with the rest 19 at

the other mode. The naive estimator is 0.05, hence overestimating the truth. The naive

estimator does not have a desired performance. If we have even less parallel chains, the

naive estimator is way off as we can see from Table 3.2, for example, when n equals 3 or 4.

That suggests us either not to use the naive estimator or we have to increase the number of

parallel chains n when p is too small or too large, to avoid the situations where the naive

estimator is going to be biased. Or, we can try to avoid the extreme p. Remember that in

most situations, we are sampling the posterior draws so we can adjust the prior so that the

posterior proportion would be half-half (p = 0.5). The conclusion is intuitive as we know the

naive estimator can only estimate p ≥ 1
n

when we have n parallel chains. This is supported by

the experiments. Then we may wonder how it looks if we do not have independent samples,

which is true for the MCMC samples. By the law of large numbers (LLN), we expect

the conclusion still holds. To confirm this, we do experiments following the same settings

except that we are sampling correlated truncated binomial draws. Specifically, we generate

correlated normal random variables from AR(1) process, get correlated U(0, 1) samples by

evaluating the normal density and then sample correlated truncated binomial draws from

the inversion of the truncated binomial CDF. These samples are correlated, as to imitate

the MCMC draws, and their correlation is slightly lower than the AR(1) autocorrelation ρ

that we specify. For the results, things are roughly the same as Table 3.2 as long as the

autocorrelation is not too heavy, for example ρ = 0.4. However we do see a difference for

high autocorrelation situations. As an example, we set the autocorrelation ρ = 0.75, and

present the summary results of comparing the bias/standard deviation (sd) of two estimators

45

in Table 3.3.

Experiment Settings
Naive Estimator MLE

Bias Sd Bias Sd

n = 3

p = 0.02 0.341780 0.005742 0.065340 0.017226

p = 0.05 0.328983 0.006398 0.086950 0.019193

p = 0.10 0.299547 0.009309 0.098640 0.027927

p = 0.20 0.231137 0.011239 0.093410 0.033716

p = 0.30 0.153937 0.011968 0.061810 0.035905

p = 0.40 0.079177 0.012748 0.037530 0.038245

p = 0.50 -0.000843 0.012275 -0.002530 0.036826

n = 4

p = 0.02 0.259612 0.006173 0.054253 0.014571

p = 0.05 0.252060 0.008792 0.075666 0.019533

p = 0.10 0.227400 0.010541 0.080055 0.021896

p = 0.20 0.173405 0.010882 0.071703 0.020852

p = 0.30 0.115685 0.014634 0.050387 0.026639

p = 0.40 0.057730 0.013390 0.025722 0.023698

p = 0.50 -0.000075 0.015919 -0.000130 0.027888

46

Experiment Settings
Naive Estimator MLE

Bias Sd Bias Sd

n = 5

p = 0.02 0.208222 0.005440 0.045925 0.011894

p = 0.05 0.196784 0.007557 0.055139 0.015369

p = 0.10 0.178148 0.010167 0.065744 0.018749

p = 0.20 0.132588 0.014720 0.058775 0.023696

p = 0.30 0.088526 0.015676 0.044226 0.022971

p = 0.40 0.042396 0.017108 0.020848 0.023779

p = 0.50 -0.001734 0.018304 -0.002368 0.025000

n = 10

p = 0.02 0.103994 0.003443 0.028786 0.006430

p = 0.05 0.094252 0.005450 0.034633 0.009188

p = 0.10 0.077127 0.008402 0.035946 0.012286

p = 0.20 0.048947 0.012368 0.030757 0.014936

p = 0.30 0.023062 0.015207 0.015683 0.016676

p = 0.40 0.011247 0.015958 0.009145 0.016510

p = 0.50 0.000529 0.017779 0.000540 0.018107

n = 20

p = 0.02 0.049654 0.002586 0.016584 0.004321

p = 0.05 0.039900 0.004718 0.017744 0.006799

p = 0.10 0.027279 0.006649 0.016536 0.008046

p = 0.20 0.012728 0.010791 0.010816 0.011229

p = 0.30 0.006517 0.012397 0.006304 0.012467

p = 0.40 0.001952 0.013457 0.001937 0.013464

p = 0.50 -0.002237 0.014667 -0.002237 0.014668

47

Experiment Settings
Naive Estimator MLE

Bias Sd Bias Sd

n = 50

p = 0.02 0.016755 0.001686 0.007734 0.002364

p = 0.05 0.009613 0.003744 0.006284 0.004303

p = 0.10 0.005017 0.004900 0.004588 0.004997

p = 0.20 0.003113 0.007856 0.003110 0.007857

p = 0.30 0.001512 0.008674 0.001512 0.008674

p = 0.40 0.001642 0.008114 0.001642 0.008114

p = 0.50 -0.001155 0.008575 -0.001155 0.008575

n = 100

p = 0.02 0.005971 0.001587 0.003561 0.001913

p = 0.05 0.002856 0.002645 0.002613 0.002699

p = 0.10 0.001524 0.003618 0.001521 0.003619

p = 0.20 0.001758 0.005159 0.001758 0.005159

p = 0.30 0.001912 0.006111 0.001912 0.006111

p = 0.40 0.000714 0.006148 0.000714 0.006148

p = 0.50 -0.000922 0.006653 -0.000922 0.006653

n = 200

p = 0.02 0.001770 0.001109 0.001483 0.001162

p = 0.05 0.000835 0.001958 0.000833 0.001959

p = 0.10 0.001133 0.002691 0.001133 0.002691

p = 0.20 0.001381 0.003289 0.001381 0.003289

p = 0.30 0.000050 0.003705 0.000050 0.003705

p = 0.40 -0.000012 0.004279 -0.000012 0.004279

p = 0.50 -0.000329 0.004299 -0.000329 0.004299

Table 3.3: Summary results comparing the sample proportion (naive estimator) with the
MLE from heavily dependent samples (ρ = 0.75).

48

From Table 3.3 we see that most of the time the two estimators are accurate. However,

unlike the consistency in Table 3.2, the MLE is biased in some situations. For example,

when n is 3 and the true p is 0.02, the bias of the MLE is 0.06. Although it is better than

that of the naive estimator, the MLE is still off the mark. So if we have few chains and

they are highly correlated, the MLE may not do well as we know the MLE best works under

the independence assumption. From these two experiments, we recommend the following

when applying the multiple chain method. If chains are going really slowly which suggests

high correlation, probably it is not worth going through the MLE calculation because that

is wrong anyway. If chains converge really fast, we know the autocorrelation dies down and

it might be worthwhile to try to get the MLE. The key issue is that bias often arises when p

is too small or too large, which is the same through the experience with other parallel chain

methods (Han and Carlin, 2001). We can fix the problem, however, by adjusting the prior

proportions so the posterior proportions are about to equal. In that way, if we cannot have

any fancier estimators like the MLE, the naive estimator is still doing well. We do not need

to get the MLE or to worry about autocorrelations. All these work is trying to understand

the behavior of our algorithm when we apply to things such as Bayes factor calculation as

discussed in Section 4.1. When there are two modes that absolutely have nothing in common

meaning that they are completely separate, we cannot move all chains from one mode to the

other mode. This feature is very intuitive but we think it is also very special. It is amazing

to see that, even though the two modes are completely separate, we can still get the decent

estimator as long as the posterior proportion provided is not too close to 0 or 1. In Chapter

4 we discuss this in more detail.

3.4 Some General Guidelines

In this section we will discuss how to apply the multiple chain method.

49

3.4.1 When to Use the Multiple Chain Method?

The purpose of the multiple chain method is to enable between-chain jumps and to speed up

convergence. And we require a between-chain jump proposal, which is essentially random

walk type within each chain. The price we pay is that, at each iteration, we have extra

computation on the density evaluation for this between-chain jumping kernel compared to

ordinary Metropolis (single chain method). The reward we gain is the more efficient draw.

As a result, if the density evaluation of the target distribution is costly, our method is de-

sirable in terms of the computational cost. Such a situation is not rare as we will see in

the astronomical example in Chapter 5. The evaluation of the target density requires com-

plicated model settings, which is done in a specific astronomical software, as opposed to

the simple normal mixture density evaluation in the between-chain jumps. However, if the

target density has many modes and it is easy to evaluate the target density, our method will

not work well. In general, our method works especially well if the evaluation of the target

density takes time and the convergence of usual MCMC method is slow, which can be sped

up by the multiple chain.

Compared with parallel tempering (Geyer, 1991), our method and parallel tempering are

both population-based methods. If we are interested in finding the mode, parallel tempering

is helpful to find the global maximum. But regarding sampling efficiency, other population-

based methods like parallel tempering produce only one chain (corresponding to T = 1) with

correct draws. Instead, in our method, all chains would converge to the same target distribu-

tion and have desired draws. So our method has a larger effective sample size. In addition,

parallel tempering requires a careful fine tuning of the temperature ladder. In our method,

we only require choosing the local move proposal in between-chain jumps, which is often the

multivariate normal density and relatively easy to tune. However, this does not work well in

high dimensions because of the nature of the proposal and the acceptance-rejection method.

Compared with product space search (Carlin and Chib, 1995) and reversible jump MCMC

50

(Green, 1995) type method, all these three methods can handle trans-dimensional sampling

(see Section 4.1.3). In terms of parameter tuning, each method requires a different type of

tuning. Carlin & Chib’s method requires specifying the sudo prior that affects the sampling

efficiency. Reversible jump MCMC requires substantive effort designing dimension match-

ing function between two spaces and proposing explicitly the jump to another space. Our

method, as just mentioned, requires between-chain jumping kernel that will also affect the

sampling efficiency. We need to find the appropriate proposal, e.g. multivariate normal,

and tune the step size. The tuning effort each method requires is problem dependent. In

the Bayes factor example which is discussed in Section 4.1.3, our proposed multiple chain

method requires fewer tuning parameters and will likely be more efficient. We discuss the

general strategy of tuning between-chain jumping kernel in Section 3.4.2.

3.4.2 Tuning of the Proposal Distribution

In this subsection we focus on the between-chain jump proposals since recommendations for

the within-chain jump proposals are just the same as those in the ordinary Metropolis cases.

As we suggest in Section 3.1, the choice of the between-chain step transition kernel is not

limited to the normal random walk type. It can be much more general as long as we have a

decent between-chain jump acceptance rate. But even for the simple normal random walk

transition kernel, we have to carefully tune the step size (standard deviation of the normal

proposal) to make the algorithm work. The general recommendations for the between-chain

jump step size tuning, is to find a reasonable range of acceptance rate and then within that

range to select the large step size. We use the following example to illustrate. We consider

the mixture of two univariate normal example but slightly change the distribution to have

one component more dispersed. And we run simulations under different step sizes, collect

the samples and assess the sample efficiency. Specifically, we consider the target distribution

51

as

λN(µ1, σ
2
1) + (1− λ)N(µ2, σ

2
2),

where λ = 0.7, µ1 = 0, µ2 = 1000, σ2
1 = 1 and σ2

2 = 10. The density plot is shown in

Figure 3.4.

