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SUMMARY

Experimental sleep-wake disruption in rodents and humans causally modulates β-amyloid (Aβ) 

dynamics (e.g., [1–3]). This leads to the hypothesis that, beyond cross-sectional associations, 

impaired sleep structure and physiology could represent prospective biomarkers of the speed with 

which Aβ accumulates over time. Here, we test the hypothesis that initial baseline measures of 

non-rapid eye movement (NREM) sleep slow-wave activity (SWA) and sleep quality (efficiency) 

provide future forecasting sensitivity to the rate of Aβ accumulation over subsequent years. A 

cohort of clinically normal older adults was assessed using objective sleep polysomnography in 

combination with longitudinal tracking of Aβ accumulation with [11C]PiB positron emission 

tomography (PET) imaging. Both the proportion of NREM SWA below 1 Hz and the measure of 

sleep efficiency predicted the speed (slope) of subsequent Aβ deposition over time, and these 

associations remained robust when taking into account additional cofactors of interest (e.g., age, 

sex, sleep apnea). Moreover, these measures were specific, such that no other macro- and 

microphysiological architecture metrics of sleep demonstrated such sensitivity. Our data support 

the proposal that objective sleep markers could be part of a set of biomarkers that statistically 

forecast the longitudinal trajectory of cortical Aβ deposition in the human brain. Sleep may 

therefore represent a potentially affordable, scalable, repeatable, and non-invasive tool for 
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quantifying of Aβ pathological progression, prior to cognitive symptoms of Alzheimer’s disease 

(AD).

In Brief

Winer et al. demonstrate that objective measures of sleep physiology forecast subsequent β-

amyloid accumulation in healthy older adults. Reduced slow-wave activity and low sleep 

efficiency at baseline are both associated with accelerated rate of cortical β-amyloid plaque 

deposition.

RESULTS

In short (and see STAR Methods for details), the study combined overnight 

polysomnography recording and repeat positron emission tomography (PET) brain scan 

assessments of β-amyloid (Aβ) ([11C]PiB PET) across multiple years in a longitudinal 

cohort assessment of clinically normal older adults (described in full in Table 1).

At the initial baseline assessment, participants received in-laboratory sleep recording using 

full-head electroencephalogram (EEG) polysomnography (PSG), allowing topographical 

quantification of slow-wave activity (SWA) and macro-sleep architecture including sleep 

efficiency, as well as non-rapid eye movement (NREM) and rapid eye movement (REM) 

sleep stages. The mean Pittsburgh Sleep Quality Index global score was 4.1 ± 2.1, 

suggesting that sleep quality was comparable to other healthy older adult cohorts [4–6]. 

Based on previous cross-sectional work [7, 8], a priori measures of interest were sleep 

efficiency (total amount of sleep as a percentage of total time in bed) and the proportion of 

SWA between 0.6 and 1 Hz (prop. < 1 Hz SWA). This proportional measure of SWA 

separates SWA based on the established physiological distinction between NREM slow 

waves <1 Hz and the delta wave (1–4 Hz) [9]. Due to peak sensitivity to Aβ having been 

reported at frontal EEG derivations in cross-sectional investigations [8], SWA analyses 

focused a priori on a mean of frontal electrodes (F3, Fz, and F4). Associated baseline 

[11C]PiB PET scans were collected within a mean of 6.1 months of polysomnography 

(±7.0), a period of time during which Aβ amounts vary minimally within an individual [10]. 

Following this initial baseline set of assessments, participants received multiple follow-up 

[11C]PiB PET scans to measure longitudinal change in Aβ accumulation, with a mean 

duration of follow-up assessment of 3.7 years (±2.4) and a mean total number of 2.6 PET 

scans (range 2–5). A standard global cortical [11C]PiB distribution volume ratio (DVR) was 

calculated for every PET image, and a linear mixed-effects model was used to derive 

longitudinal slopes of [11C]PiB DVR change for every subject, providing a measure of rate 

change in Aβ burden over time (Figure 1). Two participants who were PiB negative at their 

baseline PET scan were PiB positive at their final scan, based on a DVR threshold of 1.065 

[11].

NREM SWA Physiology and Rate of Aβ Accumulation

First, we tested the hypothesis that prop. <1 Hz SWA at baseline was a predictor of the 

subsequent rate of Aβ accumulation in the future years ahead.
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Supportive of the hypothesis, individuals with lower prop. <1 Hz SWA at initial baseline 

went on to experience a significantly greater subsequent rate of cortical Aβ accumulation, 

relative to those with higher initial prop. <1 Hz SWA (Figure 2A; r = −0.52, p = 0.002). In 

order to account for covariates and number of PET scans per subject over time, a linear 

mixed-effects model was implemented, containing main effects of baseline prop. <1 Hz 

SWA, age, sex, and apnea-hypopnea index and their respective time interactions as 

predictors, as well as random intercepts for each subject. Using this approach, this same 

association remained, such that the interaction term between initial prop. <1 Hz SWA and 

time predicted cortical Aβ accumulation (p < 0.001).