Figure 3.4: Density plot of the normal mixture: λN(µ1, σ
2
1) + (1− λ)N(µ2, σ

2
2).

Given the target distribution that we aim to sample from, we apply the multiple chain

method with n = 20 parallel chains, each running 50,000 iterations. For within-chain jumps,

we tune the step size so that we have roughly half draws accepted in within-chain jumps. For

between-chain jumps, we let the step size s = 10, 1, 0.1, 0.01, and the resulting between-chain

jump acceptance rate is 21%, 57%, 28%, 5% accordingly. As discussed in Section 3.3.1, the

parameter of interest is the mixing proportion λ and we estimate it by the sample proportion

λ̂ = T
n

at each iteration, where T is defined in Equation 3.5. So λ̂ is the proportion of draws

52

for mode 1 in parallel chains per iteration, and thus form a time series as we move the

iterations along. We now have the time series of Monte Carlo draws and we can check

their dependency via the autocorrelation plot. The traceplots of λ̂ with the corresponding

autocorrelation plots under four different parameter settings are displayed in Figure 3.5.

Figure 3.5: Traceplots (left) and autocorrelation plots (right) of λ̂ comparing different
between-chain jump step size from s = 10, 1, 0.1 to 0.01, with the corresponding between-
chain jump acceptance rate 21%, 57%, 28% and 5%.

From Figure 3.5, we see that the chain at the bottom (s = 0.01) has the highest autocorrela-

tion while the second one (s = 1) has the lowest one. It is not surprising to see this happen

53

as we know if the acceptance rate is too low (just as 5%), the chain will not jump very often

and thus it will not get the portion of mass between two modes very efficiently. Whereas

for any other ones, as long as the acceptance rate is decently higher, it seems to suggest the

results are fine. That confirms our intuition that the higher acceptance rate is, the faster

autocorrelation dies down, and thus the less correlated draws are. More to notice is that

even though the first chain has lower acceptance rate (21%) than the third one (28%), it has

much smaller autocorrelation. That is because the step size of the first chain (s = 10) is way

larger than that of the third one (s = 0.1). In a successful between-chain jump, we can still

end up in the same mode. In such a within mode jump situation, larger step size will help

to obtain less correlated draws. So the general recommendation is to find a reasonable range

of decent between-chain jump acceptance rate, and then to have a large step size within this

range.

To assess convergence, we also conduct Gelman and Rubin convergence diagnostic (Gelman

and Rubin, 1992) by running five replications under each parameter settings. Specifically,

for each parameter setting, we run five independent replications with twenty multiple chains

for each replication. Within each replication we allow between-chain jumps and between dif-

ferent replications there are no interactions. Then we can apply Gelman and Rubin statistic

by computing the summaries for each replication. That would be computational intensive,

however, and selection of the static monitored is nontrivial in high dimensional cases as we

have many possible statics. Figure 3.6 shows the dotplots of point estimates of the potential

scale reduction factor (PSRF) changing through every 5000 (left panel) and every 100 (right

panel) iterations comparing four different between-chain jump step size from s = 10, 1, 0.1

to 0.01. In the left panel of Figure 3.6, we see that all four chains do converge since PSRF

< 1.05. Among the four lines from the right panel of Figure 3.6, we see that the red line

(corresponding to s = 1) has relatively lowest PSRF as they gradually die down, indicating

that it converges the fastest. It suggests that the higher acceptance rate is, the more effec-

tive draws we have. We also find that the chains with s = 10 and s = 1 have converged

54

Figure 3.6: Dotplots of point estimates of the potential scale reduction factor (PSRF) de-
creasing through every 5000 (left panel) and every 100 (right panel) simulated draws compar-
ing different between-chain jump step size from s = 10, 1, 0.1 to 0.01, with the corresponding
between-chain jump acceptance rate 21%, 57%, 28% and 5%.

after 1200 iterations, while the chains with s = 0.1 and s = 0.01 have not, which agrees

with the findings from Figure 3.5. In between-chain jumps, a success can lead to either a

between-mode jump or a within-mode jump. In the latter case, i.e., two chains are in the

same mode, step size does matter as a larger step size will result in less correlated draws

in neighborhood jumps. This is also the reason that in Figure 3.6, two chains (s = 10 and

s = 1) are comparable in terms of convergence despite the huge difference in the accep-

tance rate. This toy example suggests that in the between-chain jumps, we shall first pick

up a reasonable range of acceptance rate and then make the step size as large as possible.

One possible explanation is that by doing this, the chain can either jump between modes

more frequently or jump as far away as possible in the same mode, so we can get more

efficient samples drawn from different modes. Next we discuss an issue that arises from the

between-chain jumping proposals.

55

3.4.3 Issue in High Dimensions

One issue of the multiple chain method is that it does not work well in high dimensional

cases because of the independent Hastings proposal we are using. In other words, it is

an issue with between-chain jumps that we have. Currently we are using a mixture of

normals (or some other proposal distribution) centered at other iterates. It suffers from the

curse of dimensionality because, just like kernel density estimation does not work in high

dimensions, the mixture of normals does not approximate the target distribution very well

in high dimensional cases.

In between-chain jumping step, the transition kernel is to propose a full dimensional jump,

usually by multivariate normal random walk type proposal. If the dimension is too high, it

is very unlikely that the proposed point can be accepted. As we can see from Table 4.5, the

between-chain jumping acceptance rate is only 8 × 10−5. In that case, some may wonder

why we cannot just break up the dimensions in a Gibbs fashion and propose one dimension

at a time as in the within-chain jumping step. Here we use a simple example to illustrate.

The issue with Gibbs is that there is no way to jump back and this proposal simply does

not even move.

Suppose we are working on a two dimensional posterior distribution in [0, 1]2. We run six

parallel chains and the current iterates are shown in Figure 4.5, i.e., x1, . . . , x6. Now we want

to update x1, and we break the between-chain jumping down to two subsequent moves, i.e.,

first, along x-axis and secondly along y-axis. For the first move, we randomly pick another

iterate to generate the proposed point along x-axis. Then immediately we see there arises a

problem that the jump is not reversible. x1 is not in any neighborhood of other iterates along

x-axis. In other words, we can propose but we cannot propose back, so the acceptance rate

is always zero; thus a Gibbs fashion trick will not work in our method. As our method can

only have full dimensional proposals in between-chain jumping, thus cannot overcome the

curse of dimensionality. In future work we will explore to address this problem. We illustrate

56

more about the multiple chain method via concrete examples in the following chapter.

57

Chapter 4

Applications

In this chapter, we present both synthetic and real data examples where the multiple chain

method can be applied, such as computing Bayes factors for Bayesian model selection, es-

timating variance components in mixed effect models, and sensor network localization. We

present and analyze these three applications in Section 4.1, 4.2, and 4.3, respectively.

4.1 Computing Bayes Factors for Bayesian Model Se-

lection

4.1.1 Introduction of Bayes Factors

Given data Y , we want to select the best model among candidates. Suppose the observed

data Y are generated by Mi in {Mi : i ∈ I}, where {Mi : i ∈ I} is the finite set of competing

models. We have a corresponding distinct parameter vector θi of dimension ni, and a prior

model probability Pr(Mi). The posterior probability Pr(Mi|Y) is widely used, such as

determining the posterior distribution of some shared parameter by model averaging (Carlin

58

and Louis, 2000). However, this quantity is not very useful in model selection, since the

prior probability Pr(Mi) may vary. The posterior probability Pr(Mi|Y) changes whenever

we change the prior probability Pr(Mi). Instead, we perform pairwise comparison based on

the Bayes factor (Kass and Raftery, 1995). Suppose there are two competing models, the

decision is made by checking the Bayes factor B21 (Han and Carlin, 2001), which is the ratio

of marginal likelihood of data under two models:

B21 =
Pr(Y |M2)

Pr(Y |M1)
.

It shows evidence provided by data in favor of model 2 (M2) against model 1 (M1). We

have the data likelihood Pr(Y |M1) and Pr(Y |M2), which represent the probability that

data Y are produced under the assumption of M1 and M2, respectively. Given a prior

probability Pr(M1), we form a posterior probability Pr(M1|Y). And as a result, we have

Pr(M2) = 1−Pr(M1) and Pr(M2|Y) = 1−Pr(M1|Y). From Bayes Theorem, we know that

Pr(Mi|Y) =
Pr(Mi)Pr(Y |Mi)∑
i

Pr(Mi)Pr(Y |Mi)
, i = 1, 2.

Therefore, we derive

Pr(M2|Y)

Pr(M1|Y)
=
Pr(M2)

Pr(M1)

Pr(Y |M2)

Pr(Y |M1)
=
Pr(M2)

Pr(M1)
×B21,

which indicates that the posterior odds equals the prior odds times the Bayes factor. Finally,

we obtain

B21 =
Pr(M2|Y)

Pr(M1|Y)

/
Pr(M2)

Pr(M1)
, (4.1)

which is the ratio of the posterior odds to the prior odds in favor of model 2.

59

4.1.2 Methods for Computing Bayes Factor

In this subsection we describe the approaches of how to compute the Bayes factor. To be

concrete, we take the example where we have data Y and two candidate models:

• Model 1 (M1):

Yi|µ ∼ N(µ, σ2), i = 1, 2, ...n,

where µ|µ0, σ
2
0 ∼ N(µ0, σ

2
0).

• Model 2 (M2):

Yi|α, β,Xi ∼ N(α + βXi, σ
2), i = 1, 2, ...n,

where (α, β)T |α0, β0,Σ ∼ N2((α0, β0)T ,Σ) and Σ =

 σ2
0 0

0 σ2
1

.

Note that X ′is are known covariates and σ2 is known. Both models assume normal data, but

differ in the mean structure: one has parameter µ and the other has a linear structure with

known covariates. Thus, model 1 is nested in model 2 if α0 = µ0. Our target is to compute

the Bayes factor B21 = Pr(Y |M2)
Pr(Y |M1)

.