To investigate the frequency specificity of the association between SWA and future Aβ 
change, bivariate correlation strength between the rate of Aβ change measure and EEG 

spectral power at frontal electrode Fz was investigated across 1 Hz frequency bins between 

0.6 and 40 Hz (Figure 2B). Only spectral power within 0.6to 1-, 2to 3-, 3to 4-, 4to 5-, and 

5to 6-Hz bins was significantly associated with future Aβ change (all p < 0.02), indicating 

particular sensitivity at the lowest frequency ranges. Consistent with our prior studies [8, 

12], the directionality was specific, with 0.6to 1-Hz power being negatively related to Aβ 
change, whereas power at frequencies greater than 1 Hz was positive in association.

As an additional control analysis, we examined whether a more traditional measure of SWA 

was predictive of the rate of Aβ change, specifically total relative SWA 0.8–4.6 Hz [13]. 

There was not a significant association between total SWA and Aβ change (r = −0.24, p = 

0.18), demonstrating that specific frequencies hold predictive power rather than a summary 

SWA measure.

No such predictive significant associations with the rate of Aβ accumulation were identified 

in any REM frequency bin (Fz, 1 Hz bins, 0.6–40 Hz: all r < |0.35|, p > 0.05). This lack of 

REM sleep relationship suggests that it is within the physiological state of NREM sleep 

itself, and specifically in the low-frequency EEG domain, wherein robust forecasting of Aβ 
accumulation is possible, at least in this population of clinically normal older adults.

In a final control analysis, we explored whether NREM slow wave-spindle coupling 

strength, a measure previously shown to be associated with greater medial temporal lobe tau 

burden [12], was sensitive to change in Aβ. There was no significant association between 

coupling strength and the rate of Aβ change (r = 0.20, p = 0.28), adding to previous evidence 

that this measure is not sensitive to Aβ.

Confirming previous cross-sectional findings [8, 12], the measure of prop. <1 Hz SWA was 

also cross-sectionally (and negatively) associated with baseline Aβ burden (r = −0.57, p < 

0.001) and, as expected, this baseline measure of Aβ was also significantly associated with 

Aβ change (r = 0.80, p < 0.001).

Therefore, both bivariate correlations and a linear mixed-effects model suggest that the 

initial electrophysiological quality of NREM SWA (prop. < 1 Hz SWA) provided a selective 

and statistically significant signal predicting the future rate of cortical Aβ accumulation 

across subsequent years. A binary visual representation of this relationship is provided in 
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Figure 3A, showing the amount of Aβ accumulation over time (annual) in those individuals 

with high relative to low prop. <1 Hz SWA (median prop. <1 Hz SWA split).

Sleep Macroarchitecture and Rate of Aβ Accumulation

Having examined the sensitivity of electrophysiological NREM sleep quality, we next 

sought to test the related hypothesis that the macroarchitecture of sleep, specifically the 

qualitative measure of sleep efficiency, offered similar predictive sensitivity.

Confirming the hypothesis, sleep efficiency marginally predicted future change in Aβ 
(Figure 2C; r = −0.35, p = 0.05). More specifically, individuals with worse initial sleep 

efficiency at baseline went on to show greater subsequent increase in cortical Aβ 
accumulation over time. Beyond this bivariate correlation, a linear mixed-effects model was 

again implemented in order to account for covariates and differing PET scan numbers across 

subjects. The model contained main effects of baseline sleep efficiency, age, sex, and apnea-

hypopnea index and their respective interactions with time as predictors, and random 

intercepts for each subject. The interaction term between baseline sleep efficiency and time 

significantly predicted accumulation of Aβ in the model (p < 0.001). This association is 

visualized in a comparison of annual Aβ change in high- and low-sleep-efficiency subjects, 

provided in Figure 3B. Replicating cross-sectional evidence of accelerometer-measured 

sleep efficiency rather than PSG [7], sleep efficiency was similarly and negatively associated 

with baseline Aβ burden (r = −0.43, p = 0.01).