A Standard Approach

A standard approach is to compute the numerator and denominator separately by integrating

out the model parameters (Kass and Raftery, 1995). Each represents the integral of the

probability density of data given all parameters under model 1 (or model 2):

Pr(Y |Mi) =

∫
Pr(Y |θi,Mi)π(θi|Mi)dθi, (4.2)

60

where θi is the collection of parameters under Mi, π(θi|Mi) is the prior density of θi, and

Pr(Y |θi,Mi) is the probability density of Y given θi. If i = 2, Equation 4.2 becomes the

integral of the probability density of data given all parameters under model 2. The task

is to integrate over the parameters θ2 = (α, β), which requires the choice of priors for α

and β. However, noninformative priors cannot be used, as we do not know if the integral is

finite or not. The Bayes factor computation requires averaging the probability of the data

over the prior of parameters for each model and calculating that ratio. Hence, the quantity

depends on the prior specified on each model. As the Bayes factor is sensitive to the prior,

we have to avoid the improper ones. In this example, after specifying the hyper parameters

and generating the data, we can solve Equation 4.2 analytically because of conjugacy. The

integral is a normal-normal situation and it turns out that:

• Model 1 (M1):

Y |M1 ∼ N(~1α0, σ
2I + σ2

0
~1~1T).

• Model 2 (M2):

Y |M2 ∼ N((~1, ~X0)(α0, β0)T , σ2I + (~1, ~X0)Σ(~1, ~X0)T).

Then the computation of B21 = Pr(Y |M2)
Pr(Y |M1)

is straightforward.

Multiple Chain Method for Computing Bayes Factors

To apply the multiple chain method on computing Bayes factors, we combine the two models

into a disjoint union of two models. To be specific, we introduce a model indicator I, provide

the joint posterior distribution, and then directly sample from the distribution. In other

61

words, we sample over the joint space created by the model indicators and the parameters

for each model. Corresponding to model Mi, we have the data likelihood Pr(Y |θi,Mi), a

prior π(θi|Mi) for the parameters, and a prior model probability Pr(Mi) that sums up to 1.

If I ∈ {1, 2}, we have a union of two models. One has parameter space 1 and the other has

parameter space 2. As a result, the density is over the union of two spaces expressed as:

Pr(I, θ1, θ2|Y) ∝
2∏
i=1

[Pr(Y |θi,Mi)π(θi|Mi)Pr(Mi)]
1{I=i} , (4.3)

where Pr(M1) is the prior probability that data Y comes from M1, and Pr(M2) = 1 −

Pr(M1). We introduce this I to specify data with its corresponding model. If I = 1, Equa-

tion 4.3 refers to the posterior density under M1. Then we can sample from Pr(I, θ1, θ2|Y) by

applying the multiple chain method. Note that trans-dimensional jumps are made between

M1 and M2, since dim(θ2) = dim(θ1) + 1. Afterwards, we compute the posterior probability

Pr(Mi|Y) by simply counting the frequency of samples that come from Mi:

Pr(Mi|Y) =
#of{I = i}

Nrep

, i = 1, 2,

where Nrep is the total number of iterations summing up all chains. That is, we count how

many time model i is true in the posterior samples, and divide the counts by the total number

of samples to obtain the posterior probability of model i. From Equation 4.1, after having

the posterior odds and the prior odds, we can compute B21. In this normal example, our

method agrees with the theoretical derivation. In Section 4.1.3 and 4.1.4, we present two

real data examples to illustrate the capability of the multiple chain method for computing

Bayes factors.

62

4.1.3 Pine Data Example

In this subsection, we consider the pine data from Williams (1959), an example discussed in

Carlin and Chib (1995). There are n = 42 specimens of radiata pine. For each specimen, we

measure the maximum compressive strength parallel to the grain yi, the specimen’s density

xi, and its density adjusted for resin content zi. Part of the data are displayed in Table 4.1.

Specimen strength yi density xi adjusted zi

1 3040 29.2 25.4

2 2470 24.7 22.2

...

41 3030 33.2 29.4

42 3030 28.2 28.2

Table 4.1: Part of the data on 42 specimens of radiata pine

We consider two competing models:

• Model 1: yi ∼ N(α + β(xi − x̄), τ 2
1)

• Model 2: yi ∼ N(γ + δ(zi − z̄), τ 2
2)

Both models assume that yi is normal and the mean has a linear structure: one has the

covariate xi and the other has the adjusted one zi. Unlike the normal example in Section

4.1.2, variance components (τ 2
1 , τ

2
2) are unknown here. Figure 4.1 in Spiegelhalter et al. (1996)

displays the model structure as well as the prior setting. The left panel in Figure 4.1 shows

model 1. We have model parameters α, β for the mean and τ1 for the standard deviation.

Model 2 in the right panel is symmetric except for the covariate zi. After centering the

covariates xi and zi at their means, we put normal priors on (α, β)T and (γ, δ)T , as shown

in Figure 4.1. For τ 2
1 and τ 2

2 , we place the same inverse gamma priors with both mean and

63

Figure 4.1: Graphical model for pines example showing the two models being simultaneously
handled within a unified framework (Spiegelhalter et al., 1996, p. 48).

standard deviation equal to 3002. All these priors on (α, β, γ, δ, τ 2
1 , τ

2
2) are roughly centered

on their appropriate least squares parameter estimate. Therefore, we make the priors to be

extremely vague, but still keep them proper.

In this example, both models are simple linear regression models. We have θ1 = (α, β, τ 2
1),

θ2 = (γ, δ, τ 2
2) and want to solve Equation 4.2. However, the integral does not have an

analytical solution, because the priors are not conjugate. Nevertheless, it is easy to integrate

out the regression parameters from each model, leaving a one-dimensional integration with

respect to the variance parameter. Essentially, we reduce Equation 4.2 to a one-dimensional

problem that can be solved by Riemann integral (Green and O’Hagan, 1998). The integral

can be carried out by numerical integration, e.g., on 1,000 equally spaced ordinates. Even

100 points are also fine due to the nice smooth behavior of the integrands. We believe that

the numerical calculation is exact so that we treat it as the benchmark. Note that we are

comparing models based on the Bayes factor, which does not change when we change the prior

on different models, since it is the posterior odds divided by the prior odds. The posterior

probability, however, changes whenever we change the prior. Thus, we can tune the prior so

64

Methods P̂ (M=2|y) SD B̂21 95% CI for B̂21

CC .70806 .001721 4848.3 (4769.2, 4927.4)

RJ-G .70906 .002394 4871.8 (4761.0, 4982.6)

Multiple chain method .70847 .001750 4857.9 (4777.2, 4938.5)

Target .70865 4862

Table 4.2: Summary results of different methods

that in the posterior samples, the chain ideally visits each model roughly half of the time.

A summary of the results is displayed in Table 4.2. Han and Carlin (2001) discusses several

methods including product space search (Carlin and Chib, 1995) and reversible jump MCMC

(Green, 1995). And we carry out the multiple chain method following the same setting up.

See Section 3.4.1 for theoretical comparisons between these methods. Table 4.2 reports the

estimated posterior probability for model 2, a batched standard deviation estimate for this

probability (using 2,500 batches of 100 consecutive iterations), the Bayes factor in favor of

model 2 and an approximate 95% CI for the the Bayes factor. The huge Bayes factor from

the table clearly indicates that model 2 is preferred. For our method, the point estimate is

4858 and the corresponding 95% CI covers the target result, which shows that the multiple

chain method is able to compute the Bayes factor accurately. Next, we discuss the galaxy

data example to compute the Bayes factor.

4.1.4 Galaxy Data Example

In this subsection, we consider another galaxy data example in Carlin and Chib (1995). The

data contain 83 observations of velocity (in 103 km/s) of distant galaxies diverging from

the Milky Way. After ignoring one missing observation by Roeder (1990), there are 82 data

points sampled from six well-separated conic sections of the corona borealis region (Stephens,

2000). A full list of the data in ascending order (Carlin and Chib, 1995) is shown in Table 4.3.

65

9172 9350 9483 9558 9775 10227 10406 16084

16170 18419 18552 18600 18927 19052 19070 19330

19343 19349 19440 19473 19529 19541 19547 19663

19846 19856 19863 19914 19918 19973 19989 20166

20175 20179 20196 20215 20221 20415 20629 20795

20821 20846 20875 20986 21137 21492 21701 21814

21921 21960 22185 22209 22242 22249 22314 22374

22495 22746 22747 22888 22917 23206 23241 23263

23484 23538 23542 23666 23706 23711 24129 24285

24289 24366 24717 24990 25633 26960 26955 32065

32789 34279

Table 4.3: Velocities (in 103 km/s) for galaxies in the corona borealis region

The interest lies in the multimodality of the velocities, which may support the astronomical

theory concerning the clustering of galaxies. In other words, the data may come from

a potentially multimodal distribution. To check this, we plot the histogram of the data

overlaid with the density estimation of a mixture of six normals in Figure 4.2. Based on

the data, we want to decide whether they come from a multimodal distribution, which can

indicate the presence of super clusters of galaxies (Roeder, 1990). Here, the problem of

interest is to decide the number of mixture components. Given data y, we aim to compare a

three-component normal mixture with a mixture having four components. Let φ denote the

normal pdf and qjk denote the corresponding mixing probabilities for k-th component in the

mixture model j, we have

• Model 1:

f(yi|µ1, σ
2
1, q1) =

3∑
k=1

q1kφ(yi|µ1k, σ
2
1),

66

Figure 4.2: Histogram of the galaxy data overlaid with the density estimation of a normal
mixture of six components.

• Model 2:

f(yi|µ2, σ
2
2, q2) =

4∑
k=1

q2kφ(yi|µ2k, σ
2
2),

where µ1 = (µ11, µ12, µ13), q1 = (q11, q12, q13), and similarly for µ2 and q2. Model 1 is a normal

mixture of three components while model 2 has four normal components. To formalize the

problem, we specify the prior settings in Table 4.4.

67

Parameter Prior Parameter Prior

Model 1 Mean Standard deviation Model 2 Mean Standard deviation

µ11 9.000 5.000 µ21 9.000 5.000

µ12 18.000 5.000 µ22 18.000 5.000

µ13 30.000 5.000 µ23 22.000 5.000

µ24 30.000 5.000

σ2
1 20.000 20.000 σ2

2 15.000 15.000

q11 0.333 0.236 q21 0.136 0.100

q12 0.333 0.236 q22 0.364 0.139

q13 0.333 0.236 q23 0.364 0.139

q24 0.136 0.100

Table 4.4: A summary of the prior settings for two competing models

We have weak priors of normal, inverse gamma, and Dirichlet for µjk, qj and σ2
j , respectively

(j = 1, 2). In general, the prior means and standard deviations listed in Table 4.4 are to form

the rather vague priors. We then compute the Bayes factor following the same strategy in

the pine data example. Carlin and Chib (1995) states that the two models are comparable,

with the point estimate of B21 to be 0.572. Our method, however, shows that the data

are greatly in favor of model 2, as B21 > 15. All parameter estimates agree except for the

model indicator, with such discrepancy arising from the Chib’s implementation. Additional

evidence is shown in Neal’s reanalysis (Neal, 1999). For example, Neal points out that Chib

“relabels the mixture components after each gibbs sampling step so that it is an increasing

order, leading to an underestimate of the marginal likelihood”. In Section 4.2, we present

an example to illustrate the ability of the multiple chain method for estimating variance

components in mixed effect models.