To examine the specificity of this longitudinal sleep-efficiency relationship, post hoc 

analyses explored whether other features of baseline sleep macroarchitecture were sensitive 

in predicting future cortical Aβ deposition. Baseline total sleep time was negatively 

correlated with Aβ change (r = −0.36, p = 0.04), and wake after sleep onset trended toward a 

positive correlation (r = 0.31, p = 0.08), such that shorter sleep duration and greater 

nighttime wakefulness were associated with a greater rate of Aβ accumulation. However, 

neither of these associations survived correction for multiple tests. Nevertheless, the latter 

two relationships are congruent with the fact that sleep efficiency is calculated from both 

total amount of sleep and amount of time spent awake during the sleep period. No 

significant associations were found between other stages of sleep and the rate of Aβ 
accumulation (NREM stage 1, r = 0.07, p = 0.72; NREM stage 2, r = −0.32, p = 0.08; 

NREM slow-wave sleep [SWS], r = −0.07, p = 0.72; REM, r = −0.18, p = 0.34), indicating 

specificity to the efficiency of sleep, rather than any specific sleep stage.

Sleep, Rate of Aβ Accumulation, and Rate of Cognitive Decline

Although the rate of Aβ accumulation has been linked with declining cognitive function 

during the same time period [10, 14], Aβ deposition can occur years in advance of cognitive 

impairment [15], and does not always predict cognitive status cross-sectionally [16–23]. 

Nevertheless, we finally sought to examine whether the above measures of sleep that 

forecasted the rate of Aβ pathology accumulation were associated with changes in cognition. 

To do this, slopes of change for memory and working memory and executive function 

domain scores from cognitive assessments time locked to Aβ PET scans were derived.

Winer et al. Page 4

Curr Biol. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Decreasing cognitive performance was significant within each domain (one-sample t tests, 

all p < 0.001). We next examined bivariate correlations between baseline prop. <1 Hz SWA 

and subsequent change in each cognitive domain. Baseline prop. <1 Hz SWA was not 

significantly associated with change in any of the three cognitive domains (memory, r = 

−0.11, p = 0.56; working memory, r = 0.10, p = 0.61; executive function, r = −0.26, p = 

0.16). This was also true for the macroarchitecture measure of sleep efficiency with memory 

(r = 0.22, p = 0.24), working memory (r = 0.03, p = 0.86), and executive function (r = −0.20, 

p = 0.28). Longitudinal change in Aβ was negatively correlated with change in the three 

cognitive domains, although none were statistically significant (memory, r = −0.25, p = 0.17; 

working memory, r = −0.33, p = 0.07; executive function, r = −0.12, p = 0.52). This is 

consistent with reports that Aβ status in cognitively normal older adults alone is a weak, 

although at times significant, predictor of cognitive decline [10, 14, 16–23].

In a control analysis, we explored whether NREM slow wave-spindle coupling strength was 

associated with subsequent change in cognition. Coupling strength was not predictive of 

change in any of the three cognitive domains (memory, r = −0.15, p = 0.42; working 

memory, r = 0.02, p = 0.92; executive function, r = 0.08, p = 0.65).

Thus, both sleep metrics were sensitive to the rate of Aβ accumulation over time in 

cognitively normative older adults, although these same measures were not statistically 

sensitive in detecting consistent alterations in cognition, the sensitivity of which may only 

emerge when clinically relevant decline occurs in the years following substantive Aβ 
accumulation.

DISCUSSION

Together, these findings indicate that both macro- and microarchitecture features of human 

sleep are statistically significant predictors of the rate of Aβ plaque accumulation across 

subsequent years in cognitively normal older adults. More specifically, worse sleep 

efficiency and diminished low-frequency <1 Hz slow waves during NREM sleep were 

associated with the rate of future Aβ accumulation. These relationships were specific in that 

no other macroarchitecture features of sleep beyond sleep efficiency, nor spectral 

frequencies during sleep, demonstrated such significant predictive associations. 

Furthermore, the associations were robust when taking into account additional factors of 

interest (e.g., age, sex, and sleep apnea).

Seminal work to date has revealed cross-sectional relationships between sleep disturbance 

and Aβ plaque burden measured using PET and cerebrospinal fluid (CSF) [6, 7, 12, 24–27]. 

Similar cross-sectional association has been identified with slow-wave EEG measures [8, 12, 

28, 29]. In addition to the utility of such cross-sectional sensitivity, the ability to forecast 

subsequent increases in Aβ is also critical, because the rate of increase in Aβ over time has 

been associated with the development of subsequent tau pathology, with the downstream 

consequences of brain atrophy, cognitive decline, and ultimately onset into mild cognitive 

impairment and Alzheimer’s disease (AD) [30–32].
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Building on this goal, the current findings demonstrate that measures of human sleep 

architecture and EEG sleep physiology offer the ability to predict the subsequent rate of Aβ 
plaque accumulation. These objective sleep findings complement subjective data 

demonstrating that self-reported excessive daytime sleepiness [33, 34], as well as features of 

sleep disordered breathing, specifically obstructive sleep apnea [35, 36], predicts greater Aβ 
accumulation over time. Therefore, objective measures of nighttime sleep, together with 

subjective measures of daytime quality of wakefulness, may reflect candidate biomarkers 

that are non-invasive, safe, and relatively cost effective, and sensitive not only to an 

individual’s current Aβ burden but also to their trajectory of pathological Aβ progression.

The mechanisms underlying our observed associations may be guided by known causal 

interactions between sleep and Aβ dynamics. In rodents, sleep restriction leads to elevations 

in brain interstitial fluid Aβ levels, whereas Aβ plaque pathology increases following 

chronic sleep deprivation [1, 3]. In humans, both total and selective NREM SWS deprivation 

results in higher next-day levels of circulating Aβ in CSF in healthy adults [2, 37, 38], as 

well as higher [18F]florbetaben Aβ PET signal [39]. The link between the beneficial 

decrease in CSF Aβ associated with sleep is thought to be a product of lower synaptic 

activity during sleep, thereby decreasing synaptic Aβ release [1] and greater glymphatic 

brain clearance of extracellular Aβ during NREM sleep [40, 41].

Adding to this, and of interest from the perspective of AD prevention, rodent work has 

shown that enhancing cortical slow oscillations through optogenetic stimulation decreases 

the formation of Aβ plaques [42]. This may be due to improved regulation of neuronal 

hyperexcitability that can otherwise elevate Aβ production [43, 44]. In contrast, driving 

cortical oscillations at faster frequencies increases Aβ production and Aβ plaque deposition 

[45].

Returning to the current findings, these causal dynamics between sleep and Aβ may suggest 

that worse sleep efficiency and impaired NREM slow oscillations could accelerate Aβ 
deposition due to elevated synaptic activity driving Aβ production and/or impair glymphatic 

clearance of Aβ over the long term [46]. Supporting the latter possibility is the recent 

discovery of a genetic link between SWS and astrocytic water channel aquaporin 4 [47].

Whereas the majority of studies to date have reported relationships between NREM sleep 

and Aβ dynamics, some findings have demonstrated associations between REM sleep and 

Aβ. Cross-sectionally, less time spent in REM sleep is associated with greater brain Aβ, in 

both rodent models [3] and humans [8, 48]. REM sleep is regulated in part by cholinergic 

neurons in the basal forebrain [49], subject to neurodegeneration associated with Aβ burden 

in AD [50] and providing a potential mechanism explaining this relationship. However, time 

spent in REM sleep in the current study was not a significant predictor of longitudinal Aβ 
increase. This could suggest that age-related pathology that compromises REM sleep is not 

as strongly associated with longitudinal Aβ plaque accumulation, at least in this sample of 

clinically normal older adults.

Aβ plaque deposition is hypothesized to be an early step in the pathological progression of 

AD, but relationships between Aβ and cognition are often weak and can be difficult to detect 
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(e.g., [31, 51]). Consistent with these findings, the sleep measures found to be sensitive to 

longitudinal Aβ accumulation in the current study were not predictors of cognitive changes 

over this same period. It is possible that a robust predictive relationship between these sleep 

measures and cognition may be observed over a longer period of time or once an individual 

has transitioned into the stage of mild cognitive impairment or AD. Nevertheless, these 

results also do not address or preclude the prediction of longitudinal cognitive decline using 

more detailed episodic memory tests, including those known to be sleep dependent [52]. For 

example, overnight memory consolidation has been demonstrated to be impacted as a 

downstream consequence of Aβ burden’s effect on SWA cross-sectionally [8], and may 

show a similar association longitudinally.

An important and related next step will be to determine whether these same objective sleep 

markers offer similar predictive sensitivity to the rate of Aβ accumulation in those with mild 

cognitive impairment and AD. Considering that impaired sleep is longitudinally predictive 

of other AD-related outcomes, including gray matter atrophy [53, 54] and later cognitive 

decline [55–58], this would appear to be an empirically motivated possibility. PET ligands 

that bind to tau neurofibrillary tangles have only recently been implemented in human 

research. Greater tau PET signal has been demonstrated to be cross-sectionally associated 

with disruptions in sleep physiology [12, 28]. As additional longitudinal tau PET data 

become available, a critical next step will be to examine the association between sleep and 

longitudinal changes in tau.

Importantly, the present results cannot establish a causal link between impaired sleep and 

subsequent Aβ plaque accumulation. The majority of subjects in the study already had 

substantial Aβ deposition at baseline, so the directionality of this relationship cannot be 

determined without further investigation. Furthermore, our analyses treated PiB DVR as a 

continuous variable, and were not powered to separate subjects on the basis of initial Aβ 
status. By recruiting a large sample of Aβ-negative subjects, future studies could investigate 

whether sleep markers hold strength in predicting conversion of Aβ status. Having 

established linear relationships between sleep physiology and future Aβ accumulation, a 

crucial next step toward implementing sleep as a diagnostic tool will be to perform large 

clinical cohort studies that are powered to determine the sensitivity and specificity of these 

markers through a receiver-operating-characteristic-curve analysis.