68

4.2 Estimating Variance Components in Mixed Effect

Models

In this section, we discuss the problem of variance component estimation in mixed effect

models (Gelman et al., 1995). We know that variance components include the individual

variance and the group-level variance. While estimating the individual variance is not dif-

ficult as long as we have enough samples, the group-level variance is more challenging to

estimate (Cheng et al., 2014). The widely used Gibbs sampler has the following drawbacks.

Due to the dependency between groups of coefficients and their variance components in the

Figure 4.3: Gibbs sampler in estimating group-level variance in conjugate hierarchical models

posterior, Gibbs sampler can get stuck when the variance parameter happens to be estimated

near zero (Gelman et al., 2008). We can see from the left panel of Figure 4.3 that the chain

gets stuck at zero when the true value equals 0.1. Moreover, the conjugate prior IG(ε, ε) is

69

too informative in cases where the group-level variance is estimated to be near zero, since the

posterior distribution is very sensitive to the choice of ε. For example, IG(0.001, 0.001), as

shown in the right panel of Figure 4.3, is sharply peaked near zero. Therefore, the inferences

of posterior distributions are heavily constrained by this prior. On the contrary, compared

with the commonly used Gibbs sampler, the multiple chain method is flexible about the

prior choice, allowing a better exploration of the parameter space.

We take the example of a conjugate hierarchical model to illustrate this. Consider J inde-

pendent experiments, with experiment j having mean parameter θj from nj i.i.d. normal

data points, yij. Each data point has an unknown error variance σ2. In other words, we

consider a one-way ANOVA model:

yij|(θj, σ2) ∼ N(θj, σ
2), i = 1, 2, ...nj

θj ∼ N(µ, τ 2), j = 1, 2, ...J

where µ ∼ N(µ0, σ
2
0), σ2 ∼ IG(a1, b1) and τ 2 ∼ IG(c1, d1). Note that we assume σ2 to

be the same across all groups. The problem of interest is to estimate variance components

(σ2, τ 2). While Gibbs sampler updates all the parameters iteratively, our method directly

samples from the marginal distribution of (σ2, τ 2). The idea is to reduce the dimensionality

of parameters, in order to have a reasonable acceptance rate in MCMC sampling. Thus, we

need to integrate out all other parameters. Following Gelman et al. (1995), we integrate out

the mean parameters analytically as shown below.

70

First, we write down the joint posterior of all parameters as

p(θ, µ, σ2, τ 2|y) ∝ p(µ, σ2, τ 2)p(θ|µ, τ 2)p(y|θ, σ2)

∝ p(µ, σ2, τ 2)
J∏
j=1

N(θj|µ, τ 2)
J∏
j=1

nj∏
i=1

N(yij|θj, σ2)

∝ p(µ, σ2, τ 2)
J∏
j=1

N(θj|µ, τ 2)
J∏
j=1

nj∏
i=1

1

σ
exp{− 1

2σ2
(yij − θj)2}

∝ p(µ, σ2, τ 2)
J∏
j=1

N(θj|µ, τ 2)
J∏
j=1

(σ2)−
nj
2 exp{− 1

2σ2
{nj(ȳ.j − θj)2

+

nj∑
i=1

(ȳ.j − yij)2}}

∝ p(µ, σ2, τ 2)
J∏
j=1

N(θj|µ, τ 2)(σ2)−
N
2 exp{− 1

2σ2

J∑
j=1

{nj(ȳ.j − θj)2

+

nj∑
i=1

(ȳ.j − yij)2}}, (4.4)

where θ = (θ1, θ2, . . . , θJ), ȳ.j = 1
nj

nj∑
i=1

yij and N =
J∑
j=1

nj.

Note that for j = 1, 2, . . . , J , we have

p(θj|µ, σ2, τ 2, y) ∝ N(θj|µ, τ 2)×N(θj|ȳ.j, σ2
j),

where σ2
j = σ2

nj
.

As a result, the conditional posterior of θj follows a normal distribution:

θj|µ, σ2, τ 2, y ∼ N(θ̂j, Vj), j = 1, 2, . . . , J

71

where θ̂j =

1

σ2
j

ȳ.j+
1
τ2
µ

1

σ2
j

+ 1
τ2

and Vj = 1
1

σ2
j

+ 1
τ2

.

Then we get the joint posterior of hyperparameters from (4.4) after integrating out θ:

p(µ, σ2, τ 2|y) ∝ p(µ, σ2, τ 2)(σ2)−
N
2 exp{− 1

2σ2

J∑
j=1

(nj − 1)S2
j }

J∏
j=1

N(ȳ.j|µ, σ2
j + τ 2)

J∏
j=1

σj,

(4.5)

where S2
j = 1

nj−1

nj∑
i=1

(ȳ.j − yij)2.

To get p(σ2, τ 2|y), we have to know p(µ|σ2, τ 2, y) and apply the conditional probability

formula:

p(σ2, τ 2|y) =
p(µ, σ2, τ 2|y)

p(µ|σ2, τ 2, y)
(4.6)

Similar to θj, we have

p(µ|σ2, τ 2, y) ∝ N(µ|µ0, σ
2
0)×

J∏
j=1

N(µ|ȳ.j, σ2
j + τ 2),

i.e.,

µ|σ2, τ 2, y ∼ N(µ̂, Vµ), (4.7)

where µ̂ =

J∑
j=1

1

σ2
j
+τ2

ȳ.j+
1

σ20
µ0

J∑
j=1

1

σ2
j
+τ2

+ 1

σ20

and Vµ = 1
J∑
j=1

1

σ2
j
+τ2

+ 1

σ20

.

By substituting the numerator and denominator of (4.6) with (4.5) and (4.7), respectively,

72

we have

p(σ2, τ 2|y) =
p(µ, σ2, τ 2|y)

p(µ|σ2, τ 2, y)

∝
p(µ, σ2, τ 2)(σ2)−

N
2 exp{− 1

2σ2

∑J
j=1(nj − 1)S2

j }
∏J

j=1N(ȳ.j|µ, σ2
j + τ 2)

∏J
j=1 σj

N(µ|µ̂, Vµ)
.

(4.8)

Since (4.8) holds for all µ′s, we set µ = µ̂ and obtain

p(σ2, τ 2|y) ∝
p(µ̂, σ2, τ 2)(σ2)−

N
2 exp{− 1

2σ2

∑J
j=1(nj − 1)S2

j }
∏J

j=1N(ȳ.j|µ̂, σ2
j + τ 2)

∏J
j=1 σj

N(µ̂|µ̂, Vµ)

∝ p(σ2, τ 2)(σ2)−
N
2 (Vµ)

1
2

× exp{− 1

2σ2

J∑
j=1

(nj − 1)S2
j }

J∏
j=1

{(
σ2
j

σ2
j + τ 2

)
1
2 exp[− (ȳ.j − µ̂)2

2(σ2
j + τ 2)

]} (4.9)

By Equation 4.9, we successfully reduce the dimensionality of parameters to just two in σ2

and τ 2. We have reasonable acceptance rates in the multiple chain method, as the proposal

function is just a product of two univariate normals. With the desired density, we can simply

sample from it using the multiple chain method. By setting τ 2 = 0.01 and J = 100, we

generate the data and apply three methods including Gibbs sampler, the usual Metropolis,

and the multiple chain method. Figure 4.4 shows autocorrelation plots (left) and scatterplots

of draws overlaid by contours of the exact posterior (right), which compare Gibbs sampler

(top), the usual Metropolis (middle) and the multiple chain method showing one single chain

(bottom). Clearly, the multiple chain method has better efficiency where samples are much

less correlated while the other two methods suffer from very high autocorrelation. This

example demonstrates the limitations of both Gibbs sampler and the usual Metropolis, and

indicates that our multiple chain method is superior to them. In Section 4.3, we apply the

multiple chain method in sensor network localization.

73

Figure 4.4: Autocorrelation plots (left) and scatterplots of draws overlaid by contours of the
exact posterior (right) comparing single chain drawn from Gibbs sampler (top), the usual
Metropolis (middle) and the multiple chain method (bottom).

4.3 Sensor Network Localization

In this section, we discuss the sensor network localization problem formed by Ihler et al.

(2005). The interest lies in self-localization of unknown sensors in the wireless network,

given noisy distance information. This problem has been discussed in MCMC area and

the goal is to estimate the sensor locations based on the posterior distribution, which is

known to be mulitimodal and complicated-shaped (Ahn et al., 2013; Lan et al., 2014; Tak

et al., 2018). To be specific, assume there are N sensors scattered in a 2-D space, denoted

as xk = (xk1, xk2)T , k = 1, 2, . . . , N . For any sensor xi, xj (j 6= i) is observed with a

distance-dependent probability

pij = exp(−‖xi − xj‖
2

2R2
),

74

where ‖·‖ denotes the Euclidean norm. And the observed distance is distorted by a Gaussian

noise vij ∼ N(0, σ2). In other words, we introduce an observation indicator zij to suggest

whether the distance between xi and xj (j 6= i) is observed:

zij ∼ Bernoulli
(

exp
(
− ‖xi − xj‖

2

2σ2

))
.

If the distance yij between xi and xj is observed, we have zij = 1 and the observed distance

as

yij|zij = 1 ∼ N(‖xi − xj‖ , σ2).

For simplicity, we assume that if xi observes xj, xj also observes xi and the observed distances

are the same, i.e., zij = zji and yij = yji (Ihler et al., 2005). In this work, we follow the

experiment settings in Tak et al. (2018) and set N = 6, R = 0.3 and σ = 0.02. To avoid

ambiguities of translation, rotation, and negation (Ihler et al., 2005), we put two of them,

i.e., x5 and x6, as base sensors with known locations. See Figure 4.5 from Tak et al. (2018)

for the displayed sensors that are simulated. The parameters of interest are the locations

of these unknown sensors, i.e., {(xk1, xk2), k = 1, 2, 3, 4}, and the data we have is a set

of observed distances {yij}. In this case, the locations of the 4 unknown sensors form a

multimodal distribution of 8 dimensions. Given data {z : zij, j > i} and {y : yij, j > i},

the data likelihood is

L(z, y|x1, x2, x3, x4) ∝
∏
j>i

[exp(−(yij − ‖xi − xj‖)2

2× 0.022
)

× exp(−‖xi − xj‖
2

2× 0.32
)zij × (1− exp(−‖xi − xj‖

2

2× 0.32
))1−zij].