Consistent with previous findings [10, 32], Aβ burden at baseline was strongly associated 

with the rate of subsequent Aβ accumulation. To account for this relationship between 

baseline and rate of subsequent change, we implemented linear mixed-effects models that 

adjusted for the baseline association by including a random intercept for every subject. 

These models demonstrated that prop. <1-Hz SWA and sleep efficiency were significant 

predictors of change in Aβ burden over time. A [11C] PiB PET scan is a sensitive marker of 

the rate of future Aβ increase [10, 32], yet is costly, invasive, and not widely available. The 

present findings suggest that sleep assessment could provide a possible non-invasive 

alternative holding significant predictive strength.

In conclusion, the current data support the hypothesis that objective markers of human sleep 

are statistically sensitive in forecasting the longitudinal trajectory of cortical Aβ plaque 
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deposition. Alongside other promising non-invasive markers [59, 60], the assessment of 

NREM SWA with EEG, and sleep efficiency measured using EEG or wristwatch actigraphy, 

could represent part of a set of potentially non-invasive, repeatable, and safe tools for 

quantification of Aβ pathological progression, before cognitive symptoms of AD. Sleep is 

perhaps unique among other early AD biomarkers in the sense that it not only signals the 

progression of Aβ accumulation but is itself a modifiable lifestyle factor. In this regard, 

further work will need to focus on middle-aged populations prior to substantive Aβ plaque 

pathology, thereby determining whether deficits in sleep are detectable prior to Aβ 
deposition. This will also be necessary for other AD-related features, such as tau and 

neurodegeneration. If confirmed, sleep may therefore represent a possible preventative and 

therapeutic target in modulating risk for AD and/or delaying the onset of AD symptoms.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Requests for further information and resources should be directed to, and 

will be fulfilled by, the lead contact, Matthew Walker (mpwalker@berkeley.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Publicly available software and algorithms used for 

analyses is listed in the Key Resources Table. Data and code used in this study will be 

shared by application request from a qualified investigator at an academic institute, subject 

to the negotiation of a university review and data use agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants—Thirty-two cognitively normal older adults (mean ± SD age 75.5 ± 4.3 

years, 23 female, see Table 1) from the Berkeley Aging Cohort Study (BACS) participated 

in the study, which was approved by the Institutional Review Boards at University of 

California, Berkeley and Lawrence Berkeley National Laboratories. All participants 

providing written informed consent. BACS participants who were PiB+ at their baseline PiB 

scan were over-recruited for longitudinal PET imaging studies, resulting in a longitudinal 

imaging sample with a higher prevalence of Aβ positivity than the general population [61]. 

Exclusion criteria included presence of neurologic or psychiatric disorders, and current use 

of hypnotic or antidepressant medications. 7 participants (22%) met criteria for clinically 

significant obstructive sleep apnea (AHI > 15). Participants were free of depressive 

symptoms, scored ≥ 25 on the Mini Mental State Exam [62], and displayed normal 

performance on neuropsychological testing (1.5 standard deviations within age, education, 

and sex adjusted means). Subjects who performed below the 1.5 SD cutoff in one follow-up 

session remained in the study as we were interested in biomarkers underlying age-related 

memory decline. Cross-sectional PSG and PiB PET data from 17 participants were included 

in a previous study of Aβ and sleep-dependent memory consolidation [8]. Cross-sectional 

PSG and PiB PET data from 20 participants were included in a previous study of Aβ, tau, 

and biomarkers of current AD pathological burden [12]. 5 individuals were included in all 

three studies.

Winer et al. Page 8

Curr Biol. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



METHOD DETAILS

Sleep EEG Acquisition—All participants abstained from caffeine, alcohol and daytime 

naps for the 48 hours before and during the study. Participants kept to their habitual sleep-

wake rhythms and averaged 7 to 9 hours of reported time in bed per night before study 

participation, verified by sleep logs.

Polysomnography on the experimental night was recorded using a Grass Technologies 

Comet XL system (Astro-Med, West Warwick, RI), including 19-channel 

electroencephalography (EEG) placed using the 10–20 system, including electrooculography 

(EOG) recorded at the right and left outer canthi (right superior; left inferior) and 

electromyography (EMG). Reference electrodes were recorded at both the left and right 

mastoid (A1, A2).