75

Figure 4.5: The simulated distances yij among the six stationary sensor locations,
x1, x2, . . . x6, are displayed if observed. The observation indicator zij is one if yij is specified
and is zero otherwise. The locations of the sensors are x1 = (0.57, 0.91), x2 = (0.10, 0.37),
x3 = (0.26, 0.14), x4 = (0.85, 0.04), x5 = (0.50, 0.30), and x6 = (0.30, 0.70), where the first
four locations, x1, x2, x3, and x4, are assumed to be unknown (Tak et al., 2018).

Following Tak et al. (2018), we assume a bivariate Gaussian prior

π0 ∼ N


0

0

,
100 0

0 100




76

for each xi, i = 1, 2, 3, 4, and the resulting posterior distribution is

π(x1, x2, x3, x4|z, y) ∝ L(z, y|x1, x2, x3, x4)× exp(−
∑4

i=1 x
T
i xi

2× 102
). (4.10)

Tak et al. (2018) apply Gibbs sampler on this target (4.10) by sampling each conditional bi-

Kernel Length of a chain NX
π Details of NX

π

Acceptance
rate

Metropolis 1,980,000 NM
π = 4 1 for each of x1, . . . , x4

0.00056 for x1

0.00162 for x2

0.00052 for x3

0.00132 for x4

Multiple
chain

79,200 NMC
π = 10

1 for each of x1, . . . , x4

0.00057 for x1

0.00147 for x2

0.00050 for x3

0.00119 for x4

6 for between-chain
jumping

0.00008 for
(x1, x2, x3, x4)

RAM 220,000 NRAM
π = 36

9.27 for x1 0.00326 for x1

8.58 for x3 0.00791 for x2

9.03 for x4 0.00328 for x3

8.93 for x2 0.00722 for x4

Tempered
transition

330,000 NTT
π = 24 6 for each of x1, . . . , x4

0.00348 for x1

0.00947 for x2

0.00330 for x3

0.00839 for x4

Table 4.5: Summaries of these four methods for the length of a chain (20,000 burn-in period
included), the average number of posterior density evaluations per iteration NX

π as well as
its breakdown information, and the acceptance rate.

variate distribution of πi(xi|xj, j 6= i, z, y) for i = 1, 2, 3, 4 iteratively. Three kernels discussed

include Metropolis, repelling-attracting Metropolis (RAM) (Tak et al., 2018) and tempered

transition (TT) (Neal, 1996). See Tak et al. (2018) for the detailed implementation of the

first three methods. Based on these available results, we present our multiple chain method

(MC) and compare performances among all these four kernels. In our method, we run 10

parallel chains from random starting values in [0, 1]2. The within-chain jumps update current

iterates by Gibbs sampler, whose procedure is exactly the same as that in the Metropolis

77

method in Tak et al. (2018). The between-chain jumps update current iterates by proposing

candidates of full 8 dimensions together. This is because we cannot reduce it to a lower

dimension (see Section 3.4.3) and the purpose of this part is to make between-mode jumps.

Specifically, we use a multivariate normal random walk as the proposal distribution. Under

these settings, Metropolis can be compared as the baseline method, since our method would

be exactly the same if we disable the between-chain jumps. Following Tak et al. (2018), we

set the same amount of computational time for each method to make a fair comparison. We

denote NX
π as the average number of times of evaluations of π (4.10) per iteration, and it

is evaluated for each method (X = M, MC, TT or RAM). The length of each chain is then

computed accordingly. For the between-chain jumping step in the multiple chain method

(MC), we evaluate the full posterior density of π once (with caching) and the transition

kernel several times (a mixture of bivariate normals). Thus, Nπ is approximated based on

computational time. The approximation is conservative so that the multiple chain method

would make at least as good performance, as shown below. For all methods, we discard the

first 20,000 iterations as burn-in period to remove the dependence of chains on their starting

locations. A summary of the configurations as well as the acceptance rates of these four

methods is shown in Table 4.5. Note that, as we have 10 parallel chains in the multiple

chain method, the length of a chain is divided by 10 to have the same number of evaluations

of π. From Table 4.5, we can see that RAM and TT improve the acceptance rate compared

to Metropolis, while the acceptance rate in MC between-chain jumping is very low. On one

hand, this low acceptance rate (8 × 10−5) is due to the 8-dimensional jumping kernel. On

the other hand, even though there are only 62 (8×10−5×772, 000) successful between-chain

jumps, we can see that MC indeed helps the chain mix much better compared to Metropolis.

Figure 4.6 shows the scatterplot of posterior draws from above four methods. Each row rep-

resents the two dimensional coordinates of one sensor location. And for each column samples

are drawn by one of the four methods. Note that the dashed lines indicate the true coordi-

nates of eac unknown sensors. We see that the multiple chain method, RAM and TT have

78

Figure 4.6: Scatterplots of posterior draws of each sensor location (rows) from four methods
(column), where true coordinates are denoted by dashed lines.

more dispersed samples than that of Metropolis, especially for x2 and x4. And the posterior

samples of Metropolis, RAM, and TT, are denser than that of the multiple chain method

because of either the larger sample size or the higher acceptance rate. Figure 4.7 compares

Figure 4.7: Histograms of posterior draws of each first coordinate (rows) from four methods
(column), overlaid by the marginal posterior density based on 20 million draws from each
method, where true coordinates are denoted by vertical dashed lines.

79

the relative sizes of modes for the first coordinate of each unknown location (rows) draws

from four methods (columns). In each histogram, we superimpose the marginal posterior

density based on another twenty million posterior draws from each method. We see that the

shapes of the density plots from four methods are almost identical. Therefore, they can be

safely treated as the true posterior density. Then we are able to assess the convergence by

comparing the histogram (sample) to the density plot (truth). Note that the true locations of

sensors are indicated by the vertical dashed lines. The multiple chain method outperforms

Metropolis in all four distributions, because of the between-chain jumps that help chains

better mix among different modes. RAM and TT still perform relatively well, compared to

the multiple chain method. However, these two methods are not stable. Draws obtained

by RAM and TT are not always consistent with the marginal posterior truth, indicating

that the methods do not fully converge. The Metropolis method draws underrepresent the

marginal posterior truth most of the time, as 1980,000 draws might not be large enough

for the method to converge. In Chapter 5, we apply the multiple chain method on the

astronomical data to estimate the parameters of interest.

80

Chapter 5

Capella Data

In this chapter, we apply the proposed multiple chain method on the astronomical data

to estimate the parameters of interest, where the model is structured without an excessive

amount of parameters while its likelihood function is complicated and takes time to evaluate.

5.1 Backgroud

Recent advances in astronomy promote us to perform in-depth studies on high-energy as-

trophysics. The development of astronomical instrumentation brings the massive amount

of high quality data. For example, Figure 5.1 provides four images taken by the Chan-

dra X-ray Observatory (CXO). The top-left panel shows a supernova remnant in the Milky

Way (Credit: NASA/CXC/U.Texas/S.Post et al.); the top-right panel shows a supermassive

black hole at the center of the Milky Way (Credit: NASA/SAO/CXC/M.Markevitch et al.);

the bottom-left panel shows a cluster of galaxies in X-rays (Credit: NASA/CXC/Univ.

of Wisconsin/Y.Bai, et al.); the bottom-right panel shows the jet of a quasar (credit:

NASA/CXC/A.Siemiginowska(CfA)/J.Bechtold(U.Arizona)). Such image data contain valu-

81

Figure 5.1: Images taken by the Chandra X-ray Observatory. Source: NASA/CXC/SAO

able information about spectral, temporal, and spatial characteristics of the astronomical

sources. In practice, high energy electromagnetic radiation also includes Gamma-ray and

extreme Ultraviolet, in addition to X-ray.

In this work, we focus on the spectral analysis of X-ray astronomy. We extract spectral data

from images, which display the frequency distribution of observed counts as a function of

82

wavelength, as shown in Figure 5.4. The shape and structure of the frequency distribution

can be used to infer the astronomical source’s components as well as its density, tempera-

ture, etc. To be specific, arriving photons are collected by detectors and then the emission

of these photons with energies is represented by a spectrum, which denotes the energy flow

per wavelength. This spectrum is characterized by a continuum, several emission lines and

absorption features, where the continuum describes spectrum’s general shape and emission

lines represent extra photon emissions in a narrow energy band (Van Dyk et al., 2001; van

Dyk et al., 2004). The continuum may indicate the source’s temperature, and emission and

absorption lines imply the relative abundances of elements. Therefore, it is important to ac-

curately model the spectra. Such photon counts are modeled with a Poisson process whose

Poisson parameter is a function of energy composed of the continuum and several emission

and absorption lines. To be concrete, photon counts are recorded into 4096 energy channels

for CXO. Then we perform energy binning and obtain I bins.

With perfect instrumentation, the expected counts in bin i, i ∈ I, will be the sum of a

continuum and several emission lines, multiplied by an absorption factor accounting for the

stochastic censoring of photons. First, the continuum serves as the baseline spectrum and

may have one or more continuum components. The continuum with J components can be

modeled by the sum of a number of generalized linear models (GLMs) fj(θ
C
j , E), where E

is the photon energy, C represents the continuum and θCj is the collection of parameters in

the continuum component j. Examples of fj(θ
C
j , E) are power law:

αE−β,

and blackbody emission:

αE2/(eβE − 1),

83

where θCj = {α, β} in the above two cases. As a result, the Poisson model intensity from the

continuum is

f(θC , E) =
J∑
j=1

fj(θ
C
j , E),

where θC = {θCj , j ∈ J} is the collection of parameters for the set of continuum components.

Assuming the binning is fine enough, the expected number of counts in bin i from the

continuum is roughly equal to δif(θC , Ei), where δi and Ei are the width and mean energy

of bin i, respectively. Secondly, the emission lines can be modeled by a mixture of normals:

K∑
k=1

θLk,λpi(θ
L
k,µ, θ

L
k,σ),

where L refers to the emission lines and we assume there are K emission lines in total. Here,

θLk,λ is the expected photon count from emission line k, pi(θ
L
k,µ, θ

L
k,σ) is the probability that a

photon from emission line k with center θLk,µ and spread θLk,σ falls in bin i. Finally, the sum

of the continuum and emission lines is multiplied by an absorption factor representing the

probability that a photon in bin i is not absorbed:

u(θA, Ei),

where A refers to the absorption features and θA is the collection of parameters for the

absorption features. Therefore, the Poisson model intensity in bin i is

λi(θ
C , θL, θA) =

(
δif(θC , Ei) +

K∑
k=1

θLk,λpi(θ
L
k,µ, θ

L
k,σ)

)
u(θA, Ei),

where θL = {θLk,λ, θLk,µ, θLk,σ, k ∈ K} is the collection of parameters for the emission lines.