Participants received an adaptation night in the sleep laboratory before the experimental 

night which additionally included nasal and oral airflow sensors, abdominal and chest belts, 

and pulse oximetry. Recordings from the adaptation night were used to calculate number of 

arousals, arousal index, and apnea-hypopnea index, the latter of which was included as a 

covariate in statistical models. Adaptation night data from one subject were not usable and 

this subject was excluded from analyses that included apnea-hypopnea index.

Sleep was scored using standard criteria [63] by a single trained scorer (B.A.M.). Sleep 

scoring was performed blinded to PET data. Sleep onset latency was defined as latency to 

NREM stage 2. Persistent sleep latency was defined as latency to sleep that persisted for at 

least 5 mins. Slow wave sleep (SWS) was defined as NREM stages 3–4.

PET Acquisition—11C-PiB was synthesized at the Lawrence Berkeley National 

Laboratory Biomedical Isotope Facility, using a protocol described in detail previously [64]. 
11C-PiB PET imaging was conducted in 3D acquisition mode using either an ECAT EXACT 

HR scanner (28% of scans) or a BIOGRAPH PET/CT Truepoint 6 scanner (72% of scans; 

Siemens Medical Systems). Criteria for PiB positivity did not differ between PET scanners 

used for PiB acquisition, and PiB PET DVR values have been shown not to significantly 

differ between scanners [65]. Immediately after intravenous injection of approximately 15 

mCi of PiB, 90 min of dynamic acquisition frames were obtained (4 × 15, 8 × 30, 9 × 60, 2 

× 180, 10 × 300, and 2 × 600 s). For each 11C-PiB scan, a 10-minute transmission scan or a 

CT were obtained for attenuation correction. 11C-PiB PET images were reconstructed using 

an ordered subset expectation maximization algorithm with weighted attenuation and 

smoothed with a 4 mm Gaussian kernel with scatter correction.

Baseline 11C-PiB PET scans were collected within 7.9 ± 4.8 months of PSG recordings. 

Participants had a mean duration of follow-up assessment of 3.7 ± 2.4 years, and a mean 

total number of 2.6 (range 2–5) PET scans.

MRI Acquisition—In tandem with 11C-PiB PET scans, high-resolution T1-weighted 

magnetization prepared rapid gradient echo (MPRAGE) images were acquired for every 

subject on a 1.5T Siemens Magnetom Avanto scanner at LBNL (TR/TE = 2110/3.58 ms, FA 

= 15°,1 × 1 × 1 mm resolution).

Winer et al. Page 9

Curr Biol. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Neuropsychological Evaluation—31 of 32 subjects had cognitive longitudinal 

cognitive data available. Neuropsychological data from assessments closest to the baseline 
11C-PiB PET scan were used to calculate cognitive composite scores for episodic memory, 

working memory, and executive function domains. Z scores were calculated as the average 

of the Z-transformed individual test scores using mean and SD from the first cognitive 

session data of a larger sample of 225 BACS participants (age: 81.2 ± 7.3 years; education: 

16.8 ± 2.1 years; 58% female) that included the participants studied here. The memory 

composite score comprised short-delay and long-delay (after 20 min) free recall of the 

California Verbal Learning Test [66] and Visual Reproduction Test [67]. The working 

memory score included the WMS-III Digit Span test forward and backward total score. The 

executive function composite score comprised the Digit Symbol test [68], number correct in 

60 s in the Stroop Interference Test [69] and “Trail B minus A” score from the Trail Making 

Test ([70]; score inverted after Z-transformation).

Longitudinal cognitive data had a mean duration of follow-up assessment of 4.2 ± 2.6 years, 

and a mean total number of 4.3 (range 2–9) assessments. To assess change in cognitive 

composite scores over time, slopes were generated with linear mixed-effects models for each 

composite domain in R using the lme4 package.

QUANTIFICATION AND STATISTICAL ANALYSIS

EEG Data—EEG data from the experimental night were imported into EEGLAB and 

epoched into 5 s bins. Epochs containing artifacts were manually rejected, and the remaining 

epochs were filtered between 0.4 and 50 Hz. A fast Fourier transform was then applied to 

the filtered EEG signal at 5 s intervals with 50% overlap and employing Hanning 

windowing.

A proportional measure of SWA, a measure previously shown to be associated with Aβ 
burden [8, 12], was derived by dividing the spectral power between 0.6 and 1 Hz by the sum 

of spectral power between 0.6 and 4 Hz during NREM SWS [8, 12]. This proportional 

measure of SWA separates SWA based on the established physiological distinction between 

NREM slow waves < 1 Hz and the delta wave (1–4 Hz) [9]. Total SWA was calculated as 

relative spectral power 0.8–4.6 Hz during NREM SWS [13]. Sleep efficiency was calculated 

as the total sleep time (TST) divided by total time in bed. For all analyses including SWA, 

statistical tests were performed a priori at the mean of frontal (F3, Fz, F4) electrode 

derivations, based on previously demonstrated sensitivity to this measure [8, 12].