However, photon counts are distorted due to instrumental constraints and background con-

tamination in practice. On one hand, instrumental imperfectness is accounted for by effective

84

area curves and energy redistribution matrices. An effective area curve models the detec-

tor’s efficiency of successfully recording photon counts as a function of energy, where we

use di to represent the probability that an incoming photon corresponding to energy bin i

is recorded. An energy redistribution matrix describes instrument response that a photon

can be recorded into a range of energy bins due to blurring of the photon energy, where

we employ Mhi to denote the probability that a photon corresponding to bin i is recorded

in bin h. On the other hand, X-ray count data are usually contaminated with background

counts. To tackle this problem, we model background counts as a Poisson model and add

the background intensity to the source intensity. To summarize, we can model the observed

counts in bin h as a Poisson variable with intensity

ξh(θ) =
I∑
i=1

Mhiλi(θ
C , θL, θA)di + λBh (θB),

where B refers to the background contamination, θB is the collection of parameters for the

background intensity, λBh (θB) is the Poisson intensity in bin h and θ = (θC , θL, θA, θB).

This mixture model is likely to be multimodal while its dimension is not very high as the

model is highly structured (van Dyk et al., 2004). In addition, data are stored in a four-

way table of photon counts while spectral analysis aims at modeling the one-way energy

margin. The models are often in a tabular form and we have to look up values in the table.

Therefore, the task becomes more complicated as we are not dealing with a smooth and

analytic expression. In other words, it leads to a very time-consuming likelihood evaluation.

Our method could be a plausible solution to the above challenges along with the provided

information, as the model is structured without too many parameters while its likelihood

function is complicated and takes time to evaluate.

In this work, data are recorded by CXO, a space-based telescope launched by NASA. It

is located in high-earth orbit and designed to detect X-ray emission from hot and chaotic

regions of the Universe. CXO has two detectors: One is the advanced camera for imaging

85

Figure 5.2: Schematic of grazing incidence, X-Ray mirror. Source: NASA/CXC/D.Berry

and spectroscopy (ACIS), which is categorized in charged coupled devices (CCD); the other

one is the high resolution camera (HRC), which comprises two micro-channel plate imaging

detectors and is used for high resolution imaging. In addition, CXO has two gratings for high

resolution spectroscopy: One is the high energy transmission grating spectrometer (HETGS);

the other one is the low energy transmission grating spectrometer (LETGS). The mirror of

CXO, also referred to as the high resolution mirror assembly (HRMA), consists of four

pairs of nested mirrors containing both paraboloids and hyperboloids. NASA/CXC (2018)

Figure 5.2 illustrates the design and functioning of the mirrors of CXO. When the X-rays are

released by the source and go through the space, they are scattered on the mirror, reflected

and detected by the telescope. Then data are collected for each arriving photon, recording its

position, energy, and arrival time. Afterwards, the detector is able to generate images that

can be used to understand the extremely hot and high-energy regions of the Universe. The

data used in this work come from Capella, the strongest non-solar coronal source accessible

86

Figure 5.3: Auriga constellation map by Torsten Bronger (2003).

to X-ray telescopes. It is the third-brightest in the northern celestial hemisphere, located in

the constellation of Auriga (Figure 5.3). The star is very stable, whose overall luminosity

has been steady for many years without discernible flaring activity. As a result, it has been a

common calibration target for X-ray instruments such as CXO (Kashyap and Posson-Brown,

2007). To summarize, we have the following information:

87

• Source: Capella

– Strongest non-solar coronal source accessible to X-ray telescopes

– Very stable and the overall luminosity has been steady for many years with no

discernible flaring activity

• Instrument: Chandra ACIS-S

– Obtained a set of contiguous observations of Capella during July 2016 (ObsID:

18358-18364)

Here, contiguous observations refer to those of more than 2 − 3 × 103 seconds duration,

as they are typically split into smaller observing intervals. Note that the number of such

intervals is arbitrary and difficult to predict. The dataset with ObsID 18358 is depicted

using the Chandra Interactive Analysis of Observations software package (CIAO, Fruscione

et al., 2006) version 4.8, shown in Figure 5.4. Here, the x-axis and the y-axis represent the

wavelength and photon counts with 1-σ (68.3%) confidence interval, respectively. Note that

the two panels are spectrum plots with different orders from the same grating. They are

intrinsically equivalent to each other with all respects, except for small differences in the

Ancillary Response Files (ARFs).

The purpose of studying the above data is to find global thermal fits to high resolution

spectra. However, Capella has a continuum of temperature components while we only model

a discrete number of such components. Nevertheless, with the high quality data obtained

by Chandra, we are capable of exploring whether our explanatory illustrative method can

provide any insight.

5.2 Models

To model the data, we adopt a multiplicative model that has two model components:

88

Figure 5.4: Spectra of ObsID: 18358, with different orders from the same grating

• xsphabs: photoelectric absorption

• xsvapec: thermal plasma model with variable abundances

We are unable to show the explicit forms of these two models. As we have discussed in

Section 5.1, these models do not have an mathematical expression but are in a tabular

form instead; therefore, evaluations of the data likelihood are time-consuming. The model

89

Number Name Description

1 NH
The equivalent hydrogen column
(in units of 1022 atmos/cm2)

Table 5.1: xsphabs Parameters (Source: Sherpa help page, CXC/SHERPA/ AHELP)

Number Name Description

1 T The temperature of the plasma, in keV

2-14 (element)
Abundances for He, C, N, O, Ne, Mg, Al, Si,
S, Ar, Ca, Fe, Ni in solar units with default
value 1.0

15 R The redshift of the plasma

16 N The normalization of the model

Table 5.2: xsvapec Parameters (Source: Sherpa help page, CXC/SHERPA/ AHELP)

parameters of xsphabs and xsvapec are shown in Table 5.1 and Table 5.2, respectively. The

parameter of interest is the temperature T in xsvapec model. The first model is a power law

absorption one and the parameter lies within the exponent; and the second one is a thermal

plasma model, with the thermal plasmas as ionized gases. The second model describes the

optically thin line and continuum emission from collisional excited plasma, with the thin

line represents the transitions between quantized energy levels in an ion, where thin here

means that the probability of a photon being intercepted after emission by another ion

nearby is negligible. Continuum here means that the transitions occur when free electrons

are absorbed by an ion or when electrons scatter from each other. The excited plasma

stands for the ionized gas with upper energy levels of the ions populated through inelastic

collisions. In this multiplicative model, the parameter of interest is the temperature T in

xsvapec model, and we expect there to be a continuum of temperature components, with the

most prominent one probably at 0.54 keV . The fit function in Sherpa (Freeman et al., 2001)

(Sherpa fit(·)), which is the modeling and fitting application used by astronomers, fails to

recover this, so we try MCMC method. We first consider a model with just one temperature

component (1-T) model: xsphabs.abs1∗xsvapec.kT1, and then two temperature components

90

(2-T): xsphabs.abs1 ∗ (xsvapec.kT1 + xsvapec.kT2).

5.2.1 One Temperature Component

In this subsection, we discuss the 1-T model: xsphabs.abs1∗xsvapec.kT1, i.e., one absorption

model abs1 and one plasma model kT1. For this discussion, we work on the data with obsID

18358. As is common practice for astronomers, we set the abundance of He to 1 and other

element abundances to 0.6 so that they are treated as known quantities. By thawing Fe1, we

have four parameters in total: NH , T , AFe, and N , where AFe is the abundance for Fe. To get

posterior draws by the MCMC method, we apply both the single chain Metropolis method

and the multiple chain method. For the single chain method, we run 20 parallel chains for

5,000 iterations and draw the traceplot of temperature parameter T . The acceptance rate is

17% on average. Among these 20 chains, some slowly move towards 0.72, which is the best

fit found by Sherpa fit(·), while others get stuck at local maxima. The local trap problem

might be overcome by running longer. However, in our experiment, those chains are far

from convergence for a length of 5,000 iterations. For the multiple chain method, we run 20

parallel chains from the same starting values for 2,000 iterations. Traceplots of T comparing

the single chain method (left) and the multiple chain method (right) are shown in Figure 5.5.

For the multiple chain method, within-chain jump acceptance rate is 19% and between-chain

jump acceptance rate is 18%. These two rates are close, since after only 10 iterations, all

chains except one go to the same place. As a result, the between-chain jump just performs

as the within-chain (mode) jump among these 19 chains, whereas one other chain (yellow)

staying somewhere else does not have any communication (successfully between-chain jump)

with the major cluster (red), which is indicated by the traceplot (Figure 5.5). This 19 (red)

v.s. 1 (yellow) situation has been discussed in Section 3.3.1 and the value indicated by the

yellow chain is not meaningful. Note that, in this case, it is probably not a mode, as the

1Thaw model parameters means they can vary during a fit.

91

rough proportion of the yellow cluster is negligible (< 5%). In addition, the zero interaction

between these two clusters indicates that the density of red cluster is much higher than

that of yellow one. It is worth noting that all chains in the red cluster reach 0.72 in about

1,000 iterations. Therefore, it is clear that the multiple chain method helps converging. In

Figure 5.5: Traceplots of T comparing the single chain method (left) and the multiple chain
method (right).

summary, our proposed multiple chain method is able to find only one mode with T ≈ 0.72

keV , while the single chain method is struggling locating any mode. Although the multiple

chain method may not be able to discover new modes if they are not nearby, it can definitely

tell the rough proportion of each mode and which mode is more important. This 1-T model

serves for illustrative purpose, which explains both the astronomical models and the usage

of the MCMC methods.

5.2.2 Two Temperature Components

We present a more realistic model with two temperature components in this subsection.

To be specific, a two temperature components (2-T) model is defined as xsphabs.abs1 ∗

92

Figure 5.6: Traceplots of T1 comparing the single chain method (top) and the multiple chain
method (bottom) in the 2-T model.

(xsvapec.kT1 + xsvapec.kT2), i.e., one absorption model abs1 and two plasma models kT1

and kT2. Following the same settings in the 1-T case, the abundance of He is set to 1 and

other element abundances are fixed to 0.6. We also link element abundances in kT2 to those

in kT1. By thawing Fe, we have six parameters: NH , kT1.T as T1, AFe, kT1.N as N1, kT2.T

as T2, and kT2.N as N2. Parameters of interest are T1 and T2 and their associated norms,

N1 and N2. To begin with, we run 2,000 iterations from two potential modes comparing the

single chain method and the multiple chain method. Each starts with 10 chains:

• T1 = 0.50, T2 = 0.89, N1 = 0.036, N2 = 0.033 (major)

93

Figure 5.7: Traceplot of T1 in the multiple chain method in the 2-T model, half starting
from the major mode and half from the minor mode.

• T1 = 0.72, T2 = 0.08, N1 = 0.060, N2 = 0.061

Figure 5.8: Dotplot of T1 in the multiple chain method in the 2-T model from two potential
modes and their mirror images, overlaid by the traceplot of 20-th chain.

These potential modes are identified by Sherpa fit(·) after convergence, where the one that

is discovered most frequently is regarded as the major mode. Traceplots of T1 are shown

in Figure 5.6. We can see that the single chain method stays at the mode where the chain

94

starts, which is not helpful to tell how much proportion one mode contributes to the whole

distribution. On the contrary, in the multiple chain method, the chain is able to tell that

the minor mode is not important at all compared with the major mode. Similar to the 1-T

case, we also demonstrate that our method performs well at deciding which mode is more

important. In addition, we find that in our proposed method, the major cluster has not

converged yet so that we decide to run it longer. For each mode, we run another 30 chains

with 5,000 iterations and draw the traceplot of T1, shown in Figure 5.7. We can see that:

1) the minor mode is indeed negligible with relative proportion < 3%; 2) the major cluster

consists of a band ranging from 0.45 to 0.65. It is suggested that our method finds another

nearby mode by itself. To clearly see this, we run another 2,000 iterations from the major

mode and the minor mode as well as their mirror images, each with 10 chains:

• T1 = 0.50, T2 = 0.89, N1 = 0.036, N2 = 0.033 (major)

• T1 = 0.89, T2 = 0.50, N1 = 0.033, N2 = 0.036 (major mirror)

• T1 = 0.72, T2 = 0.08, N1 = 0.060, N2 = 0.061 (minor)

• T1 = 0.08, T2 = 0.72, N1 = 0.061, N2 = 0.060 (minor mirror)

Note that label switching is not an issue here, as what we want is to have a better look

at how the multiple chain method jumps among modes. Figure 5.8 shows that our method

does find a new mode and it is able to jump frequently between the major mode and the

new mode. It is also confirmed that the new mode is indeed a mode by Sherpa fit(·). While

Sherpa fit(·) can occasionally identify the minor mode, the multiple chain method tells us

it may not be worth looking into, as it is negligible compared to others. Thus, it is safe

to discard it. Actually following this two step process: 1) Sherpa fit(·) to identify potential

modes; 2) the multiple chain method to confirm, we find the following four modes, where

the second one is found in the above example:

95

• T1 = 0.50, T2 = 0.89, N1 = 0.036, N2 = 0.033

• T1 = 0.59, T2 = 0.96, N1 = 0.043, N2 = 0.023

• T1 = 0.46, T2 = 0.83, N1 = 0.030, N2 = 0.040

• T1 = 0.61, T2 = 1.02, N1 = 0.046, N2 = 0.018

We can see that the relative proportion among these four is 60%: 20%: 10%: 10%, by

running our proposed multiple chain method. Given these eight thermal components, we

can come up with an eight temperature component (8-T) model. By concatenating and

freezing 2 these eight temperature values with readjusted norm parameters, the 8-T model

can get a better fit to the data in the sense of a higher data likelihood. Yet it is not surprising

as an 8-T model has more parameters. To decide which one is the more proper for analysis,

among the aforementioned 1-T model, 2-T model, and 8-T model, we turn to pair-wise model

comparison, e.g., 2-T model v.s. 8-T model. One possible way to do the comparison is to

adopt the Bayesian framework, where we have to carefully specify the proper priors for those

parameters and then form the full posterior. In this case, it becomes the same scenario as

the Bayesian model selection discussed in 4.1.4, i.e., comparing different mixture models.

Although the 8-T model here poses a serious problem in terms of computation (too many

parameters for our method to work), the idea is the same that we can apply such model

comparison techniques to evaluate model fitting if our goal is to choose the best model.

In summary, our method can be used from two perspectives. First, it can be used as a

Bayesian model selection tool to decide which mixture model is more appropriate; secondly

and more importantly, it can be served as an exploratory step to identify modes. The strength

shown from the second aspect can help determine the importance of those temperature

components and decide upon the relative proportion among those modes. Therefore, we can

draw the correct inference on the parameters of interest from reasonable model candidates.

2Freeze model parameters means they do not vary during a fit.

96

Chapter 6

Discussion

6.1 Summary

We propose a new population-based MCMC method to sample from multimodal distribu-

tions in this thesis, which is designed to alleviate the local trap problem and to improve

convergence. Our method initializes multiple chains from dispersed starting values and per-

forms a two-step jump with a novel between-chain jump, which encourages full exploration

of the parameter space.

We provide analysis of the related MCMC methods in Chapter 2, and discuss our proposed

method in detail in Chapter 3. Our method is designed to help mix between modes rather

than find modes. In other words, we require that all modes are predefined and we also

assume that they completely separate such that our method can be helpful.

The novelty of our method is that we actually propose a new Metropolis jumping kernel in

between-chain jumps that helps the chain to move among modes efficiently. This specific

jumping kernel also brings one more feature that, once a mode is visited, it will never be

abandoned. After we carefully describe our method, we compare it with other popular meth-

97

ods in Section 3.4.1, and discuss the pros and cons in terms of both computational cost and

parameter tuning. Our proposed method is good at portioning the mass between modes and

deciding which mode is more important.

We provide several scenarios in Chapter 4 in which our method can be applied. In Section 4.1

we apply the multiple chain method in computing Bayes factor for Bayesian model selection,

where we sample over the joint space created by the model indicators and the parameters

for each model. We present a toy example to illustrate in Section 4.1.2, and discuss two real

examples of pine data in Section 4.1.3 and galaxy data in Section 4.1.4. In Section 4.2 we

apply the multiple chain method to estimate variance components in the mixed effect model.

Specifically, we assume a conjugate hierarchical model where the group-level variance is hard

to estimate. Compared with the commonly used Gibbs sampler that can easily get stuck,

our method is flexible about the prior choice and can explore the parameter space freely.

In Section 4.3 we describe the sensor network localization problem and apply the multiple

chain method to uncover the locations of unknown sensors. By comparing with three other

methods, we find the multiple method helps the chain to better mix among different modes

and thus improves the convergence.

In Chapter 5 we focus on a real astronomy application. We apply the multiple chain method

on the astronomical data of one star named Capella in order to estimate the parameters of

interest, where the model is structured without too many parameters while its target pos-

terior distribution is complicated and costly to evaluate. From discussion in Section 5.2.2,

we find our method useful in two aspects. First, it can still be applied in Bayesian model

selection to decide which mixture model is more appropriate; secondly, it can be served as

an exploratory step to identify modes. The strength shown from the second aspect can help

determine the importance of those temperature components and decide upon the relative

proportion among those modes.

98

6.2 Limitations and Future Work

The multiple chain method has some limitations. One issue of the method is that it does not

work well in high dimensional cases as discussed in Section 3.4.3. We can also see that from

Section 4.3 and Section 5.2.2. The limitation comes from the between chain jumping kernel

that we have, which is a mixture of normals centered at other iterates in other chains. This

transition kernel suffers from the curse of dimensionality as the higher the dimensional is,

the poorer the approximation is. Then it leads to a natural question that why we cannot do

one dimension at a time in a Gibbs fashion, and we illustrate in Section 3.4.3 that breaking

down the dimensions in a Gibbs fashion does not work, as there is no way for the candidates

to jump back so this proposal simply would not even move.

In addition, we want to work more on this between chain jumping kernel. It is based on the

independent Hastings proposal and in particular, the choice of g0(·) in Algorithm 11 is just

multivariate normal random walk type kernel for all examples which are discussed in this

thesis. For more complicated posterior distributions, we can try other type of distributions

to see if it better approximates the target. And even for this specific multivariate normal

proposal, there are various ways to modify. For example, it is still not clear how to set the

covariance matrix of the multivariate normal properly. Currently we choose the covariance

based on the past iterations. It is estimated from the past iterations and that is something

connected to adaptive MCMC, which we have discussed in Section 3.1. Another possible

way to do this is to set the step size to balance the acceptance rate and how far away the

chain can move. If the step size is too small, we see from Section 3.4.2 and Section 4.3 that

it is actually not as bad as usual for this type of independent Hastings sampler. If the step

size is too large, obviously the chain will not move to anywhere. So probably it is safer to

select the fairly small step size. And we further discuss this in Section 3.4.2 and recommend

to find a reasonable range of decent acceptance rate and then within that range to select the

large step size.

99

Furthermore, there are many methodology developments that can be done in the future. For

example, we discuss the convergence diagnostic in Section 3.4.2, but further work can be

done on this type of chains. Usually when we have single chain MCMC, there are two main

ways to diagnose convergence. One is to take a look at the autocorrelations to see when they

die down. Another is to run multiple chains with diverse staring values and to examine when

they mix together, which is done by checking Gelman and Rubin statistic. The issue with

applying these techniques to the multiple chain method, in the particular case of Gelman

and Rubin statistic, is that it cannot be applied to our method directly. Gelman and Rubin

diagnostic is to run multiple chains but here for our method, we already have multiple chains

and also jumps between them. Naively applying the diagnostic might mistakenly conclude

that the convergence has occurred when in fact it is just normal jumping between-chains

that is occurred. Of course one remedy of this problem is by running multiple indepen-

dent replications of the multiple chain method we have, for instance, run ten independent

replications with ten multiple chains for each replication. Within each replication we allow

between-chain jumps and between different replications there are no interactions. Then we

can apply Gelman and Rubin statistic by computing the summaries for each replication.

That would be computational intensive, however, and selection of the static monitored is

nontrivial as we have many possible statics.

Besides, the structure of the multiple chains makes it enticing to parallelize the method.

However the between-chain jumps make this nontrivial. We are running multiple chains and

occasionally they exchange information between chains (between-chain jumps). We may

think of how to implement it in a parallel way so that we can take advantage of the com-

puting resources. For example, for each iteration in the within-chain jump, these can be

separated in different processors and they do communicate with each other in the between-

chain jump. The efficiency of doing this depends on the relative computational time of the

within/between-chain jump as well as the communication cost between different processors.