For control analyses, slow wave-spindle coupling strength during NREM SWS was 

calculated using a method identical to our previous publications [12, 71]. Event detection of 

SOs and spindles was performed based on previously established algorithms [71–73]. (1) 

Slow oscillations: the continuous signal was filtered between 0.16 and 1.25 Hz and detected 

zero crossings. Events were then selected based on time (0.8 2 s duration) and amplitude 

(75% percentile) criteria. Finally, artifact-free 5 s long segments (±2.5 s around trough) were 

extracted from the raw signal. (2) Sleep spindles: the signal was filtered between 12–16 Hz 

and the analytical amplitude was extracted after applying a Hilbert transform. The amplitude 

was smoothed with a 200 ms moving average, then thresholded at the 75% percentile 

(amplitude criterion). Only events that exceeded the threshold for 0.5 to 3 s (time criterion) 
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were accepted. Artifact-free events were then defined as 5 s long sleep-spindle epochs (±2.5 

s), peak-locked. Events were normalized per subject by means of a z-score prior to all 

subsequent analyses, alleviating power differences between subjects [71]. The mean and 

standard deviation were derived from the unfiltered event-locked average time course of 

either SO or spindle events in every participant. Time-frequency representations for artifact-

free normalized SO were calculated after applying a 500 ms Hanning window. Spectral 

estimates (0.5 30 Hz; 0.5 Hz steps) were calculated between −2 and 2 s in steps of 50 ms and 

baseline-corrected by means of z-score relative to a bootstrapped baseline distribution that 

was created from all trials (baseline epoch −2 to −1.5 s, 10000 iterations [71]. For event-

locked cross-frequency analyses [71, 73, 74], the normalized SO trough-locked data was 

first filtered into the SO component (0.1–1.25 Hz) and then the instantaneous phase angle 

was extracted after applying a Hilbert transform. Then the same trials were filtered between 

12–16 Hz and the instantaneous amplitude was extracted from the Hilbert transform. Only 

the time range from −2 to 2 s was considered, to avoid filter edge artifacts. For every subject, 

channel, and epoch, the maximal sleep spindle amplitude and corresponding SO phase angle 

were detected. The mean circular direction and resultant vector length across all NREM 

events were determined using the CircStat toolbox.

PET Processing—11C-PiB data were realigned and frames from the first 20 minutes of 

acquisition were averaged and coregistered to participants’ corresponding structural MRI. 

Distribution volume ratios (DVRs) for 11C-PiB images were generated with Logan graphical 

analysis on 11C-PiB frames corresponding to 35–90 min post-injection using a cerebellar 

gray matter reference region [75, 76]. Cortical 11C-PiB DVR was calculated as a weighted 

mean across FreeSurfer-derived native space frontal, temporal, parietal, and posterior 

cingulate cortical regions. Participants were classified as Aβ-positive if their cortical 11C-

PiB DVR was at or above 1.065, a cutoff adapted from previous thresholds developed in our 

laboratory [11]. To assess change in Aβ burden over time, linear mixed-effects models were 

used to generate slopes of cortical 11C-PiB DVR using the lme4 package in R.

In order to visualize voxelwise change in 11C-PiB DVR (Figures 1A and 3), each 

participant’s baseline and final PET images were warped to MNI space, multiplied by an 

inclusive intracranial mask, and smoothed with a 4mm3 Gaussian kernel using SPM12. The 

baseline image was then subtracted from the final image, and the result was divided by the 

length of the interval between the two images, resulting in a voxelwise annual change in 

DVR image for each participant.

MRI Processing—T1 MPRAGE scans were processed with FreeSurfer version 5.3.0 to 

derive ROIs in each subject’s native space using the DesikanKilliany atlas. FreeSurfer ROIs 

were used to calculate global 11C-PiB PET measures in native space for each subject, as well 

as the gray matter cerebellum mask used as a reference region in calculating 11C-PiB DVRs.

Statistical analysis—Pearson correlations were used to test for significant bivariate 

associations between sleep metrics, slope of cortical 11C-PiB DVR, baseline cortical 11C-

PiB DVR, and slope of cognitive domain scores. False discovery rate (FDR) correction was 

used to adjust for testing associations with multiple sleep stages. Linear mixed-effects 

(LME) models were used to predict repeated-measures of cortical 11C-PiB DVR, with fixed 
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effects of the baseline sleep variable of interest, age, sex, and apnea-hypopnea index, as well 

as their respective interactions with time, and a random effect for participant intercept.
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Highlights

• Impaired sleep is associated with a higher rate of subsequent β-amyloid 

accumulation

• Slow-wave activity and sleep efficiency forecast increase in cortical β-

amyloid

• Sleep may serve as a marker of Alzheimer’s disease progression
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Figure 1. Group-Level Patterns of Longitudinal [11C]PiB β-Amyloid Increase
(A) Voxelwise mean group annual [11C]PiB DVR increase, highlighting regions of Aβ 
plaque accumulation during the study period.

(B) Predicted group longitudinal trajectory of cortical Aβ plaque deposition (global 

[11C]PiB DVR increase) over time, extracted from a linear mixed-effects model. Light blue 

shading represents 95% confidence intervals.
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Figure 2. Baseline Sleep Metrics Predict Longitudinal β-Amyloid Plaque Deposition
(A) Scatterplot of significant association between proportion (prop.) <1 Hz slow-wave 

activity (SWA) at baseline and subsequent rate of increase in cortical [11C]PiB DVR. 

Individuals with lower baseline prop. <1 Hz SWA went on to experience higher rates of 

increase in cortical Aβ relative to those with higher initial prop. <1 Hz SWA.

(B) Correlation between NREM slow-wave sleep (SWS) spectral power in 1 Hz bins (0.6–40 

Hz) and subsequent rate of [11C]PiB DVR increase. The shaded area represents the a priori 

SWA frequency range (0.6–4 Hz). The dashed line denotes a correlation of 0.
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(C) Scatterplot of bivariate association between baseline sleep efficiency and future rate of 

[11C]PiB DVR increase. Lower sleep efficiency was predictive of a higher rate of increase in 

cortical Aβ.
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Figure 3. Regional Differences in Patterns of Annual Longitudinal β-Amyloid Accumulation on 
the Basis of Baseline Sleep Measures
(A) Median split of individuals with high versus low prop. <1 Hz NREM SWA at baseline 

illustrates distinct patterns of annual [11C]PiB DVR increase, with a greater mean increase in 

the low prop. <1 Hz SWA group.

(B) Median split by baseline sleep efficiency. Mean annual [11C]PiB DVR increase is higher 

in the low-sleep-efficiency group. All images show the medial surface of the right 

hemisphere.
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Table 1.

Participant Demographics, [11C]PiB PET, and Sleep Characteristics

Demographics (Baseline, n = 32)

Age, years 75.5 ± 4.3

Female, n (%) 23 (72)

Education, years 17.0 ± 1.5

MMSE 29.0 ± 1.0

ApoE e4 carriers, n (%) 15(47)

[11C]PiB PET Scans

PiB+ at baseline, n (%) 20 (63)

No. of PiB scans (range) 2.6 (2–5)

PiB interval, years 3.7 ± 2.4

Sleep Characteristics

TST, min 335.3 ± 70.9

NREM S1 time, min 29.7 ± 13.8

NREM S2 time, min 176.4 ± 59.4

NREM SWS time, min 64.3 ± 44.6

REM time, min 64.8 ± 27.5

Sleep-onset latency, min 24.8 ± 36.9

Persistent-sleep latency, min 37.4 ± 43.2

WASO, min 110.2 ± 61.5

Sleep efficiency, % 69.9 ± 14.8

Apnea-hypopnea index 7.3 ± 9.4

No. of arousals 48.5 ± 27.4

Arousal index 8.7 ± 5.5

PSQI global score 4.1 ± 2.1

All values are mean ± SD unless otherwise noted. PiB status was determined based on a global PiB DVR threshold of 1.065 [11]. MMSE, Mini-
Mental State Examination; TST, total sleep time; NREM, non-rapid eye movement sleep; SWS, slow-wave sleep; S1/S2, stage 1/stage 2; REM, 
rapid eye movement sleep; WASO, wake after sleep onset; PSQI, Pittsburgh Sleep Quality Index.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB 2015a RRID: SCR_001622 https://www.mathworks.com/products/matlab.html

EEGLAB 13.4.4b RRID: SCR_007292 https://sccn.ucsd.edu/eeglab/index.php

SPM12 RRID: SCR_007037 http://www.fil.ion.ucl.ac.uk/spm/

FreeSurfer 5.3.0 RRID: SCR_001847 http://surfer.nmr.mgh.harvard.edu/

R RRID: SCR_001905 http://www.r-project.org/

R package: lme4 RRID: SCR_015654 https://cran.r-project.org/web/packages/lme4/index.html

R package: lmerTest RRID: SCR_015656 https://cran.r-project.org/web/packages/lmerTest/index.html

FieldTrip 20161016 RRID: SCR_004849 http://www.fieldtriptoolbox.org/

CircStat 2012 RRID: SCR_016651 https://philippberens.wordpress.com/code/circstats/
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