Lastly, we can apply the method to more practical situations in the future. Like the astro-

100

nomical example, suppose there is a highly parametric (the dimension of the parameter space

is not extremely high) model with complicated likelihood function that takes much time to

evaluate. In such a situation where the posterior surface is expected to be complicated and

potentially multimodal, the multiple chain method can be very valuable in reducing the

number of iterations required to reach stationarity for MCMC chains. Thus applying this

methodology to such type of Bayesian computational problems would be a good direction

to go.

101

Bibliography

Sungjin Ahn, Yutian Chen, and Max Welling. Distributed and adaptive darting Monte Carlo
through regenerations. In Artificial Intelligence and Statistics, pages 108–116, 2013.

Krishna B Athreya and Gregorio S Atuncar. Kernel estimation for real-valued Markov chains.
Sankhya, 60(1):1–17, 1998.

Scott Brown and Teresa Head-Gordon. Cool walking: A new Markov chain Monte Carlo
sampling method. Journal of Computational Chemistry, 24(1):68–76, 2003.

T. Cacoullos and Ch. Charalambides. On minimum variance unbiased estimation for trun-
cated binomial and negative binomial distributions. Annals of the Institute of Statistical
Mathematics, 27(1):235–244, 1975.

Bradley P Carlin and Siddhartha Chib. Bayesian model choice via Markov chain Monte
Carlo methods. Journal of the Royal Statistical Society. Series B (Methodological), pages
473–484, 1995.

Bradley P Carlin and Thomas A Louis. Empirical Bayes: Past, present and future. Journal
of the American Statistical Association, 95(452):1286–1289, 2000.

Qianshun Cheng, Xu Gao, Ryan Martin, et al. Exact prior-free probabilistic inference on
the heritability coefficient in a linear mixed model. Electronic Journal of Statistics, 8(2):
3062–3076, 2014.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte
Carlo. Physics Letters B, 195(2):216–222, 1987.

Peter Freeman, Stephen Doe, and Aneta Siemiginowska. Sherpa: A mission-independent
data analysis application. In Astronomical Data Analysis, volume 4477, pages 76–88.
International Society for Optics and Photonics, 2001.

Antonella Fruscione, Jonathan C McDowell, Glenn E Allen, Nancy S Brickhouse, Douglas J
Burke, John E Davis, Nick Durham, Martin Elvis, Elizabeth C Galle, Daniel E Harris,
et al. CIAO: Chandra’s data analysis system. In Observatory Operations: Strategies,
Processes, and Systems, volume 6270, page 62701V. International Society for Optics and
Photonics, 2006.

102

Alan E Gelfand and Adrian FM Smith. Sampling-based approaches to calculating marginal
densities. Journal of the American Statistical Association, 85(410):398–409, 1990.

Alan E Gelfand, Sujit K Sahu, and Bradley P Carlin. Efficient parametrisations for normal
linear mixed models. Biometrika, 82(3):479–488, 1995.

Andrew Gelman and Donald B Rubin. Inference from iterative simulation using multiple
sequences. Statistical Science, pages 457–472, 1992.

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian Data Analysis.
Chapman and Hall/CRC, 1995.

Andrew Gelman, David A van Dyk, Zaiying Huang, and John W Boscardin. Using redundant
parameterizations to fit hierarchical models. Journal of Computational and Graphical
Statistics, 17(1):95–122, 2008.

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. In Readings in Computer Vision, pages 564–584. Elsevier,
1987.

Charles J Geyer. Markov chain Monte Carlo maximum likelihood. 1991.

Charles J Geyer. Introduction to Markov chain Monte Carlo. Handbook of Markov Chain
Monte Carlo, 20116022:45, 2011.

Charles J Geyer and Elizabeth A Thompson. Annealing Markov chain Monte Carlo with
applications to ancestral inference. Journal of the American Statistical Association, 90
(431):909–920, 1995.

Walter R Gilks and Gareth O Roberts. Strategies for improving MCMC. Markov Chain
Monte Carlo in Practice, 6:89–114, 1996.

Walter R Gilks, Sylvia Richardson, and David J Spiegelhalter. Introducing Markov chain
Monte Carlo. Markov Chain Monte Carlo in Practice, 1:19, 1996.

Peter J Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4):711–732, 1995.

PJ Green and A O’Hagan. Carlin and Chib do not need to sample from pseudopriors.
Research Rerport 98, 1, 1998.

Cong Han and Bradley P Carlin. Markov chain Monte Carlo methods for computing Bayes
factors: A comparative review. Journal of the American Statistical Association, 96(455):
1122–1132, 2001.

Florian Hartig. MCMC chain analysis and convergence diagnostics with coda
in R, 2011. URL https://theoreticalecology.wordpress.com/2011/12/09/

mcmc-chain-analysis-and-convergence-diagnostics-with-coda-in-r/. [Online;
accessed 09-June-2018].

103

https://theoreticalecology.wordpress.com/2011/12/09/mcmc-chain-analysis-and-convergence-diagnostics-with-coda-in-r/
https://theoreticalecology.wordpress.com/2011/12/09/mcmc-chain-analysis-and-convergence-diagnostics-with-coda-in-r/

Wilfred K Hastings. Monte Carlo sampling methods using Markov chains and their appli-
cations. Biometrika, 57(1):97–109, 1970.

Alexander T Ihler, John W Fisher, Randolph L Moses, and Alan S Willsky. Nonparametric
belief propagation for self-localization of sensor networks. IEEE Journal on Selected Areas
in Communications, 23(4):809–819, 2005.

Vinay L Kashyap and Jennifer Posson-Brown. Short timescale coronal variability in Capella.
arXiv preprint arXiv:0709.3093, 2007.

Robert E Kass and Adrian E Raftery. Bayes factors. Journal of the American Statistical
Association, 90(430):773–795, 1995.

Robert E Kass, Bradley P Carlin, Andrew Gelman, and Radford M Neal. Markov chain
Monte Carlo in practice: A roundtable discussion. The American Statistician, 52(2):
93–100, 1998.

Scott Kirkpatrick, Charles D Gelatt, and Mario P Vecchi. Optimization by simulated an-
nealing. Science, 220(4598):671–680, 1983.

Shiwei Lan, Jeffrey Streets, and Babak Shahbaba. Wormhole Hamiltonian Monte Carlo. In
Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

Yaohang Li, Vladimir A Protopopescu, and Andrey Gorin. Accelerated simulated tempering.
Physics Letters A, 328(4-5):274–283, 2004.

Enzo Marinari and Giorgio Parisi. Simulated tempering: A new Monte Carlo scheme. EPL
(Europhysics Letters), 19(6):451, 1992.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The Journal
of Chemical Physics, 21(6):1087–1092, 1953.

NASA/CXC. About Chandra, 2018. URL http://chandra.harvard.edu/about/. [Online;
accessed 30-August-2018].

Radford M Neal. Sampling from multimodal distributions using tempered transitions. Statis-
tics and Computing, 6(4):353–366, 1996.

Radford M Neal. Erroneous results in “Marginal Likelihood from the Gibbs output”. Min-
meo, University of Toronto, 1999.

Radford M Neal. Slice sampling. Annals of Statistics, pages 705–741, 2003.

Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 2(11), 2011.

GP Patil. Maximum likelihood estimation for generalized power series distributions and its
application to a truncated binomial distribution. Biometrika, 49(1/2):227–237, 1962.

104

http://chandra.harvard.edu/about/

Christian Robert. Machine Learning, a Probabilistic Perspective, 2014.

Gareth O Roberts and Jeffrey S Rosenthal. Examples of adaptive MCMC. Journal of
Computational and Graphical Statistics, 18(2):349–367, 2009.

Gareth O Roberts, Andrew Gelman, Walter R Gilks, et al. Weak convergence and optimal
scaling of random walk Metropolis algorithms. The Annals of Applied Probability, 7(1):
110–120, 1997.

Gareth O Roberts, Jeffrey S Rosenthal, et al. General state space Markov chains and MCMC
algorithms. Probability Surveys, 1:20–71, 2004.

Kathryn Roeder. Density estimation with confidence sets exemplified by superclusters and
voids in the galaxies. Journal of the American Statistical Association, 85(411):617–624,
1990.

David Spiegelhalter, Andrew Thomas, Nicky Best, and Wally Gilks. BUGS 0.5* Examples
Volume 2 (version ii). MRC Biostatistics Unit, 1996.

Matthew Stephens. Bayesian analysis of mixture models with an unknown number of
components-an alternative to reversible jump methods. Annals of Statistics, pages 40–
74, 2000.

Hyungsuk Tak, Xiao-Li Meng, and David A van Dyk. A repelling–attracting Metropolis
algorithm for multimodality. Journal of Computational and Graphical Statistics, 27(3):
479–490, 2018.

Torsten Bronger. Auriga constellation map, wikimedia commons, 2003. URL https:

//commons.wikimedia.org/wiki/File:Auriga_constellation_map.png. [Online; ac-
cessed 28-August-2018].

David A Van Dyk, Alanna Connors, Vinay L Kashyap, and Aneta Siemiginowska. Anal-
ysis of energy spectra with low photon counts via Bayesian posterior simulation. The
Astrophysical Journal, 548(1):224, 2001.

David A van Dyk, Hosung Kang, et al. Highly structured models for spectral analysis in
high-energy astrophysics. Statistical Science, 19(2):275–293, 2004.

Evan J Williams. Regression Analysis. John Wiley & Sons, Incorporated, 1959.

105

https://commons.wikimedia.org/wiki/File:Auriga_constellation_map.png
https://commons.wikimedia.org/wiki/File:Auriga_constellation_map.png

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Outline
	Background
	A Review of MCMC methods
	The Metropolis-Hastings Algorithm
	Gibbs Sampler
	Convergence of the Metropolis-Hastings Algorithm
	Strategies for Improving Convergence
	Reparameterization
	Auxiliary Variable Methods
	Annealing Method
	Reversible Jump MCMC

	Population-Based MCMC Methods

	A New Multiple Chain Method
	Method Introduction
	An Illustrative Example
	Theoretical Aspects
	Reducibility
	Estimates of the Proportion in Truncated Binomial

	Some General Guidelines
	When to Use the Multiple Chain Method?
	Tuning of the Proposal Distribution
	Issue in High Dimensions

	Applications
	Computing Bayes Factors for Bayesian Model Selection
	Introduction of Bayes Factors
	Methods for Computing Bayes Factor
	Pine Data Example
	Galaxy Data Example

	Estimating Variance Components in Mixed Effect Models
	Sensor Network Localization

	Capella Data
	Backgroud
	Models
	One Temperature Component
	Two Temperature Components

	Discussion
	Summary
	Limitations and Future Work

	Bibliography

